301
|
Masamune A, Hamada S, Yoshida N, Nabeshima T, Shimosegawa T. Pyruvate Kinase Isozyme M2 Plays a Critical Role in the Interactions Between Pancreatic Stellate Cells and Cancer Cells. Dig Dis Sci 2018; 63:1868-1877. [PMID: 29619774 DOI: 10.1007/s10620-018-5051-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/28/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND The interaction between pancreatic cancer cells and pancreatic stellate cells plays a pivotal role in the progression of pancreatic cancer. Pyruvate kinase isozyme M2 is a key enzyme in glycolysis. Previous studies have shown that pyruvate kinase isozyme M2 is overexpressed in pancreatic cancer and that it regulates the aggressive behaviors of pancreatic cancer cells. AIMS To clarify the role of pyruvate kinase isozyme M2 in the interactions between pancreatic cancer cells and pancreatic stellate cells. METHODS Pyruvate kinase isozyme M2-knockdown pancreatic cancer cells (Panc-1 and SUIT-2 cells) and pancreatic stellate cells were generated by the introduction of small interfering RNA-expressing vector against pyruvate kinase isozyme M2. Cell proliferation, migration, and epithelial-mesenchymal transition were examined in vitro. The impact of pyruvate kinase isozyme M2 knockdown on the growth of subcutaneous tumors was examined in nude mice in vivo. RESULTS Pyruvate kinase isozyme M2-kockdown pancreatic cancer cells and pancreatic stellate cells showed decreased proliferation and migration compared to their respective control cells. Pancreatic stellate cell-induced proliferation, migration, and epithelial-mesenchymal transition were inhibited when pyruvate kinase isozyme M2 expression was knocked down in pancreatic cancer cells. In vivo, co-injection of pancreatic stellate cells increased the size of the tumor developed by the control SUIT-2 cells, but the effects were less evident when pyruvate kinase isozyme M2 was knocked down in SUIT-2 cells or pancreatic stellate cells. CONCLUSIONS Our results suggested a critical role of pyruvate kinase isozyme M2 in the interaction between pancreatic cancer cells and pancreatic stellate cells.
Collapse
Affiliation(s)
- Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.
| | - Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Naoki Yoshida
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Tatsuhide Nabeshima
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| |
Collapse
|
302
|
Xu JW, Wang L, Cheng YG, Zhang GY, Hu SY, Zhou B, Zhan HX. Immunotherapy for pancreatic cancer: A long and hopeful journey. Cancer Lett 2018; 425:143-151. [PMID: 29605510 DOI: 10.1016/j.canlet.2018.03.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/28/2018] [Accepted: 03/26/2018] [Indexed: 12/11/2022]
Abstract
Multiple therapeutic strategies have been developed to treat pancreatic cancer. However, the outcomes of these approaches are disappointing. Due to deeper understandings of the pivotal roles of the immune system in pancreatic cancer tumorigenesis and progression, novel therapeutic strategies based on immune cells and the tumor microenvironment are being investigated. Some of these approaches, such as checkpoint inhibitors, chimeric antigen receptor T-cell therapy, and BiTE antibodies, have achieved exciting outcomes in preclinical and clinical trials. The current review describes the roles of immune cells and the immunosuppressive microenvironment in the development of pancreatic cancer, as well as the preclinical and clinical outcomes and benefits of recent immunotherapeutic approaches, which may help us further disclose the mechanisms of pancreatic cancer progression and the dialectical views of feasibility and effectiveness of immunotherapy in treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Jian-Wei Xu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Lei Wang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Yu-Gang Cheng
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Guang-Yong Zhang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - San-Yuan Hu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Bin Zhou
- Department of Hepatopancreatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, 266003, China.
| | - Han-Xiang Zhan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China.
| |
Collapse
|
303
|
TRAIL/NF-κB/CX3CL1 Mediated Onco-Immuno Crosstalk Leading to TRAIL Resistance of Pancreatic Cancer Cell Lines. Int J Mol Sci 2018; 19:ijms19061661. [PMID: 29867042 PMCID: PMC6032098 DOI: 10.3390/ijms19061661] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/26/2018] [Accepted: 06/04/2018] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignant neoplasms and registers rising death rates in western countries. Due to its late detection in advanced stages, its extremely aggressive nature and the minimal effectiveness of currently available therapies, PDAC is a challenging problem in the clinical field. One characteristic of PDAC is a distinct desmoplasia consisting of fibroblasts, endothelial and immune cells as well as non-cellular components, contributing to therapy resistance. It is well established that the NF-κB signaling pathway controls inflammation, cancer progression and apoptosis resistance in PDAC. This study attempts to identify NF-κB target genes mediating therapy resistance of humane PDAC cell lines towards death ligand induced apoptosis. By using a genome wide unbiased approach the chemokine CX3CL1 was established as a central NF-κB target gene mediating therapy resistance. While no direct impact of CX3CL1 expression on cancer cell apoptosis was identified in co-culture assays it became apparent that CX3CL1 is acting in a paracrine fashion, leading to an increased recruitment of inflammatory cells. These inflammatory cells in turn mediate apoptosis resistance of PDAC cells. Therefore, our data dissect a bifunctional cross-signaling pathway in PDAC between tumor and immune cells giving rise to therapy resistance.
Collapse
|
304
|
Löhr JM, Kordes M, Rutkowski W, Heuchel R, Gustafsson-Liljefors M, Russom A, Nilsson M. Overcoming diagnostic issues in precision treatment of pancreatic cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2018. [DOI: 10.1080/23808993.2018.1476061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- J.-Matthias Löhr
- Department of Cancer Medicine, Division for Upper GI, Karolinska University Hospital, Stockholm, Sweden
- CLINTEC, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
| | - Maximilian Kordes
- Department of Cancer Medicine, Division for Upper GI, Karolinska University Hospital, Stockholm, Sweden
- CLINTEC, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
| | - Wiktor Rutkowski
- CLINTEC, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
| | - Rainer Heuchel
- CLINTEC, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
| | | | | | | |
Collapse
|
305
|
Hilmi M, Bartholin L, Neuzillet C. Immune therapies in pancreatic ductal adenocarcinoma: Where are we now? World J Gastroenterol 2018; 24:2137-2151. [PMID: 29853732 PMCID: PMC5974576 DOI: 10.3748/wjg.v24.i20.2137] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/05/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, mostly due to its resistance to treatment. Of these, checkpoint inhibitors (CPI) are inefficient when used as monotherapy, except in the case of a rare subset of tumors harboring microsatellite instability (< 2%). This inefficacy mainly resides in the low immunogenicity and non-inflamed phenotype of PDAC. The abundant stroma generates a hypoxic microenvironment and drives the recruitment of immunosuppressive cells through cancer-associated-fibroblast activation and transforming growth factor β secretion. Several strategies have recently been developed to overcome this immunosuppressive microenvironment. Combination therapies involving CPI aim at increasing tumor immunogenicity and promoting the recruitment and activation of effector T cells. Ongoing studies are therefore exploring the association of CPI with vaccines, oncolytic viruses, MEK inhibitors, cytokine inhibitors, and hypoxia- and stroma-targeting agents. Adoptive T-cell transfer is also under investigation. Moreover, translational studies on tumor tissue and blood, prior to and during treatment may lead to the identification of biomarkers with predictive value for both clinical outcome and response to immunotherapy.
Collapse
Affiliation(s)
- Marc Hilmi
- Service d’Oncologie Médicale, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Université Paris Est Créteil, Créteil 94010, France
| | - Laurent Bartholin
- Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France
| | - Cindy Neuzillet
- Service d’Oncologie Médicale, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Université Paris Est Créteil, Créteil 94010, France
| |
Collapse
|
306
|
Yoneura N, Takano S, Yoshitomi H, Nakata Y, Shimazaki R, Kagawa S, Furukawa K, Takayashiki T, Kuboki S, Miyazaki M, Ohtsuka M. Expression of annexin II and stromal tenascin C promotes epithelial to mesenchymal transition and correlates with distant metastasis in pancreatic cancer. Int J Mol Med 2018; 42:821-830. [PMID: 29749431 PMCID: PMC6034933 DOI: 10.3892/ijmm.2018.3652] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/30/2018] [Indexed: 12/24/2022] Open
Abstract
The interaction between cancer cells and stromal components contributes to cancer invasion and metastasis in pancreatic ductal adenocarcinoma (PDAC). The present study investigated the role of the correlation between annexin II (ANX2) and stromal tenascin C (TNC) with the progression of PDAC. The functions of the expression ANX2 and TNC were assessed in in vitro experiments using mouse and human PDAC cells, and the clinical effect was analyzed using immunohistochemistry with surgically resected PDAC tissues. The effects on epithelial to mesenchymal transition (EMT), invasion, putative cancer stemness, and anoikis resistance were examined in vitro using murine precancerous pancreatic intraepithelial neoplasia (PanIN) cells and murine and human invasive PDAC cells with ANX2 knockdown using specific small interfering RNA (siRNA)s and recombinant TNC (rTNC). ANX2 was expressed at a high level in primary PanIN cells and invasive PDAC cells, compared with the levels in liver metastatic PDAC cells. In the ANX2-knockdown cells, there were fewer cells with a morphological mesenchymal appearance in three-dimensional culture and invasion was reduced compared with that in the control cells. Morphological change into the mesenchymal phenotype and invasion were enhanced by rTNC treatment in the control PDAC cells but not in the ANX2-knockdown cells. Pancreatosphere formation assays showed that ANX2 and TNC facilitated the maintenance of stem-like characters in PDAC cells. Furthermore, anoikis assays indicated that the interaction of ANX2-TNC contributed to anoikis resistance in PDAC cells. In the immunohistochemistry analyses, the group with a high expression of ANX2 and high stromal TNC was significantly correlated with distant metastasis, and was associated with hematogenous/peritoneal recurrence and poor outcomes following surgery in resected human primary PDAC tissues. In conclusion, the results demonstrated that ANX2 and stromal TNC regulated invasion in addition to stemness and anoikis resistance, which are crucial for metastasis in the progression of PDAC. These results indicate the potential of the ANX2-TNC axis as a therapeutic target for PDAC metastasis.
Collapse
Affiliation(s)
- Naoko Yoneura
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba 260‑8677, Japan
| | - Shigetsugu Takano
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba 260‑8677, Japan
| | - Hideyuki Yoshitomi
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba 260‑8677, Japan
| | - Yasuyuki Nakata
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba 260‑8677, Japan
| | - Reiri Shimazaki
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba 260‑8677, Japan
| | - Shingo Kagawa
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba 260‑8677, Japan
| | - Katsunori Furukawa
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba 260‑8677, Japan
| | - Tsukasa Takayashiki
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba 260‑8677, Japan
| | - Satoshi Kuboki
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba 260‑8677, Japan
| | - Masaru Miyazaki
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba 260‑8677, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba 260‑8677, Japan
| |
Collapse
|
307
|
Candido JB, Morton JP, Bailey P, Campbell AD, Karim SA, Jamieson T, Lapienyte L, Gopinathan A, Clark W, McGhee EJ, Wang J, Escorcio-Correia M, Zollinger R, Roshani R, Drew L, Rishi L, Arkell R, Evans TRJ, Nixon C, Jodrell DI, Wilkinson RW, Biankin AV, Barry ST, Balkwill FR, Sansom OJ. CSF1R + Macrophages Sustain Pancreatic Tumor Growth through T Cell Suppression and Maintenance of Key Gene Programs that Define the Squamous Subtype. Cell Rep 2018; 23:1448-1460. [PMID: 29719257 PMCID: PMC5946718 DOI: 10.1016/j.celrep.2018.03.131] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/21/2018] [Accepted: 03/28/2018] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is resistant to most therapies including single-agent immunotherapy and has a dense desmoplastic stroma, and most patients present with advanced metastatic disease. We reveal that macrophages are the dominant leukocyte population both in human PDAC stroma and autochthonous models, with an important functional contribution to the squamous subtype of human PDAC. We targeted macrophages in a genetic PDAC model using AZD7507, a potent selective inhibitor of CSF1R. AZD7507 caused shrinkage of established tumors and increased mouse survival in this difficult-to-treat model. Malignant cell proliferation diminished, with increased cell death and an enhanced T cell immune response. Loss of macrophages rewired other features of the TME, with global changes in gene expression akin to switching PDAC subtypes. These changes were markedly different to those elicited when neutrophils were targeted via CXCR2. These results suggest targeting the myeloid cell axis may be particularly efficacious in PDAC, especially with CSF1R inhibitors.
