301
|
Lin S, Su S, Jin L, Peng R, Sun D, Ji H, Yu Y, Xu J. Identification of microRNAs and their targets in inflorescences of an Ogura-type cytoplasmic male-sterile line and its maintainer fertile line of turnip (Brassica rapa ssp. rapifera) via high-throughput sequencing and degradome analysis. PLoS One 2020; 15:e0236829. [PMID: 32730367 PMCID: PMC7392268 DOI: 10.1371/journal.pone.0236829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/14/2020] [Indexed: 11/24/2022] Open
Abstract
Cytoplasmic male sterility (CMS) is a widely used trait in angiosperms caused by perturbations in nucleus-mitochondrion interactions that suppress the production of functional pollen. MicroRNAs (miRNAs) are small non-coding RNAs that act as regulatory molecules of transcriptional or post-transcriptional gene silencing in plants. The discovery of miRNAs and their possible implications in CMS induction provides clues for the intricacies and complexity of this phenomenon. Previously, we characterized an Ogura-CMS line of turnip (Brassica rapa ssp. rapifera) that displays distinct impaired anther development with defective microspore production and premature tapetum degeneration. In the present study, high-throughput sequencing was employed for a genome-wide investigation of miRNAs. Six small RNA libraries of inflorescences collected from the Ogura-CMS line and its maintainer fertile (MF) line of turnip were constructed. A total of 120 pre-miRNAs corresponding to 89 mature miRNAs were identified, including 87 conversed miRNAs and 33 novel miRNAs. Among these miRNAs, the expression of 10 differentially expressed mature miRNAs originating from 12 pre-miRNAs was shown to have changed by more than two-fold between inflorescences of the Ogura-CMS line and inflorescences of the MF line, including 8 down- and 2 up-regulated miRNAs. The expression profiles of the differentially expressed miRNAs were confirmed by stem-loop quantitative real-time PCR. In addition, to identify the targets of the identified miRNAs, a degradome analysis was performed. A total of 22 targets of 25 miRNAs and 17 targets of 28 miRNAs were identified as being involved in the reproductive development for Ogura-CMS and MF lines of turnip, respectively. Negative correlations of expression patterns between partial miRNAs and their targets were detected. Some of these identified targets, such as squamosa promoter-binding-like transcription factor family proteins, auxin response factors and pentatricopeptide repeat-containing proteins, were previously reported to be involved in reproductive development in plants. Taken together, our results can help improve the understanding of miRNA-mediated regulatory pathways that might be involved in CMS occurrence in turnip.
Collapse
Affiliation(s)
- Sue Lin
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Shiwen Su
- Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Libo Jin
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Renyi Peng
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Da Sun
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Hao Ji
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Youjian Yu
- College of Agriculture and Food Science, Zhejiang A & F University, Lin’an, China
| | - Jian Xu
- Wenzhou Vocational College of Science and Technology, Wenzhou, China
| |
Collapse
|
302
|
Nitschko V, Kunzelmann S, Fröhlich T, Arnold GJ, Förstemann K. Trafficking of siRNA precursors by the dsRBD protein Blanks in Drosophila. Nucleic Acids Res 2020; 48:3906-3921. [PMID: 32025726 PMCID: PMC7144943 DOI: 10.1093/nar/gkaa072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 01/03/2023] Open
Abstract
RNA interference targets aberrant transcripts with cognate small interfering RNAs, which derive from double-stranded RNA precursors. Several functional screens have identified Drosophila blanks/lump (CG10630) as a facilitator of RNAi, yet its molecular function has remained unknown. The protein carries two dsRNA binding domains (dsRBD) and blanks mutant males have a spermatogenesis defect. We demonstrate that blanks selectively boosts RNAi triggered by dsRNA of nuclear origin. Blanks binds dsRNA via its second dsRBD in vitro, shuttles between nucleus and cytoplasm and the abundance of siRNAs arising at many sites of convergent transcription is reduced in blanks mutants. Since features of nascent RNAs - such as introns and transcription beyond the polyA site – contribute to the small RNA pool, we propose that Blanks binds dsRNA formed by cognate nascent RNAs in the nucleus and fosters its export to the cytoplasm for dicing. We refer to the resulting small RNAs as blanks exported siRNAs (bepsiRNAs). While bepsiRNAs were fully dependent on RNA binding to the second dsRBD of blanks in transgenic flies, male fertility was not. This is consistent with a previous report that linked fertility to the first dsRBD of Blanks. The role of blanks in spermatogenesis appears thus unrelated to its role in dsRNA export.
Collapse
Affiliation(s)
- Volker Nitschko
- Genzentrum & Department Biochemie, Ludwig-Maximilians-Universität, 81377 München, Germany
| | - Stefan Kunzelmann
- Genzentrum & Department Biochemie, Ludwig-Maximilians-Universität, 81377 München, Germany
| | - Thomas Fröhlich
- Laboratory of Functional Genome Analysis, Ludwig-Maximilians-Universität, 81377 München, Germany
| | - Georg J Arnold
- Laboratory of Functional Genome Analysis, Ludwig-Maximilians-Universität, 81377 München, Germany
| | - Klaus Förstemann
- Genzentrum & Department Biochemie, Ludwig-Maximilians-Universität, 81377 München, Germany
| |
Collapse
|
303
|
Pompili V, Piazza S, Li M, Varotto C, Malnoy M. Transcriptional regulation of MdmiR285N microRNA in apple ( Malus x domestica) and the heterologous plant system Arabidopsis thaliana. HORTICULTURE RESEARCH 2020; 7:99. [PMID: 32637127 PMCID: PMC7326934 DOI: 10.1038/s41438-020-0321-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/03/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Malus x domestica microRNA MdmiR285N is a potential key regulator of plant immunity, as it has been predicted to target 35 RNA transcripts coding for different disease resistance proteins involved in plant defense to pathogens. In this study, the promoter region of MdmiR285N was isolated from the apple genome and analyzed in silico to detect potential regulatory regions controlling its transcription. A complex network of putative regulatory elements involved in plant growth and development, and in response to different hormones and stress conditions, was identified. Activity of the β-Glucoronidase (GUS) reporter gene driven by the promoter of MdmiR285N was examined in transgenic apple, demonstrating that MdmiR285N was expressed during the vegetative growth phase. Similarly, in transgenic Arabidopsis thaliana, spatial and temporal patterns of GUS expression revealed that MdmiR285N was differentially regulated during seed germination, vegetative phase change, and reproductive development. To elucidate the role of MdmiR285N in plant immunity, MdmiR285N expression in wild-type apple plants and GUS activity in transgenic apple and Arabidopsis thaliana plants were monitored in response to Erwinia amylovora and Pseudomonas syringae pv. Tomato DC3000. A significant decrease of MdmiR285N levels and GUS expression was observed during host-pathogen infections. Overall, these data suggest that MdmiR285N is involved in the biotic stress response, plant growth, and reproductive development.
Collapse
Affiliation(s)
- Valerio Pompili
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, San Michele all’Adige, 38010 Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, Università degli Studi di Udine, Via delle Scienze 206, Udine, 33100 Italy
| | - Stefano Piazza
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, San Michele all’Adige, 38010 Italy
| | - Mingai Li
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, San Michele all’Adige, 38010 Italy
| | - Claudio Varotto
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, San Michele all’Adige, 38010 Italy
| | - Mickael Malnoy
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, San Michele all’Adige, 38010 Italy
| |
Collapse
|
304
|
Li Y, Cui W, Qi X, Lin M, Qiao C, Zhong Y, Hu C, Fang J. MicroRNA858 negatively regulates anthocyanin biosynthesis by repressing AaMYBC1 expression in kiwifruit (Actinidia arguta). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110476. [PMID: 32540006 DOI: 10.1016/j.plantsci.2020.110476] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 05/17/2023]
Abstract
The anthocyanin biosynthetic pathway regulated by exogenous and endogenous factors through sophisticated networks has been extensively studied in kiwifruit (Actinidia arguta). However, the role of micro RNAs (miRNAs) as regulatory factor in this process is largely unclear. Here, we demonstrate that miR858 is a negative regulator of anthocyanin biosynthesis by repressing the target gene AaMYBC1 in red-colored kiwifruit. Transient co-transformation in Nicotiana benthamiana confirmed that miR858 could target AaMYBC1, which was identified to be an R2R3-type tanscription factor (TF). Subcellular localization showed that AaMYBC1 was located in the nucleus, indicating AaMYBC1 protein could act as a transcriptional regulator in plant cells. Functional protein association network analysis and the yeast two hybrid (Y2H) assay revealed that AaMYBC1 and AabHLH42 interact with each other. Silencing of AaMYBC1 using the virus-induced gene silencing method in the core of A. arguta 'HB' ('Hongbaoshixing', a kind of red-fleshed A. arguta cultivar) fruits reduced the accumulation of anthocyanin and decreased the expression of late biosynthetic genes. miR858 overexpression played a stronger role than AaMYBC1 silencing in the inhibition of coloration. With overexpression of miR858, A. arguta did not present coloration, and anthocyanin was hardly detected. Together, these results clarify the negative regulatory role of miR858 in mediating anthocyanin biosynthesis and accumulation in A. arguta, providing novel insights into the molecular mechanism of anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Yukuo Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, PR China; College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430000, PR China.
| | - Wen Cui
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, PR China.
| | - Xiujuan Qi
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, PR China.
| | - Miaomiao Lin
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, PR China.
| | - Chengkui Qiao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, PR China.
| | - Yunpeng Zhong
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, PR China.
| | - Chungen Hu
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430000, PR China.
| | - Jinbao Fang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, PR China.
| |
Collapse
|
305
|
Ali M, Javaid A, Naqvi SH, Batcho A, Kayani WK, Lal A, Sajid IA, Nwogwugwu JO. Biotic stress triggered small RNA and RNAi defense response in plants. Mol Biol Rep 2020; 47:5511-5522. [PMID: 32562176 DOI: 10.1007/s11033-020-05583-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
The yield of crops is largely affected by different types of biotic stresses. To minimize the damage, crop plants adapted themselves to overcome the stress conditions through gene expression reprogramming at transcriptional and post-transcriptional levels. With a better knowledge of plants' responses in adverse environments, new methodologies and strategies have been applied to develop better stress-tolerant plants. In this manner, small RNAs (micro RNA and small-interfering RNA) are reported to play a central role to combat biotic stresses in plants. Depending upon the stress stimuli, these small RNAs can up or down regulate the genes expression, that indicate their potential role in overcoming the stress. These stress-induced small RNAs may reduce the expression of the target gene(s) that might negatively influence plants' response to the adverse conditions. Contrariwise, miRNA, a class of small RNA, can downregulate its expression to upregulate the expression of the target gene(s), which might positively aid to the stress adaptation. Along with this, benefits of RNA interference (RNAi) have also been stated in functional genomic research on insects, fungi and plant pathogens. RNAi is involved in the safe transport of dsRNA to the targeted mRNA(s) in the biotic stress-causing agents (for example fungi and insects) and saves the plant from damage, which is a safer approach compared to use of chemical pesticides. The current review summarizes the role of small RNAs and the use of RNAi to save the plants from biotic stress conditions.
Collapse
Affiliation(s)
- Mohsin Ali
- School of Life Sciences, University of Science and Technology of China (USTC), Hefei, 230027, Anhui, China.
