301
|
Binati RL, Innocente G, Gatto V, Celebrin A, Polo M, Felis GE, Torriani S. Exploring the diversity of a collection of native non-Saccharomyces yeasts to develop co-starter cultures for winemaking. Food Res Int 2019; 122:432-442. [DOI: 10.1016/j.foodres.2019.04.043] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022]
|
302
|
Morgan SC, McCarthy GC, Watters BS, Tantikachornkiat M, Zigg I, Cliff MA, Durall DM. Effect of sulfite addition and pied de cuve inoculation on the microbial communities and sensory profiles of Chardonnay wines: dominance of indigenous Saccharomyces uvarum at a commercial winery. FEMS Yeast Res 2019; 19:foz049. [PMID: 31344230 PMCID: PMC6666381 DOI: 10.1093/femsyr/foz049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/19/2019] [Indexed: 02/01/2023] Open
Abstract
The microbial consortium of wine fermentations is highly dependent upon winemaking decisions made at crush, including the decision to inoculate and the decision to add sulfur dioxide (SO2) to the must. To investigate this, Chardonnay grape juice was subjected to two inoculation treatments (uninoculated and pied de cuve inoculation) as well as two SO2 addition concentrations (0 and 40 mg/L). The bacterial communities, fungal communities and Saccharomyces populations were monitored throughout fermentation using culture-dependent and culture-independent techniques. After fermentation, the wines were evaluated by a panel of experts. When no SO2 was added, the wines underwent alcoholic fermentation and malolactic fermentation simultaneously. Tatumella bacteria were present in significant numbers, but only in the fermentations to which no SO2 was added, and were likely responsible for the malolactic fermentation observed in these treatments. All fermentations were dominated by a genetically diverse indigenous population of Saccharomyces uvarum, the highest diversity of S. uvarum strains to be identified to date; 150 unique strains were identified, with differences in strain composition as a result of SO2 addition. This is the first report of indigenous S. uvarum strains dominating and completing fermentations at a commercial winery in North America.
Collapse
Affiliation(s)
- Sydney C Morgan
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| | - Garrett C McCarthy
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| | - Brittany S Watters
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| | - Mansak Tantikachornkiat
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| | - Ieva Zigg
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| | - Margaret A Cliff
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada, V0H 1Z0
| | - Daniel M Durall
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| |
Collapse
|
303
|
Englezos V, Pollon M, Rantsiou K, Ortiz-Julien A, Botto R, Río Segade S, Giacosa S, Rolle L, Cocolin L. Saccharomyces cerevisiae-Starmerella bacillaris strains interaction modulates chemical and volatile profile in red wine mixed fermentations. Food Res Int 2019; 122:392-401. [DOI: 10.1016/j.foodres.2019.03.072] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/27/2019] [Accepted: 03/30/2019] [Indexed: 12/01/2022]
|
304
|
Nisiotou A, Mallouchos A, Tassou C, Banilas G. Indigenous Yeast Interactions in Dual-Starter Fermentations May Improve the Varietal Expression of Moschofilero Wine. Front Microbiol 2019; 10:1712. [PMID: 31402907 PMCID: PMC6677089 DOI: 10.3389/fmicb.2019.01712] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/11/2019] [Indexed: 11/16/2022] Open
Abstract
Multi-starter wine fermentations employing non-Saccharomyces (NS) yeasts are becoming an emerging trend in winemaking. It is therefore important to determine the impacts of different NS strains in the wine phenotype and in particular the aroma outputs in different inoculation schemes and fermentation conditions. Here, two native NS yeasts, Lachancea thermotolerans LtMM7 and Hanseniaspora uvarum HuMM19, were assessed for their ability to improve the quality of Moschofilero, a Greek aromatic white wine. The NS strains were initially examined in laboratory scale fermentations in mixed inoculations with ScMM23, a native Saccharomyces cerevisiae strain. LtMM7 was selected to be further evaluated in pilot scale fermentations. Five different inoculation schemes were considered: single inoculation of ScMM23 (IS), simultaneous inoculation of ScMM23 with HuMM19 (SMH) or LtMM7 (SML), and sequential inoculation of HuMM19 (SQH) or LtMM7 (SQL) followed by ScMM23. At laboratory scale fermentations, the chemical profiles were largely affected by both the NS species and the inoculation scheme applied. The sequential inoculation using HuMM19 produced the most divergent wine phenotype. However, HuMM19 caused significant increases in acetic acid and ethyl acetate levels that impeded its use in pilot scale trials. LtMM7 significantly affected the chemical profiles of wines produced at the winery, especially in the sequential inoculation scheme. Importantly, LtMM7 significantly increased the levels of acetate esters or ethyl esters, depending on the inoculation method applied. In particular, acetate esters like isobutyl acetate, hexyl acetate, and 2-phenylethyl acetate, which all impart fruity or floral aromas, were significantly increased in SQL. On the other hand, higher levels of total ethyl esters were associated with SML. The most striking differences were observed in the levels of fruit-impair esters like ethyl decanoate, 3-methylbutyl octanoate, and isoamyl hexanoate. This is the first study to report a significant increase in the ethyl ester fraction by L. thermotolerans. Interestingly, L. thermotolerans in SQL also increased the concentrations of damascenone and geraniol, the major teprenic compound of Moschofilero, which are associated with several typical floral and fruity aromas of the variety. Present results show that L. thermotolerans may enhance the varietal character and increase the chemical complexity of Moschofilero wines.
Collapse
Affiliation(s)
- Aspasia Nisiotou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization "Demeter", Lykovryssi, Greece
| | - Athanasios Mallouchos
- Laboratory of Food Chemistry and Analysis, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Chrysoula Tassou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization "Demeter", Lykovryssi, Greece
| | - Georgios Banilas
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Athens, Greece
| |
Collapse
|
305
|
Abstract
The bulk of the sugar fermentation in grape juice, in order to produce wine is carried out by yeasts of the genus Saccharomyces, mainly S [...]
Collapse
|
306
|
Bellut K, Michel M, Hutzler M, Zarnkow M, Jacob F, De Schutter DP, Daenen L, Lynch KM, Zannini E, Arendt EK. Investigation into the Potential ofLachancea fermentatiStrain KBI 12.1 for Low Alcohol Beer Brewing. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2019. [DOI: 10.1080/03610470.2019.1629227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Konstantin Bellut
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Maximilian Michel
- Research Center Weihenstephan for Brewing and Food Quality, Technische Universität München, Freising-Weihenstephan, Germany
| | - Mathias Hutzler
- Research Center Weihenstephan for Brewing and Food Quality, Technische Universität München, Freising-Weihenstephan, Germany
| | - Martin Zarnkow
- Research Center Weihenstephan for Brewing and Food Quality, Technische Universität München, Freising-Weihenstephan, Germany
| | - Fritz Jacob
- Research Center Weihenstephan for Brewing and Food Quality, Technische Universität München, Freising-Weihenstephan, Germany
| | | | | | - Kieran M. Lynch
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Elke K. Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
307
|
Álvarez-Fernández MA, Fernández-Cruz E, Garcia-Parrilla MC, Troncoso AM, Mattivi F, Vrhovsek U, Arapitsas P. Saccharomyces cerevisiae and Torulaspora delbrueckii Intra- and Extra-Cellular Aromatic Amino Acids Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7942-7953. [PMID: 31264861 DOI: 10.1021/acs.jafc.9b01844] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Tryptophan, phenylalanine, and tyrosine play an important role as nitrogen sources in yeast metabolism. They regulate biomass production and fermentation rate, and their catabolites contribute to wine health benefits and sensorial character through the yeast biotransformation of grape juice constitutes into biologically active and flavor-impacting components. A UHPLC-MS/MS method was applied to monitor 37 tryptophan/phenylalanine/tyrosine yeast metabolites both in extra- and intracellular extracts produced by the fermentation of two Saccharomyces cerevisiae strains and one Torulaspora delbrueckii. The results shed light on the intra- and extra-cellular metabolomic dynamics, by combining metabolic needs, stimuli, and signals. Among others, the results indicated (a) the production of 2-aminoacetophenone by yeasts, mainly by the two Saccharomyces cerevisiae; (b) the deactivation and/or detoxification of tryptophol via sulfonation reaction; and (c) the deacetylation of N-acetyl tryptophan ethyl ester and N-acetyl tyrosine ethyl ester by producing the corresponding ethyl esters.
