301
|
Peláez P, Sanchez F. Small RNAs in plant defense responses during viral and bacterial interactions: similarities and differences. FRONTIERS IN PLANT SCIENCE 2013; 4:343. [PMID: 24046772 PMCID: PMC3763480 DOI: 10.3389/fpls.2013.00343] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/14/2013] [Indexed: 05/20/2023]
Abstract
Small non-coding RNAs constitute an important class of gene expression regulators that control different biological processes in most eukaryotes. In plants, several small RNA (sRNA) silencing pathways have evolved to produce a wide range of small RNAs with specialized functions. Evidence for the diverse mode of action of the small RNA pathways has been highlighted during plant-microbe interactions. Host sRNAs and small RNA silencing pathways have been recognized as essential components of plant immunity. One way plants respond and defend against pathogen infections is through the small RNA silencing immune system. To deal with plant defense responses, pathogens have evolved sophisticated mechanisms to avoid and counterattack this defense strategy. The relevance of the small RNA-mediated plant defense responses during viral infections has been well-established. Recent evidence points out its importance also during plant-bacteria interactions. Herein, this review discusses recent findings, similarities and differences about the small RNA-mediated arms race between plants and these two groups of microbes, including the small RNA silencing pathway components that contribute to plant immune responses, the pathogen-responsive endogenous sRNAs and the pathogen-delivered effector proteins.
Collapse
Affiliation(s)
| | - Federico Sanchez
- *Correspondence: Federico Sanchez, Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, 62210 Cuernavaca, Morelos, México e-mail:
| |
Collapse
|
302
|
Pooggin MM. How can plant DNA viruses evade siRNA-directed DNA methylation and silencing? Int J Mol Sci 2013; 14:15233-59. [PMID: 23887650 PMCID: PMC3759858 DOI: 10.3390/ijms140815233] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/01/2013] [Accepted: 07/01/2013] [Indexed: 11/16/2022] Open
Abstract
Plants infected with DNA viruses produce massive quantities of virus-derived, 24-nucleotide short interfering RNAs (siRNAs), which can potentially direct viral DNA methylation and transcriptional silencing. However, growing evidence indicates that the circular double-stranded DNA accumulating in the nucleus for Pol II-mediated transcription of viral genes is not methylated. Hence, DNA viruses most likely evade or suppress RNA-directed DNA methylation. This review describes the specialized mechanisms of replication and silencing evasion evolved by geminiviruses and pararetoviruses, which rescue viral DNA from repressive methylation and interfere with transcriptional and post-transcriptional silencing of viral genes.
Collapse
Affiliation(s)
- Mikhail M Pooggin
- University of Basel, Department of Environmental Sciences, Botany, Schönbeinstrasse 6, Basel 4056, Switzerland.
| |
Collapse
|
303
|
Antiviral RNA silencing initiated in the absence of RDE-4, a double-stranded RNA binding protein, in Caenorhabditis elegans. J Virol 2013; 87:10721-9. [PMID: 23885080 DOI: 10.1128/jvi.01305-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Small interfering RNAs (siRNAs) processed from double-stranded RNA (dsRNA) of virus origins mediate potent antiviral defense through a process referred to as RNA interference (RNAi) or RNA silencing in diverse organisms. In the simple invertebrate Caenorhabditis elegans, the RNAi process is initiated by a single Dicer, which partners with the dsRNA binding protein RDE-4 to process dsRNA into viral siRNAs (viRNAs). Notably, in C. elegans this RNA-directed viral immunity (RDVI) also requires a number of worm-specific genes for its full antiviral potential. One such gene is rsd-2 (RNAi spreading defective 2), which was implicated in RDVI in our previous studies. In the current study, we first established an antiviral role by showing that rsd-2 null mutants permitted higher levels of viral RNA accumulation, and that this enhanced viral susceptibility was reversed by ectopic expression of RSD-2. We then examined the relationship of rsd-2 with other known components of RNAi pathways and established that rsd-2 functions in a novel pathway that is independent of rde-4 but likely requires the RNA-dependent RNA polymerase RRF-1, suggesting a critical role for RSD-2 in secondary viRNA biogenesis, likely through coordinated action with RRF-1. Together, these results suggest that RDVI in the single-Dicer organism C. elegans depends on the collective actions of both RDE-4-dependent and RDE-4-independent mechanisms to produce RNAi-inducing viRNAs. Our study reveals, for the first time, a novel siRNA-producing mechanism in C. elegans that bypasses the need for a dsRNA-binding protein.
Collapse
|
304
|
Incarbone M, Dunoyer P. RNA silencing and its suppression: novel insights from in planta analyses. TRENDS IN PLANT SCIENCE 2013; 18:382-92. [PMID: 23684690 DOI: 10.1016/j.tplants.2013.04.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/25/2013] [Accepted: 04/04/2013] [Indexed: 05/19/2023]
Abstract
Plants employ multiple layers of innate immunity to fight pathogens. For both RNA and DNA viruses, RNA silencing plays a critical role in plant resistance. To escape this antiviral silencing-based immune response, viruses have evolved various counterdefense strategies, the most widespread being production of viral suppressors of RNA silencing (VSRs) that target various stages of the silencing mechanisms. Recent findings from in planta analyses have provided new insights into the mode of action of VSRs and revealed that plants react to the perturbation of the silencing pathways brought by viral infection by deploying a battery of counter-counterdefense measures. As well as discussing which experimental approaches have been most effective in delivering clear and unambiguous results, this review provides a detailed account of the surprising variety of offensive and defensive strategies set forth by both viruses and hosts in their struggle for survival.
Collapse
Affiliation(s)
- Marco Incarbone
- IBMP-CNRS, 12 rue du General Zimmer, 67084 Strasbourg Cedex, France
| | | |
Collapse
|
305
|
Hunter LJR, Westwood JH, Heath G, Macaulay K, Smith AG, MacFarlane SA, Palukaitis P, Carr JP. Regulation of RNA-dependent RNA polymerase 1 and isochorismate synthase gene expression in Arabidopsis. PLoS One 2013; 8:e66530. [PMID: 23799112 PMCID: PMC3684572 DOI: 10.1371/journal.pone.0066530] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/08/2013] [Indexed: 12/24/2022] Open
Abstract
Background RNA-dependent RNA polymerases (RDRs) function in anti-viral silencing in Arabidopsis thaliana and other plants. Salicylic acid (SA), an important defensive signal, increases RDR1 gene expression, suggesting that RDR1 contributes to SA-induced virus resistance. In Nicotiana attenuata RDR1 also regulates plant-insect interactions and is induced by another important signal, jasmonic acid (JA). Despite its importance in defense RDR1 regulation has not been investigated in detail. Methodology/Principal Findings In Arabidopsis, SA-induced RDR1 expression was dependent on ‘NON-EXPRESSER OF PATHOGENESIS-RELATED GENES 1’, indicating regulation involves the same mechanism controlling many other SA- defense-related genes, including pathogenesis-related 1 (PR1). Isochorismate synthase 1 (ICS1) is required for SA biosynthesis. In defensive signal transduction RDR1 lies downstream of ICS1. However, supplying exogenous SA to ics1-mutant plants did not induce RDR1 or PR1 expression to the same extent as seen in wild type plants. Analysing ICS1 gene expression using transgenic plants expressing ICS1 promoter:reporter gene (β-glucuronidase) constructs and by measuring steady-state ICS1 transcript levels showed that SA positively regulates ICS1. In contrast, ICS2, which is expressed at lower levels than ICS1, is unaffected by SA. The wound-response hormone JA affects expression of Arabidopsis RDR1 but jasmonate-induced expression is independent of CORONATINE-INSENSITIVE 1, which conditions expression of many other JA-responsive genes. Transiently increased RDR1 expression following tobacco mosaic virus inoculation was due to wounding and was not a direct effect of infection. RDR1 gene expression was induced by ethylene and by abscisic acid (an important regulator of drought resistance). However, rdr1-mutant plants showed normal responses to drought. Conclusions/Significance RDR1 is regulated by a much broader range of phytohormones than previously thought, indicating that it plays roles beyond those already suggested in virus resistance and plant-insect interactions. SA positively regulates ICS1.
Collapse
Affiliation(s)
- Lydia J. R. Hunter
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Jack H. Westwood
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Geraldine Heath
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Keith Macaulay
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alison G. Smith
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | | | - Peter Palukaitis
- The James Hutton Institute, Invergowrie, Dundee, United Kingdom
- Division of Environmental and Life Sciences, Seoul Women’s University, Seoul, Republic of Korea
| | - John P. Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
306
|
Seo JK, Wu J, Lii Y, Li Y, Jin H. Contribution of small RNA pathway components in plant immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:617-25. [PMID: 23489060 PMCID: PMC3752434 DOI: 10.1094/mpmi-10-12-0255-ia] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Small RNAs regulate a multitude of cellular processes, including development, stress responses, metabolism, and maintenance of genome integrity, in a sequence-specific manner. Accumulating evidence reveals that host endogenous small RNAs and small RNA pathway components play important roles in plant immune responses against various pathogens, including bacteria, fungi, oomycetes, and viruses. Small-RNA-mediated defense responses are regulated through diverse pathways and the components of these pathways, including Dicer-like proteins, RNA-dependent RNA polymerases, Argonaute proteins, and RNA polymerase IV and V, exhibit functional specificities as well as redundancy. In this review, we summarize the recent insights revealed mainly through the examination of two model plants, Arabidopsis and rice, with a primary focus on our emerging understanding of how these small RNA pathway components contribute to plant immunity.
Collapse
Affiliation(s)
- Jang-Kyun Seo
- Department of Plant Pathology & Microbiology, University of California, Riverside, CA, USA
| | | | | | | | | |
Collapse
|
307
|
Hipper C, Brault V, Ziegler-Graff V, Revers F. Viral and cellular factors involved in Phloem transport of plant viruses. FRONTIERS IN PLANT SCIENCE 2013; 4:154. [PMID: 23745125 PMCID: PMC3662875 DOI: 10.3389/fpls.2013.00154] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 05/05/2013] [Indexed: 05/03/2023]
Abstract
Phloem transport of plant viruses is an essential step in the setting-up of a complete infection of a host plant. After an initial replication step in the first cells, viruses spread from cell-to-cell through mesophyll cells, until they reach the vasculature where they rapidly move to distant sites in order to establish the infection of the whole plant. This last step is referred to as systemic transport, or long-distance movement, and involves virus crossings through several cellular barriers: bundle sheath, vascular parenchyma, and companion cells for virus loading into sieve elements (SE). Viruses are then passively transported within the source-to-sink flow of photoassimilates and are unloaded from SE into sink tissues. However, the molecular mechanisms governing virus long-distance movement are far from being understood. While most viruses seem to move systemically as virus particles, some viruses are transported in SE as viral ribonucleoprotein complexes (RNP). The nature of the cellular and viral factors constituting these RNPs is still poorly known. The topic of this review will mainly focus on the host and viral factors that facilitate or restrict virus long-distance movement.
