301
|
Shimabukuro Y, Terashima H, Takedachi M, Maeda K, Nakamura T, Sawada K, Kobashi M, Awata T, Oohara H, Kawahara T, Iwayama T, Hashikawa T, Yanagita M, Yamada S, Murakami S. Fibroblast growth factor-2 stimulates directed migration of periodontal ligament cells via PI3K/AKT signaling and CD44/hyaluronan interaction. J Cell Physiol 2010; 226:809-21. [DOI: 10.1002/jcp.22406] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
302
|
Pietropaoli D, Tatone C, D'Alessandro AM, Monaco A. Possible involvement of advanced glycation end products in periodontal diseases. Int J Immunopathol Pharmacol 2010; 23:683-91. [PMID: 20943037 DOI: 10.1177/039463201002300301] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Periodontal diseases are considered as multifactorial conditions initiated by infection with pathogenic bacteria, promoted by inflammation and immune response against bacteria and modified by different environmental and genetic factors. Recently, interest in periodontal diseases has been increasing due to the awareness that the hyperinflammatory status associated with this disorder could impose a significant increase of reactive oxygen species (ROS) relevant to numerous systemic diseases driven by a pro-oxidant profile. A highly complex interplay occurs between oxidative stress and AGEs (Advanced Glycation End products), a group of heterogeneous compounds that form constantly under physiologic conditions, although their rate of formation is markedly increased in hyperglycemia and oxidizing conditions. Starting from the most relevant hypotheses on the pathogenesis of periodontal diseases, the present review outlines its relationship with oxidative stress and inflammation response in order to make a critical evaluation of the potential role of AGEs in periodontal deterioration. Although direct evidence for the presence of AGEs in the periodontal ligament is still lacking, valuable approaches based on the use of periodontal cells along with genetic and biochemical studies in animal models and chronic periodontal patients support a potential role for protein glycation in the aetiology and severity of this disease. Following a review of the current literature, the present study highlights the need for further investigation on the presence of AGEs in the periodontal ligament as a means for the comprehension of the pathogenic mechanisms underlying periodontal diseases in order to develop prevention and treatment modalities for this dysfunction.
Collapse
Affiliation(s)
- D Pietropaoli
- Department of Health Sciences, University of L'Aquila, L'Aquila, Italy
| | | | | | | |
Collapse
|
303
|
Ma D, Zhang R, Sun Y, Rios HF, Haruyama N, Han X, Kulkarni AB, Qin C, Feng JQ. A novel role of periostin in postnatal tooth formation and mineralization. J Biol Chem 2010; 286:4302-9. [PMID: 21131362 DOI: 10.1074/jbc.m110.140202] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Periostin plays multiple functions during development. Our previous work showed a critical role of this disulfide-linked cell adhesion protein in maintenance of periodontium integrity in response to occlusal load. In this study, we attempted to address whether this mechanical response molecule played a direct role in postnatal tooth development. Our key findings are 1) periostin is expressed in preodontoblasts, and odontoblasts; and the periostin-null incisor displayed a massive increase in dentin formation after mastication; 2) periostin is also expressed in the ameloblast cells, and an enamel defect is identified in both the adult-null incisor and molar; 3) deletion of periostin leads to changes in expression profiles of many non-collagenous protein such as DSPP, DMP1, BSP, and OPN in incisor dentin; 4) the removal of a biting force leads to reduction of mineralization, which is partially prevented in periostin-null mice; and 6) both in vitro and in vivo data revealed a direct regulation of periostin by TGF-β1 in dentin formation. In conclusion, periostin plays a novel direct role in controlling postnatal tooth formation, which is required for the integrity of both enamel and dentin.
Collapse
Affiliation(s)
- Dedong Ma
- Department of Respiratory Medicine, Qilu Hospital, Shandong University, Jinan 250012, China
| | | | | | | | | | | | | | | | | |
Collapse
|
304
|
Andrukhov O, Matejka M, Rausch-Fan X. Effect of cyclosporin A on proliferation and differentiation of human periodontal ligament cells. Acta Odontol Scand 2010; 68:329-334. [PMID: 20818914 DOI: 10.3109/00016357.2010.514717] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Cyclosporin A (CsA) is widely used to prevent rejection after organ transplantation. However, it also causes several side-effects, including gingival overgrowth and bone resorption. Cellular mechanisms underlying the effect of CsA on periodontal tissue remain unclear. In this study, we investigated the effect of CsA on the proliferation and expression of characteristic markers in periodontal ligament cells (PDLs). MATERIAL AND METHODS The proliferation and viability of PDLs were measured by direct cell counting and 3,4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide assay, respectively. mRNA expression levels of the specific proteins alkaline phosphatase (ALP), osteocalcin (OC) and collagen type 1 (Coll-1) were quantified using real-time polymerase chain reaction. Finally, ALP activity of PDLs was investigated using a specific colorimetric assay. RESULTS We found that proliferation of PDLs was stimulated by 0.01–0.1 μg/ml CsA and unaffected by 1 μg/ml CsA. The viability of PDLs was increased by 0.1 μg/ml CsA and not affected by 0.01 μg/ml and 1 μg/ml CsA. Furthermore, the mRNA expression levels of ALP, OC and Coll-1 in PDLs were significantly increased upon stimulation with 0.1 μg/ml CsA for 24 h or by stimulation with 0.01 μg/ml CsA for 48 h. In contrast, significantly lower expression levels of all three proteins in PDLs were observed upon stimulation with 1 μg/ml CsA for 48 h. The ALP activity of PDLs exhibited a similar pattern of changes upon CsA stimulation. CONCLUSION Our data demonstrated that CsA may influence both the proliferation and differentiation of human PDLs, which may play an important role in the homeostasis of periodontal tissue.
Collapse
Affiliation(s)
- Oleh Andrukhov
- Department of Periodontology, Bernhard Gottlieb School of Dentistry, Medical University of Vienna, Vienna, Austria.
| | | | | |
Collapse
|
305
|
Effects of TGF-β1 on the proliferation and differentiation of human periodontal ligament cells and a human periodontal ligament stem/progenitor cell line. Cell Tissue Res 2010; 342:233-42. [DOI: 10.1007/s00441-010-1037-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 08/16/2010] [Indexed: 10/19/2022]
|
306
|
Yang Y, Rossi FMV, Putnins EE. Periodontal regeneration using engineered bone marrow mesenchymal stromal cells. Biomaterials 2010; 31:8574-82. [PMID: 20832109 DOI: 10.1016/j.biomaterials.2010.06.026] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 06/22/2010] [Indexed: 01/01/2023]
Abstract
Regeneration of lost periodontium is a challenge in that both hard (alveolar bone, cementum) and soft (periodontal ligament) connective tissues need to be restored to their original architecture. Bone marrow mesenchymal stromal cells (BM-MSCs) appear to be an attractive candidate for connective tissue regeneration. We hypothesized that BM-MSCs are able to sense biological cues from the local microenvironment and organize appropriately to contribute to the regeneration of both soft and hard periodontal connective tissues. To test this hypothesis, we transplanted GFP(+) rat BM-MSCs expanded ex vivo on microcarrier gelatin beads into a surgically created rat periodontal defect. After three weeks, evidence of regeneration of bone, cementum and periodontal ligament was observed in both transplanted and control animals. However, the animals that received BM-MSCs regenerated significantly greater new bone. In addition, the animals that had received the cells and beads transplant had significantly more appropriately orientated periodontal ligament fibers, indicative of functional restoration. Finally, donor-derived BM-MSCs were found integrated in newly formed bone, cementum and periodontal ligament, suggesting that they can directly contribute to the regeneration of cells of these tissues.
Collapse
Affiliation(s)
- Yi Yang
- Laboratory of Periodontal Biology, Department of Oral Biological & Medical Sciences, Faculty of Dentistry, The University of British Columbia, 2199 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | |
Collapse
|
307
|
Ganburged G, Suda N, Saito M, Yamazaki Y, Isokawa K, Moriyama K. Dilated capillaries, disorganized collagen fibers and differential gene expression in periodontal ligaments of hypomorphic fibrillin-1 mice. Cell Tissue Res 2010; 341:381-95. [PMID: 20714769 DOI: 10.1007/s00441-010-1021-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 07/13/2010] [Indexed: 01/01/2023]
Abstract
The periodontal ligaments (PDLs) are soft connective tissue between the cementum covering the tooth root surface and alveolar bone. PDLs are composed of collagen and elastic system fibers, blood vessels, nerves, and various types of cells. Elastic system fibers are generally formed by elastin and microfibrils, but PDLs are mainly composed of the latter. Compared with the well-known function of collagen fibers to support teeth, little is known about the role of elastic system fibers in PDLs. To clarify their role, we examined PDLs of mice under-expressing fibrillin-1 (mgR mice), which is one of the major microfibrillar proteins. The PDLs of homozygous mgR mice showed one-quarter of the elastic system fibers of wild-type (WT) mice. A close association between the elastic system fibers and the capillaries was noted in WT, homozygous and heterozygous mgR mice. Interestingly, capillaries in PDLs of homozygous mice were dilated or enlarged compared with those of WT mice. A comparable level of type I collagen, which is the major collagen in PDLs, was expressed in PDL-cells of mice with three genotypes. However, multi-oriented collagen fiber bundles with a thinner appearance were noted in homozygous mice, whereas well-organized collagen fiber bundles were seen in WT mice. Moreover, there was a marked decrease in periostin expression, which is known to regulate the fibrillogenesis and crosslinking of collagen. These observations suggest that the microfibrillar protein, fibrillin-1, is indispensable for normal tissue architecture and gene expression of PDLs.