Collapse
Affiliation(s)
- M Antonia Álvarez-Fernández
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia , Universidad de Sevilla , C/P. García González no. 2 , Sevilla 41012 , Spain
| | - Edwin Fernández-Cruz
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia , Universidad de Sevilla , C/P. García González no. 2 , Sevilla 41012 , Spain
| | - M Carmen Garcia-Parrilla
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia , Universidad de Sevilla , C/P. García González no. 2 , Sevilla 41012 , Spain
| | - Ana M Troncoso
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia , Universidad de Sevilla , C/P. García González no. 2 , Sevilla 41012 , Spain
| | - Fulvio Mattivi
- Department of Food Quality and Nutrition, Research and Innovation Centre , Fondazione Edmund Mach-Istituto Agrario San Michele all'Adige , Trento , Italy
- Center Agriculture Food Environment , University of Trento , Trento , Italy
| | - Urska Vrhovsek
- Department of Food Quality and Nutrition, Research and Innovation Centre , Fondazione Edmund Mach-Istituto Agrario San Michele all'Adige , Trento , Italy
| | - Panagiotis Arapitsas
- Department of Food Quality and Nutrition, Research and Innovation Centre , Fondazione Edmund Mach-Istituto Agrario San Michele all'Adige , Trento , Italy
| |
Collapse
|
308
|
Impact on Sensory and Aromatic Profile of Low Ethanol Malbec Wines Fermented by Sequential Culture of Hanseniaspora uvarum and Saccharomyces cerevisiae Native Yeasts. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5030065] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
It is well known that high ethanol levels in wines adversely affect the perception of new wine consumers. Moreover, numerous issues, such as civil restrictions, health risk and trade barriers, are associated with high ethanol concentrations. Several strategies have been proposed to produce wines with lower alcoholic content, one simple and inexpensive approach being the use of new wine native yeasts with less efficiency in sugar to ethanol conversion. Nevertheless, it is also necessary that these yeasts do not impair the quality of wine. In this work, we tested the effect of sequential culture between Hanseniaspora uvarum BHu9 and Saccharomyces cerevisiae BSc114 on ethanol production. Then, the wines produced were analyzed by GC-MS and tested by a sensorial panel. Co-culture had a positive impact on ethanol reduction and sensory profile when compared to the S. cerevisiae monoculture. Wines with lower alcohol content were related to fruity aroma; moreover, color intensity was associated. The wines obtained with S. cerevisiae BSc114 in pure conditions were described by parameters linked with high ethanol levels, such as hotness and astringency. Moreover, floral profile was related to this treatment. Based on these findings, this work provides a contribution to answer the current consumers’ preferences and addresses the main challenges faced by the enological industry.
Collapse
|
309
|
Winters M, Panayotides D, Bayrak M, Rémont G, Viejo CG, Liu D, Le B, Liu Y, Luo J, Zhang P, Howell K. Defined co-cultures of yeast and bacteria modify the aroma, crumb and sensory properties of bread. J Appl Microbiol 2019; 127:778-793. [PMID: 31211891 DOI: 10.1111/jam.14349] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/27/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022]
Abstract
AIMS Yeast and bacterial communities inhabit a sourdough starter to make artisanal bread. This study shows whether the interactions of micro-organisms derived from Australian sourdough starters provide some of the positive flavour, and aroma properties to bread by using defined sourdough cultures as the sole leaven in bread production. METHODS AND RESULTS An investigation of Australian sourdough starters found that they contained Saccharomyces cerevisiae and Kazachstania exigua yeasts. When these yeasts were inoculated alone to ferment wheat flour in an extended fermentation, the bread had a heterogeneous crumb structure, a deeper colour and a distinctive chemical aroma profile than those made with commercial baker's yeast. When bread was made combining these yeasts individually and in combinations with lactic acid bacteria also isolated from these sourdough starters, including Lactobacillus plantarum, L. brevis, L. rossiae, L. casei, the bread aroma profiles and crumb structure were more distinctive, with compounds associated with sour aromas produced, and preferred by sensory panels. CONCLUSIONS The use of defined mixed cultures as the leaven in bread making, by exploiting the microbial diversity of artisanal Australian starters, can produce bread with distinctive and attractive aromas. SIGNIFICANCE AND IMPACT OF THE STUDY Understanding and identifying the community ecosystems found in sourdough cultures and using them as the sole leaven in bread production provide novel insights into microbial interactions and how they affect food quality by removing the effects of commercial yeast strains.
Collapse
Affiliation(s)
- M Winters
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Vic, Australia
| | - D Panayotides
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Vic, Australia
| | - M Bayrak
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Vic, Australia
| | - G Rémont
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Vic, Australia.,AgroParisTech, Paris, France
| | - C G Viejo
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Vic, Australia
| | - D Liu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Vic, Australia
| | - B Le
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Vic, Australia
| | - Y Liu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Vic, Australia
| | - J Luo
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Vic, Australia
| | - P Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Vic, Australia
| | - K Howell
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Vic, Australia
| |
Collapse
|
310
|
Modulation of Wine Flavor using Hanseniaspora uvarum in Combination with Different Saccharomyces cerevisiae, Lactic Acid Bacteria Strains and Malolactic Fermentation Strategies. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5030064] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hanseniaspora uvarum is one of the predominant non-Saccharomyces yeast species found on grapes and in juice, but its effect on lactic acid bacteria (LAB) growth and wine flavor has not been extensively studied. Therefore, the interaction between H. uvarum, two Saccharomyces cerevisiae yeast strains, two LAB species (Lactobacillus plantarum and Oenococcus oeni) in combination with two malolactic fermentation (MLF) strategies was investigated in Shiraz wine production trials. The evolution of the different microorganisms was monitored, non-volatile and volatile compounds were measured, and the wines were subjected to sensory evaluation. Wines produced with H. uvarum in combination with S. cerevisiae completed MLF in a shorter period than wines produced with only S. cerevisiae. Sequential MLF wines scored higher for fresh vegetative and spicy aroma than wines where MLF was induced as a simultaneous inoculation. Wines produced with H. uvarum had more body than wines produced with only S. cerevisiae. The induction of MLF using L. plantarum also resulted in wines with higher scores for body. H. uvarum can be used to reduce the duration of MLF, enhance fresh vegetative aroma and improve the body of a wine.
Collapse
|
311
|
|
312
|
Abstract
In the past, some microbiological studies have considered most non-Saccharomyces species to be undesirable spoilage microorganisms. For several decades, that belief made the Saccharomyces genus the only option considered by winemakers for achieving the best possible wine quality. Nevertheless, in recent decades, some strains of non-Saccharomyces species have been proven to improve the quality of wine. Non-Saccharomyces species can positively influence quality parameters such as aroma, acidity, color, and food safety. These quality improvements allow winemakers to produce innovative and differentiated wines. For that reason, the yeast strains Torulaspora delbrueckii, Lachancea thermotolerans, Metschnikowia pulcherrima, Schizosaccharomyces pombe, and Pichia kluyveri are now available on the market. Other interesting species, such as Starmerella bacillaris, Meyerozyma guilliermondii, Hanseniospora spp., and others, will probably be available in the near future.
Collapse
|
313
|
Canonico L, Solomon M, Comitini F, Ciani M, Varela C. Volatile profile of reduced alcohol wines fermented with selected non-Saccharomyces yeasts under different aeration conditions. Food Microbiol 2019; 84:103247. [PMID: 31421773 DOI: 10.1016/j.fm.2019.103247] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/28/2022]
Abstract
Over the last decades there has been an increase in ethanol concentration in wine. High ethanol concentration may impact negatively wine flavor and can be associated with harmful effects on human health. In this study, we investigated a microbiological approach to reduce wine ethanol concentration, using three non-Saccharomyces yeast strains (Metschnikowia pulcherrima, Torulaspora delbrueckii and Zygosaccharomyces bailii) in sequential fermentations with S. cerevisiae under different aeration conditions. At the same time, we evaluated the volatile profile of the resulting reduced alcohol Chardonnay wines. Results showed that the non-Saccharomyces yeasts tested were able to reduce wine ethanol concentration when oxygen was provided. Compared to S. cerevisiae wines, ethanol reduction was 1.6% v/v, 0.9% v/v and 1.0% v/v for M. pulcherrima, T. delbrueckii and Z. bailii sequential fermentations, respectively. Under the conditions evaluated here, aeration did not affect acetic acid production for any of the non-Saccharomyces strains tested. Although aeration affected wine volatile profiles, this was depended on yeast strain. Thus, wines produced with M. pulcherrima under aeration of 0.05 volume of air per volume of culture per minute (VVM) showed excessive ethyl acetate content, while Z. bailli wines produced with 0.05 VVM aeration had increased concentrations of higher alcohols and volatile acids. Increased concentrations of these compounds over their sensory thresholds, are likely to impact negatively on wine sensory profile. Contrarily, all three non-Saccharomyces strains under 0.025 VVM aeration conditions produced wines with reduced ethanol concentration and acceptable chemical volatile profiles.
