301
|
Li YJ, Sun YX, Hao RM, Wu P, Zhang LJ, Ma X, Ma Y, Wang PY, Xie N, Xie SY, Chen W. miR-33a-5p enhances the sensitivity of lung adenocarcinoma cells to celastrol by regulating mTOR signaling. Int J Oncol 2018; 52:1328-1338. [PMID: 29484434 DOI: 10.3892/ijo.2018.4276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 02/13/2018] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) have recently become a popular focus of cancer research due to their ability to act as oncogenes or tumor suppressors. In the present study, miR‑33a‑5p expression was identified to be downregulated in lung adenocarcinoma samples compared with normal, which suggested that miR‑33a‑5p may serve as a tumor suppressor gene. Transfection with miR‑33a‑5p mimics inhibited the proliferation and migration of A549 and LTEP‑a‑2 cells and increased cellular apoptosis. A luciferase reporter assay confirmed that miR‑33a‑5p targets the 3'‑untranslated region of the mechanistic target of rapamycin (mTOR) gene. mTOR expression was decreased in A549 and LTEP‑a‑2 cells treated with miR‑33a‑5p mimics, as well as the expression of its downstream effectors phosphorylated (p)‑p70 ribosomal protein S6 kinase (p70S6K) and p‑eukaryotic translation initiation factor 4E binding protein 1 (4EBP1). Following treatment with celastrol, miR‑33a‑5p expression was upregulated, and miR‑33a‑5p could enhance cellular sensitivity to celastrol. Western blot analysis revealed that the expression of mTOR, p‑p70S6K and p‑4EBP1 decreased following celastrol treatment. These results suggested that mTOR was involved in the mechanism by which miR‑33a‑5p enhanced the sensitivity of lung adenocarcinoma cells to celastrol. Furthermore, LTEP‑a‑2 cells were xenografted subcutaneously into nude mice, to examine the effect of celastrol and miR‑33a‑5p on the growth of LTEP‑a‑2 cells in vivo. The results demonstrated that tumor growth in the celastrol‑treated or miR‑33a‑5p‑treated group was attenuated compared with the control group. Notably, tumor growth in the combination treatment group was almost arrested after 2 weeks. In addition, celastrol upregulated the expression of miR‑33a‑5p, and high expression of miR‑33a‑5p inhibited mTOR and its downstream effectors. In summary, miR‑33a‑5p inhibited the proliferation of lung adenocarcinoma cells, enhanced the antitumor effect of celastrol, and improved sensitivity to celastrol by targeting mTOR in lung adenocarcinoma in vitro and in vivo.
Collapse
Affiliation(s)
- You-Jie Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yun-Xiao Sun
- Department of Pediatrics, The Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Rui-Min Hao
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Pin Wu
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Li-Jun Zhang
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xu Ma
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Ying Ma
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Ping-Yu Wang
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Ning Xie
- Department of Chest Surgery, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Shu-Yang Xie
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Wei Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
302
|
Melone MAB, Valentino A, Margarucci S, Galderisi U, Giordano A, Peluso G. The carnitine system and cancer metabolic plasticity. Cell Death Dis 2018; 9:228. [PMID: 29445084 PMCID: PMC5833840 DOI: 10.1038/s41419-018-0313-7] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 12/11/2022]
Abstract
Metabolic flexibility describes the ability of cells to respond or adapt its metabolism to support and enable rapid proliferation, continuous growth, and survival in hostile conditions. This dynamic character of the cellular metabolic network appears enhanced in cancer cells, in order to increase the adaptive phenotype and to maintain both viability and uncontrolled proliferation. Cancer cells can reprogram their metabolism to satisfy the energy as well as the biosynthetic intermediate request and to preserve their integrity from the harsh and hypoxic environment. Although several studies now recognize these reprogrammed activities as hallmarks of cancer, it remains unclear which are the pathways involved in regulating metabolic plasticity. Recent findings have suggested that carnitine system (CS) could be considered as a gridlock to finely trigger the metabolic flexibility of cancer cells. Indeed, the components of this system are involved in the bi-directional transport of acyl moieties from cytosol to mitochondria and vice versa, thus playing a fundamental role in tuning the switch between the glucose and fatty acid metabolism. Therefore, the CS regulation, at both enzymatic and epigenetic levels, plays a pivotal role in tumors, suggesting new druggable pathways for prevention and treatment of human cancer.
Collapse
Affiliation(s)
- Mariarosa Anna Beatrice Melone
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Anna Valentino
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- Institute of Agro-Environmental and Forest Biology, National Research Council, IBAF-CNR, Naples, Italy
| | | | - Umberto Galderisi
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonio Giordano
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.
| | - Gianfranco Peluso
- Institute of Agro-Environmental and Forest Biology, National Research Council, IBAF-CNR, Naples, Italy.
| |
Collapse
|
303
|
Osteoblast-targeted delivery of miR-33-5p attenuates osteopenia development induced by mechanical unloading in mice. Cell Death Dis 2018; 9:170. [PMID: 29415986 PMCID: PMC5833703 DOI: 10.1038/s41419-017-0210-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/11/2017] [Accepted: 12/06/2017] [Indexed: 01/06/2023]
Abstract
A growing body of evidence has revealed that microRNAs (miRNAs) play crucial roles in regulating osteoblasts and bone metabolism. However, the effects of miRNAs in osteoblast mechanotransduction remain to be defined. In this study, we investigated the regulatory effect of miR-33-5p in osteoblasts and tested its anti-osteopenia effect when delivered by an osteoblast-targeting delivery system in vivo. First, we demonstrated that miR-33-5p could promote the activity and mineralization of osteoblasts without influencing their proliferation in vitro. Then our data showed that supplementing miR-33-5p in osteoblasts by a targeted delivery system partially recovered the osteopenia induced by mechanical unloading at the biochemical, microstructural, and biomechanical levels. In summary, our findings demonstrate that miR-33-5p is a key factor in the occurrence and development of the osteopenia induced by mechanical unloading. In addition, targeted delivery of the mimics of miR-33-5p is a promising new strategy for the treatment of pathological osteopenia.
Collapse
|
304
|
Abstract
The transcriptional signature of Kupffer cells & Alveolar macrophages are enriched for lipid metabolism genes. Lipid metabolism may control macrophage phenotype. Dysregulated lipid metabolism in macrophages contributes to disease pathology.
Distinct macrophage populations throughout the body display highly heterogeneous transcriptional and epigenetic programs. Recent research has highlighted that these profiles enable the different macrophage populations to perform distinct functions as required in their tissue of residence, in addition to the prototypical macrophage functions such as in innate immunity. These ‘extra’ tissue-specific functions have been termed accessory functions. One such putative accessory function is lipid metabolism, with macrophages in the lung and liver in particular being associated with this function. As it is now appreciated that cell metabolism not only provides energy but also greatly influences the phenotype and function of the cell, here we review how lipid metabolism affects macrophage phenotype and function and the specific roles played by macrophages in the pathogenesis of lipid-related diseases. In addition, we highlight the current questions limiting our understanding of the role of macrophages in lipid metabolism.
Collapse
Affiliation(s)
- Anneleen Remmerie
- Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB-UGent Center for Inflammation Research, Technologiepark 927, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Charlotte L Scott
- Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB-UGent Center for Inflammation Research, Technologiepark 927, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
305
|
Huang J, Zhao D, Liu Z, Liu F. Repurposing psychiatric drugs as anti-cancer agents. Cancer Lett 2018; 419:257-265. [PMID: 29414306 DOI: 10.1016/j.canlet.2018.01.058] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 01/11/2023]
Abstract
Cancer is a major public health problem and one of the leading contributors to the global disease burden. The high cost of development of new drugs and the increasingly severe burden of cancer globally have led to increased interest in the search and development of novel, affordable anti-neoplastic medications. Antipsychotic drugs have a long history of clinical use and tolerable safety; they have been used as good targets for drug repurposing. Being used for various psychiatric diseases for decades, antipsychotic drugs are now reported to have potent anti-cancer properties against a wide variety of malignancies in addition to their antipsychotic effects. In this review, an overview of repurposing various psychiatric drugs for cancer treatment is presented, and the putative mechanisms for the anti-neoplastic actions of these antipsychotic drugs are reviewed.
Collapse
Affiliation(s)
- Jing Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China; Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center for Mental Disorders (Xiangya), Changsha, Hunan, 410011, China; Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, 410011, China
| | - Danwei Zhao
- Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China.
| |
Collapse
|
306
|
Role of MicroRNAs in Obesity-Induced Metabolic Disorder and Immune Response. J Immunol Res 2018; 2018:2835761. [PMID: 29484304 PMCID: PMC5816850 DOI: 10.1155/2018/2835761] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/02/2017] [Accepted: 12/13/2017] [Indexed: 12/18/2022] Open
Abstract
In all living organisms, metabolic homeostasis and the immune system are the most fundamental requirements for survival. Recently, obesity has become a global public health issue, which is the cardinal risk factor for metabolic disorder. Many diseases emanating from obesity-induced metabolic dysfunction are responsible for the activated immune system, including innate and adaptive responses. Of note, inflammation is the manifest accountant signal. Deeply studied microRNAs (miRNAs) have participated in many pathways involved in metabolism and immune responses to protect cells from multiple harmful stimulants, and they play an important role in determining the progress through targeting different inflammatory pathways. Thus, immune response and metabolic regulation are highly integrated with miRNAs. Collectively, miRNAs are the new targets for therapy in immune dysfunction.
Collapse
|
307
|
Zaiou M, El Amri H, Bakillah A. The clinical potential of adipogenesis and obesity-related microRNAs. Nutr Metab Cardiovasc Dis 2018; 28:91-111. [PMID: 29170059 DOI: 10.1016/j.numecd.2017.10.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/12/2017] [Accepted: 10/15/2017] [Indexed: 02/07/2023]
Abstract
Obesity is a growing health problem commonly associated with numerous metabolic disorders including type 2 diabetes, hypertension, cardiovascular disease, and some forms of cancer. The burden of obesity and associated cardiometabolic diseases are believed to arise through complex interplay between genetics and epigenetics predisposition, nutrition, environment, and lifestyle. However, the molecular basis and the repertoire of obesity-affecting factors are still unknown. Emerging evidence is connecting microRNAs (miRNAs) dysregulation with adipogenesis and obesity. Alteration in miRNAs expression could result in changes in the pattern of genes controlling a range of biological processes including inflammation, lipid metabolism, insulin resistance and adipogenesis. Hence, understanding exact roles of miRNAs as well as the degree of their contribution to the regulation of adipogenesis and fat cell development in obesity would provide new therapeutic targets for the development of novel and effective anti-obesity drugs. The objective of the current review is to: (i) discuss some of the latest development on relevant miRNAs dysregulation mainly in human adipogenesis and obesity, (ii) emphasize the role of circulating miRNAs as new promising therapeutics and attractive potential biomarkers for treating obesity and associated risk factor diseases, (iii) describe how dietary factors may influence obesity through modulation of miRNAs expression, (iv) highlight some of the actual limitations to the promise of miRNAs as novel therapeutics as well as to their translation for the benefit of patients, and finally (v) provide recommendations for future research on miRNA-based therapeutics that could lead to a breakthrough in the treatment of obesity and its associated pathologies.
Collapse
Affiliation(s)
- M Zaiou
- Université de Lorraine, Faculté de Pharmacie, 5 rue Albert Lebrun, 54000, Nancy, France.
| | - H El Amri
- Laboratoire de Génétique de la Gendarmerie Royale, Avenue Ibn Sina, Agdal, Rabat, Morocco
| | - A Bakillah
- State University of New York, Downstate Medical Center, Department of Medicine, 450 Clarkson Ave., Brooklyn, NY, 11203, USA
| |
Collapse
|
308
|
Xie RT, Cong XL, Zhong XM, Luo P, Yang HQ, Lu GX, Luo P, Chang ZY, Sun R, Wu TM, Lv ZW, Fu D, Ma YS. MicroRNA-33a downregulation is associated with tumorigenesis and poor prognosis in patients with hepatocellular carcinoma. Oncol Lett 2018. [PMID: 29541227 DOI: 10.3892/ol.2018.7892] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In order to examine the prognostic significance of miR-33a in patients with hepatocellular carcinoma (HCC), total RNA was extracted from 149 HCC biopsies, 36 of which were paired with para-carcinoma tissues, and miR-33a expression was measured by reverse transcription-quantitative polymerase chain reaction. The results demonstrated that miR-33a expression was decreased in HCC biopsies compared with normal liver tissue samples. It was also demonstrated that miR-33a expression was significantly associated with tumor foci number. Furthermore, overall and progression-free survival time was decreased in patients expressing low miR-33a with multiple tumor foci. Taken together, the low expression of miR-33a may be a potential risk factor for HCC.
