301
|
ATP-Dependent Chromatin Remodeling Complexes for Transcription CARL WU, Laboratory of Molecular Cell Biology, Centerfor Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255. Toxicol Pathol 2004. [DOI: 10.1080/714592157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
302
|
Hilpelä P, Vartiainen MK, Lappalainen P. Regulation of the Actin Cytoskeleton by PI(4,5)P2 and PI(3,4,5)P3. Curr Top Microbiol Immunol 2004; 282:117-63. [PMID: 14594216 DOI: 10.1007/978-3-642-18805-3_5] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The actin cytoskeleton is fundamental for various motile and morphogenetic processes in cells. The structure and dynamics of the actin cytoskeleton are regulated by a wide array of actin-binding proteins, whose activities are controlled by various signal transduction pathways. Recent studies have shown that certain membrane phospholipids, especially PI(4,5)P2 and PI(3,4,5)P3, regulate actin filament assembly in cells and in cell extracts. PI(4,5)P2 appears to be a general regulator of actin polymerization at the plasma membrane or at membrane microdomains, whereas PI(3,4,5)P3 promotes the assembly of specialized actin filament structures in response to some growth factors. Biochemical studies have demonstrated that the activities of many proteins promoting actin assembly are upregulated by PI(4,5)P2, whereas proteins that inhibit actin assembly or promote filament disassembly are down-regulated by PI(4,5)P2. PI(3,4,5)P3 promotes its effects on the actin cytoskeleton mainly through activation of the Rho family of small GTPases. In addition to their effects on actin dynamics, both PI(4,5)P2 and PI(3,4,5)P3 promote the formation of specific actin filament structures through activation/inactivation of actin filament cross-linking proteins and proteins that mediate cytoskeleton-plasma membrane interactions.
Collapse
Affiliation(s)
- P Hilpelä
- Program in Cellular Biotechnology, Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | | | | |
Collapse
|
303
|
Brand M, Ranish JA, Kummer NT, Hamilton J, Igarashi K, Francastel C, Chi TH, Crabtree GR, Aebersold R, Groudine M. Dynamic changes in transcription factor complexes during erythroid differentiation revealed by quantitative proteomics. Nat Struct Mol Biol 2003; 11:73-80. [PMID: 14718926 DOI: 10.1038/nsmb713] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2003] [Accepted: 11/17/2003] [Indexed: 01/30/2023]
Abstract
During erythroid differentiation, beta-globin gene expression is regulated by the locus control region (LCR). The transcription factor NF-E2p18/MafK binds within this region and is essential for beta-globin expression in murine erythroleukemia (MEL) cells. Here we use the isotope-coded affinity tag (ICAT) technique of quantitative mass spectrometry to compare proteins interacting with NF-E2p18/MafK during differentiation. Our results define MafK as a 'dual-function' molecule that shifts from a repressive to an activating mode during erythroid differentiation. The exchange of MafK dimerization partner from Bach1 to NF-E2p45 is a key step in the switch from the repressed to the active state. This shift is associated with changes in the interaction of MafK with co-repressors and co-activators. Thus, our results suggest that in addition to its role as a cis-acting activator of beta-globin gene expression in differentiated erythroid cells, the LCR also promotes an active repression of beta-globin transcription in committed cells before terminal differentiation.
Collapse
Affiliation(s)
- Marjorie Brand
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
304
|
Williams CL. The polybasic region of Ras and Rho family small GTPases: a regulator of protein interactions and membrane association and a site of nuclear localization signal sequences. Cell Signal 2003; 15:1071-80. [PMID: 14575862 DOI: 10.1016/s0898-6568(03)00098-6] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Many small GTPases in the Ras and Rho families have a C-terminal polybasic region (PBR) comprised of multiple lysines or arginines. The PBR controls diverse functions of these small GTPases, including their ability to associate with membranes, interact with specific proteins, and localize in subcellular compartments. Different signaling pathways mediated by Ras and Rho family members may converge when the small GTPases are directed by their PBRs to shared binding sites in specific proteins or at cell membranes. The PBR promotes the interactions of small GTPases with SmgGDS, which is a nucleocytoplasmic shuttling protein that stimulates guanine nucleotide exchange by small GTPases. The PBR of Rac1 was recently found to have a functional nuclear localization signal (NLS) sequence, which enhances the nuclear accumulation of protein complexes containing SmgGDS and Rac1. Sequence analysis demonstrates that canonical NLS sequences (K-K/R-x-K/R) are present in the PBRs of additional Ras and Rho family members, and are evolutionarily conserved across several phyla. These findings suggest that the PBR regulates the nucleocytoplasmic shuttling of some Ras and Rho family members when they are in protein complexes that are too large to diffuse through nuclear pores. These diverse functions of the PBR indicate its critical role in signaling by Ras and Rho family GTPases.