Collapse
Affiliation(s)
- Laura Canonico
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Mark Solomon
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, South Australia, 5064, Australia
| | - Francesca Comitini
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Maurizio Ciani
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Cristian Varela
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, South Australia, 5064, Australia; School of Agriculture, Food and Wine, Faculty of Sciences, University of Adelaide, Australia.
| |
Collapse
|
314
|
Potential production of 2-phenylethanol and 2-phenylethylacetate by non-Saccharomyces yeasts from Agave durangensis. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01489-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
315
|
Wei J, Zhang Y, Yuan Y, Dai L, Yue T. Characteristic fruit wine production via reciprocal selection of juice and non-Saccharomyces species. Food Microbiol 2019; 79:66-74. [DOI: 10.1016/j.fm.2018.11.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 11/16/2018] [Accepted: 11/23/2018] [Indexed: 01/19/2023]
|
316
|
Petitgonnet C, Klein GL, Roullier-Gall C, Schmitt-Kopplin P, Quintanilla-Casas B, Vichi S, Julien-David D, Alexandre H. Influence of cell-cell contact between L. thermotolerans and S. cerevisiae on yeast interactions and the exo-metabolome. Food Microbiol 2019; 83:122-133. [PMID: 31202403 DOI: 10.1016/j.fm.2019.05.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/11/2019] [Accepted: 05/10/2019] [Indexed: 01/28/2023]
Abstract
Sequential fermentation of grape must inoculated with L. thermotolerans and then S. cerevisiae 24 h later (typical wine-making practice) was conducted with or without cell-cell contact between the two yeast species. We monitored cell viability of the two species throughout fermentation by flow cytometry. The cell viability of S. cerevisiae decreased under both conditions, but the decrease was greater if there was cell-cell contact. An investigation of the nature of the interactions showed competition between the two species for nitrogen compounds, oxygen, and must sterols. Volatile-compound analysis showed differences between sequential and pure fermentation and that cell-cell contact modifies yeast metabolism, as the volatile-compound profile was significantly different from that of sequential fermentation without cell-cell contact. We further confirmed that cell-cell contact modifies yeast metabolism by analyzing the exo-metabolome of all fermentations by FT-ICR-MS analysis. These analyses show specific metabolite production and quantitative metabolite changes associated with each fermentation condition. This study shows that cell-cell contact not only affects cell viability, as already reported, but markedly affects yeast metabolism.
Collapse
Affiliation(s)
- Clément Petitgonnet
- UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), AgroSup Dijon - Université de Bourgogne Franche-Comté, Institut Universitaire de la Vigne et du Vin, rue Claude LADREY, BP 27877, 21000, DIJON, France
| | - Géraldine L Klein
- UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), AgroSup Dijon - Université de Bourgogne Franche-Comté, Institut Universitaire de la Vigne et du Vin, rue Claude LADREY, BP 27877, 21000, DIJON, France
| | - Chloé Roullier-Gall
- UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), AgroSup Dijon - Université de Bourgogne Franche-Comté, Institut Universitaire de la Vigne et du Vin, rue Claude LADREY, BP 27877, 21000, DIJON, France
| | - Philippe Schmitt-Kopplin
- Helmholtz Zentrum Muenchen, Research Unit Analytical BioGeoChemistry, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany; Technische Universität Muenchen, Analytical Food Chemistry, Alte Akademie 10, 85354, Freising, Germany
| | - Beatriz Quintanilla-Casas
- Nutrition, Food Science and Gastronomy Department, INSA - XaRTA (Catalonian Reference Network on Food Technology), University of Barcelona, Santa Coloma de Gramenet, Spain
| | - Stefania Vichi
- Nutrition, Food Science and Gastronomy Department, INSA - XaRTA (Catalonian Reference Network on Food Technology), University of Barcelona, Santa Coloma de Gramenet, Spain
| | - Diane Julien-David
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| | - Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), AgroSup Dijon - Université de Bourgogne Franche-Comté, Institut Universitaire de la Vigne et du Vin, rue Claude LADREY, BP 27877, 21000, DIJON, France.
| |
Collapse
|
317
|
Mbuyane LL, de Kock M, Bauer FF, Divol B. Torulaspora delbrueckii produces high levels of C5 and C6 polyols during wine fermentations. FEMS Yeast Res 2019; 18:5061120. [PMID: 30060050 DOI: 10.1093/femsyr/foy084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/26/2018] [Indexed: 01/13/2023] Open
Abstract
Non-Saccharomyces yeasts impact wine fermentations and can diversify the flavor profiles of wines. However, little information is available on the metabolic networks of most of these species. Here we show that unlike the main wine yeast Saccharomyces cerevisiae, Torulaspora delbrueckii and to a lesser extent Lachancea thermotolerans produce significant concentrations of C5 and C6 polyols under wine fermentation conditions. In particular, D-arabitol, D-sorbitol and D-mannitol were produced at significant levels. Their release into the extracellular matrix started when that of glycerol ceased. The data also show that polyol production is influenced by initial sugar concentration, repressed by acetic acid and induced in ethanol supplemented media. Moreover, unlike glycerol and sorbitol, mannitol was partially re-assimilated when populations started to decline. The findings suggest that polyol synthesis is a physiological adaptation to stressful conditions characteristic of alcoholic fermentation and that these polyols may serve a similar purpose as glycerol production in S. cerevisiae, including osmoadaptation and redox balancing.
Collapse
Affiliation(s)
- Lethiwe L Mbuyane
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Marli de Kock
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Florian F Bauer
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Benoit Divol
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
318
|
Lemos Junior WJF, Nadai C, Crepalde LT, de Oliveira VS, de Matos AD, Giacomini A, Corich V. Potential use of Starmerella bacillaris as fermentation starter for the production of low-alcohol beverages obtained from unripe grapes. Int J Food Microbiol 2019; 303:1-8. [PMID: 31102962 DOI: 10.1016/j.ijfoodmicro.2019.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 01/19/2023]
Abstract
To obtain beverages with reduced alcohol content, the use of unripe grapes, with low sugar and high malic acid concentration, was recently explored. Due to the low sugar, ethanol and glycerol production is limited during fermentation affecting important sensory aspects such as the palate fullness of these beverages. The high acidity influences their organoleptic quality, as well. So far, only S. cerevisiae starter, used in conventional fermentations, have been tested in this condition, and no selection has been performed to identify alternative yeasts suitable for unripe grape fermentation. S. bacillaris is known for the low ethanol tolerance, high glycerol and moderate volatile acidity production. Therefore, this non- Saccharomyces yeast have been investigated to improve the quality of low-alcohol beverages. Seven S. bacillaris strains were tested in synthetic musts with different sugar and malic acid levels, mimicking natural ripe and unripe grape musts. In all the tested conditions, S. bacillaris produced higher glycerol than S. cerevisiae. In single-strain fermentation at low sugar and high malic acid no S. bacillaris strains was able to transform all the sugars, although the produced ethanol was lower than that at high sugar condition. Therefore, sequential fermentations with S. cerevisiae were evaluated at low sugar and high malic acid. In this condition all the sugars were consumed and a significant glycerol increase was found. These results were confirmed when sequential fermentations were run in natural unripe grape must. Moreover, an increase in malic acid degradation, with respect to EC1118 single-strain fermentation, was observed.
Collapse
Affiliation(s)
| | - Chiara Nadai
- Department of Agronomy, Food, Natural resources, Animals, and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy; Interdepartmental Centre for Research in Viticulture and Enology, University of Padova, Dalmasso, 1, 31015, Conegliano, Italy
| | - Ludmyla Tamara Crepalde
- Department of Food Technology, University Federal of Viçosa, University city, 36570-000 Viçosa, Minas Gerais, Brazil
| | - Vanessa Sales de Oliveira
- Department of Food Technology, University Federal Rural of Rio de Janeiro, Rodovia Br 465, km 7, 23890-000, Seropédica, Rio de Janeiro, Brazil
| | - Amanda Dupas de Matos
- Interdepartmental Centre for Research in Viticulture and Enology, University of Padova, Dalmasso, 1, 31015, Conegliano, Italy
| | - Alessio Giacomini
- Department of Agronomy, Food, Natural resources, Animals, and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy; Interdepartmental Centre for Research in Viticulture and Enology, University of Padova, Dalmasso, 1, 31015, Conegliano, Italy.
| | - Viviana Corich
- Department of Agronomy, Food, Natural resources, Animals, and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy; Interdepartmental Centre for Research in Viticulture and Enology, University of Padova, Dalmasso, 1, 31015, Conegliano, Italy
| |
Collapse
|
319
|
Gobert A, Tourdot-Maréchal R, Sparrow C, Morge C, Alexandre H. Influence of nitrogen status in wine alcoholic fermentation. Food Microbiol 2019; 83:71-85. [PMID: 31202421 DOI: 10.1016/j.fm.2019.04.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022]
Abstract
Nitrogen is an essential nutrient for yeast during alcoholic fermentation. Nitrogen is involved in the biosynthesis of protein, amino acids, nucleotides, and other metabolites, including volatile compounds. However, recent studies have called several mechanisms that regulate its role in biosynthesis into question. An initial focus on S. cerevisiae has highlighted that the concept of "preferred" versus "non-preferred" nitrogen sources is extremely variable and strain-dependent. Then, the direct involvement of amino acids consumed in the formation of proteins and volatile compounds has recently been reevaluated. Indeed, studies have highlighted the key role of lipids in nitrogen regulation in S. cerevisiae and their involvement in the mechanism of cell death. New winemaking strategies using non-Saccharomyces yeast strains in co- or sequential fermentation improve nitrogen management. Indeed, recent studies show that non-Saccharomyces yeasts have significant and specific needs for nitrogen. Moreover, sluggish fermentation can occur when they are associated with S. cerevisiae, necessitating nitrogen addition. In this context, we will present the consequences of nitrogen addition, discussing the sources, time of addition, transcriptome changes, and effect on volatile compound composition.
