301
|
Innate Immune Evasion Mediated by Flaviviridae Non-Structural Proteins. Viruses 2017; 9:v9100291. [PMID: 28991176 PMCID: PMC5691642 DOI: 10.3390/v9100291] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 12/17/2022] Open
Abstract
Flaviviridae-caused diseases are a critical, emerging public health problem worldwide. Flaviviridae infections usually cause severe, acute or chronic diseases, such as liver damage and liver cancer resulting from a hepatitis C virus (HCV) infection and high fever and shock caused by yellow fever. Many researchers worldwide are investigating the mechanisms by which Flaviviridae cause severe diseases. Flaviviridae can interfere with the host’s innate immunity to achieve their purpose of proliferation. For instance, dengue virus (DENV) NS2A, NS2B3, NS4A, NS4B and NS5; HCV NS2, NS3, NS3/4A, NS4B and NS5A; and West Nile virus (WNV) NS1 and NS4B proteins are involved in immune evasion. This review discusses the interplay between viral non-structural Flaviviridae proteins and relevant host proteins, which leads to the suppression of the host’s innate antiviral immunity.
Collapse
|
302
|
Culshaw A, Mongkolsapaya J, Screaton GR. The immunopathology of dengue and Zika virus infections. Curr Opin Immunol 2017; 48:1-6. [DOI: 10.1016/j.coi.2017.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/22/2017] [Accepted: 07/03/2017] [Indexed: 11/27/2022]
|
303
|
Wan SW, Chen PW, Chen CY, Lai YC, Chu YT, Hung CY, Lee H, Wu HF, Chuang YC, Lin J, Chang CP, Wang S, Liu CC, Ho TS, Lin CF, Lee CK, Wu-Hsieh BA, Anderson R, Yeh TM, Lin YS. Therapeutic Effects of Monoclonal Antibody against Dengue Virus NS1 in a STAT1 Knockout Mouse Model of Dengue Infection. THE JOURNAL OF IMMUNOLOGY 2017; 199:2834-2844. [PMID: 28904127 DOI: 10.4049/jimmunol.1601523] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 08/14/2017] [Indexed: 12/17/2022]
Abstract
Dengue virus (DENV) is the causative agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome and is endemic to tropical and subtropical regions of the world. Our previous studies showed the existence of epitopes in the C-terminal region of DENV nonstructural protein 1 (NS1) which are cross-reactive with host Ags and trigger anti-DENV NS1 Ab-mediated endothelial cell damage and platelet dysfunction. To circumvent these potentially harmful events, we replaced the C-terminal region of DENV NS1 with the corresponding region from Japanese encephalitis virus NS1 to create chimeric DJ NS1 protein. Passive immunization of DENV-infected mice with polyclonal anti-DJ NS1 Abs reduced viral Ag expression at skin inoculation sites and shortened DENV-induced prolonged bleeding time. We also investigated the therapeutic effects of anti-NS1 mAb. One mAb designated 2E8 does not recognize the C-terminal region of DENV NS1 in which host-cross-reactive epitopes reside. Moreover, mAb 2E8 recognizes NS1 of all four DENV serotypes. We also found that mAb 2E8 caused complement-mediated lysis in DENV-infected cells. In mouse model studies, treatment with mAb 2E8 shortened DENV-induced prolonged bleeding time and reduced viral Ag expression in the skin. Importantly, mAb 2E8 provided therapeutic effects against all four serotypes of DENV. We further found that mAb administration to mice as late as 1 d prior to severe bleeding still reduced prolonged bleeding time and hemorrhage. Therefore, administration with a single dose of mAb 2E8 can protect mice against DENV infection and pathological effects, suggesting that NS1-specific mAb may be a therapeutic option against dengue disease.
Collapse
Affiliation(s)
- Shu-Wen Wan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.,School of Medicine, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan
| | - Pei-Wei Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chin-Yu Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yen-Chung Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Ya-Ting Chu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chia-Yi Hung
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Han Lee
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsuan Franziska Wu
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yung-Chun Chuang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Jessica Lin
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chih-Peng Chang
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Shuying Wang
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Ching-Chuan Liu
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.,Department of Pediatrics, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Tzong-Shiann Ho
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.,Department of Pediatrics, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chiou-Feng Lin
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.,Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chien-Kuo Lee
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Betty A Wu-Hsieh
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Robert Anderson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.,Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; and.,Canadian Center for Vaccinology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Trai-Ming Yeh
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; .,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yee-Shin Lin
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; .,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
304
|
Vickers I, Harvey K, Nelson K, Brown M, Bullock-DuCasse M, Lindo J. Evaluation of OneStep Dengue NS1 RapiDip™ InstaTest and OneStep Dengue Fever IgG/IgM RapiCard™ InstaTest during the course of a dengue type 1 epidemic. Diagn Microbiol Infect Dis 2017; 89:271-275. [PMID: 29021087 DOI: 10.1016/j.diagmicrobio.2017.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/26/2017] [Accepted: 08/22/2017] [Indexed: 10/19/2022]
Abstract
We determined the diagnostic performance of the OneStep NS1 and the OneStep IgG/IgM RDT kits against a panel of samples which comprised of 174 dengue positive and 165 dengue negative sera characterized by three reference enzyme-linked immunosorbent assays (ELISAs). The diagnostic sensitivities of the OneStep kits for the detection of individual biomarkers of NS1, IgM and IgG were 90% (95% CI: 82.1-94.7), 32.4% (95% CI: 24.8-40.8) and 44.4% (95% CI: 38.2-50.7), respectively. The combination of the OneStep IgG/IgM kit with the OneStep NS1 kit demonstrated significantly higher sensitivities for the combined NS1/IgM (96.8%; 95% CI: 90.9-99.3) and NS1/IgM/IgG (99.5%; 95% CI: 97.1-99.9)(P<0.001). In conclusion, the OneStep NS1 kit has high sensitivity and specificity and is highly recommended for use. The low sensitivities for IgG (44.4%) and for IgM (32.4%) of the OneStep IgG/IgM kit when used alone suggest it is best used in combination with the OneStep NS1 kit to enhance its overall diagnostic performance.
Collapse
Affiliation(s)
- Ivan Vickers
- Department of Microbiology, The University of the West Indies, Mona, Kingston 7, Jamaica.
| | | | - Kereann Nelson
- Department of Microbiology, The University of the West Indies, Mona, Kingston 7, Jamaica
| | - Michelle Brown
- Department of Microbiology, The University of the West Indies, Mona, Kingston 7, Jamaica
| | | | - John Lindo
- Department of Microbiology, The University of the West Indies, Mona, Kingston 7, Jamaica
| |
Collapse
|
305
|
Katzelnick LC, Harris E. Immune correlates of protection for dengue: State of the art and research agenda. Vaccine 2017; 35:4659-4669. [PMID: 28757058 PMCID: PMC5924688 DOI: 10.1016/j.vaccine.2017.07.045] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/04/2017] [Accepted: 07/13/2017] [Indexed: 01/15/2023]
Abstract
Dengue viruses (DENV1-4) are mosquito-borne flaviviruses estimated to cause up to ∼400 million infections and ∼100 million dengue cases each year. Factors that contribute to protection from and risk of dengue and severe dengue disease have been studied extensively but are still not fully understood. Results from Phase 3 vaccine efficacy trials have recently become available for one vaccine candidate, now licensed for use in several countries, and more Phase 2 and 3 studies of additional vaccine candidates are ongoing, making these issues all the more urgent and timely. At the "Summit on Dengue Immune Correlates of Protection", held in Annecy, France, on March 8-9, 2016, dengue experts from diverse fields came together to discuss the current understanding of the immune response to and protection from DENV infection and disease, identify key unanswered questions, discuss data on immune correlates and plans for comparison of results across assays/consortia, and propose a research agenda for investigation of dengue immune correlates, all in the context of both natural infection studies and vaccine trials.
Collapse
Affiliation(s)
- Leah C Katzelnick
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA; Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA.
| |
Collapse
|
306
|
Alcalá AC, Hernández-Bravo R, Medina F, Coll DS, Zambrano JL, del Angel RM, Ludert JE. The dengue virus non-structural protein 1 (NS1) is secreted from infected mosquito cells via a non-classical caveolin-1-dependent pathway. J Gen Virol 2017; 98:2088-2099. [DOI: 10.1099/jgv.0.000881] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
- Ana C. Alcalá
- Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), CDMX, Mexico
| | - Raiza Hernández-Bravo
- Exploration and Production Research Office, Mexican Petroleum Institute (IMP), Mexico City, Mexico
| | - Fernando Medina
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), CDMX, Mexico
| | - David S. Coll
- Center of Chemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Jose L. Zambrano
- Center of Microbiology and Cell Biology, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Rosa M. del Angel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), CDMX, Mexico
| | - Juan E. Ludert
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), CDMX, Mexico
| |
Collapse
|
307
|
Antibodies Against Modified NS1 Wing Domain Peptide Protect Against Dengue Virus Infection. Sci Rep 2017; 7:6975. [PMID: 28765561 PMCID: PMC5539099 DOI: 10.1038/s41598-017-07308-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/26/2017] [Indexed: 01/10/2023] Open
Abstract
Dengue is the most common mosquito-transmitted viral infection for which an improved vaccine is still needed. Although nonstructural protein-1 (NS1) immunization can protect mice against dengue infection, molecular mimicry between NS1 and host proteins makes NS1-based vaccines challenging to develop. Based on the epitope recognized by the anti-NS1 monoclonal Ab (mAb) 33D2 which recognizes a conserved NS1 wing domain (NS1-WD) region but not host proteins, we synthesized a modified NS1-WD peptide to immunize mice. We found that both mAb 33D2 and modified NS1-WD peptide immune sera could induce complement-dependent lysis of dengue-infected but not un-infected cells in vitro. Furthermore, either active immunization with the modified NS1-WD peptide or passive transfer of mAb 33D2 efficiently protected mice against all serotypes of dengue virus infection. More importantly, dengue patients with more antibodies recognized the modified NS1-WD peptide had less severe disease. Thus, the modified NS1-WD peptide is a promising dengue vaccine candidate.