- Department of Bioinformatics & Biotechnology, International Islamic University, Islamabad, 44000, Pakistan.
| | - Ayesha Javaid
- School of Life Sciences, University of Science and Technology of China (USTC), Hefei, 230027, Anhui, China
| | - Sajid Hassan Naqvi
- Department of Bioinformatics & Biotechnology, International Islamic University, Islamabad, 44000, Pakistan
| | - Anicet Batcho
- Division of Plant Sciences, Faculty of Agriculture and Environmental Science, Catholic University of the West Africa, Cotonou, Benin
| | - Waqas Khan Kayani
- Department of Plant Breeding, Swedish University of Agricultural Sciences, PO Box 101, 23053, Alnarp, Sweden
| | - Aamir Lal
- Department of Integrative Biotechnology, Sungkyunkwan University Natural Sciences Campus, Suwon, Gyeonggi-do, 16419, South Korea
| | - Imtiaz Ahmad Sajid
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Joy O Nwogwugwu
- Pathology Section, Department of Forest Conservation and Protection, Forestry Research Institute of Nigeria, Ibadan, Nigeria
| |
Collapse
|
306
|
Chung MY, Nath UK, Vrebalov J, Gapper N, Lee JM, Lee DJ, Kim CK, Giovannoni J. Ectopic expression of miRNA172 in tomato (Solanum lycopersicum) reveals novel function in fruit development through regulation of an AP2 transcription factor. BMC PLANT BIOLOGY 2020; 20:283. [PMID: 32560687 PMCID: PMC7304166 DOI: 10.1186/s12870-020-02489-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 06/11/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are short non-coding RNAs that can influence gene expression via diverse mechanisms. Tomato is a fruit widely consumed for its flavor, culinary attributes, and high nutritional quality. Tomato fruit are climacteric and fleshy, and their ripening is regulated by endogenous and exogenous signals operating through a coordinated genetic network. Much research has been conducted on mechanisms of tomato fruit ripening, but the roles of miRNA-regulated repression/expression of specific regulatory genes are not well documented. RESULTS In this study, we demonstrate that miR172 specifically targets four SlAP2 transcription factor genes in tomato. Among them, SlAP2a was repressed by the overexpression of SlmiR172, manifesting in altered flower morphology, development and accelerated ripening. miR172 over-expression lines specifically repressed SlAP2a, enhancing ethylene biosynthesis, fruit color and additional ripening characteristics. Most previously described ripening-regulatory genes, including RIN-MADS, NR, TAGL1 and LeHB-1 were not influenced by miR172 while CNR showed altered expression. CONCLUSIONS Tomato fruit ripening is directly influenced by miR172 targeting of the APETALA2 transcription factor, SlAP2a, with minimal influence over additional known ripening-regulatory genes. miR172a-guided SlAP2a expression provides insight into another layer of genetic control of ripening and a target for modifying the quality and nutritional value of tomato and possibly other fleshy fruit crops.
Collapse
Affiliation(s)
- Mi-Young Chung
- Department of Agricultural Education, Sunchon National University, Suncheon, South Korea
| | - Ujjal Kumar Nath
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Julia Vrebalov
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Nigel Gapper
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Je Min Lee
- Department of Horticulture, Kyungpook National University, Daegu, Korea
| | - Do-Jin Lee
- Department of Agricultural Education, Sunchon National University, Suncheon, South Korea
| | - Chang Kil Kim
- Department of Horticulture, Kyungpook National University, Daegu, Korea.
| | - James Giovannoni
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA.
- US Department of Agriculture/Agriculture Research Service, Robert W. Holley Centre for Agriculture and Health, Ithaca, New York, USA.
| |
Collapse
|
307
|
BrmiR828 Targets BrPAP1, BrMYB82, and BrTAS4 Involved in the Light Induced Anthocyanin Biosynthetic Pathway in Brassica rapa. Int J Mol Sci 2020; 21:ijms21124326. [PMID: 32560581 PMCID: PMC7352941 DOI: 10.3390/ijms21124326] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 11/17/2022] Open
Abstract
Comprehensive research in various plants shows that the metabolic pathway of anthocyanin biosynthesis is affected by environmental factors and regulated by microRNAs through post-transcriptional regulation. In seedlings of Brassica rapa Tsuda, the accumulation of anthocyanin is induced by light. However, the roles of BrmiR828 in the light-induced synthesis of anthocyanin in Brassica rapa remain to be explored. Here, a primary transcript of BrmiR828 was identified to be located on the chromosomes of the A03 sub-genome. Five candidate MYB family genes were predicted as targets of BrmiR828 in the database of Brassica rapa (BRAD, V1.1) by using psRNATarget. The transcript abundance of mature BrmiR828 was reduced in seedlings of Brassica rapa Tsuda under blue light irradiation comparing with dark treatment. However, Real-time PCR showed the transcript level of the five candidate targets, Bra004162, Bra022602, Bra001917, Bra029113, and Bra039763 was up-regulated when the seedlings exposed to blue or UV-A light. Trans-acting siRNA gene 4 (BrTAS4) was also identified to have a higher transcript level under blue and UV-A light irradiation than that in dark treatment. RNA ligase mediated 5′amplification of cDNA ends (RLM-5′ RACE) showed that BrmiR828 can splice the mRNA of Bra039763, Bra022602, and BrTAS4 on binding sites. Phylogenetic analysis of candidate BrMYBs targets along with MYBs from Arabidopsis thaliana showed that Bra039763, Bra004162, Bra001917, Bra029113, and Bra022602 are classified to the same group with AtMYB75, AtMYB114, AtMYB90, AtMYB113, and AtMYB82 which are involved in the anthocyanin biosynthetic pathway. As a result, light-induced down-regulation of BrmiR828 can target BrTAS4, BrPAP1 (Bra039763), MYB82 (Bra022602) to negatively regulate their transcript levels leading to the accumulation of MYB transcription factors that positively regulate anthocyanin biosynthesis in light-exposed seedlings of Brassica rapa.
Collapse
|
308
|
Abstract
Autophagy is a conserved vacuole/lysosome-mediated degradation pathway for clearing and recycling cellular components including cytosol, macromolecules, and dysfunctional organelles. In recent years, autophagy has emerged to play important roles in plant-pathogen interactions. It acts as an antiviral defense mechanism in plants. Moreover, increasing evidence shows that plant viruses can manipulate, hijack, or even exploit the autophagy pathway to promote pathogenesis, demonstrating the pivotal role of autophagy in the evolutionary arms race between hosts and viruses. In this review, we discuss recent findings about the antiviral and proviral roles of autophagy in plant-virus interactions.
Collapse
Affiliation(s)
- Meng Yang
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China;
| | - Asigul Ismayil
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China;
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China;
| |
Collapse
|
309
|
Zhang Y, Yin S, Tu Y, Mei H, Yang Y. A novel microRNA, SlymiR208, promotes leaf senescence via regulating cytokinin biosynthesis in tomato. PHYSIOLOGIA PLANTARUM 2020; 169:143-155. [PMID: 31985059 DOI: 10.1111/ppl.13068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Leaf senescence is a highly-programmed developmental process during the plant life cycle. Cytokinin (CK) has been widely acknowledged as a negative regulator to delay leaf senescence. MiRNAs play key roles in a variety of developmental and physiological processes through negatively regulating their target gene expression. However, to date, the roles of microRNAs (miRNAs) in CK biosynthesis remain unclear, and the knowledge on miRNA regulation of leaf senescence is still very limited. Isopentenyltransferases (IPTs) catalyze the initial and rate-limiting step of CK biosynthesis in higher plants. Our previous work uncovered that silencing of SlIPT4 expression in tomato resulted in premature leaf senescence. Here, we identified a novel tomato miRNA, SlymiR208, which regulates the expression of SlIPT2 and SlIPT4 at the post-transcriptional level. SlymiR208 expression is ubiquitous in tomato and exhibits an opposite transition to its target transcripts in aged leaf. SlymiR208 overexpression in tomato sharply reduced the transcript levels of SlIPT2 and SlIPT4, and the concentrations of endogenous CKs in leaves. The early leaf senescence caused by SlymiR208 overexpression was consistent with the phenotype of SlIPT4-silenced lines. The data demonstrated that SlymiR208 is a positive regulator in leaf senescence through negatively regulating CK biosynthesis via targeting SlIPT2 and SlIPT4 in tomato. This study indicated that post-transcriptional regulation via miRNA is a control point of CK biosynthesis and added a new layer to the understanding of the regulation of CK biosynthesis in tomato and a new factual proof to support that miRNAs are involved in leaf senescence.
Collapse
Affiliation(s)
- Yong Zhang
- Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Shuangqin Yin
- Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Yun Tu
- Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Hu Mei
- Bioengineering College, Chongqing University, Chongqing, 400044, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Yingwu Yang
- Bioengineering College, Chongqing University, Chongqing, 400044, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
310
|
Base-Pairing Requirements for Small RNA-Mediated Gene Silencing of Recessive Self-Incompatibility Alleles in Arabidopsis halleri. Genetics 2020; 215:653-664. [PMID: 32461267 DOI: 10.1534/genetics.120.303351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/20/2020] [Indexed: 11/18/2022] Open
Abstract
Small noncoding RNAs are central regulators of genome activity and stability. Their regulatory function typically involves sequence similarity with their target sites, but understanding the criteria by which they specifically recognize and regulate their targets across the genome remains a major challenge in the field, especially in the face of the diversity of silencing pathways involved. The dominance hierarchy among self-incompatibility alleles in Brassicaceae is controlled by interactions between a highly diversified set of small noncoding RNAs produced by dominant S-alleles and their corresponding target sites on recessive S-alleles. By controlled crosses, we created numerous heterozygous combinations of S-alleles in Arabidopsis halleri and developed an real-time quantitative PCR assay to compare allele-specific transcript levels for the pollen determinant of self-incompatibility (SCR). This provides the unique opportunity to evaluate the precise base-pairing requirements for effective transcriptional regulation of this target gene. We found strong transcriptional silencing of recessive SCR alleles in all heterozygote combinations examined. A simple threshold model of base pairing for the small RNA-target interaction captures most of the variation in SCR transcript levels. For a subset of S-alleles, we also measured allele-specific transcript levels of the determinant of pistil specificity (SRK), and found sharply distinct expression dynamics throughout flower development between SCR and SRK In contrast to SCR, both SRK alleles were expressed at similar levels in the heterozygote genotypes examined, suggesting no transcriptional control of dominance for this gene. We discuss the implications for the evolutionary processes associated with the origin and maintenance of the dominance hierarchy among self-incompatibility alleles.
Collapse
|
311
|
Dhar N, Caruana J, Erdem I, Raina R. An Arabidopsis DISEASE RELATED NONSPECIFIC LIPID TRANSFER PROTEIN 1 is required for resistance against various phytopathogens and tolerance to salt stress. Gene 2020; 753:144802. [PMID: 32454178 DOI: 10.1016/j.gene.2020.144802] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 01/02/2023]
Abstract
Synchronous and timely regulation of multiple genes results in an effective defense response that decides the fate of the host when challenged with pathogens or unexpected changes in environmental conditions. One such gene, which is downregulated in response to multiple bacterial pathogens, is a putative nonspecific lipid transfer protein (nsLTP) of unknown function that we have named DISEASE RELATED NONSPECIFIC LIPID TRANSFER PROTEIN 1 (DRN1). We show that upon pathogen challenge, DRN1 is strongly downregulated, while a putative DRN1-targeting novel microRNA (miRNA) named DRN1 Regulating miRNA (DmiR) is reciprocally upregulated. Furthermore, we provide evidence that DRN1 is required for defense against bacterial and fungal pathogens as well as for normal seedling growth under salinity stress. Although nsLTP family members from different plant species are known to be a significant source of food allergens and are often associated with antimicrobial properties, our knowledge on the biological functions and regulation of this gene family is limited. Our current work not only sheds light on the mechanism of regulation but also helps in the functional characterization of DRN1, a putative nsLTP family member of hitherto unknown function.