Collapse
MESH Headings
- Adult
- Aniline Compounds/pharmacology
- Animals
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Female
- Heterocyclic Compounds, 2-Ring/pharmacology
- Humans
- Immunity, Cellular/drug effects
- Immunity, Cellular/genetics
- Macrophages/immunology
- Macrophages/pathology
- Male
- Mice
- Models, Immunological
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/pathology
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Juliana B Candido
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Peter Bailey
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | | | - Saadia A Karim
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | | | | | - Aarthi Gopinathan
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - William Clark
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Ewan J McGhee
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Jun Wang
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | | | - Raphael Zollinger
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Rozita Roshani
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Lisa Drew
- Bioscience, Oncology, iMED Biotech Unit, AstraZeneca, Boston, MA, USA
| | - Loveena Rishi
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Rebecca Arkell
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - T R Jeffry Evans
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Duncan I Jodrell
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | | | - Andrew V Biankin
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Simon T Barry
- Bioscience, Oncology, iMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Frances R Balkwill
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| |
Collapse
|
308
|
Furuse J, Shibahara J, Sugiyama M. Development of chemotherapy and significance of conversion surgery after chemotherapy in unresectable pancreatic cancer. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2018; 25:261-268. [DOI: 10.1002/jhbp.547] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Junji Furuse
- Faculty of Medicine; Department of Medical Oncology; Kyorin University; Tokyo Japan
| | - Junji Shibahara
- Faculty of Medicine; Department of Pathology; Kyorin University; Tokyo Japan
| | - Masanori Sugiyama
- Faculty of Medicine; Department of Surgery; Kyorin University; Tokyo Japan
| |
Collapse
|
309
|
Tao Z, Muzumdar MD, Detappe A, Huang X, Xu ES, Yu Y, Mouhieddine TH, Song H, Jacks T, Ghoroghchian PP. Differences in Nanoparticle Uptake in Transplanted and Autochthonous Models of Pancreatic Cancer. NANO LETTERS 2018; 18:2195-2208. [PMID: 29533667 PMCID: PMC5957485 DOI: 10.1021/acs.nanolett.7b04043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Human pancreatic ductal adenocarcinoma (PDAC) contains a distinctively dense stroma that limits the accessibility of anticancer drugs, contributing to its poor overall prognosis. Nanoparticles can enhance drug delivery and retention in pancreatic tumors and have been utilized clinically for their treatment. In preclinical studies, various mouse models differentially recapitulate the microenvironmental features of human PDAC. Here, we demonstrate that through utilization of different organic cosolvents and by doping of a homopolymer of poly(ε-caprolactone), a diblock copolymer composition of poly(ethylene oxide)- block-poly(ε-caprolactone) may be utilized to generate biodegradable and nanoscale micelles with different physical properties. Noninvasive optical imaging was employed to examine the pharmacology and biodistribution of these various nanoparticle formulations in both allografted and autochthonous mouse models of PDAC. In contrast to the results reported with transplanted tumors, spherical micelles as large as 300 nm in diameter were found to extravasate in the autochthonous model, reaching a distance of approximately 20 μm from the nearest tumor cell clusters. A lipophilic platinum(IV) prodrug of oxaliplatin was further able to achieve a ∼7-fold higher peak accumulation and a ∼50-fold increase in its retention half-life in pancreatic tumors when delivered with 100 nm long worm-like micelles as when compared to the free drug formulation of oxaliplatin. Through further engineering of nanoparticle properties, as well as by widespread adoption of the autochthonous tumor model for preclinical testing, future therapeutic formulations may further enhance the targeting and penetration of anticancer agents to improve survival outcomes in PDAC.
Collapse
Affiliation(s)
- Zhimin Tao
- Koch Institute for Integrative Cancer Research at MIT, 500 Main Street, Cambridge, MA 02139, USA
| | - Mandar Deepak Muzumdar
- Koch Institute for Integrative Cancer Research at MIT, 500 Main Street, Cambridge, MA 02139, USA
- Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Alexandre Detappe
- Koch Institute for Integrative Cancer Research at MIT, 500 Main Street, Cambridge, MA 02139, USA
- Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Xing Huang
- Koch Institute for Integrative Cancer Research at MIT, 500 Main Street, Cambridge, MA 02139, USA
| | - Eric S. Xu
- Koch Institute for Integrative Cancer Research at MIT, 500 Main Street, Cambridge, MA 02139, USA
| | - Yingjie Yu
- Koch Institute for Integrative Cancer Research at MIT, 500 Main Street, Cambridge, MA 02139, USA
| | - Tarek H. Mouhieddine
- Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Haiqin Song
- Koch Institute for Integrative Cancer Research at MIT, 500 Main Street, Cambridge, MA 02139, USA
| | - Tyler Jacks
- Koch Institute for Integrative Cancer Research at MIT, 500 Main Street, Cambridge, MA 02139, USA
| | - P. Peter Ghoroghchian
- Koch Institute for Integrative Cancer Research at MIT, 500 Main Street, Cambridge, MA 02139, USA
- Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| |
Collapse
|
310
|
Stroma - A Double-Edged Sword in Pancreatic Cancer: A Lesson From Targeting Stroma in Pancreatic Cancer With Hedgehog Signaling Inhibitors. Pancreas 2018. [PMID: 29521941 DOI: 10.1097/mpa.0000000000001023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pancreatic cancer is a uniformly lethal malignancy with an abundant dense desmoplastic stroma. Because of its dense stroma, conventional drugs were considered to not penetrate this physical barrier, and this caused a systemic drug resistance. Thus, abolishing this barrier with targeted agents is considered to improve the efficiency of chemotherapeutic treatment. The Hedgehog (Hh) signaling pathway is a critical regulator of pancreas development and plays diversified roles in pancreatic cancer stroma and neoplastic cells. Increasing Hh expression in neoplastic cells added desmoplastic stroma accumulation in orthotopic tumors, and Hh inhibitors that target the stroma have an ability to prolong the overall survival of Pdx-1-Cre/KrasG12D/p53R172H mice models via deleting the stromal components and increasing vascularity in pancreatic tumor. However, the failure of translation from bench to bedside indicate the complexity of the relationship between Hh signaling and desmoplastic stroma, and more insights into the complex relationships between Hh signaling pathway and stroma, even tumor cells, might help redesign Hh-targeted therapy. In this review, we discuss the possible mechanism of translation of Hh inhibitor in the clinic from pathology to molecular mechanism.
Collapse
|
311
|
Zhang D, Li L, Jiang H, Li Q, Wang-Gillam A, Yu J, Head R, Liu J, Ruzinova MB, Lim KH. Tumor-Stroma IL1β-IRAK4 Feedforward Circuitry Drives Tumor Fibrosis, Chemoresistance, and Poor Prognosis in Pancreatic Cancer. Cancer Res 2018; 78:1700-1712. [PMID: 29363544 PMCID: PMC5890818 DOI: 10.1158/0008-5472.can-17-1366] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 12/13/2017] [Accepted: 01/19/2018] [Indexed: 12/22/2022]
Abstract
Targeting the desmoplastic stroma of pancreatic ductal adenocarcinoma (PDAC) holds promise to augment the effect of chemotherapy, but success in the clinic has thus far been limited. Preclinical mouse models suggest that near-depletion of cancer-associated fibroblasts (CAF) carries a risk of accelerating PDAC progression, underscoring the need to concurrently target key signaling mechanisms that drive the malignant attributes of both CAF and PDAC cells. We previously reported that inhibition of IL1 receptor-associated kinase 4 (IRAK4) suppresses NFκB activity and promotes response to chemotherapy in PDAC cells. In this study, we report that CAF in PDAC tumors robustly express activated IRAK4 and NFκB. IRAK4 expression in CAF promoted NFκB activity, drove tumor fibrosis, and supported PDAC cell proliferation, survival, and chemoresistance. Cytokine array analysis of CAF and microarray analysis of PDAC cells identified IL1β as a key cytokine that activated IRAK4 in CAF. Targeting IRAK4 or IL1β rendered PDAC tumors less fibrotic and more sensitive to gemcitabine. In clinical specimens of human PDAC, high stromal IL1β expression associated strongly with poor overall survival. Together, our studies establish a tumor-stroma IL1β-IRAK4 feedforward signal that can be therapeutically disrupted to increase chemotherapeutic efficacy in PDAC.Significance: Targeting the IL1β-IRAK4 signaling pathway potentiates the effect of chemotherapy in pancreatic cancer. Cancer Res; 78(7); 1700-12. ©2018 AACR.
Collapse
Affiliation(s)
- Daoxiang Zhang
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Lin Li
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Hongmei Jiang
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Qiong Li
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Andrea Wang-Gillam
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jinsheng Yu
- Department of Genetics, Genome Technology Access Center, Washington University School of Medicine, Saint Louis, Missouri
| | - Richard Head
- Department of Genetics, Genome Technology Access Center, Washington University School of Medicine, Saint Louis, Missouri
| | - Jingxia Liu
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Marianna B Ruzinova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
312
|
Eibl G, Cruz-Monserrate Z, Korc M, Petrov MS, Goodarzi MO, Fisher WE, Habtezion A, Lugea A, Pandol SJ, Hart PA, Andersen DK. Diabetes Mellitus and Obesity as Risk Factors for Pancreatic Cancer. J Acad Nutr Diet 2018; 118:555-567. [PMID: 28919082 PMCID: PMC5845842 DOI: 10.1016/j.jand.2017.07.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest types of cancer. The worldwide estimates of its incidence and mortality in the general population are eight cases per 100,000 person-years and seven deaths per 100,000 person-years, and they are significantly higher in the United States than in the rest of the world. The incidence of this disease in the United States is more than 50,000 new cases in 2017. Indeed, total deaths due to PDAC are projected to increase dramatically to become the second leading cause of cancer-related deaths before 2030. Considering the failure to date to efficiently treat existing PDAC, increased effort should be undertaken to prevent this disease. A better understanding of the risk factors leading to PDAC development is of utmost importance to identify and formulate preventive strategies. Large epidemiologic and cohort studies have identified risk factors for the development of PDAC, including obesity and type 2 diabetes mellitus. This review highlights the current knowledge of obesity and type 2 diabetes as risk factors for PDAC development and progression, their interplay and underlying mechanisms, and the relation to diet. Research gaps and opportunities to address this deadly disease are also outlined.
Collapse
|
313
|
Byrne JD, Jajja MRN, O'Neill AT, Schorzman AN, Keeler AW, Luft JC, Zamboni WC, DeSimone JM, Yeh JJ. Impact of formulation on the iontophoretic delivery of the FOLFIRINOX regimen for the treatment of pancreatic cancer. Cancer Chemother Pharmacol 2018; 81:991-998. [PMID: 29603014 DOI: 10.1007/s00280-018-3570-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/22/2018] [Indexed: 01/05/2023]
Abstract
PURPOSE Effective treatment of patients with locally advanced pancreatic cancer is a significant unmet clinical need. One major hurdle that exists is inadequate drug delivery due to the desmoplastic stroma and poor vascularization that is characteristic of pancreatic cancer. The local iontophoretic delivery of chemotherapies provides a novel way of improving treatment. With the growing practice of highly toxic combination therapies in the treatment of pancreatic cancer, the use of iontophoresis for local delivery can potentiate the anti-cancer effects of these therapies while sparing unwanted toxicity. The objective of this study was to investigate the impact of formulation on the electro-transport of the FOLFIRINOX regimen for the development of a new treatment for pancreatic cancer. METHODS Three formulations of the FOLFIRINOX regimen (5-fluorouracil, leucovorin, irinotecan, and oxaliplatin) were generated at a fixed pH of 6.0 and were referred to as formulation A (single drug solution with all four drugs combined), formulation B (two drug solutions with two drugs per solution), and formulation C (four individual drug solutions). Anodic iontophoresis of the three different formulations was evaluated in orthotopic patient-derived xenografts of pancreatic cancer. RESULTS Iontophoretic transport of the FOLFIRINOX drugs was characterized according to organ exposure after a single device treatment in vivo. We report that the co-iontophoresis of two drug solutions, leucovorin + oxaliplatin and 5-fluorouracil + irinotecan, resulted in the highest levels of cytotoxic drugs in the tumor compared to drugs delivered individually or combined into one solution. There was no significant difference in plasma, pancreas, kidney, and liver exposure to the cytotoxic drugs delivered by the three different formulations. In addition, we found that reducing the duration of iontophoretic treatment from 10 to 5 min per solution resulted in a significant decrease in drug concentrations. CONCLUSIONS Underlying the difference in drug transport of the formulations was electrolyte concentrations, which includes both active and inactive components. Electrolyte concentrations can hinder or improve drug electro-transport. Overall, balancing electrolyte concentration is needed for optimal electro-transport.
Collapse
Affiliation(s)
- James D Byrne
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Mohammad R N Jajja
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Adrian T O'Neill
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Allison N Schorzman
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Amanda W Keeler
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - J Christopher Luft
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - William C Zamboni
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joseph M DeSimone
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jen Jen Yeh
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Division of Surgical Oncology, Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
314
|
Fujimoto H, Saito Y, Ohuchida K, Kawakami E, Fujiki S, Watanabe T, Ono R, Kaneko A, Takagi S, Najima Y, Hijikata A, Cui L, Ueki T, Oda Y, Hori S, Ohara O, Nakamura M, Saito T, Ishikawa F. Deregulated Mucosal Immune Surveillance through Gut-Associated Regulatory T Cells and PD-1 + T Cells in Human Colorectal Cancer. THE JOURNAL OF IMMUNOLOGY 2018; 200:3291-3303. [PMID: 29581358 DOI: 10.4049/jimmunol.1701222] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 02/27/2018] [Indexed: 12/11/2022]
Abstract
Disturbed balance between immune surveillance and tolerance may lead to poor clinical outcomes in some malignancies. In paired analyses of adenocarcinoma and normal mucosa from 142 patients, we found a significant increase of the CD4/CD8 ratio and accumulation of regulatory T cells (Tregs) within the adenocarcinoma. The increased frequency of Tregs correlated with the local infiltration and extension of the tumor. There was concurrent maturation arrest, upregulation of programmed death-1 expression, and functional impairment in CD8+ T cells (CTLs) isolated from the adenocarcinoma. Adenocarcinoma-associated Tregs directly inhibit the function of normal human CTLs in vitro. With histopathological analysis, Foxp3+ Tregs were preferentially located in stroma. Concurrent transcriptome analysis of epithelial cells, stromal cells, and T cell subsets obtained from carcinomatous and normal intestinal samples from patients revealed a distinct gene expression signature in colorectal adenocarcinoma-associated Tregs, with overexpression of CCR1, CCR8, and TNFRSF9, whereas their ligands CCL4 and TNFSF9 were found upregulated in cancerous epithelium. Overexpression of WNT2 and CADM1, associated with carcinogenesis and metastasis, in cancer-associated stromal cells suggests that both cancer cells and stromal cells play important roles in the development and progression of colorectal cancer through the formation of a tumor microenvironment. The identification of CTL anergy by Tregs and the unique gene expression signature of human Tregs and stromal cells in colorectal cancer patients may facilitate the development of new therapeutics against malignancies.