Collapse
|
308
|
Collins MH, Metz SW. Progress and Works in Progress: Update on Flavivirus Vaccine Development. Clin Ther 2017; 39:1519-1536. [PMID: 28754189 DOI: 10.1016/j.clinthera.2017.07.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/30/2022]
Abstract
Most areas of the globe are endemic for at least one flavivirus, putting billions at risk for infection. This diverse group of viral pathogens causes a range of manifestations in humans from asymptomatic infection to hemorrhagic fever to encephalitis to birth defects and even death. Many flaviviruses are transmitted by mosquitos and have expanded in geographic distribution in recent years, with dengue virus being the most prevalent, infecting approximately 400 million people each year. The explosive emergence of Zika virus in Latin America in 2014 refocused international attention on this medically important group of viruses. Meanwhile, yellow fever has caused major outbreaks in Africa and South America since 2015 despite a reliable vaccine. There is no vaccine for Zika yet, and the only licensed dengue vaccine performs suboptimally in certain contexts. Further lessons are found when considering the experience with Japanese encephalitis virus, West Nile virus, and tickborne encephalitis virus, all of which now have protective vaccination in human or veterinary populations. Thus, vaccination is a mainstay of public health strategy for combating flavivirus infections; however, numerous challenges exist along the path from development to delivery of a tolerable and effective vaccine. Nevertheless, intensification of investment and effort in this area holds great promise for significantly reducing the global burden of disease attributable to flavivirus infection.
Collapse
Affiliation(s)
- Matthew H Collins
- Department of Medicine, Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina.
| | - Stefan W Metz
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
309
|
Yap SSL, Nguyen-Khuong T, Rudd PM, Alonso S. Dengue Virus Glycosylation: What Do We Know? Front Microbiol 2017; 8:1415. [PMID: 28791003 PMCID: PMC5524768 DOI: 10.3389/fmicb.2017.01415] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 07/12/2017] [Indexed: 12/04/2022] Open
Abstract
In many infectious diseases caused by either viruses or bacteria, pathogen glycoproteins play important roles during the infection cycle, ranging from entry to successful intracellular replication and host immune evasion. Dengue is no exception. Dengue virus glycoproteins, envelope protein (E) and non-structural protein 1 (NS1) are two popular sub-unit vaccine candidates. E protein on the virion surface is the major target of neutralizing antibodies. NS1 which is secreted during DENV infection has been shown to induce a variety of host responses through its binding to several host factors. However, despite their critical role in disease and protection, the glycosylated variants of these two proteins and their biological importance have remained understudied. In this review, we seek to provide a comprehensive summary of the current knowledge on protein glycosylation in DENV, and its role in virus biogenesis, host cell receptor interaction and disease pathogenesis.
Collapse
Affiliation(s)
- Sally S L Yap
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology program, Life Sciences Institute, National University of SingaporeSingapore, Singapore
| | - Terry Nguyen-Khuong
- Analytics Group, Bioprocessing Technology Institute, A∗STARSingapore, Singapore
| | - Pauline M Rudd
- Analytics Group, Bioprocessing Technology Institute, A∗STARSingapore, Singapore
| | - Sylvie Alonso
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology program, Life Sciences Institute, National University of SingaporeSingapore, Singapore
| |
Collapse
|
310
|
Tramontini Gomes de Sousa Cardozo F, Baimukanova G, Lanteri MC, Keating SM, Moraes Ferreira F, Heitman J, Pannuti CS, Pati S, Romano CM, Cerdeira Sabino E. Serum from dengue virus-infected patients with and without plasma leakage differentially affects endothelial cells barrier function in vitro. PLoS One 2017; 12:e0178820. [PMID: 28586397 PMCID: PMC5460851 DOI: 10.1371/journal.pone.0178820] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/21/2017] [Indexed: 11/18/2022] Open
Abstract
Background Although most of cases of dengue infections are asymptomatic or mild symptomatic some individuals present warning signs progressing to severe dengue in which plasma leakage is a hallmark. Methodology/Principal findings The present study used Electric Cell-substrate Impedance Sensing (ECIS®) which allows for electrical monitoring of cellular barrier function measuring changes in Transendothelial Electric Resistance (TEER) to investigate the parameters associated with dengue induced leakage. Three groups of individuals were tested: dengue-positives with plasma leakage (leakage), dengue-positives without plasma leakage (no leakage), and dengue-negatives (control). Data show that TEER values of human umbilical vein endothelial cells (HUVECs) was significantly lower after incubation with serum from subjects of the leakage group in comparison to the no leakage or control groups. The serum levels of CXCL1, EGF, eotaxin, IFN-γ, sCD40L, and platelets were significantly decreased in the leakage group, while IL-10, IL-6, and IP-10 levels were significantly increased. We also found a strong correlation between TEER values and augmented levels of IP-10, GM-CSF, IL-1α, and IL-8, as well as decreased levels of CXCL1 and platelets. Conclusions/Significance The present work shows that the magnitude of the immune response contributes to the adverse plasma leakage outcomes in patients and that serum components are important mediators of changes in endothelial homeostasis during dengue infections. In particular, the increased levels of IP-10 and the decreased levels of CXCL1 and platelets seem to play a significant role in the disruption of vascular endothelium associated with leakage outcomes after DENV infection. These findings may have important implications for both diagnostic and therapeutic approaches to predict and mitigate vascular permeabilization in those experiencing the most severe clinical disease outcomes after dengue infection.
Collapse
Affiliation(s)
| | - Gyulnar Baimukanova
- Blood Systems Research Institute, BSRI, San Francisco, California, United States
| | - Marion Christine Lanteri
- Blood Systems Research Institute, BSRI, San Francisco, California, United States
- Department of Laboratory Medicine, University of California, San Francisco, California, United States
| | - Sheila Marie Keating
- Blood Systems Research Institute, BSRI, San Francisco, California, United States
- Department of Laboratory Medicine, University of California, San Francisco, California, United States
| | - Frederico Moraes Ferreira
- University of São Paulo School of Medicine, Division of Immunology - Heart Institute, São Paulo, São Paulo, Brazil
- University of Santo Amaro, São Paulo, São Paulo, Brazil
| | - John Heitman
- Blood Systems Research Institute, BSRI, San Francisco, California, United States
| | - Cláudio Sérgio Pannuti
- Department of Infectious and Parasitic Diseases, Institute of Tropical Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Shibani Pati
- Blood Systems Research Institute, BSRI, San Francisco, California, United States
| | - Camila Malta Romano
- Department of Infectious and Parasitic Diseases, Institute of Tropical Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Ester Cerdeira Sabino
- Department of Infectious and Parasitic Diseases, Institute of Tropical Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
311
|
Shi Y, Gao GF. Structural Biology of the Zika Virus. Trends Biochem Sci 2017; 42:443-456. [DOI: 10.1016/j.tibs.2017.02.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/17/2017] [Accepted: 02/22/2017] [Indexed: 11/27/2022]
|
312
|
Promiscuous viruses-how do viruses survive multiple unrelated hosts? Curr Opin Virol 2017; 23:125-129. [PMID: 28577474 DOI: 10.1016/j.coviro.2017.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 12/24/2022]
Abstract
Arthropod-borne viruses (arboviruses) require efficient replication in taxonomically divergent hosts in order to perpetuate in nature. This review discusses recent advances in our understanding of the phylogenetic position of arthropod-borne viruses relative to insect-specific viruses, which appear to be more common and ecological requirements for successful adoption of the 'arbovirus phenotype.' Several molecular and other mechanisms that permit replication in divergent hosts are also discussed.
Collapse
|
313
|
Malavige GN, Ogg GS. Pathogenesis of vascular leak in dengue virus infection. Immunology 2017; 151:261-269. [PMID: 28437586 DOI: 10.1111/imm.12748] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/26/2017] [Accepted: 04/17/2017] [Indexed: 12/31/2022] Open
Abstract
Endothelial dysfunction leading to vascular leak is the hallmark of severe dengue. Vascular leak typically becomes clinically evident 3-6 days after the onset of illness, which is known as the critical phase. This critical phase follows the period of peak viraemia, and lasts for 24-48 hr and usually shows rapid and complete reversal, suggesting that it is likely to occur as a result of inflammatory mediators, rather than infection of the endothelium. Cytokines such as tumour necrosis factor-α, which are known to be elevated in the critical phase of dengue, are likely to be contributing factors. Dengue NS1, a soluble viral protein, has also been shown to disrupt the endothelial glycocalyx and thus contribute to vascular leak, although there appears to be a discordance between the timing of NS1 antigenaemia and occurrence of vascular leak. In addition, many inflammatory lipid mediators are elevated in acute dengue viral infection such as platelet activating factor (PAF) and leukotrienes. Furthermore, many other inflammatory mediators such as vascular endothelial growth factor and angiopoietin-2 have been shown to be elevated in patients with dengue haemorrhagic fever, exerting their action in part by inducing the activity of phospholipases, which have diverse inflammatory effects including generation of PAF. Platelets have also been shown to significantly contribute to endothelial dysfunction by production of interleukin-1β through activation of the NLRP3 inflammasome and also by inducing production of inflammatory cytokines by monocytes. Drugs that block down-stream immunological mediator pathways such as PAF may also be beneficial in the treatment of severe disease.
Collapse
Affiliation(s)
- Gathsaurie Neelika Malavige
- Centre for Dengue Research, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.,MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Graham S Ogg
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
314
|
Chacko AM, Watanabe S, Herr KJ, Kalimuddin S, Tham JY, Ong J, Reolo M, Serrano RM, Cheung YB, Low JG, Vasudevan SG. 18F-FDG as an inflammation biomarker for imaging dengue virus infection and treatment response. JCI Insight 2017; 2:93474. [PMID: 28469088 DOI: 10.1172/jci.insight.93474] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/04/2017] [Indexed: 01/18/2023] Open
Abstract
Development of antiviral therapy against acute viral diseases, such as dengue virus (DENV), suffers from the narrow window of viral load detection in serum during onset and clearance of infection and fever. We explored a biomarker approach using 18F-fluorodeoxyglucose (18F-FDG) PET in established mouse models for primary and antibody-dependent enhancement infection with DENV. 18F-FDG uptake was most prominent in the intestines and correlated with increased virus load and proinflammatory cytokines. Furthermore, a significant temporal trend in 18F-FDG uptake was seen in intestines and selected tissues over the time course of infection. Notably, 18F-FDG uptake and visualization by PET robustly differentiated treatment-naive groups from drug-treated groups as well as nonlethal from lethal infections with a clinical strain of DENV2. Thus, 18F-FDG may serve as a novel DENV infection-associated inflammation biomarker for assessing treatment response during therapeutic intervention trials.
