301
|
Combined Targeting of AKT and mTOR Inhibits Proliferation of Human NF1-Associated Malignant Peripheral Nerve Sheath Tumour Cells In Vitro but not in a Xenograft Mouse Model In Vivo. Int J Mol Sci 2020; 21:ijms21041548. [PMID: 32102484 PMCID: PMC7073166 DOI: 10.3390/ijms21041548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 11/17/2022] Open
Abstract
Persistent signalling via the PI3K/AKT/mTOR pathway is a major driver of malignancy in NF1-associated malignant peripheral nerve sheath tumours (MPNST). Nevertheless, single targeting of this pathway is not sufficient to inhibit MPNST growth. In this report, we demonstrate that combined treatment with the allosteric pan-AKT inhibitor MK-2206 and the mTORC1/mTORC2 inhibitor AZD8055 has synergistic effects on the viability of MPNST cell lines in comparison to the treatment with each compound alone. However, when treating animals bearing experimental MPNST with the combined AKT/mTOR regime, no influence on tumour growth was observed. Further analysis of the MPNST xenograft tumours resistant to AKT/mTOR treatment revealed a reactivation of both AKT and mTOR in several tumour samples. Additional targeting of the RAS/RAF/MEK/MAPK pathway with the allosteric MEK1/2 inhibitor AZD6244 showed synergistic effects on the viability of MPNST cell lines in vitro in comparison to the dual AKT/mTOR inhibition. In summary, these data indicate that combined treatment with AKT and mTOR inhibitors is effective on MPNST cells in vitro but tumour resistance can occur rapidly in vivo by restoration of AKT/mTOR signalling. Our data further suggest that a triple treatment with inhibitors against AKT, mTORC1/2 and MEK1/2 may be a promising treatment option that should be further analysed in an experimental MPNST mouse model in vivo.
Collapse
|
302
|
Yu Y, Han Y, Zhang F, Gao Z, Zhu T, Dong S, Ma M. Design, Synthesis, and Biological Evaluation of Imidazo[1,2-a]pyridine Derivatives as Novel PI3K/mTOR Dual Inhibitors. J Med Chem 2020; 63:3028-3046. [DOI: 10.1021/acs.jmedchem.9b01736] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ya’nan Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Yuqiao Han
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Fupo Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Zhenmei Gao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Tong Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Suzhen Dong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Mingliang Ma
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
- Key Laboratory of Brain Functional Genomics, Ministry of Education, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
303
|
Distinct Roles of mTOR Targets S6K1 and S6K2 in Breast Cancer. Int J Mol Sci 2020; 21:ijms21041199. [PMID: 32054043 PMCID: PMC7072743 DOI: 10.3390/ijms21041199] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a master regulator of protein translation, metabolism, cell growth and proliferation. It forms two complexes, mTOR complex 1 (mTORC1) and 2 (mTORC2). mTORC1 is frequently deregulated in many cancers, including breast cancer, and is an important target for cancer therapy. The immunosuppressant drug rapamycin and its analogs that inhibit mTOR are currently being evaluated for their potential as anti-cancer agents, albeit with limited efficacy. mTORC1 mediates its function via its downstream targets 40S ribosomal S6 kinases (S6K) and eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1). There are two homologs of S6K: S6K1 and S6K2. Most of the earlier studies focused on S6K1 rather than S6K2. Because of their high degree of structural homology, it was generally believed that they behave similarly. Recent studies suggest that while they may share some functions, they may also exhibit distinct or even opposite functions. Both homologs have been implicated in breast cancer, although how they contribute to breast cancer may differ. The purpose of this review article is to compare and contrast the expression, structure, regulation and function of these two S6K homologs in breast cancer.
Collapse
|
304
|
Zhao D, Jiang M, Zhang X, Hou H. The role of RICTOR amplification in targeted therapy and drug resistance. Mol Med 2020; 26:20. [PMID: 32041519 PMCID: PMC7011243 DOI: 10.1186/s10020-020-0146-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
The emergence of tyrosine kinase inhibitors (TKIs) has changed the current treatment paradigm and achieved good results in recent decades. However, an increasing number of studies have indicated that the complex network of receptor tyrosine kinase (RTK) co-activation could influence the characteristic phenotypes of cancer and the tumor response to targeted treatments. One of strategies to blocking RTK co-activation is targeting the downstream factors of RTK, such as PI3K-AKT-mTOR pathway. RICTOR, a core component of mTORC2, acts as a key effector molecule of the PI3K-AKT pathway; its amplification is often associated with poor clinical outcomes and resistance to TKIs. Here, we discuss the biology of RICTOR in tumor and the prospects of targeting RICTOR as a complementary therapy to inhibit RTK co-activation.
