301
|
Wei Y, Liu W, Hu W, Yan Y, Shi H. The chaperone MeHSP90 recruits MeWRKY20 and MeCatalase1 to regulate drought stress resistance in cassava. THE NEW PHYTOLOGIST 2020; 226:476-491. [PMID: 31782811 DOI: 10.1111/nph.16346] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/23/2019] [Indexed: 05/25/2023]
Abstract
The 90 kDa heat shock protein (HSP90) is widely involved in various developmental processes and stress responses in plants. However, the molecular chaperone HSP90-constructed protein complex and its function in cassava remain elusive. In this study, we report that HSP90 is essential for drought stress resistance in cassava by regulating abscisic acid (ABA) and hydrogen peroxide (H2 O2 ) using two specific protein inhibitors of HSP90 (geldanamycin (GDA) and radicicol (RAD)). Among 10 MeHSP90s, the transcript of MeHSP90.9 is largely induced during drought stress. Further investigation identifies MeWRKY20 and MeCatalase1 as MeHSP90.9-interacting proteins. MeHSP90.9-, MeWRKY20-, or MeCatalase1-silenced plants through virus-induced gene silencing display drought sensitivity in cassava, indicating that they are important to drought stress response. MeHSP90.9 can promote the direct transcriptional activation of MeWRKY20 on the W-box element of MeNCED5 promoter, encoding a key enzyme in ABA biosynthesis. Moreover, MeHSP90.9 positively regulates the activity of MeCatalase1, and MeHSP90.9-silenced cassava leaves accumulate more H2 O2 under drought stress. Taken together, we demonstrate that the MeHSP90.9 chaperone complex is a regulator of drought stress resistance in cassava.
Collapse
Affiliation(s)
- Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Wen Liu
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/ Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, China
| | - Yu Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|
302
|
Gong Z, Xiong L, Shi H, Yang S, Herrera-Estrella LR, Xu G, Chao DY, Li J, Wang PY, Qin F, Li J, Ding Y, Shi Y, Wang Y, Yang Y, Guo Y, Zhu JK. Plant abiotic stress response and nutrient use efficiency. SCIENCE CHINA-LIFE SCIENCES 2020; 63:635-674. [PMID: 32246404 DOI: 10.1007/s11427-020-1683-x] [Citation(s) in RCA: 625] [Impact Index Per Article: 125.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/17/2020] [Indexed: 12/15/2022]
Abstract
Abiotic stresses and soil nutrient limitations are major environmental conditions that reduce plant growth, productivity and quality. Plants have evolved mechanisms to perceive these environmental challenges, transmit the stress signals within cells as well as between cells and tissues, and make appropriate adjustments in their growth and development in order to survive and reproduce. In recent years, significant progress has been made on many fronts of the stress signaling research, particularly in understanding the downstream signaling events that culminate at the activation of stress- and nutrient limitation-responsive genes, cellular ion homeostasis, and growth adjustment. However, the revelation of the early events of stress signaling, particularly the identification of primary stress sensors, still lags behind. In this review, we summarize recent work on the genetic and molecular mechanisms of plant abiotic stress and nutrient limitation sensing and signaling and discuss new directions for future studies.
Collapse
Affiliation(s)
- Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Liming Xiong
- Department of Biology, Hong Kong Baptist University, Kowlong Tong, Hong Kong, China
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Luis R Herrera-Estrella
- Plant and Soil Science Department (IGCAST), Texas Tech University, Lubbock, TX, 79409, USA.,Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, Irapuato, 36610, México.,College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guohua Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dai-Yin Chao
- National Key laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jingrui Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Peng-Yun Wang
- School of Life Science, Henan University, Kaifeng, 457000, China
| | - Feng Qin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jijang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yu Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
303
|
Zhang Z, Li W, Gao X, Xu M, Guo Y. DEAR4, a Member of DREB/CBF Family, Positively Regulates Leaf Senescence and Response to Multiple Stressors in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:367. [PMID: 32296455 PMCID: PMC7136848 DOI: 10.3389/fpls.2020.00367] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/13/2020] [Indexed: 05/25/2023]
Abstract
Leaf senescence is a programmed developmental process regulated by various endogenous and exogenous factors. Here we report the characterization of the senescence-regulating role of DEAR4 (AT4G36900) from the DREB1/CBF (dehydration-responsive element binding protein 1/C-repeat binding factor) family in Arabidopsis. The expression of DEAR4 is associated with leaf senescence and can be induced by ABA, JA, darkness, drought and salt stress. Transgenic plants over-expressing DEAR4 showed a dramatically enhanced leaf senescence phenotype under normal and dark conditions while the dear4 knock-down mutant displayed delayed senescence. DEAR4 over-expressing plants showed decreased seed germination rate under ABA and salt stress conditions as well as decreased drought tolerance, indicating that DEAR4 was involved in both senescence and stress response processes. Furthermore, we found that DEAR4 protein displayed transcriptional repressor activities in yeast cells. DEAR4 could directly repress the expression of a subset of COLD-REGULATED (COR) and RESPONSIVE TO DEHYDRATION (RD) genes which have been shown to be involved in leaf longevity and stress response. Also we found that DERA4 could induce the production of Reactive oxygen species (ROS), the common signal of senescence and stress responses, which gives us the clue that DEAR4 may play an integrative role in senescence and stress response via regulating ROS production.
Collapse
|
304
|
Zhou Y, Zeng L, Hou X, Liao Y, Yang Z. Low temperature synergistically promotes wounding-induced indole accumulation by INDUCER OF CBF EXPRESSION-mediated alterations of jasmonic acid signaling in Camellia sinensis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2172-2185. [PMID: 31900491 PMCID: PMC7242085 DOI: 10.1093/jxb/erz570] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 12/31/2019] [Indexed: 05/02/2023]
Abstract
Plants have to cope with various environmental stress factors which significantly impact plant physiology and secondary metabolism. Individual stresses, such as low temperature, are known to activate plant volatile compounds as a defense. However, less is known about the effect of multiple stresses on plant volatile formation. Here, the effect of dual stresses (wounding and low temperature) on volatile compounds in tea (Camellia sinensis) plants and the underlying signalling mechanisms were investigated. Indole, an insect resistance volatile, was maintained at a higher content and for a longer time under dual stresses compared with wounding alone. CsMYC2a, a jasmonate (JA)-responsive transcription factor, was the major regulator of CsTSB2, a gene encoding a tryptophan synthase β-subunit essential for indole synthesis. During the recovery phase after tea wounding, low temperature helped to maintain a higher JA level. Further study showed that CsICE2 interacted directly with CsJAZ2 to relieve inhibition of CsMYC2a, thereby promoting JA biosynthesis and downstream expression of the responsive gene CsTSB2 ultimately enhancing indole biosynthesis. These findings shed light on the role of low temperature in promoting plant damage responses and advance knowledge of the molecular mechanisms by which multiple stresses coordinately regulate plant responses to the biotic and abiotic environment.
Collapse
Affiliation(s)
- Ying Zhou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
| | - Lanting Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
| | - Xingliang Hou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
| | - Yinyin Liao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
- Correspondence:
| |
Collapse
|
305
|
Jiang C, Zhang H, Ren J, Dong J, Zhao X, Wang X, Wang J, Zhong C, Zhao S, Liu X, Gao S, Yu H. Comparative Transcriptome-Based Mining and Expression Profiling of Transcription Factors Related to Cold Tolerance in Peanut. Int J Mol Sci 2020; 21:ijms21061921. [PMID: 32168930 PMCID: PMC7139623 DOI: 10.3390/ijms21061921] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/22/2023] Open
Abstract
Plants tolerate cold stress by regulating gene networks controlling cellular and physiological traits to modify growth and development. Transcription factor (TF)-directed regulation of transcription within these gene networks is key to eliciting appropriate responses. Identifying TFs related to cold tolerance contributes to cold-tolerant crop breeding. In this study, a comparative transcriptome analysis was carried out to investigate global gene expression of entire TFs in two peanut varieties with different cold-tolerant abilities. A total of 87 TF families including 2328 TF genes were identified. Among them, 445 TF genes were significantly differentially expressed in two peanut varieties under cold stress. The TF families represented by the largest numbers of differentially expressed members were bHLH (basic helix—loop—helix protein), C2H2 (Cys2/His2 zinc finger protein), ERF (ethylene-responsive factor), MYB (v-myb avian myeloblastosis viral oncogene homolog), NAC (NAM, ATAF1/2, CUC2) and WRKY TFs. Phylogenetic evolutionary analysis, temporal expression profiling, protein–protein interaction (PPI) network, and functional enrichment of differentially expressed TFs revealed the importance of plant hormone signal transduction and plant-pathogen interaction pathways and their possible mechanism in peanut cold tolerance. This study contributes to a better understanding of the complex mechanism of TFs in response to cold stress in peanut and provides valuable resources for the investigation of evolutionary history and biological functions of peanut TFs genes involved in cold tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Haiqiu Yu
- Correspondence: ; Tel.: +86-136-7420-1361
| |
Collapse
|
306
|
Zuo ZF, Kang HG, Hong QC, Park MY, Sun HJ, Kim J, Song PS, Lee HY. A novel basic helix-loop-helix transcription factor, ZjICE2 from Zoysia japonica confers abiotic stress tolerance to transgenic plants via activating the DREB/CBF regulon and enhancing ROS scavenging. PLANT MOLECULAR BIOLOGY 2020; 102:447-462. [PMID: 31898148 DOI: 10.1007/s11103-019-00957-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/26/2019] [Indexed: 05/21/2023]
Abstract
ZjICE2 works as a positive regulator in abiotic stress responses and ZjICE2 is a valuable genetic resource to improve abiotic stress tolerance in the molecular breeding program of Zoysia japonica. The basic helix-loop-helix (bHLH) family transcription factors (TFs) play an important role in response to biotic or abiotic stresses in plants. However, the functions of bHLH TFs in Zoysia japonica, one of the warm-season turfgrasses, remain poorly understood. Here, we identified ZjICE2 from Z. japonica, a novel MYC-type bHLH transcription factor that was closely related to ICE homologs in the phylogenetic tree, and its expression was regulated by various abiotic stresses. Transient expression of ZjICE2-GFP in onion epidermal cells revealed that ZjICE2 was a nuclear-localized protein. Also, ZjICE2 bound the MYC cis-element in the promoter of dehydration responsive element binding 1 of Z. japonica (ZjDREB1) using yeast one-hybrid assay. A phenotypic analysis showed that overexpression of the ZjICE2 in Arabidopsis enhanced tolerance to cold, drought, and salt stresses. The transgenic Arabidopsis and Z. japonica accumulated more transcripts of cold-responsive DREB/CBFs and their downstream genes than the wild type (WT) after cold treatment. Furthermore, the transgenic plants exhibited an enhanced Reactive oxygen species (ROS) scavenging ability, which resulted in an efficient maintenance of oxidant-antioxidant homeostasis. In addition, overexpression of the ZjICE2 in Z. japonica displayed intensive cold tolerance with increases in chlorophyll contents and photosynthetic efficiency. Our study suggests that ZjICE2 works as a positive regulator in abiotic stress responses and the ICE-DREB/CBFs response pathway involved in cold stress tolerance is also conserved in Z. japonica. These results provide a valuable genetic resource for the molecular breeding program especially for warm-season grasses as well as other leaf crop plants.