Collapse
Affiliation(s)
- Ganjargal Ganburged
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | |
Collapse
|
308
|
Trombetta JM, Bradshaw AD. SPARC/osteonectin functions to maintain homeostasis of the collagenous extracellular matrix in the periodontal ligament. J Histochem Cytochem 2010; 58:871-9. [PMID: 20566756 DOI: 10.1369/jhc.2010.956144] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Expression of secreted protein acidic and rich in cysteine (SPARC)/osteonectin, a collagen-binding matricellular protein, is frequently associated with tissues with high rates of collagen turnover, such as bone. In the oral cavity, expression of SPARC/osteonectin has been localized to the periodontal ligament (PDL), a collagen-rich tissue with high rates of collagen turnover. The PDL is critical for tooth position within the alveolar bone and for absorbing forces generated by chewing. To characterize the function of SPARC/osteonectin in PDL, SPARC/osteonectin expression in murine PDL was evaluated by immunochemistry at 1, 4, 6, and >18 months. Highest levels of SPARC/osteonectin were detected at 1 and >18 months, with decreased levels associated with adult (4-6 months) PDL. To determine whether the absence of SPARC/osteonectin expression influenced cellular and fibrillar collagen content in PDL, PDL of SPARC-null mice was evaluated using histological stains and compared with that of wild-type (WT). Our results demonstrated decreased numbers of nuclei in PDL of SPARC-null mice at 1 month. In addition, decreased collagen volume fractions were found at 1 and >18 months and decreases in thick collagen fiber volume fraction were detected at 4, 6, and >18 months in SPARC-null PDL. The greatest differences in cell number and in collagen content between SPARC-null and WT PDL coincided with ages at which levels of SPARC/osteonectin expression were highest in WT PDL, at 1 and >18 months. These results support the hypothesis that SPARC/osteonectin is critical in the control of tissue collagen content and indicate that SPARC/osteonectin is necessary for PDL homeostasis.
Collapse
Affiliation(s)
- Jessica M Trombetta
- Department of Craniofacial Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
309
|
Bergomi M, Cugnoni J, Wiskott HWA, Schneider P, Stampanoni M, Botsis J, Belser UC. Three-dimensional morphometry of strained bovine periodontal ligament using synchrotron radiation-based tomography. J Anat 2010; 217:126-34. [PMID: 20557399 DOI: 10.1111/j.1469-7580.2010.01250.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The periodontal ligament (PDL) is a highly vascularized soft connective tissue. Previous studies suggest that the viscous component of the mechanical response may be explained by the deformation-induced collapse and expansion of internal voids (i.e. chiefly blood vessels) interacting with liquids (i.e. blood and interstitial fluids) flowing through the pores. In the present work we propose a methodology by means of which the morphology of the PDL vascular plexus can be monitored at different levels of compressive and tensile strains. To this end, 4-mm-diameter cylindrical specimens, comprising layers of bone, PDL and dentin covered by cementum, were strained at stretch ratios ranging from lambda = 0.6 to lambda = 1.4 and scanned using synchrotron radiation-based computer tomography. It was concluded that: (1) the PDL vascular network is layered in two distinct planes of blood vessels (BVs): an inner layer (close to the tooth), in which the BVs run in apico-coronal direction, and an outer layer (close to the alveolar bone), in which the BVs distribution is more diffuse; (2) during tension and compression, the porosity tissue is kept fairly constant; (3) mechanical straining induces important changes in BV diameters, possibly modifying the permeability of the PDL and thus contributing to the viscous component of the viscoelastic response observed under compressive forces.
Collapse
Affiliation(s)
- Marzio Bergomi
- Laboratoire de mécanique appliquée et d'analyse de fiabilité, Ecole polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
310
|
Sculean A, Lioubavina N, Theilade J, Karring T. Absence of Malassez epithelial rests in the regenerated periodontal ligament. A pilot study in the monkey. J Periodontal Res 2010. [DOI: 10.1111/j.1600-0765.1998.tb02324.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
311
|
Booij-Vrieling HE, Ferbus D, Tryfonidou MA, Riemers FM, Penning LC, Berdal A, Everts V, Hazewinkel HAW. Increased vitamin D-driven signalling and expression of the vitamin D receptor, MSX2, and RANKL in tooth resorption in cats. Eur J Oral Sci 2010; 118:39-46. [PMID: 20156263 DOI: 10.1111/j.1600-0722.2009.00707.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tooth resorption occurs in 20-75% of cats (Felis catus). The aetiology is not known, but vitamin D is suggested to be involved. Vitamin D acts through a nuclear receptor (VDR) and increases the expression of receptor activator of nuclear factor-kappaB ligand (rankl) and muscle segment homeobox 2 (msx2) genes. Mice lacking the muscle segment homeobox 2 (msx2) gene show decreased levels of rankl, suggesting an interaction among VDR, MSX2, and RANKL. Here, we investigated the expression of VDR, MSX2, and RANKL proteins, and the activity of the VDR-mediated signalling pathway (using the quantitative polymerase chain reaction on VDR target genes), in tooth resorption, and measured the serum levels of vitamin D metabolites in cats. Tooth resorption was categorized into either resorptive or reparative stages. In the resorptive stage, odontoclasts expressed MSX2 and RANKL (100% and 88%, respectively) and fibroblasts expressed VDR and MSX2 (both at 100%), whereas fibroblasts expressed RANKL in only 29% of the sites analysed. In the reparative stage, cementoblasts expressed VDR, MSX2, and RANKL, whereas fibroblasts expressed VDR and MSX2, but not RANKL. The vitamin D status did not differ between the groups, based on the serum levels of 25-hydroxycholecalciferol. However, increased expression of VDR protein, and the relative gene expression levels of 1alpha-hydroxylase and the VDR-target gene, 24-hydroxylase, indicated the involvement of an active vitamin D signalling in the pathophysiology of tooth resorption in cats.
Collapse
Affiliation(s)
- Henriëtte E Booij-Vrieling
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
312
|
Bergomi M, Cugnoni J, Botsis J, Belser UC, Anselm Wiskott H. The role of the fluid phase in the viscous response of bovine periodontal ligament. J Biomech 2010; 43:1146-52. [DOI: 10.1016/j.jbiomech.2009.12.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/04/2009] [Accepted: 12/05/2009] [Indexed: 11/24/2022]
|
313
|
Ishikawa I, Iwata T, Washio K, Okano T, Nagasawa T, Iwasaki K, Ando T. Cell sheet engineering and other novel cell-based approaches to periodontal regeneration. Periodontol 2000 2010; 51:220-38. [PMID: 19878477 DOI: 10.1111/j.1600-0757.2009.00312.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
314
|
Honda MJ, Tsuchiya S, Shinohara Y, Shinmura Y, Sumita Y. Recent advances in engineering of tooth and tooth structures using postnatal dental cells. JAPANESE DENTAL SCIENCE REVIEW 2010. [DOI: 10.1016/j.jdsr.2009.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
315
|
Staudte H, Güntsch A, Völpel A, Sigusch B. Vitamin C attenuates the cytotoxic effects of Porphyromonas gingivalis on human gingival fibroblasts. Arch Oral Biol 2010; 55:40-5. [DOI: 10.1016/j.archoralbio.2009.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 10/27/2009] [Accepted: 11/16/2009] [Indexed: 10/20/2022]
|
316
|
Ishibashi O, Ikegame M, Takizawa F, Yoshizawa T, Moksed MA, Iizawa F, Mera H, Matsuda A, Kawashima H. Endoglin is involved in BMP-2-induced osteogenic differentiation of periodontal ligament cells through a pathway independent of Smad-1/5/8 phosphorylation. J Cell Physiol 2009; 222:465-73. [PMID: 19918795 DOI: 10.1002/jcp.21968] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The periodontal ligament (PDL), a connective tissue located between the cementum of teeth and the alveolar bone of mandibula, plays a crucial role in the maintenance and regeneration of periodontal tissues. The PDL contains fibroblastic cells of a heterogeneous cell population, from which we have established several cell lines previously. To analyze characteristics unique for PDL at a molecular level, we performed cDNA microarray analysis of the PDL cells versus MC3T3-E1 osteoblastic cells. The analysis followed by validation by reverse transcription-polymerase chain reaction and immunochemical staining revealed that endoglin, which had been shown to associate with transforming growth factor (TGF)-beta and bone morphogenetic proteins (BMPs) as signaling modulators, was abundantly expressed in PDL cells but absent in osteoblastic cells. The knockdown of endoglin greatly suppressed the BMP-2-induced osteoblastic differentiation of PDL cells and subsequent mineralization. Interestingly, the endoglin knockdown did not alter the level of Smad-1/5/8 phosphorylation induced by BMP-2, while it suppressed the BMP-2-induced expression of Id1, a representative BMP-responsive gene. Therefore, it is conceivable that endoglin regulates the expression of BMP-2-responsive genes in PDL cells at some site downstream of Smad-1/5/8 phosphorylation. Alternatively, we found that Smad-2 as well as Smad-1/5/8 was phosphorylated by BMP-2 in the PDL cells, and that the BMP-2-induced Smad-2 phosphorylation was suppressed by the endoglin knockdown. These results, taken together, raise a possibility that PDL cells respond to BMP-2 via a unique signaling pathway dependent on endoglin, which is involved in the osteoblastic differentiation and mineralization of the cells.