Collapse
Affiliation(s)
- Hanae Fujimoto
- Department of Immune Regulation Research, Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba 260-0856, Japan.,Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Yoriko Saito
- Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Eiryo Kawakami
- RIKEN Medical Sciences Innovation Hub Program, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Saera Fujiki
- Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Takashi Watanabe
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Rintaro Ono
- Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Akiko Kaneko
- Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Shinsuke Takagi
- Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Yuho Najima
- Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Atsushi Hijikata
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Lin Cui
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Ueki
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,Department of Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Shohei Hori
- Laboratory for Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; and
| | - Osamu Ohara
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.,Department of Human Genome Research, Kazusa DNA Research Institute, Kisarazu 292-0818, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Saito
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Fumihiko Ishikawa
- Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan;
| |
Collapse
|
315
|
Hessmann E, Patzak MS, Klein L, Chen N, Kari V, Ramu I, Bapiro TE, Frese KK, Gopinathan A, Richards FM, Jodrell DI, Verbeke C, Li X, Heuchel R, Löhr JM, Johnsen SA, Gress TM, Ellenrieder V, Neesse A. Fibroblast drug scavenging increases intratumoural gemcitabine accumulation in murine pancreas cancer. Gut 2018; 67:497-507. [PMID: 28077438 PMCID: PMC5868285 DOI: 10.1136/gutjnl-2016-311954] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 11/01/2016] [Accepted: 11/23/2016] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Desmoplasia and hypovascularity are thought to impede drug delivery in pancreatic ductal adenocarcinoma (PDAC). However, stromal depletion approaches have failed to show clinical responses in patients. Here, we aimed to revisit the role of the tumour microenvironment as a physical barrier for gemcitabine delivery. DESIGN Gemcitabine metabolites were analysed in LSL-KrasG12D/+ ; LSL-Trp53R172H/+ ; Pdx-1-Cre (KPC) murine tumours and matched liver metastases, primary tumour cell lines, cancer-associated fibroblasts (CAFs) and pancreatic stellate cells (PSCs) by liquid chromatography-mass spectrometry/mass spectrometry. Functional and preclinical experiments, as well as expression analysis of stromal markers and gemcitabine metabolism pathways were performed in murine and human specimen to investigate the preclinical implications and the mechanism of gemcitabine accumulation. RESULTS Gemcitabine accumulation was significantly enhanced in fibroblast-rich tumours compared with liver metastases and normal liver. In vitro, significantly increased concentrations of activated 2',2'-difluorodeoxycytidine-5'-triphosphate (dFdCTP) and greatly reduced amounts of the inactive gemcitabine metabolite 2',2'-difluorodeoxyuridine were detected in PSCs and CAFs. Mechanistically, key metabolic enzymes involved in gemcitabine inactivation such as hydrolytic cytosolic 5'-nucleotidases (Nt5c1A, Nt5c3) were expressed at low levels in CAFs in vitro and in vivo, and recombinant expression of Nt5c1A resulted in decreased intracellular dFdCTP concentrations in vitro. Moreover, gemcitabine treatment in KPC mice reduced the number of liver metastases by >50%. CONCLUSIONS Our findings suggest that fibroblast drug scavenging may contribute to the clinical failure of gemcitabine in desmoplastic PDAC. Metabolic targeting of CAFs may thus be a promising strategy to enhance the antiproliferative effects of gemcitabine.
Collapse
Affiliation(s)
- E Hessmann
- Department Gastroenterology and Gastrointestinal Oncology, University Medical Centre Goettingen, Goettingen, Germany
| | - M S Patzak
- Department Gastroenterology and Gastrointestinal Oncology, University Medical Centre Goettingen, Goettingen, Germany
| | - L Klein
- Department Gastroenterology and Gastrointestinal Oncology, University Medical Centre Goettingen, Goettingen, Germany
| | - N Chen
- Department Gastroenterology and Gastrointestinal Oncology, University Medical Centre Goettingen, Goettingen, Germany
| | - V Kari
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - I Ramu
- Department Gastroenterology and Gastrointestinal Oncology, University Medical Centre Goettingen, Goettingen, Germany
| | - T E Bapiro
- Cancer Research UK Cambridge Institute, The University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Oncology iMED DMPK AstraZeneca UK Ltd, HODGKIN C/o B310 Cambridge Science Park, Cambridge, UK
| | - K K Frese
- The University of Manchester, Cancer Research UK Manchester Institute, Manchester, UK
| | - A Gopinathan
- Cancer Research UK Cambridge Institute, The University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - F M Richards
- Cancer Research UK Cambridge Institute, The University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - D I Jodrell
- Cancer Research UK Cambridge Institute, The University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - C Verbeke
- Department of Pathology, Karolinska University Hospital, Stockholm, Sweden
- Department of Pathology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - X Li
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet and Center for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - R Heuchel
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet and Center for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - J M Löhr
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet and Center for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - S A Johnsen
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - T M Gress
- Department of Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Marburg, Germany
| | - V Ellenrieder
- Department Gastroenterology and Gastrointestinal Oncology, University Medical Centre Goettingen, Goettingen, Germany
| | - A Neesse
- Department Gastroenterology and Gastrointestinal Oncology, University Medical Centre Goettingen, Goettingen, Germany
| |
Collapse
|
316
|
Vennin C, Murphy KJ, Morton JP, Cox TR, Pajic M, Timpson P. Reshaping the Tumor Stroma for Treatment of Pancreatic Cancer. Gastroenterology 2018; 154:820-838. [PMID: 29287624 DOI: 10.1053/j.gastro.2017.11.280] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/16/2022]
Abstract
Pancreatic cancer is accompanied by a fibrotic reaction that alters interactions between tumor cells and the stroma to promote tumor progression. Consequently, strategies to target the tumor stroma might be used to treat patients with pancreatic cancer. We review recently developed approaches for reshaping the pancreatic tumor stroma and discuss how these might improve patient outcomes. We also describe relationships between the pancreatic tumor extracellular matrix, the vasculature, the immune system, and metabolism, and discuss the implications for the development of stromal compartment-specific therapies.
Collapse
Affiliation(s)
- Claire Vennin
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia; The Kinghorn Cancer Center, Sydney, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Kendelle J Murphy
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia; The Kinghorn Cancer Center, Sydney, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Jennifer P Morton
- Cancer Research UK, The Beatson Institute for Cancer Research, Glasgow, Scotland, United Kingdom
| | - Thomas R Cox
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia; The Kinghorn Cancer Center, Sydney, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Marina Pajic
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia; The Kinghorn Cancer Center, Sydney, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.
| | - Paul Timpson
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia; The Kinghorn Cancer Center, Sydney, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
317
|
Zhang MW, Fujiwara K, Che X, Zheng S, Zheng L. DNA methylation in the tumor microenvironment. J Zhejiang Univ Sci B 2018; 18:365-372. [PMID: 28471108 DOI: 10.1631/jzus.b1600579] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The tumor microenvironment (TME) plays an important role in supporting cancer progression. The TME is composed of tumor cells, the surrounding tumor-associated stromal cells, and the extracellular matrix (ECM). Crosstalk between the TME components contributes to tumorigenesis. Recently, one of our studies showed that pancreatic ductal adenocarcinoma (PDAC) cells can induce DNA methylation in cancer-associated fibroblasts (CAFs), thereby modifying tumor-stromal interactions in the TME, and subsequently creating a TME that supports tumor growth. Here we summarize recent studies about how DNA methylation affects tumorigenesis through regulating tumor-associated stromal components including fibroblasts and immune cells. We also discuss the potential for targeting DNA methylation for the treatment of cancers.
Collapse
Affiliation(s)
- Meng-Wen Zhang
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou 310009, China.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore 21231, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore 21231, USA
| | - Kenji Fujiwara
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore 21231, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore 21231, USA
| | - Xu Che
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore 21231, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore 21231, USA
| | - Shu Zheng
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou 310009, China
| | - Lei Zheng
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore 21231, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore 21231, USA
| |
Collapse
|
318
|
Zhao X, Fan W, Xu Z, Chen H, He Y, Yang G, Yang G, Hu H, Tang S, Wang P, Zhang Z, Xu P, Yu M. Inhibiting tumor necrosis factor-alpha diminishes desmoplasia and inflammation to overcome chemoresistance in pancreatic ductal adenocarcinoma. Oncotarget 2018; 7:81110-81122. [PMID: 27835602 PMCID: PMC5348380 DOI: 10.18632/oncotarget.13212] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 11/01/2016] [Indexed: 12/14/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is one of the most common cancer death reasons. Anti-tumor necrosis factor-alpha (TNF-α) antibodies have shown promising effects in PDAC pre-clinical models. However, the prognostic values of TNF-α, underlying mechanisms by which anti-TNF-α treatments inhibit PDAC, and potential synergistic effects of anti-TNF-α treatments with chemotherapy are still unclear. Results and Methods To identify the targeting values of TNF-α in PDAC, we measured TNF-α expression in different stages of PDAC initiation and evaluated its prognostic significance in a pancreatic cancer cohort. We found that TNF-α expression elevated in PDAC initiation process, and high expression of TNF-α was an independent prognostic marker of poor survival. We further evaluated anti-tumor effects of anti-TNF-α treatments in PDAC. Anti-TNF-α treatments resulted in decreased cell viability in both PDAC tumor cells and pancreatic satellite cells in similar dose in vitro. In vivo, anti-TNF-α treatments showed effects in reducing desmoplasia and the tumor promoting inflammatory microenvironment in PDAC. Combination of anti-TNF-α treatments with chemotherapy partly overcame chemoresistance of PDAC tumor cells and prolonged the survival of PDAC mouse model. Conclusions In conclusion, our findings indicated that TNF-α in PDAC can be a prognostic and therapeutic target. Inhibition of TNF-α synergized with chemotherapy in PDAC resulted in better pre-clinical responses via killing tumor cells as well as diminishing desmoplasia and inflammation in PDAC tumor stroma.
Collapse
Affiliation(s)
- Xianda Zhao
- Department of Clinical Laboratory & Center for gene diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.,Microbiology, Immunology and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Wei Fan
- Department of Clinical Laboratory & Center for gene diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Zhigao Xu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Honglei Chen
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan, Hubei, 430071, China
| | - Yuyu He
- Department of Clinical Laboratory & Center for gene diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.,Biomedical Sciences Graduate Program, Temple University, Philadelphia, Pennsylvania, 19140, USA
| | - Gui Yang
- Department of Clinical Laboratory & Center for gene diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Gang Yang
- Department of Clinical Laboratory & Center for gene diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Hanning Hu
- Department of Clinical Laboratory & Center for gene diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Shihui Tang
- Department of Clinical Laboratory & Center for gene diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Ping Wang
- Department of Clinical Laboratory & Center for gene diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Zheng Zhang
- Department of Clinical Laboratory & Center for gene diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Peipei Xu
- Department of Clinical Laboratory & Center for gene diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Mingxia Yu
- Department of Clinical Laboratory & Center for gene diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
319
|
Prognostic value and clinicopathological features of PD-1/PD-L1 expression with mismatch repair status and desmoplastic stroma in Chinese patients with pancreatic cancer. Oncotarget 2018; 8:9354-9365. [PMID: 28030840 PMCID: PMC5354736 DOI: 10.18632/oncotarget.14069] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/16/2016] [Indexed: 12/18/2022] Open
Abstract
Pancreatic cancer (PC) is a highly lethal cancer. Thus, the immune molecular markers which help to select PC patients are especially important. In this study, we aimed at systematically analyzing the expression of MLH1, MSH2, PD-L1 and PD-1, investigate their clinical significance and prognostic value. We found that high expression of PD-L1 on cancer cell membranes correlated with lymph node metastasis (P = 0.033) and strongly correlated with poor-differentiation (P = 0.008); high expression of PD-1 on cell membranes of T-cells correlated with well-differentiation (P = 0.018) and strongly correlated with advanced T stage (P = 0.004); high PD-1 expression was associated with a significantly superior OS and was an independent prognostic factor (P = 0.031). Then we found an inverse correlation between MSH2 expression and PD-L1 expression (Spearman correlation coefficient r = -0.295, P = 0.004). In subgroup analyses, we observed that PD-1 expression level was associated with OS only at low PD-L1 expression subgroup (P = 0.021). Finally, when we stratified the cases into four subgroups based on PD-1 expression and stroma density, we found that patients with high PD-1 expression and dense stroma had a better OS, while patients with low PD-1 expression and moderate stroma showed a worst outcome. Our result may provide more effective molecular markers for immunotherapeutic strategies of PC patients in clinical practice.
Collapse
|
320
|
Fu Y, Liu S, Zeng S, Shen H. The critical roles of activated stellate cells-mediated paracrine signaling, metabolism and onco-immunology in pancreatic ductal adenocarcinoma. Mol Cancer 2018; 17:62. [PMID: 29458370 PMCID: PMC5817854 DOI: 10.1186/s12943-018-0815-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/12/2018] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignant diseases worldwide. It is refractory to conventional treatments, and consequently has a documented 5-year survival rate as low as 7%. Increasing evidence indicates that activated pancreatic stellate cells (PSCs), one of the stromal components in tumor microenvironment (TME), play a crucial part in the desmoplasia, carcinogenesis, aggressiveness, metastasis associated with PDAC. Despite the current understanding of PSCs as a "partner in crime" to PDAC, detailed regulatory roles of PSCs and related microenvironment remain obscure. In addition to multiple paracrine signaling pathways, recent research has confirmed that PSCs-mediated tumor microenvironment may influence behaviors of PDAC via diverse mechanisms, such as rewiring metabolic networks, suppressing immune responses. These new activities are closely linked with treatment and prognosis of PDAC. In this review, we discuss the recent advances regarding new functions of activated PSCs, including PSCs-cancer cells interaction, mechanisms involved in immunosuppressive regulation, and metabolic reprogramming. It's clear that these updated experimental or clinical studies of PSCs may provide a promising approach for PDAC treatment in the near future.