Collapse
Affiliation(s)
- Zhi-Fang Zuo
- Department of Biotechnology, Jeju National University, Jeju, Korea
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Korea
| | - Hong-Gyu Kang
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Korea.
| | - Quan-Chun Hong
- Department of Life Science, Shangqiu Normal University, Henan, China
| | - Mi-Young Park
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Korea
| | - Hyeon-Jin Sun
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Korea
| | - Jeongsik Kim
- Faculty of Science Education, Jeju National University, Jeju, Korea
| | - Pill-Soon Song
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Korea
| | - Hyo-Yeon Lee
- Department of Biotechnology, Jeju National University, Jeju, Korea.
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Korea.
| |
Collapse
|
307
|
Zhong R, Wang Y, Gai R, Xi D, Mao C, Ming F. Rice SnRK protein kinase OsSAPK8 acts as a positive regulator in abiotic stress responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110373. [PMID: 32005379 DOI: 10.1016/j.plantsci.2019.110373] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/04/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
SnRK2 (sucrose non-fermenting 1-related protein kinases 2) protein kinase family involves in several abiotic stress response in plants. Although the regulatory mechanism of SnRK2 have been well demonstrated in Arabidopsis thaliana, their functions in rice are still largely unknown. Here, we report a SnRK2 family gene, OsSAPK8, can be strongly induced by abiotic stresses, including low-temperature, drought and high salt stress. The ossapk8 mutants showed lower tolerance to low-temperature, high salinity and drought stresses at the vegetative stages. Moreover, the expressions of marker genes for those abiotic stresses, e.g. OsDREB1, OsDREB2, OsNCED and OsRAB21, were downregulated in the ossapk8 mutants. We further confirmed that the yield was reduced in ossapk8 mutant lines compared with the wild type. Our results provide evidence for OsSAPK8 acting as a positive regulator in cold, drought, and salt stress responses.
Collapse
Affiliation(s)
- Ruiling Zhong
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Institute of Plant Biology, School of Life Science, Fudan University, Shanghai 200433, China
| | - Yuxia Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Institute of Plant Biology, School of Life Science, Fudan University, Shanghai 200433, China; Institute of Biothermal Science and Technology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ruonan Gai
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Dandan Xi
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Institute of Plant Biology, School of Life Science, Fudan University, Shanghai 200433, China
| | - Chanjuan Mao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Institute of Plant Biology, School of Life Science, Fudan University, Shanghai 200433, China; Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Feng Ming
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Institute of Plant Biology, School of Life Science, Fudan University, Shanghai 200433, China; Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
308
|
Wang J, Song L, Gong X, Xu J, Li M. Functions of Jasmonic Acid in Plant Regulation and Response to Abiotic Stress. Int J Mol Sci 2020; 21:E1446. [PMID: 32093336 PMCID: PMC7073113 DOI: 10.3390/ijms21041446] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/09/2020] [Accepted: 02/18/2020] [Indexed: 11/16/2022] Open
Abstract
Jasmonic acid (JA) is an endogenous growth-regulating substance, initially identified as a stress-related hormone in higher plants. Similarly, the exogenous application of JA also has a regulatory effect on plants. Abiotic stress often causes large-scale plant damage. In this review, we focus on the JA signaling pathways in response to abiotic stresses, including cold, drought, salinity, heavy metals, and light. On the other hand, JA does not play an independent regulatory role, but works in a complex signal network with other phytohormone signaling pathways. In this review, we will discuss transcription factors and genes involved in the regulation of the JA signaling pathway in response to abiotic stress. In this process, the JAZ-MYC module plays a central role in the JA signaling pathway through integration of regulatory transcription factors and related genes. Simultaneously, JA has synergistic and antagonistic effects with abscisic acid (ABA), ethylene (ET), salicylic acid (SA), and other plant hormones in the process of resisting environmental stress.
Collapse
Affiliation(s)
- Jia Wang
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou 014060, China; (J.W.); (L.S.); (X.G.); (J.X.)
| | - Li Song
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou 014060, China; (J.W.); (L.S.); (X.G.); (J.X.)
| | - Xue Gong
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou 014060, China; (J.W.); (L.S.); (X.G.); (J.X.)
| | - Jinfan Xu
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou 014060, China; (J.W.); (L.S.); (X.G.); (J.X.)
| | - Minhui Li
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou 014060, China; (J.W.); (L.S.); (X.G.); (J.X.)
- Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot 010020, China
- Qiqihar Medical University, Qiqihar 161006, China
| |
Collapse
|
309
|
Zhang XW, Liu FJ, Zhai J, Li FD, Bi HG, Ai XZ. Auxin acts as a downstream signaling molecule involved in hydrogen sulfide-induced chilling tolerance in cucumber. PLANTA 2020; 251:69. [PMID: 32076872 DOI: 10.1007/s00425-020-03362-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 02/08/2020] [Indexed: 05/27/2023]
Abstract
This report proves a cross talk between H2S and IAA in cold stress response, which has presented strong evidence that IAA acts as a downstream signal mediating the H2S-induced stress tolerance in cucumber seedlings. We evaluated changes in endogenous hydrogen sulfide (H2S) and indole-3-acetic acid (IAA) emission systems, and the interactive effect of exogenous H2S and IAA on chilling tolerance in cucumber seedlings. The results showed that chilling stress increased the activity and relative mRNA expression of L-/D-cysteine desulfhydrase (L-/D-CD), which in turn induced the accumulation of endogenous H2S. Similarly, the endogenous IAA system was triggered by chilling stress. We found that 1.0 mM sodium hydrosulfide (NaHS, an H2S donor) significantly enhanced the activity of flavin monooxygenase (FMO) and relative expression of FMO-like proteins (YUCCA2), which in turn elevated endogenous IAA levels in cucumber seedlings. However, IAA had little effects on activities of L-/D-CD and endogenous H2S levels. H2S-induced IAA production accompanied by increase in chilling tolerance, as shown by the decrease in stress-induced electrolyte leakage (EL) and reactive oxygen species (ROS) accumulation, and increase in gene expressions and enzyme activities of photosynthesis. 1-naphthylphthalamic acid (NPA, an IAA polar transport inhibitor) declined H2S-induced chilling tolerance and defense genes' expression. However, scavenging of H2S had a little effect on IAA-induced chilling tolerance. These results suggest that IAA acting as a downstream signaling molecule is involved in the H2S-induced chilling tolerance in cucumber seedlings.
Collapse
Affiliation(s)
- Xiao-Wei Zhang
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Feng-Jiao Liu
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Jiang Zhai
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Fu-De Li
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Huan-Gai Bi
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Xi-Zhen Ai
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
310
|
Kim Y, Park SU, Shin DM, Pham G, Jeong YS, Kim SH. ATBS1-INTERACTING FACTOR 2 negatively regulates dark- and brassinosteroid-induced leaf senescence through interactions with INDUCER OF CBF EXPRESSION 1. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1475-1490. [PMID: 31783407 PMCID: PMC7031079 DOI: 10.1093/jxb/erz533] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/28/2019] [Indexed: 05/25/2023]
Abstract
ATBS1-INTERACTING FACTOR 2 (AIF2) is a non-DNA-binding basic helix-loop-helix (bHLH) transcription factor. We demonstrated that AIF2 retards dark-triggered and brassinosteroid (BR)-induced leaf senescence in Arabidopsis thaliana. Dark-triggered BR synthesis and the subsequent activation of BRASSINAZOLE RESISTANT 1 (BZR1), a BR signaling positive regulator, result in BZR1 binding to the AIF2 promoter in a dark-dependent manner, reducing AIF2 transcript levels and accelerating senescence. BR-induced down-regulation of AIF2 protein stability partly contributes to the progression of dark-induced leaf senescence. Furthermore, AIF2 interacts with INDUCER OF CBF EXPRESSION 1 (ICE1) via their C-termini. Formation of the AIF2-ICE1 complex and subsequent up-regulation of C-REPEAT BINDING FACTORs (CBFs) negatively regulates dark-triggered, BR-induced leaf senescence. This involves antagonistic down-regulation of PHYTOCHROME INTERACTING FACTOR 4 (PIF4), modulated through AIF2-dependent inhibition of ICE1's binding to the promoter. PIF4-dependent activities respond to dark-induced early senescence and may promote BR synthesis and BZR1 activation to suppress AIF2 and accelerate dark-induced senescence. Taken together, these findings suggest a coordination of AIF2 and ICE1 functions in maintaining stay-green traits.
Collapse
Affiliation(s)
- Yoon Kim
- Division of Biological Science and Technology, Yonsei University, Wonju-Si, Republic of Korea
| | - Seon-U Park
- Division of Biological Science and Technology, Yonsei University, Wonju-Si, Republic of Korea
| | - Dong-Min Shin
- Division of Biological Science and Technology, Yonsei University, Wonju-Si, Republic of Korea
| | - Giang Pham
- Division of Biological Science and Technology, Yonsei University, Wonju-Si, Republic of Korea
| | - You Seung Jeong
- Division of Biological Science and Technology, Yonsei University, Wonju-Si, Republic of Korea
| | - Soo-Hwan Kim
- Division of Biological Science and Technology, Yonsei University, Wonju-Si, Republic of Korea
| |
Collapse
|
311
|
Huang H, Gong Y, Liu B, Wu D, Zhang M, Xie D, Song S. The DELLA proteins interact with MYB21 and MYB24 to regulate filament elongation in Arabidopsis. BMC PLANT BIOLOGY 2020; 20:64. [PMID: 32033528 PMCID: PMC7006197 DOI: 10.1186/s12870-020-2274-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 02/03/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Gibberellin (GA) and jasmonate (JA) are two essential phytohormones for filament elongation in Arabidopsis. GA and JA trigger degradation of DELLAs and JASMONATE ZIM-domain (JAZ) proteins through SCFSLY1 and SCFCOI1 separately to activate filament elongation. In JA pathway, JAZs interact with MYB21 and MYB24 to control filament elongation. However, little is known how DELLAs regulate filament elongation. RESULTS Here we showed that DELLAs interact with MYB21 and MYB24, and that R2R3 domains of MYB21 and MYB24 are responsible for interaction with DELLAs. Furthermore, we demonstrated that DELLA and JAZ proteins coordinately repress the transcriptional function of MYB21 and MYB24 to inhibit filament elongation. CONCLUSION We discovered that DELLAs interact with MYB21 and MYB24, and that DELLAs and JAZs attenuate the transcriptional function of MYB21 and MYB24 to control filament elongation. This study reveals a novel cross-talk mechanism of GA and JA in the regulation of filament elongation in Arabidopsis.