Collapse
Affiliation(s)
| | | | - Véronique Ziegler-Graff
- Laboratoire Propre du CNRS (UPR 2357), Virologie Végétale, Institut de Biologie Moléculaire des Plantes, Université de StrasbourgStrasbourg, France
| | - Frédéric Revers
- UMR 1332 de Biologie du Fruit et Pathologie, INRA, Université de BordeauxVillenave d’Ornon, France
| |
Collapse
|
308
|
Characterization of virus-encoded RNA interference suppressors in Caenorhabditis elegans. J Virol 2013; 87:5414-23. [PMID: 23468484 DOI: 10.1128/jvi.00148-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In fungi, plants, and invertebrates, antiviral RNA interference (RNAi) directed by virus-derived small interfering RNAs (siRNAs) represents a major antiviral defense that the invading viruses have to overcome in order to establish infection. As a counterdefense mechanism, viruses of these hosts produce diverse classes of proteins capable of suppressing the biogenesis and/or function of viral siRNAs. This RNA-directed viral immunity (RDVI) in the nematode Caenorhabditis elegans is known to exhibit some unique features. Currently, little is known about viral suppression of RNAi in C. elegans. Here, we show that ectopic expression of the B2 protein encoded by Flock House virus (FHV) suppresses RNAi induced by either long double-stranded RNA (dsRNA) or an FHV-based replicon and facilitates the natural infection of C. elegans by Orsay virus but is not active against RNA silencing mediated by microRNAs. We report the development of an assay for the identification of viral suppressor of RNAi (VSR) in C. elegans based on the suppression of a viral replicon-triggered RDVI by ectopic expression of candidate proteins. No VSR activity was detected for either of the two Orsay viral proteins proposed previously as VSRs. We detected, among the known heterologous VSRs, VSR activity for B2 of Nodamura virus but not for 2b of tomato aspermy virus, p29 of fungus-infecting hypovirus, or p19 of tomato bushy stunt virus. We further show that, unlike that in plants and insects, FHV B2 suppresses worm RDVI mainly by interfering with the function of virus-derived primary siRNAs.
Collapse
|
309
|
Verlaan MG, Hutton SF, Ibrahem RM, Kormelink R, Visser RGF, Scott JW, Edwards JD, Bai Y. The Tomato Yellow Leaf Curl Virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-class RNA-dependent RNA polymerases. PLoS Genet 2013; 9:e1003399. [PMID: 23555305 PMCID: PMC3610679 DOI: 10.1371/journal.pgen.1003399] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 02/04/2013] [Indexed: 12/11/2022] Open
Abstract
Tomato Yellow Leaf Curl Virus Disease incited by Tomato yellow leaf curl virus (TYLCV) causes huge losses in tomato production worldwide and is caused by different related begomovirus species. Breeding for TYLCV resistance has been based on the introgression of multiple resistance genes originating from several wild tomato species. In this study we have fine-mapped the widely used Solanum chilense-derived Ty-1 and Ty-3 genes by screening nearly 12,000 plants for recombination events and generating recombinant inbred lines. Multiple molecular markers were developed and used in combination with disease tests to fine-map the genes to a small genomic region (approximately 70 kb). Using a Tobacco Rattle Virus-Virus Induced Gene Silencing approach, the resistance gene was identified. It is shown that Ty-1 and Ty-3 are allelic and that they code for a RNA-dependent RNA polymerase (RDR) belonging to the RDRγ type, which has an atypical DFDGD motif in the catalytic domain. In contrast to the RDRα type, characterized by a catalytic DLDGD motif, no clear function has yet been described for the RDRγ type, and thus the Ty-1/Ty-3 gene unveils a completely new class of resistance gene. Although speculative, the resistance mechanism of Ty-1/Ty-3 and its specificity towards TYLCV are discussed in light of the function of the related RDRα class in the amplification of the RNAi response in plants and transcriptional silencing of geminiviruses in plants.
Collapse
Affiliation(s)
- Maarten G. Verlaan
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Wageningen, The Netherlands
- Centre for BioSystems Genomics, Wageningen, The Netherlands
- Graduate School Experimental Plant Sciences, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Samuel F. Hutton
- Gulf Coast Research and Education Center, University of Florida, Wimauma, Florida, United States of America
| | - Ragy M. Ibrahem
- Gulf Coast Research and Education Center, University of Florida, Wimauma, Florida, United States of America
| | - Richard Kormelink
- Laboratory of Virology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Richard G. F. Visser
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Wageningen, The Netherlands
- Centre for BioSystems Genomics, Wageningen, The Netherlands
| | - John W. Scott
- Gulf Coast Research and Education Center, University of Florida, Wimauma, Florida, United States of America
| | - Jeremy D. Edwards
- Gulf Coast Research and Education Center, University of Florida, Wimauma, Florida, United States of America
| | - Yuling Bai
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Wageningen, The Netherlands
- Centre for BioSystems Genomics, Wageningen, The Netherlands
| |
Collapse
|
310
|
Role of RNA interference (RNAi) in the Moss Physcomitrella patens. Int J Mol Sci 2013; 14:1516-40. [PMID: 23344055 PMCID: PMC3565333 DOI: 10.3390/ijms14011516] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/09/2012] [Accepted: 12/10/2012] [Indexed: 01/21/2023] Open
Abstract
RNA interference (RNAi) is a mechanism that regulates genes by either transcriptional (TGS) or posttranscriptional gene silencing (PTGS), required for genome maintenance and proper development of an organism. Small non-coding RNAs are the key players in RNAi and have been intensively studied in eukaryotes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs are synthesized from a short hairpin structure while siRNAs are derived from long double-stranded RNAs (dsRNA). Both miRNA and siRNAs control the expression of cognate target RNAs by binding to reverse complementary sequences mediating cleavage or translational inhibition of the target RNA. They also act on the DNA and cause epigenetic changes such as DNA methylation and histone modifications. In the last years, the analysis of plant RNAi pathways was extended to the bryophyte Physcomitrella patens, a non-flowering, non-vascular ancient land plant that diverged from the lineage of seed plants approximately 450 million years ago. Based on a number of characteristic features and its phylogenetic key position in land plant evolution P. patens emerged as a plant model species to address basic as well as applied topics in plant biology. Here we summarize the current knowledge on the role of RNAi in P. patens that shows functional overlap with RNAi pathways from seed plants, and also unique features specific to this species.
Collapse
|
311
|
Szittya G, Burgyán J. RNA Interference-Mediated Intrinsic Antiviral Immunity in Plants. Curr Top Microbiol Immunol 2013; 371:153-81. [DOI: 10.1007/978-3-642-37765-5_6] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
312
|
Arabidopsis Pumilio protein APUM5 suppresses Cucumber mosaic virus infection via direct binding of viral RNAs. Proc Natl Acad Sci U S A 2012; 110:779-84. [PMID: 23269841 DOI: 10.1073/pnas.1214287110] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Posttranscriptional/translational regulation of gene expression is mediated by diverse RNA binding proteins and plays an important role in development and defense processes. Among the RNA-binding proteins, the mammalian Pumilio RNA-binding family (Puf) acts as posttranscriptional and translational repressors. An Arabidopsis Puf mutant, apum5-D, was isolated during a T-DNA insertional mutant screen for mutants with reduced susceptibility to Cucumber mosaic virus (CMV) infection. Interestingly, CMV RNA contained putative Pumilio-homology domain binding motifs in its 3' untranslated region (UTR) and internal places in its genome. APUM5 directly bound to the 3' UTR motifs and some internal binding motifs in CMV RNAs in vitro and in vivo. We showed that APUM5 acts as a translational repressor that regulates the 3' UTR of CMV and affects CMV replication. This study uncovered a unique defense system that Arabidopsis APUM5 specifically regulates CMV infection by the direct binding of CMV RNAs.
Collapse
|
313
|
Host defense against DNA virus infection in shrimp is mediated by the siRNA pathway. Eur J Immunol 2012; 43:137-46. [DOI: 10.1002/eji.201242806] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 09/06/2012] [Accepted: 10/08/2012] [Indexed: 12/14/2022]
|
314
|
Abstract
Cellular organisms have evolved related pathways for the biogenesis and function of small interfering RNAs (siRNAs), microRNAs and PIWI-interacting RNAs (piRNAs). These distinct classes of small RNAs guide specific gene silencing at both transcriptional and posttranscriptional levels by serving as specificity determinants. Small RNAs of virus and host origins have been found to modulate virus–host interactions by RNA interference (RNAi), leading to antiviral immunity or viral pathogenesis. Deep sequencing-based profiling of virus-derived small RNAs as products of host immune recognition not only allowed us to gain insight into the expansion and functional specialization of host factors involved in the antiviral immunity but also made it possible to identify new viruses in a culture-independent manner. Here we review recent developments on the characterization and function of virus-derived siRNAs and piRNAs in eukaryotic hosts.
Collapse
Affiliation(s)
- Shou-Wei Ding
- Department of Plant Pathology & Microbiology, and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, United States.
| | | |
Collapse
|
315
|
Udriste AA, Stan V, Radu GL, Tabler M, Cucu N. Identification of a dicer homologue gene (DCL2) in Nicotiana tabacum. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:980-6. [PMID: 22812643 DOI: 10.1111/j.1438-8677.2012.00586.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Eukaryotes possess a mechanism that generates small interfering RNA (siRNA) and microRNA (miRNA) and use these to regulate gene expression at the transcriptional or post-transcriptional level. These small RNAs (21-24nt) are processed from long double-stranded RNA precursors by type III RNase enzymes, referred to as DICER or DICER-LIKE proteins (DCLs). In Arabidopsis, there are four DCL genes and their role in small RNA biogenesis and silencing has been the subject of intense study. DCL2 is less well studied than the other DCL proteins although it is known to play a role in formation of natural antisense siRNA and may be involved in transitive silencing of transgene transcripts. This study provides basic genomic information on DCL2 in the Nicotiana tabacum (NtDCL2) gene family and its probable roles in plant growth and development.