Collapse
Affiliation(s)
- Ann-Marie Chacko
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, and
| | - Satoru Watanabe
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, Singapore
| | - Keira J Herr
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, and
| | - Shirin Kalimuddin
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Jing Yang Tham
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, and
| | - Joanne Ong
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, and
| | - Marie Reolo
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, and
| | - Raymond Mf Serrano
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, and
| | - Yin Bun Cheung
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore.,Center for Child Health Research, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Jenny Gh Low
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Subhash G Vasudevan
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, Singapore
| |
Collapse
|
315
|
Willis E, Hensley SE. Characterization of Zika virus binding and enhancement potential of a large panel of flavivirus murine monoclonal antibodies. Virology 2017; 508:1-6. [PMID: 28475924 DOI: 10.1016/j.virol.2017.04.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 04/18/2017] [Indexed: 12/19/2022]
Abstract
Zika viruses (ZIKVs) are circulating in parts of the world endemic for other flavivirus infections. Some cross-reactive antibodies (Abs) elicited by prior flavivirus exposures can bind to ZIKV and enhance infection of Fc receptor-bearing cells. Here, we measured ZIKV binding of 54 murine monoclonal Abs (mAbs) elicited by exposure with Dengue virus and West Nile virus antigens. We found that 8 of 54 mAbs recognized the envelope protein of ZIKV in conventional binding assays. These 8 cross-reactive mAbs have different specificities; most recognize the DI/II region of the envelope protein but one mAb recognized the DIII lateral ridge of the envelope protein. Interestingly, only 3 of these cross-reactive mAbs were able to enhance ZIKV infection in vitro, and enhancing potential was not strictly correlated with relative binding ability. These data suggest that the ability of flavivirus Abs to enhance ZIKV is dependent on multiple factors.
Collapse
Affiliation(s)
- Elinor Willis
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
316
|
Antibodies against nonstructural protein 1 protect mice from dengue virus-induced mast cell activation. J Transl Med 2017; 97:602-614. [PMID: 28240747 DOI: 10.1038/labinvest.2017.10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 01/09/2023] Open
Abstract
Dengue virus (DENV) infection causes dengue fever, dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS). DHF/DSS patients have been reported to have increased levels of urinary histamine, chymase, and tryptase, which are major granule-associated mediators from mast cells. Previous studies also showed that DENV-infected human mast cells induce production of proinflammatory cytokines and chemokines, suggesting a role played by mast cells in vascular perturbation as well as leukocyte recruitment. In this study, we show that DENV but not UV-inactivated DENV enhanced degranulation of mast cells and production of chemokines (MCP-1, RANTES, and IP-10) in a mouse model. We have previously shown that antibodies (Abs) against a modified DENV nonstructural protein 1 (NS1), designated DJ NS1, provide protection in mice against DENV challenge. In the present study, we investigate the effects of DJ NS1 Abs on mast cell-associated activities. We showed that administration of anti-DJ NS1 Abs into mice resulted in a reduction of mast cell degranulation and macrophage infiltration at local skin DENV infection sites. The production of DENV-induced chemokines (MCP-1, RANTES, and IP-10) and the percentages of tryptase-positive activated mast cells were also reduced by treatment with anti-DJ NS1 Abs. These results indicate that Abs against NS1 protein provide multiple therapeutic benefits, some of which involve modulating DENV-induced mast cell activation.Laboratory Investigation advance online publication, 27 February 2017; doi:10.1038/labinvest.2017.10.
Collapse
|
317
|
The Role of Heterotypic DENV-specific CD8 +T Lymphocytes in an Immunocompetent Mouse Model of Secondary Dengue Virus Infection. EBioMedicine 2017; 20:202-216. [PMID: 28483582 PMCID: PMC5478214 DOI: 10.1016/j.ebiom.2017.04.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 11/24/2022] Open
Abstract
Dengue is the most prevalent arthropod-borne viral disease worldwide and is caused by the four dengue virus serotypes (DENV-1-4). Sequential heterologous DENV infections can be associated with severe disease manifestations. Here, we present an immunocompetent mouse model of secondary DENV infection using non mouse-adapted DENV strains to investigate the pathogenesis of severe dengue disease. C57BL/6 mice infected sequentially with DENV-1 (strain Puerto Rico/94) and DENV-2 (strain Tonga/74) developed low platelet counts, internal hemorrhages, and increase of liver enzymes. Cross-reactive CD8+ T lymphocytes were found to be necessary and sufficient for signs of severe disease by adoptively transferring of DENV-1-immune CD8+T lymphocytes before DENV-2 challenge. Disease signs were associated with production of tumor necrosis factor (TNF)-α and elevated cytotoxicity displayed by heterotypic anti-DENV-1 CD8+ T lymphocytes. These findings highlight the critical role of heterotypic anti-DENV CD8+ T lymphocytes in manifestations of severe dengue disease.
Collapse
|
318
|
Singh S, Anupriya MG, Sreekumar E. Comparative whole genome analysis of dengue virus serotype-2 strains differing in trans-endothelial cell leakage induction in vitro. INFECTION GENETICS AND EVOLUTION 2017; 52:34-43. [PMID: 28456663 DOI: 10.1016/j.meegid.2017.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 11/16/2022]
Abstract
The role of genetic differences among dengue virus (DENV) in causing increased microvascular permeability is less explored. In the present study, we compared two closely related DENV serotype-2 strains of Cosmopolitan genotype for their in vitro infectivity phenotype and ability to induce trans-endothelial leakage. We found that these laboratory strains differed significantly in infecting human microvascular endothelial cells (HMEC-1) and hepatocytes (Huh7), two major target cells of DENV in in vivo infections. There was a reciprocal correlation in infectivity and vascular leakage induced by these strains, with the less infective strain inducing more trans-endothelial cell leakage in HMEC-1 monolayer upon infection. The cells infected with the strain capable of inducing more permeability were found to secrete more Non-Structural protein (sNS1) into the culture supernatant. A whole genome analysis revealed 37 predicted amino acid changes and changes in the secondary structure of 3' non-translated region between the strains. But none of these changes involved the signal sequence coded by the C-terminal of the Envelope protein and the two glycosylation sites within the NS1 protein critical for its secretion, and the N-terminal NS2A sequence important for surface targeting of NS1. The strain that secreted lower levels of NS1 and caused less leakage had two mutations within the NS1 protein coding region, F103S and T146I that significantly changed amino acid properties. A comparison of the sequences of the two strains with published sequences of various DENV strains known to cause clinically severe dengue identified a number of amino acid changes which could be implicated as possible key genetic differences. Our data supports the earlier observations that the vascular leakage induction potential of DENV strains is linked to the sNS1 levels. The results also indicate that viral genetic determinants, especially the mutations within the NS1 coding region, could affect this critical phenotype of DENV strains.
Collapse
Affiliation(s)
- Sneha Singh
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud P.O., Thiruvananthapuram 695014, Kerala, India
| | - M G Anupriya
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud P.O., Thiruvananthapuram 695014, Kerala, India
| | - Easwaran Sreekumar
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud P.O., Thiruvananthapuram 695014, Kerala, India.
| |
Collapse
|
319
|
Low JGH, Ooi EE, Vasudevan SG. Current Status of Dengue Therapeutics Research and Development. J Infect Dis 2017; 215:S96-S102. [PMID: 28403438 PMCID: PMC5388029 DOI: 10.1093/infdis/jiw423] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Dengue is a significant global health problem. Even though a vaccine against dengue is now available, which is a notable achievement, its long-term protective efficacy against each of the 4 dengue virus serotypes remains to be definitively determined. Consequently, drugs directed at the viral targets or critical host mechanisms that can be used safely as prophylaxis or treatment to effectively ameliorate disease or reduce disease severity and fatalities are still needed to reduce the burden of dengue. This review will provide a brief account of the status of therapeutics research and development for dengue.
Collapse
Affiliation(s)
- Jenny G H Low
- Department of Infectious Diseases, Singapore General Hospital
| | - Eng Eong Ooi
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School.,Department of Microbiology and Immunology, National University of Singapore.,Singapore MIT Alliance in Research and Technology Infectious Diseases Interdisciplinary Research Group
| | - Subhash G Vasudevan
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School.,Department of Microbiology and Immunology, National University of Singapore
| |
Collapse
|
320
|
High levels of local inter- and intra-host genetic variation of West Nile virus and evidence of fine-scale evolutionary pressures. INFECTION GENETICS AND EVOLUTION 2017; 51:219-226. [PMID: 28411164 DOI: 10.1016/j.meegid.2017.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 01/21/2023]
Abstract
West Nile virus (WNV; Flaviviridae, Flavivirus) has been endemic in New York State (NYS) since its 1999 introduction, yet prevalence in Culex mosquitoes varies substantially over small spatial and temporal scales. It is unclear if viral genetics plays a role in this variability, as genetic and phenotypic characterization on local scales has generally been lacking. In addition, intrahost diversity of circulating strains have not been fully characterized despite the documented role of minority variants in viral fitness and virulence. In an effort to characterize WNV variability within epidemiologically relevant scales, we performed phylogenetic analyses on NYS isolates from 1999 to 2012. In addition, we performed full-genome, deep-sequencing and genetic analyses on 15 WNV strains isolated in 2012 from Cx. pipiens in an endemic focus of Suffolk County, NY. Our results indicate continued evolution and seasonal maintenance in NYS, yet also widespread mixing and high levels of genetic diversity within geographic foci and individual seasons. Well supported local clusters with shared amino acid differences were identified and suggest local evolutionary pressures and the potential for phenotypic variability. Intrahost diversity of focal isolates was also high, with polymorphism at levels >1.0% identified in approximately 10% of the WNV genome. Although most minority mutations were unique, mutational hotspots shared among local isolates were identified, particularly in C, NS1 and NS2A genes. The most polymorphic region, positions 3198-3388 of the NS1 gene, was comprised predominately of non-synonymous mutations, suggesting a selective advantage for amino acid diversity in this region.