Collapse
Affiliation(s)
- Huang Huang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China.
| | - Yilong Gong
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, RNA Center, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Bei Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, RNA Center, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Dewei Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
| | - Min Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, RNA Center, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Daoxin Xie
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, RNA Center, College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
312
|
Jasmonic Acid Signaling Pathway in Response to Abiotic Stresses in Plants. Int J Mol Sci 2020; 21:ijms21020621. [PMID: 31963549 PMCID: PMC7013817 DOI: 10.3390/ijms21020621] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022] Open
Abstract
Plants as immovable organisms sense the stressors in their environment and respond to them by means of dedicated stress response pathways. In response to stress, jasmonates (jasmonic acid, its precursors and derivatives), a class of polyunsaturated fatty acid-derived phytohormones, play crucial roles in several biotic and abiotic stresses. As the major immunity hormone, jasmonates participate in numerous signal transduction pathways, including those of gene networks, regulatory proteins, signaling intermediates, and proteins, enzymes, and molecules that act to protect cells from the toxic effects of abiotic stresses. As cellular hubs for integrating informational cues from the environment, jasmonates play significant roles in alleviating salt stress, drought stress, heavy metal toxicity, micronutrient toxicity, freezing stress, ozone stress, CO2 stress, and light stress. Besides these, jasmonates are involved in several developmental and physiological processes throughout the plant life. In this review, we discuss the biosynthesis and signal transduction pathways of the JAs and the roles of these molecules in the plant responses to abiotic stresses.
Collapse
|
313
|
Song Y, Vu HS, Shiva S, Fruehan C, Roth MR, Tamura P, Welti R. A Lipidomic Approach to Identify Cold-Induced Changes in Arabidopsis Membrane Lipid Composition. Methods Mol Biol 2020; 2156:187-202. [PMID: 32607983 PMCID: PMC7988500 DOI: 10.1007/978-1-0716-0660-5_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lipid changes that occur in leaves of plants (e.g., Arabidopsis thaliana), during cold and freezing stress can be analyzed with electrospray ionization triple quadrupole mass spectrometry, using high-throughput multiple reaction monitoring (MRM). An online tool, LipidomeDB Data Calculation Environment, is employed for mass spectral data processing.
Collapse
Affiliation(s)
- Yu Song
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Hieu Sy Vu
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, KS, USA
- Children's Medical Research Institute at University of Texas-Southwestern, Dallas, TX, USA
| | - Sunitha Shiva
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, KS, USA
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| | - Carl Fruehan
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Mary R Roth
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Pamela Tamura
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Ruth Welti
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
314
|
Oblessuc PR, Obulareddy N, DeMott L, Matiolli CC, Thompson BK, Melotto M. JAZ4 is involved in plant defense, growth, and development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:371-383. [PMID: 31557372 DOI: 10.1111/tpj.14548] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 05/25/2023]
Abstract
Jasmonate zim-domain (JAZ) proteins comprise a family of transcriptional repressors that modulate jasmonate (JA) responses. JAZ proteins form a co-receptor complex with the F-box protein coronatine insensitive1 (COI1) that recognizes both jasmonoyl-l-isoleucine (JA-Ile) and the bacterial-produced phytotoxin coronatine (COR). Although several JAZ family members have been placed in this pathway, the role of JAZ4 in this model remains elusive. In this study, we observed that the jaz4-1 mutant of Arabidopsis is hyper-susceptible to Pseudomonas syringae pv. tomato (Pst) DC3000, while Arabidopsis lines overexpressing a JAZ4 protein lacking the Jas domain (JAZ4∆Jas) have enhanced resistance to this bacterium. Our results show that the Jas domain of JAZ4 is required for its physical interaction with COI1, MYC2 or MYC3, but not with the repressor complex adaptor protein NINJA. Furthermore, JAZ4 degradation is induced by COR in a proteasome- and Jas domain-dependent manner. Phenotypic evaluations revealed that expression of JAZ4∆Jas results in early flowering and increased length of root, hypocotyl, and petiole when compared with Col-0 and jaz4-1 plants, although JAZ4∆Jas lines remain sensitive to MeJA- and COR-induced root and hypocotyl growth inhibition. Additionally, jaz4-1 mutant plants have increased anthocyanin accumulation and late flowering compared with Col-0, while JAZ4∆Jas lines showed no alteration in anthocyanin production. These findings suggest that JAZ4 participates in the canonical JA signaling pathway leading to plant defense response in addition to COI1/MYC-independent functions in plant growth and development, supporting the notion that JAZ4-mediated signaling may have distinct branches.
Collapse
Affiliation(s)
- Paula R Oblessuc
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Nisita Obulareddy
- Department of Biology, University of Texas, Arlington, TX, 76019, USA
| | - Logan DeMott
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | | | - Blaine K Thompson
- Department of Biology, University of Texas, Arlington, TX, 76019, USA
| | - Maeli Melotto
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| |
Collapse
|
315
|
Li N, Euring D, Cha JY, Lin Z, Lu M, Huang LJ, Kim WY. Plant Hormone-Mediated Regulation of Heat Tolerance in Response to Global Climate Change. FRONTIERS IN PLANT SCIENCE 2020; 11:627969. [PMID: 33643337 PMCID: PMC7905216 DOI: 10.3389/fpls.2020.627969] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/30/2020] [Indexed: 05/07/2023]
Abstract
Agriculture is largely dependent on climate and is highly vulnerable to climate change. The global mean surface temperatures are increasing due to global climate change. Temperature beyond the physiological optimum for growth induces heat stress in plants causing detrimental and irreversible damage to plant development, growth, as well as productivity. Plants have evolved adaptive mechanisms in response to heat stress. The classical plant hormones, such as auxin, abscisic acid (ABA), brassinosteroids (BRs), cytokinin (CK), salicylic acid (SA), jasmonate (JA), and ethylene (ET), integrate environmental stimuli and endogenous signals to regulate plant defensive response to various abiotic stresses, including heat. Exogenous applications of those hormones prior or parallel to heat stress render plants more thermotolerant. In this review, we summarized the recent progress and current understanding of the roles of those phytohormones in defending plants against heat stress and the underlying signal transduction pathways. We also discussed the implication of the basic knowledge of hormone-regulated plant heat responsive mechanism to develop heat-resilient plants as an effective and efficient way to cope with global warming.
Collapse
Affiliation(s)
- Ning Li
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Hunan, China
| | - Dejuan Euring
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
| | - Joon Yung Cha
- Division of Applied Life Science (BK21PLUS), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Zeng Lin
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Hunan, China
| | - Mengzhu Lu
- Laboratory of Forest Genetics and Plant Breeding, College of Forestry, Central South University of Forestry and Technology, Hunan, China
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Zhejiang, China
| | - Li-Jun Huang
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Hunan, China
- Laboratory of Forest Genetics and Plant Breeding, College of Forestry, Central South University of Forestry and Technology, Hunan, China
- *Correspondence: Li-Jun Huang, ; 0000-0001-8072-5180
| | - Woe Yeon Kim
- Division of Applied Life Science (BK21PLUS), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
- Woe Yeon Kim,
| |
Collapse
|
316
|
He M, Ding NZ. Plant Unsaturated Fatty Acids: Multiple Roles in Stress Response. FRONTIERS IN PLANT SCIENCE 2020; 11:562785. [PMID: 33013981 PMCID: PMC7500430 DOI: 10.3389/fpls.2020.562785] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/19/2020] [Indexed: 05/21/2023]
Abstract
Land plants are exposed to not only biotic stresses such as pathogen infection and herbivore wounding, but abiotic stresses such as cold, heat, drought, and salt. Elaborate strategies have been developed to avoid or abide the adverse effects, with unsaturated fatty acids (UFAs) emerging as general defenders. In higher plants, the most common UFAs are three 18-carbon species, namely, oleic (18:1), linoleic (18:2), and α-linolenic (18:3) acids. These simple compounds act as ingredients and modulators of cellular membranes in glycerolipids, reserve of carbon and energy in triacylglycerol, stocks of extracellular barrier constituents (e.g., cutin and suberin), precursors of various bioactive molecules (e.g., jasmonates and nitroalkenes), and regulators of stress signaling. Nevertheless, they are also potential inducers of oxidative stress. In this review, we will present an overview of these roles and then shed light on genetic engineering of FA synthetic genes for improving plant/crop stress tolerance.
Collapse
|
317
|
Zhang Z, Zhu L, Song A, Wang H, Chen S, Jiang J, Chen F. Chrysanthemum (Chrysanthemum morifolium) CmICE2 conferred freezing tolerance in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:31-41. [PMID: 31726380 DOI: 10.1016/j.plaphy.2019.10.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Genes of the ICE (Inducer of CBF Expression) family play a key role in cold and freezing stresses response via the CBF regulatory pathway. In this work, we identified the ICE family gene, CmICE2, from Chrysanthemum morifolium 'Jinba'. CmICE2 encodes a 451-amino acid protein with a conserved nuclear localization domain, a bHLH domain and ACT domain. CmICE2 is expressed in abundance in leaves and flowers, and the expression of CmICE2 is induced by freezing and drought stresses. CmICE2 localized to the nucleus, and has transcriptional activity in yeast cells. After a 24-hour 4 °C acclimation, Arabidopsis plants overexpressing CmICE2 were more tolerant to freezing stress (-9 °C for 6 h) than the Col-0. When exposed to -9 °C for 6 h, the expression levels of genes such as AtCBF1, AtCBF2, AtCBF4, AtCOR 6.6A, AtCOR 414 and AtKIN1 were up-regulated significantly in CmICE2 overexpression plant lines compared to wild type. The proline contents, activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were also increased in plants overexpressing CmICE2. In summary, CmICE2 confers to plant response to freezing stress.
Collapse
Affiliation(s)
- Zhaohe Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Lu Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Haibin Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
318
|
Hu Z, Ban Q, Hao J, Zhu X, Cheng Y, Mao J, Lin M, Xia E, Li Y. Genome-Wide Characterization of the C-repeat Binding Factor (CBF) Gene Family Involved in the Response to Abiotic Stresses in Tea Plant ( Camellia sinensis). FRONTIERS IN PLANT SCIENCE 2020; 11:921. [PMID: 32849669 PMCID: PMC7396485 DOI: 10.3389/fpls.2020.00921] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/05/2020] [Indexed: 05/18/2023]
Abstract
C-repeat (CRT)/dehydration responsive element (DRE)-binding factor CBFs, a small family of genes encoding transcriptional activators, play important roles in plant cold tolerance. In this study, a comprehensive genome-wide analysis was carried out to identify and characterize the functional dynamics of CsCBFs in tea plant (Camellia sinensis). A total of 6 CBF genes were obtained from the tea plant genome and named CBF1-6. All of the CsCBFs had an AP2/ERF DNA-binding domain and nuclear localization signal (NLS) sequence. CsCBF-eGFP fusion and DAPI staining analysis confirmed the nuclear localization of the CsCBFs. Transactivation assays showed that the CsCBFs, except CsCBF1, had transcriptional activity. CsCBF expression was differentially induced by cold, heat, PEG, salinity, ABA, GA, MeJA, and SA stresses. In particular, the CsCBF genes were significantly induced by cold treatments. To further characterize the functions of CsCBF genes, we overexpressed the CsCBF3 gene in Arabidopsis thaliana plants. The resulting transgenic plants showed increased cold tolerance compared with the wild-type Arabidopsis plant. The enhanced cold tolerance of the transgenic plants was potentially achieved through an ABA-independent pathway. This study will help to increase our understanding of CsCBF genes and their contributions to stress tolerance in tea plants.