Collapse
Affiliation(s)
- Osamu Ishibashi
- Department of Molecular Anatomy and Medicine, Nippon Medical School, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
317
|
Berendsen AD, Smit TH, Walboomers XF, Everts V, Jansen JA, Bronckers AL. Three-Dimensional Loading Model for Periodontal Ligament Regeneration In Vitro. Tissue Eng Part C Methods 2009; 15:561-70. [DOI: 10.1089/ten.tec.2008.0336] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Agnes D. Berendsen
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Theo H. Smit
- Department of Physics and Medical Technology, VU University Medical Center; Research Institute MOVE, Amsterdam, The Netherlands
| | - X. Frank Walboomers
- Department of Periodontology and Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Vincent Everts
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - John A. Jansen
- Department of Periodontology and Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Antonius L.J.J. Bronckers
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
318
|
Scheres N, Laine ML, de Vries TJ, Everts V, van Winkelhoff AJ. Gingival and periodontal ligament fibroblasts differ in their inflammatory response to viable Porphyromonas gingivalis. J Periodontal Res 2009; 45:262-70. [PMID: 19778323 DOI: 10.1111/j.1600-0765.2009.01229.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Porphyromonas gingivalis is an oral pathogen strongly associated with destruction of the tooth-supporting tissues in human periodontitis. Gingival fibroblasts (GF) and periodontal ligament fibroblasts (PDLF) are functionally different cell types in the periodontium that can participate in the host immune response in periodontitis. This study aimed to investigate the effects of viable P. gingivalis on the expression of genes associated with inflammation and bone degradation by these fibroblast subsets. MATERIAL AND METHODS Primary human GF and PDLF from six healthy donors were challenged in vitro with viable P. gingivalis W83 for 6 h. Gene expression of inflammatory cytokines in GF and PDLF was analyzed using real-time PCR, and protein expression was analyzed using ELISA. RESULTS Viable P. gingivalis induced a strong in vitro inflammatory response in both GF and PDLF. We found increased gene expression of interleukin (IL)-1beta, IL-6, IL-8, tumor necrosis factor-alpha, monocyte chemotactic protein-1 and regulated upon activation, normal T-cell expressed and secreted (RANTES). Macrophage colony-stimulating factor was induced and the expression of osteoprotegerin was decreased in GF, but not in PDLF. In nonchallenged cells, a higher level of expression of IL-6 was observed in GF than in PDLF. Between individual donors there was large heterogeneity in responsiveness to P. gingivalis. Also, in each individual, either GF or PDLF was more responsive to P. gingivalis. CONCLUSION Considerable heterogeneity in responsiveness to P. gingivalis exists both between GF and PDLF and between individuals, which may be crucial determinants for the susceptibility to develop periodontitis.
Collapse
Affiliation(s)
- N Scheres
- Departments of Oral Microbiology, Oral Cell Biology and Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Research Institute MOVE, the Netherlands
| | | | | | | | | |
Collapse
|
319
|
Saito M, Nishida E, Sasaki T, Yoneda T, Shimizu N. The KK-Periome database for transcripts of periodontal ligament development. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312B:495-502. [PMID: 19132733 DOI: 10.1002/jez.b.21257] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The periodontal ligament (PDL) is a strong connective tissue that surrounds the tooth root, absorbs occlusal forces, and functions as a sense organ. PDL originated from dental follicle (DF), which possessed mesenchymal progenitors in the developing tooth germ. However, as specific marker genes for PDL and DF are currently unavailable, the molecular mechanisms of PDL development are yet to be clarified. To facilitate the identification of such genes, we have previously established a transcriptome database of the human PDL (the KK-Periome database) and screened for specific genes expressed during PDL development. Initial screening of the database revealed two marker genes for distinguishing DF and PDL. The KK-Periome database thus appears to offer a useful resource for investigating genes involved in PDL development.
Collapse
Affiliation(s)
- Masahiro Saito
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan.
| | | | | | | | | |
Collapse
|
320
|
Dangaria SJ, Ito Y, Walker C, Druzinsky R, Luan X, Diekwisch TGH. Extracellular matrix-mediated differentiation of periodontal progenitor cells. Differentiation 2009; 78:79-90. [PMID: 19433344 DOI: 10.1016/j.diff.2009.03.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 03/28/2009] [Accepted: 03/31/2009] [Indexed: 01/09/2023]
Abstract
The periodontal ligament (PDL) is a specialized connective tissue that connects the surface of the tooth root with the bony tooth socket. The healthy PDL harbors stem cell niches and extracellular matrix (ECM) microenvironments that facilitate periodontal regeneration. During periodontal disease, the PDL is often compromised or destroyed, reducing the life-span of the tooth. In order to explore new approaches toward the regeneration of diseased periodontal tissues, we have tested the effect of periodontal ECM signals, fibroblast growth factor 2 (FGF2), connective tissue growth factor (CTGF), and the cell adhesion peptide Arg-Gly-Asp (RGD) on the differentiation of two types of periodontal progenitor cells, PDL progenitor cells (PDLPs) and dental follicle progenitor cells (DFCs). Our studies documented that CTGF and FGF2 significantly enhanced the expression of collagens I & III, biglycan and periostin in tissue engineered regenerates after 4 weeks compared to untreated controls. Specifically, CTGF promoted mature PDL-like tissue regeneration as demonstrated by dense periostin localization in collagen fiber bundles. CTGF and FGF2 displayed synergistic effects on collagen III and biglycan gene expression, while effects on mineralization were antagonistic to each other: CTGF promoted while FGF2 inhibited mineralization in PDL cell cultures. Incorporation of RGD peptides in hydrogel matrices significantly enhanced attachment, spreading, survival and mineralization of the encapsulated DFCs, suggesting that RGD additives might promote the use of hydrogels for periodontal mineralized tissue engineering. Together, our studies have documented the effect of three key components of the periodontal ECM on the differentiation of periodontal progenitor populations.
Collapse
Affiliation(s)
- Smit J Dangaria
- Brodie Laboratory for Craniofacial Genetics, Departments of Oral Biology and Orthodontics, UIC College of Dentistry, The University of Illinois at Chicago, Chicago, IL 60565, USA
| | | | | | | | | | | |
Collapse
|
321
|
Davey KJ, Perrier S, Ohe G, Gilbert AD, Bankfalvi A, Saunders WP, Schor SL, Schor AM. Assessment of vascularity as an index of angiogenesis in periradicular granulomas. Comparison with oral carcinomas and normal tissue counterparts. Int Endod J 2009; 41:987-96. [PMID: 19133088 DOI: 10.1111/j.1365-2591.2008.01466.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM To quantify vascularity in periradicular granulomas using different endothelial markers, and assess its value as an index of angiogenesis by comparing granulomas with healthy periodontal ligament (PDL). To use oral tumours, compared with adjacent normal mucosa, as positive controls. METHODOLOGY Paraffin-embedded sections were stained with antibodies to von Willebrand factor (vWF), a pan-endothelial marker, and CD105, a putative marker for angiogenic vessels. Vascularity was quantified by different methods reflecting vessel volume and density. RESULTS Irrespective of the marker or method used, vascularity values were similar in periradicular granuloma and PDL. Both tissues were highly vascularized, with levels similar to those found in oral squamous cell carcinoma. Vascularity was significantly higher in the latter than in normal mucosa. Fewer vessels were positive for CD105 than for vWF in the normal mucosa, whereas similar numbers were found in the other tissues examined. CONCLUSIONS A comparison of vascularity in oral tumours and normal oral mucosa provided evidence of angiogenesis in the former. Staining with CD105 added limited value to staining with vWF in these tissues. In contrast, a comparison of periradicular granuloma and PDL failed to demonstrate evidence of angiogenesis in the granuloma. As all vessels were similarly stained with vWF and CD105 in granuloma and PDL, a possible hypothesis is that all vessels are newly formed in these tissues. A more plausible alternative is that CD105 expression may reflect the metabolic activity or intrinsic characteristics of the tissues, rather than the presence of angiogenic vessels.