Collapse
Affiliation(s)
- Carol L Williams
- Molecular Pharmacology Laboratory, Guthrie Research Institute, One Guthrie Square, Sayre, PA 18840, USA.
| |
Collapse
|
305
|
Mizuguchi G, Shen X, Landry J, Wu WH, Sen S, Wu C. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 2003; 303:343-8. [PMID: 14645854 DOI: 10.1126/science.1090701] [Citation(s) in RCA: 968] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The conserved histone variant H2AZ has an important role in the regulation of gene expression and the establishment of a buffer to the spread of silent heterochromatin. How histone variants such as H2AZ are incorporated into nucleosomes has been obscure. We have found that Swr1, a Swi2/Snf2-related adenosine triphosphatase, is the catalytic core of a multisubunit, histone-variant exchanger that efficiently replaces conventional histone H2A with histone H2AZ in nucleosome arrays. Swr1 is required for the deposition of histone H2AZ at specific chromosome locations in vivo, and Swr1 and H2AZ commonly regulate a subset of yeast genes. These findings define a previously unknown role for the adenosine triphosphate-dependent chromatin remodeling machinery.
Collapse
Affiliation(s)
- Gaku Mizuguchi
- Laboratory of Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Building 37, Room 6068, Bethesda, MD 20892-4255, USA
| | | | | | | | | | | |
Collapse
|
306
|
Görzer I, Schüller C, Heidenreich E, Krupanska L, Kuchler K, Wintersberger U. The nuclear actin-related protein Act3p/Arp4p of Saccharomyces cerevisiae is involved in transcription regulation of stress genes. Mol Microbiol 2003; 50:1155-71. [PMID: 14622406 DOI: 10.1046/j.1365-2958.2003.03759.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A mutational analysis of the essential nuclear actin-related protein of Saccharomyces cerevisiae, Act3p/Arp4p, was performed. The five residues chosen for substitution were amino acids conserved between actin and Act3p/Arp4p, the tertiary structure of which most probably resembles that of actin. Two thermosensitive (ts) mutants, a single and a double point mutant, and one lethal double point mutant were obtained. Both ts mutants were formamide-sensitive which supports a structural relatedness of Act3p/Arp4p to actin; they were also hypersensitive against hydroxyurea and ultraviolet irradiation pointing to a possible role of Act3p/Arp4p in DNA replication and repair. Their 'suppressor of Ty' (SPT) phenotype, observed with another ts mutant of Act3p/Arp4p before, suggested involvement of Act3p/Arp4p in transcription regulation. Accordingly, genome-wide expression profiling revealed misregulated transcription in a ts mutant of a number of genes, among which increased expression of various stress-responsive genes (many of them requiring Msn2p/Msn4p for induction) was the most salient result. This provides an explanation for the mutant's enhanced resistance to severe thermal and oxidative stress. Thus, Act3p/Arp4p takes an important part in the repression of stress-induced genes under non-stress conditions.