Collapse
Affiliation(s)
- Deze Zhao
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266005, China
| | - Man Jiang
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266005, China
| | - Xiaochun Zhang
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266005, China
| | - Helei Hou
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266005, China.
| |
Collapse
|
305
|
Tarantelli C, Lupia A, Stathis A, Bertoni F. Is There a Role for Dual PI3K/mTOR Inhibitors for Patients Affected with Lymphoma? Int J Mol Sci 2020; 21:E1060. [PMID: 32033478 PMCID: PMC7037719 DOI: 10.3390/ijms21031060] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
The activation of the PI3K/AKT/mTOR pathway is a main driver of cell growth, proliferation, survival, and chemoresistance of cancer cells, and, for this reason, represents an attractive target for developing targeted anti-cancer drugs. There are plenty of preclinical data sustaining the anti-tumor activity of dual PI3K/mTOR inhibitors as single agents and in combination in lymphomas. Clinical responses, including complete remissions (especially in follicular lymphoma patients), are also observed in the very few clinical studies performed in patients that are affected by relapsed/refractory lymphomas or chronic lymphocytic leukemia. In this review, we summarize the literature on dual PI3K/mTOR inhibitors focusing on the lymphoma setting, presenting both the three compounds still in clinical development and those with a clinical program stopped or put on hold.
Collapse
Affiliation(s)
- Chiara Tarantelli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland;
| | - Antonio Lupia
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland;
- Faculty of Biomedical Sciences, USI, 6900 Lugano, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland;
- Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland;
| |
Collapse
|
306
|
Challa S, Husain K, Kim R, Coppola D, Batra SK, Cheng JQ, Malafa MP. Targeting the IκB Kinase Enhancer and Its Feedback Circuit in Pancreatic Cancer. Transl Oncol 2020; 13:481-489. [PMID: 32004866 PMCID: PMC6994835 DOI: 10.1016/j.tranon.2019.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease with an overall median 5-year survival rate of 8%. This poor prognosis is because of the development of resistance to chemotherapy and radiation therapy and lack of effective targeted therapies. IκB kinase enhancer (IKBKE) overexpression was previously implicated in chemoresistance. Because IKBKE is frequently elevated in PDAC and IKBKE inhibitors are currently in clinical trials, we evaluated IKBKE as a therapeutic target in this disease. Depletion of IKBKE was found to significantly reduce PDAC cell survival, growth, cancer stem cell renewal, and cell migration and invasion. Notably, IKBKE inhibitor CYT387 and IKBKE knockdown dramatically activated the MAPK pathway. Phospho-RTK array analyses showed that IKBKE inhibition leads to rapid upregulation of ErbB3 and IGF-1R expression, which results in MAPK-ERK pathway activation-thereby limiting the efficacy of IKBKE inhibitors. Furthermore, IKBKE inhibition leads to stabilization of FOXO3a, which is required for RTK upregulation on IKBKE inhibition. Finally, we demonstrated that the IKBKE inhibitors synergize with the MEK inhibitor trametinib to significantly induce cell death and inhibit tumor growth and liver metastasis in an orthotopic PDAC mouse model.