Collapse
Affiliation(s)
- Ru-Ting Xie
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China.,Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xian-Ling Cong
- Tissue Bank, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xiao-Ming Zhong
- Department of Radiology, Jiangxi Provincial Tumor Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Ping Luo
- Department of Breast Cancer, Nanchang Third Hospital, Nanchang, Jiangxi 330002, P.R. China
| | - Hui-Qiong Yang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Gai-Xia Lu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Pei Luo
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Zheng-Yan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Ran Sun
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Ting-Miao Wu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Zhong-Wei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Da Fu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yu-Shui Ma
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| |
Collapse
|
309
|
Gao F, Wang FG, Lyu RR, Xue F, Zhang J, Huo R. SLC35E3 identified as a target of novel‑m1061‑5p via microRNA profiling of patients with cardiovascular disease. Mol Med Rep 2018; 17:5159-5167. [PMID: 29393345 PMCID: PMC5865981 DOI: 10.3892/mmr.2018.8498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 11/01/2017] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNA) are considered to be potential therapeutic targets for the treatment of various cardiovascular diseases (CVDs). To understand the underlying mechanism of miRNAs and target genes associated with CVD, deep sequencing of blood samples from three patients with CVD and three controls was performed using the Illumina HiSeq 2000 system. The results of the present study revealed that 65 abnormal hsa‑miRNAs targeted 2,784 putative genes in patients with CVD; 59 upregulated miRNAs targeted 2,401 genes and six downregulated miRNAs targeted 383 genes. In addition, a total of 49 Gene Ontology (GO) biological processes and were enriched, and the target genes of downregulated miRNAs were enriched in 12 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Most of these pathways are responsible for lipid and glycan metabolism. In particular, three downregulated miRNAs, hsa‑miR‑1268b, hsa‑miR‑1273d, hsa‑miR‑3187‑5p, were involved in a‑linolenic acid metabolism. The target genes of upregulated miRNAs were enriched in 15 KEGG pathways, mainly in the 'neurodegenerative diseases and cancers' class. In the present study five novel upregulated miRNAs, including m0499‑5p, m0970‑5p, m1042‑5p, m1061‑5p and m1953‑5p, and a downregulated miRNA, novel‑m1627‑5p, were identified in patients with CVD. Novel‑m1627‑5p was demonstrated to target 146 human genes. Additionally, Novel‑m1061‑5p targeted four genes, including fumarylacetoacetate hydrolase domain containing 2A, potassium voltage‑gated channel, Shaw‑related subfamily, member 4, coiled‑coil domain containing 85C and solute carrier family 35 member E3 (SLC35E3). The GO term, 'carbohydrate derivative transport involving in biological process', was associated with SLC35E3. Novel‑m1061‑5p in patients with CVD may repress the expression levels of SLC35E3, a member of the nucleoside sugar transporter subfamily E, which is known to cause defective glycol‑conjugation in the Golgi complex and/or the endoplasmic reticulum. Further investigation is required to understand the underlying mechanisms of the novel miRNAs. Novel‑m1061‑5p may serve as a marker for prognosis or a potential target for the treatment of CVD.
Collapse
Affiliation(s)
- Feng Gao
- Department of Aesthetic, Plastic and Burn Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Fa-Gang Wang
- Department of Aesthetic, Plastic and Burn Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Ren-Rong Lyu
- Department of Aesthetic, Plastic and Burn Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Feng Xue
- Department of Aesthetic, Plastic and Burn Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jian Zhang
- Department of Aesthetic, Plastic and Burn Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Ran Huo
- Department of Aesthetic, Plastic and Burn Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
310
|
Jennelle LT, Dandekar AP, Magoro T, Hahn YS. Immunometabolic Signaling Pathways Contribute to Macrophage and Dendritic Cell Function. Crit Rev Immunol 2018; 36:379-394. [PMID: 28605345 DOI: 10.1615/critrevimmunol.2017018803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Understanding of antigen-presenting cell (APC) participation in tissue inflammation and metabolism has advanced through numerous studies using systems biology approaches. Previously unrecognized connections between these research areas have been elucidated in the context of inflammatory disease involving innate and adaptive immune responses. A new conceptual framework bridges APC biology, metabolism, and cytokines in the generation of effective T-cell responses. Exploring these connections is paramount to addressing the rising tide of multi-organ system diseases, particularly chronic diseases associated with metabolic syndrome, infection, and cancer. Focused research in these areas will aid the development of strategies to harness and manipulate innate immunology to improve vaccine development, anti-viral, anti-inflammatory, and anti-tumor therapies. This review highlights recent advances in APC "immunometabolism" specifically related to chronic viral and metabolic disease in humans. The goal of this review is to develop an abridged and consolidated outlook on recent thematic updates to APC immunometabolism in the areas of regulation and crosstalk between metabolic and inflammatory signaling and the integrated stress response and how these signals dictate APC function in providing T-cell activation Signal 3.
Collapse
Affiliation(s)
- Lucas T Jennelle
- Department of Microbiology, Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
| | - Aditya P Dandekar
- Department of Microbiology, Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
| | - Tshifhiwa Magoro
- Department of Microbiology, Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
| | - Young S Hahn
- Department of Microbiology, Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
311
|
Gangwar RS, Rajagopalan S, Natarajan R, Deiuliis JA. Noncoding RNAs in Cardiovascular Disease: Pathological Relevance and Emerging Role as Biomarkers and Therapeutics. Am J Hypertens 2018; 31:150-165. [PMID: 29186297 DOI: 10.1093/ajh/hpx197] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022] Open
Abstract
Noncoding RNAs (ncRNA) include a diverse range of functional RNA species-microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) being most studied in pathophysiology. Cardiovascular morbidity is associated with differential expression of myriad miRNAs; miR-21, miR-155, miR-126, miR-146a/b, miR-143/145, miR-223, and miR-221 are the top 9 most reported miRNAs in hypertension and atherosclerotic disease. A single miRNA may have hundreds of messenger RNA targets, which makes a full appreciation of the physiologic ramifications of such broad-ranging effects a challenge. miR-21 is the most prominent ncRNA associated with hypertension and atherosclerotic disease due to its role as a "mechano-miR", responding to arterial shear stresses. "Immuno-miRs", such as miR-155 and miR-223, affect cardiovascular disease (CVD) via regulation of hematopoietic cell differentiation, chemotaxis, and activation in response to many pro-atherogenic stimuli. "Myo-miRs", such as miR-1 and miR-133, affect cardiac muscle plasticity and remodeling in response to mechanical overload. This in-depth review analyzes observational and experimental reports of ncRNAs in CVD, including future applications of ncRNA-based strategies in diagnosis, prediction (e.g., survival and response to small molecule therapy), and biologic therapy.
Collapse
Affiliation(s)
- Roopesh S Gangwar
- Cardiovascular Research Institute (CVRI), Case Western Reserve University, Cleveland, Ohio, USA
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute (CVRI), Case Western Reserve University, Cleveland, Ohio, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Jeffrey A Deiuliis
- Cardiovascular Research Institute (CVRI), Case Western Reserve University, Cleveland, Ohio, USA
- Department of Medicine, Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
312
|
Cui H, Liu Y, Jiang J, Liu Y, Yang Z, Wu S, Cao W, Cui IH, Yu C. IGF2-derived miR-483 mediated oncofunction by suppressing DLC-1 and associated with colorectal cancer. Oncotarget 2018; 7:48456-48466. [PMID: 27366946 PMCID: PMC5217031 DOI: 10.18632/oncotarget.10309] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/09/2016] [Indexed: 12/22/2022] Open
Abstract
Emerging evidence indicates that IGF2 plays an important role in various human malignancies, including colorectal cancer (CRC). Hsa-miR-483 is located within intron 7 of the IGF2 locus. However, the mechanism by which increased IGF2 induces carcinogenesis remains largely elusive. DLC-1 has been identified as a candidate tumor suppressor. In this study, we aimed at investigating whether miR-483 transcription is IGF2-dependent, identifying the functional target of miR-483, and evaluating whether tissue and serum miR-483-3p or miR-483-5p levels are associated with CRC. Our results showed that sequences upstream miR-483 had undetectable promoter activity and levels of IGF2, miR-483-3p, and miR-483-5p were synchronously increased in CRC tissues. Positive correlations between IGF2 and miR-483-3p (r=0.4984, ***p<0.0001), and between IGF2 and miR-483-5p (r=0.6659, ***p<0.0001) expression were found. In addition, patients with CRC had a significantly higher serum miR-483-5p level (*p<0.05) compared to normal controls. DLC-1 expression was decreased in colorectal cancer tissues and diminished through transient transfection with miR-483-3p. Our results suggest that IGF2 may exert its oncofunction, at least partly, through its parasitic miR-483 which suppressed DLC-1 in CRC cells. Thus, miR-483 might serve as a new target for therapy and a potential biomarker for the detection of colorectal cancer.
Collapse
Affiliation(s)
- Hengmi Cui
- Institute of Epigenetics and Epigenomics, Institute of Comparative Medicine and College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Laboratory of Epigenetics & Epigenomics, Medical School, Nanjing University, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yuan Liu
- Laboratory of Epigenetics & Epigenomics, Medical School, Nanjing University, Nanjing, China.,Department of Gastroenterology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China.,Quzhou People's Hospital, Quzhou, Zhengjiang, China
| | - Jingrui Jiang
- Laboratory of Epigenetics & Epigenomics, Medical School, Nanjing University, Nanjing, China.,Department of Gastroenterology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China.,Xuzhou Cancer Hospital, Xuzhou, Jiangsu, China
| | - Yangyang Liu
- Institute of Epigenetics and Epigenomics, Institute of Comparative Medicine and College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Laboratory of Epigenetics & Epigenomics, Medical School, Nanjing University, Nanjing, China
| | - Zhe Yang
- Institute of Epigenetics and Epigenomics, Institute of Comparative Medicine and College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Laboratory of Epigenetics & Epigenomics, Medical School, Nanjing University, Nanjing, China
| | - Shaogen Wu
- Laboratory of Epigenetics & Epigenomics, Medical School, Nanjing University, Nanjing, China.,Department of Gastroenterology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Wangsen Cao
- Laboratory of Epigenetics & Epigenomics, Medical School, Nanjing University, Nanjing, China
| | - Isabelle H Cui
- Department of Pathology and Laboratory Medicine, New York Presbyterian-Weill Cornell Medicine, New York, USA
| | - Chenggong Yu
- Laboratory of Epigenetics & Epigenomics, Medical School, Nanjing University, Nanjing, China.,Department of Gastroenterology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
313
|
Yamauchi Y, Rogers MA. Sterol Metabolism and Transport in Atherosclerosis and Cancer. Front Endocrinol (Lausanne) 2018; 9:509. [PMID: 30283400 PMCID: PMC6157400 DOI: 10.3389/fendo.2018.00509] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/14/2018] [Indexed: 01/22/2023] Open
Abstract
Cholesterol is a vital lipid molecule for mammalian cells, regulating fluidity of biological membranes, and serving as an essential constituent of lipid rafts. Mammalian cells acquire cholesterol from extracellular lipoproteins and from de novo synthesis. Cholesterol biosynthesis generates various precursor sterols. Cholesterol undergoes metabolic conversion into oxygenated sterols (oxysterols), bile acids, and steroid hormones. Cholesterol intermediates and metabolites have diverse and important cellular functions. A network of molecular machineries including transcription factors, protein modifiers, sterol transporters/carriers, and sterol sensors regulate sterol homeostasis in mammalian cells and tissues. Dysfunction in metabolism and transport of cholesterol, sterol intermediates, and oxysterols occurs in various pathophysiological settings such as atherosclerosis, cancers, and neurodegenerative diseases. Here we review the cholesterol, intermediate sterol, and oxysterol regulatory mechanisms and intracellular transport machineries, and discuss the roles of sterols and sterol metabolism in human diseases.