Collapse
Affiliation(s)
- Nikhilesh Dhar
- Department of Biology, Syracuse University, Syracuse, NY 13210, United States; Department of Plant Pathology, University of California, Davis, Salinas, CA 93905, United States
| | - Julie Caruana
- Department of Biology, Syracuse University, Syracuse, NY 13210, United States; American Society for Engineering Education Postdoctoral Fellow, Washington DC 20375, United States
| | - Irmak Erdem
- Department of Biology, Syracuse University, Syracuse, NY 13210, United States
| | - Ramesh Raina
- Department of Biology, Syracuse University, Syracuse, NY 13210, United States.
| |
Collapse
|
312
|
Tiwari JK, Buckseth T, Zinta R, Saraswati A, Singh RK, Rawat S, Chakrabarti SK. Genome-wide identification and characterization of microRNAs by small RNA sequencing for low nitrogen stress in potato. PLoS One 2020; 15:e0233076. [PMID: 32428011 PMCID: PMC7237020 DOI: 10.1371/journal.pone.0233076] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 04/28/2020] [Indexed: 11/18/2022] Open
Abstract
Nitrogen is an important nutrient for plant growth and tuber quality of potato. Since potato crop requires high dose of N, improving nitrogen use efficiency (NUE) of plant is an inevitable approach to minimize N fertilization. The aim of this study was to identify and characterize microRNAs (miRNAs) by small RNA sequencing in potato plants grown in aeroponic under two contrasting N (high and low) regimes. A total of 119 conserved miRNAs belonging to 41 miRNAs families, and 1002 putative novel miRNAs were identified. From total, 52 and 54 conserved miRNAs, and 404 and 628 putative novel miRNAs were differentially expressed in roots and shoots, respectively under low N stress. Of total 34,135 predicted targets, the gene ontology (GO) analysis indicated that maximum targets belong to biological process followed by molecular function and cellular component. Eexpression levels of the selected miRNAs and targets were validated by real time-quantitative polymerase chain reaction (RT-qPCR) analysis. Two predicted targets of potential miRNAs (miR397 and miR398) were validated by 5' RLM-RACE (RNA ligase mediated rapid amplification of cDNA ends). In general, predicted targets are associated with stress-related, kinase, transporters and transcription factors such as universal stress protein, heat shock protein, salt-tolerance protein, calmodulin binding protein, serine-threonine protein kinsae, Cdk10/11- cyclin dependent kinase, amino acid transporter, nitrate transporter, sugar transporter, transcription factor, F-box family protein, and zinc finger protein etc. Our study highlights that miR397 and miR398 play crucial role in potato during low N stress management. Moreover, study provides insights to modulate miRNAs and their predicted targets to develop N-use efficient potato using transgenic/genome-editing tools in future.
Collapse
Affiliation(s)
- Jagesh Kumar Tiwari
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, India
- * E-mail:
| | - Tanuja Buckseth
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Rasna Zinta
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Aastha Saraswati
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Rajesh Kumar Singh
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Shashi Rawat
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Swarup Kumar Chakrabarti
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| |
Collapse
|
313
|
Guo Z, Kuang Z, Wang Y, Zhao Y, Tao Y, Cheng C, Yang J, Lu X, Hao C, Wang T, Cao X, Wei J, Li L, Yang X. PmiREN: a comprehensive encyclopedia of plant miRNAs. Nucleic Acids Res 2020; 48:D1114-D1121. [PMID: 31602478 PMCID: PMC6943064 DOI: 10.1093/nar/gkz894] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/29/2019] [Accepted: 10/09/2019] [Indexed: 01/09/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that function as diverse endogenous gene regulators at the post-transcriptional level. In the past two decades, as research effort on miRNA identification, function and evolution has soared, so has the demand for miRNA databases. However, the current plant miRNA databases suffer from several typical drawbacks, including a lack of entries for many important species, uneven annotation standards across different species, abundant questionable entries, and limited annotation. To address these issues, we developed a knowledge-based database called Plant miRNA Encyclopedia (PmiREN, http://www.pmiren.com/), which was based on uniform processing of sequenced small RNA libraries using miRDeep-P2, followed by manual curation using newly updated plant miRNA identification criteria, and comprehensive annotation. PmiREN currently contains 16,422 high confidence novel miRNA loci in 88 plant species and 3,966 retrieved from miRBase. For every miRNA entry, information on precursor sequence, precursor secondary structure, expression pattern, clusters and synteny in the genome, potential targets supported by Parallel Analysis of RNA Ends (PARE) sequencing, and references is attached whenever possible. PmiREN is hierarchically accessible and has eight built-in search engines. We believe PmiREN is useful for plant miRNA cataloguing and data mining, therefore a resource for data-driven miRNA research in plants.
Collapse
Affiliation(s)
- Zhonglong Guo
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China.,State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, P. R. China
| | - Zheng Kuang
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China.,State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, P. R. China
| | - Ying Wang
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China.,State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, P. R. China
| | - Yongxin Zhao
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China
| | - Yihan Tao
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, P. R. China
| | - Chen Cheng
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China
| | - Jing Yang
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China.,National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Xiayang Lu
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China.,National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Chen Hao
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, P. R. China
| | - Tianxin Wang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, P. R. China
| | - Xiaoyan Cao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Jianhua Wei
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, P. R. China
| | - Xiaozeng Yang
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China
| |
Collapse
|
314
|
Zan T, Zhang L, Xie T, Li L. Genome-Wide Identification and Analysis of the Growth-Regulating Factor (GRF) Gene Family and GRF-Interacting Factor Family in Triticum aestivum L. Biochem Genet 2020; 58:705-724. [PMID: 32399658 DOI: 10.1007/s10528-020-09969-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/04/2020] [Indexed: 11/29/2022]
Abstract
Growth-regulating factors (GRFs) are unique transcription factors in plants. GRFs can interact with SNH (SYT N-terminal homology) domains in GRF-interacting factor (GIF) proteins via the N-terminal QLQ (Gln, Leu, Gln) domain to form functional complexes and participate in the regulation of downstream gene expression. In this study, we systematically identified the GRF gene family and GIF gene family in wheat and its relatives comprising Triticum urartu, Triticum dicoccoides, and Aegilops tauschii. Thirty GRF gene members are present in wheat, which are distributed on 12 chromosomes and they have 2-5 protein-coding regions. They all contain QLQ and WRC (Trp, Arg, Cys) conserved domains. Wheat possesses only eight members of the GIF gene family, which are distributed on six chromosomes. All wheat GIF (TaGIF) proteins have highly conserved SNH and QG (Gln, Gly) domains. The wheat GRF (TaGRF) gene family has 13 pairs of segmental duplication genes and no tandem duplication genes; the TaGIF gene family has two pairs of segmental duplication genes and no tandem duplication genes. It is speculated that segmental duplication events may be the main reason for the amplification of TaGRF gene family and TaGIF gene family. Based on published transcriptome data and qRT-PCR results of 8 TaGRF genes and 4 TaGIF genes, all of the genes responded strongly to osmotic stress, and the expression levels of TaGRF21 and TaGIF5 were also significantly upregulated under drought and cold stress conditions. The results obtained in this study may facilitate further investigations of the functions of TaGRF genes and TaGIF genes in order to identify candidate genes for use in stress-resistant wheat breeding programs.
Collapse
Affiliation(s)
- Ting Zan
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, People's Republic of China
| | - Li Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, People's Republic of China
| | - Tingting Xie
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, People's Republic of China
| | - Liqun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
315
|
Zhao C, Li T, Zhao Y, Zhang B, Li A, Zhao S, Hou L, Xia H, Fan S, Qiu J, Li P, Zhang Y, Guo B, Wang X. Integrated small RNA and mRNA expression profiles reveal miRNAs and their target genes in response to Aspergillus flavus growth in peanut seeds. BMC PLANT BIOLOGY 2020; 20:215. [PMID: 32404101 PMCID: PMC7222326 DOI: 10.1186/s12870-020-02426-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 04/30/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND MicroRNAs are important gene expression regulators in plants immune system. Aspergillus flavus is the most common causal agents of aflatoxin contamination in peanuts, but information on the function of miRNA in peanut-A. flavus interaction is lacking. In this study, the resistant cultivar (GT-C20) and susceptible cultivar (Tifrunner) were used to investigate regulatory roles of miRNAs in response to A. flavus growth. RESULTS A total of 30 miRNAs, 447 genes and 21 potential miRNA/mRNA pairs were differentially expressed significantly when treated with A. flavus. A total of 62 miRNAs, 451 genes and 44 potential miRNA/mRNA pairs exhibited differential expression profiles between two peanut varieties. Gene Ontology (GO) analysis showed that metabolic-process related GO terms were enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses further supported the GO results, in which many enriched pathways were related with biosynthesis and metabolism, such as biosynthesis of secondary metabolites and metabolic pathways. Correlation analysis of small RNA, transcriptome and degradome indicated that miR156/SPL pairs might regulate the accumulation of flavonoids in resistant and susceptible genotypes. The miR482/2118 family might regulate NBS-LRR gene which had the higher expression level in resistant genotype. These results provided useful information for further understanding the roles of miR156/157/SPL and miR482/2118/NBS-LRR pairs. CONCLUSIONS Integration analysis of the transcriptome, miRNAome and degradome of resistant and susceptible peanut varieties were performed in this study. The knowledge gained will help to understand the roles of miRNAs of peanut in response to A. flavus.
Collapse
Affiliation(s)
- Chuanzhi Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
- College of Life Sciences, Shandong Normal University, Jinan, 250014 PR China
| | - Tingting Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
- Rizhao Experimental High School od Shandong, Rizhao, 276826 PR China
| | - Yuhan Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
- College of Life Sciences, Shandong Normal University, Jinan, 250014 PR China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC USA
| | - Aiqin Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
| | - Shuzhen Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
| | - Lei Hou
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
| | - Han Xia
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
| | - Shoujin Fan
- College of Life Sciences, Shandong Normal University, Jinan, 250014 PR China
| | - Jingjing Qiu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
- College of Life Sciences, Shandong Normal University, Jinan, 250014 PR China
| | - Pengcheng Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
| | - Ye Zhang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
| | - Baozhu Guo
- Crop Protection and Management Research Unit, USDA-Agricultural Research Service, Tifton, GA 31793 USA
- Department of Plant Pathology, University of Georgia, Tifton, GA USA
| | - Xingjun Wang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
- College of Life Sciences, Shandong Normal University, Jinan, 250014 PR China
| |
Collapse
|
316
|
Si J, Quan M, Xiao L, Xie J, Du Q, Zhang D. Genetic interactions among Pto-miR319 family members and their targets influence growth and wood properties in Populus tomentosa. Mol Genet Genomics 2020; 295:855-870. [PMID: 32361785 DOI: 10.1007/s00438-020-01667-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/16/2020] [Indexed: 11/25/2022]
Abstract
MicroRNAs (miRNAs) play crucial roles in all aspects of plant growth and development, but the genetic interactions of miRNAs and their target genes in woody plants are largely unknown. Here, we integrated association genetics and expression profiling to decipher the allelic variations and interactions of the Pto-MIR319 family of miRNAs and 12 putative Pto-miR319 target genes related to wood formation in 435 unrelated individuals of Populus tomentosa Carrière (Chinese white poplar). Expression pattern analysis showed that among all pairings between expressions of pre-miRNA of Pto-MIR319 members and targets, 70.0% showed negative correlation of expression levels (r = - 0.944 to 0.674, P < 0.01) in eight tissues and organs of poplar, suggesting that Pto-miR319 may participate in the regulatory network of wood formation. Single SNP-based association studies identified 137 significant associations (P < 0.01, Q < 0.1), representing 126 unique SNPs from Pto-MIR319 members and their targets, with 10 tree growth traits, revealing that these genetic factors have common roles related to wood formation. Epistasis analysis uncovered 105 significant SNP-SNP associations (P < 0.01) influencing the 10 traits, demonstrating the close genetic interactions between Pto-MIR319 family members and the 12 Pto-miR319 target genes. Notably, one common SNP, in the precursor region of Pto-MIR319e, affected the stability of Pto-MIR319e's secondary structure by altering the stem-loop structure and minimum free energy, contributing to variations in the expression of Pto-MIR319e and Pto-miR319e target genes. This study enriches the understanding of the functions of miR319 family miRNAs in poplar and exemplifies a feasible approach to exploring the genetic effects underlying miRNA-mRNA interactions related to complex traits in trees.