Collapse
Affiliation(s)
- K J Davey
- Dental Hospital and School, University of Dundee, Dundee, UK
| | | | | | | | | | | | | | | |
Collapse
|
322
|
Dannan A. Dental-derived Stem Cells and whole Tooth Regeneration: an Overview. J Clin Med Res 2009; 1:63-71. [PMID: 22505970 PMCID: PMC3318856 DOI: 10.4021/jocmr2009.03.1230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2009] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED The need for new dental tissue-replacement therapies is evident in recent reports which reveal startling statistics regarding the high incidence of tooth decay and tooth loss. Recent advances in the identification and characterization of dental stem cells, and in dental tissue-engineering strategies, suggest that bioengineering approaches may successfully be used to regenerate dental tissues and whole teeth. Interest in dental tissue-regeneration applications continues to increase as clinically relevant methods for the generation of bioengineered dental tissues, and whole teeth, continue to improve. This paper is concerned about dental-derived stem cells and their characterization. Additionally, since conventional dental treatments partially serve the purpose for replacing missing teeth and always include possible failure rates, the potential of dental-derived stem cells in promoting whole tooth regeneration is also discussed. KEYWORDS Dental stem cells; Tissue engineering; Tooth regeneration.
Collapse
Affiliation(s)
- Aous Dannan
- Department of Periodontology, Faculty of Dental Medicine, Witten/Herdecke University, Witten, Germany.
| |
Collapse
|
323
|
Hiraga T, Ninomiya T, Hosoya A, Takahashi M, Nakamura H. Formation of bone-like mineralized matrix by periodontal ligament cells in vivo: a morphological study in rats. J Bone Miner Metab 2009; 27:149-57. [PMID: 19214373 DOI: 10.1007/s00774-009-0039-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 07/11/2008] [Indexed: 10/21/2022]
Abstract
Periodontal ligament (PDL) is a unique connective tissue that not only connects cementum and alveolar bone to support teeth, but also plays an important role in reconstructing periodontal tissues. Previous studies have suggested that PDL cells have osteogenic potential; however, they lack precise histological examinations. Here, we studied bone-like matrix formation by PDL cells in rats using morphological techniques. Rat and human PDL cells exhibited substantial alkaline phosphatase activity and induced mineralization in vitro. RT-PCR analyses showed that PDL cells expressed the osteoblast markers, Runx2, osterix, and osteocalcin. These results suggest that PDL cells share similar phenotypes with osteoblasts. To examine the bone-like matrix formation in vivo, PDL cells isolated from green fluorescent protein (GFP)-transgenic rats were inoculated with hydroxyapatite (HA) disks into wild-type rats. Five weeks after the implantation, the pores in HA disks were occupied by GFP-positive cells. Mineralized matrix formation was also found on the surface of HA pores. At 12 weeks, some of the pores were filled with bone-like mineralized matrices (BLMM), which were positive for the bone matrix proteins, osteopontin, bone sialoprotein, and osteocalcin. Immunohistochemical examination revealed that most of the osteoblast- and osteocyte-like cells on or in the BLMM were GFP-positive, suggesting that the BLMM were directly formed by the inoculated PDL cells. On the pore surfaces, Sharpey's fiber-like structures embedded in cementum-like mineralized layers were also observed. These results collectively suggest that PDL cells have the ability to form periodontal tissues and could be a useful source for regenerative therapies of periodontal diseases.
Collapse
Affiliation(s)
- Toru Hiraga
- Department of Histology and Cell Biology, Matsumoto Dental University, 1780 Gobara-Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | | | | | | | | |
Collapse
|
324
|
Pushparaj P, Aarthi J, Manikandan J, Kumar S. siRNA, miRNA, and shRNA: in vivo Applications. J Dent Res 2008; 87:992-1003. [DOI: 10.1177/154405910808701109] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RNA interference (RNAi), an accurate and potent gene-silencing method, was first experimentally documented in 1998 in Caenorhabditis elegans by Fire et al., who subsequently were awarded the 2006 Nobel Prize in Physiology/Medicine. Subsequent RNAi studies have demonstrated the clinical potential of synthetic small interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs) in dental diseases, eye diseases, cancer, metabolic diseases, neurodegenerative disorders, and other illnesses. siRNAs are generally from 21 to 25 base-pairs (bp) in length and have sequence-homology-driven gene-knockdown capability. RNAi offers researchers an effortless tool for investigating biological systems by selectively silencing genes. Key technical aspects—such as optimization of selectivity, stability, in vivo delivery, efficacy, and safety—need to be investigated before RNAi can become a successful therapeutic strategy. Nevertheless, this area shows a huge potential for the pharmaceutical industry around the globe. Interestingly, recent studies have shown that the small RNA molecules, either indigenously produced as microRNAs (miRNAs) or exogenously administered synthetic dsRNAs, could effectively activate a particular gene in a sequence-specific manner instead of silencing it. This novel, but still uncharacterized, phenomenon has been termed ‘RNA activation’ (RNAa). In this review, we analyze these research findings and discussed the in vivo applications of siRNAs, miRNAs, and shRNAs.
Collapse
Affiliation(s)
- P.N. Pushparaj
- Department of Physiology, National University of Singapore, Singapore; and
- Department of Anatomy, National University of Singapore, 2 Medical Drive, MD9 #01-05, Singapore 117597
| | - J.J. Aarthi
- Department of Physiology, National University of Singapore, Singapore; and
- Department of Anatomy, National University of Singapore, 2 Medical Drive, MD9 #01-05, Singapore 117597
| | - J. Manikandan
- Department of Physiology, National University of Singapore, Singapore; and
- Department of Anatomy, National University of Singapore, 2 Medical Drive, MD9 #01-05, Singapore 117597
| | - S.D. Kumar
- Department of Physiology, National University of Singapore, Singapore; and
- Department of Anatomy, National University of Singapore, 2 Medical Drive, MD9 #01-05, Singapore 117597
| |
Collapse
|
325
|
Shinmura Y, Tsuchiya S, Hata KI, Honda MJ. Quiescent epithelial cell rests of Malassez can differentiate into ameloblast-like cells. J Cell Physiol 2008; 217:728-38. [PMID: 18663726 DOI: 10.1002/jcp.21546] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epithelial cell rests of Malassez (ERM) are quiescent epithelial remnants of Hertwig's epithelial root sheath (HERS) that are involved in the formation of tooth roots. After completion of crown formation, HERS are converted from cervical loop cells, which have the potential to generate enamel for tooth crown formation. Cervical loop cells have the potential to differentiate into ameloblasts. Generally, no new ameloblasts can be generated from HERS, however this study demonstrated that subcultured ERM can differentiate into ameloblast-like cells and generate enamel-like tissues in combination with dental pulp cells at the crown formation stage. Porcine ERM were obtained from periodontal ligament tissue by explant culture and were subcultured with non-serum medium. Thereafter, subcultured ERM were expanded on 3T3-J2 feeder cell layers until the tenth passage. The in vitro mRNA expression pattern of the subcultured ERM after four passages was found to be different from that of enamel organ epithelial cells and oral gingival epithelial cells after the fourth passage using the same expansion technique. When subcultured ERM were combined with subcultured dental pulp cells, ERM expressed cytokeratin14 and amelogenin proteins in vitro. In addition, subcultured ERM combined with primary dental pulp cells seeded onto scaffolds showed enamel-like tissues at 8 weeks post-transplantation. Moreover, positive staining for amelogenin was observed in the enamel-like tissues, indicating the presence of well-developed ameloblasts in the implants. These results suggest that ERM can differentiate into ameloblast-like cells.