Collapse
Affiliation(s)
- Yoshio Yamauchi
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
- *Correspondence: Yoshio Yamauchi
| | - Maximillian A. Rogers
- Division of Cardiovascular Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
314
|
Ganjali S, Momtazi-Borojeni AA, Banach M, Kovanen PT, Gotto AM, Sahebkar A. HDL functionality in familial hypercholesterolemia: effects of treatment modalities and pharmacological interventions. Drug Discov Today 2018; 23:171-180. [DOI: 10.1016/j.drudis.2017.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/02/2017] [Accepted: 09/25/2017] [Indexed: 01/14/2023]
|
315
|
Polyphenol-rich extract from wild Lonicera caerulea berry reduces cholesterol accumulation by mediating the expression of hepatic miR-33 and miR-122, HMGCR, and CYP7A1 in rats. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
316
|
Ghareghani P, Shanaki M, Ahmadi S, Khoshdel AR, Rezvan N, Meshkani R, Delfan M, Gorgani-Firuzjaee S. Aerobic endurance training improves nonalcoholic fatty liver disease (NAFLD) features via miR-33 dependent autophagy induction in high fat diet fed mice. Obes Res Clin Pract 2018; 12:80-89. [PMID: 28163011 DOI: 10.1016/j.orcp.2017.01.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 02/08/2023]
Abstract
Due to changes in life style, obesity and obesity related complication such as insulin resistance, type 2 diabetes and non-alcoholic fatty liver disease caused worldwide health problems. Regular exercise has been frequently prescribed to combat metabolic complication of obesity but its molecular mechanism has not been fully illustrated. We investigated molecular mechanism of lipid lowering effect of exercise training in high fat diet fed mice by focusing on miR-33 expression and autophagy pathway. 24 mice were assigned to normal chow (NC) (n=8), high-fat diet (HFD) (n=16) group and subjected to NC and HFD for 13-weeks. HFD groups were divided to sedentary (HFD n=8) or continuous endurance training (HFD+CET, n=8) subgroups. The HFD+CET mice were subjected to treadmill running for 10-weeks in 23-week HFD course. HFD increased body weight, fasting blood sugar, triglyceride, cholesterol, aspartate aminotransferase (AST), alanine aminotransferase (ALT), liver lipogenic genes expression and reduced miR-33 mRNA expression and autopahgy pathway while training program reversed them. Exogenous miR-33 mimic sequence induced autophagy and reduced lipogenesis in HepG2 cells. Autophagy induction by rapamycin reduced lipogenesis and autophagy inhibition by chloroquine, enhanced lipogenesis in HepG2 cells. These findings suggest that aerobic exercise training as a non-pharmacological therapy exerts its lipid lowering effects by miR-33 dependent autophagy induction.
Collapse
Affiliation(s)
- Parvin Ghareghani
- Department of Biochemistry, Faculty of Biology, Islamic Azad University, Branch of Fars, Shiraz, Iran; Department of Medical Laboratory Sciences, School of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Shanaki
- Department of Medical Laboratory Sciences, School of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeideh Ahmadi
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Khoshdel
- Department of Epidemiology, School Medicine, AJA University of Medical sciences, Tehran, Iran
| | - Neda Rezvan
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, International Campus, Tehran, Iran
| | - Reza Meshkani
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Delfan
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Alzahra University, Tehran, Iran
| | - Sattar Gorgani-Firuzjaee
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Laboratory Sciences, School of Allied Health Medicine, AJA University of Medical sciences, Tehran, Iran.
| |
Collapse
|
317
|
Na YR, Je S, Seok SH. Metabolic features of macrophages in inflammatory diseases and cancer. Cancer Lett 2018; 413:46-58. [PMID: 29100962 DOI: 10.1016/j.canlet.2017.10.044] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/17/2017] [Accepted: 10/27/2017] [Indexed: 12/31/2022]
|
318
|
Miyazaki Y, Du X, Muramatsu SI, Gomez CM. An miRNA-mediated therapy for SCA6 blocks IRES-driven translation of the CACNA1A second cistron. Sci Transl Med 2017; 8:347ra94. [PMID: 27412786 DOI: 10.1126/scitranslmed.aaf5660] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/21/2016] [Indexed: 12/17/2022]
Abstract
Spinocerebellar ataxia type 6 (SCA6) is a dominantly inherited neurodegenerative disease characterized by slowly progressive ataxia and Purkinje cell degeneration. SCA6 is caused by a polyglutamine repeat expansion within a second CACNA1A gene product, α1ACT. α1ACT expression is under the control of an internal ribosomal entry site (IRES) present within the CACNA1A coding region. Whereas SCA6 allele knock-in mice show indistinguishable phenotypes from wild-type littermates, expression of SCA6-associated α1ACT (α1ACTSCA6) driven by a Purkinje cell-specific promoter in mice produces slowly progressive ataxia and cerebellar atrophy. We developed an early-onset SCA6 mouse model using an adeno-associated virus (AAV)-based gene delivery system to ectopically express CACNA1A IRES-driven α1ACTSCA6 to test the potential of CACNA1A IRES-targeting therapies. Mice expressing AAV9-mediated CACNA1A IRES-driven α1ACTSCA6 exhibited early-onset ataxia, motor deficits, and Purkinje cell degeneration. We identified miR-3191-5p as a microRNA (miRNA) that targeted CACNA1A IRES and preferentially inhibited the CACNA1A IRES-driven translation of α1ACT in an Argonaute 4 (Ago4)-dependent manner. We found that eukaryotic initiation factors (eIFs), eIF4AII and eIF4GII, interacted with the CACNA1A IRES to enhance α1ACT translation. Ago4-bound miR-3191-5p blocked the interaction of eIF4AII and eIF4GII with the CACNA1A IRES, attenuating IRES-driven α1ACT translation. Furthermore, AAV9-mediated delivery of miR-3191-5p protected mice from the ataxia, motor deficits, and Purkinje cell degeneration caused by CACNA1A IRES-driven α1ACTSCA6 We have established proof of principle that viral delivery of an miRNA can rescue a disease phenotype through modulation of cellular IRES activity in a mouse model.
Collapse
Affiliation(s)
- Yu Miyazaki
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Xiaofei Du
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Shin-Ichi Muramatsu
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi 3290498, Japan. Center for Gene and Cell Therapy, Institute of Medical Science, University of Tokyo, Tokyo 1088639, Japan
| | | |
Collapse
|
319
|
Singh AK, Aryal B, Zhang X, Fan Y, Price NL, Suárez Y, Fernández-Hernando C. Posttranscriptional regulation of lipid metabolism by non-coding RNAs and RNA binding proteins. Semin Cell Dev Biol 2017; 81:129-140. [PMID: 29183708 DOI: 10.1016/j.semcdb.2017.11.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/14/2017] [Accepted: 11/20/2017] [Indexed: 12/14/2022]
Abstract
Alterations in lipoprotein metabolism enhance the risk of cardiometabolic disorders including type-2 diabetes and atherosclerosis, the leading cause of death in Western societies. While the transcriptional regulation of lipid metabolism has been well characterized, recent studies have uncovered the importance of microRNAs (miRNAs), long-non-coding RNAs (lncRNAs) and RNA binding proteins (RBP) in regulating the expression of lipid-related genes at the posttranscriptional level. Work from several groups has identified a number of miRNAs, including miR-33, miR-122 and miR-148a, that play a prominent role in controlling cholesterol homeostasis and lipoprotein metabolism. Importantly, dysregulation of miRNA expression has been associated with dyslipidemia, suggesting that manipulating the expression of these miRNAs could be a useful therapeutic approach to ameliorate cardiovascular disease (CVD). The role of lncRNAs in regulating lipid metabolism has recently emerged and several groups have demonstrated their regulation of lipoprotein metabolism. However, given the high abundance of lncRNAs and the poor-genetic conservation between species, much work will be needed to elucidate the specific role of lncRNAs in controlling lipoprotein metabolism. In this review article, we summarize recent findings in the field and highlight the specific contribution of lncRNAs and RBPs in regulating lipid metabolism.
Collapse
Affiliation(s)
- Abhishek K Singh
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510, USA
| | - Binod Aryal
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510, USA
| | - Xinbo Zhang
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510, USA
| | - Yuhua Fan
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510, USA; College of Pharmacy, Harbin Medical University -Daqing, 163000, PR China
| | - Nathan L Price
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510, USA
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510, USA.
| |
Collapse
|
320
|
Abstract
Cellular lipid metabolism and homeostasis are controlled by sterol regulatory-element binding proteins (SREBPs). In addition to performing canonical functions in the transcriptional regulation of genes involved in the biosynthesis and uptake of lipids, genome-wide system analyses have revealed that these versatile transcription factors act as important nodes of convergence and divergence within biological signalling networks. Thus, they are involved in myriad physiological and pathophysiological processes, highlighting the importance of lipid metabolism in biology. Changes in cell metabolism and growth are reciprocally linked through SREBPs. Anabolic and growth signalling pathways branch off and connect to multiple steps of SREBP activation and form complex regulatory networks. In addition, SREBPs are implicated in numerous pathogenic processes such as endoplasmic reticulum stress, inflammation, autophagy and apoptosis, and in this way, they contribute to obesity, dyslipidaemia, diabetes mellitus, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, chronic kidney disease, neurodegenerative diseases and cancers. This Review aims to provide a comprehensive understanding of the role of SREBPs in physiology and pathophysiology at the cell, organ and organism levels.
Collapse
Affiliation(s)
- Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Ryuichiro Sato
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
321
|
Kelsey I, Zbinden M, Byles V, Torrence M, Manning BD. mTORC1 suppresses PIM3 expression via miR-33 encoded by the SREBP loci. Sci Rep 2017; 7:16112. [PMID: 29170467 PMCID: PMC5701013 DOI: 10.1038/s41598-017-16398-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/13/2017] [Indexed: 12/31/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a central regulator of cell growth that is often aberrantly activated in cancer. However, mTORC1 inhibitors, such as rapamycin, have limited effectiveness as single agent cancer therapies, with feedback mechanisms inherent to the signaling network thought to diminish the anti-tumor effects of mTORC1 inhibition. Here, we identify the protein kinase and proto-oncogene PIM3 as being repressed downstream of mTORC1 signaling. PIM3 expression is suppressed in cells with loss of the tuberous sclerosis complex (TSC) tumor suppressors, which exhibit growth factor-independent activation of mTORC1, and in the mouse liver upon feeding-induced activation of mTORC1. Inhibition of mTORC1 with rapamycin induces PIM3 transcript and protein levels in a variety of settings. Suppression of PIM3 involves the sterol regulatory element-binding (SREBP) transcription factors SREBP1 and 2, whose activation and mRNA expression are stimulated by mTORC1 signaling. We find that PIM3 repression is mediated by miR-33, an intronic microRNA encoded within the SREBP loci, the expression of which is decreased with rapamycin. These results demonstrate that PIM3 is induced upon mTORC1 inhibition, with potential implications for the effects of mTORC1 inhibitors in TSC, cancers, and the many other disease settings influenced by aberrant mTORC1 signaling.