Collapse
Affiliation(s)
- Antoine Gobert
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/ AgroSup Dijon - Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France.
| | - Raphaëlle Tourdot-Maréchal
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/ AgroSup Dijon - Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France
| | - Céline Sparrow
- SAS Sofralab, 79, Av. A.A. Thévenet, BP 1031, Magenta, France
| | | | - Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/ AgroSup Dijon - Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France
| |
Collapse
|
320
|
The impacts of Schizosaccharomyces on winemaking. Appl Microbiol Biotechnol 2019; 103:4291-4312. [PMID: 31004207 DOI: 10.1007/s00253-019-09827-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 01/17/2023]
Abstract
In the past century, yeasts from the genus Saccharomyces represented the only option in fermentation industries, such as winemaking, to produce wine, beer, and other fermented products. However, other genera are currently emerging to solve challenges in modern enology. Schizosaccharomyces pombe is showing promising results in solving specific challenges in northern, cool viticulture regions with highly acidic wines by deacidifying these wines through its malic acid metabolism. In addition, this microorganism is considered beneficial in warm growing regions with challenges such as the control of wine food safety problems such as the presence of biogenic amines, ochratoxin A, or ethyl carbamate. Indeed, the genus Schizosaccharomyces positively influences other important wine quality parameters, such as color and polysaccharide content. However, the main challenge of using this genus remains the selection of proper strains that alleviate problems such as the production of high acetate concentrations. Industries other than wine production such as ginger fermentation, apple wine, Kei-apple fermentation, plum wine, sparkling wine, and bilberry fermentation industries have also started to study Schizosaccharomyces species as an alternative tool for solving specific related problems. The review discusses the influence of Schizosaccharomyces on different fermentation quality parameters and its main applications in different industries.
Collapse
|
321
|
Sirén K, Mak SST, Melkonian C, Carøe C, Swiegers JH, Molenaar D, Fischer U, Gilbert MTP. Taxonomic and Functional Characterization of the Microbial Community During Spontaneous in vitro Fermentation of Riesling Must. Front Microbiol 2019; 10:697. [PMID: 31024486 PMCID: PMC6465770 DOI: 10.3389/fmicb.2019.00697] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
Although there is an extensive tradition of research into the microbes that underlie the winemaking process, much remains to be learnt. We combined the high-throughput sequencing (HTS) tools of metabarcoding and metagenomics, to characterize how microbial communities of Riesling musts sampled at four different vineyards, and their subsequent spontaneously fermented derivatives, vary. We specifically explored community variation relating to three points: (i) how microbial communities vary by vineyard; (ii) how community biodiversity changes during alcoholic fermentation; and (iii) how microbial community varies between musts that successfully complete alcoholic fermentation and those that become 'stuck' in the process. Our metabarcoding data showed a general influence of microbial composition at the vineyard level. Two of the vineyards (4 and 5) had strikingly a change in the differential abundance of Metschnikowia. We therefore additionally performed shotgun metagenomic sequencing on a subset of the samples to provide preliminary insights into the potential relevance of this observation, and used the data to both investigate functional potential and reconstruct draft genomes (bins). At these two vineyards, we also observed an increase in non-Saccharomycetaceae fungal functions, and a decrease in bacterial functions during the early fermentation stage. The binning results yielded 11 coherent bins, with both vineyards sharing the yeast bins Hanseniaspora and Saccharomyces. Read recruitment and functional analysis of this data revealed that during fermentation, a high abundance of Metschnikowia might serve as a biocontrol agent against bacteria, via a putative iron depletion pathway, and this in turn could help Saccharomyces dominate the fermentation. During alcoholic fermentation, we observed a general decrease in biodiversity in both the metabarcoding and metagenomic data. Unexpected Micrococcus behavior was observed in vineyard 4 according to metagenomic analyses based on reference-based read mapping. Analysis of open reading frames using these data showed an increase of functions assigned to class Actinobacteria in the end of fermentation. Therefore, we hypothesize that bacteria might sit-and-wait until Saccharomyces activity slows down. Complementary approaches to annotation instead of relying a single database provide more coherent information true species. Lastly, our metabarcoding data enabled us to identify a relationship between stuck fermentations and Starmerella abundance. Given that robust chemical analysis indicated that although the stuck samples contained residual glucose, all fructose had been consumed, we hypothesize that this was because fructophilic Starmerella, rather than Saccharomyces, dominated these fermentations. Overall, our results showcase the different ways in which metagenomic analyses can improve our understanding of the wine alcoholic fermentation process.
Collapse
Affiliation(s)
- Kimmo Sirén
- Institute for Viticulture and Oenology, Dienstleistungszentrum Ländlicher Raum Rheinpfalz, Neustadt an der Weinstraße, Germany
- Department of Chemistry, University of Kaiserslautern, Kaiserslautern, Germany
| | - Sarah Siu Tze Mak
- Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Chrats Melkonian
- Systems Bioinformatics, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Christian Carøe
- Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | | | - Douwe Molenaar
- Systems Bioinformatics, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ulrich Fischer
- Institute for Viticulture and Oenology, Dienstleistungszentrum Ländlicher Raum Rheinpfalz, Neustadt an der Weinstraße, Germany
| | - M. Thomas P. Gilbert
- Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
322
|
Seixas I, Barbosa C, Mendes-Faia A, Güldener U, Tenreiro R, Mendes-Ferreira A, Mira NP. Genome sequence of the non-conventional wine yeast Hanseniaspora guilliermondii UTAD222 unveils relevant traits of this species and of the Hanseniaspora genus in the context of wine fermentation. DNA Res 2019; 26:67-83. [PMID: 30462193 PMCID: PMC6379042 DOI: 10.1093/dnares/dsy039] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/16/2018] [Indexed: 12/21/2022] Open
Abstract
Hanseanispora species, including H. guilliermondii, are long known to be abundant in wine grape-musts and to play a critical role in vinification by modulating, among other aspects, the wine sensory profile. Despite this, the genetics and physiology of Hanseniaspora species remains poorly understood. The first genomic sequence of a H. guilliermondii strain (UTAD222) and the discussion of its potential significance are presented in this work. Metabolic reconstruction revealed that H. guilliermondii is not equipped with a functional gluconeogenesis or glyoxylate cycle, nor does it harbours key enzymes for glycerol or galactose catabolism or for biosynthesis of biotin and thiamine. Also, no fructose-specific transporter could also be predicted from the analysis of H. guilliermondii genome leaving open the mechanisms underlying the fructophilic character of this yeast. Comparative analysis involving H. guilliermondii, H. uvarum, H. opuntiae and S. cerevisiae revealed 14 H. guilliermondii-specific genes (including five viral proteins and one β-glucosidase). Furthermore, 870 proteins were only found within the Hanseniaspora proteomes including several β-glucosidases and decarboxylases required for catabolism of biogenic amines. The release of H. guilliermondii genomic sequence and the comparative genomics/proteomics analyses performed, is expected to accelerate research focused on Hanseniaspora species and to broaden their application in the wine industry and in other bio-industries in which they could be explored as cell factories.
Collapse
Affiliation(s)
- Isabel Seixas
- WM&B—Laboratory of Wine Microbiology & Biotechnology, Department of Biology and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa Campo Grande, Lisbon, Portugal
| | - Catarina Barbosa
- WM&B—Laboratory of Wine Microbiology & Biotechnology, Department of Biology and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa Campo Grande, Lisbon, Portugal
| | - Arlete Mendes-Faia
- WM&B—Laboratory of Wine Microbiology & Biotechnology, Department of Biology and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa Campo Grande, Lisbon, Portugal
| | - Ulrich Güldener
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Maximus von-Imhof-Forum 3, Freising, Germany
| | - Rogério Tenreiro
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa Campo Grande, Lisbon, Portugal
| | - Ana Mendes-Ferreira
- WM&B—Laboratory of Wine Microbiology & Biotechnology, Department of Biology and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa Campo Grande, Lisbon, Portugal
- To whom correspondence should be addressed. Tel. +351218419181. (N.P.M.); Tel. +351 259 350 550. (A.M.-F.)
| | - Nuno P Mira
- Department of Bioengineering, iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisbon, Portugal
- To whom correspondence should be addressed. Tel. +351218419181. (N.P.M.); Tel. +351 259 350 550. (A.M.-F.)
| |
Collapse
|
323
|
Vázquez J, Grillitsch K, Daum G, Mas A, Beltran G, Torija MJ. The role of the membrane lipid composition in the oxidative stress tolerance of different wine yeasts. Food Microbiol 2019; 78:143-154. [DOI: 10.1016/j.fm.2018.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/16/2018] [Accepted: 10/05/2018] [Indexed: 12/21/2022]
|
324
|
Alonso-Del-Real J, Pérez-Torrado R, Querol A, Barrio E. Dominance of wine Saccharomyces cerevisiae strains over S. kudriavzevii in industrial fermentation competitions is related to an acceleration of nutrient uptake and utilization. Environ Microbiol 2019; 21:1627-1644. [PMID: 30672093 DOI: 10.1111/1462-2920.14536] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 01/01/2023]
Abstract
Grape must is a sugar-rich habitat for a complex microbiota which is replaced by Saccharomyces cerevisiae strains during the first fermentation stages. Interest on yeast competitive interactions has recently been propelled due to the use of alternative yeasts in the wine industry to respond to new market demands. The main issue resides in the persistence of these yeasts due to the specific competitive activity of S. cerevisiae. To gather deeper knowledge of the molecular mechanisms involved, we performed a comparative transcriptomic analysis during fermentation carried out by a wine S. cerevisiae strain and a strain representative of the cryophilic S. kudriavzevii, which exhibits high genetic and physiological similarities to S. cerevisiae, but also differences of biotechnological interest. In this study, we report that transcriptomic response to the presence of a competitor is stronger in S. cerevisiae than in S. kudriavzevii. Our results demonstrate that a wine S. cerevisiae industrial strain accelerates nutrient uptake and utilization to outcompete the co-inoculated yeast, and that this process requires cell-to-cell contact to occur. Finally, we propose that this competitive phenotype evolved recently, during the adaptation of S. cerevisiae to man-manipulated fermentative environments, since a non-wine S. cerevisiae strain, isolated from a North American oak, showed a remarkable low response to competition.