Collapse
Affiliation(s)
- Yuka Shinmura
- Division of Molecular and Developmental Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
326
|
Yamada S, Kitamura M, Murakami S. PLAP-1: A novel molecule regulating homeostasis of periodontal tissues. JAPANESE DENTAL SCIENCE REVIEW 2008. [DOI: 10.1016/j.jdsr.2008.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
327
|
Orciani M, Trubiani O, Vignini A, Mattioli-Belmonte M, Di Primio R, Salvolini E. Nitric oxide production during the osteogenic differentiation of human periodontal ligament mesenchymal stem cells. Acta Histochem 2008; 111:15-24. [PMID: 18554689 DOI: 10.1016/j.acthis.2008.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 02/08/2008] [Accepted: 02/19/2008] [Indexed: 12/20/2022]
Abstract
The critical tissues that require regeneration in the periodontium are of mesenchymal origin; therefore, the ability to identify, characterize and manipulate mesenchymal stem cells within the periodontium is of considerable clinical significance. In particular, recent findings suggest that periodontal ligament cells may possess many osteoblast-like properties. In the present study, periodontal ligament mesenchymal stem cells obtained from healthy volunteers were maintained in culture until confluence and then induced to osteogenic differentiation. Intracellular calcium ([Ca2+](i)) concentration and nitric oxide, important signalling molecules in the bone, were measured along with cell differentiation. Alkaline phosphatase activity was assayed and bone nodule-like structures were evaluated by means of morphological and histochemical analysis. Our results showed that the periodontal ligament mesenchymal stem cells underwent an in vitro osteogenic differentiation, resulting in the appearance of active osteoblast-like cells together with the formation of calcified deposits. Differentiating cells were also characterized by an increase of [Ca2+](i) and nitric oxide production. In conclusion, our data show a link between nitric oxide and the osteogenic differentiation of human periodontal ligament mesenchymal stem cells, thus suggesting that local reimplantation of expanded cells in conjugation with a nitric oxide donor could represent a promising method for treatment of periodontal defects.
Collapse
Affiliation(s)
- Monia Orciani
- Dipartimento di Patologia Molecolare e Terapie Innovative-Istologia, Università Politecnica delle Marche, Via Tronto 10/A, 60020 Ancona, Italy
| | | | | | | | | | | |
Collapse
|
328
|
|
329
|
PLAP-1/asporin inhibits activation of BMP receptor via its leucine-rich repeat motif. Biochem Biophys Res Commun 2008; 371:191-6. [DOI: 10.1016/j.bbrc.2008.03.158] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 03/30/2008] [Indexed: 11/18/2022]
|
330
|
Fujii S, Maeda H, Wada N, Tomokiyo A, Saito M, Akamine A. Investigating a clonal human periodontal ligament progenitor/stem cell line in vitro and in vivo. J Cell Physiol 2008; 215:743-9. [PMID: 18181171 DOI: 10.1002/jcp.21359] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The lifespan of the tooth is influenced by the periodontal ligament (PDL), a specialized connective tissue that connects the cementum with the tooth socket bone. Generation of a cell line from PDL progenitor/stem cells would allow development of tissue engineering-based regenerative PDL therapy. However, little is known about the characteristics of PDL progenitor/stem cells because PDL tissue consists of a heterogeneous cell population and there are no pure PDL cell lines. Recently, we succeeded in immortalizing primary human PDL fibroblasts (HPLFs) by transfecting them with SV40 T-antigen and hTERT (Cell Tissue Res 2006; 324: 117-125). In this study, we isolated three clonal cell lines from these immortalized cells (lines 1-4, 1-11, and 1-24) that express RUNX-2, Col I, ALP, OPN, OCN, RANKL, OPG, scleraxis, periostin, Col XII, and alpha-SMA mRNA. Immunocytochemical analysis demonstrated that CD146 was expressed in cell lines 1-4 and 1-11 and that STRO-1 was expressed in lines 1-11 and 1-24. Lines 1-4 and 1-11 differentiated into osteoblastic cells and adipocytes when cultured in lineage-specific differentiation media. Four weeks after transplanting cell line 1-11 into immunodeficient mice with beta-tricalcium phosphate (beta-TCP), the transplant produced cementum/bone-like tissues around the beta-TCP. Eight weeks after transplantation, the 1-11 cell transplant formed PDL-like structures on the surface of the beta-TCP. These data suggest that cell line 1-11 was derived from a progenitor/stem cell present in the PDL and should be very useful for studying the biology and regeneration of human periodontium.
Collapse
Affiliation(s)
- Shinsuke Fujii
- Department of Endodontology and Operative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
331
|
Bosshardt DD, Bergomi M, Vaglio G, Wiskott A. Regional structural characteristics of bovine periodontal ligament samples and their suitability for biomechanical tests. J Anat 2008; 212:319-29. [PMID: 18304207 DOI: 10.1111/j.1469-7580.2008.00856.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Mechanical testing of the periodontal ligament requires a practical experimental model. Bovine teeth are advantageous in terms of size and availability, but information is lacking as to the anatomy and histology of their periodontium. The aim of this study, therefore, was to characterize the anatomy and histology of the attachment apparatus in fully erupted bovine mandibular first molars. A total of 13 teeth were processed for the production of undecalcified ground sections and decalcified semi-thin sections, for NaOH maceration, and for polarized light microscopy. Histomorphometric measurements relevant to the mechanical behavior of the periodontal ligament included width, number, size and area fraction of blood vessels and fractal analysis of the two hard-soft tissue interfaces. The histological and histomorphometric analyses were performed at four different root depths and at six circumferential locations around the distal and mesial roots. The variety of techniques applied provided a comprehensive view of the tissue architecture of the bovine periodontal ligament. Marked regional variations were observed in width, surface geometry of the two bordering hard tissues (cementum and alveolar bone), structural organization of the principal periodontal ligament connective tissue fibers, size, number and numerical density of blood vessels in the periodontal ligament. No predictable pattern was observed, except for a statistically significant increase in the area fraction of blood vessels from apical to coronal. The periodontal ligament width was up to three times wider in bovine teeth than in human teeth. The fractal analyses were in agreement with the histological observations showing frequent signs of remodeling activity in the alveolar bone - a finding which may be related to the magnitude and direction of occlusal forces in ruminants. Although samples from the apical root portion are not suitable for biomechanical testing, all other levels in the buccal and lingual aspects of the mesial and distal roots may be considered. The bucco-mesial aspect of the distal root appears to be the most suitable location.
Collapse
Affiliation(s)
- Dieter D Bosshardt
- Department of Periodontology and Fixed Prosthodontics, School of Dental Medicine, University of Berne, Berne, Switzerland.
| | | | | | | |
Collapse
|
332
|
Trubiani O, Scarano A, Orsini G, Di Iorio D, D'Arcangelo C, Piccirilli M, Sigismondo M, Caputi S. The performance of human periodontal ligament mesenchymal stem cells on xenogenic biomaterials. Int J Immunopathol Pharmacol 2008; 20:87-91. [PMID: 17897507 DOI: 10.1177/039463200702001s17] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mesenchymal stem cells from periodontal ligament (PDL-MSCs) hold great promise for bone regeneration. Most studies regarding the osteogenic differentiation of stem cells from periodontal tissue suggest that PDL cells may have many osteoblast-like properties, including the ability to form calcified nodules in vitro. This study investigated the morphological and histochemistry aspects of human PDL-MSCs, induced for osteogenic differentiation and seeded on a xenogenic porcine bone substitute in vitro, at different times of incubation. This biomaterial seems physically identical to human bone, and it has been reported to be osteoconductive. Our results indicated that the cells had a high affinity for the three-dimensional biomaterials; in fact, cellular proliferation and colonization was evident, and after 21 days the adherent cells started to detach themselves from the substrate, and at 30 days of incubation in differentiation medium, the cells completely lost the adhesion to the Petri's disk, englobing all bioparticles. In conclusion, the in vitro behaviour of PDL-MSCs and their relationship with three-dimensional scaffold biomaterials encourage in vivo investigations for their use in dental tissue regeneration.
Collapse
Affiliation(s)
- O Trubiani
- Department of Stomatology and Oral Sciences, University of Chieti-Pescara, Chieti, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
333
|
Shiga M, Saito M, Hattori M, Torii C, Kosaki K, Kiyono T, Suda N. Characteristic phenotype of immortalized periodontal cells isolated from a Marfan syndrome type I patient. Cell Tissue Res 2007; 331:461-72. [DOI: 10.1007/s00441-007-0528-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Accepted: 09/20/2007] [Indexed: 10/22/2022]
|
334
|
Warhonowicz M, Staszyk C, Gasse H. Immunohistochemical detection of matrix metalloproteinase-1 in the periodontal ligament of equine cheek teeth. Tissue Cell 2007; 39:369-76. [PMID: 17915275 DOI: 10.1016/j.tice.2007.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 06/28/2007] [Accepted: 07/11/2007] [Indexed: 11/27/2022]
Abstract
The hypsodont equine cheek tooth erupts continuously throughout life. The collagen fibers of the periodontal ligament (PDL) have to remodel constantly to allow the tooth to move in an occlusal direction. Remodeling of the collagen fiber bundles needs to be well-coordinated in order to maintain functional tooth support. The aim of this study was to examine the role of matrix metalloproteinase-1 (MMP-1) in the collagen remodeling of the equine PDL under physiological conditions. Specimens containing the PDL interposed between the dental cementum and the alveolar bone were taken from nine Warmblood horses at three designated horizontal levels: subgingival, middle, and apical. The expression of MMP-1 was detected immunohistochemically. MMP-1 was found to be present in the specimens of all horses. Immunopositive fibroblasts/fibrocytes were accumulated within individual single collagen fascicles. Our results suggest that MMP-1 induced collagen degradation plays a central role in the physiological remodeling of the equine PDL. The distribution of MMP-1 positive fascicles indicates well-directed remodeling which occurs as an asynchronous process, so that only single collagen fascicles are remodeled at the same time. Due to this remodeling of one fascicle at a time, the overall anchorage of the tooth is preserved at all times.