Collapse
Affiliation(s)
- Ilana Kelsey
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marie Zbinden
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Vanessa Byles
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Margaret Torrence
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brendan D Manning
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
322
|
Awazawa M, Gabel P, Tsaousidou E, Nolte H, Krüger M, Schmitz J, Ackermann PJ, Brandt C, Altmüller J, Motameny S, Wunderlich FT, Kornfeld JW, Blüher M, Brüning JC. A microRNA screen reveals that elevated hepatic ectodysplasin A expression contributes to obesity-induced insulin resistance in skeletal muscle. Nat Med 2017; 23:1466-1473. [DOI: 10.1038/nm.4420] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/11/2017] [Indexed: 01/21/2023]
|
323
|
Abstract
PURPOSE OF REVIEW High-density lipoproteins (HDL) are thought to exert a protective role against atherosclerosis. The measurement of the cholesterol mass within HDL (HDL-C) represents a good biomarker of cardiovascular health, but HDL-C appears to be a poor therapeutic target. Here, we discuss new targets for the development of HDL-directed therapies. RECENT FINDINGS Among cardio-protective functions of HDL particles, the ability of HDL to remove cholesterol from cells involved in the early stages of atherosclerosis is considered one of the most important functions. This process, termed "HDL biogenesis," is initiated by the formation of highly specialized plasma membrane micro-domains by the ATP-binding cassette transporter A1 (ABCA1) and the binding of apolipoproteins (apo) such as apoA-I, the major protein moiety of HDL, to the micro-domains. Although early strategies aimed at increasing HDL biogenesis by upregulating ABCA1 or apoA-I gene expression have not met with clinical success, recent advances in understanding transcriptional, post-transcriptional, and post-translational regulatory pathways propose new targets for the promotion of HDL biogenesis. We have recently reported that a novel apoA-I-binding protein desmocollin 1 (DSC1) prevents HDL biogenesis and that inhibition of apoA-I-DSC1 interactions promotes HDL biogenesis by stabilizing ABCA1. This new HDL regulation pathway nominates DSC1 as an attractive pharmacological target. In the absence of clinically useful therapy to increase HDL biogenesis, finding novel targets to unlock the therapeutic potential of HDL is highly desired. Modulation of apoA-I-DSC1 interactions may be a viable strategy.
Collapse
Affiliation(s)
- Jacques Genest
- The Research Institute of the McGill University Health Center, 1001 boul. Decarie Bloc E, Office EM12212, Montreal, Québec, H4A 3J1, Canada
| | - Hong Y Choi
- The Research Institute of the McGill University Health Center, 1001 boul. Decarie Bloc E, Office EM12212, Montreal, Québec, H4A 3J1, Canada.
| |
Collapse
|
324
|
Zhang L, Rajbhandari P, Priest C, Sandhu J, Wu X, Temel R, Castrillo A, de Aguiar Vallim TQ, Sallam T, Tontonoz P. Inhibition of cholesterol biosynthesis through RNF145-dependent ubiquitination of SCAP. eLife 2017; 6:e28766. [PMID: 29068315 PMCID: PMC5656429 DOI: 10.7554/elife.28766] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/05/2017] [Indexed: 12/25/2022] Open
Abstract
Cholesterol homeostasis is maintained through concerted action of the SREBPs and LXRs. Here, we report that RNF145, a previously uncharacterized ER membrane ubiquitin ligase, participates in crosstalk between these critical signaling pathways. RNF145 expression is induced in response to LXR activation and high-cholesterol diet feeding. Transduction of RNF145 into mouse liver inhibits the expression of genes involved in cholesterol biosynthesis and reduces plasma cholesterol levels. Conversely, acute suppression of RNF145 via shRNA-mediated knockdown, or chronic inactivation of RNF145 by genetic deletion, potentiates the expression of cholesterol biosynthetic genes and increases cholesterol levels both in liver and plasma. Mechanistic studies show that RNF145 triggers ubiquitination of SCAP on lysine residues within a cytoplasmic loop essential for COPII binding, potentially inhibiting its transport to Golgi and subsequent processing of SREBP-2. These findings define an additional mechanism linking hepatic sterol levels to the reciprocal actions of the SREBP-2 and LXR pathways.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pathology and Laboratory MedicineHoward Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| | - Prashant Rajbhandari
- Department of Pathology and Laboratory MedicineHoward Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| | - Christina Priest
- Department of Pathology and Laboratory MedicineHoward Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| | - Jaspreet Sandhu
- Department of Pathology and Laboratory MedicineHoward Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| | - Xiaohui Wu
- Department of Medicine, Division of CardiologyUniversity of California, Los AngelesLos AngelesUnited States
| | - Ryan Temel
- Saha Cardiovascular Research CenterUniversity of KentuckyLexingtonUnited States
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonUnited States
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas Alberto SolsCSIC-Universidad Autónoma de Madrid, Unidad de Biomedicina-Universidad de Las Palmas de Gran Canaria (Unidad asociada al CSIC)Las Palmas de Gran CanariaSpain
- Instituto Universitario de Investigaciones Biomédicas y SanitariasUniversidad de Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain
| | - Thomas Q de Aguiar Vallim
- Department of Medicine, Division of CardiologyUniversity of California, Los AngelesLos AngelesUnited States
| | - Tamer Sallam
- Department of Medicine, Division of CardiologyUniversity of California, Los AngelesLos AngelesUnited States
| | - Peter Tontonoz
- Department of Pathology and Laboratory MedicineHoward Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
325
|
Chu M, Zhao Y, Feng Y, Zhang H, Liu J, Cheng M, Li L, Shen W, Cao H, Li Q, Min L. MicroRNA-126 participates in lipid metabolism in mammary epithelial cells. Mol Cell Endocrinol 2017; 454:77-86. [PMID: 28599789 DOI: 10.1016/j.mce.2017.05.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 12/14/2022]
Abstract
Lipids are a major component of milk and are important for infant growth and development. MicroRNA-126 (miR-126) has previously been observed in mammary glands and adipocytes and is known to be involved in lipid metabolism during the process of atherosclerosis. However, it remains unknown whether miR-126 also participates in lipid metabolism in mammary luminal epithelial cells (MECs). In the current investigation, miR-126-3p inhibition stimulated lipid synthesis in MECs in part through increasing levels of the lipid synthesis enzymes FASN, ACSL1, and Insig1. Overexpression of miR-126-3p decreased lipid content in MECs with a reduction in FASN and Insig1. Furthermore, the expression of miR-126-3p was diminished by the steroid hormones estradiol and progesterone with a subsequent elevation of lipid formation in MECs. We also noted that miR-126-3p was expressed differentially at various stages of murine mammary gland development, exhibiting a negative correlation with FASN. Together these findings suggest that miR-126-3 might be involved in lipid metabolism in mammary gland.
Collapse
Affiliation(s)
- Meiqiang Chu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yong Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yanni Feng
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Jing Liu
- Core Laboratories of Qingdao Agricultural University, Qingdao 266109, PR China
| | - Ming Cheng
- Qingdao Veterinary and Livestock Administration, Qingdao 266000, PR China
| | - Lan Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Wei Shen
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Hongfang Cao
- Laiwu Veterinary and Livestock Administration, Laiwu 271100, PR China
| | - Qiang Li
- Laiwu Veterinary and Livestock Administration, Laiwu 271100, PR China
| | - Lingjiang Min
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
326
|
Huang K, Bao H, Yan ZQ, Wang L, Zhang P, Yao QP, Shi Q, Chen XH, Wang KX, Shen BR, Qi YX, Jiang ZL. MicroRNA-33 protects against neointimal hyperplasia induced by arterial mechanical stretch in the grafted vein. Cardiovasc Res 2017; 113:488-497. [PMID: 28137944 DOI: 10.1093/cvr/cvw257] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 12/30/2016] [Indexed: 12/12/2022] Open
Abstract
Aims Mechanical factors play significant roles in neointimal hyperplasia after vein grafting, but the mechanisms are not fully understood. Here, we investigated the roles of microRNA-33 (miR-33) in neointimal hyperplasia induced by arterial mechanical stretch after vein grafting. Methods and results Grafted veins were generated by the 'cuff' technique. Neointimal hyperplasia and cell proliferation was significantly increased, and miR-33 expression was decreased after 1-, 2-, and 4-week grafts. In contrast, the expression of bone morphogenetic protein 3 (BMP3), which is a putative target of miR-33, and the phosphorylation of smad2 and smad5, which are potential downstream targets of BMP3, were increased in the grafted veins. miR-33 mimics/inhibitor and dual luciferase reporter assay confirmed the interaction of miR-33 and BMP3. miR-33 mimics attenuated, while miR-33 inhibitor accelerated, proliferation of venous smooth muscle cells (SMCs). Moreover, recombinant BMP3 increased SMC proliferation and P-smad2 and P-smad5 levels, whereas BMP3-directed siRNAs had the opposite effect. Then, venous SMCs were exposed to a 10%-1.25 Hz cyclic stretch (arterial stretch) by using the FX4000 cyclic stretch loading system in vitro to mimic arterial mechanical conditions. The arterial stretch increased venous SMC proliferation and repressed miR-33 expression, but enhanced BMP3 expression and smad2 and smad5 phosphorylation. Furthermore, perivascular multi-point injection in vivo demonstrated that agomiR-33 not only attenuates BMP3 expression and smad2 and smad5 phosphorylation, but also slows neointimal formation and cell proliferation in grafted veins. These effects of agomiR-33 on grafted veins could be reversed by local injection of BMP3 lentivirus. Conclusion The miR-33-BMP3-smad signalling pathway protects against venous SMC proliferation in response to the arterial stretch. miR-33 is a target that attenuates neointimal hyperplasia in grafted vessels and may have potential clinical applications.
Collapse
MESH Headings
- 3' Untranslated Regions
- Animals
- Antagomirs/genetics
- Antagomirs/metabolism
- Binding Sites
- Bone Morphogenetic Protein 3/genetics
- Bone Morphogenetic Protein 3/metabolism
- Cell Proliferation
- Cells, Cultured
- Hyperplasia
- Jugular Veins/metabolism
- Jugular Veins/pathology
- Jugular Veins/transplantation
- Male
- Mechanotransduction, Cellular
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/transplantation
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/transplantation
- Neointima
- Phosphorylation
- RNA Interference
- Rats, Sprague-Dawley
- Smad2 Protein/metabolism
- Smad5 Protein/metabolism
- Stress, Mechanical
- Time Factors
- Transfection
Collapse
|
327
|
Alamoudi AA, Alnoury A, Gad H. miRNA in tumour metabolism and why could it be the preferred pathway for energy reprograming. Brief Funct Genomics 2017; 17:157-169. [DOI: 10.1093/bfgp/elx023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
328
|
Kandhro AH, Shoombuatong W, Nantasenamat C, Prachayasittikul V, Nuchnoi P. The MicroRNA Interaction Network of Lipid Diseases. Front Genet 2017; 8:116. [PMID: 29018475 PMCID: PMC5615414 DOI: 10.3389/fgene.2017.00116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 08/24/2017] [Indexed: 02/06/2023] Open
Abstract
Background: Dyslipidemia is one of the major forms of lipid disorder, characterized by increased triglycerides (TGs), increased low-density lipoprotein-cholesterol (LDL-C), and decreased high-density lipoprotein-cholesterol (HDL-C) levels in blood. Recently, MicroRNAs (miRNAs) have been reported to involve in various biological processes; their potential usage being a biomarkers and in diagnosis of various diseases. Computational approaches including text mining have been used recently to analyze abstracts from the public databases to observe the relationships/associations between the biological molecules, miRNAs, and disease phenotypes. Materials and Methods: In the present study, significance of text mined extracted pair associations (miRNA-lipid disease) were estimated by one-sided Fisher's exact test. The top 20 significant miRNA-disease associations were visualized on Cytoscape. The CyTargetLinker plug-in tool on Cytoscape was used to extend the network and predicts new miRNA target genes. The Biological Networks Gene Ontology (BiNGO) plug-in tool on Cytoscape was used to retrieve gene ontology (GO) annotations for the targeted genes. Results: We retrieved 227 miRNA-lipid disease associations including 148 miRNAs. The top 20 significant miRNAs analysis on CyTargetLinker provides defined, predicted and validated gene targets, further targeted genes analyzed by BiNGO showed targeted genes were significantly associated with lipid, cholesterol, apolipoprotein, and fatty acids GO terms. Conclusion: We are the first to provide a reliable miRNA-lipid disease association network based on text mining. This could help future experimental studies that aim to validate predicted gene targets.