Collapse
Affiliation(s)
- Yaojie Fu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shanshan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
321
|
Abstract
The tumor microenvironment (TME) is defined as the structural and dynamic network of cellular and non-cellular interactions between malignant cells and the surrounding non-malignant matrix. Hepatocellular carcinoma (HCC) and pancreatic ductal adenocarcinoma (PDAC) are two of the most challenging gastrointestinal malignancies. Despite clinical advancements in understanding tumor biology and growth of the chemotherapeutic industry, there have been no corresponding improvements in prognosis and overall survival of HCC and PDAC. Both of these cancers have a very intimate relationship with their surrounding environment; the TME is thought to actively participate in initiating and sustaining these malignancies. Individual TME constituents play a vital role in chemoresistance and recurrence after surgery and have been established as independent prognostic factors. This review article will highlight the diverse structural components, key signaling pathways, and extracellular matrices of HCC and PDAC and discuss their crosstalk with tumor cells to promote growth and metastasis. The article will also summarize the latest laboratory and clinical research based on therapeutic targets identified within the TME of both HCC and PDAC.
Collapse
Affiliation(s)
- Fathima Kamil
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Julie H Rowe
- Division of Oncology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
322
|
Han S, Gonzalo DH, Feely M, Rinaldi C, Belsare S, Zhai H, Kalra K, Gerber MH, Forsmark CE, Hughes SJ. Stroma-derived extracellular vesicles deliver tumor-suppressive miRNAs to pancreatic cancer cells. Oncotarget 2018; 9:5764-5777. [PMID: 29464032 PMCID: PMC5814172 DOI: 10.18632/oncotarget.23532] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/28/2017] [Indexed: 01/18/2023] Open
Abstract
The biology of tumor-associated stroma (TAS) in pancreatic ductal adenocarcinoma (PDAC) is not well understood. The paradoxical observation that stroma-depletion strategies lead to progression of PDAC reinforced the need to critically evaluate the functional contribution of TAS in the initiation and progression of PDAC. PDAC and TAS cells are unique in their expression of specific miRNAs, and this specific miRNA expression pattern alters host to tumor microenvironment interactions. Using primary human pancreatic TAS cells and primary xenograft PDAC cells co-culture, we provide evidence of miRNA trafficking and exchanging between TAS and PDAC cells, in a two-way, cell-contact independent fashion, via extracellular vesicles (EVs) transportation. Selective packaging of miRNAs into EVs led to enrichment of stromal specific miR-145 in EVs secreted by TAS cells. Exosomes, but not microvesicles, derived from human TAS cells demonstrated a tumor suppressive role by inducing PDAC cell apoptosis. This effect was mitigated by anti-miR-145 sequences. Our data suggest that TAS-derived miRNAs are delivered to adjacent PDAC cells via exosomes and suppress tumor cell growth. These data highlight that TAS cells secrete exosomes carrying tumor suppressive genetic materials, a possible anti-tumor capacity. Future work of the development of patient-derived exosomes could have therapeutic implications for unresectable PDAC.
Collapse
Affiliation(s)
- Song Han
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - David H. Gonzalo
- Department of Pathology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Michael Feely
- Department of Pathology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Carlos Rinaldi
- Department of Biomedical Engineering, University of Florida College of Medicine, Gainesville, FL, USA
| | - Sayali Belsare
- Department of Biomedical Engineering, University of Florida College of Medicine, Gainesville, FL, USA
| | | | | | - Michael H. Gerber
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Christopher E. Forsmark
- Division of Gastroenterology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Steven J. Hughes
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
323
|
Song H, Zhang Y. Regulation of pancreatic stellate cell activation by Notch3. BMC Cancer 2018; 18:36. [PMID: 29304760 PMCID: PMC5756326 DOI: 10.1186/s12885-017-3957-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 12/21/2017] [Indexed: 01/18/2023] Open
Abstract
Background Activated pancreatic stellate cells (PaSCs) are the key cellular source of cancer-associated fibroblasts in the pancreatic stroma of patients with pancreatic ductal adenocarcinoma (PDAC), however, the activation mechanism of PaSCs is not yet known. The Notch signaling pathway, components of which are expressed in stromal cells, is involved in the fibrosis of several organs, including the lung and liver. In the current study, we investigated whether Notch signal transduction is involved in PaSC activation in PDAC. Methods The expression of Notch signaling pathway components in human PDAC was examined via immunohistochemical staining and assessed in mouse PaSCs using RT-qPCR and western blotting. Notch3 expression in both PDAC stromal cells and activated mouse PaSCs was evaluated using immunofluorescence, RT-qPCR and western blotting. The impact of siRNA-mediated Notch3 knockdown on PaSC activation was detected with RT-qPCR and western blotting, and the impact on PaSC proliferation and migration was detected using CCK-8 assays and scratch experiments. The effect of conditioned medium from PaSCs activated with Notch3 siRNA on pancreatic cancer (LTPA) cells was also detected with CCK-8 assays and scratch experiments. The data were analyzed for statistical significance using Student’s t-test. Results Notch3 was overexpressed in both human PDAC stromal cells and activated mouse PaSCs, and Notch3 knockdown with Notch3 siRNA decreased the proliferation and migration of mouse PaSCs. The levels of markers related to PaSC activation, such as α-smooth muscle actin (α-SMA), collagen I and fibronectin, decreased in response to Notch3 knockdown, indicating that Notch3 plays an important role in PaSC activation. Furthermore, we confirmed that inhibition of PaSC activation via Notch3 siRNA reduced the proliferation and migration of PaSC-induced mouse pancreatic cancer (LTPA) cells. Conclusions Notch3 inhibition in PaSCs can inhibit the activation, proliferation and migration of PaSCs and reduce the PaSC-induced pro-tumorigenic effect. Therefore, Notch3 silencing in PaSCs is a potential novel therapeutic option for patients with PDAC. Electronic supplementary material The online version of this article (10.1186/s12885-017-3957-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haiyan Song
- Department of Biochemistry and Molecular Biology, Cancer Institute, Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, No. 10 Xitoutiao, You An Men, Fengtai District, Beijing, 100069, People's Republic of China
| | - Yuxiang Zhang
- Department of Biochemistry and Molecular Biology, Cancer Institute, Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, No. 10 Xitoutiao, You An Men, Fengtai District, Beijing, 100069, People's Republic of China.
| |
Collapse
|
324
|
Hu D, Ansari D, Pawłowski K, Zhou Q, Sasor A, Welinder C, Kristl T, Bauden M, Rezeli M, Jiang Y, Marko-Varga G, Andersson R. Proteomic analyses identify prognostic biomarkers for pancreatic ductal adenocarcinoma. Oncotarget 2018. [PMID: 29515771 PMCID: PMC5839402 DOI: 10.18632/oncotarget.23929] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy. Here we show that shotgun and targeted protein sequencing can be used to identify potential prognostic biomarkers in formalin-fixed paraffin-embedded specimens from 9 patients with PDAC with “short” survival (<12 months) and 10 patients with “long” survival (>45 months) undergoing surgical resection. A total of 24 and 147 proteins were significantly upregulated [fold change ≥2 or ≤0.5 and P<0.05; or different detection frequencies (≥5 samples)] in patients with “short” survival (including GLUT1) and “long” survival (including C9orf64, FAM96A, CDH1 and CDH17), respectively. STRING analysis of these proteins indicated a tight protein-protein interaction network centered on TP53. Ingenuity pathway analysis linked proteins representing “activated stroma factors” and “basal tumor factors” to poor prognosis of PDAC. It also highlighted TCF1 and CTNNB1 as possible upstream regulators. Further parallel reaction monitoring verified that seven proteins were upregulated in patients with “short” survival (MMP9, CLIC3, MMP8, PRTN3, P4HA2, THBS1 and FN1), while 18 proteins were upregulated in patients with “long” survival, including EPCAM, LGALS4, VIL1, CLCA1 and TPPP3. Thus, we verified 25 protein biomarker candidates for PDAC prognosis at the tissue level. Furthermore, an activated stroma status and protein-protein interactions with TP53 might be linked to poor prognosis of PDAC.
Collapse
Affiliation(s)
- Dingyuan Hu
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund (Surgery), Lund, Sweden.,Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Daniel Ansari
- Lund University, Skane University Hospital, Department of Clinical Sciences Lund (Surgery), Lund, Sweden
| | - Krzysztof Pawłowski
- Department of Experimental Design and Bioinformatics, Warsaw University of Life Sciences, Warsaw, Poland.,Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Qimin Zhou
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund (Surgery), Lund, Sweden
| | - Agata Sasor
- Department of Pathology, Skåne University Hospital, Lund, Sweden
| | - Charlotte Welinder
- Lund University, Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund, Sweden
| | - Theresa Kristl
- Lund University, Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund, Sweden
| | - Monika Bauden
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund (Surgery), Lund, Sweden
| | - Melinda Rezeli
- Department of Biomedical Engineering, Clinical Protein Science and Imaging, Lund University, Lund, Sweden
| | - Yi Jiang
- Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - György Marko-Varga
- Department of Biomedical Engineering, Clinical Protein Science and Imaging, Lund University, Lund, Sweden
| | - Roland Andersson
- Lund University, Skane University Hospital, Department of Clinical Sciences Lund (Surgery), Lund, Sweden
| |
Collapse
|
325
|
Abstract
Intratumoral fibrosis results from the deposition of a cross-linked collagen matrix by cancer-associated fibroblasts (CAFs). This type of fibrosis has been shown to exert mechanical forces and create a biochemical milieu that, together, shape intratumoral immunity and influence tumor cell metastatic behavior. In this Review, we present recent evidence that CAFs and tumor cells are regulated by provisional matrix molecules, that metastasis results from a change in the type of stromal collagen cross-link, and that fibrosis and inflammation perpetuate each other through proteolytic and chemotactic mediators released into the tumor stroma. We also discuss aspects of the emerging biology that have potential therapeutic value.
Collapse
Affiliation(s)
- Mitsuo Yamauchi
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, School of Engineering and Applied Sciences and School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology and.,Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
326
|
Fiorino S, Bacchi-Reggiani ML, Birtolo C, Acquaviva G, Visani M, Fornelli A, Masetti M, Tura A, Sbrignadello S, Grizzi F, Patrinicola F, Zanello M, Mastrangelo L, Lombardi R, Benini C, Di Tommaso L, Bondi A, Monetti F, Siopis E, Orlandi PE, Imbriani M, Fabbri C, Giovanelli S, Domanico A, Accogli E, Di Saverio S, Grifoni D, Cennamo V, Leandri P, Jovine E, de Biase D. Matricellular proteins and survival in patients with pancreatic cancer: A systematic review. Pancreatology 2018; 18:122-132. [PMID: 29137857 DOI: 10.1016/j.pan.2017.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 10/29/2017] [Accepted: 11/01/2017] [Indexed: 02/05/2023]
Abstract
Extracellular matrix (ECM) plays a fundamental role in tissue architecture and homeostasis and modulates cell functions through a complex interaction between cell surface receptors, hormones, several bioeffector molecules, and structural proteins like collagen. These components are secreted into ECM and all together contribute to regulate several cellular activities including differentiation, apoptosis, proliferation, and migration. The so-called "matricellular" proteins (MPs) have recently emerged as important regulators of ECM functions. The aim of our review is to consider all different types of MPs family assessing the potential relationship between MPs and survival in patients with pancreatic ductal adenocarcinoma (PDAC). A systematic computer-based search of published articles, according to the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) Statement issued in 2009 was conducted through Ovid interface, and literature review was performed in May 2017. The search text words were identified by means of controlled vocabulary, such as the National Library of Medicine's MESH (Medical Subject Headings) and Keywords. Collected data showed an important role of MPs in carcinogenesis and in PDAC prognosis even though the underlying mechanisms are still largely unknown and data are not univocal. Therefore, a better understanding of MPs role in regulation of ECM homeostasis and remodeling of specific organ niches may suggest potential novel extracellular targets for the development of efficacious therapeutic strategies.