Collapse
Affiliation(s)
- M Warhonowicz
- Institute of Anatomy, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, D-30173 Hannover, Germany
| | | | | |
Collapse
|
335
|
Ibi M, Ishisaki A, Yamamoto M, Wada S, Kozakai T, Nakashima A, Iida J, Takao S, Izumi Y, Yokoyama A, Tamura M. Establishment of cell lines that exhibit pluripotency from miniature swine periodontal ligaments. Arch Oral Biol 2007; 52:1002-8. [PMID: 17543882 DOI: 10.1016/j.archoralbio.2007.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 12/04/2006] [Accepted: 04/25/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The periodontal ligament (PDL) is a fibrous connective tissue composed of heterogeneous cell types, including PDL fibroblasts. It is not clear whether cells within the PDL fibroblast population retain the potency to differentiate into other cell types. DESIGN In the present study, clonal cell lines, derived from Clawn miniature swine PDLs, were established by gene transfection for a human telomerase reverse transcriptase, and characterized. RESULTS These cell lines, denoted TesPDL1-4, had PDL fibroblasts that showed fibroblastic morphology and expressed procollagen alpha1(I), osteopontin, periostin and alkaline phosphatase mRNA. Under the specific culture conditions, TesPDL3 cells also have the ability to express CD31, vascular endothelial cadherin, von Willebrand factor, osteocalcin, and to form extracellular mineralized nodules. CONCLUSIONS Our data indicate that TesPDL3 cells have unique properties of expressing several phenotype of fibroblasts, vascular endothelial cells and osteoblasts in cultures.
Collapse
Affiliation(s)
- Miho Ibi
- Department of Oral Biochemistry and Molecular Biology, Graduate School of Dental Medicine, Hokkaido University, North 13, West 7, Sapporo 060-8586, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
336
|
Sant'Ana AC, Marques MM, Barroso EC, Passanezi E, de Rezende MLR. Effects of TGF-β1, PDGF-BB, and IGF-1 on the Rate of Proliferation and Adhesion of a Periodontal Ligament Cell Lineage In Vitro. J Periodontol 2007; 78:2007-17. [DOI: 10.1902/jop.2007.070119] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
337
|
Yamada S, Tomoeda M, Ozawa Y, Yoneda S, Terashima Y, Ikezawa K, Ikegawa S, Saito M, Toyosawa S, Murakami S. PLAP-1/Asporin, a Novel Negative Regulator of Periodontal Ligament Mineralization. J Biol Chem 2007; 282:23070-80. [PMID: 17522060 DOI: 10.1074/jbc.m611181200] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Periodontal ligament-associated protein-1 (PLAP-1)/asporin is a recently identified novel member of the small leucine-rich repeat proteoglycan family. PLAP-1/asporin is involved in chondrogenesis, and its involvement in the pathogenesis of osteoarthritis has been suggested. We report that PLAP-1/asporin is also expressed specifically and predominantly in the periodontal ligament (PDL) and that it negatively regulates the mineralization of PDL cells. In situ hybridization analysis revealed that PLAP-1/asporin was expressed specifically not only in the PDL of an erupted tooth but also in the dental follicle, which is the progenitor tissue of the PDL during tooth development. Overexpression of PLAP-1/asporin in mouse PDL-derived clone cells interfered with both naturally and bone morphogenetic protein 2 (BMP-2)-induced mineralization of the PDL cells. On the other hand, knockdown of PLAP-1/asporin transcript levels by RNA interference enhanced BMP-2-induced differentiation of PDL cells. Furthermore co-immunoprecipitation assays showed a direct interaction between PLAP-1/asporin and BMP-2 in vitro, and immunohistochemistry staining revealed the co-localization of PLAP-1/asporin and BMP-2 at the cellular level. These results suggest that PLAP-1/asporin plays a specific role(s) in the periodontal ligament as a negative regulator of cytodifferentiation and mineralization probably by regulating BMP-2 activity to prevent the periodontal ligament from developing non-physiological mineralization such as ankylosis.
Collapse
Affiliation(s)
- Satoru Yamada
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
338
|
Christgau M, Caffesse RG, Schmalz G, D'Souza RN. Extracellular matrix expression and periodontal wound-healing dynamics following guided tissue regeneration therapy in canine furcation defects. J Clin Periodontol 2007; 34:691-708. [PMID: 17590157 DOI: 10.1111/j.1600-051x.2007.01097.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AIM Temporal and spatial expression pattern of extracellular matrix (ECM) components in furcation defects following guided tissue regeneration (GTR) compared with open-flap debridement (OFD). MATERIAL AND METHODS In 21 dogs, mandibular second and fourth pre-molars were treated with one non-resorbable and three different resorbable membranes. Third pre-molars were treated by OFD. After 2, 4, 8 weeks and 3, 6, and 12 months, tissues were analysed by immunohistochemistry for collagen I (Col-I) and III (Col-III), fibronectin (FN), bone sialoprotein (BSP), and osteopontin (OPN). RESULTS At 2 weeks, the defect was mainly occupied by FN+ granulation tissue (GT), which was sequentially replaced by new connective tissue expressing FN, Col-I, and increasingly Col-III. Following superficial resorptions by OPN+ osteoclasts and odontoclasts, cementum and bone formation ensued with strong expression of BSP and OPN along bone and tooth surfaces. Deposition of Col-I, FN, BSP and OPN+ cementoid and osteoid became evident after 4 weeks. Extrinsic fibres of cementum and bone stained intensely for Col-III. The newly formed periodontal ligament expressed FN, Col-I, and Col-III, but no BSP or OPN. CONCLUSIONS The spatial ECM expression was similar for OFD and the different GTR methods, although the timing and quantity of ECM expression were influenced by wound stabilization and inflammatory reactions.
Collapse
Affiliation(s)
- Michael Christgau
- Department of Operative Dentistry and Periodontology, University of Regensburg, Regensburg, Germany.
| | | | | | | |
Collapse
|
339
|
Berendsen AD, Smit TH, Hoeben KA, Walboomers XF, Bronckers ALJJ, Everts V. Alkaline phosphatase-induced mineral deposition to anchor collagen fibrils to a solid surface. Biomaterials 2007; 28:3530-6. [PMID: 17512583 DOI: 10.1016/j.biomaterials.2007.04.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 04/26/2007] [Indexed: 10/23/2022]
Abstract
Reconstruction of tendon and ligament tissues requires proper attachment of the tissue-engineered construct to surrounding tissues. A problem of reconstructing collagen-rich tissues is that an in vitro engineered collagenous network containing fibroblasts will contract and detach from a solid surface. In vivo anchorage of soft connective tissues to mineralized tissues like bones and teeth is accomplished by embedding collagen fibrils into mineralized layers. Mineralization is partially the result of local activity of the enzyme alkaline phosphatase (ALP). In this study, we tested whether ALP-induced mineral deposition at the interface between a collagen gel and a polystyrene or polyetheretherketone (PEEK) surface could prevent gel detachment from the surface. Coating of culture wells with intestinal ALP prevented detachment of gels harbored with human periodontal ligament (PDL) fibroblasts in the presence of its substrate beta-glycerophosphate. Mineral deposition was observed predominantly at the interface of collagen gel and well surface. The contractile properties of fibroblasts were not influenced by either ALP, beta-glycerophosphate or both. The presence of ALP on a solid surface and providing its substrate to allow mineral deposition can prevent detachment of collagen matrices. Our findings provide a tool to induce attachment of fibrillar collagen to a solid surface; an approach that seems useful for reconstruction of load-bearing tissues and attachment of ligaments to implants.
Collapse
Affiliation(s)
- Agnes D Berendsen
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, Research Institute MOVE, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
340
|
Abstract
AIM To report a rare case of multiple idiopathic apical root resorption in an adult male. SUMMARY A 27-year-old male with no history of medical or dental disorders was referred by his family dentist for evaluation of extreme root resorption involving the apical region of most of his teeth. A complete haematological investigation was conducted and all the results were within the normal range. Mobility of the teeth was physiologic and no abnormal periodontal pockets were observed. A diagnosis of multiple idiopathic apical root resorption was made. KEY LEARNING POINTS *Apical root resorption of multiple teeth can be related to no specific aetiology and is known as idiopathic apical root resorption. *It is mostly seen in young adult males; maxillary teeth are more frequently involved. *No preventive or therapeutic regimen is known and monitoring accompanied by periodontal maintenance is recommended.