Collapse
|
321
|
Immune-mediated cytokine storm and its role in severe dengue. Semin Immunopathol 2017; 39:563-574. [PMID: 28401256 DOI: 10.1007/s00281-017-0625-1] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/02/2017] [Indexed: 01/28/2023]
Abstract
Dengue remains one of the most important mosquito-borne diseases worldwide. Infection with one of the serologically related dengue viruses (DENVs) can lead to a wide range of clinical manifestations and severity. Severe dengue is characterized by plasma leakage and abnormal bleeding that can lead to shock and death. There is currently no specific treatment for severe dengue due to gaps in understanding of the underlying mechanisms. The transient period of vascular leakage is usually followed by a rapid recovery and is suggestive of the effects of short-lived biological mediators. Both the innate and the adaptive immune systems are activated in severe dengue and contribute to the cytokine production. We discuss the immunological events elicited during a DENV infection and identify candidate cytokines that may play a key role in the severe manifestations of dengue and possible interventions.
Collapse
|
322
|
Increased Serum Hyaluronic Acid and Heparan Sulfate in Dengue Fever: Association with Plasma Leakage and Disease Severity. Sci Rep 2017; 7:46191. [PMID: 28393899 PMCID: PMC5385535 DOI: 10.1038/srep46191] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/10/2017] [Indexed: 02/03/2023] Open
Abstract
Plasma leakage is a major pathogenic mechanism of severe dengue, but the etiology remains unclear. The association between endothelial glycocalyx integrity and vascular permeability in older adults with dengue has not been evaluated. A prospective cohort study of adults with undifferentiated fever screened for dengue by RT-PCR or NS1 antigen testing was performed. Patients were assessed daily while symptomatic and at convalescence. Serum hyaluronic acid (HA), heparan sulfate (HS) and selected cytokines (TNF-α, IL-6, IL-10) were measured on enrollment and convalescence. Patients were diagnosed as dengue fever (DF, n = 30), dengue hemorrhagic fever (DHF, n = 20) and non-dengue (ND) febrile illness (n = 11). Acute HA and HS levels were significantly higher in all dengue patients compared to ND (p = 0.0033 and p = 0.0441 respectively), but not different between DF and DHF (p = 0.3426 and p = 0.9180 respectively). Enrolment HA inversely correlated with serum albumin, protein and platelets in all dengue and DHF (p < 0.05). HA and HS in all dengue patients decreased significantly at convalescence. Serum IL-10 was significantly associated with HA in all dengue patients (p = 0.002). Serum HA and HS levels were increased in adult dengue and HA was associated with markers of disease severity. Endothelial glycocalyx damage may have a role in vascular leakage in dengue.
Collapse
|
323
|
Hertz T, Beatty PR, MacMillen Z, Killingbeck SS, Wang C, Harris E. Antibody Epitopes Identified in Critical Regions of Dengue Virus Nonstructural 1 Protein in Mouse Vaccination and Natural Human Infections. THE JOURNAL OF IMMUNOLOGY 2017; 198:4025-4035. [PMID: 28381638 DOI: 10.4049/jimmunol.1700029] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/06/2017] [Indexed: 01/25/2023]
Abstract
Dengue is a global public health problem and is caused by four dengue virus (DENV) serotypes (DENV1-4). A major challenge in dengue vaccine development is that cross-reactive anti-DENV Abs can be protective or potentially increase disease via Ab-dependent enhancement. DENV nonstructural protein 1 (NS1) has long been considered a vaccine candidate as it avoids Ab-dependent enhancement. In this study, we evaluated survival to challenge in a lethal DENV vascular leak model in mice immunized with NS1 combined with aluminum and magnesium hydroxide, monophosphoryl lipid A + AddaVax, or Sigma adjuvant system+CpG DNA, compared with mice infected with a sublethal dose of DENV2 and mice immunized with OVA (negative control). We characterized Ab responses to DENV1, 2, and 3 NS1 using an Ag microarray tiled with 20-mer peptides overlapping by 15 aa and identified five regions of DENV NS1 with significant levels of Ab reactivity in the NS1 + monophosphoryl lipid A + AddaVax group. Additionally, we profiled the Ab responses to NS1 of humans naturally infected with DENV2 or DENV3 in serum samples from Nicaragua collected at acute, convalescent, and 12-mo timepoints. One region in the wing domain of NS1 was immunodominant in both mouse vaccination and human infection studies, and two regions were identified only in NS1-immunized mice; thus, vaccination can generate Abs to regions that are not targeted in natural infection and could provide additional protection against lethal DENV infection. Overall, we identified a small number of immunodominant regions, which were in functionally important locations on the DENV NS1 protein and are potential correlates of protection.
Collapse
Affiliation(s)
- Tomer Hertz
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and
| | - P Robert Beatty
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720
| | - Zachary MacMillen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and
| | - Sarah S Killingbeck
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720
| | - Chunling Wang
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
324
|
Fialho LG, da Silva VP, Reis SRNI, Azeredo EL, Kaplan MAC, Figueiredo MR, Kubelka CF. Antiviral and Immunomodulatory Effects of Norantea brasiliensis Choisy on Dengue Virus-2. Intervirology 2017; 59:217-227. [PMID: 28329744 DOI: 10.1159/000455855] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/05/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND/AIMS Severe dengue fever is a result of exacerbated immune responses and no specific treatments are available. We evaluated the antiviral and immunomodulatory effects of Norantea brasiliensis Choisy. METHODS Human adherent monocytes infected in vitro with dengue virus (DENV)-2 were incubated with the crude ethanol extract from leaves (NB1) or 3 derived fractions: dichloromethane (NB3), ethyl acetate (NB5), and butanolic (NB6) partitions. The antiviral and immunomodulatory activities were determined by intracellular detection of DENV antigen within monocytes and by secreted NS1 viral protein and cytokines. RESULTS The crude extract alone exhibited both antiviral activities (intracellular and secreted antigens) and all fractions derived from this extract modulated NS1 production. Regarding the immunomodulatory effect, among the secreted factors, TNF-α was inhibited by NB3 and NB6; IL-6 was inhibited by NB1, NB3, and NB6; IL-10 by NB1 and NB3; and IFN-α by NB6. The crude extract (NB1) presented the best antiviral effect, whereas the dichloromethane fraction (NB3) presented an immunomodulatory effect in the inflammatory and anti-inflammatory cytokines. CONCLUSION During in vitro DENV infection, N. brasiliensis Choisy exerts both antiviral and immunomodulatory effects that are likely associated, considering that less viral load may lead to less immunostimulation.
Collapse
Affiliation(s)
- Luciana Gomes Fialho
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
325
|
Gan ES, Cheong WF, Chan KR, Ong EZ, Chai X, Tan HC, Ghosh S, Wenk MR, Ooi EE. Hypoxia enhances antibody-dependent dengue virus infection. EMBO J 2017; 36:1348-1363. [PMID: 28320741 PMCID: PMC5430213 DOI: 10.15252/embj.201695642] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/09/2017] [Accepted: 02/17/2017] [Indexed: 11/23/2022] Open
Abstract
Dengue virus (DENV) has been found to replicate in lymphoid organs such as the lymph nodes, spleen, and liver in post‐mortem analysis. These organs are known to have low oxygen levels (~0.5–4.5% O2) due to the vascular anatomy. However, how physiologically low levels of oxygen affect DENV infection via hypoxia‐induced changes in the immune response remains unknown. Here, we show that monocytes adapted to 3% O2 show greater susceptibility to antibody‐dependent enhancement of DENV infection. Low oxygen level induces HIF1α‐dependent upregulation of fragment crystallizable gamma receptor IIA (FcγRIIA) as well as HIF1α‐independent alterations in membrane ether lipid concentrations. The increased FcγRIIA expression operates synergistically with altered membrane composition, possibly through increase membrane fluidity, to increase uptake of DENV immune complexes for enhanced infection. Our findings thus indicate that the increased viral burden associated with secondary DENV infection is antibody‐dependent but hypoxia‐induced and suggest a role for targeting hypoxia‐induced factors for anti‐dengue therapy.
Collapse
Affiliation(s)
- Esther Shuyi Gan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Wei Fun Cheong
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Kuan Rong Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Eugenia Ziying Ong
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Xiaoran Chai
- Program in Cardiovascular & Metabolic Disorders and Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Hwee Cheng Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Sujoy Ghosh
- Program in Cardiovascular & Metabolic Disorders and Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Markus R Wenk
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Eng Eong Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore .,Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.,Infectious Diseases Interdisciplinary Research Group, Singapore MIT Alliance Research and Technology CREATE Campus, Singapore, Singapore
| |
Collapse
|
326
|
Non-Canonical Roles of Dengue Virus Non-Structural Proteins. Viruses 2017; 9:v9030042. [PMID: 28335410 PMCID: PMC5371797 DOI: 10.3390/v9030042] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 12/15/2022] Open
Abstract
The Flaviviridae family comprises a number of human pathogens, which, although sharing structural and functional features, cause diseases with very different outcomes. This can be explained by the plurality of functions exerted by the few proteins coded by viral genomes, with some of these functions shared among members of a same family, but others being unique for each virus species. These non-canonical functions probably have evolved independently and may serve as the base to the development of specific therapies for each of those diseases. Here it is discussed what is currently known about the non-canonical roles of dengue virus (DENV) non-structural proteins (NSPs), which may account for some of the effects specifically observed in DENV infection, but not in other members of the Flaviviridae family. This review explores how DENV NSPs contributes to the physiopathology of dengue, evasion from host immunity, metabolic changes, and redistribution of cellular components during infection.