Collapse
Affiliation(s)
- Javier Alonso-Del-Real
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Roberto Pérez-Torrado
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Amparo Querol
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Eladio Barrio
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain.,Departament de Genètica, Universitat de València, València, Spain
| |
Collapse
|
325
|
Biochemical characteristics and potential application of a novel ethanol and glucose-tolerant β-glucosidase secreted by Pichia guilliermondii G1.2. J Biotechnol 2019; 294:73-80. [DOI: 10.1016/j.jbiotec.2019.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/07/2019] [Indexed: 11/21/2022]
|
326
|
Martin V, Fariña L, Medina K, Boido E, Dellacassa E, Mas A, Carrau F. Oenological attributes of the yeast Hanseniaspora vineaeand its application for white and red winemaking. BIO WEB OF CONFERENCES 2019. [DOI: 10.1051/bioconf/20191202010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Flavour and some compounds associated with wine colour are known to be yeast strain-dependent. These metabolites are important for the sensory quality of wines, studies searching for increase aroma and color are a key area today in winemaking. The aim of this work was to study the oenological potential of the two main strains of Hanseniaspora vineae,native to Uruguay to better understand their successful application at winery level. It is known that these strains contribute with extracellular proteases and β-glucosidase enzyme activities that might increase cell lysis and flavor depending in grape varieties. Application and nutrient management of the process of these strains in production of white wines (Chardonnay, Macabeo and Petit Manseng) and red wine Tannat are discussed. Wines were evaluated to determine the volatile compounds composition and their effect compared to conventional processes. Low production of short and medium chain fatty acids and ethyl esters, and high production of acetate esters and isoprenoids are found compared to S. cerevisiaestrains. The most outstanding characteristic of the species H. vineaewas the production of benzenoids, phenylpropanoids and acetate esters. This behavior was reflected in the sensory evaluation, where all the fermentations performed with H. vineaewere considered superior compared to Saccharomyces cerevisiaewine strains.
Collapse
|
327
|
Porter TJ, Divol B, Setati ME. Lachancea yeast species: Origin, biochemical characteristics and oenological significance. Food Res Int 2019; 119:378-389. [PMID: 30884668 DOI: 10.1016/j.foodres.2019.02.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 11/29/2022]
Abstract
The genus Lachancea, first proposed in 2003, currently comprises 12 valid species, all found to have eight chromosomes. Lachancea spp. occupy a myriad of natural and anthropic habitats, and their geographic as well as ecological origin have been identified as key drivers in the genetic variations amongst strains of several of the species. Lachancea thermotolerans is the type species of the genus and also the most widely explored, especially for its role in fermentation environments. Indeed, L. thermotolerans is desired for its ability to acidify beer and wine through the production of lactic acid, and to enhance aroma and flavor through increased production of various compounds. Similarly, L. fermentati has been characterized for its potential contribution to the chemical composition of these beverages, albeit to a lesser extent, while other species have received little attention. Overall, members of the genus Lachancea form part of the microbiomes in many fermentation ecosystems and contribute directly or indirectly to the modulation of aroma and flavor of different products. The current review provides an overview of this genus, including the latest reports on the genetic and biochemical characteristics of member species, as well as their biotechnological potential.
Collapse
Affiliation(s)
- Tristan Jade Porter
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Benoit Divol
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Mathabatha Evodia Setati
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
328
|
Tondini F, Lang T, Chen L, Herderich M, Jiranek V. Linking gene expression and oenological traits: Comparison between Torulaspora delbrueckii and Saccharomyces cerevisiae strains. Int J Food Microbiol 2019; 294:42-49. [PMID: 30763906 DOI: 10.1016/j.ijfoodmicro.2019.01.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 11/16/2022]
Abstract
Wine fermentations typically involve the yeast Saccharomyces cerevisiae. However, many other yeast species participate to the fermentation process, some with interesting oenological traits. In this study the species Torulaspora delbrueckii, used occasionally in mixed or sequential fermentation with S. cerevisiae to improve wine sensory profile, was investigated to understand the physiological differences between the two. Next generation sequencing was used to characterize the transcriptome of T. delbrueckii and highlight the different genomic response of these yeasts during growth under wine-like conditions. Of particular interest were the basic differences in the glucose fermentation pathway and the formation of aromatic and flavour compounds such as glycerol, esters and acetic acid. Paralog genes were missing in glycolysis and glycerol biosynthesis in T. delbrueckii. Results indicate the tendency of T. delbrueckii to produce less acetic acid relied on a higher expression of alcoholic fermentation related genes, whereas acetate esters were influenced by the absence of esterases, ATF1-2. Additionally, in the Δbap2 S. cerevisiae strain, the final concentration of short branched chain ethyl esters (SBCEEs) was related to branched chain amino acid (BCAA) uptake. In conclusion, different adaption strategies are apparent for T. delbrueckii and S. cerevisiae yeasts, an understanding of which will allow winemakers to make better use of such microbial tools to achieve a desired wine sensory outcome.
Collapse
Affiliation(s)
- Federico Tondini
- Department of Wine & Food Science, University of Adelaide, Glen Osmond, South Australia 5064, Australia; Australian Research Council Industrial Transformation Training Centre for Innovative Wine Production, Glen Osmond, South Australia 5064, Australia
| | - Tom Lang
- Department of Wine & Food Science, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Liang Chen
- Department of Wine & Food Science, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Markus Herderich
- Australian Research Council Industrial Transformation Training Centre for Innovative Wine Production, Glen Osmond, South Australia 5064, Australia; The Australian Wine Research Institute, Glen Osmond, South Australia 5064, Australia
| | - Vladimir Jiranek
- Department of Wine & Food Science, University of Adelaide, Glen Osmond, South Australia 5064, Australia; Australian Research Council Industrial Transformation Training Centre for Innovative Wine Production, Glen Osmond, South Australia 5064, Australia.
| |
Collapse
|
329
|
Benito Á, Calderón F, Benito S. Mixed alcoholic fermentation of Schizosaccharomyces pombe and Lachancea thermotolerans and its influence on mannose-containing polysaccharides wine Composition. AMB Express 2019; 9:17. [PMID: 30712100 PMCID: PMC6360000 DOI: 10.1186/s13568-019-0738-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/23/2019] [Indexed: 01/15/2023] Open
Abstract
This study researched the winemaking performance of new biotechnology involving the cooperation of Lachancea and Schizosaccharomyces genera in the production of wine. In all fermentations where Lachancea thermotolerans was involved, higher lactic acid concentrations appeared, while all fermentations where Schizosaccharomyces pombe was involved, lower levels in malic acid concentration took place. The sensorial properties of the final wines varied accordingly. Differences in mouthfeel properties and acidity occurred in the different fermentation trials. Fermentations with the highest concentration of hydrolyzed mannose showed the highest mouthfeel properties, but the lack of acidity reduced their overall impression. Wines made from a combination of L. thermotolerans and S. pombe showed the highest overall impression and were preferred by the tasters due to the balance between mouthfeel properties and acidity.
Collapse
|
330
|
|
331
|
Raymond Eder ML, Rosa AL. Yeast diversity in Vitis non-vinifera ecosystems. Rev Argent Microbiol 2019; 51:278-283. [PMID: 30638636 DOI: 10.1016/j.ram.2018.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 10/27/2022] Open
Abstract
The surface of grapes lodges a complex community of yeast species responsible for spontaneous alcoholic fermentation. The study of indigenous Saccharomyces and "non-Saccharomyces" yeasts during grape must fermentation constitutes a major research area in microbial enology. Although there are detailed studies on the microbiota of Vitis vinifera L. grapes, little is known about the diversity of yeast communities present in non-vinifera Vitis ecosystems (i.e., grapes and spontaneously fermenting grape musts). Potentially scientific and/or enological valuable yeast strains from these non-vinifera Vitis ecosystems might never be isolated from V. vinifera L. In this updated review, we summarize relevant aspects of the microbial studies conducted on V. non-vinifera grapes and spontaneously fermenting grape musts.
