301
|
Dries M, Obermair M, Hettler S, Hermann P, Seemann K, Seifried F, Ulrich S, Fischer R, Gerthsen D. Oxide-free aC/Zr 0.65Al 0.075Cu 0.275/aC phase plates for transmission electron microscopy. Ultramicroscopy 2018; 189:39-45. [PMID: 29604501 DOI: 10.1016/j.ultramic.2018.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/22/2018] [Accepted: 03/02/2018] [Indexed: 11/28/2022]
Abstract
Thin-film phase plates (PP) have become a valuable tool for the imaging of organic objects in transmission electron microscopy (TEM). The thin film usually consists of amorphous carbon (aC), which undergoes rapid aging under intense illumination with high-energy electrons. The limited lifetime of aC film PPs calls for alternative PP materials with improved material stability. This work presents thin-film PPs fabricated from the metallic glass alloy Zr0.65Al0.075Cu0.275 (ZAC), which was identified as a promising PP material with beneficial properties, such as a large inelastic mean free path. An adverse effect of the ZAC alloy is the formation of a surface oxide layer in ambient air, which reduces the electrical conductivity and causes electrostatic charging in the electron beam. To avoid surface oxidation, the ZAC alloy is enclosed by thin aC layers. The resulting aC/ZAC/aC layer system is used to fabricate Zernike and Hilbert PPs. Phase-contrast TEM imaging is demonstrated for a sample of carbon nanotubes, which show strong contrast enhancement in PP TEM images.
Collapse
Affiliation(s)
- M Dries
- Karlsruher Institut für Technologie (KIT), Laboratorium für Elektronenmikroskopie (LEM), Engesserstraße 7, D-76131, Karlsruhe, Germany
| | - M Obermair
- Karlsruher Institut für Technologie (KIT), Laboratorium für Elektronenmikroskopie (LEM), Engesserstraße 7, D-76131, Karlsruhe, Germany.
| | - S Hettler
- Karlsruher Institut für Technologie (KIT), Laboratorium für Elektronenmikroskopie (LEM), Engesserstraße 7, D-76131, Karlsruhe, Germany
| | - P Hermann
- Karlsruher Institut für Technologie (KIT), Laboratorium für Elektronenmikroskopie (LEM), Engesserstraße 7, D-76131, Karlsruhe, Germany
| | - K Seemann
- Karlsruher Institut für Technologie (KIT), Institut für Angewandte Materialien (IAM), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - F Seifried
- Karlsruher Institut für Technologie (KIT), Institut für Angewandte Materialien (IAM), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - S Ulrich
- Karlsruher Institut für Technologie (KIT), Institut für Angewandte Materialien (IAM), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - R Fischer
- Karlsruher Institut für Technologie (KIT), Institut für Physikalische Chemie (IPC), Fritz-Haber-Weg 2, D-76131, Karlsruhe, Germany
| | - D Gerthsen
- Karlsruher Institut für Technologie (KIT), Laboratorium für Elektronenmikroskopie (LEM), Engesserstraße 7, D-76131, Karlsruhe, Germany
| |
Collapse
|
302
|
Amaro RE, Mulholland AJ. Multiscale Methods in Drug Design Bridge Chemical and Biological Complexity in the Search for Cures. Nat Rev Chem 2018; 2:0148. [PMID: 30949587 PMCID: PMC6445369 DOI: 10.1038/s41570-018-0148] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Drug action is inherently multiscale: it connects molecular interactions to emergent properties at cellular and larger scales. Simulation techniques at each of these different scales are already central to drug design and development, but methods capable of connecting across these scales will extend understanding of complex mechanisms and the ability to predict biological effects. Improved algorithms, ever-more-powerful computing architectures and the accelerating growth of rich datasets are driving advances in multiscale modeling methods capable of bridging chemical and biological complexity from the atom to the cell. Particularly exciting is the development of highly detailed, structure-based, physical simulations of biochemical systems, which are now able to access experimentally relevant timescales for large systems and, at the same time, achieve unprecedented accuracy. In this Perspective, we discuss how emerging data-rich, physics-based multiscale approaches are of the cusp of realizing long-promised impact in the discovery, design and development of novel therapeutics. We highlight emerging methods and applications in this growing field, and outline how different scales can be combined in practical modelling and simulation strategies.
Collapse
Affiliation(s)
- Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0304
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
303
|
Cyrklaff M, Frischknecht F, Kudryashev M. Functional insights into pathogen biology from 3D electron microscopy. FEMS Microbiol Rev 2018; 41:828-853. [PMID: 28962014 DOI: 10.1093/femsre/fux041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/25/2017] [Indexed: 01/10/2023] Open
Abstract
In recent years, novel imaging approaches revolutionised our understanding of the cellular and molecular biology of microorganisms. These include advances in fluorescent probes, dynamic live cell imaging, superresolution light and electron microscopy. Currently, a major transition in the experimental approach shifts electron microscopy studies from a complementary technique to a method of choice for structural and functional analysis. Here we review functional insights into the molecular architecture of viruses, bacteria and parasites as well as interactions with their respective host cells gained from studies using cryogenic electron tomography and related methodologies.
Collapse
Affiliation(s)
- Marek Cyrklaff
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Mikhail Kudryashev
- Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University of Frankfurt, Max-von-Laue Strasse 17, 60438 Frankfurt, Germany
| |
Collapse
|
304
|
Braunger K, Pfeffer S, Shrimal S, Gilmore R, Berninghausen O, Mandon EC, Becker T, Förster F, Beckmann R. Structural basis for coupling protein transport and N-glycosylation at the mammalian endoplasmic reticulum. Science 2018. [PMID: 29519914 DOI: 10.1126/science.aar7899] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein synthesis, transport, and N-glycosylation are coupled at the mammalian endoplasmic reticulum by complex formation of a ribosome, the Sec61 protein-conducting channel, and oligosaccharyltransferase (OST). Here we used different cryo-electron microscopy approaches to determine structures of native and solubilized ribosome-Sec61-OST complexes. A molecular model for the catalytic OST subunit STT3A (staurosporine and temperature sensitive 3A) revealed how it is integrated into the OST and how STT3-paralog specificity for translocon-associated OST is achieved. The OST subunit DC2 was placed at the interface between Sec61 and STT3A, where it acts as a versatile module for recruitment of STT3A-containing OST to the ribosome-Sec61 complex. This detailed structural view on the molecular architecture of the cotranslational machinery for N-glycosylation provides the basis for a mechanistic understanding of glycoprotein biogenesis at the endoplasmic reticulum.
Collapse
Affiliation(s)
- Katharina Braunger
- Department of Biochemistry, Gene Center and Center for Integrated Protein Science Munich, University of Munich, 81377 Munich, Germany
| | - Stefan Pfeffer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| | - Shiteshu Shrimal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Reid Gilmore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Otto Berninghausen
- Department of Biochemistry, Gene Center and Center for Integrated Protein Science Munich, University of Munich, 81377 Munich, Germany
| | - Elisabet C Mandon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Thomas Becker
- Department of Biochemistry, Gene Center and Center for Integrated Protein Science Munich, University of Munich, 81377 Munich, Germany
| | - Friedrich Förster
- Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, Netherlands.
| | - Roland Beckmann
- Department of Biochemistry, Gene Center and Center for Integrated Protein Science Munich, University of Munich, 81377 Munich, Germany.
| |
Collapse
|
305
|
Leppek K, Das R, Barna M. Functional 5' UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat Rev Mol Cell Biol 2018; 19:158-174. [PMID: 29165424 PMCID: PMC5820134 DOI: 10.1038/nrm.2017.103] [Citation(s) in RCA: 578] [Impact Index Per Article: 82.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RNA molecules can fold into intricate shapes that can provide an additional layer of control of gene expression beyond that of their sequence. In this Review, we discuss the current mechanistic understanding of structures in 5' untranslated regions (UTRs) of eukaryotic mRNAs and the emerging methodologies used to explore them. These structures may regulate cap-dependent translation initiation through helicase-mediated remodelling of RNA structures and higher-order RNA interactions, as well as cap-independent translation initiation through internal ribosome entry sites (IRESs), mRNA modifications and other specialized translation pathways. We discuss known 5' UTR RNA structures and how new structure probing technologies coupled with prospective validation, particularly compensatory mutagenesis, are likely to identify classes of structured RNA elements that shape post-transcriptional control of gene expression and the development of multicellular organisms.