Collapse
|
327
|
Jayasundara SDP, Perera SSN, Malavige GN, Jayasinghe S. Mathematical modelling and a systems science approach to describe the role of cytokines in the evolution of severe dengue. BMC SYSTEMS BIOLOGY 2017; 11:34. [PMID: 28284213 PMCID: PMC5346240 DOI: 10.1186/s12918-017-0415-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 03/02/2017] [Indexed: 01/05/2023]
Abstract
Background Dengue causes considerable morbidity and mortality in Sri Lanka. Inflammatory mediators such as cytokines, contribute to its evolution from an asymptotic infection to severe forms of dengue. The majority of previous studies have analysed the association of individual cytokines with clinical disease severity. In contrast, we view evolution to Dengue Haemorrhagic Fever as the behaviour of a complex dynamic system. We therefore, analyse the combined effect of multiple cytokines that interact dynamically with each other in order to generate a mathematical model to predict occurrence of Dengue Haemorrhagic Fever. We expect this to have predictive value in detecting severe cases and improve outcomes. Platelet activating factor (PAF), Sphingosine 1- Phosphate (S1P), IL-1β, TNFα and IL-10 are used as the parameters for the model. Hierarchical clustering is used to detect factors that correlated with each other. Their interactions are mapped using Fuzzy Logic mechanisms with the combination of modified Hamacher and OWA operators. Trapezoidal membership functions are developed for each of the cytokine parameters and the degree of unfavourability to attain Dengue Haemorrhagic Fever is measured. Results The accuracy of this model in predicting severity level of dengue is 71.43% at 96 h from the onset of illness, 85.00% at 108 h and 76.92% at 120 h. A region of ambiguity is detected in the model for the value range 0.36 to 0.51. Sensitivity analysis indicates that this is a robust mathematical model. Conclusions The results show a robust mathematical model that explains the evolution from dengue to its serious forms in individual patients with high accuracy. However, this model would have to be further improved by including additional parameters and should be validated on other data sets. Electronic supplementary material The online version of this article (doi:10.1186/s12918-017-0415-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- S D Pavithra Jayasundara
- Research and Development Centre for Mathematical Modelling, University of Colombo, Colombo, Sri Lanka.
| | - S S N Perera
- Research and Development Centre for Mathematical Modelling, University of Colombo, Colombo, Sri Lanka
| | | | - Saroj Jayasinghe
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
328
|
Dengue virus NS1 protein activates immune cells via TLR4 but not TLR2 or TLR6. Immunol Cell Biol 2017; 95:491-495. [DOI: 10.1038/icb.2017.5] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/22/2016] [Accepted: 01/11/2017] [Indexed: 12/26/2022]
|
329
|
Conde JN, Silva EM, Barbosa AS, Mohana-Borges R. The Complement System in Flavivirus Infections. Front Microbiol 2017; 8:213. [PMID: 28261172 PMCID: PMC5306369 DOI: 10.3389/fmicb.2017.00213] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/30/2017] [Indexed: 01/29/2023] Open
Abstract
The incidence of flavivirus infections has increased dramatically in recent decades in tropical and sub-tropical climates worldwide, affecting hundreds of millions of people each year. The Flaviviridae family includes dengue, West Nile, Zika, Japanese encephalitis, and yellow fever viruses that are typically transmitted by mosquitoes or ticks, and cause a wide range of symptoms, such as fever, shock, meningitis, paralysis, birth defects, and death. The flavivirus genome is composed of a single positive-sense RNA molecule encoding a single viral polyprotein. This polyprotein is further processed by viral and host proteases into three structural proteins (C, prM/M, E) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5) that are involved in viral replication and pathogenicity. The complement system has been described to play an important role in flavivirus infection either by protecting the host and/or by influencing disease pathogenesis. In this mini-review, we will explore the role of complement system inhibition and/or activation against infection by the Flavivirus genus, with an emphasis on dengue and West Nile viruses.
Collapse
Affiliation(s)
- Jonas N Conde
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Emiliana M Silva
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Angela S Barbosa
- Laboratório de Bacteriologia, Instituto Butantan São Paulo, Brazil
| | - Ronaldo Mohana-Borges
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
330
|
Katzelnick LC, Coloma J, Harris E. Dengue: knowledge gaps, unmet needs, and research priorities. THE LANCET. INFECTIOUS DISEASES 2017; 17:e88-e100. [PMID: 28185868 DOI: 10.1016/s1473-3099(16)30473-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/29/2016] [Accepted: 10/18/2016] [Indexed: 01/09/2023]
Abstract
Dengue virus is a mosquito-borne pathogen that causes up to about 100 million cases of disease each year, placing a major public health, social, and economic burden on numerous low-income and middle-income countries. Major advances by investigators, vaccine developers, and affected communities are revealing new insights and enabling novel interventions and approaches to dengue prevention and control. Such research has highlighted further questions about both the basic understanding of dengue and efforts to develop new tools. In this report, the third in a Series on dengue, we discuss existing approaches to dengue diagnostics, disease prognosis, surveillance, and vector control in low-income and middle-income countries, as well as potential consequences of vaccine introduction. We also summarise current knowledge and recent insights into dengue epidemiology, immunology, and pathogenesis, and their implications for understanding natural infection and current and future vaccines.
Collapse
Affiliation(s)
- Leah C Katzelnick
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, USA
| | - Josefina Coloma
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, USA.
| |
Collapse
|
331
|
Frietze KM, Pascale JM, Moreno B, Chackerian B, Peabody DS. Pathogen-specific deep sequence-coupled biopanning: A method for surveying human antibody responses. PLoS One 2017; 12:e0171511. [PMID: 28152075 PMCID: PMC5289605 DOI: 10.1371/journal.pone.0171511] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/20/2017] [Indexed: 12/05/2022] Open
Abstract
Identifying the targets of antibody responses during infection is important for designing vaccines, developing diagnostic and prognostic tools, and understanding pathogenesis. We developed a novel deep sequence-coupled biopanning approach capable of identifying the protein epitopes of antibodies present in human polyclonal serum. Here, we report the adaptation of this approach for the identification of pathogen-specific epitopes recognized by antibodies elicited during acute infection. As a proof-of-principle, we applied this approach to assessing antibodies to Dengue virus (DENV). Using a panel of sera from patients with acute secondary DENV infection, we panned a DENV antigen fragment library displayed on the surface of bacteriophage MS2 virus-like particles and characterized the population of affinity-selected peptide epitopes by deep sequence analysis. Although there was considerable variation in the responses of individuals, we found several epitopes within the Envelope glycoprotein and Non-Structural Protein 1 that were commonly enriched. This report establishes a novel approach for characterizing pathogen-specific antibody responses in human sera, and has future utility in identifying novel diagnostic and vaccine targets.
Collapse
Affiliation(s)
- Kathryn M. Frietze
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, MSC08 4660, 1 University of New Mexico, Albuquerque, NM, United States of America
- * E-mail:
| | - Juan M. Pascale
- Gorgas Memorial Institute for Health Studies, Ave. Justo Arosemena y Calle 35, Panamá, Panamá
| | - Brechla Moreno
- Gorgas Memorial Institute for Health Studies, Ave. Justo Arosemena y Calle 35, Panamá, Panamá
| | - Bryce Chackerian
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, MSC08 4660, 1 University of New Mexico, Albuquerque, NM, United States of America
| | - David S. Peabody
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, MSC08 4660, 1 University of New Mexico, Albuquerque, NM, United States of America
| |
Collapse
|
332
|
Affiliation(s)
- Annelies Wilder-Smith
- a Lee Kong Chian School of Medicine , Nanyang Technological University Singapore.,b Dengue Vaccine Initiative , International Vaccine Institute , Seoul , Korea
| | - In-Kyu Yoon
- b Dengue Vaccine Initiative , International Vaccine Institute , Seoul , Korea
| |
Collapse
|
333
|
Jeewandara C, Gomes L, Udari S, Paranavitane SA, Shyamali NLA, Ogg GS, Malavige GN. Secretory phospholipase A2 in the pathogenesis of acute dengue infection. IMMUNITY INFLAMMATION AND DISEASE 2016; 5:7-15. [PMID: 28250920 PMCID: PMC5322161 DOI: 10.1002/iid3.135] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/10/2016] [Accepted: 10/14/2016] [Indexed: 12/15/2022]
Abstract
Introduction Platelet activating factor (PAF) is an important mediator of vascular leak in acute dengue. Phospholipase A2s (PLA2) are inflammatory lipid enzymes that generate and regulate PAF and other mediators associated with mast cells. We sought to investigate if mast cell activation and increases in secretory sPLA2s are associated with an increase in PAF and occurrence of dengue haemorrhagic fever (DHF). Methods The changes in the levels of mast cell tryptase, PAF and the activity of sPLA2 were determined throughout the course of illness in 13 adult patients with DHF, and 30 patients with dengue fever (DF). Results We found that sPLA2 activity was significantly higher in patients with DHF when compared to those with DF, during the first 120 h of clinical illness. sPLA2 activity was significantly associated with PAF levels, which were also significantly higher in patients with DHF. Although levels of mast cell tryptase were higher in patients with DHF, the difference was not significant, and the levels were not above the reference ranges. sPLA2 activity significantly correlated with the degree of viraemia in patients with DHF but not in those with DF. Conclusion sPLA2 appears to play an important role in the pathogenesis of dengue. Since its activity is significantly increased during the early phase of infection in patients with DHF, this suggests that understanding the underlying mechanisms may provide opportunities for early intervention.