Collapse
|
319
|
Borkiewicz L, Polkowska-Kowalczyk L, Cieśla J, Sowiński P, Jończyk M, Rymaszewski W, Szymańska KP, Jaźwiec R, Muszyńska G, Szczegielniak J. Expression of maize calcium-dependent protein kinase (ZmCPK11) improves salt tolerance in transgenic Arabidopsis plants by regulating sodium and potassium homeostasis and stabilizing photosystem II. PHYSIOLOGIA PLANTARUM 2020; 168:38-57. [PMID: 30714160 DOI: 10.1111/ppl.12938] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
In plants, CALCIUM-DEPENDENT PROTEIN KINASES (CDPKs/CPKs) are involved in calcium signaling in response to endogenous and environmental stimuli. Here, we report that ZmCPK11, one of maize CDPKs, participates in salt stress response and tolerance. Salt stress induced expression and upregulated the activity of ZmCPK11 in maize roots and leaves. Activation of ZmCPK11 upon salt stress was also observed in roots and leaves of transgenic Arabidopsis plants expressing ZmCPK11. The transgenic plants showed a long-root phenotype under control conditions and a short-root phenotype under NaCl, abscisic acid (ABA) or jasmonic acid (JA) treatment. Analysis of ABA and JA content in roots indicated that ZmCPK11 can mediate root growth by regulating the levels of these phytohormones. Moreover, 4-week-old transgenic plants were more tolerant to salinity than the wild-type plants. Their leaves were less chlorotic and showed weaker symptoms of senescence accompanied by higher chlorophyll content and higher quantum efficiency of photosystem II. The expression of Na+ /K+ transporters (HKT1, SOS1 and NHX1) and transcription factors (CBF1, CBF2, CBF3, ZAT6 and ZAT10) with known links to salinity tolerance was upregulated in roots of the transgenic plants upon salt stress. Furthermore, the transgenic plants accumulated less Na+ in roots and leaves under salinity, and showed a higher K+ /Na+ ratio in leaves. These results show that the improved salt tolerance in ZmCPK11-transgenic plants could be due to an upregulation of genes involved in the maintenance of intracellular Na+ and K+ homeostasis and a protection of photosystem II against damage.
Collapse
Affiliation(s)
- Lidia Borkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Department of Molecular Biology, Maria Curie-Skłodowska University, Lublin, Poland
| | | | - Jarosław Cieśla
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Sowiński
- Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, Warsaw University, Warsaw, Poland
| | - Maciej Jończyk
- Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, Warsaw University, Warsaw, Poland
| | - Wojciech Rymaszewski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna P Szymańska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Radosław Jaźwiec
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Grażyna Muszyńska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jadwiga Szczegielniak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
320
|
Genetic Architecture of Chilling Tolerance in Sorghum Dissected with a Nested Association Mapping Population. G3-GENES GENOMES GENETICS 2019; 9:4045-4057. [PMID: 31611346 PMCID: PMC6893202 DOI: 10.1534/g3.119.400353] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dissecting the genetic architecture of stress tolerance in crops is critical to understand and improve adaptation. In temperate climates, early planting of chilling-tolerant varieties could provide longer growing seasons and drought escape, but chilling tolerance (<15°) is generally lacking in tropical-origin crops. Here we developed a nested association mapping (NAM) population to dissect the genetic architecture of early-season chilling tolerance in the tropical-origin cereal sorghum (Sorghum bicolor [L.] Moench). The NAM resource, developed from reference line BTx623 and three chilling-tolerant Chinese lines, is comprised of 771 recombinant inbred lines genotyped by sequencing at 43,320 single nucleotide polymorphisms. We phenotyped the NAM population for emergence, seedling vigor, and agronomic traits (>75,000 data points from ∼16,000 plots) in multi-environment field trials in Kansas under natural chilling stress (sown 30-45 days early) and normal growing conditions. Joint linkage mapping with early-planted field phenotypes revealed an oligogenic architecture, with 5-10 chilling tolerance loci explaining 20-41% of variation. Surprisingly, several of the major chilling tolerance loci co-localize precisely with the classical grain tannin (Tan1 and Tan2) and dwarfing genes (Dw1 and Dw3) that were under strong directional selection in the US during the 20th century. These findings suggest that chilling sensitivity was inadvertently selected due to coinheritance with desired nontannin and dwarfing alleles. The characterization of genetic architecture with NAM reveals why past chilling tolerance breeding was stymied and provides a path for genomics-enabled breeding of chilling tolerance.
Collapse
|
321
|
Zhao Y, Zhou M, Xu K, Li J, Li S, Zhang S, Yang X. Integrated transcriptomics and metabolomics analyses provide insights into cold stress response in wheat. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cj.2019.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
322
|
Acosta IF, Przybyl M. Jasmonate Signaling during Arabidopsis Stamen Maturation. PLANT & CELL PHYSIOLOGY 2019; 60:2648-2659. [PMID: 31651948 PMCID: PMC6896695 DOI: 10.1093/pcp/pcz201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
The last stages of stamen development, collectively called stamen maturation, encompass pollen viability, filament elongation and anther dehiscence or opening. These processes are essential for male fertility in Arabidopsis and require the function of jasmonate signaling. There is a good understanding of jasmonate synthesis, perception and transcriptional outputs in Arabidopsis stamens. In addition, the spatiotemporal localization of jasmonate signaling components at the tissue and cellular levels has started to emerge in recent years. However, the ultimate cellular functions activated by jasmonate to promote stamen maturation remain unknown. The hormones auxin and gibberellin have been proposed to control the activation of jasmonate synthesis to promote stamen maturation, although we hypothesize that this action is rather indirect. In this review, we examine these different areas, attempt to clarify some confusing aspects found in the literature and raise testable hypothesis that may help to further understand how jasmonate controls male fertility in Arabidopsis.
Collapse
Affiliation(s)
- Ivan F Acosta
- Max Planck Institute for Plant Breeding Research, Carl-von-Linn�-Weg 10, 50829 Cologne, Germany
| | - Marine Przybyl
- Max Planck Institute for Plant Breeding Research, Carl-von-Linn�-Weg 10, 50829 Cologne, Germany
| |
Collapse
|
323
|
Zuo ZF, Kang HG, Park MY, Jeong H, Sun HJ, Song PS, Lee HY. Zoysia japonica MYC type transcription factor ZjICE1 regulates cold tolerance in transgenic Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110254. [PMID: 31623785 DOI: 10.1016/j.plantsci.2019.110254] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/24/2019] [Accepted: 09/02/2019] [Indexed: 05/21/2023]
Abstract
ICE1 (Inducer of CBF Expression 1) is a regulator of cold-induced transcriptome, which plays an important role in plant cold response pathway. To enhance the cold tolerance of Zoysia japonica, one of the warm-season turfgrasses, it is helpful to understand the cold response mechanism in Zoysia japonica. We identified stress-responsive ZjICE1 from Zoysia japonica and characterized its function in cold stress. Our results showed that ZjICE1 shared the typical feature of ICE homolog proteins belonging to a nucleic protein. Transactivation activity assay revealed that ZjICE1 bound to the MYC cis-element in the ZjDREB1's promotor. The ZjICE1 overexpressed transgenic Arabidopsis showed enhanced tolerance to cold stress with an increases in SOD, POD, and free proline content and reduction in MDA content. They also induced the transcripts abundance of cold-responsive genes (CBF1, CBF2, CBF3, COR47A, KIN1, and RD29A) after cold treatment. These results suggest that ZjICE1 is a positive regulator in Zoysia japonica plant during cold stress and can be a useful gene for the molecular breeding program to develop the cold tolerant zoysiagrass. Furthermore, the ZjICE1 also conferred resistance to salt and drought stresses, providing the better understanding of the basic helix-loop-helix (bHLH) gene family in abiotic stress responses.
Collapse
Affiliation(s)
- Zhi-Fang Zuo
- Department of Biotechnology, Jeju National University, Jeju, Republic of Korea; Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Hong-Gyu Kang
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea.
| | - Mi-Young Park
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Hana Jeong
- Department of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Hyeon-Jin Sun
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Pill-Soon Song
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Hyo-Yeon Lee
- Department of Biotechnology, Jeju National University, Jeju, Republic of Korea; Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea.
| |
Collapse
|
324
|
Savchenko TV, Rolletschek H, Dehesh K. Jasmonates-Mediated Rewiring of Central Metabolism Regulates Adaptive Responses. PLANT & CELL PHYSIOLOGY 2019; 60:2613-2620. [PMID: 31529102 PMCID: PMC6896697 DOI: 10.1093/pcp/pcz181] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 09/03/2019] [Indexed: 05/23/2023]
Abstract
The lipid-derived hormones jasmonates (JAs) play key functions in a wide range of physiological and developmental processes that regulate growth, secondary metabolism and defense against biotic and abiotic stresses. In this connection, biosynthesis, tissue-specific distribution, metabolism, perception, signaling of JAs have been the target of extensive studies. In recent years, the involvement of JAs signaling pathway in the regulation of growth and adaptive responses to environmental challenges has been further examined. However, JAs-mediated mechanisms underlying the transition from 'growth mode' to 'adaptive mode' remain ambiguous. Combined analysis of transgenic lines deficient in JAs signaling in conjunction with the data from JAs-treated plants revealed the function of these hormones in rewiring of central metabolism. The collective data illustrate JAs-mediated decrease in the levels of metabolites associated with active growth such as sucrose, raffinose, orotate, citrate, malate, and an increase in phosphorylated hexoses, responsible for the suppression of growth and photosynthesis, concurrent with the induction of protective metabolites, such as aromatic and branched-chain amino acids, and aspartate family of metabolites. This finding provides an insight into the function of JAs in shifting the central metabolism from the production of growth-promoting metabolites to protective compounds and expands our understanding of the role of JAs in resource allocation in response to environmental challenges.
Collapse
Affiliation(s)
- Tatyana V Savchenko
- Institute of Basic Biological Problems, FRC PSCBR RAS, Institutskaya St. 2, Pushchino, Moscow Region 142290, Russian Federation
| | - Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, Gatersleben D-06466, Germany
| | - Katayoon Dehesh
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
325
|
Balfagón D, Sengupta S, Gómez-Cadenas A, Fritschi FB, Azad RK, Mittler R, Zandalinas SI. Jasmonic Acid Is Required for Plant Acclimation to a Combination of High Light and Heat Stress. PLANT PHYSIOLOGY 2019; 181:1668-1682. [PMID: 31594842 PMCID: PMC6878009 DOI: 10.1104/pp.19.00956] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/27/2019] [Indexed: 05/20/2023]
Abstract
In the field, plants experience high light (HL) intensities that are often accompanied by elevated temperatures. Such conditions are a serious threat to agriculture production, because photosynthesis is highly sensitive to both HL intensities and high-temperature stress. One of the potential cellular targets of HL and heat stress (HS) combination is PSII because its degree of photoinhibition depends on the balance between the rate of PSII damage (induced by light stress), and the rate of PSII repair (impaired under HS). Here, we studied the responses of Arabidopsis (Arabidopsis thaliana) plants to a combination of HL and HS (HL+HS) conditions. Combined HL+HS was accompanied by irreversible damage to PSII, decreased D1 (PsbA) protein levels, and an enhanced transcriptional response indicative of PSII repair activation. We further identified several unique aspects of this stress combination that included enhanced accumulation of jasmonic acid (JA) and JA-Ile, elevated expression of over 2,200 different transcripts that are unique to the stress combination (including many that are JA-associated), and distinctive structural changes to chloroplasts. A mutant deficient in JA biosynthesis (allene oxide synthase) displayed enhanced sensitivity to combined HL+HS and further analysis revealed that JA is required for regulating several transcriptional responses unique to the stress combination. Our study reveals that JA plays an important role in the acclimation of plants to a combination of HL+HS.