Collapse
Affiliation(s)
- Kathrin Leppek
- Department of Developmental Biology, Stanford University, Stanford, California 94305, USA
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Rhiju Das
- Departments of Biochemistry and Physics, Stanford University, Stanford, California 94305, USA
| | - Maria Barna
- Department of Developmental Biology, Stanford University, Stanford, California 94305, USA
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
306
|
Erdmann PS, Plitzko JM, Baumeister W. Addressing cellular compartmentalization by in situ cryo-electron tomography. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
307
|
Mak J, de Marco A. Recent advances in retroviruses via cryo-electron microscopy. Retrovirology 2018; 15:23. [PMID: 29471854 PMCID: PMC5824478 DOI: 10.1186/s12977-018-0405-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 02/14/2018] [Indexed: 12/14/2022] Open
Abstract
Cryo-electron microscopy has undergone a revolution in recent years and it has contributed significantly to a number of different areas in biological research. In this manuscript, we will describe some of the recent advancements in cryo-electron microscopy focussing on the advantages that this technique can bring rather than on the technology. We will then conclude discussing how the field of retrovirology has benefited from cryo-electron microscopy.
Collapse
Affiliation(s)
- Johnson Mak
- Institute for Glycomics, Griffith University Gold Coast, Southport, QLD, Australia
| | - Alex de Marco
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
308
|
Albers SV, Jarrell KF. The Archaellum: An Update on the Unique Archaeal Motility Structure. Trends Microbiol 2018; 26:351-362. [PMID: 29452953 DOI: 10.1016/j.tim.2018.01.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/08/2018] [Accepted: 01/19/2018] [Indexed: 11/24/2022]
Abstract
Each of the three domains of life exhibits a unique motility structure: while Bacteria use flagella, Eukarya employ cilia, and Archaea swim using archaella. Since the new name for the archaeal motility structure was proposed, in 2012, a significant amount of new data on the regulation of transcription of archaella operons, the structure and function of archaellum subunits, their interactions, and cryo-EM data on in situ archaellum complexes in whole cells have been obtained. These data support the notion that the archaellum is evolutionary and structurally unrelated to the flagellum, but instead is related to archaeal and bacterial type IV pili and emphasize that it is a motility structure unique to the Archaea.
Collapse
Affiliation(s)
- Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II - Microbiology, University of Freiburg, 79104 Freiburg, Germany.
| | - Ken F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
309
|
Afonina ZA, Shirokov VA. Three-Dimensional Organization of Polyribosomes–A Modern Approach. BIOCHEMISTRY (MOSCOW) 2018; 83:S48-S55. [DOI: 10.1134/s0006297918140055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
310
|
Comparison of 3D cellular imaging techniques based on scanned electron probes: Serial block face SEM vs. Axial bright-field STEM tomography. J Struct Biol 2018; 202:216-228. [PMID: 29408702 DOI: 10.1016/j.jsb.2018.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 11/22/2022]
Abstract
Microscopies based on focused electron probes allow the cell biologist to image the 3D ultrastructure of eukaryotic cells and tissues extending over large volumes, thus providing new insight into the relationship between cellular architecture and function of organelles. Here we compare two such techniques: electron tomography in conjunction with axial bright-field scanning transmission electron microscopy (BF-STEM), and serial block face scanning electron microscopy (SBF-SEM). The advantages and limitations of each technique are illustrated by their application to determining the 3D ultrastructure of human blood platelets, by considering specimen geometry, specimen preparation, beam damage and image processing methods. Many features of the complex membranes composing the platelet organelles can be determined from both approaches, although STEM tomography offers a higher ∼3 nm isotropic pixel size, compared with ∼5 nm for SBF-SEM in the plane of the block face and ∼30 nm in the perpendicular direction. In this regard, we demonstrate that STEM tomography is advantageous for visualizing the platelet canalicular system, which consists of an interconnected network of narrow (∼50-100 nm) membranous cisternae. In contrast, SBF-SEM enables visualization of complete platelets, each of which extends ∼2 µm in minimum dimension, whereas BF-STEM tomography can typically only visualize approximately half of the platelet volume due to a rapid non-linear loss of signal in specimens of thickness greater than ∼1.5 µm. We also show that the limitations of each approach can be ameliorated by combining 3D and 2D measurements using a stereological approach.
Collapse
|
311
|
Müller-Reichert T, Kiewisz R, Redemann S. Mitotic spindles revisited – new insights from 3D electron microscopy. J Cell Sci 2018; 131:131/3/jcs211383. [DOI: 10.1242/jcs.211383] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT
The mitotic spindle is a complex three-dimensional (3D) apparatus that functions to ensure the faithful segregation of chromosomes during cell division. Our current understanding of spindle architecture is mainly based on a plethora of information derived from light microscopy with rather few insights about spindle ultrastructure obtained from electron microscopy. In this Review, we will provide insights into the history of imaging of mitotic spindles and highlight recent technological advances in electron tomography and data processing, which have delivered detailed 3D reconstructions of mitotic spindles in the early embryo of the nematode Caenorhabditis elegans. Tomographic reconstructions provide novel views on spindles and will enable us to revisit and address long-standing questions in the field of mitosis.
Collapse
Affiliation(s)
- Thomas Müller-Reichert
- Technische Universität Dresden, Experimental Center, Medical Faculty Carl Gustav Carus, Fiedlerstraße 42, 01307 Dresden, Germany
| | - Robert Kiewisz
- Technische Universität Dresden, Experimental Center, Medical Faculty Carl Gustav Carus, Fiedlerstraße 42, 01307 Dresden, Germany
| | - Stefanie Redemann
- Technische Universität Dresden, Experimental Center, Medical Faculty Carl Gustav Carus, Fiedlerstraße 42, 01307 Dresden, Germany
| |
Collapse
|
312
|
Galej WP, Toor N, Newman AJ, Nagai K. Molecular Mechanism and Evolution of Nuclear Pre-mRNA and Group II Intron Splicing: Insights from Cryo-Electron Microscopy Structures. Chem Rev 2018; 118:4156-4176. [PMID: 29377672 DOI: 10.1021/acs.chemrev.7b00499] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nuclear pre-mRNA splicing and group II intron self-splicing both proceed by two-step transesterification reactions via a lariat intron intermediate. Recently determined cryo-electron microscopy (cryo-EM) structures of catalytically active spliceosomes revealed the RNA-based catalytic core and showed how pre-mRNA substrates and reaction products are positioned in the active site. These findings highlight a strong structural similarity to the group II intron active site, strengthening the notion that group II introns and spliceosomes evolved from a common ancestor. Prp8, the largest and most conserved protein in the spliceosome, cradles the active site RNA. Prp8 and group II intron maturase have a similar domain architecture, suggesting that they also share a common evolutionary origin. The interactions between maturase and key group II intron RNA elements, such as the exon-binding loop and domains V and VI, are recapitulated in the interactions between Prp8 and key elements in the spliceosome's catalytic RNA core. Structural comparisons suggest that the extensive RNA scaffold of the group II intron was gradually replaced by proteins as the spliceosome evolved. A plausible model of spliceosome evolution is discussed.