Collapse
Affiliation(s)
- Irene Görzer
- Division of Molecular Genetics, Institute of Cancer Research, University of Vienna, A-1090 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
307
|
Oruetxebarria I, Venturini F, Kekarainen T, Houweling A, Zuijderduijn LMP, Mohd-Sarip A, Vries RGJ, Hoeben RC, Verrijzer CP. P16INK4a is required for hSNF5 chromatin remodeler-induced cellular senescence in malignant rhabdoid tumor cells. J Biol Chem 2003; 279:3807-16. [PMID: 14604992 DOI: 10.1074/jbc.m309333200] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The hSNF5 chromatin-remodeling factor is a tumor suppressor that is inactivated in malignant rhabdoid tumors (MRTs). A number of studies have shown that hSNF5 re-expression blocks MRT cell proliferation. However, the pathway through which hSNF5 acts remains unknown. To address this question, we generated MRT-derived cell lines in which restoration of hSNF5 expression leads to an accumulation in G(0)/G(1), induces cellular senescence and increased apoptosis. Following hSNF5 expression, we observed transcriptional activation of the tumor suppressor p16(INK4a) but not of p14(ARF), repression of several cyclins and CD44, a cell surface glycoprotein implicated in metastasis. Chromatin immunoprecipitations indicated that hSNF5 activates p16(INK4a) transcription and CD44 down-regulation by mediating recruitment of the SWI/SNF complex. Thus, hSNF5 acts as a dualistic co-regulator that, depending on the promoter context, can either mediate activation or repression. Three lines of evidence established that p16(INK4a) is an essential effector of hSNF5-induced cell cycle arrest. 1) Overexpression of p16(INK4a) mimics the effect of hSNF5 induction and leads to cellular senescence. 2) Expression of a p16(INK4a)-insensitive form of CDK4 obstructs hSNF5-induced cell cycle arrest. 3) Inhibition of p16(INK4a) activation by siRNA blocks hSNF5-mediated cellular senescence. Collectively, these results indicate that in human MRT cells, the p16(INK4a)/pRb, rather than the p14(ARF)/p53 pathway, mediates hSNF5-induced cellular senescence.
Collapse
Affiliation(s)
- Igor Oruetxebarria
- Gene Regulation Laboratory and Center for Biomedical Genetics, Leiden University Medical Center, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
308
|
Krauss SW, Chen C, Penman S, Heald R. Nuclear actin and protein 4.1: essential interactions during nuclear assembly in vitro. Proc Natl Acad Sci U S A 2003; 100:10752-7. [PMID: 12960380 PMCID: PMC196875 DOI: 10.1073/pnas.1934680100] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Structural protein 4.1, which has crucial interactions within the spectrin-actin lattice of the human red cell membrane skeleton, also is widely distributed at diverse intracellular sites in nucleated cells. We previously showed that 4.1 is essential for assembly of functional nuclei in vitro and that the capacity of 4.1 to bind actin is required. Here we report that 4.1 and actin colocalize in mammalian cell nuclei using fluorescence microscopy and, by higher-resolution detergent-extracted cell whole-mount electron microscopy, are associated on nuclear filaments. We also devised a cell-free assay using Xenopus egg extract containing fluorescent actin to follow actin during nuclear assembly. By directly imaging actin under nonperturbing conditions, the total nuclear actin population is retained and visualized in situ relative to intact chromatin. We detected actin initially when chromatin and nuclear pores began assembling. As nuclear lamina assembled, but preceding DNA synthesis, actin distributed in a reticulated pattern throughout the nucleus. Protein 4.1 epitopes also were detected when actin began to accumulate in nuclei, producing a diffuse coincident pattern. As nuclei matured, actin was detected both coincident with and also independent of 4.1 epitopes. To test whether acquisition of nuclear actin is required for nuclear assembly, the actin inhibitor latrunculin A was added to Xenopus egg extracts during nuclear assembly. Latrunculin A strongly perturbed nuclear assembly and produced distorted nuclear structures containing neither actin nor protein 4.1. Our results suggest that actin as well as 4.1 is necessary for nuclear assembly and that 4.1-actin interactions may be critical.
Collapse
Affiliation(s)
- Sharon Wald Krauss
- Department of Subcellular Structure, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|
309
|
Johnson N, Krebs M, Boudreau R, Giorgi G, LeGros M, Larabell C. Actin-filled nuclear invaginations indicate degree of cell de-differentiation. Differentiation 2003; 71:414-24. [PMID: 12969334 DOI: 10.1046/j.1432-0436.2003.7107003.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
For years the existence of nuclear actin has been heavily debated, but recent data have clearly demonstrated that actin, as well as actin-binding proteins (ABPs), are located in the nucleus. We examined live EGFP-actin-expressing cells using confocal microscopy and saw the presence of structures strongly resembling actin filaments in the nuclei of MDA-MB-231 human mammary epithelial tumor cells. Many nuclei had more than one of these filamentous structures, some of which appeared to cross the entire nucleus. Extensive analysis, including fluorescence recovery after photobleaching (FRAP), showed that all EGFP-actin in the nucleus is monomeric (G-actin) rather than filamentous (F-actin) and that the apparent filaments seen in the nucleus are invaginations of cytoplasmic monomeric actin. Immunolocalization of nuclear pore complex proteins shows that similar invaginations are seen in cells that are not overexpressing EGFP-actin. To determine whether there is a correlation between increased levels of invagination in the cell nuclei and the state of de-differentiation of the cell, we examined a variety of cell types, including live Xenopus embryonic cells. Cells that were highly de-differentiated, or cancerous, had an increased incidence of invagination, while cells that were differentiated had few nuclear invaginations. The nuclei of embryonic cells that were not yet differentiated underwent multiple shape changes throughout interphase, and demonstrated numerous transient invaginations of varying sizes and shapes. Although the function of these actin-filled invaginations remains speculative, their presence correlates with cells that have increased levels of nuclear activity.