Collapse
Affiliation(s)
- Abdul H. Kandhro
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol UniversityBangkok, Thailand
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol UniversityBangkok, Thailand
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol UniversityBangkok, Thailand
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol UniversityBangkok, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol UniversityBangkok, Thailand
| | - Pornlada Nuchnoi
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol UniversityBangkok, Thailand
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol UniversityBangkok, Thailand
| |
Collapse
|
329
|
Zhu T, Corraze G, Plagnes-Juan E, Quillet E, Dupont-Nivet M, Skiba-Cassy S. Regulation of genes related to cholesterol metabolism in rainbow trout (Oncorhynchus mykiss) fed a plant-based diet. Am J Physiol Regul Integr Comp Physiol 2017; 314:R58-R70. [PMID: 28931545 DOI: 10.1152/ajpregu.00179.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
When compared with fish meal and fish oil, plant ingredients differ not only in their protein content and amino acid and fatty acid profiles but are also devoid of cholesterol, the major component of cell membrane and precursor of several bioactive compounds. Based on these nutritional characteristics, plant-based diets can affect fish physiology and cholesterol metabolism. To investigate the mechanisms underlying cholesterol homeostasis, rainbow trout were fed from 1 g body wt for 6 mo with a totally plant-based diet (V), a marine diet (M), and a marine-restricted diet (MR), with feed intake adjusted to that of the V group. The expression of genes involved in cholesterol synthesis, esterification, excretion, bile acid synthesis, and cholesterol efflux was measured in liver. Results showed that genes involved in cholesterol synthesis were upregulated in trout fed the V diet, whereas expression of genes related to bile acid synthesis ( cyp7a1) and cholesterol elimination ( abcg8) were reduced. Feeding trout the V diet also enhanced the expression of srebp-2 while reducing that of lxrα and miR-223. Overall, these data suggested that rainbow trout coped with the altered nutritional characteristics and absence of dietary cholesterol supply by increasing cholesterol synthesis and limiting cholesterol efflux through molecular mechanisms involving at least srebp-2, lxrα, and miR-223. However, plasma and body cholesterol levels in trout fed the V diet were lower than in fish fed the M diet, raising the question of the role of cholesterol in the negative effect of plant-based diet on growth.
Collapse
Affiliation(s)
- Tengfei Zhu
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche, Joint Research Unit 1419, Nutrition Métabolisme Aquaculture, Saint Pée-sur-Nivelle, France
| | - Geneviève Corraze
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche, Joint Research Unit 1419, Nutrition Métabolisme Aquaculture, Saint Pée-sur-Nivelle, France
| | - Elisabeth Plagnes-Juan
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche, Joint Research Unit 1419, Nutrition Métabolisme Aquaculture, Saint Pée-sur-Nivelle, France
| | - Edwige Quillet
- Génétique Animale et Biologie Intégrative, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Mathilde Dupont-Nivet
- Génétique Animale et Biologie Intégrative, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sandrine Skiba-Cassy
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche, Joint Research Unit 1419, Nutrition Métabolisme Aquaculture, Saint Pée-sur-Nivelle, France
| |
Collapse
|
330
|
Coffey AR, Smallwood TL, Albright J, Hua K, Kanke M, Pomp D, Bennett BJ, Sethupathy P. Systems genetics identifies a co-regulated module of liver microRNAs associated with plasma LDL cholesterol in murine diet-induced dyslipidemia. Physiol Genomics 2017; 49:618-629. [PMID: 28916633 DOI: 10.1152/physiolgenomics.00050.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/21/2017] [Accepted: 09/12/2017] [Indexed: 02/06/2023] Open
Abstract
Chronically altered levels of circulating lipids, termed dyslipidemia, is a significant risk factor for a number of metabolic and cardiovascular morbidities. MicroRNAs (miRNAs) have emerged as important regulators of lipid balance, have been implicated in dyslipidemia, and have been proposed as candidate therapeutic targets in lipid-related disorders including atherosclerosis. A major limitation of most murine studies of miRNAs in lipid metabolic disorders is that they have been performed in just one (or very few) inbred strains, such as C57BL/6. Moreover, although individual miRNAs have been associated with lipid phenotypes, it is well understood that miRNAs likely work together in functional modules. To address these limitations, we implemented a systems genetics strategy using the Diversity Outbred (DO) mouse population. Specifically, we performed gene and miRNA expression profiling in the livers from ~300 genetically distinct DO mice after 18 wk on either a high-fat/high-cholesterol diet or a high-protein diet. Large-scale correlative analysis of these data with a wide range of cardio-metabolic end points revealed a co-regulated module of miRNAs significantly associated with circulating low-density lipoprotein cholesterol (LDL-C) levels. The hubs of this module were identified as miR-199a, miR-181b, miR-27a, miR-21_-_1, and miR-24. In sum, we demonstrate that a high-fat/high-cholesterol diet robustly rewires the miRNA regulatory network, and we identify a small group of co-regulated miRNAs that may exert coordinated effects to control circulating LDL-C.
Collapse
Affiliation(s)
- Alisha R Coffey
- Curriculum in Genetics and Molecular Biology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina.,Department of Genetics, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, North Carolina
| | - Tangi L Smallwood
- Department of Genetics, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, North Carolina
| | - Jody Albright
- US Department of Agriculture, ARS Western Human Nutrition Research Center, University of California, Davis, Davis, California; and
| | - Kunjie Hua
- Department of Genetics, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, North Carolina
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Daniel Pomp
- Department of Genetics, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, North Carolina
| | - Brian J Bennett
- Curriculum in Genetics and Molecular Biology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina.,Department of Genetics, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, North Carolina.,US Department of Agriculture, ARS Western Human Nutrition Research Center, University of California, Davis, Davis, California; and
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| |
Collapse
|
331
|
Circulating miR-200c is up-regulated in paediatric patients with familial hypercholesterolaemia and correlates with miR-33a/b levels: implication of a ZEB1-dependent mechanism. Clin Sci (Lond) 2017. [DOI: 10.1042/cs20171121 28811385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hypercholesterolaemia provokes reactive oxygen species (ROS) increase and is a major risk factor for cardiovascular disease (CVD) development. We previously showed that circulating miR-33a/b expression levels were up-regulated in children with familial hypercholesterolaemia (FH). miR-33a/b control cholesterol homoeostasis and recently miR-33b has been demonstrated to directly target the transcription factor zinc finger E-box-binding homeobox 1 (ZEB1). The latter acts in a negative feedback loop with the miR-200 family. Our previous studies showed that the ROS-dependent miR-200c up-regulation induces endothelial dysfunction and provokes a ZEB1-dependent apoptosis and senescence. In the present study, we aimed to verify whether circulating miR-200c was induced in FH children, and whether a correlation existed with miR-33a/b. Total RNA was extracted from plasma of 28 FH children and 25 age-matched healthy subjects (HS) and miR-200c levels were measured. We found that miR-200c was up-regulated in FH compared with HS (4.00 ± 0.48-fold increase, P<0.05) and exhibited a positive correlation with miR-33a/b. miR-200c did not correlate with plasma lipids, but correlated with C-reactive protein (CRP) plasma levels and glycaemia (GLI). Ordinary least squares (OLS) regression analysis revealed that miR-200c was significantly affected by GLI and by miR-33a (P<0.01; P<0.001 respectively). Moreover, we found that miR-33 overexpression, in different cell lines, decreased ZEB1 expression and up-regulated both the intracellular and the extracellular miR-200c expression levels. In conclusion, circulating miR-200c is up-regulated in FH, probably due to oxidative stress and inflammation and via a miR-33a/b-ZEB1-dependent mechanism. The present study could provide the first evidence to point to the use of miR-33a/b and miR-200c, as early biomarkers of CVD, in paediatric FH.
Collapse
|
332
|
Circulating miR-200c is up-regulated in paediatric patients with familial hypercholesterolaemia and correlates with miR-33a/b levels: implication of a ZEB1-dependent mechanism. Clin Sci (Lond) 2017; 131:2397-2408. [DOI: 10.1042/cs20171121] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/04/2017] [Accepted: 08/13/2017] [Indexed: 11/17/2022]
Abstract
Hypercholesterolaemia provokes reactive oxygen species (ROS) increase and is a major risk factor for cardiovascular disease (CVD) development. We previously showed that circulating miR-33a/b expression levels were up-regulated in children with familial hypercholesterolaemia (FH). miR-33a/b control cholesterol homoeostasis and recently miR-33b has been demonstrated to directly target the transcription factor zinc finger E-box-binding homeobox 1 (ZEB1). The latter acts in a negative feedback loop with the miR-200 family. Our previous studies showed that the ROS-dependent miR-200c up-regulation induces endothelial dysfunction and provokes a ZEB1-dependent apoptosis and senescence. In the present study, we aimed to verify whether circulating miR-200c was induced in FH children, and whether a correlation existed with miR-33a/b. Total RNA was extracted from plasma of 28 FH children and 25 age-matched healthy subjects (HS) and miR-200c levels were measured. We found that miR-200c was up-regulated in FH compared with HS (4.00 ± 0.48-fold increase, P<0.05) and exhibited a positive correlation with miR-33a/b. miR-200c did not correlate with plasma lipids, but correlated with C-reactive protein (CRP) plasma levels and glycaemia (GLI). Ordinary least squares (OLS) regression analysis revealed that miR-200c was significantly affected by GLI and by miR-33a (P<0.01; P<0.001 respectively). Moreover, we found that miR-33 overexpression, in different cell lines, decreased ZEB1 expression and up-regulated both the intracellular and the extracellular miR-200c expression levels. In conclusion, circulating miR-200c is up-regulated in FH, probably due to oxidative stress and inflammation and via a miR-33a/b-ZEB1-dependent mechanism. The present study could provide the first evidence to point to the use of miR-33a/b and miR-200c, as early biomarkers of CVD, in paediatric FH.
Collapse
|
333
|
Bories GFP, Leitinger N. Macrophage metabolism in atherosclerosis. FEBS Lett 2017; 591:3042-3060. [PMID: 28796886 DOI: 10.1002/1873-3468.12786] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Gael F. P. Bories
- Department of Pharmacology and Robert M. Berne Cardiovascular Research Center; University of Virginia; Charlottsville VA USA
| | - Norbert Leitinger
- Department of Pharmacology and Robert M. Berne Cardiovascular Research Center; University of Virginia; Charlottsville VA USA
| |
Collapse
|
334
|
Ma Z, Li H, Zheng H, Jiang K, Jia L, Yan F, Tian Y, Kang X, Wang Y, Liu X. MicroRNA-101-2-5p targets the ApoB gene in the liver of chicken (Gallus Gallus). Genome 2017. [DOI: 10.1139/gen-2017-0020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Apolipoprotein B (ApoB) is a major protein component of plasma lipoproteins. It is involved in many important biological processes such as lipid transportation, enzyme activity regulation, and receptor recognition. Extensive studies have shown that the expression of ApoB is regulated at multiple levels. However, the regulation of ApoB expression by microRNAs (miRNAs) still remains unknown. In the present study, identified are miRNAs that are predicted to interact with ApoB in chicken. The predicted relationship between the identified miRNAs and ApoB was verified through dual luciferase reporter assay in chicken DF1 cells, and the effect of miRNAs on ApoB expression was analyzed in chicken embryo hepatocytes stimulated by 17β-estradiol. The results show that miR-101-2-5p was predicted to interact with ApoB. Dual luciferase reporter assay together with the miR-101-2-5p mimics study demostrate that ApoB is the target of miR-101-2-5p, which suppresses the expression of ApoB through binding with the 3′UTR of ApoB. Our experiments suggest that miR-101-2-5p might be involved in lipid metabolism through binding to the 3′UTR of ApoB in the liver of egg-laying chickens.