Collapse
Affiliation(s)
- Damián Balfagón
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castello de la Plana, 12071 Spain
| | - Soham Sengupta
- Department of Biological Sciences, College of Science, University of North Texas, Denton, Texas 76203
| | - Aurelio Gómez-Cadenas
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castello de la Plana, 12071 Spain
| | - Felix B Fritschi
- Bond Life Sciences Center, Interdisciplinary Plant Group, and Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri 65211
| | - Rajeev K Azad
- Department of Biological Sciences, College of Science, University of North Texas, Denton, Texas 76203
| | - Ron Mittler
- Bond Life Sciences Center, Interdisciplinary Plant Group, and Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri 65211
| | - Sara I Zandalinas
- Bond Life Sciences Center, Interdisciplinary Plant Group, and Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
326
|
Tajti J, Hamow KÁ, Majláth I, Gierczik K, Németh E, Janda T, Pál M. Polyamine-Induced Hormonal Changes in eds5 and sid2 Mutant Arabidopsis Plants. Int J Mol Sci 2019; 20:ijms20225746. [PMID: 31731788 PMCID: PMC6887987 DOI: 10.3390/ijms20225746] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 11/16/2022] Open
Abstract
Polyamines are multifaceted compounds which play a role in regulating plant growth and stress tolerance in interactions with plant hormones. The aim of the present study was to reveal how exogenous polyamines influence the synthesis of salicylic acid, with a special emphasis on the effect of salicylic acid deficiency on the polyamine metabolism and polyamine-induced changes in other plant hormone contents. Our hypothesis was that the individual polyamines induced different changes in the polyamine and salicylic acid metabolism of the wild type and salicylic acid-deficient Arabidopsis mutants, which in turn influenced other hormones. To our knowledge, such a side-by-side comparison of the influence of eds5-1 and sid2-2 mutations on polyamines has not been reported yet. To achieve our goals, wild and mutant genotypes were tested after putrescine, spermidine or spermine treatments. Polyamine and plant hormone metabolism was investigated at metabolite and gene expression levels. Individual polyamines induced different changes in the Arabidopsis plants, and the responses were also genotype-dependent. Polyamines upregulated the polyamine synthesis and catabolism, and remarkable changes in hormone synthesis were found especially after spermidine or spermine treatments. The sid2-2 mutant showed pronounced differences compared to Col-0. Interactions between plant hormones may also be responsible for the observed differences.
Collapse
Affiliation(s)
- Judit Tajti
- Plant Physiology Department, Agricultural Institute, Centre for Agricultural Research, H-2462 Martonvásár, Hungary; (J.T.); (I.M.); (E.N.); (T.J.)
| | - Kamirán Áron Hamow
- Plant Protection Institute, Centre for Agricultural Research, H-2462 Martonvásár, Hungary;
| | - Imre Majláth
- Plant Physiology Department, Agricultural Institute, Centre for Agricultural Research, H-2462 Martonvásár, Hungary; (J.T.); (I.M.); (E.N.); (T.J.)
| | - Krisztián Gierczik
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, H-2462 Mrtonvásár, Hungary;
| | - Edit Németh
- Plant Physiology Department, Agricultural Institute, Centre for Agricultural Research, H-2462 Martonvásár, Hungary; (J.T.); (I.M.); (E.N.); (T.J.)
| | - Tibor Janda
- Plant Physiology Department, Agricultural Institute, Centre for Agricultural Research, H-2462 Martonvásár, Hungary; (J.T.); (I.M.); (E.N.); (T.J.)
| | - Magda Pál
- Plant Physiology Department, Agricultural Institute, Centre for Agricultural Research, H-2462 Martonvásár, Hungary; (J.T.); (I.M.); (E.N.); (T.J.)
- Correspondence: ; Tel.: +36-22-569-502; Fax: +36-22-569-576
| |
Collapse
|
327
|
Genome-Wide Analysis of Basic Helix-Loop-Helix Superfamily Members Reveals Organization and Chilling-Responsive Patterns in Cabbage (Brassica oleracea var. capitata L.). Genes (Basel) 2019; 10:genes10110914. [PMID: 31717469 PMCID: PMC6895899 DOI: 10.3390/genes10110914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 11/05/2019] [Indexed: 11/16/2022] Open
Abstract
Basic helix–loop–helix (bHLH) transcription factor (TF) family is commonly found in eukaryotes, which is one of the largest families of regulator proteins. It plays an important role in plant growth and development, as well as various biotic and abiotic stresses. However, a comprehensive analysis of the bHLH family has not been reported in Brassica oleracea. In this study, we systematically describe the BobHLHs in the phylogenetic relationships, expression patterns in different organs/tissues, and in response to chilling stress, and gene and protein characteristics. A total of 234 BobHLH genes were identified in the B. oleracea genome and were further clustered into twenty-three subfamilies based on the phylogenetic analyses. A large number of BobHLH genes were unevenly located on nine chromosomes of B. oleracea. Analysis of RNA-Seq expression profiles revealed that 21 BobHLH genes exhibited organ/tissue-specific expression. Additionally, the expression of six BobHLHs (BobHLH003, -048, -059, -093, -109, and -148) were significantly down-regulated in chilling-sensitive cabbage (CS-D9) and chilling-tolerant cabbage (CT-923). At 24 h chilling stress, BobHLH054 was significantly down-regulated and up-regulated in chilling-treated CS-D9 and CT-923. Conserved motif characterization and exon/intron structural patterns showed that BobHLH genes had similar structures in the same subfamily. This study provides a comprehensive analysis of BobHLH genes and reveals several candidate genes involved in chilling tolerance of B. oleracea, which may be helpful to clarify the roles of bHLH family members and understand the regulatory mechanisms of BobHLH genes in response to the chilling stress of cabbage.
Collapse
|
328
|
Ye K, Li H, Ding Y, Shi Y, Song C, Gong Z, Yang S. BRASSINOSTEROID-INSENSITIVE2 Negatively Regulates the Stability of Transcription Factor ICE1 in Response to Cold Stress in Arabidopsis. THE PLANT CELL 2019; 31:2682-2696. [PMID: 31409630 PMCID: PMC6881119 DOI: 10.1105/tpc.19.00058] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/15/2019] [Accepted: 08/10/2019] [Indexed: 05/18/2023]
Abstract
Cold acclimation is a crucial strategy for plant survival at freezing temperatures. C-REPEAT BINDING FACTOR (CBF) genes are rapidly and transiently induced by low temperature and play important roles in cold acclimation. However, the mechanism underlying the attenuation of CBF expression during the later stages of the cold stress response is obscure. Here, we show that the protein kinase BRASSINOSTEROID-INSENSITIVE2 (BIN2) interacts with and phosphorylates INDUCER OF CBF EXPRESSION1 (ICE1) in Arabidopsis (Arabidopsis thaliana) under prolonged cold stress, facilitating the interaction between ICE1 and the E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 and thereby promoting ICE1 degradation. The kinase activity of BIN2 is inhibited during the early stages of the cold stress response and is subsequently restored, suggesting that BIN2 mainly downregulates ICE1 abundance when CBF expression is attenuated. A loss-of-function mutation of ICE1 partially suppresses the cold-induced expression of CBFs and compromises the enhanced freezing tolerance of bin2-3 bil1 bil2 These findings reveal an important role for BIN2 in fine-tuning CBF expression, and thus in balancing plant growth and the cold stress response.
Collapse
Affiliation(s)
- Keyi Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hui Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | - Chunpeng Song
- Institute of Plant Stress Biology, Collaborative Innovation Center of Crop Stress Biology, Henan University, Kaifeng 475001, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
329
|
Gan P, Liu F, Li R, Wang S, Luo J. Chloroplasts- Beyond Energy Capture and Carbon Fixation: Tuning of Photosynthesis in Response to Chilling Stress. Int J Mol Sci 2019; 20:ijms20205046. [PMID: 31614592 PMCID: PMC6834309 DOI: 10.3390/ijms20205046] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
As organelles for photosynthesis in green plants, chloroplasts play a vital role in solar energy capture and carbon fixation. The maintenance of normal chloroplast physiological functions is essential for plant growth and development. Low temperature is an adverse environmental stress that affects crop productivity. Low temperature severely affects the growth and development of plants, especially photosynthesis. To date, many studies have reported that chloroplasts are not only just organelles of photosynthesis. Chloroplasts can also perceive chilling stress signals via membranes and photoreceptors, and they maintain their homeostasis and promote photosynthesis by regulating the state of lipid membranes, the abundance of photosynthesis-related proteins, the activity of enzymes, the redox state, and the balance of hormones and by releasing retrograde signals, thus improving plant resistance to low temperatures. This review focused on the potential functions of chloroplasts in fine tuning photosynthesis processes under low-temperature stress by perceiving stress signals, modulating the expression of photosynthesis-related genes, and scavenging excess reactive oxygen species (ROS) in chloroplasts to survive the adverse environment.
Collapse
Affiliation(s)
- Ping Gan
- College of Life Science and technology (State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources), Guangxi University, Nanning 530004, China.
| | - Fang Liu
- Agriculture College, Guangxi University, Nanning 530004, China.
| | - Rongbai Li
- Agriculture College, Guangxi University, Nanning 530004, China.
| | - Shaokui Wang
- Agriculture College, South China Agricultural University, Guangzhou 510642, China.
| | - Jijing Luo
- College of Life Science and technology (State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources), Guangxi University, Nanning 530004, China.
| |
Collapse
|
330
|
Xiang L, Jian D, Zhang F, Yang C, Bai G, Lan X, Chen M, Tang K, Liao Z. The cold-induced transcription factor bHLH112 promotes artemisinin biosynthesis indirectly via ERF1 in Artemisia annua. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4835-4848. [PMID: 31087059 PMCID: PMC6760284 DOI: 10.1093/jxb/erz220] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/30/2019] [Indexed: 05/21/2023]
Abstract
Basic helix-loop-helix (bHLH) proteins are the second largest family of transcription factors (TFs) involved in developmental and physiological processes in plants. In this study, 205 putative bHLH TF genes were identified in the genome of Artemisia annua and expression of 122 of these was determined from transcriptomes used to construct the genetic map of A. annua. Analysis of gene expression association allowed division of the 122 bHLH TFs into five groups. Group V, containing 15 members, was tightly associated with artemisinin biosynthesis genes. Phylogenetic analysis indicated that two bHLH TFs, AabHLH106 and AabHLH112, were clustered with Arabidopsis ICE proteins. AabHLH112 was induced by low temperature, while AabHLH106 was not. We therefore chose AabHLH112 for further examination. AabHLH112 was highly expressed in glandular secretory trichomes, flower buds, and leaves. Dual-luciferase assays demonstrated that AabHLH112 enhanced the promoter activity of artemisinin biosynthesis genes and AaERF1, an AP2/ERF TF that directly and positively regulates artemisinin biosynthesis genes. Yeast one-hybrid assays indicated that AabHLH112 could bind to the AaERF1 promoter, but not to the promoters of artemisinin biosynthesis genes. Overexpression of AabHLH112 significantly up-regulated the expression levels of AaERF1 and artemisinin biosynthesis genes and consequently promoted artemisinin production.