Collapse
Affiliation(s)
- F Moazami
- Department of Endodontics, School of Dental Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | |
Collapse
|
341
|
Benatti BB, Silvério KG, Casati MZ, Sallum EA, Nociti FH. Physiological features of periodontal regeneration and approaches for periodontal tissue engineering utilizing periodontal ligament cells. J Biosci Bioeng 2007; 103:1-6. [PMID: 17298893 DOI: 10.1263/jbb.103.1] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Accepted: 09/28/2006] [Indexed: 12/26/2022]
Abstract
Experimental studies have shown that the potential of periodontal regeneration seems to be limited by the regenerative capacity of the cells involved. The regeneration of damaged periodontal tissues is mediated by various periodontal cells and is regulated by a vast array of extracellular matrix informational molecules that induce both selective and nonselective responses in different cell lineages and their precursors. In this paper, we first review periodontal ligament tissue and its different cell subpopulations including fibroblasts and paravascular stem cells, and their functions during the development and homeostasis of periodontal tissues. Because conventional periodontal regeneration methods remain insufficient to obtain a complete and reliable periodontal regeneration, the concept of periodontal tissue engineering has been based on the generation of the conditions necessary to improve the healing of periodontal tissues. Additionally, the potential of periodontal ligament cells for use in periodontal tissue engineering to overcome the limitations of conventional periodontal regenerative therapies is discussed, followed by an update of the recent progress and future directions of research utilizing periodontal ligament cells for predictable periodontal regeneration.
Collapse
Affiliation(s)
- Bruno Braga Benatti
- Department of Prosthodontics and Periodontics, Division of Periodontics, School of Dentistry at Piracicaba, UNICAMP, Av. Limeira 901, CEP 13414-903, Piracicaba, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
342
|
Gronthos S, Mrozik K, Shi S, Bartold PM. Ovine periodontal ligament stem cells: isolation, characterization, and differentiation potential. Calcif Tissue Int 2006; 79:310-7. [PMID: 17033723 DOI: 10.1007/s00223-006-0040-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 05/28/2006] [Indexed: 01/09/2023]
Abstract
Periodontal disease leads to destruction of the connective tissues responsible for restraining teeth within the jaw. To date, various conventional therapies for periodontal regeneration have shown limited and variable clinical outcomes. Recent studies have suggested that newly identified human periodontal ligament stem cells (PDLSCs) may offer an alternate and more reliable strategy for the treatment of periodontal disease using a cell-based tissue engineering approach. In the present study, we generated enriched preparations of PDLSCs derived from ovine periodontal ligament using immunomagnetic bead selection, based on expression of the mesenchymal stem cell-associated antigen CD106 (vascular cell adhesion molecule 1). These CD106+ ovine PDLSCs demonstrated the capacity to form adherent clonogenic clusters of fibroblast-like cells when plated at low densities in vitro. Ex vivo-expanded ovine PDLSCs exhibited a high proliferation rate in vitro and expressed a phenotype (CD44+, CD166+, CBFA-1+, collagen-I+, bone sialoprotein+) consistent with human-derived PDLSCs. Furthermore, cultured ovine PDLSCs expressed high transcript levels of the ligament/tendon-specific early transcription factor scleraxis. Importantly, ex vivo-expanded ovine PDLSCs demonstrated the capacity to regenerate both cementum-like mineral and periodontal ligament when transplanted into NOD/SCID mice. The results from the present study suggest that ovine PDLSCs may potentially be used as a novel cellular therapy to facilitate successful and more predictable regeneration of periodontal tissue using an ovine preclinical model of periodontal disease as a prelude to human clinical studies.
Collapse
Affiliation(s)
- S Gronthos
- Division of Haematology, Mesenchymal Stem Cell Group, Frome Road, Adelaide 5000, SA, Australia
| | | | | | | |
Collapse
|
343
|
Kim HS, Park JW, Yeo SI, Choi BJ, Suh JY. Effects of high glucose on cellular activity of periodontal ligament cells in vitro. Diabetes Res Clin Pract 2006; 74:41-7. [PMID: 16814898 DOI: 10.1016/j.diabres.2006.03.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 02/24/2006] [Accepted: 03/15/2006] [Indexed: 10/24/2022]
Abstract
Periodontal ligament (PDL) cells are the most important cells in the healing of wounds and the regeneration of periodontal tissues. The response of PDL cells regarding cellular activity to high glucose concentration levels could be the key in understanding the events associated with the dental care of brittle diabetes. We studied the effect of high glucose concentration levels on the cellular activity of PDL cells from five non-diabetic patients in vitro. PDL cells were cultured for 14 days in a normal glucose medium (1100mg/l of glucose) or in a high glucose medium (4500mg/l of glucose) and a 3-(4,5-dimethylithiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay for cellular viability was also performed. In order to evaluate the differentiation of PDL cells to osteoblast-like cells, mineralized nodule formation was induced with supplemented media containing 50microg/ml of ascorbic acid, 10mM of beta-glycerophosphate and 100nM of dexamethasone for 21 days. High glucose significantly inhibited the proliferation of PDL cells and reduced the optic density of the MTT assay. Concerning the mineralized nodule formation, the percentage of the calcified area to the total culture dish of PDL cells in high glucose level was lower than that in the normal glucose medium. In conclusion, high glucose inhibits the proliferation and differentiation of PDL cells. The data provide an explanation for the delayed periodontal regeneration and healing in diabetic patients.
Collapse
Affiliation(s)
- Hyun Sook Kim
- Department of Periodontology, College of Dentistry, Kyungpook National University, 188-1 Samduk 2Ga, Jung-Gu, Daegu 702-412, South Korea
| | | | | | | | | |
Collapse
|
344
|
Staszyk C, Gasse H. Primary culture of fibroblasts and cementoblasts of the equine periodontium. Res Vet Sci 2006; 82:150-7. [PMID: 16997336 DOI: 10.1016/j.rvsc.2006.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 07/09/2006] [Accepted: 07/14/2006] [Indexed: 11/25/2022]
Abstract
Fibroblasts and cementoblasts in the periodontal ligament (PDL) of equine cheek teeth were harvested, and monocultures were obtained by means of a "selective detachment" procedure. Cells were characterized by morphological criteria and by immunostaining for vimentin, FVIII, pan-cytokeratin, smooth muscle actin, and pro-collagen. Cementogenic potential of the cells was determined by immunostaining for osteopontin and by histochemical detection of alkaline phosphatase. Equine periodontal fibroblasts (EPF) were spindle-shaped and polygonal. Equine dental cementoblasts (EDC) grew in cobblestone-like clusters. Both EPF and EDC stained positive for vimentin. Only EPF contained smooth muscle actin, pro-collagen, and alkaline phosphatase. Few EDC stained positive for osteopontin. The phenotypes of EPF and EDC and their specific expression of proteins corresponded to PDL fibroblasts and dental cementoblasts of other species. These results indicate the potential use of EPF and EDC in an adequate in vitro model of equine cementogenesis and equine periodontal remodeling.
Collapse
Affiliation(s)
- C Staszyk
- Institute of Anatomy, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, D-30173 Hannover, Germany.
| | | |
Collapse
|
345
|
Affiliation(s)
- Margarita Zeichner-David
- Centre for Craniofacial Molecular Biology, School of Dentistry, Division of Surgical, Therapeutics and Bioengineering Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
346
|
Jayawardena CK, Takano Y. Nerve-epithelium association in the periodontal ligament of guinea pig teeth. Arch Oral Biol 2006; 51:587-95. [PMID: 16510117 DOI: 10.1016/j.archoralbio.2006.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 11/15/2005] [Accepted: 01/16/2006] [Indexed: 11/25/2022]
Abstract
Several lines of evidence have suggested that periodontal nerves have other roles besides sensory function. Exploring the distribution pattern of nerves in relation to other structures within the periodontal ligament of various species should be important to understand their roles within the ligament. This study investigated whether any association exists between the nerves and the epithelial cells in the periodontal ligament of continuously erupting guinea pig molars, which show distinct enamel epithelium layers among the cementum pearls. Ten guinea pigs were fixed by vascular perfusion and jaw sections were processed for immunohistochemistry of protein gene product 9.5 (PGP 9.5), growth-associated protein-43 (GAP-43) and glia-specific S-100 protein, and for enzyme histocytochemistry of cholinesterase. Nerves that were immunopositive for the above neuronal markers were located predominantly in the alveolus-related part of the periodontal ligament. Some nerves, immunoreactive for PGP 9.5 and GAP-43, were also found in the tooth-related part (TRP) of the periodontal ligament close to the tooth surface. PGP 9.5-positive nerves in the TRP appeared very thin and terminated by making loops or plexus-like structures in close apposition to the epithelium layers, overlying the enamel surface in between cementum pearls. Such an intimate association between nerves and the enamel epithelium was not found in the labial periodontal tissue of incisors or the apical growing end of the molar, where periodontal fibre attachment was indistinct. The association between nerves and epithelium in the periodontal ligament of guinea pig molar is site specific and is only seen in the presence of cementum, suggesting that this association is related to the attachment function of the ligament.