Collapse
Affiliation(s)
- María Laura Raymond Eder
- Laboratorio de Genética y Biología Molecular, IRNASUS-CONICET, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Alberto Luis Rosa
- Laboratorio de Genética y Biología Molecular, IRNASUS-CONICET, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba, Argentina.
| |
Collapse
|
332
|
Improving Ethyl Acetate Production in Baijiu Manufacture by Wickerhamomyces anomalus and Saccharomyces cerevisiae Mixed Culture Fermentations. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1470543. [PMID: 30733956 PMCID: PMC6348840 DOI: 10.1155/2019/1470543] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/26/2018] [Accepted: 12/12/2018] [Indexed: 11/17/2022]
Abstract
Ethyl acetate content has strong influence on the style and quality of Baijiu. Therefore, this study investigated the effect of Saccharomyces cerevisiae Y3401 on the production of ethyl acetate by Wickerhamomyces anomalus Y3604. Analysis of cell growth showed that Y3401 influences Y3604 by nutrient competition and inhibition by metabolites, while the effect of Y3604 on Y3401 was mainly competition for nutrients. Mixed fermentation with two yeasts was found to produce more ethyl acetate than a single fermentation. The highest yield of ethyl acetate was 2.99 g/L when the inoculation ratio of Y3401:Y3604 was 1:2. Synergistic fermentation of both yeasts improved ethyl acetate production and increased the content of other flavor compounds in liquid and simulated solid-state fermentation for Baijiu. Saccharomyces cerevisiae had a positive effect on ethyl acetate production in mixed culture and provides opportunities to alter the aroma and flavor perception of Baijiu.
Collapse
|
333
|
Lleixà J, Martín V, Giorello F, Portillo MC, Carrau F, Beltran G, Mas A. Analysis of the NCR Mechanisms in Hanseniaspora vineae and Saccharomyces cerevisiae During Winemaking. Front Genet 2019; 9:747. [PMID: 30687397 PMCID: PMC6338192 DOI: 10.3389/fgene.2018.00747] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/31/2018] [Indexed: 01/08/2023] Open
Abstract
There is increasing interest in the use of non-Saccharomyces yeasts in winemaking due to their positive attributes. The non-Saccharomyces yeast Hanseniaspora vineae is an apiculate yeast that has been associated with the production of wine with good fermentation capacity and an increase in aromatic properties. However, this yeast represents a concern in mixed culture fermentation because of its nutrient consumption, especially nitrogen, as its mechanisms of regulation and consumption are still unknown. In this study, we analyzed the nitrogen consumption, as well as the nitrogen catabolism repression (NCR) mechanism, in two genome-sequenced H. vineae strains, using synthetic must fermentations. The use of synthetic must with an established nitrogen content allowed us to study the NCR mechanism in H. vineae, following the amino acid and ammonia consumption, and the expression of genes known to be regulated by the NCR mechanism in S. cerevisiae, AGP1, GAP1, MEP2, and PUT2. H. vineae exhibited a similar amino acid consumption and gene expression profile to S. cerevisiae. However, the wine strain of S. cerevisiae QA23 consumed ammonia and valine more quickly and, in contrast, tyrosine and tryptophan more slowly, than the H. vineae strains. Our results showed a similar behavior of nitrogen regulation in H. vineae and S. cerevisiae, indicating the presence of the NCR mechanism in this Hanseniaspora yeast differentiated before the whole genome duplication event of the Saccharomyces complex. Future study will elucidate if the NCR mechanism is the only strategy used by H. vineae to optimize nitrogen consumption.
Collapse
Affiliation(s)
- Jessica Lleixà
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Valentina Martín
- Sección Enología, Food Science and Technology Department, Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Facundo Giorello
- Sección Enología, Food Science and Technology Department, Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Maria C Portillo
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Francisco Carrau
- Sección Enología, Food Science and Technology Department, Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Gemma Beltran
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Albert Mas
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
334
|
Exploitation of Three Non-Conventional Yeast Species in the Brewing Process. Microorganisms 2019; 7:microorganisms7010011. [PMID: 30626108 PMCID: PMC6351989 DOI: 10.3390/microorganisms7010011] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/19/2018] [Accepted: 01/02/2019] [Indexed: 12/20/2022] Open
Abstract
Consumers require high-quality beers with specific enhanced flavor profiles and non-conventional yeasts could represent a large source of bioflavoring diversity to obtain new beer styles. In this work, we investigated the use of three different non-conventional yeasts belonging to Lachancea thermotolerans, Wickerhamomyces anomalus, and Zygotorulaspora florentina species in pure and mixed fermentation with the Saccharomyces cerevisiae commercial starter US-05. All three non-conventional yeasts were competitive in co-cultures with the S. cerevisiae, and they dominated fermentations with 1:20 ratio (S. cerevisiae/non-conventional yeasts ratios). Pure non-conventional yeasts and co-cultures affected significantly the beer aroma. A general reduction in acetaldehyde content in all mixed fermentations was found. L. thermotolerans and Z. florentina in mixed and W. anomalus in pure cultures increased higher alcohols. L. thermotolerans led to a large reduction in pH value, producing, in pure culture, a large amount of lactic acid (1.83 g/L) while showing an enhancement of ethyl butyrate and ethyl acetate in all pure and mixed fermentations. W. anomalus decreased the main aroma compounds in comparison with the S. cerevisiae but showed a significant increase in ethyl butyrate and ethyl acetate. Beers produced with Z. florentina were characterized by an increase in the isoamyl acetate and α-terpineol content.
Collapse
|
335
|
Medina K, Boido E, Fariña L, Ares G, Dellacassa E, Carrau F. Impact on Tannat wines aroma produced by different yeast using three vinification systems. BIO WEB OF CONFERENCES 2019. [DOI: 10.1051/bioconf/20191202007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Vinifications were conducted using pure cultures of Saccharomyces cerevisiae, and mixed cultures by sequential inoculation of a Hanseniaspora vineae (T02/05F) and Hanseniaspora clermontiae (A10/82F), with a Saccharomyces cerevisiae conventional strain. The vinification systems applied to Tannat grapes were defined: semipilot, pilot and industrial scale. Fifty-one volatile compounds were identified in all the vinifications, sixteen of them were above the aroma threshold values and potentially contributed to the final sensory profiles. A sensory characterization of aroma was carried out using the projective mapping technique, with forty-eight consumers who made evaluation of the three vinifications. Multiple factorial analysis was used to compare the chemical and sensory data to find correlations. The results obtained from both methodologies were coincident, confirming the aromatic tendencies found in the different vinifications. Both studies demonstrated that wines obtained by semipilot scale was characterized by descriptors associated with “chemical” and “floral”; those from pilot vinification by the “spicy” descriptor; while industrial vinification produced wines described as “fruit” and “wood”.
Collapse
|
336
|
Valera MJ, Morcillo-Parra MÁ, Zagórska I, Mas A, Beltran G, Torija MJ. Effects of melatonin and tryptophol addition on fermentations carried out by Saccharomyces cerevisiae and non-Saccharomyces yeast species under different nitrogen conditions. Int J Food Microbiol 2019; 289:174-181. [DOI: 10.1016/j.ijfoodmicro.2018.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/28/2018] [Accepted: 09/15/2018] [Indexed: 02/08/2023]
|
337
|
Mechanisms of Yeast Adaptation to Wine Fermentations. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 58:37-59. [PMID: 30911888 DOI: 10.1007/978-3-030-13035-0_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cells face genetic and/or environmental changes in order to outlast and proliferate. Characterization of changes after stress at different "omics" levels is crucial to understand the adaptation of yeast to changing conditions. Wine fermentation is a stressful situation which yeast cells have to cope with. Genome-wide analyses extend our cellular physiology knowledge by pointing out the mechanisms that contribute to sense the stress caused by these perturbations (temperature, ethanol, sulfites, nitrogen, etc.) and related signaling pathways. The model organism, Saccharomyces cerevisiae, was studied in response to industrial stresses and changes at different cellular levels (transcriptomic, proteomic, and metabolomics), which were followed statically and/or dynamically in the short and long terms. This chapter focuses on the response of yeast cells to the diverse stress situations that occur during wine fermentations, which induce perturbations, including nutritional changes, ethanol stress, temperature stress, oxidative stress, etc.