Collapse
Affiliation(s)
- Lien Xiang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Engineering Research Centre for Sweet Potato, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Dongqin Jian
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Engineering Research Centre for Sweet Potato, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Fangyuan Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Engineering Research Centre for Sweet Potato, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Chunxian Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Engineering Research Centre for Sweet Potato, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Ge Bai
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant Joint R&D Centre, Xizang Agricultural and Husbandry College, Nyingchi of Tibet, China
| | - Min Chen
- College of Pharmaceutical Sciences, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing, China
| | - Kexuan Tang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhihua Liao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Engineering Research Centre for Sweet Potato, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
- Correspondence:
| |
Collapse
|
331
|
Jasmonates-the Master Regulator of Rice Development, Adaptation and Defense. PLANTS 2019; 8:plants8090339. [PMID: 31505882 PMCID: PMC6784130 DOI: 10.3390/plants8090339] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022]
Abstract
Rice is one of the most important food crops worldwide, as well as the model plant in molecular studies on the cereals group. Many different biotic and abiotic agents often limit rice production and threaten food security. Understanding the molecular mechanism, by which the rice plant reacts and resists these constraints, is the key to improving rice production to meet the demand of an increasing population. The phytohormone jasmonic acid (JA) and related compounds, collectively called jasmonates, are key regulators in plant growth and development. They are also one of the central players in plant immunity against biotic attacks and adaptation to unfavorable environmental conditions. Here, we review the most recent knowledge about jasmonates signaling in the rice crop model. We highlight the functions of jasmonates signaling in many adaptive responses, and also in rice growth and development processes. We also draw special attention to different signaling modules that are controlled by jasmonates in rice.
Collapse
|
332
|
Upadhyay RK, Handa AK, Mattoo AK. Transcript Abundance Patterns of 9- and 13-Lipoxygenase Subfamily Gene Members in Response to Abiotic Stresses (Heat, Cold, Drought or Salt) in Tomato ( Solanum lycopersicum L .) Highlights Member-Specific Dynamics Relevant to Each Stress. Genes (Basel) 2019; 10:genes10090683. [PMID: 31492025 PMCID: PMC6771027 DOI: 10.3390/genes10090683] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022] Open
Abstract
Lipoxygenases (LOXs; EC 1.13.11.12) catalyze the oxygenation of fatty acids to produce oxylipins including the jasmonate family of plant hormones. The involvement of jasmonates in plant growth and development and during abiotic stress has been documented, however, the response and regulation of each member of the LOX gene family under various abiotic stresses is yet to be fully deciphered. Previously, we identified fourteen members of the tomato LOX gene family, which were divisible into nine genes representing the 9-LOX family members and five others representing the 13-LOX family members based on the carbon oxidation position specificity of polyunsaturated fatty acids. Here, we have determined the transcript abundance patterns of all the 14 LOX genes in response to four independent abiotic stresses, namely, heat, cold, drought and salt. Our results show that each of these stresses leads to a time-dependent, variable or indifferent response of specific and different set(s) of LOX gene members of both subfamilies, differentiating functional relevance of the 14 LOX genes analyzed. Out of the 14 gene members, three LOX genes were expressed constitutively or were non-responsive to either heat (SlLOX9), cold (SlLOX9) or salt (SlLOX4) stress. An in-silico LOX gene promoter search for stress-responsive elements revealed that only some but not all of the LOX genes indeed are decorated with specific and known stress responsive cis-acting elements. Thus, these data implicate some other, yet to be discovered, cis-acting elements present in the LOX gene family members, which seemingly regulate tomato responses to defined abiotic stresses presented here.
Collapse
Affiliation(s)
- Rakesh K Upadhyay
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705-2350, USA.
- Department of Horticulture and Landscape Architecture, Purdue University, W. Lafayette, IN 47907-2010, USA.
| | - Avtar K Handa
- Department of Horticulture and Landscape Architecture, Purdue University, W. Lafayette, IN 47907-2010, USA.
| | - Autar K Mattoo
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705-2350, USA.
| |
Collapse
|
333
|
Asghari M. Impact of jasmonates on safety, productivity and physiology of food crops. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
334
|
Comparative Transcriptome Analyses Revealed Conserved and Novel Responses to Cold and Freezing Stress in Brassica napus L. G3-GENES GENOMES GENETICS 2019; 9:2723-2737. [PMID: 31167831 PMCID: PMC6686917 DOI: 10.1534/g3.119.400229] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oil rapeseed (Brassica napus L.) is a typical winter biennial plant, with high cold tolerance during vegetative stage. In recent years, more and more early-maturing rapeseed varieties were planted across China. Unfortunately, the early-maturing rapeseed varieties with low cold tolerance have higher risk of freeze injury in cold winter and spring. Little is known about the molecular mechanisms for coping with different low-temperature stress conditions in rapeseed. In this study, we investigated 47,328 differentially expressed genes (DEGs) of two early-maturing rapeseed varieties with different cold tolerance treated with cold shock at chilling (4°) and freezing (−4°) temperatures, as well as chilling and freezing stress following cold acclimation or control conditions. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that two conserved (the primary metabolism and plant hormone signal transduction) and two novel (plant-pathogen interaction pathway and circadian rhythms pathway) signaling pathways were significantly enriched with differentially-expressed transcripts. Our results provided a foundation for understanding the low-temperature stress response mechanisms of rapeseed. We also propose new ideas and candidate genes for genetic improvement of rapeseed tolerance to cold stresses.
Collapse
|
335
|
Oberländer J, Lortzing V, Hilker M, Kunze R. The differential response of cold-experienced Arabidopsis thaliana to larval herbivory benefits an insect generalist, but not a specialist. BMC PLANT BIOLOGY 2019; 19:338. [PMID: 31375063 PMCID: PMC6679549 DOI: 10.1186/s12870-019-1943-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND In native environments plants frequently experience simultaneous or sequential unfavourable abiotic and biotic stresses. The plant's response to combined stresses is usually not the sum of the individual responses. Here we investigated the impact of cold on plant defense against subsequent herbivory by a generalist and specialist insect. RESULTS We determined transcriptional responses of Arabidopsis thaliana to low temperature stress (4 °C) and subsequent larval feeding damage by the lepidopteran herbivores Mamestra brassicae (generalist), Pieris brassicae (specialist) or artificial wounding. Furthermore, we compared the performance of larvae feeding upon cold-experienced or untreated plants. Prior experience of cold strongly affected the plant's transcriptional anti-herbivore and wounding response. Feeding by P. brassicae, M. brassicae and artificial wounding induced transcriptional changes of 1975, 1695, and 2239 genes, respectively. Of these, 125, 360, and 681 genes were differentially regulated when cold preceded the tissue damage. Overall, prior experience of cold mostly reduced the transcriptional response of genes to damage. The percentage of damage-responsive genes, which showed attenuated transcriptional regulation when cold preceded the tissue damage, was highest in M. brassicae damaged plants (98%), intermediate in artificially damaged plants (89%), and lowest in P. brassicae damaged plants (69%). Consistently, the generalist M. brassicae performed better on cold-treated than on untreated plants, whereas the performance of the specialist P. brassicae did not differ. CONCLUSIONS The transcriptional defense response of Arabidopsis leaves to feeding by herbivorous insects and artificial wounding is attenuated by a prior exposure of the plant to cold. This attenuation correlates with improved performance of the generalist herbivore M. brassicae, but not the specialist P. brassicae, a herbivore of the same feeding guild.
Collapse
Affiliation(s)
- Jana Oberländer
- Freie Universität Berlin, Institute of Biology - Applied Genetics, Dahlem Centre of Plant Sciences, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
- Present address: University of Bern, Molecular Plant Physiology, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Vivien Lortzing
- Freie Universität Berlin, Institute of Biology - Applied Zoology / Animal Ecology, Dahlem Centre of Plant Sciences, Haderslebener Str. 9, 12163 Berlin, Germany
| | - Monika Hilker
- Freie Universität Berlin, Institute of Biology - Applied Zoology / Animal Ecology, Dahlem Centre of Plant Sciences, Haderslebener Str. 9, 12163 Berlin, Germany
| | - Reinhard Kunze
- Freie Universität Berlin, Institute of Biology - Applied Genetics, Dahlem Centre of Plant Sciences, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| |
Collapse
|
336
|
Thines B, Parlan EV, Fulton EC. Circadian Network Interactions with Jasmonate Signaling and Defense. PLANTS 2019; 8:plants8080252. [PMID: 31357700 PMCID: PMC6724144 DOI: 10.3390/plants8080252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 01/11/2023]
Abstract
Plants experience specific stresses at particular, but predictable, times of the day. The circadian clock is a molecular oscillator that increases plant survival by timing internal processes to optimally match these environmental challenges. Clock regulation of jasmonic acid (JA) action is important for effective defenses against fungal pathogens and generalist herbivores in multiple plant species. Endogenous JA levels are rhythmic and under clock control with peak JA abundance during the day, a time when plants are more likely to experience certain types of biotic stresses. The expression of many JA biosynthesis, signaling, and response genes is transcriptionally controlled by the clock and timed through direct connections with core clock proteins. For example, the promoter of Arabidopsis transcription factor MYC2, a master regulator for JA signaling, is directly bound by the clock evening complex (EC) to negatively affect JA processes, including leaf senescence, at the end of the day. Also, tobacco ZEITLUPE, a circadian photoreceptor, binds directly to JAZ proteins and stimulates their degradation with resulting effects on JA root-based defenses. Collectively, a model where JA processes are embedded within the circadian network at multiple levels is emerging, and these connections to the circadian network suggest multiple avenues for future research.
Collapse
Affiliation(s)
- Bryan Thines
- Biology Department, University of Puget Sound, 1500 North Warner St., Tacoma, WA 98416, USA.
| | - Emily V Parlan
- Biology Department, University of Puget Sound, 1500 North Warner St., Tacoma, WA 98416, USA
| | - Elena C Fulton
- Biology Department, University of Puget Sound, 1500 North Warner St., Tacoma, WA 98416, USA
| |
Collapse
|
337
|
Jasmonates: Mechanisms and functions in abiotic stress tolerance of plants. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101210] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
338
|
Hu Y, Han X, Yang M, Zhang M, Pan J, Yu D. The Transcription Factor INDUCER OF CBF EXPRESSION1 Interacts with ABSCISIC ACID INSENSITIVE5 and DELLA Proteins to Fine-Tune Abscisic Acid Signaling during Seed Germination in Arabidopsis. THE PLANT CELL 2019; 31:1520-1538. [PMID: 31123050 PMCID: PMC6635857 DOI: 10.1105/tpc.18.00825] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/19/2019] [Accepted: 05/06/2019] [Indexed: 05/04/2023]
Abstract
ABSCISIC ACID INSENSITIVE5 (ABI5) is a crucial regulator of abscisic acid (ABA) signaling pathways involved in repressing seed germination and postgerminative growth in Arabidopsis (Arabidopsis thaliana). ABI5 is precisely modulated at the posttranslational level; however, the transcriptional regulatory mechanisms underlying ABI5 and its interacting transcription factors remain largely unknown. Here, we found that INDUCER OF CBF EXPRESSION1 (ICE1) physically associates with ABI5. ICE1 negatively regulates ABA responses during seed germination and directly suppresses ABA-responsive LATE EMBRYOGENESIS ABUNDANT6 (EM6) and EM1 expression. Genetic analysis demonstrated that the ABA-hypersensitive phenotype of the ice1 mutant requires ABI5. ICE1 interferes with the transcriptional activity of ABI5 to mediate downstream regulons. Importantly, ICE1 also interacts with DELLA proteins, which stimulate ABI5 during ABA signaling. Disruption of ICE1 partially restored the ABA-hyposensitive phenotype of the della mutant, gai-t6 rga-t2 rgl1-1 rgl2-1, indicating that ICE1 functions antagonistically with DELLA in ABA signaling. Consistently, DELLA proteins repress ICE1's transcriptional function and the antagonistic effect of ICE1 on ABI5. Collectively, our study demonstrates that ICE1 antagonizes ABI5 and DELLA activity to maintain the appropriate level of ABA signaling during seed germination, providing a mechanistic understanding of how ABA signaling is fine-tuned by a transcriptional complex involving ABI5 and its interacting partners.