Collapse
MESH Headings
- Agrobacterium tumefaciens/genetics
- Agrobacterium tumefaciens/metabolism
- Arabidopsis/enzymology
- Arabidopsis/genetics
- Arabidopsis Proteins/genetics
- Bacteriophage lambda/genetics
- Bacteriophage lambda/metabolism
- Blotting, Northern
- Cell Cycle Proteins/genetics
- Cloning, Molecular
- Gene Silencing
- Genes, Plant
- Genetic Vectors/genetics
- Genetic Vectors/metabolism
- Multigene Family
- Plant Leaves/genetics
- Plant Leaves/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Plant/genetics
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Ribonuclease III/genetics
- Ribonucleases/genetics
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Nicotiana/enzymology
- Nicotiana/genetics
- Nicotiana/growth & development
Collapse
Affiliation(s)
- A A Udriste
- Department of Plant Physiology, University of Agronomic Sciences and Veterinary Medicine, Bucharest, Romania
| | | | | | | | | |
Collapse
|
316
|
Abstract
The frontline of plant defense against non-viral pathogens such as bacteria, fungi and oomycetes is provided by transmembrane pattern recognition receptors that detect conserved pathogen-associated molecular patterns (PAMPs), leading to pattern-triggered immunity (PTI). To counteract this innate defense, pathogens deploy effector proteins with a primary function to suppress PTI. In specific cases, plants have evolved intracellular resistance (R) proteins detecting isolate-specific pathogen effectors, leading to effector-triggered immunity (ETI), an amplified version of PTI, often associated with hypersensitive response (HR) and programmed cell death (PCD). In the case of plant viruses, no conserved PAMP was identified so far and the primary plant defense is thought to be based mainly on RNA silencing, an evolutionary conserved, sequence-specific mechanism that regulates gene expression and chromatin states and represses invasive nucleic acids such as transposons. Endogenous silencing pathways generate 21-24 nt small (s)RNAs, miRNAs and short interfering (si)RNAs, that repress genes post-transcriptionally and/or transcriptionally. Four distinct Dicer-like (DCL) proteins, which normally produce endogenous miRNAs and siRNAs, all contribute to the biogenesis of viral siRNAs in infected plants. Growing evidence indicates that RNA silencing also contributes to plant defense against non-viral pathogens. Conversely, PTI-based innate responses may contribute to antiviral defense. Intracellular R proteins of the same NB-LRR family are able to recognize both non-viral effectors and avirulence (Avr) proteins of RNA viruses, and, as a result, trigger HR and PCD in virus-resistant hosts. In some cases, viral Avr proteins also function as silencing suppressors. We hypothesize that RNA silencing and innate immunity (PTI and ETI) function in concert to fight plant viruses. Viruses counteract this dual defense by effectors that suppress both PTI-/ETI-based innate responses and RNA silencing to establish successful infection.
Collapse
Affiliation(s)
- Anna S Zvereva
- Institute of Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland.
| | | |
Collapse
|
317
|
Sharma N, Sahu PP, Puranik S, Prasad M. Recent Advances in Plant–Virus Interaction with Emphasis on Small Interfering RNAs (siRNAs). Mol Biotechnol 2012; 55:63-77. [DOI: 10.1007/s12033-012-9615-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
318
|
McCue AD, Slotkin RK. Transposable element small RNAs as regulators of gene expression. Trends Genet 2012; 28:616-23. [PMID: 23040327 DOI: 10.1016/j.tig.2012.09.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/31/2012] [Accepted: 09/05/2012] [Indexed: 11/30/2022]
Abstract
Transposable elements (TEs) are a source of endogenous small RNAs in animals and plants. These TE-derived small RNAs have been traditionally treated as functionally distinct from gene-regulating small RNAs, such as miRNAs. Two recent reports in Drosophila and Arabidopsis have blurred the lines of this distinction. In both examples, epigenetically and developmentally regulated bursts in TE expression produce gene-regulating small RNAs. In the Drosophila early embryo, maternally deposited TE-derived PIWI-interacting small RNAs (piRNAs) play a role in regulating the nanos mRNA through small RNA binding sites in the nanos 3' untranslated region (UTR). In Arabidopsis, when Athila retrotransposons are epigenetically activated, their transcripts are processed into small RNAs, which directly target the 3'UTR of the genic oligouridylate binding protein 1B (UBP1b) mRNA. Based on these two examples, we suggest that other TE-derived small RNAs regulate additional genes and propose that, through small RNAs, the epigenetic status of TEs could widely influence the genic transcriptome.
Collapse
Affiliation(s)
- Andrea D McCue
- Department of Molecular Genetics & Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
319
|
Wang MB, Masuta C, Smith NA, Shimura H. RNA silencing and plant viral diseases. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1275-85. [PMID: 22670757 DOI: 10.1094/mpmi-04-12-0093-cr] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
RNA silencing plays a critical role in plant resistance against viruses, with multiple silencing factors participating in antiviral defense. Both RNA and DNA viruses are targeted by the small RNA-directed RNA degradation pathway, with DNA viruses being also targeted by RNA-directed DNA methylation. To evade RNA silencing, plant viruses have evolved a variety of counter-defense mechanisms such as expressing RNA-silencing suppressors or adopting silencing-resistant RNA structures. This constant defense-counter defense arms race is likely to have played a major role in defining viral host specificity and in shaping viral and possibly host genomes. Recent studies have provided evidence that RNA silencing also plays a direct role in viral disease induction in plants, with viral RNA-silencing suppressors and viral siRNAs as potentially the dominant players in viral pathogenicity. However, questions remain as to whether RNA silencing is the principal mediator of viral pathogenicity or if other RNA-silencing-independent mechanisms also account for viral disease induction. RNA silencing has been exploited as a powerful tool for engineering virus resistance in plants as well as in animals. Further understanding of the role of RNA silencing in plant-virus interactions and viral symptom induction is likely to result in novel anti-viral strategies in both plants and animals.
Collapse
Affiliation(s)
- Ming-Bo Wang
- CSIRO Division of Plant Industry, Canberra, Australia.
| | | | | | | |
Collapse
|
320
|
Conti G, Rodriguez MC, Manacorda CA, Asurmendi S. Transgenic expression of Tobacco mosaic virus capsid and movement proteins modulate plant basal defense and biotic stress responses in Nicotiana tabacum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1370-84. [PMID: 22712510 DOI: 10.1094/mpmi-03-12-0075-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Plant viruses cause metabolic and physiological changes associated with symptomatic disease phenotypes. Symptoms involve direct and indirect effects, which result in disruption of host physiology. We used transgenic tobacco expressing a variant of Tobacco mosaic virus (TMV) coat protein (CP(T42W)) or movement protein (MP), and a hybrid line (MP×CP(T42W)) that coexpresses both proteins, to study the plant response to individual viral proteins. Findings employing microarray analysis of MP×CP(T42W) plants and silenced mp×cp(T42W)* controls revealed that altered transcripts were mostly downregulated, suggesting a persistent shut-off due to MP×CP(T42W) expression. Next, we showed that MP triggered reactive oxygen species (ROS) accumulation, reduction of total ascorbate, and expression of ROS scavenging genes. These effects were enhanced when both proteins were coexpressed. MP and MP×CP(T42W) plants showed increased levels of salicylic acid (SA) and SA-responsive gene expression. Furthermore, these effects were partially reproduced in Nicotiana benthamiana when GMP1 transcript was silenced. CP(T42W) seems to be playing a negative role in the defense response by reducing the expression of PR-1 and RDR-1. MP and MP×CP(T42W) transgenic expression promoted a recovery-like phenotype in TMV RNA infections and enhanced susceptibility to Pseudomonas syringae and Sclerotinia sclerotiorum. The individual effects of viral proteins may reflect the ability of a virus to balance its own virulence.
Collapse
Affiliation(s)
- G Conti
- Instituto de Biotecnologia, CICVyA-INTA, Hurlingham, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
321
|
Aregger M, Borah BK, Seguin J, Rajeswaran R, Gubaeva EG, Zvereva AS, Windels D, Vazquez F, Blevins T, Farinelli L, Pooggin MM. Primary and secondary siRNAs in geminivirus-induced gene silencing. PLoS Pathog 2012; 8:e1002941. [PMID: 23028332 PMCID: PMC3460622 DOI: 10.1371/journal.ppat.1002941] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 08/18/2012] [Indexed: 11/20/2022] Open
Abstract
In plants, RNA silencing-based antiviral defense is mediated by Dicer-like (DCL) proteins producing short interfering (si)RNAs. In Arabidopsis infected with the bipartite circular DNA geminivirus Cabbage leaf curl virus (CaLCuV), four distinct DCLs produce 21, 22 and 24 nt viral siRNAs. Using deep sequencing and blot hybridization, we found that viral siRNAs of each size-class densely cover the entire viral genome sequences in both polarities, but highly abundant siRNAs correspond primarily to the leftward and rightward transcription units. Double-stranded RNA precursors of viral siRNAs can potentially be generated by host RDR-dependent RNA polymerase (RDR). However, genetic evidence revealed that CaLCuV siRNA biogenesis does not require RDR1, RDR2, or RDR6. By contrast, CaLCuV derivatives engineered to target 30 nt sequences of a GFP transgene by primary viral siRNAs trigger RDR6-dependent production of secondary siRNAs. Viral siRNAs targeting upstream of the GFP stop codon induce secondary siRNAs almost exclusively from sequences downstream of the target site. Conversely, viral siRNAs targeting the GFP 3′-untranslated region (UTR) induce secondary siRNAs mostly upstream of the target site. RDR6-dependent siRNA production is not necessary for robust GFP silencing, except when viral siRNAs targeted GFP 5′-UTR. Furthermore, viral siRNAs targeting the transgene enhancer region cause GFP silencing without secondary siRNA production. We conclude that the majority of viral siRNAs accumulating during geminiviral infection are RDR1/2/6-independent primary siRNAs. Double-stranded RNA precursors of these siRNAs are likely generated by bidirectional readthrough transcription of circular viral DNA by RNA polymerase II. Unlike transgenic mRNA, geminiviral mRNAs appear to be poor templates for RDR-dependent production of secondary siRNAs. RNA silencing directed by small RNAs (sRNAs) regulates gene expression and mediates defense against invasive nucleic acids such as transposons, transgenes and viruses. In plants and some animals, RNA-dependent RNA polymerase (RDR) generates precursors of secondary sRNAs that reinforce silencing. Most plant mRNAs silenced by miRNAs or primary siRNAs do not spawn secondary siRNAs, suggesting that they may have evolved to be poor templates for RDR. By contrast, silenced transgenes often produce RDR-dependent secondary siRNAs. Here we demonstrate that massive production of 21, 22 and 24 nt viral siRNAs in DNA geminivirus-infected Arabidopsis does not require the functional RDRs RDR1, RDR2, or RDR6. Deep sequencing analysis indicates that dsRNA precursors of these primary viral siRNAs are likely generated by RNA polymerase II-mediated bidirectional readthrough transcription on the circular viral DNA. Primary viral siRNAs engineered to target a GFP transgene trigger robust, RDR6-dependent production of secondary siRNAs, indicating that geminivirus infection does not suppress RDR6 activity. We conclude that geminiviral mRNAs, which can potentially be cleaved by primary viral siRNAs, are resistant to RDR-dependent amplification of secondary siRNAs. We speculate that, like most plant mRNAs, geminiviral mRNAs may have evolved to evade RDR activity.