Collapse
Affiliation(s)
- Sirio Fiorino
- Internal Medicine Unit C, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy.
| | - Maria Letizia Bacchi-Reggiani
- Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), Cardiology Unit, Policlinico S. Orsola-Malpighi, University of Bologna, via Massarenti 9, Bologna, Italy
| | - Chiara Birtolo
- Internal Medicine Unit A, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Giorgia Acquaviva
- Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), University of Bologna, Azienda USL di Bologna, Largo Nigrisoli 3, Bologna, Italy
| | - Michela Visani
- Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), University of Bologna, Azienda USL di Bologna, Largo Nigrisoli 3, Bologna, Italy
| | - Adele Fornelli
- Anatomic Pathology Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Michele Masetti
- Surgery Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Andrea Tura
- CNR Institute of Neuroscience, Via Giuseppe Moruzzi 1, Padova, Italy
| | | | - Fabio Grizzi
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, Milano, Italy
| | - Federica Patrinicola
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, Milano, Italy
| | - Matteo Zanello
- Surgery Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Laura Mastrangelo
- Surgery Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Raffaele Lombardi
- Surgery Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Claudia Benini
- Surgery Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Luca Di Tommaso
- Department of Pathology, Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, Milano, Italy
| | - Arrigo Bondi
- Anatomic Pathology Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Francesco Monetti
- Radiology Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Elena Siopis
- Radiology Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Paolo Emilio Orlandi
- Radiology Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Michele Imbriani
- Radiology Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Carlo Fabbri
- Unit of Gastroenterology and Digestive Endoscopy, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Silvia Giovanelli
- Unit of Gastroenterology and Digestive Endoscopy, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Andrea Domanico
- Internal Medicine Unit A, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Esterita Accogli
- Internal Medicine Unit A, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Salomone Di Saverio
- Surgical Emergency Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Daniela Grifoni
- Department of Pharmacy and Biotechnology, University of Bologna, via San Donato 15, Bologna, Italy
| | - Vincenzo Cennamo
- Unit of Gastroenterology and Digestive Endoscopy, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Paolo Leandri
- Surgical Emergency Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Elio Jovine
- Surgery Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology, University of Bologna, via San Donato 15, Bologna, Italy.
| |
Collapse
|
327
|
Bressy C, Lac S, Nigri J, Leca J, Roques J, Lavaut MN, Secq V, Guillaumond F, Bui TT, Pietrasz D, Granjeaud S, Bachet JB, Ouaissi M, Iovanna J, Vasseur S, Tomasini R. LIF Drives Neural Remodeling in Pancreatic Cancer and Offers a New Candidate Biomarker. Cancer Res 2017; 78:909-921. [PMID: 29269518 DOI: 10.1158/0008-5472.can-15-2790] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 08/28/2017] [Accepted: 12/18/2017] [Indexed: 01/11/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by extensive stroma and pathogenic modifications to the peripheral nervous system that elevate metastatic capacity. In this study, we show that the IL6-related stem cell-promoting factor LIF supports PDAC-associated neural remodeling (PANR). LIF was overexpressed in tumor tissue compared with healthy pancreas, but its receptors LIFR and gp130 were expressed only in intratumoral nerves. Cancer cells and stromal cells in PDAC tissues both expressed LIF, but only stromal cells could secrete it. Biological investigations showed that LIF promoted the differentiation of glial nerve sheath Schwann cells and induced their migration by activating JAK/STAT3/AKT signaling. LIF also induced neuronal plasticity in dorsal root ganglia neurons by increasing the number of neurites and the soma area. Notably, injection of LIF-blocking antibody into PDAC-bearing mice reduced intratumoral nerve density, supporting a critical role for LIF function in PANR. In serum from human PDAC patients and mouse models of PDAC, we found that LIF titers positively correlated with intratumoral nerve density. Taken together, our findings suggest LIF as a candidate serum biomarker and diagnostic tool and a possible therapeutic target for limiting the impact of PANR in PDAC pathophysiology and metastatic progression.Significance: This study suggests a target to limit neural remodeling in pancreatic cancer, which contributes to poorer quality of life and heightened metastatic progression in patients. Cancer Res; 78(4); 909-21. ©2017 AACR.
Collapse
Affiliation(s)
- Christian Bressy
- CRCM, INSERM, U1068; Paoli-Calmettes Institute; Aix-Marseille University, UM 105; CNRS, UMR7258, Marseille, France
| | - Sophie Lac
- CRCM, INSERM, U1068; Paoli-Calmettes Institute; Aix-Marseille University, UM 105; CNRS, UMR7258, Marseille, France
| | - Jérémy Nigri
- CRCM, INSERM, U1068; Paoli-Calmettes Institute; Aix-Marseille University, UM 105; CNRS, UMR7258, Marseille, France
| | - Julie Leca
- CRCM, INSERM, U1068; Paoli-Calmettes Institute; Aix-Marseille University, UM 105; CNRS, UMR7258, Marseille, France
| | - Julie Roques
- CRCM, INSERM, U1068; Paoli-Calmettes Institute; Aix-Marseille University, UM 105; CNRS, UMR7258, Marseille, France
| | - Marie-Nöelle Lavaut
- CRCM, INSERM, U1068; Paoli-Calmettes Institute; Aix-Marseille University, UM 105; CNRS, UMR7258, Marseille, France.,Department of Pathology, Hospital North and Mediterranean University, Marseille, France
| | - Véronique Secq
- CRCM, INSERM, U1068; Paoli-Calmettes Institute; Aix-Marseille University, UM 105; CNRS, UMR7258, Marseille, France.,Department of Pathology, Hospital North and Mediterranean University, Marseille, France
| | - Fabienne Guillaumond
- CRCM, INSERM, U1068; Paoli-Calmettes Institute; Aix-Marseille University, UM 105; CNRS, UMR7258, Marseille, France
| | - Thi-Thien Bui
- CRCM, INSERM, U1068; Paoli-Calmettes Institute; Aix-Marseille University, UM 105; CNRS, UMR7258, Marseille, France
| | - Daniel Pietrasz
- INSERM UMRS 775, University PARIS DESCARTES, Paris, France.,Department of Hepatobiliary and Digestive Surgery, Groupe Hospitalier Pitié Salpêtrière, Paris, France
| | - Samuel Granjeaud
- CRCM, INSERM, U1068; Paoli-Calmettes Institute; Aix-Marseille University, UM 105; CNRS, UMR7258, Marseille, France
| | - Jean-Baptiste Bachet
- INSERM UMRS 775, University PARIS DESCARTES, Paris, France.,Department of Hepatobiliary and Digestive Surgery, Groupe Hospitalier Pitié Salpêtrière, Paris, France.,Department of Hepatogastroentérology, Groupe Hospitalier Pitié Salpêtrière, Paris, France
| | - Mehdi Ouaissi
- Aix-Marseille University, INSERM, CRO2, UMR 911, Marseille, France
| | - Juan Iovanna
- CRCM, INSERM, U1068; Paoli-Calmettes Institute; Aix-Marseille University, UM 105; CNRS, UMR7258, Marseille, France
| | - Sophie Vasseur
- CRCM, INSERM, U1068; Paoli-Calmettes Institute; Aix-Marseille University, UM 105; CNRS, UMR7258, Marseille, France
| | - Richard Tomasini
- CRCM, INSERM, U1068; Paoli-Calmettes Institute; Aix-Marseille University, UM 105; CNRS, UMR7258, Marseille, France.
| |
Collapse
|
328
|
Dauer P, Zhao X, Gupta VK, Sharma N, Kesh K, Gnamlin P, Dudeja V, Vickers SM, Banerjee S, Saluja A. Inactivation of Cancer-Associated-Fibroblasts Disrupts Oncogenic Signaling in Pancreatic Cancer Cells and Promotes Its Regression. Cancer Res 2017; 78:1321-1333. [PMID: 29259015 DOI: 10.1158/0008-5472.can-17-2320] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 09/29/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022]
Abstract
Resident fibroblasts that contact tumor epithelial cells (TEC) can become irreversibly activated as cancer-associated-fibroblasts (CAF) that stimulate oncogenic signaling in TEC. In this study, we evaluated the cross-talk between CAF and TEC isolated from tumors generated in a mouse model of KRAS/mut p53-induced pancreatic cancer (KPC mice). Transcriptomic profiling conducted after treatment with the anticancer compound Minnelide revealed deregulation of the TGFβ signaling pathway in CAF, resulting in an apparent reversal of their activated state to a quiescent, nonproliferative state. TEC exposed to media conditioned by drug-treated CAFs exhibited a decrease in oncogenic signaling, as manifested by downregulation of the transcription factor Sp1. This inhibition was rescued by treating TEC with TGFβ. Given promising early clinical studies with Minnelide, our findings suggest that approaches to inactivate CAF and prevent tumor-stroma cross-talk may offer a viable strategy to treat pancreatic cancer.Significance: In an established mouse model of pancreatic cancer, administration of the promising experimental drug Minnelide was found to actively deplete reactive stromal fibroblasts and to trigger tumor regression, with implications for stromal-based strategies to attack this disease. Cancer Res; 78(5); 1321-33. ©2018 AACR.
Collapse
Affiliation(s)
- Patricia Dauer
- Department of Surgery, University of Miami, Miami, Florida.,Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Xianda Zhao
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Vineet K Gupta
- Department of Surgery, University of Miami, Miami, Florida
| | - Nikita Sharma
- Department of Surgery, University of Miami, Miami, Florida
| | - Kousik Kesh
- Department of Surgery, University of Miami, Miami, Florida
| | - Prisca Gnamlin
- Department of Surgery, University of Miami, Miami, Florida
| | - Vikas Dudeja
- Department of Surgery, University of Miami, Miami, Florida
| | - Selwyn M Vickers
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota.,Department of Surgery, University of Alabama, Tuscaloosa, Alabama
| | | | - Ashok Saluja
- Department of Surgery, University of Miami, Miami, Florida.
| |
Collapse
|
329
|
Zong L, Chen K, Jiang Z, Chen X, Sun L, Ma J, Zhou C, Xu Q, Duan W, Han L, Lei J, Li X, Ma Q, Wang Z. Lipoxin A4 reverses mesenchymal phenotypes to attenuate invasion and metastasis via the inhibition of autocrine TGF-β1 signaling in pancreatic cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:181. [PMID: 29228980 PMCID: PMC5725800 DOI: 10.1186/s13046-017-0655-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022]
Abstract
Background Pancreatic cancer is a lethal disease in part because of its potential for aggressive invasion and metastasis. Lipoxin A4 (LXA4) is one of the metabolites that is derived from arachidonic acid and that is catalyzed by 15-lipoxygenase (15-LOX), and it has recently been reported to exhibit anti-cancer effects. However, the role of LXA4 in pancreatic cancer remains to be elucidated. Methods Pancreatic cell lines were treated with vehicle or LXA4, and the invasive capacity was then assessed by Transwell assays. The expression of epithelial and mesenchymal markers was determined by western blotting and immunofluorescence. Anti-TGF-β1 neutralizing antibody and exogenous recombinant human TGF-β1 (rhTGF-β1) were used to study the effect of LXA4 on the TGF-β signaling. A liver metastasis model was applied to investigate the effect of LXA4 in vivo. The correlation between the Lipoxin effect score (LES) and the clinical-pathological features of pancreatic cancer was also analyzed. Results We found that in patients with pancreatic cancer, low LES was correlated with aggressive metastatic potential. The LXA4 activity, which was mediated by the LXA4 receptor FPRL1, could significantly suppress invasion capacity and mesenchymal phenotypes. The expression and autocrine signaling pathway activity of TGF-β1 were also downregulated by LXA4. In the liver metastasis model in nude mice, the stable analog of LXA4, BML-111, could inhibit the metastasis of pancreatic cancer cells. Conclusion Our results demonstrated that LXA4 could reverse mesenchymal phenotypes, which attenuated invasion and metastasis via the inhibition of autocrine TGF-β1 signaling in pancreatic cancer, which may provide a new strategy to prevent the metastasis of pancreatic cancer.
Collapse
Affiliation(s)
- Liang Zong
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China.,Department of Emergency, Peking Union Medical College Hospital, 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Ke Chen
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Zhengdong Jiang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Xin Chen
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Liankang Sun
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Jiguang Ma
- Department of Anesthesiology, First Affiliated Hospital, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Cancan Zhou
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Qinhong Xu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Wanxing Duan
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Liang Han
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Jianjun Lei
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Xuqi Li
- Department of General Surgery, First Affiliated Hospital, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China.
| | - Zheng Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China.
| |
Collapse
|
330
|
Gress TM, Lausser L, Schirra LR, Ortmüller L, Diels R, Kong B, Michalski CW, Hackert T, Strobel O, Giese NA, Schenk M, Lawlor RT, Scarpa A, Kestler HA, Buchholz M. Combined microRNA and mRNA microfluidic TaqMan array cards for the diagnosis of malignancy of multiple types of pancreatico-biliary tumors in fine-needle aspiration material. Oncotarget 2017; 8:108223-108237. [PMID: 29296236 PMCID: PMC5746138 DOI: 10.18632/oncotarget.22601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/30/2017] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) continues to carry the lowest survival rates among all solid tumors. A marked resistance against available therapies, late clinical presentation and insufficient means for early diagnosis contribute to the dismal prognosis. Novel biomarkers are thus required to aid treatment decisions and improve patient outcomes. We describe here a multi-omics molecular platform that allows for the first time to simultaneously analyze miRNA and mRNA expression patterns from minimal amounts of biopsy material on a single microfluidic TaqMan Array card. Expression profiles were generated from 113 prospectively collected fine needle aspiration biopsies (FNAB) from patients undergoing surgery for suspect masses in the pancreas. Molecular classifiers were constructed using support vector machines, and rigorously evaluated for diagnostic performance using 10×10fold cross validation. The final combined miRNA/mRNA classifier demonstrated a sensitivity of 91.7%, a specificity of 94.5%, and an overall diagnostic accuracy of 93.0% for the differentiation between PDAC and benign pancreatic masses, clearly outperfoming miRNA-only classifiers. The classification algorithm also performed very well in the diagnosis of other types of solid tumors (acinar cell carcinomas, ampullary cancer and distal bile duct carcinomas), but was less suited for the diagnostic analysis of cystic lesions. We thus demonstrate that simultaneous analysis of miRNA and mRNA biomarkers from FNAB samples using multi-omics TaqMan Array cards is suitable to differentiate suspect solid pancreatic masses with high precision.