Collapse
Affiliation(s)
- Wojciech P Galej
- EMBL Grenoble , 71 Avenue des Martyrs , 38042 Grenoble Cedex 09 , France
| | - Navtej Toor
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Andrew J Newman
- MRC Laboratory of Molecular Biology , Francis Crick Avenue , Cambridge CB2 0QH , U.K
| | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology , Francis Crick Avenue , Cambridge CB2 0QH , U.K
| |
Collapse
|
313
|
Abstract
In eukaryotes, distinct transport vesicles functionally connect various intracellular compartments. These carriers mediate transport of membranes for the biogenesis and maintenance of organelles, secretion of cargo proteins and peptides, and uptake of cargo into the cell. Transport vesicles have distinct protein coats that assemble on a donor membrane where they can select cargo and curve the membrane to form a bud. A multitude of structural elements of coat proteins have been solved by X-ray crystallography. More recently, the architectures of the COPI and COPII coats were elucidated in context with their membrane by cryo-electron tomography. Here, we describe insights gained from the structures of these two coat lattices and discuss the resulting functional implications.
Collapse
Affiliation(s)
- Julien Béthune
- Heidelberg University Biochemistry Centre, 69120 Heidelberg, Germany; ,
| | - Felix T Wieland
- Heidelberg University Biochemistry Centre, 69120 Heidelberg, Germany; ,
| |
Collapse
|
314
|
Ou HD, Phan S, Deerinck TJ, Thor A, Ellisman MH, O'Shea CC. ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science 2018; 357:357/6349/eaag0025. [PMID: 28751582 DOI: 10.1126/science.aag0025] [Citation(s) in RCA: 570] [Impact Index Per Article: 81.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 01/11/2017] [Accepted: 06/08/2017] [Indexed: 12/30/2022]
Abstract
The chromatin structure of DNA determines genome compaction and activity in the nucleus. On the basis of in vitro structures and electron microscopy (EM) studies, the hierarchical model is that 11-nanometer DNA-nucleosome polymers fold into 30- and subsequently into 120- and 300- to 700-nanometer fibers and mitotic chromosomes. To visualize chromatin in situ, we identified a fluorescent dye that stains DNA with an osmiophilic polymer and selectively enhances its contrast in EM. Using ChromEMT (ChromEM tomography), we reveal the ultrastructure and three-dimensional (3D) organization of individual chromatin polymers, megabase domains, and mitotic chromosomes. We show that chromatin is a disordered 5- to 24-nanometer-diameter curvilinear chain that is packed together at different 3D concentration distributions in interphase and mitosis. Chromatin chains have many different particle arrangements and bend at various lengths to achieve structural compaction and high packing densities.
Collapse
Affiliation(s)
- Horng D Ou
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sébastien Phan
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Thomas J Deerinck
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Andrea Thor
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.,Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Clodagh C O'Shea
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
315
|
Webb RI, Schieber NL. Volume Scanning Electron Microscopy: Serial Block-Face Scanning Electron Microscopy Focussed Ion Beam Scanning Electron Microscopy. BIOLOGICAL AND MEDICAL PHYSICS, BIOMEDICAL ENGINEERING 2018. [DOI: 10.1007/978-3-319-68997-5_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
316
|
Engelhardt H, Bollschweiler D. Cryo-Electron Microscopy of Extremely Halophilic Microbes. J Microbiol Methods 2018. [DOI: 10.1016/bs.mim.2018.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
317
|
Anderson KL, Page C, Swift MF, Hanein D, Volkmann N. Marker-free method for accurate alignment between correlated light, cryo-light, and electron cryo-microscopy data using sample support features. J Struct Biol 2018; 201:46-51. [PMID: 29113849 PMCID: PMC5748349 DOI: 10.1016/j.jsb.2017.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 12/30/2022]
Abstract
Combining fluorescence microscopy with electron cryo-tomography allows, in principle, spatial localization of tagged macromolecular assemblies and structural features within the cellular environment. To allow precise localization and scale integration between the two disparate imaging modalities, accurate alignment procedures are needed. Here, we describe a marker-free method for aligning images from light or cryo-light fluorescence microscopy and from electron cryo-microscopy that takes advantage of sample support features, namely the holes in the carbon film. We find that the accuracy of this method, as judged by prediction errors of the hole center coordinates, is better than 100 nm.
Collapse
Affiliation(s)
- Karen L Anderson
- Sanford-Burnham-Prebys Medical Discovery Institute, Bioinformatics and Structural Biology Program, La Jolla, CA, USA
| | - Christopher Page
- Sanford-Burnham-Prebys Medical Discovery Institute, Bioinformatics and Structural Biology Program, La Jolla, CA, USA
| | - Mark F Swift
- Sanford-Burnham-Prebys Medical Discovery Institute, Bioinformatics and Structural Biology Program, La Jolla, CA, USA
| | - Dorit Hanein
- Sanford-Burnham-Prebys Medical Discovery Institute, Bioinformatics and Structural Biology Program, La Jolla, CA, USA
| | - Niels Volkmann
- Sanford-Burnham-Prebys Medical Discovery Institute, Bioinformatics and Structural Biology Program, La Jolla, CA, USA.
| |
Collapse
|
318
|
|
319
|
Abstract
The cell nucleus houses, protects, and arranges the genome within the cell. Therefore, nuclear mechanics and morphology are important for dictating gene regulation, and these properties are perturbed in many human diseases, such as cancers and progerias. The field of nuclear mechanics has long been dominated by studies of the nuclear lamina, the intermediate filament shell residing just beneath the nuclear membrane. However, a growing body of work shows that chromatin and chromatin-related factors within the nucleus are an essential part of the mechanical response of the cell nucleus to forces. Recently, our group demonstrated that chromatin and the lamina provide distinct mechanical contributions to nuclear mechanical response. The lamina is indeed important for robust response to large, whole-nucleus stresses, but chromatin dominates the short-extension response. These findings offer a clarifying perspective on varied nuclear mechanics measurements and observations, and they suggest several new exciting possibilities for understanding nuclear morphology, organization, and mechanics.
Collapse
Affiliation(s)
- Andrew D Stephens
- a Department of Molecular Biosciences , Northwestern University , Evanston , Illinois , USA
| | - Edward J Banigan
- b Department of Physics and Astronomy , Northwestern University , Evanston , Illinois , USA.,c Institute for Medical Engineering and Science, Massachusetts Institute of Technology , Cambridge , Massachusetts
| | - John F Marko
- a Department of Molecular Biosciences , Northwestern University , Evanston , Illinois , USA.,b Department of Physics and Astronomy , Northwestern University , Evanston , Illinois , USA
| |
Collapse
|
320
|
Kim DN, Sanbonmatsu KY. Tools for the cryo-EM gold rush: going from the cryo-EM map to the atomistic model. Biosci Rep 2017; 37:BSR20170072. [PMID: 28963369 PMCID: PMC5715128 DOI: 10.1042/bsr20170072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/16/2022] Open
Abstract
As cryo-electron microscopy (cryo-EM) enters mainstream structural biology, the demand for fitting methods is high. Here, we review existing flexible fitting methods for cryo-EM. We discuss their importance, potential concerns and assessment strategies. We aim to give readers concrete descriptions of cryo-EM flexible fitting methods with corresponding examples.
Collapse
Affiliation(s)
- Doo Nam Kim
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, U.S.A
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, U.S.A.