Collapse
Affiliation(s)
- Michael Aregger
- Institute of Botany, University of Basel, Basel, Switzerland
| | | | - Jonathan Seguin
- Institute of Botany, University of Basel, Basel, Switzerland
- Fasteris SA, Plan-les-Ouates, Switzerland
| | | | | | - Anna S. Zvereva
- Institute of Botany, University of Basel, Basel, Switzerland
| | - David Windels
- Institute of Botany, University of Basel, Basel, Switzerland
| | - Franck Vazquez
- Institute of Botany, University of Basel, Basel, Switzerland
| | - Todd Blevins
- Biology Department, Indiana University, Bloomington, Indiana, United States of America
| | | | | |
Collapse
|
322
|
Valli A, Busnadiego I, Maliogka V, Ferrero D, Castón JR, Rodríguez JF, García JA. The VP3 factor from viruses of Birnaviridae family suppresses RNA silencing by binding both long and small RNA duplexes. PLoS One 2012; 7:e45957. [PMID: 23049903 PMCID: PMC3458112 DOI: 10.1371/journal.pone.0045957] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 08/23/2012] [Indexed: 12/23/2022] Open
Abstract
RNA silencing is directly involved in antiviral defense in a wide variety of eukaryotic organisms, including plants, fungi, invertebrates, and presumably vertebrate animals. The study of RNA silencing-mediated antiviral defences in vertebrates is hampered by the overlap with other antiviral mechanisms; thus, heterologous systems are often used to study the interplay between RNA silencing and vertebrate-infecting viruses. In this report we show that the VP3 protein of the avian birnavirus Infectious bursal disease virus (IBDV) displays, in addition to its capacity to bind long double-stranded RNA, the ability to interact with double-stranded small RNA molecules. We also demonstrate that IBDV VP3 prevents the silencing mediated degradation of a reporter mRNA, and that this silencing suppression activity depends on its RNA binding ability. Furthermore, we find that the anti-silencing activity of IBDV VP3 is shared with the homologous proteins expressed by both insect- and fish-infecting birnaviruses. Finally, we show that IBDV VP3 can functionally replace the well-characterized HCPro silencing suppressor of Plum pox virus, a potyvirus that is unable to infect plants in the absence of an active silencing suppressor. Altogether, our results support the idea that VP3 protects the viral genome from host sentinels, including those of the RNA silencing machinery.
Collapse
Affiliation(s)
- Adrian Valli
- Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | | | | | - Diego Ferrero
- Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
323
|
Zhang X, Xia J, Lii YE, Barrera-Figueroa BE, Zhou X, Gao S, Lu L, Niu D, Chen Z, Leung C, Wong T, Zhang H, Guo J, Li Y, Liu R, Liang W, Zhu JK, Zhang W, Jin H. Genome-wide analysis of plant nat-siRNAs reveals insights into their distribution, biogenesis and function. Genome Biol 2012; 13:R20. [PMID: 22439910 PMCID: PMC3439971 DOI: 10.1186/gb-2012-13-3-r20] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 03/15/2012] [Accepted: 03/22/2012] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Many eukaryotic genomes encode cis-natural antisense transcripts (cis-NATs). Sense and antisense transcripts may form double-stranded RNAs that are processed by the RNA interference machinery into small interfering RNAs (siRNAs). A few so-called nat-siRNAs have been reported in plants, mammals, Drosophila, and yeasts. However, many questions remain regarding the features and biogenesis of nat-siRNAs. RESULTS Through deep sequencing, we identified more than 17,000 unique siRNAs corresponding to cis-NATs from biotic and abiotic stress-challenged Arabidopsis thaliana and 56,000 from abiotic stress-treated rice. These siRNAs were enriched in the overlapping regions of NATs and exhibited either site-specific or distributed patterns, often with strand bias. Out of 1,439 and 767 cis-NAT pairs identified in Arabidopsis and rice, respectively, 84 and 119 could generate at least 10 siRNAs per million reads from the overlapping regions. Among them, 16 cis-NAT pairs from Arabidopsis and 34 from rice gave rise to nat-siRNAs exclusively in the overlap regions. Genetic analysis showed that the overlapping double-stranded RNAs could be processed by Dicer-like 1 (DCL1) and/or DCL3. The DCL3-dependent nat-siRNAs were also dependent on RNA-dependent RNA polymerase 2 (RDR2) and plant-specific RNA polymerase IV (PolIV), whereas only a fraction of DCL1-dependent nat-siRNAs was RDR- and PolIV-dependent. Furthermore, the levels of some nat-siRNAs were regulated by specific biotic or abiotic stress conditions in Arabidopsis and rice. CONCLUSIONS Our results suggest that nat-siRNAs display distinct distribution patterns and are generated by DCL1 and/or DCL3. Our analysis further supported the existence of nat-siRNAs in plants and advanced our understanding of their characteristics.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, University of California, Riverside, CA 92521, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
324
|
Carbonell A, Fahlgren N, Garcia-Ruiz H, Gilbert KB, Montgomery TA, Nguyen T, Cuperus JT, Carrington JC. Functional analysis of three Arabidopsis ARGONAUTES using slicer-defective mutants. THE PLANT CELL 2012; 24:3613-29. [PMID: 23023169 PMCID: PMC3480291 DOI: 10.1105/tpc.112.099945] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 08/27/2012] [Accepted: 09/06/2012] [Indexed: 05/18/2023]
Abstract
In RNA-directed silencing pathways, ternary complexes result from small RNA-guided ARGONAUTE (AGO) associating with target transcripts. Target transcripts are often silenced through direct cleavage (slicing), destabilization through slicer-independent turnover mechanisms, and translational repression. Here, wild-type and active-site defective forms of several Arabidopsis thaliana AGO proteins involved in posttranscriptional silencing were used to examine several AGO functions, including small RNA binding, interaction with target RNA, slicing or destabilization of target RNA, secondary small interfering RNA formation, and antiviral activity. Complementation analyses in ago mutant plants revealed that the catalytic residues of AGO1, AGO2, and AGO7 are required to restore the defects of Arabidopsis ago1-25, ago2-1, and zip-1 (AGO7-defective) mutants, respectively. AGO2 had slicer activity in transient assays but could not trigger secondary small interfering RNA biogenesis, and catalytically active AGO2 was necessary for local and systemic antiviral activity against Turnip mosaic virus. Slicer-defective AGOs associated with miRNAs and stabilized AGO-miRNA-target RNA ternary complexes in individual target coimmunoprecipitation assays. In genome-wide AGO-miRNA-target RNA coimmunoprecipitation experiments, slicer-defective AGO1-miRNA associated with target RNA more effectively than did wild-type AGO1-miRNA. These data not only reveal functional roles for AGO1, AGO2, and AGO7 slicer activity, but also indicate an approach to capture ternary complexes more efficiently for genome-wide analyses.
Collapse
Affiliation(s)
| | - Noah Fahlgren
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | | | | | - Taiowa A. Montgomery
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Tammy Nguyen
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Josh T. Cuperus
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - James C. Carrington
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- Address correspondence to
| |
Collapse
|
325
|
Mecchia MA, Debernardi JM, Rodriguez RE, Schommer C, Palatnik JF. MicroRNA miR396 and RDR6 synergistically regulate leaf development. Mech Dev 2012; 130:2-13. [PMID: 22889666 DOI: 10.1016/j.mod.2012.07.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 07/16/2012] [Accepted: 07/30/2012] [Indexed: 12/19/2022]
Abstract
The microRNA (miRNA) miR396 regulates GROWTH-REGULATING FACTORs (GRFs), a plant specific family of transcription factors. Overexpression of miR396 causes a decrease in the GRFs that has been shown to affect cell proliferation in the meristem and developing leaves. To bring further insights into the function of the miR396 regulatory network we performed a mutant enhancer screen of a stable Arabidopsis transgenic line expressing 35S:miR396b, which has a reduction in leaf size. From this screen we recovered several mutants enhancing this phenotype and displaying organs with lotus- or needle-like shape. Analysis of these plants revealed mutations in as2 and rdr6. While 35S:miR396b in an as2 context generated organs with lotus-like shape, the overexpression of the miRNA in an rdr6 mutant background caused more important developmental defects, including pin-like organs and lobed leaves. Combination of miR396 overexpressors, and rdr6 and as2 mutants show additional organ defects, suggesting that the three pathways act in concert. Genetic interactions during leaf development were observed in a similar way between miR396 overexpression and mutants in RDR6, SGS3 or AGO7, which are known to participate in trans-acting siRNA (ta-siRNA) biogenesis. Furthermore, we found that miR396 can cause lotus- and pin-like organs per se, once a certain expression threshold is overcome. In good agreement, mutants accumulating high levels of TCP4, which induces miR396, interacted with the AS1/AS2 pathway to generate lotus-like organs. The results indicate that the miR396 regulatory network and the ta-siRNA biogenesis pathway synergistically interact during leaf development and morphogenesis.
Collapse
Affiliation(s)
- Martin A Mecchia
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | | | |
Collapse
|
326
|
Maliogka VI, Calvo M, Carbonell A, García JA, Valli A. Heterologous RNA-silencing suppressors from both plant- and animal-infecting viruses support plum pox virus infection. J Gen Virol 2012; 93:1601-1611. [PMID: 22513385 DOI: 10.1099/vir.0.042168-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HCPro, the RNA-silencing suppressor (RSS) of viruses belonging to the genus Potyvirus in the family Potyviridae, is a multifunctional protein presumably involved in all essential steps of the viral infection cycle. Recent studies have shown that plum pox potyvirus (PPV) HCPro can be replaced successfully by cucumber vein yellowing ipomovirus P1b, a sequence-unrelated RSS from a virus of the same family. In order to gain insight into the requirement of a particular RSS to establish a successful potyviral infection, we tested the ability of different heterologous RSSs from both plant- and animal-infecting viruses to substitute for HCPro. Making use of engineered PPV chimeras, we show that PPV HCPro can be replaced functionally by some, but not all, unrelated RSSs, including the NS1 protein of the mammal-infecting influenza A virus. Interestingly, the capacity of a particular RSS to replace HCPro does not correlate strictly with its RNA silencing-suppression strength. Altogether, our results suggest that not all suppression strategies are equally suitable for efficient escape of PPV from the RNA-silencing machinery. The approach followed here, based on using PPV chimeras in which an under-consideration RSS substitutes for HCPro, could further help to study the function of diverse RSSs in a 'highly sensitive' RNA-silencing context, such as that taking place in plant cells during the process of a viral infection.