Collapse
Affiliation(s)
- Chantha K Jayawardena
- Department of Basic Sciences, Faculty of Dental Sciences, University of Peradeniya, Peradeniya, Sri Lanka.
| | | |
Collapse
|
347
|
Schätzle M, Tanner SD, Bosshardt DD. Progressive, generalized, apical idiopathic root resorption and hypercementosis. J Periodontol 2006; 76:2002-11. [PMID: 16274322 DOI: 10.1902/jop.2005.76.11.2002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Root resorption is a multifactorial process that results in loss of tooth structure. The causes of root resorption may vary, leading to several types of resorptions. Some factors have been identified and may be categorized into physiological resorption, local factors, systemic conditions, and idiopathic resorptions. The objective of this report was to present a case of a 17-year-old white female with progressive, generalized, apical idiopathic root resorption followed up for 34 months. METHODS Two panoramic radiographs, 14 and 34 months after initial clinical and radiological examinations, showed the rapid progression of apical root resorption. Two molars, teeth #15 and #16, which had to be extracted, and a bone sample from the distal aspect of tooth #15 were processed for histologic analysis. RESULTS Two millimeters apical to the cemento-enamel junction, an abrupt increase in the cementum thickness was noted, amounting to 300 and 800 microm in teeth #15 and #16, respectively. The thickening of the cementum layer was due to an accelerated deposition of cellular intrinsic fiber cementum. An unusually high number of mineralization foci were observed in association with acellular extrinsic fiber cementum, and both free and fused cementicles were seen. In contrast to tooth #16, tooth #15 revealed extensive dentin replacement by a bone-like and a cementum-like tissue. Furthermore, ankylosis was demonstrated in tooth #15 and confirmed in the bone sample. CONCLUSIONS At present, there is no preventive or therapeutic regimen for the type of root resorption seen in this case report. Treatment usually consists of the extraction of teeth with advanced lesions.
Collapse
Affiliation(s)
- Marc Schätzle
- Department of Periodontology and Fixed Prosthodontics, School of Dental Medicine, University of Berne, Berne, Switzerland.
| | | | | |
Collapse
|
348
|
Fujii S, Maeda H, Wada N, Kano Y, Akamine A. Establishing and characterizing human periodontal ligament fibroblasts immortalized by SV40T-antigen and hTERT gene transfer. Cell Tissue Res 2006; 324:117-25. [PMID: 16408200 DOI: 10.1007/s00441-005-0101-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 10/10/2005] [Indexed: 01/17/2023]
Abstract
The periodontal ligament (PDL) is a highly specialized tissue connecting the cementum with the tooth socket bone and affects the life span of the tooth. However, little is known about the precise characteristics and regenerative mechanism of PDL cells because of the absence of specific markers and cell lines. Therefore, we aimed to establish three immortalized human PDL fibroblast cell lines by using simian virus40 T-antigen (SV40T-Ag) and human telomerase reverse transcriptase (hTERT) transfection, expecting these cells to have the characteristics of primary cells. The transfected cells were named STPLF. The expression of SV40T-Ag and hTERT in all STPLF lines was verified by using the semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) method, stretch PCR analysis, or Western blotting analysis. All STPLF showed stable proliferation at more than 120 population doublings (PD), whereas primary human PDL fibroblasts (HPLF) stopped at 10-20 PD. Characterization by RT-PCR analysis revealed that all STPLF genes mimicked the expression of their respective original HPLF genes. STPLF expressed runt-related transcription factor-2, osterix, alkaline phosphatase, osteopontin, osteocalcin, periostin, receptor activator of NF-kappa B ligand, osteoprotegerin, epidermal growth factor receptor, alpha-smooth muscle actin, and type XII collagen. STPLF stimulated with 50 micro g/ml ascorbic acid and 2 mM beta-glycerophosphate for 4 weeks produced more calcified deposits than did HPLF cultured with the same reagents. These results suggest that each STPLF line retained the characteristics of the respective original HPLF, that STPLF gained increased calcification activity, and that STPLF are helpful tools for studying the biology and regenerative mechanisms of human PDL.
Collapse
Affiliation(s)
- Shinsuke Fujii
- Department of Endodontology and Operative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
349
|
de Vries TJ, Schoenmaker T, Wattanaroonwong N, van den Hoonaard M, Nieuwenhuijse A, Beertsen W, Everts V. Gingival fibroblasts are better at inhibiting osteoclast formation than periodontal ligament fibroblasts. J Cell Biochem 2006; 98:370-82. [PMID: 16440316 DOI: 10.1002/jcb.20795] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Various studies indicate that periodontal ligament fibroblasts (PLF) have some similarities to osteoblasts, for example they have the capacity to induce the formation of osteoclast-like cells. Here, we investigated whether a second population of tooth-associated fibroblasts, gingival fibroblasts (GF), has similar osteoclastogenesis properties. PLF and GF were co-cultured with peripheral blood mononuclear cells (PBMC) in the presence and absence of dexamethasone and 1alpha,25dihydroxycholecalciferol (dex + vit D(3)) on plastic and on cortical bone slices. Tartrate resistant acid phosphatase (TRACP) positive multinucleated cells (MNCs) were more abundant in co-cultures with PLF than in GF-PBMC co-cultures, more abundant on plastic compared to bone and more abundant in the presence of dex + vit D(3). In line with these findings was an inhibition of MNC formation and not inhibition of existing osteoclasts by medium conditioned by GF. We next investigated whether expression of molecules important for osteoclastogenesis differed between the two types of fibroblasts and whether these molecules were regulated by dex + vit D(3). OPG was detected at high levels in both fibroblast cultures, whereas RANKL could not be detected. Resorption of bone did not occur by the MNCs formed in the presence of either fibroblast subpopulation, suggesting that the fibroblasts secrete inhibitors of bone resorption or that the osteoclast-like cells were not functional. The incapacity of the MNCs to resorb was abolished by culturing the fibroblast-PBMC cultures with M-CSF and RANKL. Our results suggest that tooth-associated fibroblasts may trigger the formation of osteoclast-like cells, but more importantly, they play a role in preventing bone resorption, since additional stimuli are required for the formation of active osteoclasts.
Collapse
Affiliation(s)
- Teun J de Vries
- Department of Experimental Periodontology, Universiteit van Amsterdam and Vrije Universiteit, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
350
|
Young CS, Abukawa H, Asrican R, Ravens M, Troulis MJ, Kaban LB, Vacanti JP, Yelick PC. Tissue-engineered hybrid tooth and bone. ACTA ACUST UNITED AC 2005; 11:1599-610. [PMID: 16259613 DOI: 10.1089/ten.2005.11.1599] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Tooth loss accompanied by alveolar bone resorption presents a significant clinical problem. We have investigated the utility of a tissue-engineering approach to provide corrective therapies for tooth-bone loss. Hybrid tooth-bone tissues were bioengineered as follows. Tooth implants were generated from pig third molar tooth bud cells seeded onto polyglycolide (PGA) and polyglycolide-colactide (PLGA) scaffolds, and grown for 4 weeks in the omenta of adult rat hosts. Bone implants were generated from osteoblasts induced from bone marrow progenitor cells obtained from the same pig, seeded onto PLGA fused wafer scaffolds, and grown for 10 days in a rotational oxygen-permeable bioreactor system. The tooth and bone implants were harvested, sutured together, reimplanted, and grown in the omenta for an additional 8 weeks. Histological and immunohistochemical analyses of the excised hybrid tooth-bone constructs revealed the presence of tooth tissues, including primary and reparative dentin and enamel in the tooth portion of hybrid tooth-bone implants, and osteocalcin and bone sialoprotein-positive bone in the bone portion of hybrid tooth-bone constructs. Collagen type III-positive connective tissue resembling periodontal ligament and tooth root structures were present at the interface of bioengineered tooth and bone tissues. These results demonstrate the utility of a hybrid tooth-bone tissue-engineering approach for the eventual clinical treatment of tooth loss accompanied by alveolar bone resorption.
Collapse
Affiliation(s)
- Conan S Young
- Department of Cytokine Biology, Forsyth Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|