- New Mexico Consortium, Los Alamos, U.S.A
| |
Collapse
|
321
|
Abstract
This study compares the native structures of cytosolic and nuclear proteasomes, visualized directly within cells. The assembly states and functional states of proteasomes in each compartment were similar, indicating comparable levels of proteolytic activity per proteasome. Nuclear proteasomes were tethered to two different sites at the nuclear pore complex (NPC): the inner nuclear membrane and the NPC basket. Structural analysis revealed mechanistic details of the two tethering interactions. These results present direct evidence that proteasomes bind at NPCs, establishing a cellular hub for protein degradation at the gateway between the nucleus and cytoplasm. This work demonstrates how cryo-electron tomography can reveal biological mechanisms by directly observing the interactions between molecular complexes within the native cellular environment. The partitioning of cellular components between the nucleus and cytoplasm is the defining feature of eukaryotic life. The nuclear pore complex (NPC) selectively gates the transport of macromolecules between these compartments, but it is unknown whether surveillance mechanisms exist to reinforce this function. By leveraging in situ cryo-electron tomography to image the native cellular environment of Chlamydomonas reinhardtii, we observed that nuclear 26S proteasomes crowd around NPCs. Through a combination of subtomogram averaging and nanometer-precision localization, we identified two classes of proteasomes tethered via their Rpn9 subunits to two specific NPC locations: binding sites on the NPC basket that reflect its eightfold symmetry and more abundant binding sites at the inner nuclear membrane that encircle the NPC. These basket-tethered and membrane-tethered proteasomes, which have similar substrate-processing state frequencies as proteasomes elsewhere in the cell, are ideally positioned to regulate transcription and perform quality control of both soluble and membrane proteins transiting the NPC.
Collapse
|
322
|
Banigan EJ, Stephens AD, Marko JF. Mechanics and Buckling of Biopolymeric Shells and Cell Nuclei. Biophys J 2017; 113:1654-1663. [PMID: 29045860 DOI: 10.1016/j.bpj.2017.08.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/08/2017] [Accepted: 08/22/2017] [Indexed: 12/31/2022] Open
Abstract
We study a Brownian dynamics simulation model of a biopolymeric shell deformed by axial forces exerted at opposing poles. The model exhibits two distinct, linear force-extension regimes, with the response to small tensions governed by linear elasticity and the response to large tensions governed by an effective spring constant that scales with radius as R-0.25. When extended beyond the initial linear elastic regime, the shell undergoes a hysteretic, temperature-dependent buckling transition. We experimentally observe this buckling transition by stretching and imaging the lamina of isolated cell nuclei. Furthermore, the interior contents of the shell can alter mechanical response and buckling, which we show by simulating a model for the nucleus that quantitatively agrees with our micromanipulation experiments stretching individual nuclei.
Collapse
Affiliation(s)
- Edward J Banigan
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois.
| | - Andrew D Stephens
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois
| | - John F Marko
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois; Department of Molecular Biosciences, Northwestern University, Evanston, Illinois
| |
Collapse
|
323
|
Trovato F, Fumagalli G. Molecular simulations of cellular processes. Biophys Rev 2017; 9:941-958. [PMID: 29185136 DOI: 10.1007/s12551-017-0363-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/19/2017] [Indexed: 12/12/2022] Open
Abstract
It is, nowadays, possible to simulate biological processes in conditions that mimic the different cellular compartments. Several groups have performed these calculations using molecular models that vary in performance and accuracy. In many cases, the atomistic degrees of freedom have been eliminated, sacrificing both structural complexity and chemical specificity to be able to explore slow processes. In this review, we will discuss the insights gained from computer simulations on macromolecule diffusion, nuclear body formation, and processes involving the genetic material inside cell-mimicking spaces. We will also discuss the challenges to generate new models suitable for the simulations of biological processes on a cell scale and for cell-cycle-long times, including non-equilibrium events such as the co-translational folding, misfolding, and aggregation of proteins. A prominent role will be played by the wise choice of the structural simplifications and, simultaneously, of a relatively complex energetic description. These challenging tasks will rely on the integration of experimental and computational methods, achieved through the application of efficient algorithms. Graphical abstract.
Collapse
Affiliation(s)
- Fabio Trovato
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195, Berlin, Germany.
| | - Giordano Fumagalli
- Nephrology and Dialysis Unit, USL Toscana Nord Ovest, 55041, Lido di Camaiore, Lucca, Italy
| |
Collapse
|
324
|
Boland A, Chang L, Barford D. The potential of cryo-electron microscopy for structure-based drug design. Essays Biochem 2017; 61:543-560. [PMID: 29118099 DOI: 10.1042/ebc20170032] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/17/2022]
Abstract
Structure-based drug design plays a central role in therapeutic development. Until recently, protein crystallography and NMR have dominated experimental approaches to obtain structural information of biological molecules. However, in recent years rapid technical developments in single particle cryo-electron microscopy (cryo-EM) have enabled the determination to near-atomic resolution of macromolecules ranging from large multi-subunit molecular machines to proteins as small as 64 kDa. These advances have revolutionized structural biology by hugely expanding both the range of macromolecules whose structures can be determined, and by providing a description of macromolecular dynamics. Cryo-EM is now poised to similarly transform the discipline of structure-based drug discovery. This article reviews the potential of cryo-EM for drug discovery with reference to protein ligand complex structures determined using this technique.
Collapse
Affiliation(s)
- Andreas Boland
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Leifu Chang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - David Barford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K.
| |
Collapse
|
325
|
Sellés J, Penrad-Mobayed M, Guillaume C, Fuger A, Auvray L, Faklaris O, Montel F. Nuclear pore complex plasticity during developmental process as revealed by super-resolution microscopy. Sci Rep 2017; 7:14732. [PMID: 29116248 PMCID: PMC5677124 DOI: 10.1038/s41598-017-15433-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/26/2017] [Indexed: 02/08/2023] Open
Abstract
Nuclear Pore Complex (NPC) is of paramount importance for cellular processes since it is the unique gateway for molecular exchange through the nucleus. Unraveling the modifications of the NPC structure in response to physiological cues, also called nuclear pore plasticity, is key to the understanding of the selectivity of this molecular machinery. As a step towards this goal, we use the optical super-resolution microscopy method called direct Stochastic Optical Reconstruction Microscopy (dSTORM), to analyze oocyte development impact on the internal structure and large-scale organization of the NPC. Staining of the FG-Nups proteins and the gp210 proteins allowed us to pinpoint a decrease of the global diameter by measuring the mean diameter of the central channel and the luminal ring of the NPC via autocorrelation image processing. Moreover, by using an angular and radial density function we show that development of the Xenopus laevis oocyte is correlated with a progressive decrease of the density of NPC and an ordering on a square lattice.
Collapse
Affiliation(s)
- Julien Sellés
- Matière et Systèmes Complexes, Université Paris Diderot/CNRS (UMR 7057), 75205, Paris, Cedex 13, France
- Institut Jacques Monod, Université Paris Diderot/CNRS, UMR 7592, 15 rue Hélène Brion, 75205, Paris, CEDEX 13, France
| | - May Penrad-Mobayed
- Institut Jacques Monod, Université Paris Diderot/CNRS, UMR 7592, 15 rue Hélène Brion, 75205, Paris, CEDEX 13, France
| | - Cyndélia Guillaume
- Matière et Systèmes Complexes, Université Paris Diderot/CNRS (UMR 7057), 75205, Paris, Cedex 13, France
| | - Alica Fuger
- Matière et Systèmes Complexes, Université Paris Diderot/CNRS (UMR 7057), 75205, Paris, Cedex 13, France
| | - Loïc Auvray
- Matière et Systèmes Complexes, Université Paris Diderot/CNRS (UMR 7057), 75205, Paris, Cedex 13, France
| | - Orestis Faklaris
- ImagoSeine core facility, Institut Jacques Monod, Université Paris Diderot/CNRS, UMR 7592, 15 rue Hélène Brion, 75205, Paris, CEDEX 13, France
| | - Fabien Montel
- Matière et Systèmes Complexes, Université Paris Diderot/CNRS (UMR 7057), 75205, Paris, Cedex 13, France.
- Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342, Lyon, France.
| |
Collapse
|
326
|
Wolf SG, Mutsafi Y, Dadosh T, Ilani T, Lansky Z, Horowitz B, Rubin S, Elbaum M, Fass D. 3D visualization of mitochondrial solid-phase calcium stores in whole cells. eLife 2017; 6:29929. [PMID: 29106371 PMCID: PMC5703638 DOI: 10.7554/elife.29929] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/03/2017] [Indexed: 11/13/2022] Open
Abstract
The entry of calcium into mitochondria is central to metabolism, inter-organelle communication, and cell life/death decisions. Long-sought transporters involved in mitochondrial calcium influx and efflux have recently been identified. To obtain a unified picture of mitochondrial calcium utilization, a parallel advance in understanding the forms and quantities of mitochondrial calcium stores is needed. We present here the direct 3D visualization of mitochondrial calcium in intact mammalian cells using cryo-scanning transmission electron tomography (CSTET). Amorphous solid granules containing calcium and phosphorus were pervasive in the mitochondrial matrices of a variety of mammalian cell types. Analysis based on quantitative electron scattering revealed that these repositories are equivalent to molar concentrations of dissolved ions. These results demonstrate conclusively that calcium buffering in the mitochondrial matrix in live cells occurs by phase separation, and that solid-phase stores provide a major ion reservoir that can be mobilized for bioenergetics and signaling.
Collapse
Affiliation(s)
- Sharon Grayer Wolf
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Mutsafi
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Dadosh
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Ilani
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Zipora Lansky
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ben Horowitz
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Rubin
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Elbaum
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel
| | - Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
327
|
Lang S, Pfeffer S, Lee PH, Cavalié A, Helms V, Förster F, Zimmermann R. An Update on Sec61 Channel Functions, Mechanisms, and Related Diseases. Front Physiol 2017; 8:887. [PMID: 29163222 PMCID: PMC5672155 DOI: 10.3389/fphys.2017.00887] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/19/2017] [Indexed: 12/18/2022] Open
Abstract
The membrane of the endoplasmic reticulum (ER) of nucleated human cells harbors the protein translocon, which facilitates membrane integration or translocation of almost every newly synthesized polypeptide targeted to organelles of the endo- and exocytotic pathway. The translocon comprises the polypeptide-conducting Sec61 channel and several additional proteins and complexes that are permanently or transiently associated with the heterotrimeric Sec61 complex. This ensemble of proteins facilitates ER targeting of precursor polypeptides, modification of precursor polypeptides in transit through the Sec61 complex, and Sec61 channel gating, i.e., dynamic regulation of the pore forming subunit to mediate precursor transport and calcium efflux. Recently, cryoelectron tomography of translocons in native ER membrane vesicles, derived from human cell lines or patient fibroblasts, and even intact cells has given unprecedented insights into the architecture and dynamics of the native translocon and the Sec61 channel. These structural data are discussed in light of different Sec61 channel activities including ribosome receptor function, membrane insertion, and translocation of newly synthesized polypeptides as well as the putative physiological roles of the Sec61 channel as a passive ER calcium leak channel. Furthermore, the structural insights into the Sec61 channel are incorporated into an overview and update on Sec61 channel-related diseases—the Sec61 channelopathies—and novel therapeutic concepts for their treatment.
Collapse
Affiliation(s)
- Sven Lang
- Competence Center for Molecular Medicine, Saarland University Medical School, Homburg, Germany
| | - Stefan Pfeffer
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Po-Hsien Lee
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Adolfo Cavalié
- Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Friedrich Förster
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Richard Zimmermann
- Competence Center for Molecular Medicine, Saarland University Medical School, Homburg, Germany
| |
Collapse
|
328
|
Uhler C, Shivashankar GV. Regulation of genome organization and gene expression by nuclear mechanotransduction. Nat Rev Mol Cell Biol 2017; 18:717-727. [PMID: 29044247 DOI: 10.1038/nrm.2017.101] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is well established that cells sense chemical signals from their local microenvironment and transduce them to the nucleus to regulate gene expression programmes. Although a number of experiments have shown that mechanical cues can also modulate gene expression, the underlying mechanisms are far from clear. Nevertheless, we are now beginning to understand how mechanical cues are transduced to the nucleus and how they influence nuclear mechanics, genome organization and transcription. In particular, recent progress in super-resolution imaging, in genome-wide application of RNA sequencing, chromatin immunoprecipitation and chromosome conformation capture and in theoretical modelling of 3D genome organization enables the exploration of the relationship between cell mechanics, 3D chromatin configurations and transcription, thereby shedding new light on how mechanical forces regulate gene expression.
Collapse
Affiliation(s)
- Caroline Uhler
- Department of Electrical Engineering and Computer Science, Laboratory of Information and Decision Systems, Institute for Data, Systems and Society, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - G V Shivashankar
- Mechanobiology Institute, National University of Singapore, 119077 Singapore.,Italian Foundation for Cancer Research (FIRC) Institute of Molecular Oncology (IFOM), Milan 20139, Italy
| |
Collapse
|
329
|
Danev R, Baumeister W. Expanding the boundaries of cryo-EM with phase plates. Curr Opin Struct Biol 2017; 46:87-94. [DOI: 10.1016/j.sbi.2017.06.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 10/19/2022]
|
330
|
Baker LA, Grange M, Grünewald K. Electron cryo-tomography captures macromolecular complexes in native environments. Curr Opin Struct Biol 2017; 46:149-156. [DOI: 10.1016/j.sbi.2017.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 11/27/2022]
|
331
|
de Leeuw R, Gruenbaum Y, Medalia O. Nuclear Lamins: Thin Filaments with Major Functions. Trends Cell Biol 2017; 28:34-45. [PMID: 28893461 DOI: 10.1016/j.tcb.2017.08.004] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/08/2017] [Accepted: 08/14/2017] [Indexed: 10/18/2022]
Abstract
The nuclear lamina is a nuclear peripheral meshwork that is mainly composed of nuclear lamins, although a small fraction of lamins also localizes throughout the nucleoplasm. Lamins are classified as type V intermediate filament (IF) proteins. Mutations in lamin genes cause at least 15 distinct human diseases, collectively termed laminopathies, including muscle, metabolic, and neuronal diseases, and can cause accelerated aging. Most of these mutations are in the LMNA gene encoding A-type lamins. A growing number of nuclear proteins are known to bind lamins and are implicated in both nuclear and cytoskeletal organization, mechanical stability, chromatin organization, signaling, gene regulation, genome stability, and cell differentiation. Recent studies reveal the organization of the lamin filament meshwork in somatic cells where they assemble as tetramers in cross-section of the filaments.
Collapse
Affiliation(s)
- Rebecca de Leeuw
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Yosef Gruenbaum
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva 84105, Israel.
| |
Collapse
|
332
|
Bäuerlein FJB, Saha I, Mishra A, Kalemanov M, Martínez-Sánchez A, Klein R, Dudanova I, Hipp MS, Hartl FU, Baumeister W, Fernández-Busnadiego R. In Situ Architecture and Cellular Interactions of PolyQ Inclusions. Cell 2017; 171:179-187.e10. [PMID: 28890085 DOI: 10.1016/j.cell.2017.08.009] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/30/2017] [Accepted: 08/07/2017] [Indexed: 02/06/2023]
Abstract
Expression of many disease-related aggregation-prone proteins results in cytotoxicity and the formation of large intracellular inclusion bodies. To gain insight into the role of inclusions in pathology and the in situ structure of protein aggregates inside cells, we employ advanced cryo-electron tomography methods to analyze the structure of inclusions formed by polyglutamine (polyQ)-expanded huntingtin exon 1 within their intact cellular context. In primary mouse neurons and immortalized human cells, polyQ inclusions consist of amyloid-like fibrils that interact with cellular endomembranes, particularly of the endoplasmic reticulum (ER). Interactions with these fibrils lead to membrane deformation, the local impairment of ER organization, and profound alterations in ER membrane dynamics at the inclusion periphery. These results suggest that aberrant interactions between fibrils and endomembranes contribute to the deleterious cellular effects of protein aggregation. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Felix J B Bäuerlein
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Itika Saha
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Archana Mishra
- Department of Molecules, Signaling, and Development, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Maria Kalemanov
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Graduate School of Quantitative Biosciences Munich, 81337 Munich, Germany
| | - Antonio Martínez-Sánchez
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Rüdiger Klein
- Department of Molecules, Signaling, and Development, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany
| | - Irina Dudanova
- Department of Molecules, Signaling, and Development, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Mark S Hipp
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany.