Collapse
Affiliation(s)
- Nicole Johnson
- Advanced Light Source Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
310
|
Abstract
Many proteins function as helical polymers within the cell. Two intensively studied examples are eukaryotic actin and bacterial RecA, which belong to two different protein superfamilies. However, most other members of these superfamilies do not polymerize into helical filaments. General features of polymorphism, cooperativity and allostery that emerge from studies of eukaryotic actin and bacterial RecA raise more general issues about how conserved these filamentous structures have been during evolution.
Collapse
Affiliation(s)
- Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908-0733, USA.
| |
Collapse
|
311
|
Abstract
Whole-genome sequence assemblies are now available for seven different animals, including nematode worms, mice and humans. Comparative genome analyses reveal a surprising constancy in genetic content: vertebrate genomes have only about twice the number of genes that invertebrate genomes have, and the increase is primarily due to the duplication of existing genes rather than the invention of new ones. How, then, has evolutionary diversity arisen? Emerging evidence suggests that organismal complexity arises from progressively more elaborate regulation of gene expression.
Collapse
Affiliation(s)
- Michael Levine
- Department of Molecular and Cell Biology, Division of Genetics and Development, Center for Integrative Genomics, University of California, Berkeley, 401 Barker Hall, Berkeley, California 94720, USA.
| | | |
Collapse
|
312
|
Shiio Y, Eisenman RN, Yi EC, Donohoe S, Goodlett DR, Aebersold R. Quantitative proteomic analysis of chromatin-associated factors. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2003; 14:696-703. [PMID: 12837591 DOI: 10.1016/s1044-0305(03)00204-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A method to identify and quantify chromatin-associated proteins has been developed and applied to the analysis of changes in chromatin-associated proteins induced by Myc oncoprotein expression in human B lymphocytes. Chromatin-enriched fractions were isolated by differential detergent/salt extraction and analyzed by ICAT reagent labeling, multi-dimensional chromatography and tandem mass spectrometry. Many known chromatin-associated regulatory factors were identified and quantified. The method will be widely applicable to various biological systems and reveal changes in chromatin-associated regulatory factors that underlie biological phenomena.
Collapse
Affiliation(s)
- Yuzuru Shiio
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | | | |
Collapse
|
313
|
Szerlong H, Saha A, Cairns BR. The nuclear actin-related proteins Arp7 and Arp9: a dimeric module that cooperates with architectural proteins for chromatin remodeling. EMBO J 2003; 22:3175-87. [PMID: 12805231 PMCID: PMC162148 DOI: 10.1093/emboj/cdg296] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2002] [Revised: 04/28/2003] [Accepted: 04/28/2003] [Indexed: 11/12/2022] Open
Abstract
Nuclear actin-related proteins (ARPs) are essential components of chromatin remodeling and modifying complexes, but their functions and relationship to actin remain elusive. The yeast SWI/SNF and RSC complexes contain Arp7 and Arp9, and are shown to form a stable heterodimer with the properties of a functional module. Arp7 and Arp9 rely on their actin-related regions for heterodimerization, and their unique C-termini cooperate for assembly into RSC. We suggest that regulated ARP-ARP (and possibly ARP-beta-actin) heterodimerization might be a conserved feature of chromatin complexes. A RSC complex lacking Arp7/9 was isolated that displays robust nucleosome remodeling activity, suggesting a separate essential role for ARPs in the regulation of chromatin structure. A screen for suppressors of arp mutations yielded the DNA bending architectural transcription factor Nhp6, which interacts with RSC complex physically and functionally and shows facilitated binding to nucleosomes by RSC. We propose that Arp7/9 dimers function with DNA bending proteins to facilitate proper chromatin architecture and complex- complex interactions.