Collapse
|
338
|
Genomic and Transcriptomic Basis of Hanseniaspora vineae's Impact on Flavor Diversity and Wine Quality. Appl Environ Microbiol 2018; 85:AEM.01959-18. [PMID: 30366992 DOI: 10.1128/aem.01959-18] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/13/2018] [Indexed: 12/30/2022] Open
Abstract
Hanseniaspora is the main genus of the apiculate yeast group that represents approximately 70% of the grape-associated microflora. Hanseniaspora vineae is emerging as a promising species for quality wine production compared to other non-Saccharomyces species. Wines produced by H. vineae with Saccharomyces cerevisiae consistently exhibit more intense fruity flavors and complexity than wines produced by S. cerevisiae alone. In this work, genome sequencing, assembling, and phylogenetic analysis of two strains of H. vineae showed that it is a member of the Saccharomyces complex and it diverged before the whole-genome duplication (WGD) event from this clade. Specific flavor gene duplications and absences were identified in the H. vineae genome compared to 14 fully sequenced industrial S. cerevisiae genomes. The increased formation of 2-phenylethyl acetate and phenylpropanoids such as 2-phenylethyl and benzyl alcohols might be explained by gene duplications of H. vineae aromatic amino acid aminotransferases (ARO8 and ARO9) and phenylpyruvate decarboxylases (ARO10). Transcriptome and aroma profiles under fermentation conditions confirmed these genes were highly expressed at the beginning of stationary phase coupled to the production of their related compounds. The extremely high level of acetate esters produced by H. vineae compared to that by S. cerevisiae is consistent with the identification of six novel proteins with alcohol acetyltransferase (AATase) domains. The absence of the branched-chain amino acid transaminases (BAT2) and acyl coenzyme A (acyl-CoA)/ethanol O-acyltransferases (EEB1) genes correlates with H. vineae's reduced production of branched-chain higher alcohols, fatty acids, and ethyl esters, respectively. Our study provides sustenance for understanding and potentially utilizing genes that determine fermentation aromas.IMPORTANCE The huge diversity of non-Saccharomyces yeasts in grapes is dominated by the apiculate genus Hanseniaspora Two native strains of Hanseniaspora vineae applied to winemaking because of their high oenological potential in aroma and fermentation performance were selected to obtain high-quality genomes. Here, we present a phylogenetic analysis and the complete transcriptome and aroma metabolome of H. vineae during three fermentation steps. This species produced significantly richer flavor compound diversity than Saccharomyces, including benzenoids, phenylpropanoids, and acetate-derived compounds. The identification of six proteins, different from S. cerevisiae ATF, with diverse acetyltransferase domains in H. vineae offers a relevant source of native genetic variants for this enzymatic activity. The discovery of benzenoid synthesis capacity in H. vineae provides a new eukaryotic model to dilucidate an alternative pathway to that catalyzed by plants' phenylalanine lyases.
Collapse
|
339
|
Varela J, Varela C. Microbiological strategies to produce beer and wine with reduced ethanol concentration. Curr Opin Biotechnol 2018; 56:88-96. [PMID: 30390603 DOI: 10.1016/j.copbio.2018.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/25/2018] [Accepted: 10/07/2018] [Indexed: 11/25/2022]
Abstract
Changes in consumer preferences, government policies and environmental conditions have driven research efforts towards producing alcoholic beverages with reduced alcohol content, namely wine and beer. While the strategies available to accomplish this goal vary for wine and beer, a common approach relies on the use of yeast strains which are less efficient at producing ethanol. Here we discuss current research on the isolation and/or generation of yeast strains able to produce beer or wine with reduced ethanol concentration. Particular consideration is given to the impact of 'low-ethanol' yeasts on volatile composition and sensory profile of beer and wine.
Collapse
Affiliation(s)
- Javier Varela
- School of Microbiology/Centre for Synthetic Biology and Biotechnology/Environmental Research Institute/APC Microbiome Institute, University College Cork, Cork T12 YN60, Ireland
| | - Cristian Varela
- The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, Adelaide, SA 5064, Australia.
| |
Collapse
|
340
|
Sequential inoculum of Hanseniaspora guilliermondii and Saccharomyces cerevisiae for winemaking Campanino on an industrial scale. World J Microbiol Biotechnol 2018; 34:161. [PMID: 30357477 DOI: 10.1007/s11274-018-2540-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/01/2018] [Indexed: 10/28/2022]
Abstract
In this study, the effect of sequential inoculation with non-Saccharomyces (Hanseniaspora guilliermondii) and Saccharomyces cerevisiae yeast on the distinctive characteristics of the Campanino white wine was investigated. For this purpose, three independent winemaking experiments were carried out on an industrial scale (batches A, B and C). In detail, the first one was carried out using the sequential inoculation technique while the other two, using a S. cerevisiae single-strain starter or no inoculation representing the control batches. Microbiological and chemical parameters and sensorial profiles of the wines were defined. Interestingly, the results showed that when sequential cultures (H. guilliermondii in a sequential mixture with S. cerevisiae) were used, a better wine aroma and quality was observed. More specifically, the wine obtained by sequential inoculation showed lower acetic acid values and enhanced volatile profiles than the wine from the control batches. Finally, sensorial analysis confirmed that the sequential cultures led to an improvement in wine flavour. Therefore, results suggest that the sequential inoculation using non-Saccharomyces and Saccharomyces yeast represents a biotechnological practice that can improve the quality features of traditional white wine. It has been shown for the first time that on an industrial scale H. guilliermondii could be used in sequential inoculum with S. cerevisiae in making white Campanino wine.
Collapse
|
341
|
Zhang BQ, Shen JY, Duan CQ, Yan GL. Use of Indigenous Hanseniaspora vineae and Metschnikowia pulcherrima Co-fermentation With Saccharomyces cerevisiae to Improve the Aroma Diversity of Vidal Blanc Icewine. Front Microbiol 2018; 9:2303. [PMID: 30405538 PMCID: PMC6204404 DOI: 10.3389/fmicb.2018.02303] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/10/2018] [Indexed: 01/01/2023] Open
Abstract
Using novel non-Saccharomyces strains is regarded as an effective way to improve the aroma diversity of wines to meet the expectations of consumers. The non-Saccharomyces Hanseniaspora vineae and Metschnikowia pulcherrima have good aromatic properties useful for the production of table wine. However, no detailed information is available on their performances in icewine fermentation. In this study, simultaneous and sequential fermentation trials of indigenous M. pulcherrima CVE-MP20 or H. vineae CVE-HV11 with S. cerevisiae (SC45) were performed in 50-L fermenters of Vidal icewine, respectively. The results showed that SC45 cofermented with different non-Saccharomyces strains could generate a distinct aroma quality of icewine compared with four S. cerevisiae strain monocultures as evidenced by principal component analysis (PCA). Mixed fermentation of MP20/SC45 produced higher contents of acetate esters and β-damascenone with lower C6 alcohols relative to SC45 monoculture. Interestingly, HV11/SC45 generated the highest amounts of C6 alcohols [(Z)-3-hexen-1-ol and (E)-3-hexen-1-ol], higher alcohols (isobutanol, isopentanol, and 2-phenylethanol), acetate esters (2-phenethyl acetate and isoamyl acetate), cis-rose oxide, β-damascenone, and phenylacetaldehyde. Compared with simultaneous inoculation, sequential inoculation could achieve higher aroma diversity and produce higher intensity of fruity, flowery, and sweet attributes of icewine as assessed by calculating the odor activity values (OAVs). Our results verified the desired enological characteristics of H. vineae strain in icewine fermentation and also demonstrated that using indigenous non-Saccharomyces and Saccharomyces strains is a feasible way to improve aroma diversity of icewine products, which could provide an alternative way to meet the requirement of wine consumers for diversified aromatic quality.
Collapse
Affiliation(s)
- Bo-Qin Zhang
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing, China
| | - Jing-Yun Shen
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing, China
| | - Chang-Qing Duan
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing, China
| | - Guo-Liang Yan
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing, China
| |
Collapse
|
342
|
Lourencetti NMS, Wolf IR, Lacerda MPF, Valente GT, Zanelli CF, Santoni MM, Mendes-Giannini MJS, Enguita FJ, Fusco-Almeida AM. Transcriptional profile of a bioethanol production contaminant Candida tropicalis. AMB Express 2018; 8:166. [PMID: 30311091 PMCID: PMC6182018 DOI: 10.1186/s13568-018-0693-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/26/2018] [Indexed: 11/26/2022] Open
Abstract
The fermentation process is widely used in the industry for bioethanol production. Even though it is widely used, microbial contamination is unpredictable and difficult to control. The problem of reduced productivity is directly linked to competition for nutrients during contamination. Yeasts representing the Candida species are frequently isolated contaminants. Elucidating the behavior of a contaminant during the fermentation cycle is essential for combatting the contamination. Consequently, the aim of the current study was to better understand the functional and transcriptional behavior of a contaminating yeast Candida tropicalis. We used a global RNA sequencing approach (RNA-seq/MiSeq) to analyze gene expression. Genes with significantly repressed or induced expression, and related to the fermentations process, such as sugar transport, pyruvate decarboxylase, amino acid metabolism, membrane, tolerance to high concentrations of ethanol and temperatures, nutrient suppression), and transcription-linked processes, were identified. The expression pattern suggested that the functional and transcriptional behavior of the contaminating yeast during fermentation for bioethanol production is similar to that of the standard yeast Saccharomyces cerevisiae. In addition, the analysis confirmed that C. tropicalis is an important contaminant of the alcoholic fermentation process, generating bioethanol and viability through its tolerance to all the adversities of a fermentation process essential for the production of bioethanol. According on the gene expression profile, many of these mechanisms are similar to those of S. cerevisiae strains currently used for bioethanol production. These mechanisms can inform studies on antimicrobials, to combat yeast contamination during industrial bioethanol production.