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| | - Rubén Fernández-Busnadiego
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
333
|
Turgay Y, Medalia O. The structure of lamin filaments in somatic cells as revealed by cryo-electron tomography. Nucleus 2017; 8:475-481. [PMID: 28635493 PMCID: PMC5703231 DOI: 10.1080/19491034.2017.1337622] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 05/22/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022] Open
Abstract
Metazoan nuclei are equipped with nuclear lamina - a thin layer of intermediate filaments (IFs) mostly built of nuclear lamins facing the inner nuclear membrane (INM). The nuclear lamina serves as an interaction hub for INM-proteins, soluble nuclear factors and DNA. It confers structural and mechanical stability to the nucleus, transduces mechanical forces and biochemical signals across the nuclear envelope (NE) and regulates the organization of chromatin. By using cryo-electron tomography (cryo-ET), we recently provided an unprecedented view into the 3D organization of lamin filaments within the lamina meshwork in mammalian somatic cells. Through implementation of averaging procedures, we resolved the rod and globular Ig-fold domains of lamin filaments. The density maps suggested that they assemble into 3.5 nm thick filaments. Our analysis revealed interesting structural differences between nucleoplasmic and cytoplasmic intermediate filaments, raising the question of which molecular cues define their assembly modes inside the cell.
Collapse
Affiliation(s)
- Y. Turgay
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - O. Medalia
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva, Israel
| |
Collapse
|
334
|
Pauwels K, Lebrun P, Tompa P. To be disordered or not to be disordered: is that still a question for proteins in the cell? Cell Mol Life Sci 2017; 74:3185-3204. [PMID: 28612216 PMCID: PMC11107661 DOI: 10.1007/s00018-017-2561-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/01/2017] [Indexed: 12/26/2022]
Abstract
There is ample evidence that many proteins or regions of proteins lack a well-defined folded structure under native-like conditions. These are called intrinsically disordered proteins (IDPs) or intrinsically disordered regions (IDRs). Whether this intrinsic disorder is also their main structural characteristic in living cells has been a matter of intense debate. The structural analysis of IDPs became an important challenge also because of their involvement in a plethora of human diseases, which made IDPs attractive targets for therapeutic development. Therefore, biophysical approaches are increasingly being employed to probe the structural and dynamical state of proteins, not only in isolation in a test tube, but also in a complex biological environment and even within intact cells. Here, we survey direct and indirect evidence that structural disorder is in fact the physiological state of many proteins in the proteome. The paradigmatic case of α-synuclein is used to illustrate the controversial nature of this topic.
Collapse
Affiliation(s)
- Kris Pauwels
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Pierre Lebrun
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Peter Tompa
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium.
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium.
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
335
|
Gold VA, Chroscicki P, Bragoszewski P, Chacinska A. Visualization of cytosolic ribosomes on the surface of mitochondria by electron cryo-tomography. EMBO Rep 2017; 18:1786-1800. [PMID: 28827470 PMCID: PMC5623831 DOI: 10.15252/embr.201744261] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 12/31/2022] Open
Abstract
We employed electron cryo‐tomography to visualize cytosolic ribosomes on the surface of mitochondria. Translation‐arrested ribosomes reveal the clustered organization of the TOM complex, corroborating earlier reports of localized translation. Ribosomes are shown to interact specifically with the TOM complex, and nascent chain binding is crucial for ribosome recruitment and stabilization. Ribosomes are bound to the membrane in discrete clusters, often in the vicinity of the crista junctions. This interaction highlights how protein synthesis may be coupled with transport. Our work provides unique insights into the spatial organization of cytosolic ribosomes on mitochondria.
Collapse
Affiliation(s)
- Vicki Am Gold
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany .,Living Systems Institute, University of Exeter, Exeter, UK.,College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Exeter, UK
| | - Piotr Chroscicki
- The International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Piotr Bragoszewski
- The International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Agnieszka Chacinska
- The International Institute of Molecular and Cell Biology, Warsaw, Poland .,Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
336
|
Cramer P. Structural Molecular Biology-A Personal Reflection on the Occasion of John Kendrew's 100th Birthday. J Mol Biol 2017; 429:2603-2610. [PMID: 28501586 DOI: 10.1016/j.jmb.2017.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
Abstract
Here, I discuss the development and future of structural molecular biology, concentrating on the eukaryotic transcription machinery and reflecting on John Kendrew's legacy from a personal perspective.
Collapse
Affiliation(s)
- Patrick Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
337
|
Wagner J, Schaffer M, Fernández-Busnadiego R. Cryo-electron tomography-the cell biology that came in from the cold. FEBS Lett 2017; 591:2520-2533. [PMID: 28726246 DOI: 10.1002/1873-3468.12757] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/26/2017] [Accepted: 07/14/2017] [Indexed: 12/27/2022]
Abstract
Cryo-electron tomography (cryo-ET) provides high-resolution 3D views into cells pristinely preserved by vitrification. Recent technical advances such as direct electron detectors, the Volta phase plate and cryo-focused ion beam milling have dramatically pushed image quality and expanded the range of cryo-ET applications. Cryo-ET not only allows mapping the positions and interactions of macromolecules within their intact cellular context, but can also reveal their in situ structure at increasing resolution. Here, we review how recent work using cutting-edge cryo-ET technologies is starting to provide fresh views into different aspects of cellular biology at an unprecedented level of detail. We anticipate that these developments will soon make cryo-ET a fundamental technique in cell biology.
Collapse
|
338
|
Khoshouei M, Danev R, Plitzko JM, Baumeister W. Revisiting the Structure of Hemoglobin and Myoglobin with Cryo-Electron Microscopy. J Mol Biol 2017; 429:2611-2618. [DOI: 10.1016/j.jmb.2017.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/05/2017] [Indexed: 11/16/2022]
|
339
|
Kastritis PL, O'Reilly FJ, Bock T, Li Y, Rogon MZ, Buczak K, Romanov N, Betts MJ, Bui KH, Hagen WJ, Hennrich ML, Mackmull MT, Rappsilber J, Russell RB, Bork P, Beck M, Gavin AC. Capturing protein communities by structural proteomics in a thermophilic eukaryote. Mol Syst Biol 2017; 13:936. [PMID: 28743795 PMCID: PMC5527848 DOI: 10.15252/msb.20167412] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The arrangement of proteins into complexes is a key organizational principle for many cellular functions. Although the topology of many complexes has been systematically analyzed in isolation, their molecular sociology in situ remains elusive. Here, we show that crude cellular extracts of a eukaryotic thermophile, Chaetomium thermophilum, retain basic principles of cellular organization. Using a structural proteomics approach, we simultaneously characterized the abundance, interactions, and structure of a third of the C. thermophilum proteome within these extracts. We identified 27 distinct protein communities that include 108 interconnected complexes, which dynamically associate with each other and functionally benefit from being in close proximity in the cell. Furthermore, we investigated the structure of fatty acid synthase within these extracts by cryoEM and this revealed multiple, flexible states of the enzyme in adaptation to its association with other complexes, thus exemplifying the need for in situ studies. As the components of the captured protein communities are known—at both the protein and complex levels—this study constitutes another step forward toward a molecular understanding of subcellular organization.