Collapse
Affiliation(s)
- Zheng Ma
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Hong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Hang Zheng
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Keren Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Lijuan Jia
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Fengbin Yan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450002, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanbin Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaojun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
335
|
Talepoor AG, Kalani M, Dahaghani AS, Doroudchi M. Hydrogen Peroxide and Lipopolysaccharide Differentially Affect the Expression of MicroRNAs 10a, 33a, 21, 221 in Endothelial Cells Before and After Coculture With Monocytes. Int J Toxicol 2017; 36:133-141. [PMID: 28403739 DOI: 10.1177/1091581817695270] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inflammation and oxidative stress are important risk factors affecting various cells in the formation of atherosclerosis. MicroRNAs (miRs) are regulators of inflammation and atherogenesis. The expressions of endothelial cell (EC)-specific miR-10a and miR-21 and monocyte-specific miR-33a and miR-221 were investigated using coculture of the ECs and monocytes upon exposure to H2O2 as an oxidative stressor, and endotoxin/lipopolysaccharide (LPS) as a microbial stressor. Human umbilical endothelial cells (HUVECs) and peripheral blood mononuclear cells (or monocytes) were cocultured in M199 complete medium and were incubated with LPS (20 ng/mL) or H2O2 (1%) for 8 hours at 37°C. The HUVECs and monocytes were then separated from the cellular mix using a magnetic bead negative selection technique. The relative expression of miRs was determined by real-time polymerase chain reaction. In both cell types, H2O2 induced miR10a ( P = 0.05) and LPS induced miR21 ( P = 0.0003) compared to the untreated controls. Coculture increased miR-10a and miR-21 expression in monocytes ( P = 0.0008 and <0.0001); however when cultured alone, HUVECs expressed higher levels of miR-10a and miR-21 ( P < 0.0001 and <0.0001). Coculture decreased the expression of miR-33a in monocytes ( P < 0.0001) while increasing miR221 in HUVECs and monocytes ( P < 0.0001 and <0.0001). The expression pattern of miRs in HUVECs and monocytes changes in the coculture compared to culturing alone in response to oxidative and microbial toxic compounds. Moreover, different cellular stressors induce different athero-miRs, which may affect the course of inflammation.
Collapse
Affiliation(s)
- Atefe Ghamar Talepoor
- 1 Memory T Cell Laboratory, Department of Immunology, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mehdi Kalani
- 1 Memory T Cell Laboratory, Department of Immunology, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Alamtaj Samsami Dahaghani
- 2 Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mehrnoosh Doroudchi
- 1 Memory T Cell Laboratory, Department of Immunology, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| |
Collapse
|
336
|
Karatas OF, Wang J, Shao L, Ozen M, Zhang Y, Creighton CJ, Ittmann M. miR-33a is a tumor suppressor microRNA that is decreased in prostate cancer. Oncotarget 2017; 8:60243-60256. [PMID: 28947967 PMCID: PMC5601135 DOI: 10.18632/oncotarget.19521] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/12/2017] [Indexed: 01/17/2023] Open
Abstract
Prostate cancer is one of the most frequently diagnosed neoplasms among men worldwide. MicroRNAs (miRNAs) are involved in numerous important cellular processes including proliferation, differentiation and apoptosis. They have been found to be aberrantly expressed in many types of human cancers. They can act as either tumor suppressors or oncogenes, and changes in their levels are associated with tumor initiation, progression and metastasis. miR-33a is an intronic miRNA embedded within SREBF2 that has been reported to have tumor suppressive properties in some cancers but has not been examined in prostate cancer. SREBF2 increases cholesterol and lipid levels both directly and via miR-33a action. The levels of SREBF2 and miR-33a are correlated in normal tissues by co-transcription from the same gene locus. Paradoxically, SREBF2 has been reported to be increased in prostate cancer, which would be predicted to increase miR-33a levels potentially leading to tumor suppression. We show here that miR-33a has tumor suppressive activities and is decreased in prostate cancer. The decreased miR-33a increases mRNA for the PIM1 oncogene and multiple genes in the lipid β-oxidation pathway. Levels of miR-33a are not correlated with SREBF2 levels, implying posttranscriptional regulation of its expression in prostate cancer.
Collapse
Affiliation(s)
- Omer Faruk Karatas
- Department of Pathology and Immunology and Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, TX, USA.,Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
| | - Jianghua Wang
- Department of Pathology and Immunology and Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, TX, USA
| | - Longjiang Shao
- Department of Pathology and Immunology and Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, TX, USA
| | - Mustafa Ozen
- Department of Medical Genetics, Istanbul University Cerrahpasa Medical School, Istanbul, Turkey
| | - Yiqun Zhang
- Dan L. Duncan Cancer Center Division of Biostatistics, Houston, TX, USA
| | - Chad J Creighton
- Dan L. Duncan Cancer Center Division of Biostatistics, Houston, TX, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Michael Ittmann
- Department of Pathology and Immunology and Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, TX, USA
| |
Collapse
|
337
|
Ganjali S, Momtazi AA, Banach M, Kovanen PT, Stein EA, Sahebkar A. HDL abnormalities in familial hypercholesterolemia: Focus on biological functions. Prog Lipid Res 2017; 67:16-26. [DOI: 10.1016/j.plipres.2017.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/25/2017] [Accepted: 05/10/2017] [Indexed: 02/07/2023]
|
338
|
Zhang Q, Xiao X, Zheng J, Li M, Yu M, Ping F, Wang Z, Qi C, Wang T, Wang X. Maternal chromium restriction modulates miRNA profiles related to lipid metabolism disorder in mice offspring. Exp Biol Med (Maywood) 2017; 242:1444-1452. [PMID: 28669221 DOI: 10.1177/1535370217719059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Increasing evidence shows that maternal nutrition status has a vital effect on offspring susceptibility to obesity. MicroRNAs are related to lipid metabolism processes. This study aimed to evaluate whether maternal chromium restriction could affect miRNA expression involved in lipid metabolism in offspring. Weaning C57BL/6J mice born from mothers fed with normal control diet or chromium-restricted diet were fed for 13 weeks. The adipose miRNA expression profile was analyzed by miRNA array analysis. At 16 weeks old, pups from dams fed with chromium-restricted diet exhibit higher body weight, fat weight, and serum TC, TG levels. Six miRNAs were identified as upregulated in the RC group compared with the CC group, whereas eight miRNAs were lower than the threshold level set in the RC group. In the validated target genes of these differentially expressed miRNA, the MAPK signaling pathway serves an important role in the influence of early life chromium-restricted diet on lipid metabolism through miRNA. Long-term programming on various specific miRNA and MAPK signaling pathway may be involved in maternal chromium restriction in the adipose of female offspring. Impact statement For the first time, our study demonstrates important miRNA differences in the effect of maternal chromium restriction in offspring. These miRNAs may serve as "bridges" between the mother and the offspring by affecting the MAPK pathway.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jia Zheng
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ming Li
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Miao Yu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Fan Ping
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zhixin Wang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Cuijuan Qi
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Tong Wang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaojing Wang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
339
|
Barwari T, Joshi A, Mayr M. MicroRNAs in Cardiovascular Disease. J Am Coll Cardiol 2017; 68:2577-2584. [PMID: 27931616 DOI: 10.1016/j.jacc.2016.09.945] [Citation(s) in RCA: 327] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 12/13/2022]
Abstract
Micro-ribonucleic acids (miRNAs) are in the spotlight as post-transcriptional regulators of gene expression. More than 1,000 miRNAs are encoded in the human genome. In this review, we provide an introduction to miRNA biology and research methodology, and highlight advances in cardiovascular research to date. This includes the potential of miRNAs as therapeutic targets in cardiac and vascular disease, and their use as novel biomarkers. Although some miRNA therapies are already undergoing clinical evaluation, we stress the importance of integrating current knowledge of miRNA biology into a systemic context. Discovery studies focus on miRNA effects within one specific organ, whereas the expression of most miRNAs is not restricted to a single tissue. Because most miRNA-based therapies act systemically, this may preclude widespread clinical use. The development of more targeted interventions will bolster well-informed clinical applications, increasing the chances of success and minimizing the risk of setbacks for miRNA-based therapeutics.
Collapse
Affiliation(s)
- Temo Barwari
- King's British Heart Foundation Centre, King's College London, London, United Kingdom
| | - Abhishek Joshi
- King's British Heart Foundation Centre, King's College London, London, United Kingdom
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, United Kingdom.
| |
Collapse
|
340
|
Abstract
Despite rapid advances in cardiovascular research and therapeutic strategies, ischemic heart disease (IHD) remains the leading cause of mortality worldwide. MicroRNAs (miRNAs) are small, noncoding RNAs which post transcriptionally regulate gene expression. In the past few years, miRNAs have emerged as key tools for the understanding of the pathophysiology of IHD, with potential uses as new biomarkers and therapeutic targets. Several studies report a regulatory role of miRNAs, with regard to fundamental components of IHD pathogenesis and progression, such as lipoprotein metabolism, atherogenesis, vascular calcification, platelet function, and angiogenesis. Due to their high stability in biofluids, circulating miRNAs have attracted attention as promising biomarkers of IHD, especially in cardiovascular risk prediction and the diagnosis of myocardial infarction. Furthermore, experimental studies have demonstrated the potential of miRNA-targeted therapy in improving hyperlipidemia, atherosclerosis, and angiogenesis. In this review, the current knowledge on the role of miRNAs in IHD and translational perspectives of their use is discussed.
Collapse
|
341
|
Phelps CA, Lai SC, Mu D. Roles of Thyroid Transcription Factor 1 in Lung Cancer Biology. VITAMINS AND HORMONES 2017; 106:517-544. [PMID: 29407447 PMCID: PMC11528467 DOI: 10.1016/bs.vh.2017.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Thyroid transcription factor 1 (TTF-1 or NKX2-1) is a transcription factor of fundamental importance in driving lung maturation and morphogenesis. In the last decade, scientists began to appreciate the functional roles of TTF-1 in lung tumorigenesis. This movement was triggered by the discoveries of genetic alterations of TTF-1 in the form of gene amplification in lung cancer. Many downstream target genes of TTF-1 relevant to the lung cancer biology of TTF-1 have been documented. One of the most surprising findings was that TTF-1 may exhibit either pro- or antitumorigenic activities, an outcome with the complexity exceeding the original anticipation purely based on the fact that TTF-1 undergoes gene amplification in lung cancer. In the coming decade, we believe, we will witness additional surprises as the research exploring the cancer roles of TTF-1 progresses.
Collapse
Affiliation(s)
- Cody A Phelps
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Shao-Chiang Lai
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States
| | - David Mu
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States.
| |
Collapse
|
342
|
MicroRNA-210, MicroRNA-331, and MicroRNA-7 Are Differentially Regulated in Treated HIV-1-Infected Individuals and Are Associated With Markers of Systemic Inflammation. J Acquir Immune Defic Syndr 2017; 74:e104-e113. [PMID: 27749601 DOI: 10.1097/qai.0000000000001191] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Inflammation may contribute to an increased risk of cardiovascular disease (CVD) in HIV-1 infection. MicroRNAs (miRNAs) are involved in the regulation of inflammation. In treated HIV-1-infected individuals, we aimed to identify differentially expressed miRNAs with known roles in inflammation and CVD risk and to investigate associations between these and systemic inflammation. METHODS In a screening cohort including 14 HIV-1-infected individuals and 9 uninfected controls, microarray profiling was performed using peripheral blood mononuclear cells (PBMCs). Differentially regulated miRNAs previously related to inflammation and CVD were validated using real-time quantitative reverse-transcription polymerase chain reaction in 26 HIV-1-infected individuals and 20 uninfected controls. Validated miRNAs were measured in PBMCs, CD4 and CD8 T cells. Interleukin-6, tumor necrosis factor-alpha, high-sensitivity C-reactive protein, lipopolysaccharide (LPS), cytomegalovirus immunoglobulin G, lipids, and fasting glucose were measured, and associations with validated miRNAs were assessed with multiple linear regression analysis. RESULTS Upregulation of miR-210, miR-7, and miR-331 was found in PBMCs from HIV-1-infected individuals when compared with those from uninfected controls (P < 0.005). In contrast, miR-210 and miR-331 were downregulated in CD8 T cells. In multivariate analysis, miR-210 in CD8 T cells was negatively associated with LPS (P = 0.023) and triglycerides (P = 0.003) but positively associated with tumor necrosis factor-alpha (P = 0.004). MiR-7 in PBMC was positively associated with interleukin-6 (P = 0.025) and fasting glucose (P = 0.005), whereas miR-331 was negatively associated with LPS (P = 0.006). In PBMCs from HIV-1-infected individuals with low cytomegalovirus immunoglobulin G, miR-7, miR-29a, miR-221, and miR-222 were downregulated. CONCLUSION In 2 independent cohorts, miR-210, miR-7, and miR-331 were differentially regulated in treated HIV-1-infected individuals and associated with markers of systemic inflammation.