Collapse
Affiliation(s)
| | | | | | - Domenico Coppola
- Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jin Q Cheng
- Departments of Molecular Oncology, Tampa, FL, USA
| | | |
Collapse
|
307
|
Wei J, Leung K, Truillet C, Ruggero D, Wells JA, Evans MJ. Profiling the Surfaceome Identifies Therapeutic Targets for Cells with Hyperactive mTORC1 Signaling. Mol Cell Proteomics 2020; 19:294-307. [PMID: 31792071 PMCID: PMC7000124 DOI: 10.1074/mcp.ra119.001785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/04/2019] [Indexed: 11/06/2022] Open
Abstract
Aberrantly high mTORC1 signaling is a known driver of many cancers and human disorders, yet pharmacological inhibition of mTORC1 rarely confers durable clinical responses. To explore alternative therapeutic strategies, herein we conducted a proteomics survey to identify cell surface proteins upregulated by mTORC1. A comparison of the surfaceome from Tsc1-/-versus Tsc1+/+ mouse embryonic fibroblasts revealed 59 proteins predicted to be significantly overexpressed in Tsc1-/- cells. Further validation of the data in multiple mouse and human cell lines showed that mTORC1 signaling most dramatically induced the expression of the proteases neprilysin (NEP/CD10) and aminopeptidase N (APN/CD13). Functional studies showed that constitutive mTORC1 signaling sensitized cells to genetic ablation of NEP and APN, as well as the biochemical inhibition of APN. In summary, these data show that mTORC1 signaling plays a significant role in the constitution of the surfaceome, which in turn may present novel therapeutic strategies.
Collapse
Affiliation(s)
- Junnian Wei
- Department of Radiology and Biomedical Imaging, University of California San Francisco 505 Parnassus Ave, San Francisco California 94143
| | - Kevin Leung
- Department of Pharmaceutical Chemistry, University of California San Francisco, 505 Parnassus Ave, San Francisco California 94143
| | - Charles Truillet
- Imagerie Moleculaire In Vivo, INSERM, CEA, Univ. Paris Sud, CNRS, Universite Paris Saclay, CEA-Service Hospitalier Frederic Joliot, Orsay France, 94100
| | - Davide Ruggero
- Department of Urology, University of California San Francisco, 505 Parnassus Ave, San Francisco California 94143; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 505 Parnassus Ave, San Francisco California 94143
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California San Francisco, 505 Parnassus Ave, San Francisco California 94143; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 505 Parnassus Ave, San Francisco California 94143.
| | - Michael J Evans
- Department of Radiology and Biomedical Imaging, University of California San Francisco 505 Parnassus Ave, San Francisco California 94143; Department of Pharmaceutical Chemistry, University of California San Francisco, 505 Parnassus Ave, San Francisco California 94143; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 505 Parnassus Ave, San Francisco California 94143.
| |
Collapse
|
308
|
Marquard FE, Jücker M. PI3K/AKT/mTOR signaling as a molecular target in head and neck cancer. Biochem Pharmacol 2020; 172:113729. [DOI: 10.1016/j.bcp.2019.113729] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/20/2019] [Indexed: 12/24/2022]
|
309
|
Rosemary Extract Inhibits Proliferation, Survival, Akt, and mTOR Signaling in Triple-Negative Breast Cancer Cells. Int J Mol Sci 2020; 21:ijms21030810. [PMID: 32012648 PMCID: PMC7037743 DOI: 10.3390/ijms21030810] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 02/08/2023] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women. Triple-negative (TN) breast cancer lacks expression of estrogen receptor (ER), progesterone receptor (PR) as well as the expression and/or gene amplification of human epidermal growth factor receptor 2 (HER2). TN breast cancer is aggressive and does not respond to hormone therapy, therefore new treatments are urgently needed. Plant-derived chemicals have contributed to the establishment of chemotherapy agents. In previous studies, rosemary extract (RE) has been found to reduce cell proliferation and increase apoptosis in some cancer cell lines. However, there are very few studies examining the effects of RE in TN breast cancer. In the present study, we examined the effects of RE on TN MDA-MB-231 breast cancer cell proliferation, survival/apoptosis, Akt, and mTOR signaling. RE inhibited MDA-MB-231 cell proliferation and survival in a dose-dependent manner. Furthermore, RE inhibited the phosphorylation/activation of Akt and mTOR and enhanced the cleavage of PARP, a marker of apoptosis. Our findings indicate that RE has potent anticancer properties against TN breast cancer and modulates key signaling molecules involved in cell proliferation and survival.