Collapse
Affiliation(s)
- Heather Szerlong
- Howard Hughes Medical Institute, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
314
|
Percipalle P, Fomproix N, Kylberg K, Miralles F, Bjorkroth B, Daneholt B, Visa N. An actin-ribonucleoprotein interaction is involved in transcription by RNA polymerase II. Proc Natl Acad Sci U S A 2003; 100:6475-80. [PMID: 12743363 PMCID: PMC164471 DOI: 10.1073/pnas.1131933100] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To determine the function of actin in the cell nucleus, we sought to identify nuclear actin-binding proteins in the dipteran Chironomus tentans using DNase I-affinity chromatography. We identified the RNA-binding protein hrp65 as an actin-binding protein and showed that the C-terminal sequence of the hrp65-2 isoform is able to interact directly with actin in vitro. In vivo crosslinking and coimmunoprecipitation experiments indicated that hrp65 and actin are also associated in the living cell. Moreover, in vivo administration of a competing peptide corresponding to the C-terminal sequence of hrp65-2 disrupted the actin-hrp65-2 interaction and caused a specific and drastic reduction of transcription as judged by puff regression and diminished bromo-UTP incorporation. Our results indicate that an actin-based mechanism is implicated in the transcription of most if not all RNA polymerase II genes and suggest that an actin-hrp65-2 interaction is required to maintain the normal transcriptional activity of the cell. Furthermore, immunoelectron microscopy experiments and nuclear run-on assays suggest that the actin-hrp65-2 complex plays a role in transcription elongation.
Collapse
Affiliation(s)
- Piergiorgio Percipalle
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, SE-17177 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
315
|
Kandasamy MK, McKinney EC, Meagher RB. Cell cycle-dependent association of Arabidopsis actin-related proteins AtARP4 and AtARP7 with the nucleus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 33:939-948. [PMID: 12609034 DOI: 10.1046/j.1365-313x.2003.01691.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Arabidopsis encodes at least eight actin-related proteins (ARPs) most of which have orthologs in other distant organisms. To gain insight into the role of ARPs in plants, we have examined the spatial expression and subcellular distribution of two highly divergent Arabidopsis ARPs, AtARP4 and AtARP7. AtARP4 is a homolog of human BAF53 and yeast Arp4, and AtARP7 is a novel, ancient and plant-specific actin-related protein that is not distinctly related to any known ARPs from other kingdoms. Analysis of both these proteins with AtARP4- and AtARP7-specific antibodies revealed that they were most abundant in young meristematic and floral tissues, but were expressed constitutively in all organs and cell types irrespective of their developmental stage. Immunofluorescence studies showed that both AtARP4 and AtARP7 were localized predominantly to the nucleus during interphase. In mitotic cells lacking a nuclear envelope (e.g. metaphase, anaphase, and early telophase stages), these ARPs were excluded from the condensed chromosomes and dispersed throughout the cytoplasm. In contrast, a putative Arabidopsis histone H2B protein remained associated with the interphase nuclei as well as chromosomes throughout the cell cycle. Based on our results and data on the yeast ortholog of AtARP4, these two nuclear plant ARPs may be involved in the modulation of chromatin structure and transcriptional regulation mainly in interphase cells.
Collapse
|
316
|
Shen X, Xiao H, Ranallo R, Wu WH, Wu C. Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 2003; 299:112-4. [PMID: 12434013 DOI: 10.1126/science.1078068] [Citation(s) in RCA: 288] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Eukaryotes use adenosine triphosphate (ATP)-dependent chromatin-remodeling complexes to regulate gene expression. Here, we show that inositol polyphosphates can modulate the activities of several chromatin-remodeling complexes in vitro. Inositol hexakisphosphate (IP6) inhibits nucleosome mobilization by NURF, ISW2, and INO80 complexes. In contrast, nucleosome mobilization by the yeast SWI/SNF complex is stimulated by inositol tetrakisphosphate (IP4) and inositol pentakisphosphate (IP5). We demonstrate that mutations in genes encoding inositol polyphosphate kinases that produce IP4, IP5, and IP6 impair transcription in vivo. These results provide a link between inositol polyphosphates, chromatin remodeling, and gene expression.