Collapse
Affiliation(s)
- Thomas M Gress
- Clinic for Gastroenterology, Endocrinology and Metabolism, University Hospital, Philipps-Universität Marburg, Marburg, Germany
| | - Ludwig Lausser
- Institute of Medical Systems Biology, University of Ulm, Ulm, Germany
| | | | - Lisa Ortmüller
- Clinic for Gastroenterology, Endocrinology and Metabolism, University Hospital, Philipps-Universität Marburg, Marburg, Germany
| | - Ramona Diels
- Clinic for Gastroenterology, Endocrinology and Metabolism, University Hospital, Philipps-Universität Marburg, Marburg, Germany
| | - Bo Kong
- Department of Surgery, Technical University of Munich, Munich, Germany
| | - Christoph W Michalski
- Department of Surgery, Technical University of Munich, Munich, Germany.,Department of Surgery, University of Heidelberg, Heidelberg, Germany
| | - Thilo Hackert
- Department of Surgery, University of Heidelberg, Heidelberg, Germany
| | - Oliver Strobel
- Department of Surgery, University of Heidelberg, Heidelberg, Germany
| | - Nathalia A Giese
- Department of Surgery, University of Heidelberg, Heidelberg, Germany
| | - Miriam Schenk
- Department of Surgery, University of Heidelberg, Heidelberg, Germany
| | - Rita T Lawlor
- ARC-Net Centre for Applied Research on Cancer and Department of Pathology, University of Verona, Verona, Italy
| | - Aldo Scarpa
- ARC-Net Centre for Applied Research on Cancer and Department of Pathology, University of Verona, Verona, Italy
| | - Hans A Kestler
- Institute of Medical Systems Biology, University of Ulm, Ulm, Germany
| | - Malte Buchholz
- Clinic for Gastroenterology, Endocrinology and Metabolism, University Hospital, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
331
|
Wegner CS, Hauge A, Gaustad JV, Andersen LMK, Simonsen TG, Galappathi K, Rofstad EK. Dynamic contrast-enhanced MRI of the microenvironment of pancreatic adenocarcinoma xenografts. Acta Oncol 2017; 56:1754-1762. [PMID: 28661213 DOI: 10.1080/0284186x.2017.1343494] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with poor outcome. Resistance to treatment is associated with impaired vascularity, extensive hypoxia, and interstitial hypertension. In this study, the potential of dynamic contrast-enhanced (DCE)-MRI as a method for assessing the microvascular density (MVD), the fraction of hypoxic tissue, and the interstitial fluid pressure (IFP) of PDACs was investigated. MATERIAL AND METHODS Intramuscular BxPC-3, Capan-2, MIAPaCa-2, and Panc-1 PDAC xenografts were used as preclinical models of human PDACs. DCE-MRI with Gd-DOTA as contrast agent was conducted with a 7.05-T scanner, and the DCE-MRI series were analyzed voxelwise by using the Tofts pharmacokinetic model. Tumor MVD and hypoxia were measured in histological preparations by using pimonidazole as a hypoxia marker and CD31 as a marker of endothelial cells. IFP was measured with a Millar catheter. RESULTS Ktrans (the volume transfer constant of Gd-DOTA) increased with increasing MVD and decreased with increasing hypoxic fraction, but was not associated with IFP. Any association between ve (the fractional distribution volume of Gd-DOTA) and MVD, hypoxic fraction, or IFP could not be detected. CONCLUSIONS This study shows that DCE-MRI is a useful modality for assessing important features of the microenvironment of PDAC xenografts and thus provides the basis for future preclinical and clinical DCE-MRI investigations of PDAC.
Collapse
Affiliation(s)
- Catherine S. Wegner
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Anette Hauge
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Jon-Vidar Gaustad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Lise Mari K. Andersen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Trude G. Simonsen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kanthi Galappathi
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Einar K. Rofstad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
332
|
Kuninty PR, Bojmar L, Tjomsland V, Larsson M, Storm G, Östman A, Sandström P, Prakash J. MicroRNA-199a and -214 as potential therapeutic targets in pancreatic stellate cells in pancreatic tumor. Oncotarget 2017; 7:16396-408. [PMID: 26918939 PMCID: PMC4941323 DOI: 10.18632/oncotarget.7651] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/29/2016] [Indexed: 12/21/2022] Open
Abstract
Pancreatic stellate cells (PSCs) are the key precursor cells for cancer-associated fibroblasts (CAFs) in pancreatic tumor stroma. In this study, we explored miRNA as therapeutic targets in tumor stroma and found miR-199a-3p and miR-214-3p induced in patient-derived pancreatic CAFs and TGF-β-activated human PSCs (hPSCs). Inhibition of miR-199a/-214 using hairpin inhibitors significantly inhibited TGFβ-induced differentiation markers (e.g. α-SMA, collagen, PDGFβR), migration and proliferation. Furthermore, heterospheroids of Panc-1 and hPSCs attained smaller size with hPSCs transfected with anti-miR-199a/-214 compared to control anti-miR. The conditioned medium obtained from TGFβ-activated hPSCs induced tumor cell growth and endothelial cell tube formation. Interestingly, these inductions were abrogated in hPSCs transfected with anti-miR-199a or miR-214. Moreover, IPA analyses revealed signaling pathways related to miR-199a (TP53, mTOR, Smad1) and miR-214 (PTEN, Bax, ING4). Taken together, this study reveals miR-199a-3p and miR-214-3p as major regulators of PSC activation and PSC-induced pro-tumoral effects, representing them as key therapeutic targets in pancreatic cancer.
Collapse
Affiliation(s)
- Praneeth R Kuninty
- Department of Biomaterials, Science and Technology, Section: Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Twente, Netherlands
| | - Linda Bojmar
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Pediatric Hematology/Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Vegard Tjomsland
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Hepato-pancreato-biliary Surgery, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Marie Larsson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Gert Storm
- Department of Biomaterials, Science and Technology, Section: Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Twente, Netherlands.,Department of Pharmaceutics, Utrecht University, Utrecht, Netherlands
| | - Arne Östman
- Department of Oncology-Pathology, Cancer Centre Karolinska, Karolinska Institutet, Karolinska, Sweden
| | - Per Sandström
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jai Prakash
- Department of Biomaterials, Science and Technology, Section: Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Twente, Netherlands.,Department of Oncology-Pathology, Cancer Centre Karolinska, Karolinska Institutet, Karolinska, Sweden
| |
Collapse
|
333
|
Ueno H, Sekine S, Oshiro T, Kanemitsu Y, Hamaguchi T, Shida D, Takashima A, Ishiguro M, Ito E, Hashiguchi Y, Kondo F, Shimazaki H, Mochizuki S, Kajiwara Y, Shinto E, Yamamoto J, Shimada Y. Disentangling the prognostic heterogeneity of stage III colorectal cancer through histologic stromal categorization. Surgery 2017; 163:777-783. [PMID: 29162344 DOI: 10.1016/j.surg.2017.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/23/2017] [Accepted: 09/24/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Growing evidence suggests the importance of stroma in determining cancer biology and recent studies have identified that genes closely associated with poor prognosis subtypes of colorectal cancer are expressed by the stroma rather than epithelial cancer cells. We aimed to clarify the prognostic value of the novel histologic classification of desmoplastic reaction in stage III colorectal cancer. METHODS A pathologic review was conducted for 466 stage III colorectal cancer patients in a single Japanese institution (1999-2006). Desmoplastic reaction was classified as mature, intermediate, or immature according to existence of hyalinized collagen bundles and myxoid stroma, both appear exclusively at the desmoplastic front. An additional 432 patients treated at four independent institutions (2007-2008) were examined as a second cohort to validate the results. RESULTS According to desmoplastic reaction, 164, 133, and 169 patients were classified as mature, intermediate, and immature, respectively. Five-year relapse-free survival rates were highest in the mature group (86.0%), followed by the intermediate (73.7%) and immature (50.9%) groups. An adverse prognostic impact of desmoplastic reaction was invariably observed in stage IIIB, which contained 71% of stage III cases. Harrell's concordance index for relapse-free survival was greater in desmoplastic reaction (0.66) than any conventional tumor-associated prognostic factors including tumor node metastasis substage (0.62) and tumor grade (0.53). Similar results were observed in the second cohort, wherein desmoplastic reaction categorization was the most influential prognostic factor. CONCLUSION Histologic desmoplastic reaction categorization could be a key to solve the issue of prognostic heterogeneity in stage III colorectal cancer, thereby enhancing the value of tumor node metastasis stage.
Collapse
Affiliation(s)
- Hideki Ueno
- Department of Surgery, National Defense Medical College, Saitama.
| | - Shigeki Sekine
- Molecular Pathology Division, National Cancer Center Research Institute, Tokyo
| | - Taihei Oshiro
- Colorectal Surgery Division, National Cancer Center Central Hospital, Tokyo
| | - Yukihide Kanemitsu
- Colorectal Surgery Division, National Cancer Center Central Hospital, Tokyo
| | - Tetsuya Hamaguchi
- Gastrointestinal Medical Oncology Division, National Cancer Center Central Hospital, Tokyo
| | - Dai Shida
- Colorectal Surgery Division, National Cancer Center Central Hospital, Tokyo
| | - Atsuo Takashima
- Gastrointestinal Medical Oncology Division, National Cancer Center Central Hospital, Tokyo
| | - Megumi Ishiguro
- Department of Translational Oncology, Tokyo Medical and Dental University, Tokyo
| | - Eisaku Ito
- Department of Pathology, Tokyo Medical and Dental University, Tokyo
| | | | - Fukuo Kondo
- Department of Pathology, Teikyo University Hospital, Tokyo
| | - Hideyuki Shimazaki
- Department of Laboratory Medicine, National Defense Medical College, Saitama
| | | | - Yoshiki Kajiwara
- Department of Surgery, National Defense Medical College, Saitama
| | - Eiji Shinto
- Department of Surgery, National Defense Medical College, Saitama
| | - Junji Yamamoto
- Department of Surgery, National Defense Medical College, Saitama
| | - Yasuhiro Shimada
- Gastrointestinal Medical Oncology Division, National Cancer Center Central Hospital, Tokyo
| |
Collapse
|
334
|
D'Costa Z, Jones K, Azad A, van Stiphout R, Lim SY, Gomes AL, Kinchesh P, Smart SC, Gillies McKenna W, Buffa FM, Sansom OJ, Muschel RJ, O'Neill E, Fokas E. Gemcitabine-Induced TIMP1 Attenuates Therapy Response and Promotes Tumor Growth and Liver Metastasis in Pancreatic Cancer. Cancer Res 2017; 77:5952-5962. [PMID: 28765154 DOI: 10.1158/0008-5472.can-16-2833] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/01/2017] [Accepted: 07/19/2017] [Indexed: 11/16/2022]
Abstract
Gemcitabine constitutes one of the backbones for chemotherapy treatment in pancreatic ductal adenocarcinoma (PDAC), but patients often respond poorly to this agent. Molecular markers downstream of gemcitabine treatment in preclinical models may provide an insight into resistance mechanisms. Using cytokine arrays, we identified potential secretory biomarkers of gemcitabine resistance (response) in the transgenic KRasG12D; Trp53R172H; Pdx-1 Cre (KPC) mouse model of PDAC. We verified the oncogenic role of the cytokine tissue inhibitor of matrix metalloproteinases 1 (TIMP1) in primary pancreatic tumors and metastases using both in vitro techniques and animal models. We identified potential pathways affected downstream of TIMP1 using the Illumina Human H12 array. Our findings were validated in both primary and metastatic models of pancreatic cancer. Gemcitabine increased inflammatory cytokines including TIMP1 in the KPC mouse model. TIMP1 was upregulated in patients with pancreatic intraepithelial neoplasias grade 3 and PDAC lesions relative to matched normal pancreatic tissue. In addition, TIMP1 played a role in tumor clonogenic survival and vascular density, while TIMP1 inhibition resensitized tumors to gemcitabine and radiotherapy. We observed a linear relationship between TIMP-1 expression, liver metastatic burden, and infiltration by CD11b+Gr1+ myeloid cells and CD4+CD25+FOXP3+ Tregs, whereas the presence of tumor cells was required for immune cell infiltration. Overall, our results identify TIMP1 upregulation as a resistance mechanism to gemcitabine and provide a rationale for combining chemo/radiotherapy with TIMP1 inhibitors in PDAC. Cancer Res; 77(21); 5952-62. ©2017 AACR.
Collapse
Affiliation(s)
- Zenobia D'Costa
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Keaton Jones
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Abul Azad
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Ruud van Stiphout
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Su Y Lim
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Paul Kinchesh
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Sean C Smart
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - W Gillies McKenna
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Francesca M Buffa
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Owen J Sansom
- CRUK Beatson Institute of Oncology, University of Glasgow, Glasgow, United Kingdom
| | - Ruth J Muschel
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Eric O'Neill
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom.
| | - Emmanouil Fokas
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
335
|
Masamune A, Yoshida N, Hamada S, Takikawa T, Nabeshima T, Shimosegawa T. Exosomes derived from pancreatic cancer cells induce activation and profibrogenic activities in pancreatic stellate cells. Biochem Biophys Res Commun 2017; 495:71-77. [PMID: 29111329 DOI: 10.1016/j.bbrc.2017.10.141] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer cells (PCCs) interact with pancreatic stellate cells (PSCs), which play a pivotal role in pancreatic fibrogenesis, to develop the cancer-conditioned tumor microenvironment. Exosomes are membrane-enclosed nanovesicles, and have been increasingly recognized as important mediators of cell-to-cell communications. The aim of this study was to clarify the effects of PCC-derived exosomes on cell functions in PSCs. Exosomes were isolated from the conditioned medium of Panc-1 and SUIT-2 PCCs. Human primary PSCs were treated with PCC-derived exosomes. PCC-derived exosomes stimulated the proliferation, migration, activation of ERK and Akt, the mRNA expression of α-smooth muscle actin (ACTA2) and fibrosis-related genes, and procollagen type I C-peptide production in PSCs. Ingenuity pathway analysis of the microarray data identified transforming growth factor β1 and tumor necrosis factor as top upstream regulators. PCCs increased the expression of miR-1246 and miR-1290, abundantly contained in PCC-derived exosomes, in PSCs. Overexpression of miR-1290 induced the expression of ACTA2 and fibrosis-related genes in PSCs. In conclusion, PCC-derived exosomes stimulate activation and profibrogenic activities in PSCs. Exosome-mediated interactions between PSCs and PCCs might play a role in the development of the tumor microenvironment.