Collapse
Affiliation(s)
- Jingna Si
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Mingyang Quan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.,Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Liang Xiao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Jianbo Xie
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.,Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China. .,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China. .,Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
| |
Collapse
|
317
|
Niedojadło K, Kupiecka M, Kołowerzo-Lubnau A, Lenartowski R, Niedojadło J, Bednarska-Kozakiewicz E. Dynamic distribution of ARGONAUTE1 (AGO1) and ARGONAUTE4 (AGO4) in Hyacinthus orientalis L. pollen grains and pollen tubes growing in vitro. PROTOPLASMA 2020; 257:793-805. [PMID: 31916009 DOI: 10.1007/s00709-019-01463-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
The transcriptional and posttranscriptional AGO-mediated control of gene expression may play important roles during male monocot gametophyte development. In this report, we demonstrated dynamic changes in the spatiotemporal distribution of AGO1 and AGO4, which are key proteins of the RNA-induced silencing complex (RISC) in Hyacinthus orientalis male gametophyte development. During maturation of the bicellular pollen grains and in vitro pollen tube growth, the pattern of AGO1 localization was correlated with previously observed transcriptional activity of the cells. During the period of high transcriptional activity, AGO1 is associated with chromatin while the clustered distribution of AGO1 in the interchromatin areas is accompanied by condensation of chromatin and the gradual transcriptional silencing of both cells in mature, dehydrated pollen. During pollen tube growth and the restarting of RNA synthesis in the vegetative nucleus, AGO1 is dispersed in the chromatin. Additionally, the gradual increase in the cytoplasmic pool of AGO1 in the elongating pollen tube indicates the activation of the posttranscriptional gene silencing (PTGS) pathway. During pollen tube growth in the generative cell and in the sperm cells, AGO1 is present mainly in the areas between highly condensed chromatin clusters. Changes in the distribution of AGO4 that indicated the possibility of spatiotemporal organization in the RNA-directed DNA methylation (RdDM) process (cytoplasmic and nuclear steps) were also observed during hyacinth male gametophyte development. Based on our findings, we propose that in the germinating pollen tube, the cytoplasmic assembly of AGO4/siRNA takes place and that the mature complexes could be transported to the nucleus to carry out their function during the next steps of pollen tube growth.
Collapse
Affiliation(s)
- Katarzyna Niedojadło
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland.
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Torun, Poland.
| | - Małgorzata Kupiecka
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
| | - Agnieszka Kołowerzo-Lubnau
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Torun, Poland
| | - Robert Lenartowski
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
| | - Janusz Niedojadło
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
| | - Elżbieta Bednarska-Kozakiewicz
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
| |
Collapse
|
318
|
Roussin-Léveillée C, Silva-Martins G, Moffett P. ARGONAUTE5 Represses Age-Dependent Induction of Flowering through Physical and Functional Interaction with miR156 in Arabidopsis. PLANT & CELL PHYSIOLOGY 2020; 61:957-966. [PMID: 32105323 DOI: 10.1093/pcp/pcaa022] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/20/2020] [Indexed: 05/22/2023]
Abstract
Flowering time is a finely tuned process in plants, in part controlled by the age-regulated microRNA156 (miR156), which functions by suppressing the transcripts of SQUAMOSA-PROMOTER BINDING LIKE (SPL) transcription factors. ARGONAUTE (AGO) proteins are essential effectors of miRNA-mediated gene regulation. However, which AGO(s) mediate(s) the control of flowering time remains unclear. Here, we demonstrate a role of AGO5 in controlling flowering time by modulating the expression of SPL transcription factors. We show that AGO5 interacts physically and functionally with miR156 and that ago5 mutants present an early flowering phenotype in Arabidopsis. Furthermore, in ago5 mutants, the repression of flowering caused by miR156 overexpression is largely reversed, whereas leaf morphology remains unaffected. Our results thus indicate a specific role for AGO5 in mediating miR156 activity in meristematic, but not vegetative, tissue. As such, our data suggest a spatiotemporal regulation of the miR156 aging pathway mediated through different AGO proteins in different tissues.
Collapse
Affiliation(s)
- Charles Roussin-Léveillée
- Centre S�VE, D�partement de Biologie, Universit� de Sherbrooke, Sherbrooke, Qu�bec J1K 2R1, Canada
| | - Guilherme Silva-Martins
- Centre S�VE, D�partement de Biologie, Universit� de Sherbrooke, Sherbrooke, Qu�bec J1K 2R1, Canada
| | - Peter Moffett
- Centre S�VE, D�partement de Biologie, Universit� de Sherbrooke, Sherbrooke, Qu�bec J1K 2R1, Canada
| |
Collapse
|
319
|
Cao JY, Xu YP, Cai XZ. Integrated miRNAome and Transcriptome Analysis Reveals Argonaute 2-Mediated Defense Responses Against the Devastating Phytopathogen Sclerotinia sclerotiorum. FRONTIERS IN PLANT SCIENCE 2020; 11:500. [PMID: 32411168 PMCID: PMC7201365 DOI: 10.3389/fpls.2020.00500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 04/03/2020] [Indexed: 05/29/2023]
Abstract
Argonaute 2 (AGO2)-mediated role in plant defense against fungal pathogens remains largely unknown. In this study, integrated miRNAome and transcriptome analysis employing ago2 mutant was performed to reveal AGO2-associated miRNAs and defense responses against the devastating necrotrophic phytopathogen Sclerotinia sclerotiorum. Both miRNAome and transcriptomes of S. sclerotiorum-inoculated ago2-1 mutant (ago2-Ss) and wild-type (WT-Ss) as well as mock-inoculated ago2-1 mutant (ago2) and wild-type (WT) Arabidopsis plants, were analyzed by sRNA and mRNA deep sequencing. Differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) of the comparisons WT-Ss/WT, ago2/WT, ago2-Ss/WT-Ss, and ago2-Ss/ago2 were identified. Furthermore, integration analysis for the DEMs and DEGs identified over 40 potential AGO2-dependent Sclerotinia sclerotiorum-responsive (ATSR) DEM-DEG pairs involving modulation of immune recognition, calcium flux, redox homeostasis, hormone accumulation and signaling, cell wall modification and metal ion homeostasis. Data-mining result indicated that most of the DEMs were bound with AGO2. Moreover, Arabidopsis mutant analysis demonstrated that three ROS and redox homeostatasis related DEGs of identified DEM-DEG pairs, GSTU2, GSTU5, and RBOHF contributed to the AGO2-mediated defense against S. sclerotiorum. This work provides genome-wide prediction of miRNA-target gene pairs that are potentially associated with the AGO2-dependent resistance against S. sclerotiorum.
Collapse
Affiliation(s)
- Jia-Yi Cao
- Zhejiang Provincial Key Laboratory of Crop Pathogen and Insect Biology, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education of China, Ningbo, China
| | - You-Ping Xu
- Centre of Analysis and Measurement, Zhejiang University, Hangzhou, China
| | - Xin-Zhong Cai
- Zhejiang Provincial Key Laboratory of Crop Pathogen and Insect Biology, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
320
|
Zhang LL, Li Y, Zheng YP, Wang H, Yang X, Chen JF, Zhou SX, Wang LF, Li XP, Ma XC, Zhao JQ, Pu M, Feng H, Fan J, Zhang JW, Huang YY, Wang WM. Expressing a Target Mimic of miR156fhl-3p Enhances Rice Blast Disease Resistance Without Yield Penalty by Improving SPL14 Expression. Front Genet 2020; 11:327. [PMID: 32391053 PMCID: PMC7191088 DOI: 10.3389/fgene.2020.00327] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/19/2020] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNAs) play essential roles in the regulation of plant growth and defense responses. More and more, miRNA-3ps are reported to act in plant development and immunity. miR156 is a conserved miRNA, and most previous studies focus on its roles in plant growth, development, and yield determinacy. Here, we show that expressing a target mimic of miR156fhl-3p led to enhanced rice blast disease resistance without a yield penalty. miR156fhl-3p was differentially responsive to Magnaporthe oryzae in susceptible and resistant accessions. Transgenic lines expressing a target mimic of miR156fhl-3p (MIM156-3p) exhibited enhanced rice blast disease resistance and increased expression of defense-related genes. MIM156-3p also enhanced the mRNA abundance of SPL14 and WRKY45 by down-regulating miR156-5p and pre-miR156. Moreover, MIM156-3p lines displayed a decreased number of second rachis branches per panicle but enlarged grains, leading to unchanged yield per plant. Consistently, overexpressing miR156h (OX156) led to enhanced susceptibility to M. oryzae and decreased the expression of SPL14 and WRKY45. Our results indicate that miR156fhl-3p mounts a regulatory role on miR156-5p, which subsequently regulates the expression of SPL14 and WRKY45 to improve rice blast disease resistance.
Collapse
Affiliation(s)
- Ling-Li Zhang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Yan Li
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, China.,State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Ya-Ping Zheng
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - He Wang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Xuemei Yang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Jin-Feng Chen
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Shi-Xin Zhou
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Liang-Fang Wang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Xu-Pu Li
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Xiao-Chun Ma
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Ji-Qun Zhao
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, China.,State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Mei Pu
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, China.,State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Hui Feng
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, China.,State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Jing Fan
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, China.,State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Ji-Wei Zhang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, China.,State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Yan-Yan Huang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, China.,State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Wen-Ming Wang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, China.,State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, China
| |
Collapse
|
321
|
Identification and Characterization of microRNAs in the Developing Seed of Linseed Flax ( Linum usitatissimum L.). Int J Mol Sci 2020; 21:ijms21082708. [PMID: 32295287 PMCID: PMC7215410 DOI: 10.3390/ijms21082708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 11/17/2022] Open
Abstract
Seed development plays an important role during the life cycle of plants. Linseed flax is an oil crop and the seed is a key organ for fatty acids synthesis and storage. So it is important to understand the molecular mechanism of fatty acid biosynthesis during seed development. In this study, four small RNA libraries from early seeds at 5, 10, 20 and 30 days after flowering (DAF) were constructed and used for high-throughput sequencing to identify microRNAs (miRNAs). A total of 235 miRNAs including 114 known conserved miRNAs and 121 novel miRNAs were identified. The expression patterns of these miRNAs in the four libraries were investigated by bioinformatics and quantitative real-time polymerase chain reaction (qPCR) analysis. It was found that several miRNAs, including Lus-miRNA156a was significantly correlated with seed development process. In order to confirm the actual biological function of Lus-miRNA156a, over-expression vector was constructed and transformed to Arabidopsis. The phenotypes of homozygous transgenic lines showed decreasing of oil content and most of the fatty acid content in seeds as well as late flowering time. The results provided a clue that miRNA156a participating the fatty acid biosynthesis pathway and the detailed molecular mechanism of how it regulates the pathway needs to be further investigated.
Collapse
|
322
|
Akhmetshina AO, Strygina KV, Khlestkina EK, Porokhovinova EA, Brutch NB. High-throughput sequencing techniques to flax genetics and breeding. ECOLOGICAL GENETICS 2020. [PMID: 0 DOI: 10.17816/ecogen16126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Flax (Linum usitatissimum L.) is an important oil and fiber crop. Using modern methods for flax breeding allows accelerating the introduction of some desired genes into the genotypes of future varieties. Today, an important condition for their creation is the development of research, that is based on next-generation sequencing (NGS). This review summarizes the results obtained using NGS in flax research. To date, a linkage map with a high marker density has been obtained for L. usitatissimum, which is already being used for a more efficient search for quantitative traits loci. Comparative studies of transcriptomes and miRNomes of flax under stress and in control conditions elucidated molecular-genetic mechanisms of abiotic and biotic stress responses. The very accurate model for genomic selection of flax resistant to pasmo was constructed. Based on NGS-sequencing also some details of the genus Linum evolution were clarified. The knowledge systematized in the review can be useful for researchers working in flax breeding and whereas fundamental interest for understanding the phylogenetic relationships within the genus Linum, the ontogenesis, and the mechanisms of the response of flax plants to various stress factors.