Collapse
Affiliation(s)
- Xuetong Shen
- Laboratory of Molecular Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | | | | | | | |
Collapse
|
317
|
Abstract
The notion that the interior of the nucleus is compartmentalized goes back to the discovery of the nucleolus in the 1830s. Today, we know that numerous, discrete domains related to gene expression exist within the interchromatin spaces of the interphase nucleus. These domains might arise from, and thus be positioned by, the transcriptional activity of the chromosomes, themselves tethered to the nuclear envelope, or they might assemble autonomously. Beyond their roles in gene expression or other nuclear functions, the dynamic behaviour of some of these interchromatin domains is providing clues to the modes of mass transport operating in the nucleus, as well as to the long-elusive deep structure of the nucleoplasm.
Collapse
Affiliation(s)
- Thoru Pederson
- Department of Biochemistry and Molecular Pharmacology, and Program in Cell Dynamics University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
318
|
Abstract
It has been a long-standing challenge to decipher the principles that enable cells to both organize their genomes into compact chromatin and ensure that the genetic information remains accessible to regulatory factors and enzymes within the confines of the nucleus. The discovery of nucleosome remodeling activities that utilize the energy of ATP to render nucleosomal DNA accessible has been a great leap forward. In vitro, these enzymes weaken the tight wrapping of DNA around the histone octamers, thereby facilitating the sliding of histone octamers to neighboring DNA segments, their displacement to unlinked DNA, and the accumulation of patches of accessible DNA on the surface of nucleosomes. It is presumed that the collective action of these enzymes endows chromatin with dynamic properties that govern all nuclear functions dealing with chromatin as a substrate. The diverse set of ATPases that qualify as the molecular motors of the nucleosome remodeling process have a common history and are part of a superfamily. The physiological context of their remodeling action builds on the association with a wide range of other proteins to form distinct complexes for nucleosome remodeling. This review summarizes the recent progress in our understanding of the mechanisms underlying the nucleosome remodeling reaction, the targeting of remodeling machines to selected sites in chromatin, and their integration into complex regulatory schemes.
Collapse
Affiliation(s)
- Peter B Becker
- Adolf-Butenandt-Institut, Molekularbiologie, 80336 Munich, Germany.
| | | |
Collapse
|
319
|
Abstract
Actin, through its various forms of assembly, provides the basic framework for cell motility, cell shape and intracellular organization in all eukaryotic cells. Many other cellular processes, for example endocytosis and cytokinesis, are also associated with dynamic changes of the actin cytoskeleton. Important prerequisites for actin's functional diversity are its intrinsic ability to rapidly assemble and disassemble filaments and its spatially and temporally well-controlled supramolecular organization. A large number of proteins that interact with actin, collectively referred to as actin-binding proteins (ABPs), carefully orchestrate different scenarios. Since its isolation in 1994 [Machesky, L.M. et al. (1994) J. Cell Biol. 127, 107-115], the Arp2/3 complex containing the actin-related proteins Arp2 and Arp3 has evolved to be one of the main players in the assembly and maintenance of many actin-based structures in the cell (for review see [Borths, E.L. and Welch, M.D. (2002) Structure 10, 131-135; May, R.C. (2001) Cell Mol. Life Sci. 58, 1607-1626; Pollard, T.D. et al. (2000) Rev. Biophys. Biomol. Struct. 29, 545-576; Welch, M.D. (1999) Trends Cell Biol. 11, 423-427]). In particular, when it comes to the assembly of the intricate branched actin network at the leading edge of lamellipodia, the Arp2/3 complex seems to have received all the attention in recent years. In parallel, but not so much in the spotlight, several reports showed that actin on its own can assume different conformations [Bubb, M.R. et al. (2002) J. Biol. Chem. 277, 20999-21006; Schoenenberger, C.-A. et al. (1999) Microsc. Res. Tech. 47, 38-50; Steinmetz, M.O. et al. (1998) J. Mol. Biol. 278, 793-811; Steinmetz, M.O. et al. (1997) J. Cell Biol. 138, 559-574; Millonig, R., Salvo, H. and Aebi, U. (1988) J. Cell Biol. 106, 785-796] through which it drives its supramolecular patterning, and which ultimately generate its functional diversity.