Collapse
|
310
|
Ehrstedt C, Ahlsten G, Strömberg B, Lindskog C, Casar-Borota O. Somatostatin receptor expression and mTOR pathway activation in glioneuronal tumours of childhood. Seizure 2020; 76:123-130. [PMID: 32062323 DOI: 10.1016/j.seizure.2020.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/15/2019] [Accepted: 01/16/2020] [Indexed: 11/29/2022] Open
Abstract
PURPOSE To investigate the expression of somatostatin receptors (SSTRs) and markers of mTOR pathway in paediatric glioneuronal tumours and correlate these findings with tumour type, BRAFV600E mutational status and clinical characteristics such as tumour location, seizure frequency and duration, and age. METHOD 37 children and adolescents with a neuropathological diagnosis of glioneuronal tumour were identified over a 22-year period. Immunohistochemical analyses for SSTRs type 1, 2A, 3, 5 and ezrin-radixin-moesin (ERM) and phosphorylated S6 (pS6), which are indicators of mTOR pathway activation, were performed in tumour specimens from 33 patients and evaluated using the immunoreactive score (IRS). The IRS were compared to tumour type, BRAFV600E status and clinical characteristics. RESULTS Ganglioglioma (GG) was the most frequently encountered subgroup (n = 27), followed by dysembryoplastic neuroepithelial tumour (DNET; n = 4). GGs expressed SSTR2A and SSTR3 to a high extent, 56 % and 44 % respectively. Expression of SSTR2A was also found in DNETs. Signs of mTOR pathway activation were abundant in GGs, but only present in one DNET. No correlations with BRAFV600E presence or clinical characteristics were found. CONCLUSIONS Expression of SSTRs and activation of mTOR pathway in paediatric glioneuronal tumour suggest that somatostatin analogues and mTOR inhibitors may have potential therapeutic implications in a subset of inoperable childhood glioneuronal tumours causing medically refractory epilepsy and/or tumour growth. Further clinical studies are warranted to validate these findings.
Collapse
Affiliation(s)
- Christoffer Ehrstedt
- Department of Women´s and Children´s Health, Section for Paediatrics, Uppsala University, Sweden; Uppsala University Children´s Hospital, Uppsala, Sweden.
| | - Gunnar Ahlsten
- Department of Women´s and Children´s Health, Section for Paediatrics, Uppsala University, Sweden; Uppsala University Children´s Hospital, Uppsala, Sweden
| | - Bo Strömberg
- Department of Women´s and Children´s Health, Section for Paediatrics, Uppsala University, Sweden; Uppsala University Children´s Hospital, Uppsala, Sweden
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Olivera Casar-Borota
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Department of Clinical Pathology, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
311
|
Wen PY, Cloughesy TF, Olivero AG, Morrissey KM, Wilson TR, Lu X, Mueller LU, Coimbra AF, Ellingson BM, Gerstner E, Lee EQ, Rodon J. First-in-Human Phase I Study to Evaluate the Brain-Penetrant PI3K/mTOR Inhibitor GDC-0084 in Patients with Progressive or Recurrent High-Grade Glioma. Clin Cancer Res 2020; 26:1820-1828. [PMID: 31937616 DOI: 10.1158/1078-0432.ccr-19-2808] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/04/2019] [Accepted: 01/10/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE GDC-0084 is an oral, brain-penetrant small-molecule inhibitor of PI3K and mTOR. A first-in-human, phase I study was conducted in patients with recurrent high-grade glioma. PATIENTS AND METHODS GDC-0084 was administered orally, once daily, to evaluate safety, pharmacokinetics (PK), and activity. Fluorodeoxyglucose-PET (FDG-PET) was performed to measure metabolic responses. RESULTS Forty-seven heavily pretreated patients enrolled in eight cohorts (2-65 mg). Dose-limiting toxicities included 1 case of grade 2 bradycardia and grade 3 myocardial ischemia (15 mg), grade 3 stomatitis (45 mg), and 2 cases of grade 3 mucosal inflammation (65 mg); the MTD was 45 mg/day. GDC-0084 demonstrated linear and dose-proportional PK, with a half-life (∼19 hours) supportive of once-daily dosing. At 45 mg/day, steady-state concentrations exceeded preclinical target concentrations producing antitumor activity in xenograft models. FDG-PET in 7 of 27 patients (26%) showed metabolic partial response. At doses ≥45 mg/day, a trend toward decreased median standardized uptake value in normal brain was observed, suggesting central nervous system penetration of drug. In two resection specimens, GDC-0084 was detected at similar levels in tumor and brain tissue, with a brain tissue/tumor-to-plasma ratio of >1 and >0.5 for total and free drug, respectively. Best overall response was stable disease in 19 patients (40%) and progressive disease in 26 patients (55%); 2 patients (4%) were nonevaluable. CONCLUSIONS GDC-0084 demonstrated classic PI3K/mTOR-inhibitor related toxicities. FDG-PET and concentration data from brain tumor tissue suggest that GDC-0084 crossed the blood-brain barrier.