Collapse
Affiliation(s)
- Varvara I Maliogka
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María Calvo
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alberto Carbonell
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan Antonio García
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Adrian Valli
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
327
|
Qin C, Shi N, Gu M, Zhang H, Li B, Shen J, Mohammed A, Ryabov E, Li C, Wang H, Liu Y, Osman T, Vatish M, Hong Y. Involvement of RDR6 in short-range intercellular RNA silencing in Nicotiana benthamiana. Sci Rep 2012; 2:467. [PMID: 22737403 PMCID: PMC3381291 DOI: 10.1038/srep00467] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 06/11/2012] [Indexed: 01/02/2023] Open
Abstract
In plants, non-cell autonomous RNA silencing spreads between cells and over long distances. Recent work has revealed insight on the genetic and molecular components essential for cell-to-cell movement of RNA silencing in Arabidopsis. Using a local RNA silencing assay, we report on a distinct mechanism that may govern the short-range (6-10 cell) trafficking of virus-induced RNA silencing from epidermal to neighbouring palisade and spongy parenchyma cells in Nicotiana benthamiana. This process involves a previously unrecognised function of the RNA-dependent RNA polymerase 6 (RDR6) gene. Our data suggest that plants may have evolved distinct genetic controls in intercellular RNA silencing among different types of cells.
Collapse
Affiliation(s)
- Cheng Qin
- Research Centre for Plant RNA Signalling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- These authors contributed equally to this work
| | - Nongnong Shi
- Research Centre for Plant RNA Signalling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Warwick HRI, University of Warwick, Warwick CV35 9EF, UK
- These authors contributed equally to this work
| | - Mei Gu
- Clinical Sciences Research Institute, University of Warwick, Coventry CV2 2DX, UK
- These authors contributed equally to this work
| | - Hang Zhang
- Warwick HRI, University of Warwick, Warwick CV35 9EF, UK
- Chengdu Rongsheng Pharmaceuticals, Chengdu 610041, China
| | - Bin Li
- Research Centre for Plant RNA Signalling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Jiajia Shen
- Research Centre for Plant RNA Signalling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Atef Mohammed
- Warwick HRI, University of Warwick, Warwick CV35 9EF, UK
- Department of Botany, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Eugene Ryabov
- Warwick HRI, University of Warwick, Warwick CV35 9EF, UK
| | - Chunyang Li
- Warwick HRI, University of Warwick, Warwick CV35 9EF, UK
- Chengdu Rongsheng Pharmaceuticals, Chengdu 610041, China
| | - Huizhong Wang
- Research Centre for Plant RNA Signalling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Yule Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Toba Osman
- Warwick HRI, University of Warwick, Warwick CV35 9EF, UK
- Department of Botany, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Manu Vatish
- Clinical Sciences Research Institute, University of Warwick, Coventry CV2 2DX, UK
| | - Yiguo Hong
- Research Centre for Plant RNA Signalling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Warwick HRI, University of Warwick, Warwick CV35 9EF, UK
| |
Collapse
|
328
|
Blanc G, Agarkova I, Grimwood J, Kuo A, Brueggeman A, Dunigan DD, Gurnon J, Ladunga I, Lindquist E, Lucas S, Pangilinan J, Pröschold T, Salamov A, Schmutz J, Weeks D, Yamada T, Lomsadze A, Borodovsky M, Claverie JM, Grigoriev IV, Van Etten JL. The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biol 2012; 13:R39. [PMID: 22630137 PMCID: PMC3446292 DOI: 10.1186/gb-2012-13-5-r39] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/15/2012] [Accepted: 05/25/2012] [Indexed: 12/27/2022] Open
Abstract
Background Little is known about the mechanisms of adaptation of life to the extreme environmental conditions encountered in polar regions. Here we present the genome sequence of a unicellular green alga from the division chlorophyta, Coccomyxa subellipsoidea C-169, which we will hereafter refer to as C-169. This is the first eukaryotic microorganism from a polar environment to have its genome sequenced. Results The 48.8 Mb genome contained in 20 chromosomes exhibits significant synteny conservation with the chromosomes of its relatives Chlorella variabilis and Chlamydomonas reinhardtii. The order of the genes is highly reshuffled within synteny blocks, suggesting that intra-chromosomal rearrangements were more prevalent than inter-chromosomal rearrangements. Remarkably, Zepp retrotransposons occur in clusters of nested elements with strictly one cluster per chromosome probably residing at the centromere. Several protein families overrepresented in C. subellipsoidae include proteins involved in lipid metabolism, transporters, cellulose synthases and short alcohol dehydrogenases. Conversely, C-169 lacks proteins that exist in all other sequenced chlorophytes, including components of the glycosyl phosphatidyl inositol anchoring system, pyruvate phosphate dikinase and the photosystem 1 reaction center subunit N (PsaN). Conclusions We suggest that some of these gene losses and gains could have contributed to adaptation to low temperatures. Comparison of these genomic features with the adaptive strategies of psychrophilic microbes suggests that prokaryotes and eukaryotes followed comparable evolutionary routes to adapt to cold environments.
Collapse
Affiliation(s)
- Guillaume Blanc
- Structural and Genomic Information Laboratory, UMR7256 CNRS, Aix-Marseille University, Mediterranean Institute of Microbiology (FR3479), Marseille, FR-13385, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
329
|
Differential effects of viral silencing suppressors on siRNA and miRNA loading support the existence of two distinct cellular pools of ARGONAUTE1. EMBO J 2012; 31:2553-65. [PMID: 22531783 DOI: 10.1038/emboj.2012.92] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/09/2012] [Indexed: 01/02/2023] Open
Abstract
Plant viruses encode RNA silencing suppressors (VSRs) to counteract the antiviral RNA silencing response. Based on in-vitro studies, several VSRs were proposed to suppress silencing through direct binding of short-interfering RNAs (siRNAs). Because their expression also frequently hinders endogenous miRNA-mediated regulation and stabilizes labile miRNA* strands, VSRs have been assumed to prevent both siRNA and miRNA loading into their common effector protein, AGO1, through sequestration of small RNA (sRNA) duplexes in vivo. These assumptions, however, have not been formally tested experimentally. Here, we present a systematic in planta analysis comparing the effects of four distinct VSRs in Arabidopsis. While all of the VSRs tested compromised loading of siRNAs into AGO1, only P19 was found to concurrently prevent miRNA loading, consistent with a VSR strategy primarily based on sRNA sequestration. By contrast, we provide multiple lines of evidence that the action of the other VSRs tested is unlikely to entail siRNA sequestration, indicating that in-vitro binding assays and in-vivo miRNA* stabilization are not reliable indicator of VSR action. The contrasted effects of VSRs on siRNA versus miRNA loading into AGO1 also imply the existence of two distinct pools of cellular AGO1 that are specifically loaded by each class of sRNAs. These findings have important implications for our current understanding of RNA silencing and of its suppression in plants.
Collapse
|
330
|
Temperature-dependent survival of Turnip crinkle virus-infected arabidopsis plants relies on an RNA silencing-based defense that requires dcl2, AGO2, and HEN1. J Virol 2012; 86:6847-54. [PMID: 22496240 DOI: 10.1128/jvi.00497-12] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
While RNA silencing is a potent antiviral defense in plants, well-adapted plant viruses are known to encode suppressors of RNA silencing (VSR) that can neutralize the effectiveness of RNA silencing. As a result, most plant genes involved in antiviral silencing were identified by using debilitated viruses lacking silencing suppression capabilities. Therefore, it remains to be resolved whether RNA silencing plays a significant part in defending plants against wild-type viruses. We report here that, at a higher plant growth temperature (26°C) that permits rigorous replication of Turnip crinkle virus (TCV) in Arabidopsis, plants containing loss-of-function mutations within the Dicer-like 2 (DCL2), Argonaute 2 (AGO2), and HEN1 RNA methyltransferase genes died of TCV infection, whereas the wild-type Col-0 plants survived to produce viable seeds. To account for the critical role of DCL2 in ensuring the survival of wild-type plants, we established that higher temperature upregulates the activity of DCL2 to produce viral 22-nucleotide (nt) small interfering RNAs (vsRNAs). We further demonstrated that DCL2-produced 22-nt vsRNAs were fully capable of silencing target genes, but that this activity was suppressed by the TCV VSR. Finally, we provide additional evidence supporting the notion that TCV VSR suppresses RNA silencing through directly interacting with AGO2. Together, these results have revealed a specialized RNA silencing pathway involving DCL2, AGO2, and HEN1 that provides the host plants with a competitive edge against adapted viruses under environmental conditions that facilitates robust virus reproduction.
Collapse
|
331
|
Zhu H, Guo H. The role of virus-derived small interfering RNAs in RNA silencing in plants. SCIENCE CHINA-LIFE SCIENCES 2012; 55:119-25. [DOI: 10.1007/s11427-012-4281-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 12/28/2011] [Indexed: 01/09/2023]
|
332
|
Viral suppression of RNA silencing. SCIENCE CHINA-LIFE SCIENCES 2012; 55:109-18. [DOI: 10.1007/s11427-012-4279-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 12/07/2011] [Indexed: 01/28/2023]
|
333
|
Bozorov TA, Pandey SP, Dinh ST, Kim SG, Heinrich M, Gase K, Baldwin IT. DICER-like proteins and their role in plant-herbivore interactions in Nicotiana attenuata. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:189-206. [PMID: 22313877 DOI: 10.1111/j.1744-7909.2012.01104.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
DICER-like (DCL) proteins produce small RNAs that silence genes involved in development and defenses against viruses and pathogens. Which DCLs participate in plant-herbivore interactions remains unstudied. We identified and stably silenced four distinct DCL genes by RNAi in Nicotiana attenuata (Torrey ex. Watson), a model for the study of plant-herbivore interactions. Silencing DCL1 expression was lethal. Manduca sexta larvae performed significantly better on ir-dcl3 and ir-dcl4 plants, but not on ir-dcl2 plants compared to wild type plants. Phytohormones, defense metabolites and microarray analyses revealed that when DCL3 and DCL4 were silenced separately, herbivore resistance traits were regulated in distinctly different ways. Crossing of the lines revealed complex interactions in the patterns of regulation. Single ir-dcl4 and double ir-dcl2 ir-dcl3 plants were impaired in JA accumulation, while JA-Ile was increased in ir-dcl3 plants. Ir-dcl3 and ir-dcl4 plants were impaired in nicotine accumulation; silencing DCL2 in combination with either DCL3 or DCL4 restored nicotine levels to those of WT. Trypsin proteinase inhibitor activity and transcripts were only silenced in ir-dcl3 plants. We conclude that DCL2/3/4 interact in a complex manner to regulate anti-herbivore defenses and that these interactions significantly complicate the already challenging task of understanding smRNA function in the regulation of biotic interactions.