Collapse
Affiliation(s)
| | - Laksiri Gomes
- Centre for Dengue Research University of Sri Jayawardanapura Sri Lanka
| | - Sukhitha Udari
- Centre for Dengue Research University of Sri Jayawardanapura Sri Lanka
| | - S A Paranavitane
- Centre for Dengue Research University of Sri Jayawardanapura Sri Lanka
| | - N L A Shyamali
- Faculty of Medical Sciences Department of Medicine University of Sri Jayawardanapura Sri Lanka
| | - Graham S Ogg
- MRC Human Immunology Unit NIHR Biomedical Research Centre Weatherall Institute of Molecular Medicine Oxford
| | - Gathsaurie Neelika Malavige
- Centre for Dengue ResearchUniversity of Sri JayawardanapuraSri Lanka; MRC Human Immunology UnitNIHR Biomedical Research CentreWeatherall Institute of Molecular MedicineOxford
| |
Collapse
|
334
|
Suwanmanee S, Luplertlop N. Immunopathogenesis of Dengue Virus-Induced Redundant Cell Death: Apoptosis and Pyroptosis. Viral Immunol 2016; 30:13-19. [PMID: 27860556 DOI: 10.1089/vim.2016.0092] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dengue virus infection is a self-limited condition, which is of particular importance in tropical and subtropical regions and for which no specific treatment or effective vaccine is available. There are several hypotheses explaining dengue pathogenesis. These usually refer to host immune responses, including antibody-dependent enhancement, cytokine expression, and dengue virus particles including NS1 protein, which lead to cell death by both apoptosis and pyroptosis. A clear understanding of the pathogenesis should facilitate the development of vaccines and therapies. This review focuses on the immunopathogenesis in relation to clinical manifestations and patterns of cell death, focusing on the pathogenesis of severe dengue.
Collapse
Affiliation(s)
- San Suwanmanee
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University , Bangkok, Thailand
| | - Natthanej Luplertlop
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University , Bangkok, Thailand
| |
Collapse
|
335
|
Progress towards understanding the pathogenesis of dengue hemorrhagic fever. Virol Sin 2016; 32:16-22. [PMID: 27853992 PMCID: PMC6702245 DOI: 10.1007/s12250-016-3855-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/12/2016] [Indexed: 01/22/2023] Open
Abstract
Dengue virus (DENV) is a mosquito-borne virus belonging to the Flaviviridae family. There are 4 serotypes of DENV that cause human disease through transmission by mosquito vectors. DENV infection results in a broad spectrum of clinical symptoms, ranging from mild fever to dengue hemorrhagic fever (DHF), the latter of which can progress to dengue shock syndrome (DSS) and death. Researchers have made unremitting efforts over the last half-century to understand DHF pathogenesis. DHF is probably caused by multiple factors, such as virus-specific antibodies, viral antigens and host immune responses. This review summarizes the current progress of studies on DHF pathogenesis, which may provide important information for achieving effective control of dengue in the future.
Collapse
|
336
|
Affiliation(s)
- Rolf Hilgenfeld
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site University of Lübeck, Lübeck, Germany
| |
Collapse
|
337
|
Thiemmeca S, Tamdet C, Punyadee N, Prommool T, Songjaeng A, Noisakran S, Puttikhunt C, Atkinson JP, Diamond MS, Ponlawat A, Avirutnan P. Secreted NS1 Protects Dengue Virus from Mannose-Binding Lectin-Mediated Neutralization. THE JOURNAL OF IMMUNOLOGY 2016; 197:4053-4065. [PMID: 27798151 DOI: 10.4049/jimmunol.1600323] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 09/16/2016] [Indexed: 12/16/2022]
Abstract
Flavivirus nonstructural protein 1 (NS1) is a unique secreted nonstructural glycoprotein. Although it is absent from the flavivirus virion, intracellular and extracellular forms of NS1 have essential roles in viral replication and the pathogenesis of infection. The fate of NS1 in insect cells has been more controversial, with some reports suggesting it is exclusively cell associated. In this study, we confirm NS1 secretion from cells of insect origin and characterize its physical, biochemical, and functional properties in the context of dengue virus (DENV) infection. Unlike mammalian cell-derived NS1, which displays both high mannose and complex type N-linked glycans, soluble NS1 secreted from DENV-infected insect cells contains only high mannose glycans. Insect cell-derived secreted NS1 also has different physical properties, including smaller and more heterogeneous sizes and the formation of less stable NS1 hexamers. Both mammalian and insect cell-derived NS1 bind to complement proteins C1s, C4, and C4-binding protein, as well as to a novel partner, mannose-binding lectin. Binding of NS1 to MBL protects DENV against mannose-binding lectin-mediated neutralization by the lectin pathway of complement activation. As we detected secreted NS1 and DENV together in the saliva of infected Aedes aegypti mosquitoes, these findings suggest a mechanism of viral immune evasion at the very earliest phase of infection.
Collapse
Affiliation(s)
- Somchai Thiemmeca
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.,Graduate Program, Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chamaiporn Tamdet
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nuntaya Punyadee
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Tanapan Prommool
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand
| | - Adisak Songjaeng
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sansanee Noisakran
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.,Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand
| | - Chunya Puttikhunt
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.,Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand
| | - John P Atkinson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Alongkot Ponlawat
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Panisadee Avirutnan
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; .,Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand
| |
Collapse
|
338
|
Halstead SB. Licensed Dengue Vaccine: Public Health Conundrum and Scientific Challenge. Am J Trop Med Hyg 2016; 95:741-745. [PMID: 27352870 PMCID: PMC5062765 DOI: 10.4269/ajtmh.16-0222] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/08/2016] [Indexed: 11/25/2022] Open
Abstract
A tetravalent live attenuated vaccine composed of chimeras of yellow fever 17D and the four dengue viruses (chimeric yellow fever dengue [CYD]) manufactured by Sanofi Pasteur has completed phase III clinical testing in over 35,000 children 2-16 years of age. The vaccine was recently licensed in four countries. During the first 2 years of observation, CYD vaccine efficacy ranged between 30% and 79% in 10 different countries with an overall efficacy of 56.8%. During year 3, there was an overall efficacy against hospitalization of 16.7%, but a relative risk of hospitalization of 1.6 among children younger than 9 years and 4.95 in children 5 years of age and younger. Vaccination of seronegative children resulted in universal broad dengue neutralizing antibody responses, but poor protection against breakthrough dengue cases. Unless proven otherwise, such breakthrough cases in vaccinated subjects should be regarded as vaccine antibody-enhanced (ADE). The provenance of these cases can be studied serologically using original antigenic sin immune responses in convalescent sera. In conventional dengue vaccine efficacy clinical trials, persons vaccinated as seronegatives may be hospitalized with breakthrough ADE infections, whereas in the placebo group, dengue infection of monotypic immunes results in hospitalization. Vaccine efficacy trial design must identify dengue disease etiology by separately measuring efficacy in seronegatives and seropositives. The reason(s) why CYD vaccine failed to raise protective dengue virus immunity are unknown. To achieve a safe and protective dengue vaccine, careful studies of monotypic CYD vaccines in humans should precede field trials of tetravalent formulations.
Collapse
Affiliation(s)
- Scott B. Halstead
- Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
339
|
Gil L, Cobas K, Lazo L, Marcos E, Hernández L, Suzarte E, Izquierdo A, Valdés I, Blanco A, Puentes P, Romero Y, Pérez Y, Guzmán MG, Guillén G, Hermida L. A Tetravalent Formulation Based on Recombinant Nucleocapsid-like Particles from Dengue Viruses Induces a Functional Immune Response in Mice and Monkeys. THE JOURNAL OF IMMUNOLOGY 2016; 197:3597-3606. [PMID: 27683751 DOI: 10.4049/jimmunol.1600927] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/29/2016] [Indexed: 11/19/2022]
Abstract
Despite the considerable effort that has been invested in elucidating the mechanisms of protection and immunopathogenesis associated with dengue virus infections, a reliable correlate of protection against the disease remains to be found. Neutralizing Abs, long considered the prime component of a protective response, can exacerbate disease severity when present at subprotective levels, and a growing body of data is challenging the notion that their titers are positively correlated with disease protection. Consequently, the protective role of cell-mediated immunity in the control of dengue infections has begun to be studied. Although earlier research implicated cellular immunity in dengue immunopathogenesis, a wealth of newer data demonstrated that multifunctional CD8+ T cell responses are instrumental for avoiding the more severe manifestations of dengue disease. In this article, we describe a new tetravalent vaccine candidate based on recombinant dengue virus capsid proteins, efficiently produced in Escherichia coli and purified using a single ion-exchange chromatography step. After aggregation to form nucleocapsid-like particles upon incubation with an oligodeoxynucleotide containing immunostimulatory CpG motifs, these Ags induce, in mice and monkeys, an IFN-γ-secreting cell response that significantly reduces viral load after challenge without the contribution of antiviral Abs. Therefore, this new vaccine candidate may not carry the risk for disease enhancement associated with Ab-based formulations.