Collapse
Affiliation(s)
- Panagiotis L Kastritis
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Francis J O'Reilly
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany.,Chair of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Thomas Bock
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Yuanyue Li
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Matt Z Rogon
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Katarzyna Buczak
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Natalie Romanov
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Matthew J Betts
- Cell Networks, Bioquant & Biochemie Zentrum Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Khanh Huy Bui
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Wim J Hagen
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Marco L Hennrich
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Marie-Therese Mackmull
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Juri Rappsilber
- Chair of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany.,Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Robert B Russell
- Cell Networks, Bioquant & Biochemie Zentrum Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Peer Bork
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Martin Beck
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Anne-Claude Gavin
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| |
Collapse
|
340
|
Nanoscale mechanobiology of cell adhesions. Semin Cell Dev Biol 2017; 71:53-67. [PMID: 28754443 DOI: 10.1016/j.semcdb.2017.07.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 12/16/2022]
Abstract
Proper physiological functions of cells and tissues depend upon their abilities to sense, transduce, integrate, and generate mechanical and biochemical signals. Although such mechanobiological phenomena are widely observed, the molecular mechanisms driving these outcomes are still not fully understood. Cell adhesions formed by integrins and cadherins receptors are key structures that process diverse sources of signals to elicit complex mechanobiological responses. Since the nanoscale is the length scale at which molecules interact to relay force and information, the understanding of cell adhesions at the nanoscale level is important for grasping the inner logics of cellular decision making. Until recently, the study of the biological nanoscale has been restricted by available molecular and imaging tools. Fortunately, rapid technological advances have increasingly opened up the nanoscale realm to systematic investigations. In this review, we discuss current insights and key open questions regarding the nanoscale structure and function relationship of cell adhesions, focusing on recent progresses in characterizing their composition, spatial organization, and cytomechanical operation.
Collapse
|
341
|
Plitzko JM, Schuler B, Selenko P. Structural Biology outside the box-inside the cell. Curr Opin Struct Biol 2017; 46:110-121. [PMID: 28735108 DOI: 10.1016/j.sbi.2017.06.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/17/2017] [Accepted: 06/23/2017] [Indexed: 01/11/2023]
Abstract
Recent developments in cellular cryo-electron tomography, in-cell single-molecule Förster resonance energy transfer-spectroscopy, nuclear magnetic resonance-spectroscopy and electron paramagnetic resonance-spectroscopy delivered unprecedented insights into the inner workings of cells. Here, we review complementary aspects of these methods and provide an outlook toward joint applications in the future.
Collapse
Affiliation(s)
- Jürgen M Plitzko
- Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Philipp Selenko
- Leibniz Institute of Molecular Pharmacology (FMP Berlin), In-cell NMR Laboratory, Robert-Roessle Strasse 10, D-13125 Berlin, Germany.
| |
Collapse
|
342
|
Nuclear pore complex tethers to the cytoskeleton. Semin Cell Dev Biol 2017; 68:52-58. [PMID: 28676424 DOI: 10.1016/j.semcdb.2017.06.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 06/23/2017] [Indexed: 12/21/2022]
Abstract
The nuclear envelope is tethered to the cytoskeleton. The best known attachments of all elements of the cytoskeleton are via the so-called LINC complex. However, the nuclear pore complexes, which mediate the transport of soluble and membrane bound molecules, are also linked to the microtubule network, primarily via motor proteins (dynein and kinesins) which are linked, most importantly, to the cytoplasmic filament protein of the nuclear pore complex, Nup358, by the adaptor BicD2. The evidence for such linkages and possible roles in nuclear migration, cell cycle control, nuclear transport and cell architecture are discussed.
Collapse
|
343
|
Wang IH, Burckhardt CJ, Yakimovich A, Morf MK, Greber UF. The nuclear export factor CRM1 controls juxta-nuclear microtubule-dependent virus transport. J Cell Sci 2017; 130:2185-2195. [PMID: 28515232 DOI: 10.1242/jcs.203794] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/12/2017] [Indexed: 12/26/2022] Open
Abstract
Transport of large cargo through the cytoplasm requires motor proteins and polarized filaments. Viruses that replicate in the nucleus of post-mitotic cells use microtubules and the dynein-dynactin motor to traffic to the nuclear membrane and deliver their genome through nuclear pore complexes (NPCs) into the nucleus. How virus particles (virions) or cellular cargo are transferred from microtubules to the NPC is unknown. Here, we analyzed trafficking of incoming cytoplasmic adenoviruses by single-particle tracking and super-resolution microscopy. We provide evidence for a regulatory role of CRM1 (chromosome-region-maintenance-1; also known as XPO1, exportin-1) in juxta-nuclear microtubule-dependent adenovirus transport. Leptomycin B (LMB) abolishes nuclear targeting of adenovirus. It binds to CRM1, precludes CRM1-cargo binding and blocks signal-dependent nuclear export. LMB-inhibited CRM1 did not compete with adenovirus for binding to the nucleoporin Nup214 at the NPC. Instead, CRM1 inhibition selectively enhanced virion association with microtubules, and boosted virion motions on microtubules less than ∼2 µm from the nuclear membrane. The data show that the nucleus provides positional information for incoming virions to detach from microtubules, engage a slower microtubule-independent motility to the NPC and enhance infection.
Collapse
Affiliation(s)
- I-Hsuan Wang
- Department of Molecular Life Sciences, University of Zürich, 8057 Zurich, Switzerland
| | - Christoph J Burckhardt
- Department of Molecular Life Sciences, University of Zürich, 8057 Zurich, Switzerland
- Department of Bioinformatics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Artur Yakimovich
- Department of Molecular Life Sciences, University of Zürich, 8057 Zurich, Switzerland
| | - Matthias K Morf
- Department of Molecular Life Sciences, University of Zürich, 8057 Zurich, Switzerland
- Molecular Life Sciences Graduate School, ETH and University of Zürich, 8057 Zurich, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zürich, 8057 Zurich, Switzerland
| |
Collapse
|
344
|
Abstract
Transmission electron microscopy (TEM) can be used to successfully determine the structures of proteins. However, such studies are typically done ex situ after extraction of the protein from the cellular environment. Here we describe an application for nanodiamonds as targeted intensity contrast labels in biological TEM, using the nuclear pore complex (NPC) as a model macroassembly. We demonstrate that delivery of antibody-conjugated nanodiamonds to live mammalian cells using maltotriose-conjugated polypropylenimine dendrimers results in efficient localization of nanodiamonds to the intended cellular target. We further identify signatures of nanodiamonds under TEM that allow for unambiguous identification of individual nanodiamonds from a resin-embedded, OsO4-stained environment. This is the first demonstration of nanodiamonds as labels for nanoscale TEM-based identification of subcellular protein assemblies. These results, combined with the unique fluorescence properties and biocompatibility of nanodiamonds, represent an important step toward the use of nanodiamonds as markers for correlated optical/electron bioimaging.
Collapse
|
345
|
Athirasala A, Hirsch N, Buxboim A. Nuclear mechanotransduction: sensing the force from within. Curr Opin Cell Biol 2017. [PMID: 28641092 DOI: 10.1016/j.ceb.2017.04.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cell nucleus is a hallmark of eukaryotic evolution, where gene expression is regulated and the genome is replicated and repaired. Yet, in addition to complex molecular processes, the nucleus has also evolved to serve physical tasks that utilize its optical and mechanical properties. Nuclear mechanotransduction of externally applied forces and extracellular stiffness is facilitated by the physical connectivity of the extracellular environment, the cytoskeleton and the nucleoskeletal matrix of lamins and chromatin. Nuclear mechanosensor elements convert applied tension into biochemical cues that activate downstream signal transduction pathways. Mechanoregulatory networks stabilize a contractile cell state with feedback to matrix, cell adhesions and cytoskeletal elements. Recent advances have thus provided mechanistic insights into how forces are sensed from within, that is, in the nucleus where cell-fate decision-making is performed.