Collapse
|
323
|
Fan D, Li C, Fan C, Hu J, Li J, Yao S, Lu W, Yan Y, Luo K. MicroRNA6443-mediated regulation of FERULATE 5-HYDROXYLASE gene alters lignin composition and enhances saccharification in Populus tomentosa. THE NEW PHYTOLOGIST 2020; 226:410-425. [PMID: 31849071 DOI: 10.1111/nph.16379] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/01/2019] [Indexed: 05/22/2023]
Abstract
Ferulate 5-hydroxylase (F5H) is a limiting enzyme involved in biosynthesizing sinapyl (S) monolignol in angiosperms. Genetic regulation of F5H can influence S monolignol synthesis and therefore improve saccharification efficiency and biofuel production. To date, little is known about whether F5H is post-transcriptionally regulated by endogenous microRNAs (miRNAs) in woody plants. Here, we report that a microRNA, miR6443, specifically regulates S lignin biosynthesis during stem development in Populus tomentosa. In situ hybridization showed that miR6443 is preferentially expressed in vascular tissues. We further identified that F5H2 is the direct target of miR6443. Overexpression of miR6443 decreased the transcript level of F5H2 in transgenic plants, resulting in a significant reduction in S lignin content. Conversely, reduced miR6443 expression by short tandem target mimics (STTM) elevated F5H2 transcripts, therefore increasing S lignin composition. Introduction of a miR6443-resistant form of F5H2 into miR6443-overexpression plants restored lignin ectopic composition, supporting that miR6443 specifically regulated S lignin biosynthesis by repressing F5H2 in P. tomentosa. Furthermore, saccharification assays revealed decreased hexose yields by 7.5-24.5% in miR6443-overexpression plants compared with the wild-type control, and increased hexoses yields by 13.2-14.6% in STTM6443-overexpression plants. Collectively, we demonstrate that miR6443 modulates S lignin biosynthesis by specially regulating F5H2 in P. tomentosa.
Collapse
Affiliation(s)
- Di Fan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chaofeng Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chunfen Fan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Jian Hu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jianqiu Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Shu Yao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Wanxiang Lu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yangyang Yan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, China
| |
Collapse
|
324
|
Hu G, Hao M, Wang L, Liu J, Zhang Z, Tang Y, Peng Q, Yang Z, Wu J. The Cotton miR477- CBP60A Module Participates in Plant Defense Against Verticillium dahlia. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:624-636. [PMID: 31868566 DOI: 10.1094/mpmi-10-19-0302-r] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Previous reports have shown that, when Verticillium dahliae localizes at the root surface, many microRNAs (miRNAs) were identified at the early induction stage. Here, we constructed two groups from two timepoints of small RNA (sRNA) in cotton root responses to V. dahliae at the later induction stage, pathogen localizing in the interior of root tissue. We identified 71 known and 378 novel miRNAs from six libraries of the pathogen-induced and the control sRNAs. Combined with degradome and sRNA sequencing, 178 corresponding miRNA target genes were identified, in which 40 target genes from differentially expressed miRNAs were primarily associated with oxidation-reduction and stress responses. More importantly, we characterized the cotton miR477-CBP60A module in the later response of the plant to V. dahliae infection. A β-glucuronidase fusion reporter and cleavage site analysis showed that ghr-miR477 directly cleaved the messenger RNA of GhCBP60A in the posttranscriptional process. The ghr-miR477-silencing decreased plant resistance to this fungus, while the knockdown of GhCBP60A increased plant resistance, which regulated GhICS1 expression to determine salicylic acid level. Our data documented that numerous later-inducible miRNAs in the plant response to V. dahliae, suggesting that these miRNAs play important roles in plant resistance to vascular disease.
Collapse
Affiliation(s)
- Guang Hu
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China
| | - Mengyan Hao
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Le Wang
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianfen Liu
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhennan Zhang
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ye Tang
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingzhong Peng
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China
| | - Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Jiahe Wu
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China
| |
Collapse
|
325
|
Hu G, Lei Y, Liu J, Hao M, Zhang Z, Tang Y, Chen A, Wu J. The ghr-miR164 and GhNAC100 modulate cotton plant resistance against Verticillium dahlia. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 293:110438. [PMID: 32081275 DOI: 10.1101/440826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 05/28/2023]
Abstract
MicroRNAs (miRNAs) participate in plant development and defence through post-transcriptional regulation of the target genes. However, few miRNAs were reported to regulate cotton plant disease resistance. Here, we characterized the cotton miR164-NAC100 module in the later induction stage response of the plant to Verticillium dahliae infection. The results of GUS fusing reporter and transcript identity showed that ghr-miR164 can directly cleave the mRNA of GhNAC100 in the post-transcriptional process. The ghr-miR164 positively regulated the cotton plant resistance to V. dahliae according to analyses of its over-expression and knockdown. In link with results, the knockdown of GhNAC100 increased the plant resistance to V. dahliae. Based on LUC reporter, expression analyses and yeast one-hybrid (Y1H) assays, GhNAC100 bound to the CGTA-box of GhPR3 promoter and repressed its expression, negatively regulating plant disease resistance. These results showed that the ghr-miR164 and GhNAC100 module fine-tunes plant defence through the post-transcriptional regulation, which documented that miRNAs play important roles in plant resistance to vascular disease.
Collapse
Affiliation(s)
- Guang Hu
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 450001, Zhengzhou, China
| | - Yu Lei
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianfen Liu
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengyan Hao
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhennan Zhang
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ye Tang
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Aiming Chen
- The Key Laboratory for the Creation of Cotton Varieties in the Northwest, Ministry of Agriculture, Join Hope Seeds CO. Ltd, Changji, Xinjiang, 831100, China
| | - Jiahe Wu
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 450001, Zhengzhou, China.
| |
Collapse
|
326
|
Hu G, Lei Y, Liu J, Hao M, Zhang Z, Tang Y, Chen A, Wu J. The ghr-miR164 and GhNAC100 modulate cotton plant resistance against Verticillium dahlia. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 293:110438. [PMID: 32081275 DOI: 10.1016/j.plantsci.2020.110438] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 05/15/2023]
Abstract
MicroRNAs (miRNAs) participate in plant development and defence through post-transcriptional regulation of the target genes. However, few miRNAs were reported to regulate cotton plant disease resistance. Here, we characterized the cotton miR164-NAC100 module in the later induction stage response of the plant to Verticillium dahliae infection. The results of GUS fusing reporter and transcript identity showed that ghr-miR164 can directly cleave the mRNA of GhNAC100 in the post-transcriptional process. The ghr-miR164 positively regulated the cotton plant resistance to V. dahliae according to analyses of its over-expression and knockdown. In link with results, the knockdown of GhNAC100 increased the plant resistance to V. dahliae. Based on LUC reporter, expression analyses and yeast one-hybrid (Y1H) assays, GhNAC100 bound to the CGTA-box of GhPR3 promoter and repressed its expression, negatively regulating plant disease resistance. These results showed that the ghr-miR164 and GhNAC100 module fine-tunes plant defence through the post-transcriptional regulation, which documented that miRNAs play important roles in plant resistance to vascular disease.
Collapse
Affiliation(s)
- Guang Hu
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 450001, Zhengzhou, China
| | - Yu Lei
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianfen Liu
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengyan Hao
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhennan Zhang
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ye Tang
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Aiming Chen
- The Key Laboratory for the Creation of Cotton Varieties in the Northwest, Ministry of Agriculture, Join Hope Seeds CO. Ltd, Changji, Xinjiang, 831100, China
| | - Jiahe Wu
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 450001, Zhengzhou, China.
| |
Collapse
|
327
|
Jannesar M, Seyedi SM, Moazzam Jazi M, Niknam V, Ebrahimzadeh H, Botanga C. A genome-wide identification, characterization and functional analysis of salt-related long non-coding RNAs in non-model plant Pistacia vera L. using transcriptome high throughput sequencing. Sci Rep 2020; 10:5585. [PMID: 32221354 PMCID: PMC7101358 DOI: 10.1038/s41598-020-62108-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/09/2020] [Indexed: 11/09/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play crucial roles in regulating gene expression in response to plant stresses. Given the importance regulatory roles of lncRNAs, providing methods for predicting the function of these molecules, especially in non-model plants, is strongly demanded by researchers. Here, we constructed a reference sequence for lncRNAs in P. vera (Pistacia vera L.) with 53220 transcripts. In total, we identified 1909 and 2802 salt responsive lncRNAs in Ghazvini, a salt tolerant cultivar, after 6 and 24 h salt treatment, respectively and 1820 lncRNAs in Sarakhs, a salt sensitive cultivar, after 6 h salt treatment. Functional analysis of these lncRNAs by several hybrid methods, revealed that salt responsive NAT-related lncRNAs associated with transcription factors, CERK1, LEA, Laccase genes and several genes involved in the hormone signaling pathways. Moreover, gene ontology (GO) enrichment analysis of salt responsive target genes related to top five selected lncRNAs showed their involvement in the regulation of ATPase, cation transporter, kinase and UDP-glycosyltransferases genes. Quantitative real-time PCR (qRT-PCR) experiment results of lncRNAs, pre-miRNAs and mature miRNAs were in accordance with our RNA-seq analysis. In the present study, a comparative analysis of differentially expressed lncRNAs and microRNA precursors between salt tolerant and sensitive pistachio cultivars provides valuable knowledge on gene expression regulation under salt stress condition.
Collapse
Affiliation(s)
- Masoomeh Jannesar
- Department of Plant Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Seyed Mahdi Seyedi
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | - Maryam Moazzam Jazi
- Research Institute for Endocrine Science (RIES), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Niknam
- Department of Plant Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Hassan Ebrahimzadeh
- Department of Plant Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Christopher Botanga
- Department of Biological Sciences, Chicago State University, Chicago, Illinois, United States of America
| |
Collapse
|
328
|
Wójcikowska B, Wójcik AM, Gaj MD. Epigenetic Regulation of Auxin-Induced Somatic Embryogenesis in Plants. Int J Mol Sci 2020; 21:ijms21072307. [PMID: 32225116 PMCID: PMC7177879 DOI: 10.3390/ijms21072307] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 12/22/2022] Open
Abstract
Somatic embryogenesis (SE) that is induced in plant explants in response to auxin treatment is closely associated with an extensive genetic reprogramming of the cell transcriptome. The significant modulation of the gene transcription profiles during SE induction results from the epigenetic factors that fine-tune the gene expression towards embryogenic development. Among these factors, microRNA molecules (miRNAs) contribute to the post-transcriptional regulation of gene expression. In the past few years, several miRNAs that regulate the SE-involved transcription factors (TFs) have been identified, and most of them were involved in the auxin-related processes, including auxin metabolism and signaling. In addition to miRNAs, chemical modifications of DNA and chromatin, in particular the methylation of DNA and histones and histone acetylation, have been shown to shape the SE transcriptomes. In response to auxin, these epigenetic modifications regulate the chromatin structure, and hence essentially contribute to the control of gene expression during SE induction. In this paper, we describe the current state of knowledge with regard to the SE epigenome. The complex interactions within and between the epigenetic factors, the key SE TFs that have been revealed, and the relationships between the SE epigenome and auxin-related processes such as auxin perception, metabolism, and signaling are highlighted.
Collapse
|
329
|
Zhou F, Tang D, Xu Y, He H, Wu Y, Lin L, Dong J, Tan W, Dai Y. Identification of microRNAs and their Endonucleolytic Cleavaged target mRNAs in colorectal cancer. BMC Cancer 2020; 20:242. [PMID: 32293320 PMCID: PMC7092451 DOI: 10.1186/s12885-020-06717-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/05/2020] [Indexed: 12/18/2022] Open
Abstract
Background Colorectal cancer (CRC) ranks the third among the most common malignancies globally. It is well known that microRNAs (miRNAs) play vital roles in destabilizing mRNAs and repressing their translations in this disease. However, the mechanism of miRNA-induced mRNA cleavage remains to be investigated. Method In this study, high-throughput small RNA (sRNA) sequencing was utilized to identify and profile miRNAs from six pairs of colorectal cancer tissues (CTs) and adjacent tissues (CNs). Degradome sequencing (DS) was employed to detect the cleaved target genes. The Database for Annotation, Visualization and Integrated Discovery (DAVID) software was used for GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis. Results In total, 1278 known miRNAs (clustered into 337 families) and 131 novel miRNAs were characterized in the CT and CN libraries, respectively. Of those, 420 known and eight novel miRNAs were defined as differentially expressed miRNAs (DEmiRNAs) by comparing the expression levels observed in the CT and CN libraries. Furthermore, through DS, 9685 and 202 potential target transcripts were characterized as target genes for 268 known and 33 novel miRNAs, respectively. It was further predicted that a total of 264 targeted genes for the 85 DEmiRNAs are involved in proteoglycans in cancer and the AMP-activated protein kinase signaling pathway. After systemic analysis of prognosis-related miRNA targets in those cancer-related signal pathways, we found that two targets ezrin (EZR) and hematopoietic cell-specific Lyn substrate 1 (HCLS1) had the potential prognostic characteristics with CRC regarding over survival (OS) or recurrence. Conclusion In total, we found that endonucleolytic miRNA-directed mRNA cleavage occurs in CRC. A number of potential genes targeted by CRC-related miRNAs were identified and some may have the potential as prognosis markers of CRC. The present findings may lead to an improved better appreciation of the novel interaction mode between miRNAs and target genes in CRC.