Collapse
|
343
|
Abstract
PURPOSE OF REVIEW Work over the past decade has identified the important role of microRNAs (miRNAS) in regulating lipoprotein metabolism and associated disorders including metabolic syndrome, obesity, and atherosclerosis. This review summarizes the most recent findings in the field, highlighting the contribution of miRNAs in controlling LDL-cholesterol (LDL-C) and HDL-cholesterol (HDL-C) metabolism. RECENT FINDINGS A number of miRNAs have emerged as important regulators of lipid metabolism, including miR-122 and miR-33. Work over the past 2 years has identified additional functions of miR-33 including the regulation of macrophage activation and mitochondrial metabolism. Moreover, it has recently been shown that miR-33 regulates vascular homeostasis and cardiac adaptation in response to pressure overload. In addition to miR-33 and miR-122, recent GWAS have identified single-nucleotide polymorphisms in the proximity of miRNA genes associated with abnormal levels of circulating lipids in humans. Several of these miRNAs, such as miR-148a and miR-128-1, target important proteins that regulate cellular cholesterol metabolism, including the LDL receptor (LDLR) and the ATP-binding cassette A1 (ABCA1). SUMMARY MicroRNAs have emerged as critical regulators of cholesterol metabolism and promising therapeutic targets for treating cardiometabolic disorders including atherosclerosis. Here, we discuss the recent findings in the field, highlighting the novel mechanisms by which miR-33 controls lipid metabolism and atherogenesis, and the identification of novel miRNAs that regulate LDL metabolism. Finally, we summarize the recent findings that identified miR-33 as an important noncoding RNA that controls cardiovascular homeostasis independent of its role in regulating lipid metabolism.
Collapse
Affiliation(s)
- Binod Aryal
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, and Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA
| | - Abhishek K. Singh
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, and Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA
| | - Noemi Rotllan
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, and Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA
| | - Nathan Price
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, and Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, and Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA
- Corresponding author: Carlos Fernández-Hernando. Phone: +1 (203)-737-4615.
| |
Collapse
|
344
|
Steen VM, Skrede S, Polushina T, López M, Andreassen OA, Fernø J, Hellard SL. Genetic evidence for a role of the SREBP transcription system and lipid biosynthesis in schizophrenia and antipsychotic treatment. Eur Neuropsychopharmacol 2017; 27:589-598. [PMID: 27492885 DOI: 10.1016/j.euroneuro.2016.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022]
Abstract
Schizophrenia is a serious psychotic disorder, with disabling symptoms and markedly reduced life expectancy. The onset is usually in late adolescence or early adulthood, which in time overlaps with the maturation of the brain including the myelination process. Interestingly, there seems to be a link between myelin abnormalities and schizophrenia. The oligodendrocyte-derived myelin membranes in the CNS are highly enriched for lipids (cholesterol, phospholipids and glycosphingolipids), thereby pointing at lipid homeostasis as a relevant target for studying the genetics and pathophysiology of schizophrenia. The biosynthesis of fatty acids and cholesterol is regulated by the sterol regulatory element binding protein (SREBP) transcription factors SREBP1 and SREBP2, which are encoded by the SREBF1 and SREBF2 genes on chromosome 17p11.2 and 22q13.2, respectively. Here we review the evidence for the involvement of SREBF1 and SREBF2 as genetic risk factors in schizophrenia and discuss the role of myelination and SREBP-mediated lipid biosynthesis in the etiology, pathophysiology and drug treatment of schizophrenia.
Collapse
Affiliation(s)
- Vidar M Steen
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Silje Skrede
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Tatiana Polushina
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Ole A Andreassen
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Johan Fernø
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Stephanie Le Hellard
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
345
|
Sliwinska A, Kasinska MA, Drzewoski J. MicroRNAs and metabolic disorders - where are we heading? Arch Med Sci 2017; 13:885-896. [PMID: 28721157 PMCID: PMC5507111 DOI: 10.5114/aoms.2017.65229] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/29/2016] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs, miRs) are short, non-coding molecules engaged in normal functioning of eukaryotic cells, as negative regulators of gene expression. Since the first discovery of miRNA in the early 1990s, hundreds of different miRNAs and their targets have been identified. A growing number of studies have aimed to search for microRNAs which have a key role in the regulation of insulin signaling and metabolic homeostasis. Recent evidence indicates that dysregulation of miRNA expression is involved in the development of various diseases, including type 2 diabetes mellitus (T2DM), obesity and cardiovascular diseases. This review summarizes the biogenesis of miRNAs and their role in pancreatic β cell biology, insulin signaling and metabolism. We also discuss recent findings of miRNAs associated with metabolic disorders and vascular diabetic complications, their diagnosis and therapeutic value. The PubMed database and published reference lists were searched for articles published between 1990 and 2016 using the following keywords: miRNA, miRNA and pancreas; miRNA and insulin; miRNA and type 2 diabetes mellitus, miRNA and obesity, and miRNA and microvascular or macrovascular diabetic complication. This review indicates that miRNA functioning is significantly different in metabolic diseases than in the normal condition.
Collapse
Affiliation(s)
- Agnieszka Sliwinska
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Marta A Kasinska
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Jozef Drzewoski
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
346
|
Hinske LC, Heyn J, Hübner M, Rink J, Hirschberger S, Kreth S. Intronic miRNA-641 controls its host Gene's pathway PI3K/AKT and this relationship is dysfunctional in glioblastoma multiforme. Biochem Biophys Res Commun 2017; 489:477-483. [PMID: 28576488 DOI: 10.1016/j.bbrc.2017.05.175] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 05/29/2017] [Indexed: 01/17/2023]
Abstract
MicroRNAs have established their role as important regulators of the epigenome. A considerable number of human miRNA genes are found in intronic regions of protein-coding host genes, in many cases adopting their regulatory circuitry. However, emerging evidence foreshadows an unprecedented importance for this relationship: Intronic miRNAs may protect the cell from overactivation of the respective host pathway, a setting that may trigger tumor development. AKT2 is a well-known proto-oncogene central to the PI3K/AKT pathway. This pathway is known to promote tumor growth and survival, especially in glioblastoma. Its intronic miRNA, hsa-miR-641, is scarcely investigated, however. We hypothesized that miR-641 regulates its host AKT2 and that this regulation may become dysfunctional in glioblastoma. We found that indeed miR-641 expression differs significantly between GBM tissue and normal brain samples, and that transfection of glioma cells with miR-641 antagonizes the PI3K/AKT pathway. Combining clinical samples, cell cultures, and biomolecular methods, we could show that miR-641 doesn't affect AKT2's expression levels, but down-regulates kinases that are necessary for AKT2-activation, thereby affecting its functional state. We also identified NFAT5 as a miR-641 regulated central factor to trigger the expression of these kinases and subsequently activate AKT2. In summary, our study is the first that draws a connecting line between the proto-oncogene AKT2 and its intronic miRNA miR-641 with implication for glioblastoma development.
Collapse
Affiliation(s)
- Ludwig Christian Hinske
- Department of Anesthesiology, University Hospital of the Ludwig-Maximilians-University Munich, Marchioninistraße 15, D-81377 Munich, Germany.
| | - Jens Heyn
- Department of Anesthesiology, University Hospital of the Ludwig-Maximilians-University Munich, Marchioninistraße 15, D-81377 Munich, Germany.
| | - Max Hübner
- Department of Anesthesiology, University Hospital of the Ludwig-Maximilians-University Munich, Marchioninistraße 15, D-81377 Munich, Germany; Walter-Brendel Center of Experimental Medicine, Ludwig-Maximilians-University Munich, Marchioninistraße 15, D-81377 Munich, Germany.
| | - Jessica Rink
- Department of Anesthesiology, University Hospital of the Ludwig-Maximilians-University Munich, Marchioninistraße 15, D-81377 Munich, Germany; Walter-Brendel Center of Experimental Medicine, Ludwig-Maximilians-University Munich, Marchioninistraße 15, D-81377 Munich, Germany.
| | - Simon Hirschberger
- Department of Anesthesiology, University Hospital of the Ludwig-Maximilians-University Munich, Marchioninistraße 15, D-81377 Munich, Germany; Walter-Brendel Center of Experimental Medicine, Ludwig-Maximilians-University Munich, Marchioninistraße 15, D-81377 Munich, Germany.
| | - Simone Kreth
- Department of Anesthesiology, University Hospital of the Ludwig-Maximilians-University Munich, Marchioninistraße 15, D-81377 Munich, Germany; Walter-Brendel Center of Experimental Medicine, Ludwig-Maximilians-University Munich, Marchioninistraße 15, D-81377 Munich, Germany.
| |
Collapse
|
347
|
Wang YS, Hsi E, Cheng HY, Hsu SH, Liao YC, Juo SHH. Let-7g suppresses both canonical and non-canonical NF-κB pathways in macrophages leading to anti-atherosclerosis. Oncotarget 2017; 8:101026-101041. [PMID: 29254143 PMCID: PMC5731853 DOI: 10.18632/oncotarget.18197] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/29/2017] [Indexed: 12/15/2022] Open
Abstract
Transformation of macrophages to foam cells contributes to atherosclerosis. Here, we report that let-7g reduces macrophage transformation and alleviates foam cell apoptosis by suppressing both canonical and non-canonical NF-κB pathways. In the canonical pathway, let-7g inhibits phosphorylation of IKKβ and IκB, down-regulates SREBF2 and miR-33a, and up-regulates ABCA1. In the non-canonical pathway, let-7g directly knocks down MEKK1, IKKα and ablates IKKα phosphorylation. Let-7g's effects in macrophages can be almost completely blocked by inactivation of NF-κB signaling, which suggests that let-7g's effects are primarily mediated through the suppression of NF-κB pathways. NF-κB has been reported to directly activate lin28 transcription, and lin28 is a well-known negative regulator for let-7 biogenesis. Therefore, there is negative feedback between NF-κB and let-7g. Additional macrophages-specific NF-κB knockout in the apoE deficiency mice reduces atherosclerotic lesion by 85%. Let-7g also suppresses p53-dependent apoptosis. Altogether, sufficient let-7g levels are important to prevent NF-κB over-activation in macrophages and to prevent atherosclerosis.
Collapse
Affiliation(s)
- Yung-Song Wang
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan.,Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Edward Hsi
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Hsin-Yun Cheng
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Chu Liao
- Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Suh-Hang H Juo
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Institute of New Drug Development, China Medical University, Taichung, Taiwan.,Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
348
|
Ouimet M, Ediriweera H, Afonso MS, Ramkhelawon B, Singaravelu R, Liao X, Bandler RC, Rahman K, Fisher EA, Rayner KJ, Pezacki JP, Tabas I, Moore KJ. microRNA-33 Regulates Macrophage Autophagy in Atherosclerosis. Arterioscler Thromb Vasc Biol 2017; 37:1058-1067. [PMID: 28428217 DOI: 10.1161/atvbaha.116.308916] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/05/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Defective autophagy in macrophages leads to pathological processes that contribute to atherosclerosis, including impaired cholesterol metabolism and defective efferocytosis. Autophagy promotes the degradation of cytoplasmic components in lysosomes and plays a key role in the catabolism of stored lipids to maintain cellular homeostasis. microRNA-33 (miR-33) is a post-transcriptional regulator of genes involved in cholesterol homeostasis, yet the complete mechanisms by which miR-33 controls lipid metabolism are unknown. We investigated whether miR-33 targeting of autophagy contributes to its regulation of cholesterol homeostasis and atherogenesis. APPROACH AND RESULTS Using coherent anti-Stokes Raman scattering microscopy, we show that miR-33 drives lipid droplet accumulation in macrophages, suggesting decreased lipolysis. Inhibition of neutral and lysosomal hydrolysis pathways revealed that miR-33 reduced cholesterol mobilization by a lysosomal-dependent mechanism, implicating repression of autophagy. Indeed, we show that miR-33 targets key autophagy regulators and effectors in macrophages to reduce lipid droplet catabolism, an essential process to generate free cholesterol for efflux. Notably, miR-33 regulation of autophagy lies upstream of its known effects on ABCA1 (ATP-binding cassette transporter A1)-dependent cholesterol efflux, as miR-33 inhibitors fail to increase efflux upon genetic or chemical inhibition of autophagy. Furthermore, we find that miR-33 inhibits apoptotic cell clearance via an autophagy-dependent mechanism. Macrophages treated with anti-miR-33 show increased efferocytosis, lysosomal biogenesis, and degradation of apoptotic material. Finally, we show that treating atherosclerotic Ldlr-/- mice with anti-miR-33 restores defective autophagy in macrophage foam cells and plaques and promotes apoptotic cell clearance to reduce plaque necrosis. CONCLUSIONS Collectively, these data provide insight into the mechanisms by which miR-33 regulates cellular cholesterol homeostasis and atherosclerosis.