Collapse
Affiliation(s)
- Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Milian Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinjing Pan
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Diqiu Yu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
339
|
Ju L, Jing Y, Shi P, Liu J, Chen J, Yan J, Chu J, Chen KM, Sun J. JAZ proteins modulate seed germination through interaction with ABI5 in bread wheat and Arabidopsis. THE NEW PHYTOLOGIST 2019; 223:246-260. [PMID: 30802963 DOI: 10.1111/nph.15757] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/18/2019] [Indexed: 05/21/2023]
Abstract
Appropriate regulation of crop seed germination is of significance for agriculture production. In this study, we show that TaJAZ1, most closely related to Arabidopsis JAZ3, negatively modulates abscisic acid (ABA)-inhibited seed germination and ABA-responsive gene expression in bread wheat. Biochemical interaction assays demonstrate that the C-terminal part containing the Jas domain of TaJAZ1 physically interacts with TaABI5. Similarly, Arabidopsis jasmonate-ZIM domain (JAZ) proteins also negatively modulate ABA responses. Further we find that a subset of JAZ proteins could interact with ABI5 using the luciferase complementation imaging assays. Choosing JAZ3 as a representative, we demonstrate that JAZ3 interacts with ABI5 in vivo and represses the transcriptional activation activity of ABI5. ABA application could abolish the enrichment of JAZ proteins in the ABA-responsive gene promoter. Furthermore, we find that ABA application could induce the expression of jasmonate (JA) biosynthetic genes and then increase the JA concentrations partially dependent on the function of ABI5, consequently leading to the degradation of JAZ proteins. This study sheds new light on the crosstalk between JA and ABA in modulating seed germination in bread wheat and Arabidopsis.
Collapse
Affiliation(s)
- Lan Ju
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yexing Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Pengtao Shi
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jie Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiansheng Chen
- State Key Laboratory of Crop Biology/Group of Quality Wheat Breeding in Agronomy, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Jijun Yan
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiaqiang Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
340
|
Kong XM, Zhou Q, Luo F, Wei BD, Wang YJ, Sun HJ, Zhao YB, Ji SJ. Transcriptome analysis of harvested bell peppers (Capsicum annuum L.) in response to cold stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:314-324. [PMID: 30927694 DOI: 10.1016/j.plaphy.2019.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/27/2019] [Accepted: 03/23/2019] [Indexed: 05/22/2023]
Abstract
Bell peppers are valued for their plentiful vitamin C and nutritional content. Pepper fruits are susceptible to cold storage, which leads to chilling injury (CI); however, the crucial metabolic product and molecular basis response to cold stress have not been elucidated definitely yet. To comprehensively understand the gene regulation network and CI mechanisms in response to cold stress on a molecular level, we performed high-throughput RNA-Seq analysis to investigate genome-wide expression profiles in bell peppers at different storage temperatures (4 °C and 10 °C). A total of 61.55 Gb of clean data were produced; 3863 differentially expressed genes (DEGs) including 1669 up-regulated and 2194 down-regulated were annotated and classified between the CI group and control. Together, a total of 41 cold-induced transcription factor families comprising 250 transcription factors (TFs) were identified. Notably, numerous DEGs involved in biomembrane stability, dehydration and osmoregulation, and plant hormone signal transduction processes were discovered. The transcriptional level of 20 DEGs was verified by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Our results present transcriptome profiles of bell peppers in response to cold stress; the data obtained may be useful for the identification of key candidate genes and elucidation of the mechanisms underlying membrane damage during chilling injury.
Collapse
Affiliation(s)
- Xi-Man Kong
- Department of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China.
| | - Qian Zhou
- Department of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China.
| | - Feng Luo
- Department of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China.
| | - Bao-Dong Wei
- Department of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China.
| | - Ya-Juan Wang
- Department of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China.
| | - Hua-Jun Sun
- Department of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China.
| | - Ying-Bo Zhao
- Department of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China.
| | - Shu-Juan Ji
- Department of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China.
| |
Collapse
|
341
|
Liu W, Xu J, Fu W, Wang X, Lei C, Chen Y. Evidence of stress imprinting with population-level differences in two moss species. Ecol Evol 2019; 9:6329-6341. [PMID: 31236224 PMCID: PMC6580294 DOI: 10.1002/ece3.5205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/26/2019] [Accepted: 04/05/2019] [Indexed: 11/08/2022] Open
Abstract
Plants are often repeatedly exposed to stresses during their lives and have a mechanism called stress imprinting that provides "memories" of stresses they experience and increases their ability to cope with later stresses. To test hypotheses that primed bryophytes can preserve their stress imprinting after 6 days of recovery and induce higher levels of osmolytes and ROS-scavenging activities upon later stress exposure, and there exist population-level differentiation in their desiccation defenses, we transplanted samples of two populations of each of two moss species, Hypnum plumaeforme and Pogonatum cirratum, in a nature reserve in southern China. After 16 months of acclimation, sets of each population were subjected to control, one-time desiccation stress, duplicated desiccation stress and cross-stress (low temperature stress followed by desiccation stress) treatments. Levels of oxidant enzymes, osmolytes, and phytohormones in the samples were then determined. The desiccation stress generally led to increases in activities or contents of superoxide dismutase, guaiacol peroxidase, catalase, proline, soluble sugars, soluble proteins, and stress hormones including abscisic acid (ABA), jasmonates (JA), and salicylic acid (SA), with differences between both species and populations. After a 6-day recovery period, contents of phytohormones (including ABA, JA, SA, and cytokinins) in stressed H. plumaeforme had substantially fallen toward control levels. The duplicated and cross-stress treatments generally led to further accumulation of proline, soluble sugars, and soluble proteins, with further increases in activities of antioxidant enzymes in some cases. Furthermore, significant differences between allochthonous and native populations were found in contents of malondialdehyde and osmolytes, as well as antioxidant enzyme activities. Our results confirm the hypotheses and highlight the importance of osmolytes in mosses' stress responses.
Collapse
Affiliation(s)
- Weiqiu Liu
- Guangdong Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Jianqu Xu
- Guangdong Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Wei Fu
- Guangdong Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Xiangyuan Wang
- Guangdong Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Chunyi Lei
- Department of Scientific Research and EducationHeishiding Nature ReserveZhaoqingChina
| | - Yunfeng Chen
- Guangdong Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
342
|
Ding Y, Shi Y, Yang S. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. THE NEW PHYTOLOGIST 2019; 222:1690-1704. [PMID: 30664232 DOI: 10.1111/nph.15696] [Citation(s) in RCA: 446] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/15/2019] [Indexed: 05/18/2023]
Abstract
Contents Summary I. Introduction II. Cold stress and physiological responses in plants III. Sensing of cold signals in plants IV. Messenger molecules involved in cold signal transduction V. Cold signal transduction in plants VI. Conclusions and perspectives Acknowledgements References SUMMARY: Cold stress is a major environmental factor that seriously affects plant growth and development, and influences crop productivity. Plants have evolved a series of mechanisms that allow them to adapt to cold stress at both the physiological and molecular levels. Over the past two decades, much progress has been made in identifying crucial components involved in cold-stress tolerance and dissecting their regulatory mechanisms. In this review, we summarize recent major advances in our understanding of cold signalling and put forward open questions in the field of plant cold-stress responses. Answering these questions should help elucidate the molecular mechanisms underlying plant tolerance to cold stress.
Collapse
Affiliation(s)
- Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
343
|
Chen WJ, Wang X, Yan S, Huang X, Yuan HM. The ICE-like transcription factor HbICE2 is involved in jasmonate-regulated cold tolerance in the rubber tree (Hevea brasiliensis). PLANT CELL REPORTS 2019; 38:699-714. [PMID: 30830263 DOI: 10.1007/s00299-019-02398-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/14/2019] [Indexed: 05/25/2023]
Abstract
An ICE-like transcription factor mediates jasmonate-regulated cold tolerance in the rubber tree (Hevea brasiliensis), and confers cold tolerance in transgenic Arabidopsis. The rubber tree (Hevea brasiliensis) is susceptible to low temperatures, and understanding the mechanisms regulating cold stress is of great potential value for enhancing tolerance to this environmental variable. In this study, we find that treatment with exogenous methyl jasmonate (MeJA) could significantly enhance Hevea brasiliensis cold tolerance. In addition, yeast two-hybrid and bimolecular fluorescence complementation (BiFC) experiments show that JASMONATE ZIM-DOMAIN(JAZ) proteins, HbJAZ1 and HbJAZ12, key repressors of JA signaling pathway, interact with HbICE2, a novel ICE (Inducer of CBF Expression)-like protein. HbICE2 was nuclear-localised and bound to the MYC recognition (MYCR) sequence. The transcriptional activation activity of HbICE2 in yeast cells was dependent on the N-terminus, and overexpression of HbICE2 in Arabidopsis resulted in elevated tolerance to chilling stress. Furthermore, dual-luciferase transient assay reveals that HbJAZ1 and HbJAZ12 proteins inhibit the transcriptional function of HbICE2. The expression of C-repeat-binding factor (CBF) signalling pathway genes including HbCBF1, HbCBF2 and HbCOR47 were up-regulated by MeJA. Taken together, our data suggest that the new ICE-like transcription factor HbICE2 is involved in jasmonate-regulated cold tolerance in Hevea brasiliensis.
Collapse
Affiliation(s)
- Wei-Jie Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Xue Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Sa Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Xi Huang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Hong-Mei Yuan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China.
| |
Collapse
|
344
|
Badawi MA, Agharbaoui Z, Zayed M, Li Q, Byrns B, Zou J, Fowler DB, Danyluk J, Sarhan F. Genome-Wide Identification and Characterization of the Wheat Remorin ( TaREM) Family during Cold Acclimation. THE PLANT GENOME 2019; 12:180040. [PMID: 31290927 DOI: 10.3835/plantgenome2018.06.0040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Remorins (REMs) are plant-specific proteins that play an essential role in plant-microbe interactions. However, their roles in vernalization and abiotic stress responses remain speculative. Most remorins have a variable proline-rich -half and a more conserved -half that is predicted to form coils. A search of the wheat ( L.) database revealed the existence of 20 different genes, which we classified into six groups on the basis of whether they shared a common phylogenetic and structural origin. Analysis of the physical genomic distributions demonstrated that genes are dispersed in the wheat genome and have one to seven introns. Promoter analysis of genes revealed the presence of putative -elements related to diverse functions like development, hormonal regulation, and biotic and abiotic stress responsiveness. Expression levels of genes were measured in plants grown under field and controlled conditions and in response to hormone treatment. Our analyses revealed that 12 members of the REM family are regulated during cold acclimation in wheat in four different tissues (roots, crowns, stems, and leaves), with the highest expression in roots. Differential gene expression was found between wheat cultivars with contrasting degrees of cold tolerance, suggesting the implication of genes in cold response and tolerance. Additionally, eight genes were induced in response to abscisic acid and methyl jasmonate treatment. This genome-wide analysis of genes provides valuable resources for functional analysis aimed at understanding their role in stress adaptation.