Collapse
Affiliation(s)
- Lázaro Gil
- Center for Genetic Engineering and Biotechnology, Havana 10 600, Cuba; and
| | - Karem Cobas
- Center for Genetic Engineering and Biotechnology, Havana 10 600, Cuba; and
| | - Laura Lazo
- Center for Genetic Engineering and Biotechnology, Havana 10 600, Cuba; and
| | - Ernesto Marcos
- Center for Genetic Engineering and Biotechnology, Havana 10 600, Cuba; and
| | - Laura Hernández
- Center for Genetic Engineering and Biotechnology, Havana 10 600, Cuba; and
| | - Edith Suzarte
- Center for Genetic Engineering and Biotechnology, Havana 10 600, Cuba; and
| | - Alienys Izquierdo
- Pan American Health Organization/World Health Organization Collaborating Center for the Study of Dengue and Its Vector, Department of Virology, Pedro Kourí Tropical Medicine Institute, Havana 17 100, Cuba
| | - Iris Valdés
- Center for Genetic Engineering and Biotechnology, Havana 10 600, Cuba; and
| | - Aracelys Blanco
- Center for Genetic Engineering and Biotechnology, Havana 10 600, Cuba; and
| | - Pedro Puentes
- Center for Genetic Engineering and Biotechnology, Havana 10 600, Cuba; and
| | - Yaremis Romero
- Center for Genetic Engineering and Biotechnology, Havana 10 600, Cuba; and
| | - Yusleidi Pérez
- Center for Genetic Engineering and Biotechnology, Havana 10 600, Cuba; and
| | - María G Guzmán
- Pan American Health Organization/World Health Organization Collaborating Center for the Study of Dengue and Its Vector, Department of Virology, Pedro Kourí Tropical Medicine Institute, Havana 17 100, Cuba
| | - Gerardo Guillén
- Center for Genetic Engineering and Biotechnology, Havana 10 600, Cuba; and
| | - Lisset Hermida
- Center for Genetic Engineering and Biotechnology, Havana 10 600, Cuba; and
| |
Collapse
|
340
|
Cruz Hernández SIDL, Puerta-Guardo HN, Flores Aguilar H, González Mateos S, López Martinez I, Ortiz-Navarrete V, Ludert JE, Angel RMD. Primary dengue virus infections induce differential cytokine production in Mexican patients. Mem Inst Oswaldo Cruz 2016; 111:161-7. [PMID: 27008374 PMCID: PMC4804498 DOI: 10.1590/0074-02760150359] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/12/2016] [Indexed: 12/17/2022] Open
Abstract
Severe dengue pathogenesis is not fully understood, but high levels of
proinflammatory cytokines have been associated with dengue disease severity. In this
study, the cytokine levels in 171 sera from Mexican patients with primary dengue
fever (DF) and dengue haemorrhagic fever (DHF) from dengue virus (DENV) 1 (n = 116)
or 2 (n = 55) were compared. DF and DHF were defined according to the patient’s
clinical condition, the primary infections as indicated by IgG enzymatic immunoassay
negative results, and the infecting serotype as assessed by real-time reverse
transcription-polymerase chain reaction. Samples were analysed for circulating levels
of interleukin (IL)-12p70, interferon (IFN)-γ, tumour necrosis factor (TNF)-α, IL-6,
and IL-8 using a commercial cytometric bead array. Significantly higher IFN-γ levels
were found in patients with DHF than those with DF. However, significantly higher
IL-12p70, TNF-α, and IL-6 levels were associated with DHF only in patients who were
infected with DENV2 but not with DENV1. Moreover, patients with DF who were infected
with DENV1 showed higher levels of IL-12p70, TNF-α, and IL-6 than patients with DHF
early after-fever onset. The IL-8 levels were similar in all cases regardless of the
clinical condition or infection serotype. These results suggest that the association
between high proinflammatory cytokine levels and dengue disease severity does not
always stand, and it once again highlights the complex nature of DHF
pathogenesis.
Collapse
Affiliation(s)
| | - Henry Nelson Puerta-Guardo
- Departamento de Infectómica y Patogénesis Molecular, Instituto Politécnico Nacional, Centro de Investigación y Estudios Avanzados, México, DF, México
| | - Hilario Flores Aguilar
- Departamento de Inmunología e Inmunogenética, Instituto de Diagnóstico y Referencia Epidemiológicos, México, DF, México
| | - Silvia González Mateos
- Departamento de Virología, Instituto de Diagnóstico y Referencia Epidemiológicos, México, DF, México
| | - Irma López Martinez
- Departamento de Virología, Instituto de Diagnóstico y Referencia Epidemiológicos, México, DF, México
| | - Vianney Ortiz-Navarrete
- Departamento de Biomedicina, Instituto Politécnico Nacional, Centro de Investigación y de Estudios Avanzados, México, DF, México
| | - Juan E Ludert
- Departamento de Infectómica y Patogénesis Molecular, Instituto Politécnico Nacional, Centro de Investigación y Estudios Avanzados, México, DF, México
| | - Rosa María del Angel
- Departamento de Infectómica y Patogénesis Molecular, Instituto Politécnico Nacional, Centro de Investigación y Estudios Avanzados, México, DF, México
| |
Collapse
|
341
|
Schönrich G, Raftery MJ. Neutrophil Extracellular Traps Go Viral. Front Immunol 2016; 7:366. [PMID: 27698656 PMCID: PMC5027205 DOI: 10.3389/fimmu.2016.00366] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/05/2016] [Indexed: 12/14/2022] Open
Abstract
Neutrophils are the most numerous immune cells. Their importance as the first line of defense against bacterial and fungal pathogens is well described. In contrast, the role of neutrophils in controlling viral infections is less clear. Bacterial and fungal pathogens can stimulate neutrophils extracellular traps (NETs) in a process called NETosis. Although NETosis has previously been described as a special form of programmed cell death, there are forms of NET production that do not end with the demise of neutrophils. As an end result of NETosis, genomic DNA complexed with microbicidal proteins is expelled from neutrophils. These structures can kill pathogens or at least prevent their local spread within host tissue. On the other hand, disproportionate NET formation can cause local or systemic damage. Only recently, it was recognized that viruses can also induce NETosis. In this review, we discuss the mechanisms by which NETs are produced in the context of viral infection and how this may contribute to both antiviral immunity and immunopathology. Finally, we shed light on viral immune evasion mechanisms targeting NETs.
Collapse
Affiliation(s)
- Günther Schönrich
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin , Berlin , Germany
| | - Martin J Raftery
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin , Berlin , Germany
| |
Collapse
|
342
|
Dai L, Wang Q, Qi J, Shi Y, Yan J, Gao GF. Molecular basis of antibody-mediated neutralization and protection against flavivirus. IUBMB Life 2016; 68:783-91. [DOI: 10.1002/iub.1556] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 08/22/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Lianpan Dai
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences; Beijing China
| | - Qihui Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
- Shenzhen Key Laboratory of Pathogen and Immunity; Shenzhen Third People's Hospital; Shenzhen China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
| | - Yi Shi
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences; Beijing China
- Shenzhen Key Laboratory of Pathogen and Immunity; Shenzhen Third People's Hospital; Shenzhen China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
- Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences; Beijing China
- Savaid Medical School, University of Chinese Academy of Sciences; Beijing China
| | - Jinghua Yan
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
- Shenzhen Key Laboratory of Pathogen and Immunity; Shenzhen Third People's Hospital; Shenzhen China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
- Savaid Medical School, University of Chinese Academy of Sciences; Beijing China
| | - George F. Gao
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences; Beijing China
- Shenzhen Key Laboratory of Pathogen and Immunity; Shenzhen Third People's Hospital; Shenzhen China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
- Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences; Beijing China
- Savaid Medical School, University of Chinese Academy of Sciences; Beijing China. National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC); Beijing China
| |
Collapse
|
343
|
Kamaladasa A, Gomes L, Jeewandara C, Shyamali N, Ogg GS, Malavige GN. Lipopolysaccharide acts synergistically with the dengue virus to induce monocyte production of platelet activating factor and other inflammatory mediators. Antiviral Res 2016; 133:183-90. [DOI: 10.1016/j.antiviral.2016.07.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/24/2016] [Indexed: 01/19/2023]
|
344
|
Inyoo S, Suttitheptumrong A, Pattanakitsakul SN. Synergistic Effect of TNF-α and Dengue Virus Infection on Adhesion Molecule Reorganization in Human Endothelial Cells. Jpn J Infect Dis 2016; 70:186-191. [PMID: 27580574 DOI: 10.7883/yoken.jjid.2016.123] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS) is a severe pathological manifestation of dengue virus (DENV) infection. Enhanced production of cytokines in dengue patients is proposed to induce endothelial barrier instability resulting in increased vascular leakage. Tumor necrosis factor (TNF)-α is an inflammatory cytokine that activates endothelial cells and enhances vascular permeability and plasma leakage in DHF/DSS. The present study investigated the in vitro effect of TNF-α and DENV infection on the expression of adherence junction proteins, tight junction proteins, and membrane integrity of human endothelial cell lines. Immunofluorescence staining and western blot analysis demonstrated platelet endothelial cell adhesion molecule-1 (PECAM-1) reorganization and decreased levels of the tight junction protein occludin in human endothelial cells treated with TNF-α and DENV, compared to mock, DENV, or TNF-α-treated cells. Permeability assessed by FITC-dextran as a transport molecule was increased and correlated with the unusual reorganization of PECAM-1. The altered distribution of PECAM-1 and low occludin protein levels in human endothelial cells treated with TNF-α and DENV correlated with increased permeability. In conclusion, the synergistic effect of TNF-α and DENV induced permeability changes in endothelial cells. These results contribute to the understanding of the mechanisms underlying enhanced vascular permeability in DENV infection.
Collapse
Affiliation(s)
- Sivaporn Inyoo
- Division of Molecular Medicine, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University
| | | | | |
Collapse
|
345
|
Xu X, Song H, Qi J, Liu Y, Wang H, Su C, Shi Y, Gao GF. Contribution of intertwined loop to membrane association revealed by Zika virus full-length NS1 structure. EMBO J 2016; 35:2170-2178. [PMID: 27578809 PMCID: PMC5069551 DOI: 10.15252/embj.201695290] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/15/2016] [Indexed: 11/17/2022] Open
Abstract
The association of Zika virus (ZIKV) infections with microcephaly and neurological diseases has highlighted an emerging public health concern. Here, we report the crystal structure of the full‐length ZIKV nonstructural protein 1 (NS1), a major host‐interaction molecule that functions in flaviviral replication, pathogenesis, and immune evasion. Of note, a long intertwined loop is observed in the wing domain of ZIKV NS1, and forms a hydrophobic “spike”, which can contribute to cellular membrane association. For different flaviviruses, the amino acid sequences of the “spike” are variable but their common characteristic is either hydrophobic or positively charged, which is a beneficial feature for membrane binding. Comparative studies with West Nile and Dengue virus NS1 structures reveal conserved features, but diversified electrostatic characteristics on both inner and outer faces. Our results suggest different mechanisms of flavivirus pathogenesis and should be considered during the development of diagnostic tools.