Collapse
|
334
|
McCue AD, Nuthikattu S, Reeder SH, Slotkin RK. Gene expression and stress response mediated by the epigenetic regulation of a transposable element small RNA. PLoS Genet 2012; 8:e1002474. [PMID: 22346759 PMCID: PMC3276544 DOI: 10.1371/journal.pgen.1002474] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/28/2011] [Indexed: 12/29/2022] Open
Abstract
The epigenetic activity of transposable elements (TEs) can influence the regulation of genes; though, this regulation is confined to the genes, promoters, and enhancers that neighbor the TE. This local cis regulation of genes therefore limits the influence of the TE's epigenetic regulation on the genome. TE activity is suppressed by small RNAs, which also inhibit viruses and regulate the expression of genes. The production of TE heterochromatin-associated endogenous small interfering RNAs (siRNAs) in the reference plant Arabidopsis thaliana is mechanistically distinct from gene-regulating small RNAs, such as microRNAs or trans-acting siRNAs (tasiRNAs). Previous research identified a TE small RNA that potentially regulates the UBP1b mRNA, which encodes an RNA–binding protein involved in stress granule formation. We demonstrate that this siRNA, siRNA854, is under the same trans-generational epigenetic control as the Athila family LTR retrotransposons from which it is produced. The epigenetic activation of Athila elements results in a shift in small RNA processing pathways, and new 21–22 nucleotide versions of Athila siRNAs are produced by protein components normally not responsible for processing TE siRNAs. This processing results in siRNA854's incorporation into ARGONAUTE1 protein complexes in a similar fashion to gene-regulating tasiRNAs. We have used reporter transgenes to demonstrate that the UPB1b 3′ untranslated region directly responds to the epigenetic status of Athila TEs and the accumulation of siRNA854. The regulation of the UPB1b 3′ untranslated region occurs both on the post-transcriptional and translational levels when Athila TEs are epigenetically activated, and this regulation results in the phenocopy of the ubp1b mutant stress-sensitive phenotype. This demonstrates that a TE's epigenetic activity can modulate the host organism's stress response. In addition, the ability of this TE siRNA to regulate a gene's expression in trans blurs the lines between TE and gene-regulating small RNAs. The portion of the genome that does not encode for genes is often overlooked as a source of cellular regulatory information. Here, we demonstrate that regulatory information controlling expression and protein production from a gene called UBP1b is coming from a distant non-gene transposable element (TE). TEs are fragments of DNA that, unlike genes, are capable of duplicating themselves from one location in the genome to another, and occupy nearly half of the human genome. TEs are often referred to as “junk DNA,” as the study of cellular regulation and function is focused on genes. The regulation of TEs is distinct from genes, as a process termed epigenetic silencing heritably represses TE expression and activity. We have demonstrated that the epigenetic status (active versus silenced) of the Athila TE family regulates the UBP1b gene through the activity of a TE small RNA. The function of the UPB1b gene is to respond to and regulate cellular stress, and the epigenetic regulatory status of the Athila TE therefore modulates this stress response. This demonstrates that the epigenetic regulation of TEs can be a source of gene regulatory information, influencing a basic cellular function such as the stress response.
Collapse
Affiliation(s)
- Andrea D. McCue
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Saivageethi Nuthikattu
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Sarah H. Reeder
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - R. Keith Slotkin
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
335
|
Carbonell A, Dujovny G, García JA, Valli A. The Cucumber vein yellowing virus silencing suppressor P1b can functionally replace HCPro in Plum pox virus infection in a host-specific manner. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:151-64. [PMID: 21970691 DOI: 10.1094/mpmi-08-11-0216] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Plant viruses of the genera Potyvirus and Ipomovirus (Potyviridae family) use unrelated RNA silencing suppressors (RSS) to counteract antiviral RNA silencing responses. HCPro is the RSS of Potyvirus spp., and its activity is enhanced by the upstream P1 protein. Distinctively, the ipomovirus Cucumber vein yellowing virus (CVYV) lacks HCPro but contains two P1 copies in tandem (P1aP1b), the second of which functions as RSS. Using chimeras based on the potyvirus Plum pox virus (PPV), we found that P1b can functionally replace HCPro in potyviral infections of Nicotiana plants. Interestingly, P1a, the CVYV protein homologous to potyviral P1, disrupted the silencing suppression activity of P1b and reduced the infection efficiency of PPV in Nicotiana benthamiana. Testing the influence of RSS in host specificity, we found that a P1b-expressing chimera poorly infected PPV's natural host, Prunus persica. Conversely, P1b conferred on PPV chimeras the ability to replicate locally in cucumber, CVYV's natural host. The deleterious effect of P1a on PPV infection is host dependent, because the P1aP1b-expressing PPV chimera accumulated in cucumber to higher levels than PPV expressing P1b alone. These results demonstrate that a potyvirus can use different RSS, and that particular RSS and upstream P1-like proteins contribute to defining the virus host range.
Collapse
|
336
|
Song X, Li P, Zhai J, Zhou M, Ma L, Liu B, Jeong DH, Nakano M, Cao S, Liu C, Chu C, Wang XJ, Green PJ, Meyers BC, Cao X. Roles of DCL4 and DCL3b in rice phased small RNA biogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:462-74. [PMID: 21973320 DOI: 10.1111/j.1365-313x.2011.04805.x] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Higher plants have evolved multiple proteins in the RNase III family to produce and regulate different classes of small RNAs with specialized molecular functions. In rice (Oryza sativa), numerous genomic clusters are targeted by one of two microRNAs (miRNAs), miR2118 and miR2275, to produce secondary small interfering RNAs (siRNAs) of either 21 or 24 nucleotides in a phased manner. The biogenesis requirements or the functions of the phased small RNAs are completely unknown. Here we examine the rice Dicer-Like (DCL) family, including OsDCL1, -3a, -3b and -4. By deep sequencing of small RNAs from different tissues of the wild type and osdcl4-1, we revealed that the processing of 21-nucleotide siRNAs, including trans-acting siRNAs (tasiRNA) and over 1000 phased small RNA loci, was largely dependent on OsDCL4. Surprisingly, the processing of 24-nucleotide phased small RNA requires the DCL3 homolog OsDCL3b rather than OsDCL3a, suggesting functional divergence within DCL3 family. RNA ligase-mediated 5' rapid amplification of cDNA ends and parallel analysis of RNA ends (PARE)/degradome analysis confirmed that most of the 21- and 24-nucleotide phased small RNA clusters were initiated from the target sites of miR2118 and miR2275, respectively. Furthermore, the accumulation of the two triggering miRNAs requires OsDCL1 activity. Finally, we show that phased small RNAs are preferentially produced in the male reproductive organs and are likely to be conserved in monocots. Our results revealed significant roles of OsDCL4, OsDCL3b and OsDCL1 in the 21- and 24-nucleotide phased small RNA biogenesis pathway in rice.
Collapse
Affiliation(s)
- Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
337
|
Morazzani EM, Wiley MR, Murreddu MG, Adelman ZN, Myles KM. Production of virus-derived ping-pong-dependent piRNA-like small RNAs in the mosquito soma. PLoS Pathog 2012; 8:e1002470. [PMID: 22241995 PMCID: PMC3252369 DOI: 10.1371/journal.ppat.1002470] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 11/18/2011] [Indexed: 11/19/2022] Open
Abstract
The natural maintenance cycles of many mosquito-borne pathogens require establishment of persistent non-lethal infections in the invertebrate host. The mechanism by which this occurs is not well understood, but we have previously shown that an antiviral response directed by small interfering RNAs (siRNAs) is important in modulating the pathogenesis of alphavirus infections in the mosquito. However, we report here that infection of mosquitoes with an alphavirus also triggers the production of another class of virus-derived small RNAs that exhibit many similarities to ping-pong-dependent piwi-interacting RNAs (piRNAs). However, unlike ping-pong-dependent piRNAs that have been described previously from repetitive elements or piRNA clusters, our work suggests production in the soma. We also present evidence that suggests virus-derived piRNA-like small RNAs are capable of modulating the pathogenesis of alphavirus infections in dicer-2 null mutant mosquito cell lines defective in viral siRNA production. Overall, our results suggest that a non-canonical piRNA pathway is present in the soma of vector mosquitoes and may be acting redundantly to the siRNA pathway to target alphavirus replication. Mosquitoes defend themselves against viral infection with an innate immune response. Thus, mosquito-borne viral diseases like West Nile fever, dengue fever, and chikungunya fever are transmitted to humans only when the pathogen overcomes these defenses. Despite this, relatively little is known about the immune pathways of the mosquito. We have previously shown that an antiviral response directed by small interfering RNAs (siRNAs) is present in culicine mosquito vectors. However, we show here that another class of virus-derived small RNAs, exhibiting many similarities with ping-pong-dependent piwi-interacting RNAs (piRNAs), is also produced in the soma of culicine mosquitoes. We also show that these piRNA-like small RNAs are capable of mounting an antiviral defense in mosquito cell lines with defective siRNA-based immunity, suggesting that mosquitoes possess redundant RNA-based antiviral responses. This study provides new insights into how a mosquito's immune defenses restrict virus replication and the transmission of mosquito-borne viruses.
Collapse
Affiliation(s)
- Elaine M. Morazzani
- Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Michael R. Wiley
- Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Marta G. Murreddu
- Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Zach N. Adelman
- Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Kevin M. Myles
- Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
338
|
Jakubiec A, Yang SW, Chua NH. Arabidopsis DRB4 protein in antiviral defense against Turnip yellow mosaic virus infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:14-25. [PMID: 21883552 PMCID: PMC3240694 DOI: 10.1111/j.1365-313x.2011.04765.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
RNA silencing is an important antiviral mechanism in diverse eukaryotic organisms. In Arabidopsis DICER-LIKE 4 (DCL4) is the primary antiviral Dicer, required for the production of viral small RNAs from positive-strand RNA viruses. Here, we showed that DCL4 and its interacting partner dsRNA-binding protein 4 (DRB4) participate in the antiviral response to Turnip yellow mosaic virus (TYMV), and that both proteins are required for TYMV-derived small RNA production. In addition, our results indicate that DRB4 has a negative effect on viral coat protein accumulation. Upon infection DRB4 expression was induced and DRB4 protein was recruited from the nucleus to the cytoplasm, where replication and translation of viral RNA occur. DRB4 was associated with viral RNA in vivo and directly interacted in vitro with a TYMV RNA translational enhancer, raising the possibility that DRB4 might repress viral RNA translation. In plants the role of RNA silencing in viral RNA degradation is well established, but its potential function in the regulation of viral protein levels has not yet been explored. We observed that severe infection symptoms are not necessarily correlated with enhanced viral RNA levels, but might be caused by elevated accumulation of viral proteins. Our findings suggest that the control of viral protein as well as RNA levels might be important for mounting an efficient antiviral response.