Collapse
Affiliation(s)
- Fangbin Zhou
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), 1017 North Rd Dongmen, Luohu District, Shenzhen, China.,Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, Guangzhou, China
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), 1017 North Rd Dongmen, Luohu District, Shenzhen, China
| | - Yong Xu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), 1017 North Rd Dongmen, Luohu District, Shenzhen, China
| | - Huiyan He
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), 1017 North Rd Dongmen, Luohu District, Shenzhen, China
| | - Yan Wu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), 1017 North Rd Dongmen, Luohu District, Shenzhen, China
| | - Liewen Lin
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), 1017 North Rd Dongmen, Luohu District, Shenzhen, China
| | - Jun Dong
- Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, China
| | - Wenyong Tan
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), 1017 North Rd Dongmen, Luohu District, Shenzhen, China. .,Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen, China.
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), 1017 North Rd Dongmen, Luohu District, Shenzhen, China.
| |
Collapse
|
330
|
Hoang NT, Tóth K, Stacey G. The role of microRNAs in the legume-Rhizobium nitrogen-fixing symbiosis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1668-1680. [PMID: 32163588 DOI: 10.1093/jxb/eraa018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Under nitrogen starvation, most legume plants form a nitrogen-fixing symbiosis with Rhizobium bacteria. The bacteria induce the formation of a novel organ called the nodule in which rhizobia reside as intracellular symbionts and convert atmospheric nitrogen into ammonia. During this symbiosis, miRNAs are essential for coordinating the various plant processes required for nodule formation and function. miRNAs are non-coding, endogenous RNA molecules, typically 20-24 nucleotides long, that negatively regulate the expression of their target mRNAs. Some miRNAs can move systemically within plant tissues through the vascular system, which mediates, for example, communication between the stem/leaf tissues and the roots. In this review, we summarize the growing number of miRNAs that function during legume nodulation focusing on two model legumes, Lotus japonicus and Medicago truncatula, and two important legume crops, soybean (Glycine max) and common bean (Phaseolus vulgaris). This regulation impacts a variety of physiological processes including hormone signaling and spatial regulation of gene expression. The role of mobile miRNAs in regulating legume nodule number is also highlighted.
Collapse
Affiliation(s)
- Nhung T Hoang
- C.S. Bond Life Sciences Center, Divisions of Plant Science and Biochemistry, University of Missouri-Columbia, MO, USA
| | - Katalin Tóth
- C.S. Bond Life Sciences Center, Divisions of Plant Science and Biochemistry, University of Missouri-Columbia, MO, USA
| | - Gary Stacey
- C.S. Bond Life Sciences Center, Divisions of Plant Science and Biochemistry, University of Missouri-Columbia, MO, USA
| |
Collapse
|
331
|
Chowdhury MR, Basak J, Bahadur RP. Elucidating the Functional Role of Predicted miRNAs in Post- Transcriptional Gene Regulation Along with Symbiosis in Medicago truncatula. Curr Bioinform 2020. [DOI: 10.2174/1574893614666191003114202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background:
microRNAs are small non-coding RNAs which inhibit translational and
post-transcriptional processes whereas long non-coding RNAs are found to regulate both
transcriptional and post-transcriptional gene expression. Medicago truncatula is a well-known
model plant for studying legume biology and is also used as a forage crop. In spite of its
importance in nitrogen fixation and soil fertility improvement, little information is available about
Medicago non-coding RNAs that play important role in symbiosis.
Objective:
In this study we have tried to understand the role of Medicago ncRNAs in symbiosis
and regulation of transcription factors.
Methods:
We have identified novel miRNAs by computational methods considering various
parameters like length, MFEI, AU content, SSR signatures and tried to establish an interaction
model with their targets obtained through psRNATarget server.
Results:
149 novel miRNAs are predicted along with their 770 target proteins. We have also
shown that 51 of these novel miRNAs are targeting 282 lncRNAs.
Conclusion:
In this study role of Medicago miRNAs in the regulation of various transcription
factors are elucidated. Knowledge gained from this study will have a positive impact on the
nitrogen fixing ability of this important model plant, which in turn will improve the soil fertility.
Collapse
Affiliation(s)
- Moumita Roy Chowdhury
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | - Jolly Basak
- Laboratory of Plant Stress Biology, Department of Biotechnology, Visva-Bharati, Santiniketan-731235, India
| | - Ranjit Prasad Bahadur
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| |
Collapse
|
332
|
Zhou R, Yu X, Ottosen CO, Zhang T, Wu Z, Zhao T. Unique miRNAs and their targets in tomato leaf responding to combined drought and heat stress. BMC PLANT BIOLOGY 2020; 20:107. [PMID: 32143575 PMCID: PMC7060562 DOI: 10.1186/s12870-020-2313-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/26/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Both drought and heat stress are serious global problems, leading to agricultural production loss. MicroRNAs (miRNAs) play important roles in plant species responding to individual drought and heat stress. However, the miRNAs and mRNAs in association with combined drought and heat in crops like tomato remains unclear. RESULTS We studied the crosstalk of miRNAs and their target genes in tomato plants grown under simultaneous drought and heat stress that frequently happen in field conditions. In total, 335 known miRNAs representing 55 miRNA families and 430 potential novel miRNAs were identified in Solanum lycopersicum L. using small RNA deep sequencing. Through expression analysis, miRNAs in association with drought, heat and the combination of these were investigated. In total, 61, 74 and 37 miRNAs were differentially regulated for combination (of both stresses) vs control, combination vs drought and combination vs heat, respectively. Target genes with different expression levels were found using degradome sequencing, which were mainly involved in transcription factor activity, sequence-specific DNA binding, transcription, regulation of transcription, nucleus, DNA binding etc. The quantitative real-time polymerase chain reaction (qRT-PCR) results confirmed the accuracy of sequencing. CONCLUSIONS Our study serves as valuable knowledge on how crop adapted to combined drought and heat stress by regulating miRNAs and mRNAs, which provide information for crop improvement to deal with future climate changes.
Collapse
Affiliation(s)
- Rong Zhou
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Institute of Vegetable Crop, Jiangsu Province Academy of Agricultural Sciences, Nanjing, Jiangsu, China.
- Department of Food Science, Aarhus University, Aarhus, Denmark.
| | - Xiaqing Yu
- Nanjing Agricultural University, Nanjing, Jiangsu, China
| | | | - Tingling Zhang
- Shanghai Qingpu Vegetable Technology Promotion Station, Shanghai, China
| | - Zhen Wu
- Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Tongmin Zhao
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Institute of Vegetable Crop, Jiangsu Province Academy of Agricultural Sciences, Nanjing, Jiangsu, China.
| |
Collapse
|
333
|
Shao J, Wang L, Liu Y, Qi Q, Wang B, Lu S, Liu C. Identification of milRNAs and their target genes in Ganoderma lucidum by high-throughput sequencing and degradome analysis. Fungal Genet Biol 2020; 136:103313. [DOI: 10.1016/j.fgb.2019.103313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 08/09/2019] [Accepted: 11/15/2019] [Indexed: 12/15/2022]
|
334
|
Singh S, Kumar A, Panda D, Modi MK, Sen P. Identification and characterization of drought responsive miRNAs from a drought tolerant rice genotype of Assam. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.plgene.2019.100213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
335
|
Liu K, Yang J, Ding S, Gao Y. Daisy Chain Topology Based Mammalian Synthetic Circuits for RNA-Only Delivery. ACS Synth Biol 2020; 9:269-282. [PMID: 31895544 DOI: 10.1021/acssynbio.9b00313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Owing to superior safety, the RNA-only delivery synthetic circuit is more suitable for cell-based medicine. Modules which possess matching inputs and outputs could be strung by daisy-chaining to compose RNA-only delivery synthetic gene circuits. In this study, we engineered well-characterized biological parts to construct composable modules, each of which could receive signals from the upstream module and transmit the processed signal to the next module using standard interfaces. Capsid-cNOT7, through which logic gates could be changed by merely changing the type of it, was used as the core element for logical process. Daisy chain topology was used to build RNA-only delivery mammalian synthetic circuits which possess validated functions such as fan out, protein sensing, drug sensing, light sensing, 2-input logic gate, 3-input logic gate, and volatile memory, providing a new method to simplify the design of RNA-only delivery synthetic circuits.
Collapse
Affiliation(s)
- Kaiyu Liu
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, State Key Laboratory of Organ Failure Research, Co-Innovation Center for Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Jiong Yang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Yi Gao
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, State Key Laboratory of Organ Failure Research, Co-Innovation Center for Organ Failure Research, Southern Medical University, Guangzhou, China
| |
Collapse
|
336
|
Ding Y, Ding L, Xia Y, Wang F, Zhu C. Emerging Roles of microRNAs in Plant Heavy Metal Tolerance and Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1958-1965. [PMID: 32003983 DOI: 10.1021/acs.jafc.9b07468] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Heavy metal stress is a major growth- and yield-limiting factor for plants. Heavy metals include essential metals (copper, iron, zinc, and manganese) and non-essential metals (cadmium, mercury, aluminum, arsenic, and lead). Plants use complex mechanisms of gene regulation under heavy metal stress. MicroRNAs are 21-nucleotide non-coding small RNAs as important modulators of gene expression post-transcriptionally. Recently, high-throughput sequencing has led to the identification of an increasing number of heavy-metal-responsive microRNAs in plants. Metal-regulated microRNAs and their target genes are part of a complex regulatory network that controls various biological processes, including heavy metal uptake and transport, protein folding and assembly, metal chelation, scavenging of reactive oxygen species, hormone signaling, and microRNA biogenesis. In this review, we summarize the recent molecular studies that identify heavy-metal-regulated microRNAs and their roles in the regulation of target genes as part of the microRNA-associated regulatory network in response to heavy metal stress in plants.
Collapse
Affiliation(s)
- Yanfei Ding
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences , China Jiliang University , Hangzhou , Zhejiang 310018 , People's Republic of China
- Department of Biology , Hong Kong Baptist University , Kowloon Tong , Hong Kong, People's Republic of China
| | - Lihong Ding
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences , China Jiliang University , Hangzhou , Zhejiang 310018 , People's Republic of China
| | - Yiji Xia
- Department of Biology , Hong Kong Baptist University , Kowloon Tong , Hong Kong, People's Republic of China
| | - Feijuan Wang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences , China Jiliang University , Hangzhou , Zhejiang 310018 , People's Republic of China
| | - Cheng Zhu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences , China Jiliang University , Hangzhou , Zhejiang 310018 , People's Republic of China
| |
Collapse
|
337
|
Abd-Hamid NA, Ahmad-Fauzi MI, Zainal Z, Ismail I. Diverse and dynamic roles of F-box proteins in plant biology. PLANTA 2020; 251:68. [PMID: 32072251 DOI: 10.1007/s00425-020-03356-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/05/2020] [Indexed: 05/23/2023]
Abstract
The SCF complex is a widely studied multi-subunit ring E3 ubiquitin ligase that tags targeted proteins with ubiquitin for protein degradation by the ubiquitin 26S-proteasome system (UPS). The UPS is an important system that generally keeps cellular events tightly regulated by purging misfolded or damaged proteins and selectively degrading important regulatory proteins. The specificity of this post-translational regulation is controlled by F-box proteins (FBPs) via selective recognition of a protein-protein interaction motif at the C-terminal domain. Hence, FBPs are pivotal proteins in determining the plant response in multiple scenarios. It is not surprising that the FBP family is one of the largest protein families in the plant kingdom. In this review, the roles of FBPs, specifically in plants, are compiled to provide insights into their involvement in secondary metabolites, plant stresses, phytohormone signalling, plant developmental processes and miRNA biogenesis.