Collapse
Affiliation(s)
- Xiaoying Xu
- School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hao Song
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yuqian Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Institute of Health Sciences, Anhui University, Hefei, China
| | - Haiyuan Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Chao Su
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China .,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, China
| | - George F Gao
- School of Life Sciences, University of Science and Technology of China, Hefei, China .,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| |
Collapse
|
346
|
Caveolae-mediated albumin transcytosis is enhanced in dengue-infected human endothelial cells: A model of vascular leakage in dengue hemorrhagic fever. Sci Rep 2016; 6:31855. [PMID: 27546060 PMCID: PMC4992822 DOI: 10.1038/srep31855] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/28/2016] [Indexed: 01/04/2023] Open
Abstract
Vascular leakage is a life-threatening complication of dengue virus (DENV) infection. Previously, association between “paracellular” endothelial hyperpermeability and plasma leakage had been extensively investigated. However, whether “transcellular” endothelial leakage is involved in dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) remained unknown. We thus investigated effects of DENV (serotype 2) infection on transcellular transport of albumin, the main oncotic plasma protein, through human endothelial cell monolayer by Western blotting, immunofluorescence staining, fluorescence imaging, and fluorometry. The data showed that Alexa488-conjugated bovine serum albumin (Alexa488-BSA) was detectable inside DENV2-infected cells and its level was progressively increased during 48-h post-infection. While paracellular transport could be excluded using FITC-conjugated dextran, Alexa488-BSA was progressively increased and decreased in lower and upper chambers of Transwell, respectively. Pretreatment with nystatin, an inhibitor of caveolae-dependent endocytic pathway, significantly decreased albumin internalization into the DENV2-infected cells, whereas inhibitors of other endocytic pathways showed no significant effects. Co-localization of the internalized Alexa488-BSA and caveolin-1 was also observed. Our findings indicate that DENV infection enhances caveolae-mediated albumin transcytosis through human endothelial cells that may ultimately induce plasma leakage from intravascular compartment. Further elucidation of this model in vivo may lead to effective prevention and better therapeutic outcome of DHF/DSS.
Collapse
|
347
|
Abstract
Dengue is widespread throughout the tropics and local spatial variation in dengue virus transmission is strongly influenced by rainfall, temperature, urbanization and distribution of the principal mosquito vector Aedes aegypti. Currently, endemic dengue virus transmission is reported in the Eastern Mediterranean, American, South-East Asian, Western Pacific and African regions, whereas sporadic local transmission has been reported in Europe and the United States as the result of virus introduction to areas where Ae. aegypti and Aedes albopictus, a secondary vector, occur. The global burden of the disease is not well known, but its epidemiological patterns are alarming for both human health and the global economy. Dengue has been identified as a disease of the future owing to trends toward increased urbanization, scarce water supplies and, possibly, environmental change. According to the WHO, dengue control is technically feasible with coordinated international technical and financial support for national programmes. This Primer provides a general overview on dengue, covering epidemiology, control, disease mechanisms, diagnosis, treatment and research priorities.
Collapse
Affiliation(s)
- Maria G Guzman
- Institute of Tropical Medicine 'Pedro Kouri', PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Autopista Novia del Mediodia, Km 6 1/2, Havana 11400, Cuba
| | - Duane J Gubler
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| | - Alienys Izquierdo
- Institute of Tropical Medicine 'Pedro Kouri', PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Autopista Novia del Mediodia, Km 6 1/2, Havana 11400, Cuba
| | - Eric Martinez
- Institute of Tropical Medicine 'Pedro Kouri', PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Autopista Novia del Mediodia, Km 6 1/2, Havana 11400, Cuba
| | - Scott B Halstead
- Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
348
|
Lang J, Vera D, Cheng Y, Tang H. Modeling Dengue Virus-Hepatic Cell Interactions Using Human Pluripotent Stem Cell-Derived Hepatocyte-like Cells. Stem Cell Reports 2016; 7:341-354. [PMID: 27546535 PMCID: PMC5031989 DOI: 10.1016/j.stemcr.2016.07.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 12/23/2022] Open
Abstract
The development of dengue antivirals and vaccine has been hampered by the incomplete understanding of molecular mechanisms of dengue virus (DENV) infection and pathology, partly due to the limited suitable cell culture or animal models that can capture the comprehensive cellular changes induced by DENV. In this study, we differentiated human pluripotent stem cells (hPSCs) into hepatocytes, one of the target cells of DENV, to investigate various aspects of DENV-hepatocyte interaction. hPSC-derived hepatocyte-like cells (HLCs) supported persistent and productive DENV infection. The activation of interferon pathways by DENV protected bystander cells from infection and protected the infected cells from massive apoptosis. Furthermore, DENV infection activated the NF-κB pathway, which led to production of proinflammatory cytokines and downregulated many liver-specific genes such as albumin and coagulation factor V. Our study demonstrates the utility of hPSC-derived hepatocytes as an in vitro model for DENV infection and reveals important aspects of DENV-host interactions.
Collapse
Affiliation(s)
- Jianshe Lang
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306-4295, USA
| | - Daniel Vera
- Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Yichen Cheng
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306-4295, USA
| | - Hengli Tang
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306-4295, USA.
| |
Collapse
|
349
|
Sung C, Wei Y, Watanabe S, Lee HS, Khoo YM, Fan L, Rathore APS, Chan KWK, Choy MM, Kamaraj US, Sessions OM, Aw P, de Sessions PF, Lee B, Connolly JE, Hibberd ML, Vijaykrishna D, Wijaya L, Ooi EE, Low JGH, Vasudevan SG. Extended Evaluation of Virological, Immunological and Pharmacokinetic Endpoints of CELADEN: A Randomized, Placebo-Controlled Trial of Celgosivir in Dengue Fever Patients. PLoS Negl Trop Dis 2016; 10:e0004851. [PMID: 27509020 PMCID: PMC4980036 DOI: 10.1371/journal.pntd.0004851] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/24/2016] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED CELADEN was a randomized placebo-controlled trial of 50 patients with confirmed dengue fever to evaluate the efficacy and safety of celgosivir (A study registered at ClinicalTrials.gov, number NCT01619969). Celgosivir was given as a 400 mg loading dose and 200 mg bid (twice a day) over 5 days. Replication competent virus was measured by plaque assay and compared to reverse transcription quantitative PCR (qPCR) of viral RNA. Pharmacokinetics (PK) correlations with viremia, immunological profiling, next generation sequence (NGS) analysis and hematological data were evaluated as exploratory endpoints here to identify possible signals of pharmacological activity. Viremia by plaque assay strongly correlated with qPCR during the first four days. Immunological profiling demonstrated a qualitative shift in T helper cell profile during the course of infection. NGS analysis did not reveal any prominent signature that could be associated with drug treatment; however the phylogenetic spread of patients' isolates underlines the importance of strain variability that may potentially confound interpretation of dengue drug trials conducted during different outbreaks and in different countries. Celgosivir rapidly converted to castanospermine (Cast) with mean peak and trough concentrations of 5727 ng/mL (30.2 μM) and 430 ng/mL (2.3 μM), respectively and cleared with a half-life of 2.5 (± 0.6) hr. Mean viral log reduction between day 2 and 4 (VLR2-4) was significantly greater in secondary dengue than primary dengue (p = 0.002). VLR2-4 did not correlate with drug AUC but showed a trend of greater response with increasing Cmin. PK modeling identified dosing regimens predicted to achieve 2.4 to 4.5 times higher Cmin. than in the CELADEN trial for only 13% to 33% increase in overall dose. A small, non-statistical trend towards better outcome on platelet nadir and difference between maximum and minimum hematocrit was observed in celgosivir-treated patients with secondary dengue infection. Optimization of the dosing regimen and patient stratification may enhance the ability of a clinical trial to demonstrate celgosivir activity in treating dengue fever based on hematological endpoints. A new clinical trial with a revised dosing regimen is slated to start in 2016 (NCT02569827). Furthermore celgosivir's potential value for treatment of other flaviruses such as Zika virus should be investigated urgently. TRIAL REGISTRATION ClinicalTrials.gov NCT01619969.
Collapse
Affiliation(s)
- Cynthia Sung
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Vigilance and Compliance Branch, Health Sciences Authority, Singapore
| | - Yuan Wei
- Singapore Clinical Research Institute, Singapore
| | - Satoru Watanabe
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - How Sung Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yok Moi Khoo
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lu Fan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Kitti Wing-Ki Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Milly M. Choy
- Genome Institute of Singapore, A*STAR, Biopolis, Singapore
| | - Uma S. Kamaraj
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | | | - Pauline Aw
- Genome Institute of Singapore, A*STAR, Biopolis, Singapore
| | | | - Bernett Lee
- Institute of Molecular & Cellular Biology, A*STAR, Biopolis, Singapore
| | - John E. Connolly
- Institute of Molecular & Cellular Biology, A*STAR, Biopolis, Singapore
| | | | | | - Limin Wijaya
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | | | | |
Collapse
|
350
|
Rastogi M, Sharma N, Singh SK. Flavivirus NS1: a multifaceted enigmatic viral protein. Virol J 2016; 13:131. [PMID: 27473856 PMCID: PMC4966872 DOI: 10.1186/s12985-016-0590-7] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/26/2016] [Indexed: 12/31/2022] Open
Abstract
Flaviviruses are emerging arthropod-borne viruses representing an immense global health problem. The prominent viruses of this group include dengue virus, yellow fever virus, Japanese encephalitis virus, West Nile virus tick borne encephalitis virus and Zika Virus. These are endemic in many parts of the world. They are responsible for the illness ranging from mild flu like symptoms to severe hemorrhagic, neurologic and cognitive manifestations leading to death. NS1 is a highly conserved non-structural protein among flaviviruses, which exist in diverse forms. The intracellular dimer form of NS1 plays role in genome replication, whereas, the secreted hexamer plays role in immune evasion. The secreted NS1 has been identified as a potential diagnostic marker for early detection of the infections caused by flaviviruses. In addition to the diagnostic marker, the importance of NS1 has been reported in the development of therapeutics. NS1 based subunit vaccines are at various stages of development. The structural details and diverse functions of NS1 have been discussed in detail in this review.
Collapse
Affiliation(s)
- Meghana Rastogi
- Institute of Medical Sciences (IMS), Laboratory of Human Molecular Virology & Immunology, Molecular Biology Unit, Faculty of Medicine, Banaras Hindu University, Varanasi, 221005, India
| | - Nikhil Sharma
- Laboratory of Neurovirology and Inflammation Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
| | - Sunit Kumar Singh
- Institute of Medical Sciences (IMS), Laboratory of Human Molecular Virology & Immunology, Molecular Biology Unit, Faculty of Medicine, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|