Collapse
Affiliation(s)
- Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Naoki Yoshida
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Takikawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tatsuhide Nabeshima
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
336
|
Desmoplastic Pattern at the Tumor Front Defines Poor-prognosis Subtypes of Colorectal Cancer. Am J Surg Pathol 2017; 41:1506-1512. [PMID: 28877064 DOI: 10.1097/pas.0000000000000946] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although recent findings of cancer biology research indicate that prognostic power arises from genes expressed by stromal cells rather than epithelial cells, desmoplastic reaction (DR) has not been completely examined as a prognostic marker for colorectal cancer. A pathologic review of 821 stage II and III patients who underwent R0 resection for colorectal cancer at 4 independent institutions was conducted. DR was classified as mature, intermediate, or immature based on the existence of hyalinized keloid-like collagen and myxoid stroma at the extramural desmoplastic front. Totally, 325, 282, and 214 patients were classified as having mature, intermediate, and immature DR, respectively. DR significantly influenced the recurrence rate in the liver, lung, and peritoneum (P≤0.0001 to 0.01). Five-year relapse-free survival (RFS) rate was the highest in the mature group (85.7%), followed by the intermediate (77.3%) and immature (50.4%) groups. A significant adverse impact of immature stroma on RFS was observed in subset analyses of the 4 institutions. Multivariate analysis revealed that DR, along with T and N stages, is an independent prognostic factor. On the basis of Harrell's concordance index, the prognostic power of DR categorization (0.67) in stratifying RFS was greater than any other conventional prognostic factors, including TNM (0.64), N (0.62) and T stages (0.59), venous invasion (0.59), and tumor grade (0.54). Characterizing DR based on the histologic products of activated fibroblasts is valuable for evaluating prognostic outcomes. To our knowledge, this is the first study reporting a greater prognostic power of histology of the fibrotic stroma than that of tumor factors.
Collapse
|
337
|
Koikawa K, Ohuchida K, Takesue S, Ando Y, Kibe S, Nakayama H, Endo S, Abe T, Okumura T, Horioka K, Sada M, Iwamoto C, Moriyama T, Nakata K, Miyasaka Y, Ohuchida R, Manabe T, Ohtsuka T, Nagai E, Mizumoto K, Hashizume M, Nakamura M. Pancreatic stellate cells reorganize matrix components and lead pancreatic cancer invasion via the function of Endo180. Cancer Lett 2017; 412:143-154. [PMID: 29061505 DOI: 10.1016/j.canlet.2017.10.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/30/2017] [Accepted: 10/09/2017] [Indexed: 01/06/2023]
Abstract
Specific cell populations leading the local invasion of cancer are called "leading cells". However, the underlying mechanisms are unclear. Here, we identified leading cells in pancreatic cancer and determined how these cells lead and promote cancer cell invasion in the extracellular matrix (ECM). Using three-dimensional matrix remodeling assay, we found that pancreatic stellate cells (PSCs) frequently invaded the collagen matrix with pancreatic cancer cells (PCCs), which invaded behind the invading PSCs. In addition, invading PSCs changed the alignment of collagen fibers, resulting in ECM remodeling and an increase in the parallel fibers along the direction of invading PSCs. Endo180 expression was higher in PSCs than in PCCs, Endo180 knockdown in PSCs attenuated the invasive abilities of PSCs and co-cultured PCCs, and decreased the expression level of phosphorylated myosin light chain 2 (MLC2). In mouse models, Endo180-knockdown PSCs suppressed tumor growth and changes in collagen fiber orientation in co-transplantation with PCCs. Our findings suggest that PSCs lead the local invasion of PCCs by physically remodeling the ECM, possibly via the function of Endo180, which reconstructs the actin cell skeleton by phosphorylation of MLC2.
Collapse
Affiliation(s)
- Kazuhiro Koikawa
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Shin Takesue
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yohei Ando
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shin Kibe
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiromichi Nakayama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sho Endo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiya Abe
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Okumura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohei Horioka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Sada
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chika Iwamoto
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taiki Moriyama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Miyasaka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Riichi Ohuchida
- Section of Fixed Prosthodontics, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Tatsuya Manabe
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takao Ohtsuka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eishi Nagai
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhiro Mizumoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Makoto Hashizume
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
338
|
Ansari D, Carvajo M, Bauden M, Andersson R. Pancreatic cancer stroma: controversies and current insights. Scand J Gastroenterol 2017; 52:641-646. [PMID: 28276831 DOI: 10.1080/00365521.2017.1293726] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pancreatic cancer is characterized by a dense stromal response. The stroma includes a heterogeneous mass of cells, including pancreatic stellate cells, fibroblasts, immune cells and nerve cells, as well as extracellular matrix proteins, cytokines and growth factors, which interact with the tumor cells. Previous research has indicated that stromal elements contribute to tumor growth and aggressiveness. However, recent studies suggest that some elements of the stroma may actually restrain the tumor. This review focuses on the complex interactions between the stromal microenvironment and tumor cells, discussing molecular mechanisms and potential future diagnostic and therapeutic approaches by targeting the stroma.
Collapse
Affiliation(s)
- Daniel Ansari
- a Department of Surgery , Clinical Sciences Lund, Lund University and Skåne University Hospital , Lund , Sweden
| | - Maria Carvajo
- a Department of Surgery , Clinical Sciences Lund, Lund University and Skåne University Hospital , Lund , Sweden
| | - Monika Bauden
- a Department of Surgery , Clinical Sciences Lund, Lund University and Skåne University Hospital , Lund , Sweden
| | - Roland Andersson
- a Department of Surgery , Clinical Sciences Lund, Lund University and Skåne University Hospital , Lund , Sweden
| |
Collapse
|
339
|
Extra-pancreatic invasion induces lipolytic and fibrotic changes in the adipose microenvironment, with released fatty acids enhancing the invasiveness of pancreatic cancer cells. Oncotarget 2017; 8:18280-18295. [PMID: 28407685 PMCID: PMC5392327 DOI: 10.18632/oncotarget.15430] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/10/2017] [Indexed: 12/18/2022] Open
Abstract
Pancreatic cancer progression involves components of the tumor microenvironment, including stellate cells, immune cells, endothelial cells, and the extracellular matrix. Although peripancreatic fat is the main stromal component involved in extra-pancreatic invasion, its roles in local invasion and metastasis of pancreatic cancer remain unclear. This study investigated the role of adipose tissue in pancreatic cancer progression using genetically engineered mice (Pdx1-Cre; LSL-KrasG12D; Trp53R172H/+) and an in vitro model of organotypic fat invasion. Mice fed a high fat diet had significantly larger primary pancreatic tumors and a significantly higher rate of distant organ metastasis than mice fed a standard diet. In the organotypic fat invasion model, pancreatic cancer cell clusters were smaller and more elongated in shape and showed increased fibrosis. Adipose tissue-derived conditioned medium enhanced pancreatic cancer cell invasiveness and gemcitabine resistance, as well as inducing morphologic changes in cancer cells and increasing the numbers of lipid droplets in their cytoplasm. The concentrations of oleic, palmitoleic, and linoleic acids were higher in adipose tissue-derived conditioned medium than in normal medium, with these fatty acids significantly enhancing the migration of cancer cells. Mature adipocytes were smaller and the concentration of fatty acids in the medium higher when these cells were co-cultured with cancer cells. These findings indicate that lipolytic and fibrotic changes in peripancreatic adipose tissue enhance local invasiveness and metastasis via adipocyte-released fatty acids. Inhibition of fatty acid uptake by cancer cells may be a novel therapy targeting interactions between cancer and stromal cells.
Collapse
|
340
|
Ji T, Lang J, Wang J, Cai R, Zhang Y, Qi F, Zhang L, Zhao X, Wu W, Hao J, Qin Z, Zhao Y, Nie G. Designing Liposomes To Suppress Extracellular Matrix Expression To Enhance Drug Penetration and Pancreatic Tumor Therapy. ACS NANO 2017; 11:8668-8678. [PMID: 28806504 DOI: 10.1021/acsnano.7b01026] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
During pancreatic tumor development, pancreatic stellate cells (PSCs) proliferate exuberantly to secrete extracellular matrix (ECM) in the tumor stroma, which presents major barriers for drug delivery and penetration in tumor tissue. Thus, down-regulating ECM levels via regulation of the PSCs may allow enhanced penetration of therapeutic drugs and thereby enhancing their therapeutic efficacy. To regulate the PSCs, a matrix metalloproteinase-2 (MMP-2) responsive peptide-hybrid liposome (MRPL) was constructed via coassembly of a tailor-designed MMP-2 responsive amphiphilic peptide and phospholipids. By utilizing the MMP-2-rich pathological environment, the pirfenidone (PFD) loaded MRPL (MRPL-PFD) can specifically release PFD at the pancreatic tumor site and down-regulate the multiple components of ECM expressed by the PSCs. This resulted in a significant increase in the penetration of gemcitabine into the tumor tissue and enhanced the efficacy of gemcitabine for pancreatic tumor. Our design tailored for antifibrosis of pancreatic cancer may provide a practical approach to build functional liposomes through supramolecular assembly, and regulation of ECM may be a promising adjuvant therapeutic strategy for pancreatic and other ECM-rich tumors.
Collapse
Affiliation(s)
- Tianjiao Ji
- The First Affiliated Hospital, Zhengzhou University , Zhengzhou 450052, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jiayan Lang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
- Sino-Danish Center for Education and Research, Sino-Danish College of UCAS , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Rong Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yinlong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
- College of Pharmaceutical Science, Jilin University , Changchun 130021, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Feifei Qi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Lijing Zhang
- The First Affiliated Hospital, Zhengzhou University , Zhengzhou 450052, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Wenjing Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
- College of Pharmaceutical Science, Jilin University , Changchun 130021, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jihui Hao
- Department of Pancreatic Carcinoma Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy , Tianjin 300060, China
| | - Zhihai Qin
- The First Affiliated Hospital, Zhengzhou University , Zhengzhou 450052, China
| | - Ying Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
341
|
Miao L, Li J, Liu Q, Feng R, Das M, Lin CM, Goodwin TJ, Dorosheva O, Liu R, Huang L. Transient and Local Expression of Chemokine and Immune Checkpoint Traps To Treat Pancreatic Cancer. ACS NANO 2017; 11:8690-8706. [PMID: 28809532 PMCID: PMC5961942 DOI: 10.1021/acsnano.7b01786] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Pancreatic tumors are known to be resistant to immunotherapy due to the extensive immune suppressive tumor microenvironment (TME). We hypothesized that CXCL12 and PD-L1 are two key molecules controlling the immunosuppressive TME. Fusion proteins, called traps, designed to bind with these two molecules with high affinity (Kd = 4.1 and 0.22 nM, respectively) were manufactured and tested for specific binding with the targets. Plasmid DNA encoding for each trap was formulated in nanoparticles and intravenously injected to mice bearing orthotopic pancreatic cancer. Expression of traps was mainly seen in the tumor, and secondarily, accumulations were primarily in the liver. Combination trap therapy shrunk the tumor and significantly prolonged the host survival. Either trap alone only brought in a partial therapeutic effect. We also found that CXCL12 trap allowed T-cell penetration into the tumor, and PD-L1 trap allowed the infiltrated T-cells to kill the tumor cells. Combo trap therapy also significantly reduced metastasis of the tumor cells to other organs. We conclude that the trap therapy significantly modified the immunosuppressive TME to allow the host immune system to kill the tumor cells. This can be an effective therapy in clinical settings.
Collapse
Affiliation(s)
- Lei Miao
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jingjing Li
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Qi Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- UNC & NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Richard Feng
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Manisit Das
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - C. Michael Lin
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Tyler J. Goodwin
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Oleksandra Dorosheva
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rihe Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Corresponding Authors: .
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- UNC & NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Corresponding Authors: .
| |
Collapse
|
342
|
Drifka CR, Loeffler AG, Esquibel CR, Weber SM, Eliceiri KW, Kao WJ. Human pancreatic stellate cells modulate 3D collagen alignment to promote the migration of pancreatic ductal adenocarcinoma cells. Biomed Microdevices 2017; 18:105. [PMID: 27819128 DOI: 10.1007/s10544-016-0128-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A hallmark of pancreatic ductal adenocarcinoma (PDAC) is the ability for cancer cells to aggressively infiltrate and navigate through a dense stroma during the metastatic process. Key features of the PDAC stroma include an abundant population of activated pancreatic stellate cells (PSCs) and highly aligned collagen fibers; however, important questions remain regarding how collagen becomes aligned and what the biological manifestations are. To better understand how PSCs, aligned collagen, and PDAC cells might cooperate during the transition to invasion, we utilized a microchannel-based in vitro tumor model and advanced imaging technologies to recreate and examine in vivo-like heterotypic interactions. We found that PSCs participate in a collaborative process with cancer cells by orchestrating the alignment of collagen fibers that, in turn, are permissive to enhanced cell migration. Additionally, direct contact between PSCs, collagen, and PDAC cells is critical to invasion and co-migration of both cell types. This suggests PSCs may accompany and assist in navigating PDAC cells through the stromal terrain. Together, our data provides a new role for PSCs in stimulating the metastatic process and underscores the importance of collagen alignment in cancer progression.
Collapse
Affiliation(s)
- Cole R Drifka
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA.,Laboratory for Optical and Computational Instrumentation (LOCI), University of Wisconsin, Madison, WI, USA.,Morgridge Institute for Research, Madison, WI, USA
| | - Agnes G Loeffler
- Department of Surgical Pathology, University of Wisconsin, Madison, WI, USA.,University of Wisconsin Comprehensive Carbone Cancer Center, Madison, WI, USA
| | - Corinne R Esquibel
- Laboratory for Optical and Computational Instrumentation (LOCI), University of Wisconsin, Madison, WI, USA
| | - Sharon M Weber
- University of Wisconsin Comprehensive Carbone Cancer Center, Madison, WI, USA.,Department of Surgery, University of Wisconsin, Madison, WI, USA
| | - Kevin W Eliceiri
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA.,Laboratory for Optical and Computational Instrumentation (LOCI), University of Wisconsin, Madison, WI, USA.,Morgridge Institute for Research, Madison, WI, USA.,University of Wisconsin Comprehensive Carbone Cancer Center, Madison, WI, USA
| | - W John Kao
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA. .,University of Wisconsin Comprehensive Carbone Cancer Center, Madison, WI, USA. .,Department of Surgery, University of Wisconsin, Madison, WI, USA. .,Faculties of Medicine and Engineering, University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong.
| |
Collapse
|
343
|
Bivona TG, Doebele RC. A framework for understanding and targeting residual disease in oncogene-driven solid cancers. Nat Med 2017; 22:472-8. [PMID: 27149220 DOI: 10.1038/nm.4091] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 03/23/2016] [Indexed: 12/12/2022]
Abstract
Molecular targeted therapy has the potential to dramatically improve survival in patients with cancer. However, complete and durable responses to targeted therapy are rare in individuals with advanced-stage solid cancers. Even the most effective targeted therapies generally do not induce a complete tumor response, resulting in residual disease and tumor progression that limits patient survival. We discuss the emerging need to more fully understand the molecular basis of residual disease as a prelude to designing therapeutic strategies to minimize or eliminate residual disease so that we can move from temporary to chronic control of disease, or a cure, for patients with advanced-stage solid cancers. Ultimately, we propose a shift from the current reactive paradigm of analyzing and treating acquired drug resistance to a pre-emptive paradigm of defining the mechanisms that result in residual disease, to target and limit this disease reservoir.