Collapse
|
343
|
Oenological traits of Lachancea thermotolerans show signs of domestication and allopatric differentiation. Sci Rep 2018; 8:14812. [PMID: 30287912 PMCID: PMC6172252 DOI: 10.1038/s41598-018-33105-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/18/2018] [Indexed: 11/08/2022] Open
Abstract
The yeast Lachancea thermotolerans (previously Kluyveromyces thermotolerans) is a species of large, yet underexplored, oenological potential. This study delivers comprehensive oenological phenomes of 94 L. thermotolerans strains obtained from diverse ecological niches worldwide, classified in nine genetic groups based on their pre-determined microsatellite genotypes. The strains and the genetic groups were compared for their alcoholic fermentation performance, production of primary and secondary metabolites and pH modulation in Chardonnay grape juice fermentations. The common oenological features of L. thermotolerans strains were their glucophilic character, relatively extensive fermentation ability, low production of acetic acid and the formation of lactic acid, which significantly affected the pH of the wines. An untargeted analysis of volatile compounds, used for the first time in a population-scale phenotyping of a non-Saccharomyces yeast, revealed that 58 out of 90 volatiles were affected at an L. thermotolerans strain level. Besides the remarkable extent of intra-specific diversity, our results confirmed the distinct phenotypic performance of L. thermotolerans genetic groups. Together, these observations provide further support for the occurrence of domestication events and allopatric differentiation in L. thermotolerans population.
Collapse
|
344
|
Escribano-Viana R, González-Arenzana L, Portu J, Garijo P, López-Alfaro I, López R, Santamaría P, Gutiérrez AR. Wine aroma evolution throughout alcoholic fermentation sequentially inoculated with non- Saccharomyces/Saccharomyces yeasts. Food Res Int 2018; 112:17-24. [DOI: 10.1016/j.foodres.2018.06.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 01/14/2023]
|
345
|
Li J, Hu W, Huang X, Xu Y. Investigation of yeast population diversity and dynamics in spontaneous fermentation of Vidal blanc icewine by traditional culture-dependent and high-throughput sequencing methods. Food Res Int 2018; 112:66-77. [DOI: 10.1016/j.foodres.2018.06.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/31/2018] [Accepted: 06/02/2018] [Indexed: 12/26/2022]
|
346
|
Managing wine quality using Torulaspora delbrueckii and Oenococcus oeni starters in mixed fermentations of a red Barbera wine. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3161-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
347
|
Morgan SC, Tantikachornkiat M, Scholl CM, Benson NL, Cliff MA, Durall DM. The effect of sulfur dioxide addition at crush on the fungal and bacterial communities and the sensory attributes of Pinot gris wines. Int J Food Microbiol 2018; 290:1-14. [PMID: 30278370 DOI: 10.1016/j.ijfoodmicro.2018.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 11/18/2022]
Abstract
Modern day winemaking often involves the addition of sulfur dioxide (SO2) at crush to act as both an antioxidant and an antimicrobial agent. While the effects of SO2 on microbial communities and particularly on spoilage microorganisms has been well-studied, the advent of culture-independent molecular technologies, such as Illumina sequencing, allows the subject to be re-visited in a new context. High-throughput amplicon sequencing allows for a more thorough evaluation of microbial communities, as thousands of microbial sequences per sample can be identified and even rare microorganisms can be studied. This research investigated whether the addition of different levels of SO2 at crush (0, 20, or 40 mg/L) would affect the composition of fungal and bacterial communities, as well as the sensory attributes of the resulting wines. Samples were taken from uninoculated fermentations of Pinot gris and analyzed via high-throughput amplicon sequencing using the Illumina MiSeq platform. Yeast relative abundance and overall fungal community composition differed among the SO2 additions. Notably, a Hanseniaspora yeast appeared in all treatments and persisted until the end of alcoholic fermentation, although its relative abundance was significantly higher in the fermentations to which low or no SO2 had been added. Two key wine sensory attributes (citrus aroma and pome fruit flavor) differed among the SO2 treatments. This research provides an in-depth look into the fungal and bacterial communities during alcoholic fermentation and gives a better understanding of the microbial community response to SO2 additions during the crush period.
Collapse
Affiliation(s)
- Sydney C Morgan
- Irving K. Barber School of Arts and Sciences, Unit 2 (Biology), University of British Columbia, 1177 Research Rd, Kelowna, British Columbia V1V 1V7, Canada.
| | - Mansak Tantikachornkiat
- Irving K. Barber School of Arts and Sciences, Unit 2 (Biology), University of British Columbia, 1177 Research Rd, Kelowna, British Columbia V1V 1V7, Canada
| | - Chrystal M Scholl
- Irving K. Barber School of Arts and Sciences, Unit 2 (Biology), University of British Columbia, 1177 Research Rd, Kelowna, British Columbia V1V 1V7, Canada
| | - Natasha L Benson
- Irving K. Barber School of Arts and Sciences, Unit 2 (Biology), University of British Columbia, 1177 Research Rd, Kelowna, British Columbia V1V 1V7, Canada
| | - Margaret A Cliff
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, 4200 Highway 97, Summerland, British Columbia V0H 1Z0, Canada.
| | - Daniel M Durall
- Irving K. Barber School of Arts and Sciences, Unit 2 (Biology), University of British Columbia, 1177 Research Rd, Kelowna, British Columbia V1V 1V7, Canada.
| |
Collapse
|
348
|
Vaudano E, Quinterno G, Costantini A, Pulcini L, Pessione E, Garcia-Moruno E. Yeast distribution in Grignolino grapes growing in a new vineyard in Piedmont and the technological characterization of indigenous Saccharomyces spp. strains. Int J Food Microbiol 2018; 289:154-161. [PMID: 30245288 DOI: 10.1016/j.ijfoodmicro.2018.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
Abstract
The aim of this study was to characterize the yeast consortium isolated from Grignolino grapes in a newly planted vineyard in Piedmont (Italy) via analysis of the intra-vineyard yeast distribution of grape samples from single rows. A two-phase approach allowed the identification of culturable yeasts present on grape skins and, through an enriching procedure via grape fermentation, the isolation of low frequency non-Saccharomyces and Saccharomyces spp. fermentative species, including S. paradoxus, which is highly unusual during grape fermentation, along with the intra-specific characterization of S. cerevisiae isolates. Culture-based molecular techniques revealed a grape yeast microbiota formed by (in order of abundance) Hanseniaspora uvarum, the yeast-like fungus Aerobasidium pullulans, Candida zemplinina, Pichia kluyveri, Candida californica, Curvibasidium cygneicollum, Meyerozima caribbica, Rhodotorula babjevae, Metschnikowia pulcherrima and Cryptococcus flavescens. Technological properties of isolated Saccharomyces spp. strains were analysed, identifying strains, including S. paradoxus, potentially suitable as an ecotypical starter for territorial wines.
Collapse
Affiliation(s)
- Enrico Vaudano
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Centro di Ricerca Viticoltura ed Enologia, Via Pietro Micca 35, 14100 Asti, Italy.
| | - Giorgia Quinterno
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Centro di Ricerca Viticoltura ed Enologia, Via Pietro Micca 35, 14100 Asti, Italy
| | - Antonella Costantini
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Centro di Ricerca Viticoltura ed Enologia, Via Pietro Micca 35, 14100 Asti, Italy
| | - Laura Pulcini
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Centro di Ricerca Viticoltura ed Enologia, Via Pietro Micca 35, 14100 Asti, Italy
| | - Enrica Pessione
- Università di Torino - Dipartimento di Scienze della Vita e Biologia dei Sistemi, Via Accademia Albertina 13, 10123 Torino, Italy
| | - Emilia Garcia-Moruno
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Centro di Ricerca Viticoltura ed Enologia, Via Pietro Micca 35, 14100 Asti, Italy
| |
Collapse
|
349
|
Cell-to-cell contact mechanism modulates Starmerella bacillaris death in mixed culture fermentations with Saccharomyces cerevisiae. Int J Food Microbiol 2018; 289:106-114. [PMID: 30223194 DOI: 10.1016/j.ijfoodmicro.2018.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 01/17/2023]
Abstract
The use of mixed culture fermentations with selected Starmerella bacillaris and Saccharomyces cerevisiae strains is gaining winemaking attention, mainly due to their ability to enhance particular characteristics in the resulting wines. In this context, yeast interspecies interactions during fermentation have a fundamental role to determine the desired product characteristics, since they may modulate yeast growth and as a consequence metabolite production. In order to get an insight into these interactions, the growth and death kinetics of the abovementioned species were investigated in pure and mixed culture fermentations, using cv. Nebbiolo grape must. Trials were conducted in flasks but also in a double-compartment fermentation system in which cells of the two species were kept separate by a filter membrane. Although the two species had similar growth pattern during the first days of fermentation, Starm. bacillaris died earlier when tested in the flask than in the double-compartment fermentor. The early death of Starm. bacillaris seemed to be not caused by nutrient limitation nor by accumulation of growth inhibitory compounds (which were not measured in the present study). Rather, cell-to-cell contact mechanism, dependent on the presence of viable S. cerevisiae cells, appears to be responsible for the observations made. These results contribute to better understand the factors that influence Starm. bacillaris death during wine fermentations.
Collapse
|
350
|
Roca Domènech G, López Martínez G, Barrera E, Poblet M, Rozès N, Cordero-Otero R. Enhancing the tolerance of the Starmerella bacillaris wine strain to dehydration stress. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1373-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|