Collapse
Affiliation(s)
- Mireille Ouimet
- From the Marc and Ruti Bell Vascular Biology and Disease Program, Leon H. Charney Division of Cardiology, Department of Medicine (M.O., H.E., M.S.A., R.C.B., K.R., E.A.F., K.J.M.) and Division of Vascular Surgery, Department of Surgery (B.R.), New York University Medical Center; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada (R.S., K.J.R., J.P.P.); National Research Council of Canada, Ottawa, Ontario (R.S., J.P.P.); Departments of Medicine, Pathology and Cell Biology, Columbia University, New York (X.L., I.T.); and University of Ottawa Heart Institute, Ontario, Canada (K.J.R.)
| | - Hasini Ediriweera
- From the Marc and Ruti Bell Vascular Biology and Disease Program, Leon H. Charney Division of Cardiology, Department of Medicine (M.O., H.E., M.S.A., R.C.B., K.R., E.A.F., K.J.M.) and Division of Vascular Surgery, Department of Surgery (B.R.), New York University Medical Center; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada (R.S., K.J.R., J.P.P.); National Research Council of Canada, Ottawa, Ontario (R.S., J.P.P.); Departments of Medicine, Pathology and Cell Biology, Columbia University, New York (X.L., I.T.); and University of Ottawa Heart Institute, Ontario, Canada (K.J.R.)
| | - Milessa Silva Afonso
- From the Marc and Ruti Bell Vascular Biology and Disease Program, Leon H. Charney Division of Cardiology, Department of Medicine (M.O., H.E., M.S.A., R.C.B., K.R., E.A.F., K.J.M.) and Division of Vascular Surgery, Department of Surgery (B.R.), New York University Medical Center; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada (R.S., K.J.R., J.P.P.); National Research Council of Canada, Ottawa, Ontario (R.S., J.P.P.); Departments of Medicine, Pathology and Cell Biology, Columbia University, New York (X.L., I.T.); and University of Ottawa Heart Institute, Ontario, Canada (K.J.R.)
| | - Bhama Ramkhelawon
- From the Marc and Ruti Bell Vascular Biology and Disease Program, Leon H. Charney Division of Cardiology, Department of Medicine (M.O., H.E., M.S.A., R.C.B., K.R., E.A.F., K.J.M.) and Division of Vascular Surgery, Department of Surgery (B.R.), New York University Medical Center; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada (R.S., K.J.R., J.P.P.); National Research Council of Canada, Ottawa, Ontario (R.S., J.P.P.); Departments of Medicine, Pathology and Cell Biology, Columbia University, New York (X.L., I.T.); and University of Ottawa Heart Institute, Ontario, Canada (K.J.R.)
| | - Ragunath Singaravelu
- From the Marc and Ruti Bell Vascular Biology and Disease Program, Leon H. Charney Division of Cardiology, Department of Medicine (M.O., H.E., M.S.A., R.C.B., K.R., E.A.F., K.J.M.) and Division of Vascular Surgery, Department of Surgery (B.R.), New York University Medical Center; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada (R.S., K.J.R., J.P.P.); National Research Council of Canada, Ottawa, Ontario (R.S., J.P.P.); Departments of Medicine, Pathology and Cell Biology, Columbia University, New York (X.L., I.T.); and University of Ottawa Heart Institute, Ontario, Canada (K.J.R.)
| | - Xianghai Liao
- From the Marc and Ruti Bell Vascular Biology and Disease Program, Leon H. Charney Division of Cardiology, Department of Medicine (M.O., H.E., M.S.A., R.C.B., K.R., E.A.F., K.J.M.) and Division of Vascular Surgery, Department of Surgery (B.R.), New York University Medical Center; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada (R.S., K.J.R., J.P.P.); National Research Council of Canada, Ottawa, Ontario (R.S., J.P.P.); Departments of Medicine, Pathology and Cell Biology, Columbia University, New York (X.L., I.T.); and University of Ottawa Heart Institute, Ontario, Canada (K.J.R.)
| | - Rachel C Bandler
- From the Marc and Ruti Bell Vascular Biology and Disease Program, Leon H. Charney Division of Cardiology, Department of Medicine (M.O., H.E., M.S.A., R.C.B., K.R., E.A.F., K.J.M.) and Division of Vascular Surgery, Department of Surgery (B.R.), New York University Medical Center; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada (R.S., K.J.R., J.P.P.); National Research Council of Canada, Ottawa, Ontario (R.S., J.P.P.); Departments of Medicine, Pathology and Cell Biology, Columbia University, New York (X.L., I.T.); and University of Ottawa Heart Institute, Ontario, Canada (K.J.R.)
| | - Karishma Rahman
- From the Marc and Ruti Bell Vascular Biology and Disease Program, Leon H. Charney Division of Cardiology, Department of Medicine (M.O., H.E., M.S.A., R.C.B., K.R., E.A.F., K.J.M.) and Division of Vascular Surgery, Department of Surgery (B.R.), New York University Medical Center; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada (R.S., K.J.R., J.P.P.); National Research Council of Canada, Ottawa, Ontario (R.S., J.P.P.); Departments of Medicine, Pathology and Cell Biology, Columbia University, New York (X.L., I.T.); and University of Ottawa Heart Institute, Ontario, Canada (K.J.R.)
| | - Edward A Fisher
- From the Marc and Ruti Bell Vascular Biology and Disease Program, Leon H. Charney Division of Cardiology, Department of Medicine (M.O., H.E., M.S.A., R.C.B., K.R., E.A.F., K.J.M.) and Division of Vascular Surgery, Department of Surgery (B.R.), New York University Medical Center; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada (R.S., K.J.R., J.P.P.); National Research Council of Canada, Ottawa, Ontario (R.S., J.P.P.); Departments of Medicine, Pathology and Cell Biology, Columbia University, New York (X.L., I.T.); and University of Ottawa Heart Institute, Ontario, Canada (K.J.R.)
| | - Katey J Rayner
- From the Marc and Ruti Bell Vascular Biology and Disease Program, Leon H. Charney Division of Cardiology, Department of Medicine (M.O., H.E., M.S.A., R.C.B., K.R., E.A.F., K.J.M.) and Division of Vascular Surgery, Department of Surgery (B.R.), New York University Medical Center; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada (R.S., K.J.R., J.P.P.); National Research Council of Canada, Ottawa, Ontario (R.S., J.P.P.); Departments of Medicine, Pathology and Cell Biology, Columbia University, New York (X.L., I.T.); and University of Ottawa Heart Institute, Ontario, Canada (K.J.R.)
| | - John P Pezacki
- From the Marc and Ruti Bell Vascular Biology and Disease Program, Leon H. Charney Division of Cardiology, Department of Medicine (M.O., H.E., M.S.A., R.C.B., K.R., E.A.F., K.J.M.) and Division of Vascular Surgery, Department of Surgery (B.R.), New York University Medical Center; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada (R.S., K.J.R., J.P.P.); National Research Council of Canada, Ottawa, Ontario (R.S., J.P.P.); Departments of Medicine, Pathology and Cell Biology, Columbia University, New York (X.L., I.T.); and University of Ottawa Heart Institute, Ontario, Canada (K.J.R.)
| | - Ira Tabas
- From the Marc and Ruti Bell Vascular Biology and Disease Program, Leon H. Charney Division of Cardiology, Department of Medicine (M.O., H.E., M.S.A., R.C.B., K.R., E.A.F., K.J.M.) and Division of Vascular Surgery, Department of Surgery (B.R.), New York University Medical Center; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada (R.S., K.J.R., J.P.P.); National Research Council of Canada, Ottawa, Ontario (R.S., J.P.P.); Departments of Medicine, Pathology and Cell Biology, Columbia University, New York (X.L., I.T.); and University of Ottawa Heart Institute, Ontario, Canada (K.J.R.)
| | - Kathryn J Moore
- From the Marc and Ruti Bell Vascular Biology and Disease Program, Leon H. Charney Division of Cardiology, Department of Medicine (M.O., H.E., M.S.A., R.C.B., K.R., E.A.F., K.J.M.) and Division of Vascular Surgery, Department of Surgery (B.R.), New York University Medical Center; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada (R.S., K.J.R., J.P.P.); National Research Council of Canada, Ottawa, Ontario (R.S., J.P.P.); Departments of Medicine, Pathology and Cell Biology, Columbia University, New York (X.L., I.T.); and University of Ottawa Heart Institute, Ontario, Canada (K.J.R.).
| |
Collapse
|
349
|
He J, Tian Y, Zhao Y, Liu Y, Tao Z, Li G, Niu D, Lu L, Lu Y. MiR-144 affects fatty acid composition by regulating ELOVL6 expression in duck hepatocytes. Cell Biol Int 2017; 41:691-696. [PMID: 28225172 DOI: 10.1002/cbin.10753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 02/19/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Jun He
- Institute of Animal Husbandry and Veterinary Science; Zhejiang Academy Agricultural Sciences; Hangzhou 310021 China
- Department of Animal Science; Wenzhou Vocational College of Science & Technology; Wenzhou 325006 China
| | - Yong Tian
- Institute of Animal Husbandry and Veterinary Science; Zhejiang Academy Agricultural Sciences; Hangzhou 310021 China
| | - Yan Zhao
- Department of Animal Science; Wenzhou Vocational College of Science & Technology; Wenzhou 325006 China
| | - Yali Liu
- Institute of Animal Husbandry and Veterinary Science; Zhejiang Academy Agricultural Sciences; Hangzhou 310021 China
| | - Zhengrong Tao
- Institute of Animal Husbandry and Veterinary Science; Zhejiang Academy Agricultural Sciences; Hangzhou 310021 China
| | - Guoqin Li
- Institute of Animal Husbandry and Veterinary Science; Zhejiang Academy Agricultural Sciences; Hangzhou 310021 China
| | - Dong Niu
- College of Animal Science; Zhejiang University; Hangzhou 310021 China
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary Science; Zhejiang Academy Agricultural Sciences; Hangzhou 310021 China
| | - Yingru Lu
- Department of Emergency Medicine; First Affiliated Hospital of Wenzhou Medical University; Wenzhou 325000 China
| |
Collapse
|
350
|
Desgagné V, Bouchard L, Guérin R. microRNAs in lipoprotein and lipid metabolism: from biological function to clinical application. Clin Chem Lab Med 2017; 55:667-686. [PMID: 27987357 DOI: 10.1515/cclm-2016-0575] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022]
Abstract
microRNAs (miRNAs) are short (~22 nucleotides), non-coding, single-stranded RNA molecules that regulate the expression of target genes by partial sequence-specific base-pairing to the targeted mRNA 3'UTR, blocking its translation, and promoting its degradation or its sequestration into processing bodies. miRNAs are important regulators of several physiological processes including developmental and metabolic functions, but their concentration in circulation has also been reported to be altered in many pathological conditions such as familial hypercholesterolemia, cardiovascular diseases, obesity, type 2 diabetes, and cancers. In this review, we focus on the role of miRNAs in lipoprotein and lipid metabolism, with special attention to the well-characterized miR-33a/b, and on the huge potential of miRNAs for clinical application as biomarkers and therapeutics in the context of cardiometabolic diseases.
Collapse
Affiliation(s)
| | - Luigi Bouchard
- Département de biochimie, Université de Sherbrooke, Sherbrooke, Québec
| | - Renée Guérin
- Département de biochimie, Université de Sherbrooke, Sherbrooke, Québec
| |
Collapse
|