Collapse
Affiliation(s)
- Anna Jakubiec
- Laboratory of Plant Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Seong Wook Yang
- Department of Plant Biology and Biotechnology, Faculty of Life Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Copenhagen, Denmark
| | - Nam-Hai Chua
- Laboratory of Plant Molecular Biology, The Rockefeller University, New York, NY 10065, USA
- To whom correspondence should be addressed. Corresponding author: Nam-Hai Chua , Fax number: 1-212-327-8327, Phone number: 1-212-327-8126
| |
Collapse
|
339
|
Zhu H, Duan CG, Hou WN, Du QS, Lv DQ, Fang RX, Guo HS. Satellite RNA-derived small interfering RNA satsiR-12 targeting the 3' untranslated region of Cucumber mosaic virus triggers viral RNAs for degradation. J Virol 2011; 85:13384-97. [PMID: 21994448 PMCID: PMC3233178 DOI: 10.1128/jvi.05806-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/03/2011] [Indexed: 11/20/2022] Open
Abstract
RNA silencing provides protection against RNA viruses by targeting both the helper virus and its satellite RNA (satRNA). Virus-derived small interfering RNAs (vsiRNAs) bound with Argonaute (AGO) proteins are presumed participants in the silencing process. Here, we show that a vsiRNA targeted to virus RNAs triggers the host RNA-dependent RNA polymerase 6 (RDR6)-mediated degradation of viral RNAs. We confirmed that satRNA-derived small interfering RNAs (satsiRNAs) could be associated with different AGO proteins in planta. The most frequently cloned satsiRNA, satsiR-12, was predicted to imperfectly match to Cucumber mosaic virus (CMV) RNAs in the upstream area of the 3' untranslated region (3' UTR). Moreover, an artificial satsiR-12 (asatsiR-12) mediated cleavage of a green fluorescent protein (GFP) sensor construct harboring the satsiR-12 target site. asatsiR-12 also mediated reduction of viral RNAs in 2b-deficient CMV (CMVΔ2b)-infected Nicotiana benthamiana. The reduction was not observed in CMVΔ2b-infected RDR6i plants, in which RDR6 was silenced. Following infection with 2b-containing CMV, the reduction in viral RNAs was not observed in plants of either genotype, indicating that the asatsiR-12-mediated reduction of viral RNAs in the presence of RDR6 was inhibited by the 2b protein. Our results suggest that satsiR-12 targeting the 3' UTR of CMV RNAs triggered RDR6-dependent antiviral silencing. Competition experiments with wild-type CMV RNAs and anti-satsiR-12 mutant RNA1 in the presence of 2b and satRNA demonstrate the inhibitory effect of the 2b protein on the satsiR-12-related degradation of CMV RNAs, revealing a substantial suppressor function of the 2b protein in native CMV infection. Our data provide evidence for the important biological functions of satsiRNAs in homeostatic interactions among the host, virus, and satRNA in the final outcome of viral infection.
Collapse
Affiliation(s)
- Hui Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng-Guo Duan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei-Na Hou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Quan-Sheng Du
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dian-Qiu Lv
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Virus-Free Seeding Institute of Heilongjiang Academy of Agricultural Sciences, Heilongjiang 150086, Haerbin, China
| | - Rong-Xiang Fang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
340
|
RNA-dependent RNA polymerase 6 of rice (Oryza sativa) plays role in host defense against negative-strand RNA virus, Rice stripe virus. Virus Res 2011; 163:512-9. [PMID: 22142475 DOI: 10.1016/j.virusres.2011.11.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 11/19/2011] [Accepted: 11/20/2011] [Indexed: 11/23/2022]
Abstract
RNA-dependent RNA polymerases (RDRs) from fungi, plants and some invertebrate animals play fundamental roles in antiviral defense. Here, we investigated the role of RDR6 in the defense of economically important rice plants against a negative-strand RNA virus (Rice stripe virus, RSV) that causes enormous crop damage. In three independent transgenic lines (OsRDR6AS line A, B and C) in which OsRDR6 transcription levels were reduced by 70-80% through antisense silencing, the infection and disease symptoms of RSV were shown to be significantly enhanced. The hypersusceptibilities of the OsRDR6AS plants were attributed not to enhanced insect infestation but to enhanced virus infection. The rise in symptoms was associated with the increased accumulation of RSV genomic RNA in the OsRDR6AS plants. The deep sequencing data showed reduced RSV-derived siRNA accumulation in the OsRDR6AS plants compared with the wild type plants. This is the first report of the antiviral role of a RDR in a monocot crop plant in the defense against a negative-strand RNA virus and significantly expands upon the current knowledge of the antiviral roles of RDRs in the defense against different types of viral genomes in numerous groups of plants.
Collapse
|
341
|
Leibman D, Wolf D, Saharan V, Zelcer A, Arazi T, Yoel S, Gaba V, Gal-On A. A high level of transgenic viral small RNA is associated with broad potyvirus resistance in cucurbits. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1220-1238. [PMID: 21899438 DOI: 10.1094/mpmi-05-11-0128] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Gene-silencing has been used to develop resistance against many plant viruses but little is known about the transgenic small-interfering RNA (t-siRNA) that confers this resistance. Transgenic cucumber and melon lines harboring a hairpin construct of the Zucchini yellow mosaic potyvirus (ZYMV) HC-Pro gene accumulated different levels of t-siRNA (6 to 44% of total siRNA) and exhibited resistance to systemic ZYMV infection. Resistance to Watermelon mosaic potyvirus and Papaya ring spot potyvirus-W was also observed in a cucumber line that accumulated high levels of t-siRNA (44% of total siRNA) and displayed significantly increased levels of RNA-dependent RNA (RDR)1 and Argonaute 1, as compared with the other transgenic and nontransformed plants. The majority of the t-siRNA sequences were 21 to 22 nucleotides in length and sense strand biased. The t-siRNA were not uniformly distributed throughout the transgene but concentrated in "hot spots" in a pattern resembling that of the viral siRNA peaks observed in ZYMV-infected cucumber and melon. Mutations in ZYMV at the loci associated with the siRNA peaks did not break this resistance, indicating that hot spot t-siRNA may not be essential for resistance. This study shows that resistance based on gene-silencing can be effective against related viruses and is probably correlated with t-siRNA accumulation and increased expression of RDR1.
Collapse
Affiliation(s)
- Diana Leibman
- Department of Plant Pathology and Weed Sciences, ARO The Volcani Center, Bet Dagan 50250, Israel
| | | | | | | | | | | | | | | |
Collapse
|
342
|
Du Z, Xiao D, Wu J, Jia D, Yuan Z, Liu Y, Hu L, Han Z, Wei T, Lin Q, Wu Z, Xie L. p2 of rice stripe virus (RSV) interacts with OsSGS3 and is a silencing suppressor. MOLECULAR PLANT PATHOLOGY 2011; 12:808-14. [PMID: 21726383 PMCID: PMC6640460 DOI: 10.1111/j.1364-3703.2011.00716.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A rice cDNA library was screened by a galactosidase 4 (Gal4)-based yeast two-hybrid system with Rice stripe virus (RSV) p2 as bait. The results revealed that RSV p2 interacted with a rice protein exhibiting a high degree of identity with Arabidopsis thaliana suppressor of gene silencing 3 (AtSGS3). The interaction was confirmed by bimolecular fluorescence complementation assay. SGS3 has been shown to be involved in sense transgene-induced RNA silencing and in the biogenesis of trans-acting small interfering RNAs (ta-siRNAs), possibly functioning as a cofactor of RNA-dependent RNA polymerase 6 (RDR6). Given the intimate relationships between virus and RNA silencing, further experiments were conducted to show that p2 was a silencing suppressor. In addition, p2 enhanced the accumulation and pathogenicity of Potato virus X in Nicotiana benthamiana. Five genes that have been demonstrated to be targets of TAS3-derived ta-siRNAs were up-regulated in RSV-infected rice. The implications of these findings are discussed.
Collapse
Affiliation(s)
- Zhenguo Du
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Key Laboratory of Plant Virology of Fujian Province, Fuzhou, Fujian, 350002, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
343
|
Groenenboom MAC, Hogeweg P. Modelling the dynamics of viral suppressors of RNA silencing. J R Soc Interface 2011; 9:436-47. [PMID: 21849389 DOI: 10.1098/rsif.2011.0361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Virus infection in plants is limited by RNA silencing. In turn, viruses can counter RNA silencing with silencing suppressors. Viral suppressors of RNA silencing have been shown to play a role in symptom development in plants. We here study four different strategies employed by silencing suppressors: small interfering RNA (siRNA) binding, double-strand RNA (dsRNA) binding and degrading or inactivating Argonaute. We study the effect of the suppressors on viral accumulation within the cell as well as its spread on a tissue with mathematical and computational models. We find that suppressors which target Argonaute are very effective in a single cell, but that targeting dsRNA or siRNA is much more effective at the tissue level. Although targeting Argonaute can be beneficial for viral spread, it can also cause hindrance in some cases owing to raised levels of siRNAs that can spread to other cells.
Collapse
Affiliation(s)
- Marian A C Groenenboom
- Biometris, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | | |
Collapse
|
344
|
Du P, Wu J, Zhang J, Zhao S, Zheng H, Gao G, Wei L, Li Y. Viral infection induces expression of novel phased microRNAs from conserved cellular microRNA precursors. PLoS Pathog 2011; 7:e1002176. [PMID: 21901091 PMCID: PMC3161970 DOI: 10.1371/journal.ppat.1002176] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 06/07/2011] [Indexed: 01/25/2023] Open
Abstract
RNA silencing, mediated by small RNAs including microRNAs (miRNAs) and small interfering RNAs (siRNAs), is a potent antiviral or antibacterial mechanism, besides regulating normal cellular gene expression critical for development and physiology. To gain insights into host small RNA metabolism under infections by different viruses, we used Solexa/Illumina deep sequencing to characterize the small RNA profiles of rice plants infected by two distinct viruses, Rice dwarf virus (RDV, dsRNA virus) and Rice stripe virus (RSV, a negative sense and ambisense RNA virus), respectively, as compared with those from non-infected plants. Our analyses showed that RSV infection enhanced the accumulation of some rice miRNA*s, but not their corresponding miRNAs, as well as accumulation of phased siRNAs from a particular precursor. Furthermore, RSV infection also induced the expression of novel miRNAs in a phased pattern from several conserved miRNA precursors. In comparison, no such changes in host small RNA expression was observed in RDV-infected rice plants. Significantly RSV infection elevated the expression levels of selective OsDCLs and OsAGOs, whereas RDV infection only affected the expression of certain OsRDRs. Our results provide a comparative analysis, via deep sequencing, of changes in the small RNA profiles and in the genes of RNA silencing machinery induced by different viruses in a natural and economically important crop host plant. They uncover new mechanisms and complexity of virus-host interactions that may have important implications for further studies on the evolution of cellular small RNA biogenesis that impact pathogen infection, pathogenesis, as well as organismal development.