Collapse
Affiliation(s)
- Avathamsa Athirasala
- Alexander Grass Center for Bioengineering, School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Nivi Hirsch
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Amnon Buxboim
- Alexander Grass Center for Bioengineering, School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
346
|
Tardieux I, Baum J. Reassessing the mechanics of parasite motility and host-cell invasion. J Cell Biol 2017; 214:507-15. [PMID: 27573462 PMCID: PMC5004448 DOI: 10.1083/jcb.201605100] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/09/2016] [Indexed: 12/20/2022] Open
Abstract
The capacity to migrate is fundamental to multicellular and single-celled life. Apicomplexan parasites, an ancient protozoan clade that includes malaria parasites (Plasmodium) and Toxoplasma, achieve remarkable speeds of directional cell movement. This rapidity is achieved via a divergent actomyosin motor system, housed within a narrow compartment that lies underneath the length of the parasite plasma membrane. How this motor functions at a mechanistic level during motility and host cell invasion is a matter of debate. Here, we integrate old and new insights toward refining the current model for the function of this motor with the aim of revitalizing interest in the mechanics of how these deadly pathogens move.
Collapse
Affiliation(s)
- Isabelle Tardieux
- Institute of Advanced BioSciences, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique UMR 5309, Université Grenoble Alpes, 38000, Grenoble, France
| | - Jake Baum
- Department of Life Sciences, Imperial College London, London SW7 2AZ, England, UK
| |
Collapse
|
347
|
Pathare GR, Nagy I, Hubert Á, Thomas DR, Bracher A. Crystal structure of the Thermoplasma acidophilumprotein Ta1207. Acta Crystallogr F Struct Biol Commun 2017; 73:328-335. [DOI: 10.1107/s2053230x17007087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/12/2017] [Indexed: 11/10/2022] Open
Abstract
The crystal structure of the Ta1207 protein fromThermoplasma acidophilumis reported. Ta1207 was identified in a screen for high-molecular-weight protein complexes inT. acidophilum. In solution, Ta1207 forms homopentamers of 188 kDa. The crystal structure of recombinant Ta1207 solved by Se-MAD at 2.4 Å resolution revealed a complex with fivefold symmetry. In the crystal lattice, calcium ions induce the formation of a nanocage from two pentamers. The Ta1207 protomers comprise two domains with the same novel α/β topology. A deep pocket with a binding site for a negatively charged group suggests that Ta1207 functions as an intracellular receptor for an unknown ligand. Homologues of Ta1207 occur only in Thermoplasmatales and its function might be related to the extreme lifestyle of these archaea. The thermostable Ta1207 complex might provide a useful fivefold-symmetric scaffold for future nanotechnological applications.
Collapse
|
348
|
Galaz-Montoya JG, Ludtke SJ. The advent of structural biology in situ by single particle cryo-electron tomography. BIOPHYSICS REPORTS 2017; 3:17-35. [PMID: 28781998 PMCID: PMC5516000 DOI: 10.1007/s41048-017-0040-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/30/2017] [Indexed: 01/06/2023] Open
Abstract
Single particle tomography (SPT), also known as subtomogram averaging, is a powerful technique uniquely poised to address questions in structural biology that are not amenable to more traditional approaches like X-ray crystallography, nuclear magnetic resonance, and conventional cryoEM single particle analysis. Owing to its potential for in situ structural biology at subnanometer resolution, SPT has been gaining enormous momentum in the last five years and is becoming a prominent, widely used technique. This method can be applied to unambiguously determine the structures of macromolecular complexes that exhibit compositional and conformational heterogeneity, both in vitro and in situ. Here we review the development of SPT, highlighting its applications and identifying areas of ongoing development.
Collapse
Affiliation(s)
- Jesús G. Galaz-Montoya
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030 USA
| | - Steven J. Ludtke
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030 USA
| |
Collapse
|
349
|
Frazier Z, Xu M, Alber F. TomoMiner and TomoMinerCloud: A Software Platform for Large-Scale Subtomogram Structural Analysis. Structure 2017; 25:951-961.e2. [PMID: 28552576 DOI: 10.1016/j.str.2017.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 12/17/2016] [Accepted: 04/28/2017] [Indexed: 11/19/2022]
Abstract
Cryo-electron tomography (cryo-ET) captures the 3D electron density distribution of macromolecular complexes in close to native state. With the rapid advance of cryo-ET acquisition technologies, it is possible to generate large numbers (>100,000) of subtomograms, each containing a macromolecular complex. Often, these subtomograms represent a heterogeneous sample due to variations in the structure and composition of a complex in situ form or because particles are a mixture of different complexes. In this case subtomograms must be classified. However, classification of large numbers of subtomograms is a time-intensive task and often a limiting bottleneck. This paper introduces an open source software platform, TomoMiner, for large-scale subtomogram classification, template matching, subtomogram averaging, and alignment. Its scalable and robust parallel processing allows efficient classification of tens to hundreds of thousands of subtomograms. In addition, TomoMiner provides a pre-configured TomoMinerCloud computing service permitting users without sufficient computing resources instant access to TomoMiners high-performance features.
Collapse
Affiliation(s)
- Zachary Frazier
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, USA
| | - Min Xu
- Computational Biology Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.
| | - Frank Alber
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, USA.
| |
Collapse
|
350
|
Kühn S, Lopez-Montero N, Chang YY, Sartori-Rupp A, Enninga J. Imaging macropinosomes during Shigella infections. Methods 2017; 127:12-22. [PMID: 28522322 DOI: 10.1016/j.ymeth.2017.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/11/2017] [Accepted: 05/10/2017] [Indexed: 12/21/2022] Open
Abstract
Macropinocytosis is the uptake of extracellular fluid within vesicles of varying size that takes place during numerous cellular processes in a large variety of cells. A growing number of pathogens, including viruses, parasites, and bacteria are known to induce macropinocytosis during their entry into targeted host cells. We have recently discovered that the human enteroinvasive, bacterial pathogen Shigella causes in situ macropinosome formation during its entry into epithelial cells. These infection-associated macropinosomes are not generated to ingest the bacteria, but are instead involved in Shigella's intracellular niche formation. They make contacts with the phagocytosed shigellae to promote vacuolar membrane rupture and their cytosolic release. Here, we provide an overview of the different imaging approaches that are currently used to analyze macropinocytosis during infectious processes with a focus on Shigella entry. We detail the advantages and disadvantages of genetically encoded reporters as well as chemical probes to trace fluid phase uptake. In addition, we report how such reporters can be combined with ultrastructural approaches for correlative light electron microscopy either in thin sections or within large volumes. The combined imaging techniques introduced here provide a detailed characterization of macropinosomes during bacterial entry, which, apart from Shigella, are relevant for numerous other ones, including Salmonella, Brucella or Mycobacteria.
Collapse
Affiliation(s)
- Sonja Kühn
- Department of Cell Biology and Infection, Institut Pasteur, Paris, France
| | | | - Yuen-Yan Chang
- Department of Cell Biology and Infection, Institut Pasteur, Paris, France
| | - Anna Sartori-Rupp
- Department of Cell Biology and Infection, Institut Pasteur, Paris, France
| | - Jost Enninga
- Department of Cell Biology and Infection, Institut Pasteur, Paris, France.
| |
Collapse
|