Collapse
|
345
|
JASSY, a chloroplast outer membrane protein required for jasmonate biosynthesis. Proc Natl Acad Sci U S A 2019; 116:10568-10575. [PMID: 31068459 DOI: 10.1073/pnas.1900482116] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Jasmonates are vital plant hormones that not only act in the stress response to biotic and abiotic influences, such as wounding, pathogen attack, and cold acclimation, but also drive developmental processes in cooperation with other plant hormones. The biogenesis of jasmonates starts in the chloroplast, where several enzymatic steps produce the jasmonate precursor 12-oxophytodienoic acid (OPDA) from α-linolenic acid. OPDA in turn is exported into the cytosol for further conversion into active jasmonates, which subsequently induces the expression of multiple genes in the nucleus. Despite its obvious importance, the export of OPDA across the chloroplast membranes has remained elusive. In this study, we characterized a protein residing in the chloroplast outer membrane, JASSY, which has proven indispensable for the export of OPDA from the chloroplast. We provide evidence that JASSY has channel-like properties and propose that it thereby facilitates OPDA transport. Consequently, a lack of JASSY in Arabidopsis leads to a deficiency in accumulation of jasmonic acids, which results in impaired expression of jasmonate target genes on exposure to various stresses. This results in plants that are more susceptible to pathogen attack and also exhibit defects in cold acclimation.
Collapse
|
346
|
Kashyap P, Deswal R. Two ICE isoforms showing differential transcriptional regulation by cold and hormones participate in Brassica juncea cold stress signaling. Gene 2019; 695:32-41. [PMID: 30738965 DOI: 10.1016/j.gene.2019.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/25/2018] [Accepted: 02/01/2019] [Indexed: 10/27/2022]
Abstract
C-repeat binding factor (CBF) dependent cold stress signaling cascade is well studied in the model plant arabidopsis but is relatively lesser studied in the crop plants. In the present study, two novel isoforms of an upstream regulator of CBF, Inducer of CBF expression (ICE), BjICE46 (1314 bp, accession number HQ446510) and BjICE53 (1494 bp, accession number HQ857208) were isolated from Brassica juncea seedlings. Genomic clones of both the isoforms (accession numbers HQ433510 and JX571043) showed three introns, out of which one intron was spanning the bHLH (basic helix-loop-helix) domain. Interestingly, the constitutive expression of BjICE53 was 21 fold higher than BjICE46. Real time quantitative expression (RT-qPCR) showed BjICE53 to be cold induced but non-responsive to phytohormones. Interestingly, BjICE46 was salinity stress induced and showed upregulation with methyl jasmonate (MeJa) and abscisic acid (ABA). This was supported by the presence of ABA, MeJa and defense related cis- acting regulatory elements in the promoter region of BjICE46. The downstream transcription factor BjCBF (645 bp) was also isolated. The promoter region of BjCBF showed three E-boxes, the binding site for ICE. BjCBF was expressed and purified from E. coli and binding of purified BjCBF with the DRE/CRT elements (present in the promoter of cold responsive genes) was EMSA confirmed. Overall, this study shows that ICE-CBF pathway is conserved in Brassica juncea along with the differential regulation of the ICE isoforms indicating cross-talk between cold and defense signaling.
Collapse
Affiliation(s)
- Prakriti Kashyap
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, India
| | - Renu Deswal
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, India.
| |
Collapse
|
347
|
Abstract
Abnormal environmental temperature affects plant growth and threatens crop production. Understanding temperature signal sensing and the balance between defense and development in plants lays the foundation for improvement of temperature resilience. Here, we summarize the current understanding of cold signal perception/transduction as well as heat stress response. Dissection of plant responses to different levels of cold stresses (chilling and freezing) illustrates their common and distinct signaling pathways. Axillary bud differentiation in response to chilling is presented as an example of the trade-off between defense and development. Vernalization is a cold-dependent development adjustment mediated by O-GlcNAcylation and phosphorylation to sense long-term cold. Recent progress on major quantitative trait loci genes for heat tolerance has been summarized. Molecular mechanisms in utilizing temperature-sensitive sterility in super hybrid breeding in China are revealed. The way to improve crop temperature resilience using integrative knowledge of omics as well as systemic and synthetic biology, especially the molecular module program, is summarized.
Collapse
Affiliation(s)
- Jingyu Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
| | - Xin-Min Li
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
- University of Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
348
|
Debbarma J, Sarki YN, Saikia B, Boruah HPD, Singha DL, Chikkaputtaiah C. Ethylene Response Factor (ERF) Family Proteins in Abiotic Stresses and CRISPR-Cas9 Genome Editing of ERFs for Multiple Abiotic Stress Tolerance in Crop Plants: A Review. Mol Biotechnol 2019; 61:153-172. [PMID: 30600447 DOI: 10.1007/s12033-018-0144-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abiotic stresses such as extreme heat, cold, drought, and salt have brought alteration in plant growth and development, threatening crop yield and quality leading to global food insecurity. Many factors plays crucial role in regulating various plant growth and developmental processes during abiotic stresses. Ethylene response factors (ERFs) are AP2/ERF superfamily proteins belonging to the largest family of transcription factors known to participate during multiple abiotic stress tolerance such as salt, drought, heat, and cold with well-conserved DNA-binding domain. Several extensive studies were conducted on many ERF family proteins in plant species through over-expression and transgenics. However, studies on ERF family proteins with negative regulatory functions are very few. In this review article, we have summarized the mechanism and role of recently studied AP2/ERF-type transcription factors in different abiotic stress responses. We have comprehensively discussed the application of advanced ground-breaking genome engineering tool, CRISPR/Cas9, to edit specific ERFs. We have also highlighted our on-going and published R&D efforts on multiplex CRISPR/Cas9 genome editing of negative regulatory genes for multiple abiotic stress responses in plant and crop models. The overall aim of this review is to highlight the importance of CRISPR/Cas9 and ERFs in developing sustainable multiple abiotic stress tolerance in crop plants.
Collapse
Affiliation(s)
- Johni Debbarma
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-NEIST, Jorhat, Assam, 785006, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST, Jorhat, Assam, India
| | - Yogita N Sarki
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-NEIST, Jorhat, Assam, 785006, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST, Jorhat, Assam, India
| | - Banashree Saikia
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-NEIST, Jorhat, Assam, 785006, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST, Jorhat, Assam, India
| | - Hari Prasanna Deka Boruah
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-NEIST, Jorhat, Assam, 785006, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST, Jorhat, Assam, India
| | - Dhanawantari L Singha
- Department of Agricultural Biotechnology, Assam Agriculture University, Jorhat, 785013, Assam, India.
| | - Channakeshavaiah Chikkaputtaiah
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-NEIST, Jorhat, Assam, 785006, India. .,Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST, Jorhat, Assam, India.
| |
Collapse
|
349
|
Wang X, Du Y, Yu D. Trehalose phosphate synthase 5-dependent trehalose metabolism modulates basal defense responses in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:509-527. [PMID: 30058771 DOI: 10.1111/jipb.12704] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/21/2018] [Indexed: 06/08/2023]
Abstract
Despite the recent discovery that trehalose synthesis is important for plant development and abiotic stress tolerance, the effects of trehalose on biotic stress responses remain relatively unknown. In this study, we demonstrate that TREHALOSE PHOSPHATE SYNTHASE 5 (TPS5)-dependent trehalose metabolism regulates Arabidopsis thaliana defenses against pathogens (necrotrophic Botrytis cinerea and biotrophic Pseudomonas syringae). Pathogen infection increased trehalose levels and upregulated TPS5 expression. Application of exogenous trehalose significantly improved plant defenses against B. cinerea, but increased the susceptibility of plants to P. syringae. We demonstrate that elevated trehalose biosynthesis, in transgenic plants over-expressing TPS5, also increased the susceptibility to P. syringae, but decreased the disease symptoms caused by B. cinerea. The knockout of TPS5 prevented the accumulation of trehalose and enhanced defense responses against P. syringae. Additionally, we observed that a TPS5-interacting protein (multiprotein bridging factor 1c) was required for induced expression of TPS5 during pathogen infections. Furthermore, we show that trehalose promotes P. syringae growth and disease development, via a mechanism involving suppression of the plant defense gene, Pathogenesis-Related Protein 1. These findings provide insight into the function of TPS5-dependent trehalose metabolism in plant basal defense responses.
Collapse
Affiliation(s)
- Xuelan Wang
- Key Laboratory of Tropical Plant Resources and Sustainable Use,, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Du
- Key Laboratory of Tropical Plant Resources and Sustainable Use,, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use,, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
350
|
Pan C, Yang D, Zhao X, Jiao C, Yan Y, Lamin-Samu AT, Wang Q, Xu X, Fei Z, Lu G. Tomato stigma exsertion induced by high temperature is associated with the jasmonate signalling pathway. PLANT, CELL & ENVIRONMENT 2019; 42:1205-1221. [PMID: 30203844 DOI: 10.1111/pce.13444] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 05/24/2023]
Abstract
High temperature (HT) is becoming an increasingly serious factor in limiting crop production with global climate change. During hot seasons, owing to prevailing HT, cultivated tomatoes are prone to exhibiting stigma exsertion, which hampers pollination and causes fruit set failure. However, the underlying regulatory mechanisms of the HT-induced stigma exsertion remain largely unknown. Here, we demonstrate that stigma exsertion induced by HT in cultivated tomato is caused by more seriously shortened stamens than pistils, which is different from the stigma exsertion observed in wild tomato species. Under the HT condition, the different responses of pectin, sugar, expansin, and cyclin cause cell wall remodelling and differentially localized cell division and selective cell enlargement, which further determine the lengths of stamens and pistils. In addition, auxin and jasmonate (JA) are implicated in regulating cell division and cell expansion in stamens and pistils, and exogenous JA instead of auxin treatment can effectively rescue tomato stigma exsertion through regulating the JA/COI1 signalling pathway. Our findings provide a better understanding of stigma exsertions under the HT condition in tomato and uncover a new function of JA in improving plant abiotic stress tolerance.
Collapse
Affiliation(s)
- Changtian Pan
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Dandan Yang
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Xiaolin Zhao
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Chen Jiao
- Boyce Thompson Institute, Cornell University, Ithaca, New York, USA
| | - Yanqiu Yan
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | | | - Qiaomei Wang
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Xiangyang Xu
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, New York, USA
- USDA Robert W. Holley Center for Agriculture and Health, Ithaca, New York, USA
| | - Gang Lu
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agricultural, Zhejiang University, Hangzhou, China
| |
Collapse
|