Collapse
Affiliation(s)
- Peng Du
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Jianguo Wu
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jiayao Zhang
- School of Statistics, Renmin University of China, Beijing, China
| | - Shuqi Zhao
- Center for Bioinformatics, The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Hong Zheng
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Ge Gao
- Center for Bioinformatics, The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Liping Wei
- Center for Bioinformatics, The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Yi Li
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
345
|
Jaubert M, Bhattacharjee S, Mello AF, Perry KL, Moffett P. ARGONAUTE2 mediates RNA-silencing antiviral defenses against Potato virus X in Arabidopsis. PLANT PHYSIOLOGY 2011; 156:1556-64. [PMID: 21576511 PMCID: PMC3135937 DOI: 10.1104/pp.111.178012] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Accepted: 05/14/2011] [Indexed: 05/18/2023]
Abstract
RNA-silencing mechanisms control many aspects of gene regulation including the detection and degradation of viral RNA through the action of, among others, Dicer-like and Argonaute (AGO) proteins. However, the extent to which RNA silencing restricts virus host range has been difficult to separate from other factors that can affect virus-plant compatibility. Here we show that Potato virus X (PVX) can infect Arabidopsis (Arabidopsis thaliana), which is normally a nonhost for PVX, if coinfected with a second virus, Pepper ringspot virus. Here we show that the pepper ringspot virus 12K protein functions as a suppressor of silencing that appears to enable PVX to infect Arabidopsis. We also show that PVX is able to infect Arabidopsis Dicer-like mutants, indicating that RNA silencing is responsible for Arabidopsis nonhost resistance to PVX. Furthermore, we find that restriction of PVX on Arabidopsis also depends on AGO2, suggesting that this AGO protein has evolved to specialize in antiviral defenses.
Collapse
Affiliation(s)
| | | | | | | | - Peter Moffett
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (M.J., S.B., P.M.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (A.F.S.M., K.L.P.); Centre de Recherche en Amélioration Végétale, Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1 (P.M.)
| |
Collapse
|
346
|
Valli A, Oliveros JC, Molnar A, Baulcombe D, García JA. The specific binding to 21-nt double-stranded RNAs is crucial for the anti-silencing activity of Cucumber vein yellowing virus P1b and perturbs endogenous small RNA populations. RNA (NEW YORK, N.Y.) 2011; 17:1148-58. [PMID: 21531919 PMCID: PMC3096046 DOI: 10.1261/rna.2510611] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
RNA silencing mediated by siRNAs plays an important role as an anti-viral defense mechanism in plants and other eukaryotic organisms, which is usually counteracted by viral RNA silencing suppressors (RSSs). The ipomovirus Cucumber vein yellowing virus (CVYV) lacks the typical RSS of members of the family Potyviridae, HCPro, which is replaced by an unrelated RSS, P1b. CVYV P1b resembles potyviral HCPro in forming complexes with synthetic siRNAs in vitro. Electrophoretic mobility shift assays showed that P1b, like potyviral HCPro, interacts with double-stranded siRNAs, but is not able to bind single-stranded small RNAs or small DNAs. These assays also showed a preference of CVYV P1b for binding to 21-nt siRNAs, a feature also reported for HCPro. However, these two potyvirid RSSs differ in their requirements of 2-nucleotide (nt) 3' overhangs and 5' terminal phosphoryl groups for siRNA binding. Copurification assays confirmed in vivo P1b-siRNA interactions. We have demonstrated by deep sequencing of small RNA populations interacting in vivo with CVYV P1b that the size preference of P1b for small RNAs of 21 nt also takes place in the plant, and that expression of this RSS causes drastic changes in the endogenous small RNA populations. In addition, a site-directed mutagenesis analysis strongly supported the assumption that P1b-siRNA binding is decisive for the anti-silencing activity of P1b and localized a basic domain involved in the siRNA-binding activity of this protein.
Collapse
Affiliation(s)
- Adrián Valli
- Centro Nacional de Biotecnología-CSIC, 28049 Madrid, Spain.
| | | | | | | | | |
Collapse
|
347
|
Jovel J, Walker M, Sanfaçon H. Salicylic acid-dependent restriction of Tomato ringspot virus spread in tobacco is accompanied by a hypersensitive response, local RNA silencing, and moderate systemic resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:706-18. [PMID: 21281112 DOI: 10.1094/mpmi-09-10-0224] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Tomato ringspot virus (ToRSV, a Nepovirus sp.) systemically infects many herbaceous plants. Viral RNA accumulates in symptomatic leaves and in young, asymptomatic leaves that emerge late in infection. Here, we show that systemic infection by ToRSV is restricted in tobacco. After an initial hypersensitive response in inoculated leaves, only a few plants showed limited systemic symptoms. Viral RNA did not usually accumulate to detectable levels in asymptomatic leaves. ToRSV-derived small-interfering RNAs and PR1a transcripts were only detected in tissues that contained viral RNA, indicating local induction of RNA silencing and salicylic acid (SA)-dependent defense responses. Lesion size and viral systemic spread were reduced with SA pretreatment but enhanced in NahG transgenic lines deficient in SA accumulation, suggesting that SA-dependent mechanisms play a key role in limiting ToRSV spread in tobacco. Restriction of virus infection was enhanced in transgenic lines expressing the P1-HC-Pro suppressor of silencing. Knocking down the SA-inducible RNA-dependent RNA polymerase 1 exacerbated the necrotic reaction but did not affect viral systemic spread. ToRSV-infected tobacco plants were susceptible to reinoculation by ToRSV or Tobacco mosaic virus, although a small reduction in lesion size was observed. This moderate systemic resistance suggests inefficient induction or spread of RNA silencing and systemic acquired resistance signal molecules.
Collapse
Affiliation(s)
- Juan Jovel
- Pacific Agri-Food Research Centre, Agriculture and Agri-Food, Canada
| | | | | |
Collapse
|
348
|
Burgyán J, Havelda Z. Viral suppressors of RNA silencing. TRENDS IN PLANT SCIENCE 2011; 16:265-72. [PMID: 21439890 DOI: 10.1016/j.tplants.2011.02.010] [Citation(s) in RCA: 299] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 02/14/2011] [Accepted: 02/22/2011] [Indexed: 05/03/2023]
Abstract
The infection and replication of viruses in the host induce diverse mechanisms for combating viral infection. One of the best-studied antiviral defence mechanisms is based on RNA silencing. Consistently, several viral suppressors of RNA silencing (VSRs) have been identified from almost all plant virus genera, which are surprisingly diverse within and across kingdoms, exhibiting no obvious sequence similarities. VSRs efficiently inhibit host antiviral responses by interacting with the key components of cellular silencing machinery, often mimicking their normal cellular functions. Recent findings have revealed that the impact of VSRs on endogenous pathways is more complex and profound than had been estimated thus far. This review highlights the current understanding of and new insights into the mechanisms and functions of plant VSRs.
Collapse
Affiliation(s)
- József Burgyán
- Istituto di Virologia Vegetale, CNR, Strada Delle Cacce 73, Torino, Italy.
| | | |
Collapse
|
349
|
Shimura H, Pantaleo V. Viral induction and suppression of RNA silencing in plants. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:601-12. [PMID: 21550428 DOI: 10.1016/j.bbagrm.2011.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/15/2011] [Accepted: 04/18/2011] [Indexed: 11/19/2022]
Abstract
RNA silencing in plants and insects can function as a defence mechanism against invading viruses. RNA silencing-based antiviral defence entails the production of virus-derived small interfering RNAs which guide specific antiviral effector complexes to inactivate viral genomes. As a response to this defence system, viruses have evolved viral suppressors of RNA silencing (VSRs) to overcome the host defence. VSRs can act on various steps of the different silencing pathways. Viral infection can have a profound impact on the host endogenous RNA silencing regulatory pathways; alterations of endogenous short RNA expression profile and gene expression are often associated with viral infections and their symptoms. Here we discuss our current understanding of the main steps of RNA-silencing responses to viral invasion in plants and the effects of VSRs on endogenous pathways. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.
Collapse
Affiliation(s)
- Hanako Shimura
- Research Faculty of Agriculture-Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
350
|
Wang XB, Jovel J, Udomporn P, Wang Y, Wu Q, Li WX, Gasciolli V, Vaucheret H, Ding SW. The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs direct potent antiviral defense by two cooperative argonautes in Arabidopsis thaliana. THE PLANT CELL 2011; 23:1625-38. [PMID: 21467580 PMCID: PMC3101545 DOI: 10.1105/tpc.110.082305] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Arabidopsis thaliana defense against distinct positive-strand RNA viruses requires production of virus-derived secondary small interfering RNAs (siRNAs) by multiple RNA-dependent RNA polymerases. However, little is known about the biogenesis pathway and effector mechanism of viral secondary siRNAs. Here, we describe a mutant of Cucumber mosaic virus (CMV-Δ2b) that is silenced predominantly by the RNA-DEPENDENT RNA POLYMERASE6 (RDR6)-dependent viral secondary siRNA pathway. We show that production of the viral secondary siRNAs targeting CMV-Δ2b requires SUPPRESSOR OF GENE SILENCING3 and DICER-LIKE4 (DCL4) in addition to RDR6. Examination of 25 single, double, and triple mutants impaired in nine ARGONAUTE (AGO) genes combined with coimmunoprecipitation and deep sequencing identifies an essential function for AGO1 and AGO2 in defense against CMV-Δ2b, which act downstream the biogenesis of viral secondary siRNAs in a nonredundant and cooperative manner. Our findings also illustrate that dicing of the viral RNA precursors of primary and secondary siRNA is insufficient to confer virus resistance. Notably, although DCL2 is able to produce abundant viral secondary siRNAs in the absence of DCL4, the resultant 22-nucleotide viral siRNAs alone do not guide efficient silencing of CMV-Δ2b. Possible mechanisms for the observed qualitative difference in RNA silencing between 21- and 22-nucleotide secondary siRNAs are discussed.
Collapse
Affiliation(s)
- Xian-Bing Wang
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521
| | - Juan Jovel
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521
| | - Petchthai Udomporn
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Ying Wang
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521
| | - Qingfa Wu
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521
| | - Wan-Xiang Li
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521
| | - Virginie Gasciolli
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, 78026 Versailles Cedex, France
| | - Herve Vaucheret
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, 78026 Versailles Cedex, France
| | - Shou-Wei Ding
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521
- Address correspondence to
| |
Collapse
|