Collapse
Affiliation(s)
- Trever G Bivona
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA
| | - Robert C Doebele
- Department of Medicine and Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
344
|
Ruess DA, Görgülü K, Wörmann SM, Algül H. Pharmacotherapeutic Management of Pancreatic Ductal Adenocarcinoma: Current and Emerging Concepts. Drugs Aging 2017; 34:331-357. [PMID: 28349415 DOI: 10.1007/s40266-017-0453-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma is a devastating malignancy, which is the result of late diagnosis, aggressive disease, and a lack of effective treatment options. Thus, pancreatic ductal adenocarcinoma is projected to become the second leading cause of cancer-related death by 2030. This review summarizes recent developments of oncological therapy in the palliative setting of metastatic pancreatic ductal adenocarcinoma. It further compiles novel targets and therapeutic approaches as well as promising treatment combinations, which are presently in preclinical evaluation, covering several aspects of the hallmarks of cancer. Finally, challenges to the implementation of an individualized therapy approach in the context of precision medicine are discussed.
Collapse
Affiliation(s)
- Dietrich A Ruess
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Kivanc Görgülü
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Sonja M Wörmann
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Hana Algül
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| |
Collapse
|
345
|
Gharibi A, La Kim S, Molnar J, Brambilla D, Adamian Y, Hoover M, Hong J, Lin J, Wolfenden L, Kelber JA. ITGA1 is a pre-malignant biomarker that promotes therapy resistance and metastatic potential in pancreatic cancer. Sci Rep 2017; 7:10060. [PMID: 28855593 PMCID: PMC5577248 DOI: 10.1038/s41598-017-09946-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/31/2017] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has single-digit 5-year survival rates at <7%. There is a dire need to improve pre-malignant detection methods and identify new therapeutic targets for abrogating PDAC progression. To this end, we mined our previously published pseudopodium-enriched (PDE) protein/phosphoprotein datasets to identify novel PDAC-specific biomarkers and/or therapeutic targets. We discovered that integrin alpha 1 (ITGA1) is frequently upregulated in pancreatic cancers and associated precursor lesions. Expression of ITGA1-specific collagens within the pancreatic cancer microenvironment significantly correlates with indicators of poor patient prognosis, and depleting ITGA1 from PDAC cells revealed that it is required for collagen-induced tumorigenic potential. Notably, collagen/ITGA1 signaling promotes the survival of ALDH1-positive stem-like cells and cooperates with TGFβ to drive gemcitabine resistance. Finally, we report that ITGA1 is required for TGFβ/collagen-induced EMT and metastasis. Our data suggest that ITGA1 is a new diagnostic biomarker and target that can be leveraged to improve patient outcomes.
Collapse
Affiliation(s)
- Armen Gharibi
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Sa La Kim
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Justin Molnar
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Daniel Brambilla
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Yvess Adamian
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Malachia Hoover
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Julie Hong
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Joy Lin
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Laurelin Wolfenden
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Jonathan A Kelber
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA.
| |
Collapse
|
346
|
Abstract
The fundamental operative unit of a cancer is the genetically and epigenetically innovative single cell. Whether proliferating or quiescent, in the primary tumour mass or disseminated elsewhere, single cells govern the parameters that dictate all facets of the biology of cancer. Thus, single-cell analyses provide the ultimate level of resolution in our quest for a fundamental understanding of this disease. Historically, this quest has been hampered by technological shortcomings. In this Opinion article, we argue that the rapidly evolving field of single-cell sequencing has unshackled the cancer research community of these shortcomings. From furthering an elemental understanding of intra-tumoural genetic heterogeneity and cancer genome evolution to illuminating the governing principles of disease relapse and metastasis, we posit that single-cell sequencing promises to unravel the biology of all facets of this disease.
Collapse
Affiliation(s)
- Timour Baslan
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10044, USA, and Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - James Hicks
- University of Southern California Dana and David Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
347
|
Zhao R, Han X, Li Y, Wang H, Ji T, Zhao Y, Nie G. Photothermal Effect Enhanced Cascade-Targeting Strategy for Improved Pancreatic Cancer Therapy by Gold Nanoshell@Mesoporous Silica Nanorod. ACS NANO 2017; 11:8103-8113. [PMID: 28738680 DOI: 10.1021/acsnano.7b02918] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pancreatic cancer, one of the leading causes of cancer-related mortality, is characterized by desmoplasia and hypovascular cancerous tissue, with a 5 year survival rate of <8%. To overcome the severe resistance of pancreatic cancer to conventional therapies, we synthesized gold nanoshell-coated rod-like mesoporous silica (GNRS) nanoparticles which integrated cascade tumor targeting (mediated by photothermal effect and molecular receptor binding) and photothermal treatment-enhanced gemcitabine chemotherapy, under mild near-infrared laser irradiation condition. GNRS significantly improved gemcitabine penetration and accumulation in tumor tissues, thus destroying the dense stroma barrier of pancreatic cancer and reinforcing chemosensitivity in mice. Our current findings strongly support the notion that further development of this integrated plasmonic photothermal strategy may represent a promising translational nanoformulation for effective treatment of pancreatic cancer with integral cascade tumor targeting strategy and enhanced drug delivery efficacy.
Collapse
Affiliation(s)
- Ruifang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P. R. China
- Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Xuexiang Han
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P. R. China
- Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Yiye Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Tianjiao Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P. R. China
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School , 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| |
Collapse
|
348
|
Han S, Gonzalo DH, Feely M, Delitto D, Behrns KE, Beveridge M, Zhang D, Thomas R, Trevino JG, Schmittgen TD, Hughes SJ. The pancreatic tumor microenvironment drives changes in miRNA expression that promote cytokine production and inhibit migration by the tumor associated stroma. Oncotarget 2017; 8:54054-54067. [PMID: 28903323 PMCID: PMC5589562 DOI: 10.18632/oncotarget.10722] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/13/2016] [Indexed: 01/18/2023] Open
Abstract
The pancreatic adenocarcinoma (PDAC) microenvironment is largely comprised of fibrotic tumor associated stroma (TAS) that contributes to the lethal biology of PDAC. microRNA (miRNA) are small non-coding RNAs that regulate gene expression. We hypothesized that interactions between PDAC cells and TAS cells within the microenvironment modulate miRNA expression and thus, tumor biology. We observed that miR-205 and members of the miR-200 family (miR-200a, -200b, -200c, -141 and miR-429) were exclusively expressed in PDAC cells, consistent with an epithelial miRNA signature, while miR-145 and miR-199 family members (miR-199a and -199b) were solely expressed in TAS cells, consistent with a stromal miRNA signature. This finding was confirmed by qRT-PCR of RNA obtained by laser-capture microdissection of surgical specimens. Using an in vitro co-culture model, we further demonstrated regulation of miRNA expression by cell-cell contact. Forced expression in TAS cells of miR-200b/-200c and miR-205 to mimic these observed changes in miRNA concentrations induced secretion of GM-CSF and IP10, and notably inhibited migration. These data suggest interactions within the tumor microenvironment alter miRNA expression, which in turn have a functional impact on TAS.
Collapse
Affiliation(s)
- Song Han
- Department of Surgery, University of Florida, Gainesville, FL 32610, USA
| | - David H. Gonzalo
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Michael Feely
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Daniel Delitto
- Department of Surgery, University of Florida, Gainesville, FL 32610, USA
| | - Kevin E. Behrns
- Department of Surgery, University of Florida, Gainesville, FL 32610, USA
| | - Mark Beveridge
- Department of Surgery, University of Florida, Gainesville, FL 32610, USA
| | - DongYu Zhang
- Department of Surgery, University of Florida, Gainesville, FL 32610, USA
| | - Ryan Thomas
- Department of Surgery, University of Florida, Gainesville, FL 32610, USA
| | - Jose G. Trevino
- Department of Surgery, University of Florida, Gainesville, FL 32610, USA
| | | | - Steven J. Hughes
- Department of Surgery, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
349
|
Iovanna JL, Closa D. Factors released by the tumor far microenvironment are decisive for pancreatic adenocarcinoma development and progression. Oncoimmunology 2017; 6:e1358840. [PMID: 29147622 DOI: 10.1080/2162402x.2017.1358840] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 12/17/2022] Open
Abstract
The REG3β protein was identified more than 2 decades ago, but its role in PDAC development was only recently reported. In Pancreatic Ductal Adenocarcinoma (PDAC), REG3β protein is expressed and released by the far microenvironment, which is situated out of the tumor, at the periphery of the tumor mass, and is part of the healthy peri-tumoral region. This compartment is completely unrelated to the classical microenvironment that corresponds to the intra-tumoral stoma. Clinically relevant, the far microenvironment, and the factors released by it, could be novel and original therapeutic targets for treating patients with a PDAC. In this way we recently demonstrated that REG3β is an essential soluble factor necessary for PDAC development which is able to stimulate several simultaneous pro-tumoral mechanisms. We also find that secreted REG3β boosts interactions between epithelial cells and immune cells by activating the CXCL12/CXCR4 signaling cascade, which facilitates tumor escape through evasion of immune surveillance, and promotes metastasis. In addition, REG3β interfere the intercellular communication inside the tumor mediated by extracellular vesicles, resulting in relevant changes in macrophage phenotype or tumor cell migration. Therefore, we are proposing to call as near microenvironment to the classical microenvironment that is constituted by fibroblasts, inflammatory cells and fibers and located into the tumor, and as far microenvironment, which is constituted by the parenchymal non transformed cells located at the periphery of the tumor mass.
Collapse
Affiliation(s)
- Juan L Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Daniel Closa
- Department of Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones científicas (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
350
|
Pitarresi JR, Liu X, Sharma SM, Cuitiño MC, Kladney RD, Mace TA, Donohue S, Nayak SG, Qu C, Lee J, Woelke SA, Trela S, LaPak K, Yu L, McElroy J, Rosol TJ, Shakya R, Ludwig T, Lesinski GB, Fernandez SA, Konieczny SF, Leone G, Wu J, Ostrowski MC. Stromal ETS2 Regulates Chemokine Production and Immune Cell Recruitment during Acinar-to-Ductal Metaplasia. Neoplasia 2017; 18:541-52. [PMID: 27659014 PMCID: PMC5031867 DOI: 10.1016/j.neo.2016.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 12/30/2022] Open
Abstract
Preclinical studies have suggested that the pancreatic tumor microenvironment both inhibits and promotes tumor development and growth. Here we establish the role of stromal fibroblasts during acinar-to-ductal metaplasia (ADM), an initiating event in pancreatic cancer formation. The transcription factor V-Ets avian erythroblastosis virus E26 oncogene homolog 2 (ETS2) was elevated in smooth muscle actin–positive fibroblasts in the stroma of pancreatic ductal adenocarcinoma (PDAC) patient tissue samples relative to normal pancreatic controls. LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre (KPC) mice showed that ETS2 expression initially increased in fibroblasts during ADM and remained elevated through progression to PDAC. Conditional ablation of Ets-2 in pancreatic fibroblasts in a KrasG12D-driven mouse ADM model decreased the amount of ADM events. ADMs from fibroblast Ets-2–deleted animals had reduced epithelial cell proliferation and increased apoptosis. Surprisingly, fibroblast Ets-2 deletion significantly altered immune cell infiltration into the stroma, with an increased CD8+ T-cell population, and decreased presence of regulatory T cells (Tregs), myeloid-derived suppressor cells, and mature macrophages. The mechanism involved ETS2-dependent chemokine ligand production in fibroblasts. ETS2 directly bound to regulatory sequences for Ccl3, Ccl4, Cxcl4, Cxcl5, and Cxcl10, a group of chemokines that act as potent mediators of immune cell recruitment. These results suggest an unappreciated role for ETS2 in fibroblasts in establishing an immune-suppressive microenvironment in response to oncogenic KrasG12D signaling during the initial stages of tumor development.
Collapse
Affiliation(s)
- Jason R Pitarresi
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology & Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Xin Liu
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology & Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Sudarshana M Sharma
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology & Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Maria C Cuitiño
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology & Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Raleigh D Kladney
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology & Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Thomas A Mace
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Sydney Donohue
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology & Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Sunayana G Nayak
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology & Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Chunjing Qu
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - James Lee
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology & Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Sarah A Woelke
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology & Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Stefan Trela
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology & Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Kyle LaPak
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology & Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Lianbo Yu
- Department of Biomedical Informatics' Center for Biostatistics, The Ohio State University, Columbus, OH 43210, USA
| | - Joseph McElroy
- Department of Biomedical Informatics' Center for Biostatistics, The Ohio State University, Columbus, OH 43210, USA
| | - Thomas J Rosol
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Reena Shakya
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology & Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Thomas Ludwig
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology & Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Gregory B Lesinski
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Soledad A Fernandez
- Department of Biomedical Informatics' Center for Biostatistics, The Ohio State University, Columbus, OH 43210, USA
| | - Stephen F Konieczny
- Department of Biological Sciences and the Purdue Center for Cancer Research and the Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907-2057, USA
| | - Gustavo Leone
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology & Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Jinghai Wu
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology & Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Michael C Ostrowski
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology & Genetics, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|