Collapse
Affiliation(s)
- Cora-Ann Schoenenberger
- M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland.
| | | | | | | |
Collapse
|
320
|
Olave I, Wang W, Xue Y, Kuo A, Crabtree GR. Identification of a polymorphic, neuron-specific chromatin remodeling complex. Genes Dev 2002; 16:2509-17. [PMID: 12368262 PMCID: PMC187451 DOI: 10.1101/gad.992102] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A variety of chromatin remodeling complexes are thought to assist sequence-specific transcription factors. The complexes described to date are expressed ubiquitously, suggesting that they have general transcriptional functions. We show that vertebrate neurons have a specialized chromatin remodeling complex, bBAF, specifically containing the actin-related protein, BAF53b, which is first expressed in postmitotic neurons at about murine embryonic day 12.5 (E12.5). BAF53b is combinatorially assembled into polymorphic complexes with ubiquitous subunits including the two ATPases BRG1 and BRM. We speculate that bBAF complexes create neuronal-specific patterns of chromatin accessibility, thereby imparting new regulatory characteristics to ubiquitous sequence-specific transcription factors in neurons.
Collapse
Affiliation(s)
- Ivan Olave
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
321
|
Abstract
Actin is an abundant protein in most nonmuscle cells. It has often been observed in isolated nuclei, yet cytoplasmic contamination was of course initially regarded as the most plausible origin. Numerous studies on nuclear actin appeared in the 1970s and 1980s, but the picture remained rather muddy. The viewpoint at that time was that actin-shown to move freely between cytoplasm and nucleus-was a mere "thermodynamic wanderer," transiently occupying the nucleus. More recently, evidence has been mounting that actin's presence in the nucleus is not simply governed by the laws of diffusion. The same holds true for the finding of various actin-related proteins in the nucleus, and the case for nuclear myosin, specifically myosin I, is now quite convincing. Moreover, the first intimations of functional roles of nuclear actin are now emerging. Here we examine the overall subject from cell biological and chemical perspectives. The major issue is no longer the presence of actin in the nucleus but rather its supramolecular organization, intranuclear locations, and, of course, functions. These issues interface with recent findings that reveal a surprisingly diverse repertoire of actin conformations and oligomer and polymer forms beyond monomeric G-actin and polymeric F-actin. We present ideas for advancing the nuclear actin field and call for a renewed attack on this major problem in cell biology.
Collapse
Affiliation(s)
- Thoru Pederson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 377 Plantation Street, Worcester, MA 01605-2300, USA.
| | | |
Collapse
|
322
|
Wessel GM, Conner SD, Berg L. Cortical granule translocation is microfilament mediated and linked to meiotic maturation in the sea urchin oocyte. Development 2002; 129:4315-25. [PMID: 12183383 DOI: 10.1242/dev.129.18.4315] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cortical granules exocytose after the fusion of egg and sperm in most animals, and their contents function in the block to polyspermy by creating an impenetrable extracellular matrix. Cortical granules are synthesized throughout oogenesis and translocate en masse to the cell surface during meiosis where they remain until fertilization. As the mature oocyte is approximately 125 μm in diameter (Lytechinus variegatus), many of the cortical granules translocate upwards of 60 μm to reach the cortex within a 4 hour time window. We have investigated the mechanism of this coordinated vesicular translocation event. Although the stimulus to reinitiate meiosis in sea urchin oocytes is not known, we found many different ways to reversibly inhibit germinal vesicle breakdown, and used these findings to discover that meiotic maturation and cortical granule translocation are inseparable. We also learned that cortical granule translocation requires association with microfilaments but not microtubules. It is clear from endocytosis assays that microfilament motors are functional prior to meiosis, even though cortical granules do not use them. However, just after GVBD, cortical granules attach to microfilaments and translocate to the cell surface. This latter conclusion is based on organelle stratification within the oocyte followed by positional quantitation of the cortical granules. We conclude from these studies that maturation promoting factor (MPF) activation stimulates vesicle association with microfilaments, and is a key regulatory step in the coordinated translocation of cortical granules to the egg cortex.
Collapse
Affiliation(s)
- Gary M Wessel
- Department of Molecular and Cell Biology & Biochemistry, 69 Brown Street, Box G, Brown University, Providence, RI 02912, USA.
| | | | | |
Collapse
|
323
|
The Transcription of Genes. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|