Collapse
Affiliation(s)
- Nur-Athirah Abd-Hamid
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Muhammad-Izzat Ahmad-Fauzi
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Zamri Zainal
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Ismanizan Ismail
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
338
|
Kouhi F, Sorkheh K, Ercisli S. MicroRNA expression patterns unveil differential expression of conserved miRNAs and target genes against abiotic stress in safflower. PLoS One 2020; 15:e0228850. [PMID: 32069300 PMCID: PMC7028267 DOI: 10.1371/journal.pone.0228850] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/25/2020] [Indexed: 01/08/2023] Open
Abstract
Environmental stresses influence the growth and development of plants by influencing patterns of gene expression. Different regulators control gene expression, including transcription factors (TFs) and microRNAs. MicroRNAs (miRNAs: ~21 nucleotides long) are encoded by miRNA genes transcribed by RNA polymerase II (RNP-II) and play key roles in plant development and physiology. There is little knowledge currently available on miRNAs and their function in response to environmental stresses in safflower. To obtain more information on safflower miRNAs, we initially used a comparative genomics approach and succeeded in identifying 126 miRNAs belonging to 29 conserved families, along with their target genes. In this study, we investigated the expression profiles of seven conserved miRNAs related to drought, salinity, heat, and Cd stress in the leaf and root organs using qRT-PCR, for the first time. Gene Ontology (GO) analysis found that target genes of miRNAs are often TFs such as AP2/ERF and HD-ZIP as well as NAC domain-containing proteins. Expression analyses confirmed that miRNAs can play a vital role in keeping safflower stress-tolerant. Differential expression of miR156, miR162, miR164, miR166, miR172, miR398, and miR408 regulate the expression of their respective target genes. These genes activate several pathways leading to physiological and biochemical responses to abiotic stresses. Some conserved miRNAs were regulated by abiotic stresses. Our finding provides valuable information to understand miRNAs in relation to different abiotic stresses in safflower.
Collapse
Affiliation(s)
- Farshid Kouhi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Karim Sorkheh
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- * E-mail: (SE); , (KS)
| | - Sezai Ercisli
- Department of Horticulture, Agricultural Faculty, Ataturk University, Erzurum, Turkey
- * E-mail: (SE); , (KS)
| |
Collapse
|
339
|
Gutbrod MJ, Martienssen RA. Conserved chromosomal functions of RNA interference. Nat Rev Genet 2020; 21:311-331. [PMID: 32051563 DOI: 10.1038/s41576-019-0203-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2019] [Indexed: 12/21/2022]
Abstract
RNA interference (RNAi), a cellular process through which small RNAs target and regulate complementary RNA transcripts, has well-characterized roles in post-transcriptional gene regulation and transposon repression. Recent studies have revealed additional conserved roles for RNAi proteins, such as Argonaute and Dicer, in chromosome function. By guiding chromatin modification, RNAi components promote chromosome segregation during both mitosis and meiosis and regulate chromosomal and genomic dosage response. Small RNAs and the RNAi machinery also participate in the resolution of DNA damage. Interestingly, many of these lesser-studied functions seem to be more strongly conserved across eukaryotes than are well-characterized functions such as the processing of microRNAs. These findings have implications for the evolution of RNAi since the last eukaryotic common ancestor, and they provide a more complete view of the functions of RNAi.
Collapse
Affiliation(s)
- Michael J Gutbrod
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Robert A Martienssen
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA. .,Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
340
|
Fan G, Liu Y, Du H, Kuang T, Zhang Y. Identification of drought-responsive miRNAs in Hippophae tibetana using high-throughput sequencing. 3 Biotech 2020; 10:53. [PMID: 32015949 DOI: 10.1007/s13205-019-2045-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 12/30/2019] [Indexed: 10/25/2022] Open
Abstract
MicroRNAs (miRNAs) play an important role in abiotic stress response in plants. However, the total miRNA profiles (miRNome) and drought-responsive miRNAs in H. tibetana have not been identified. In this study, we present the first report on the miRNome profiles of H. tibetana by high-throughput sequencing technology. 116 known and 4 predicted novel miRNAs were all identified in six H. tibetana samples. Moreover, to reveal the drought-responsive miRNAs in H. tibetana, we compared the miRNA profiles of H. tibetana grown under water sufficiency and drought stress. The results showed that 39 known miRNAs were up-regulated, while 34 miRNAs were downregulated under drought stress. Moreover, the expression of two novel miRNAs (novel_mir_24 and novel_mir_87) showed notable changes in response to drought stress. The target genes of these differentially expressed miRNAs were mainly enriched in cellular process, metabolic process, cell part, and response to stimulus. The identified drought-responsive miRNAs might be used for improving drought tolerance in H. tibetana and other plateau plants.
Collapse
|
341
|
Wen CH, Hong SF, Hu SF, Lin SS, Chu FH. Lfo-miR164b and LfNAC1 as autumn leaf senescence regulators in Formosan sweet gum (Liquidambar formosana Hance). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110325. [PMID: 31928688 DOI: 10.1016/j.plantsci.2019.110325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/18/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
In this study, a microRNA microarray was used to investigate the microRNA profiles from young green leaves, and senescent red leaves and yellow leaves of Formosan sweet gum (Liquidambar formosana Hance). The conserved microRNA miR164 was highly expressed in green leaves compared to senescent leaves. The pri-microRNA of miR164 was identified and named lfo-miR164b based on its secondary structure. In Agrobacterium-mediated transient expression experiment, lfo-miR164b was confirmed to regulate the leaf senescence-associated gene LfNAC1 and LfNAC100. Transient overexpression of LfNAC1 induced the expression of leaf senescence genes in Nicotiana benthamiana. In addition, LfNAC1 activated the expression of proLfSGR::YFP, suggesting the regulatory role of LfNAC1 in leaf senescence. In summary, miR164 inhibits the expression of LfNAC1 in spring and summer, later on LfNAC1 actives leaf senescence-associated genes to cause leaf senescence following a gradual decline of miR164 as the seasons change. The "miR164-NAC" regulatory mechanism was confirmed in Formosan sweet gum autumn leaf senescence.
Collapse
Affiliation(s)
- Chi-Hsiang Wen
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan
| | - Syuan-Fei Hong
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Sin-Fen Hu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan; Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan; Agriculture Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Fang-Hua Chu
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan; Experimental Forest, National Taiwan University, Taiwan.
| |
Collapse
|
342
|
Zhang QL, Su LY, Zhang ST, Xu XP, Chen XH, Li X, Jiang MQ, Huang SQ, Chen YK, Zhang ZH, Lai ZX, Lin YL. Analyses of microRNA166 gene structure, expression, and function during the early stage of somatic embryogenesis in Dimocarpus longan Lour. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:205-214. [PMID: 31869733 DOI: 10.1016/j.plaphy.2019.12.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
MicroRNA166 (miR166) contributes to post-transcriptional regulation by binding the mRNAs of HD-ZIP III genes, which affects plant growth and development. The structural characteristics, expression, and functions of miR166 genes during the early somatic embryogenesis stage in Dimocarpus longan remain unknown. We isolated the transcripts of pri-miR166 S78 with two transcription initiation sites (TSSs) and pri-miR166 S338 with one TSS. These sequences contain potential smORFs and encode different miRNA peptides (miPEPs). Additionally, their promoters contain cis-acting elements responsive to diverse stimuli. The pre-miR166 S78 and pre-miR166 S338 expression levels were up-regulated in response to 2,4-D, abscisic acid, and ethylene. Although the expression patterns induced by hormones were similar, there were differences in the extent of the response, with pre-miR166 S338 more responsive than pre-miR166 S78. Thus, miRNA transcription and maturation are not simply linearly correlated. Moreover, pre-miR166 S78 and pre-miR166 S338 expression levels were down-regulated, whereas ATHB15 (target gene) expression was up-regulated, from the longan embryonic callus to the globular embryo stages. These results are indicative of a negative regulatory relationship between miR166 and ATHB15 during the early somatic embryogenesis stage in longan. At the same stages, miR166a.2-agomir, miR166a.2-antagomir, and miPEP166 S338 increased or decreased the expression of miR166a.2 and ATHB15, but with no consistent patterns or linear synchronization, from which we've found some reasons for it.
Collapse
Affiliation(s)
- Q L Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - L Y Su
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - S T Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - X P Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - X H Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - X Li
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - M Q Jiang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - S Q Huang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Y K Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Z H Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Z X Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Y L Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
343
|
Hu S, Sprintall J, Guan C, McPhaden MJ, Wang F, Hu D, Cai W. Deep-reaching acceleration of global mean ocean circulation over the past two decades. SCIENCE ADVANCES 2020; 105:108-123. [PMID: 32076640 DOI: 10.1111/tpj.15043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 09/21/2020] [Indexed: 05/06/2023]
Abstract
Ocean circulation redistributes Earth's energy and water masses and influences global climate. Under historical greenhouse warming, regional ocean currents show diverse tendencies, but whether there is an emerging trend of the global mean ocean circulation system is not yet clear. Here, we show a statistically significant increasing trend in the globally integrated oceanic kinetic energy since the early 1990s, indicating a substantial acceleration of global mean ocean circulation. The increasing trend in kinetic energy is particularly prominent in the global tropical oceans, reaching depths of thousands of meters. The deep-reaching acceleration of the ocean circulation is mainly induced by a planetary intensification of surface winds since the early 1990s. Although possibly influenced by wind changes associated with the onset of a negative Pacific decadal oscillation since the late 1990s, the recent acceleration is far larger than that associated with natural variability, suggesting that it is principally part of a long-term trend.
Collapse
Affiliation(s)
- Shijian Hu
- CAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Janet Sprintall
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Cong Guan
- CAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Fan Wang
- CAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dunxin Hu
- CAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenju Cai
- Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- CSIRO Oceans and Atmosphere Flagship, Aspendale, Victoria 3195, Australia
- Centre for Southern Hemisphere Oceans Research (CSHOR), CSIRO Oceans and Atmosphere, Hobart, Tasmania 7004, Australia
| |
Collapse
|
344
|
Barrera-Rojas CH, Rocha GHB, Polverari L, Pinheiro Brito DA, Batista DS, Notini MM, da Cruz ACF, Morea EGO, Sabatini S, Otoni WC, Nogueira FTS. miR156-targeted SPL10 controls Arabidopsis root meristem activity and root-derived de novo shoot regeneration via cytokinin responses. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:934-950. [PMID: 31642910 DOI: 10.1093/jxb/erz475] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/01/2019] [Indexed: 05/07/2023]
Abstract
Root growth is modulated by different factors, including phytohormones, transcription factors, and microRNAs (miRNAs). MicroRNA156 and its targets, the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes, define an age-dependent pathway that controls several developmental processes, including lateral root emergence. However, it remains unclear whether miR156-regulated SPLs control root meristem activity and root-derived de novo shoot regeneration. Here, we show that MIR156 and SPL genes have opposing expression patterns during the progression of primary root (PR) growth in Arabidopsis, suggesting that age cues may modulate root development. Plants with high miR156 levels display reduced meristem size, resulting in shorter primary root (PRs). Conversely, plants with reduced miR156 levels show higher meristem activity. Importantly, loss of function of SPL10 decreases meristem activity, while SPL10 de-repression increases it. Meristem activity is regulated by SPL10 probably through the reduction of cytokinin responses, via the modulation of type-B ARABIDOPSIS RESPONSE REGULATOR1(ARR1) expression. We also show that SPL10 de-repression in the PRs abolishes de novo shoot regenerative capacity by attenuating cytokinin responses. Our results reveal a cooperative regulation of root meristem activity and root-derived de novo shoot regeneration by integrating age cues with cytokinin responses via miR156-targeted SPL10.
Collapse
Affiliation(s)
- Carlos Hernán Barrera-Rojas
- Laboratory of Molecular Genetics of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz', University of Sao Paulo, Piracicaba, Sao Paulo, Brazil
- Bioscience Institute, State University of Sao Paulo, Botucatu, Sao Paulo, Brazil
| | - Gabriel Henrique Braga Rocha
- Laboratory of Molecular Genetics of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz', University of Sao Paulo, Piracicaba, Sao Paulo, Brazil
| | - Laura Polverari
- Laboratory of Functional Genomics and Proteomics of Model Systems, Dipartimento di Biologia e Biotecnologie, Università La Sapienza, Rome, Italy
| | - Diego Armando Pinheiro Brito
- Laboratory of Molecular Genetics of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz', University of Sao Paulo, Piracicaba, Sao Paulo, Brazil
| | - Diego Silva Batista
- Department of Plant Biology, Plant Tissue Culture Laboratory-BIOAGRO, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Marcela M Notini
- Laboratory of Molecular Genetics of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz', University of Sao Paulo, Piracicaba, Sao Paulo, Brazil
| | - Ana Claudia Ferreira da Cruz
- Department of Plant Biology, Plant Tissue Culture Laboratory-BIOAGRO, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Edna Gicela Ortiz Morea
- Laboratory of Molecular Genetics of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz', University of Sao Paulo, Piracicaba, Sao Paulo, Brazil
- Bioscience Institute, State University of Sao Paulo, Botucatu, Sao Paulo, Brazil
| | - Sabrina Sabatini
- Laboratory of Functional Genomics and Proteomics of Model Systems, Dipartimento di Biologia e Biotecnologie, Università La Sapienza, Rome, Italy
| | - Wagner Campos Otoni
- Department of Plant Biology, Plant Tissue Culture Laboratory-BIOAGRO, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Fabio Tebaldi Silveira Nogueira
- Laboratory of Molecular Genetics of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz', University of Sao Paulo, Piracicaba, Sao Paulo, Brazil
| |
Collapse
|
345
|
Conti I, Varano G, Simioni C, Laface I, Milani D, Rimondi E, Neri LM. miRNAs as Influencers of Cell-Cell Communication in Tumor Microenvironment. Cells 2020; 9:cells9010220. [PMID: 31952362 PMCID: PMC7016744 DOI: 10.3390/cells9010220] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
microRNAs (miRNAs) are small noncoding RNAs that regulate gene expression at the posttranscriptional level, inducing the degradation of the target mRNA or translational repression. MiRNAs are involved in the control of a multiplicity of biological processes, and their absence or altered expression has been associated with a variety of human diseases, including cancer. Recently, extracellular miRNAs (ECmiRNAs) have been described as mediators of intercellular communication in multiple contexts, including tumor microenvironment. Cancer cells cooperate with stromal cells and elements of the extracellular matrix (ECM) to establish a comfortable niche to grow, to evade the immune system, and to expand. Within the tumor microenvironment, cells release ECmiRNAs and other factors in order to influence and hijack the physiological processes of surrounding cells, fostering tumor progression. Here, we discuss the role of miRNAs in the pathogenesis of multicomplex diseases, such as Alzheimer’s disease, obesity, and cancer, focusing on the contribution of both intracellular miRNAs, and of released ECmiRNAs in the establishment and development of cancer niche. We also review growing evidence suggesting the use of miRNAs as novel targets or potential tools for therapeutic applications.
Collapse
Affiliation(s)
- Ilaria Conti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Gabriele Varano
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Carolina Simioni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Ilaria Laface
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Daniela Milani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Erika Rimondi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Luca M. Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
- LTTA—Electron Microscopy Center, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-0532-455940
| |
Collapse
|
346
|
Petijová L, Jurčacková Z, Čellárová E. Computational screening of miRNAs and their targets in leaves of Hypericum spp. by transcriptome-mining: a pilot study. PLANTA 2020; 251:49. [PMID: 31938871 DOI: 10.1007/s00425-020-03342-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
Our work provides a survey of mature miRNAs, their target genes and primary precursors identified by in-silico approach in leaf transcriptomes of five selected Hypericum species. MiRNAs are small non-coding RNA molecules found in animals, terrestrial plants, several algae and molds. As their role lies in the post-transcriptional gene silencing, these tiny molecules regulate many biological processes. Phyto-miRNAs are considered the important regulators of secondary metabolism in medicinal plants. The genus Hypericum comprises many producers of bioactive compounds, mainly unique naphtodianthrones with a great therapeutic potential. The main goal of our work was to identify genetically conserved miRNAs, characterize their primary precursors and target sequences in the leaf transcriptomes of five Hypericum species using in-silico approach. We found 20 sequences of potential Hypericum pri-miRNAs, and predicted and computationally validated their secondary structures. The mature miRNAs were identified by target genes screening analysis. Whereas predicted miRNA profiles differed in less genetically conserved families, the highly conserved miRNAs were found in almost all studied species. Moreover, we detected several novel highly likely miRNA-mRNA interactions, such as mir1171 with predicted regulatory role in the biosynthesis of melatonin in plants. Our work contributes to the knowledge of Hypericum miRNAome and miRNA-mRNA interactions.
Collapse
Affiliation(s)
- Linda Petijová
- Department of Genetics, Faculty of Science, Institute of Biology and Ecology, P. J. Šafárik University in Košice, Mánesova 23, 04001, Košice, Slovak Republic.
| | - Zuzana Jurčacková
- Department of Genetics, Faculty of Science, Institute of Biology and Ecology, P. J. Šafárik University in Košice, Mánesova 23, 04001, Košice, Slovak Republic
| | - Eva Čellárová
- Department of Genetics, Faculty of Science, Institute of Biology and Ecology, P. J. Šafárik University in Košice, Mánesova 23, 04001, Košice, Slovak Republic
| |
Collapse
|
347
|
Yu D, Lu J, Shao W, Ma X, Xie T, Ito H, Wang T, Xu M, Wang H, Meng Y. MepmiRDB: a medicinal plant microRNA database. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2019:5522263. [PMID: 31231773 PMCID: PMC6589547 DOI: 10.1093/database/baz070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/27/2019] [Accepted: 05/07/2019] [Indexed: 01/16/2023]
Abstract
MicroRNAs (miRNAs) have been recognized as a key regulator in plant development and metabolism. Recent reports showed that the miRNAs of medicinal plants not only act as a critical modulator in secondary metabolism but also had a great potential of performing cross-kingdom gene regulation. Although several plant miRNA repositories have been publicly available, no miRNA database specific for medicinal plants has been reported to date. Here, we report the first version of MepmiRDB (medicinal plant microRNA database), which is freely accessible at http://mepmirdb.cn/mepmirdb/index.html. This database accommodates thousands of miRNA candidates belonging to 29 medicinal plant species. The miRNA information on sequences, expression patterns and regulatory networks has been included in the functional modules of the database. Specifically, the 'Sequence' module provides the sequences of the mature miRNAs and their precursors, and the structure information of the precursors. Moreover, the processing and small RNA accumulation signals on the miRNA precursors are also included in the 'Sequence' module. The organ/growth condition-specific expression information of the mature miRNAs has been stored in the 'Expression' module. The 'Interaction' module offers the information of the degradome-validated miRNA-target pairs of eight plant species. The 'Search' module enables users to search for the miRNAs by plant species and miRNA families, or by sequences. All data in this database are available for download. Taken together, the functional modules of MepmiRDB ensure its importance and timeliness for mechanistic and functional studies on the medicinal plant miRNAs.
Collapse
Affiliation(s)
- Dongliang Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Jiangjie Lu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China.,Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China
| | - Weishan Shao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China.,Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China
| | - Xiaoxia Ma
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Tian Xie
- Department of Pharmacology, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, 311121, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Hidetaka Ito
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Tingzhang Wang
- Key Laboratory of Microbiological Technology and Bioinformatics Research in Zhejiang Province, Hangzhou, 310012, China
| | - Min Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China.,Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China.,Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China
| | - Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China.,Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China
| |
Collapse
|
348
|
Zhu H, Chen C, Zeng J, Yun Z, Liu Y, Qu H, Jiang Y, Duan X, Xia R. MicroRNA528, a hub regulator modulating ROS homeostasis via targeting of a diverse set of genes encoding copper-containing proteins in monocots. THE NEW PHYTOLOGIST 2020; 225:385-399. [PMID: 31429090 DOI: 10.1111/nph.16130] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/13/2019] [Indexed: 05/04/2023]
Abstract
Plant microRNAs (miRNAs) regulate vital cellular processes, including responses to extreme temperatures with which reactive oxygen species (ROS) are often closely associated. In the present study, it was found that aberrant temperatures caused extensive changes in abundance to numerous miRNAs in banana fruit, especially the copper (Cu)-associated miRNAs. Among them, miR528 was significantly downregulated under cold stress and it was found to target genes encoding polyphenol oxidase (PPO), different from those identified in rice and maize. Expression of PPO genes was upregulated by > 100-fold in cold conditions, leading to ROS surge and subsequent peel browning of banana fruit. Extensive comparative genomic analyses revealed that the monocot-specific miR528 can potentially target a large collection of genes encoding Cu-containing proteins. Most of them are actively involved in cellular ROS metabolism, including not only ROS generating oxidases, but also ROS scavenging enzymes. It also was demonstrated that miR528 has evolved a distinct preference of target genes in different monocots, with its target site varying in position among/within gene families, implying a highly dynamic process of target gene diversification. Its broad capacity to target genes encoding Cu-containing protein implicates miR528 as a key regulator for modulating the cellular ROS homeostasis in monocots.
Collapse
Affiliation(s)
- Hong Zhu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Chengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- China Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, Guangzhou, 510642, China
| | - Jun Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Ze Yun
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yuanlong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- China Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, Guangzhou, 510642, China
| | - Hongxia Qu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yueming Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xuewu Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- China Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, Guangzhou, 510642, China
| |
Collapse
|
349
|
Gualtieri C, Leonetti P, Macovei A. Plant miRNA Cross-Kingdom Transfer Targeting Parasitic and Mutualistic Organisms as a Tool to Advance Modern Agriculture. FRONTIERS IN PLANT SCIENCE 2020; 11:930. [PMID: 32655608 PMCID: PMC7325723 DOI: 10.3389/fpls.2020.00930] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/08/2020] [Indexed: 05/13/2023]
Abstract
MicroRNAs (miRNAs), defined as small non-coding RNA molecules, are fine regulators of gene expression. In plants, miRNAs are well-known for regulating processes spanning from cell development to biotic and abiotic stress responses. Recently, miRNAs have been investigated for their potential transfer to distantly related organisms where they may exert regulatory functions in a cross-kingdom fashion. Cross-kingdom miRNA transfer has been observed in host-pathogen relations as well as symbiotic or mutualistic relations. All these can have important implications as plant miRNAs can be exploited to inhibit pathogen development or aid mutualistic relations. Similarly, miRNAs from eukaryotic organisms can be transferred to plants, thus suppressing host immunity. This two-way lane could have a significant impact on understanding inter-species relations and, more importantly, could leverage miRNA-based technologies for agricultural practices. Additionally, artificial miRNAs (amiRNAs) produced by engineered plants can be transferred to plant-feeding organisms in order to specifically regulate their cross-kingdom target genes. This minireview provides a brief overview of cross-kingdom plant miRNA transfer, focusing on parasitic and mutualistic relations that can have an impact on agricultural practices and discusses some opportunities related to miRNA-based technologies. Although promising, miRNA cross-kingdom transfer remains a debated argument. Several mechanistic aspects, such as the availability, transfer, and uptake of miRNAs, as well as their potential to alter gene expression in a cross-kingdom manner, remain to be addressed.
Collapse
Affiliation(s)
- Carla Gualtieri
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Paola Leonetti
- Institute for Sustainable Plant Protection, National Council of Research, Research Unit of Bari, Bari, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
- *Correspondence: Anca Macovei,
| |
Collapse
|
350
|
Sala L, Chandrasekhar S, Vidigal JA. AGO unchained: Canonical and non-canonical roles of Argonaute proteins in mammals. Front Biosci (Landmark Ed) 2020; 25:1-42. [PMID: 31585876 DOI: 10.2741/4793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Argonaute (AGO) proteins play key roles in animal physiology by binding to small RNAs and regulating the expression of their targets. In mammals, they do so through two distinct pathways: the miRNA pathway represses genes through a multiprotein complex that promotes both decay and translational repression; the siRNA pathway represses transcripts through direct Ago2-mediated cleavage. Here, we review our current knowledge of mechanistic details and physiological requirements of both these pathways and briefly discuss their implications to human disease.
Collapse
Affiliation(s)
- Laura Sala
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Srividya Chandrasekhar
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Joana A Vidigal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA,
| |
Collapse
|