Collapse
Affiliation(s)
- Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| | - Timothy F Cloughesy
- Department of Neurology, Ronald Reagan UCLA Medical Center, University of California Los Angeles, Los Angeles, California
| | | | | | | | - Xuyang Lu
- Genentech, Inc., South San Francisco, California
| | | | | | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Elizabeth Gerstner
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Eudocia Q Lee
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Jordi Rodon
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| |
Collapse
|
312
|
McHugh DJ, Chudow J, DeNunzio M, Slovin SF, Danila DC, Morris MJ, Scher HI, Rathkopf DE. A Phase I Trial of IGF-1R Inhibitor Cixutumumab and mTOR Inhibitor Temsirolimus in Metastatic Castration-resistant Prostate Cancer. Clin Genitourin Cancer 2020; 18:171-178.e2. [PMID: 32057715 DOI: 10.1016/j.clgc.2019.10.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND Despite frequent PTEN (phosphatase and tensin homologue) loss and Akt/mammalian target of rapamycin (mTOR) signaling in prostate cancer, the disease is insensitive to single-agent mTOR inhibition. Insulin-like growth factor-1 receptor inhibition might mitigate the feedback inhibition by Torc1 inhibitors, suppressing downstream Akt activation and, thus, potentiating the antitumor activity of mTOR inhibition. PATIENTS AND METHODS In the present phase I study, patients with metastatic castration-resistant prostate cancer received 6 mg/kg cixutumumab and 25 mg temsirolimus intravenously each week. The primary objective was safety and tolerability. Temsirolimus was decreased if ≥ 2 dose-limiting toxicities (DLTs) were observed in 6 patients. The correlative analyses included measurement of circulating tumor cells, [18F]-fluoro-2-deoxyglucose positron emission tomography, 16β-[18F]-fluoro-α-dihydrotestosterone positron emission tomography, and tumor biopsy. RESULTS A total of 16 patients were enrolled across 3 cohorts (1, -1, -2). Two DLTs (grade 3 oral mucositis) were observed in cohort 1 (temsirolimus, 25 mg), and 1 DLT (grade 3 lipase) in cohort -1 (temsirolimus, 20 mg). The most common adverse events included hyperglycemia (100%; 31% grade 3), oral mucositis (63%; 19% grade 3), and diarrhea (44%; 0 grade 3). Low-grade pneumonitis occurred in 7 of 11 patients (44%; 0 grade 3), prompting the opening of a 3-weekly cohort (temsirolimus, 20 mg/kg), without pneumonitis events. No patient had a >50% decline in prostate-specific antigen from baseline. The best radiographic response was stable disease, with median study duration of 22 weeks (range, 7-63 weeks). CONCLUSIONS Despite a strong scientific rationale for the combination, temsirolimus plus cixutumumab demonstrated limited antitumor activity and a greater than expected incidence of toxicity, including low-grade pneumonitis and hyperglycemia. Hence, the trial was stopped in favor of alternative androgen receptor/phosphatidylinositol 3-kinase-directed combinatorial therapies.
Collapse
Affiliation(s)
- Deaglan J McHugh
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Jay Chudow
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mia DeNunzio
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Susan F Slovin
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Daniel C Danila
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Michael J Morris
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Howard I Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Dana E Rathkopf
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Medicine, Weill Cornell Medical College, New York, NY.
| |
Collapse
|
313
|
Van Acker E, De Rijcke M, Asselman J, Beck IM, Huysman S, Vanhaecke L, De Schamphelaere KA, Janssen CR. Aerosolizable Marine Phycotoxins and Human Health Effects: In Vitro Support for the Biogenics Hypothesis. Mar Drugs 2020; 18:md18010046. [PMID: 31936833 PMCID: PMC7024199 DOI: 10.3390/md18010046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/19/2022] Open
Abstract
Respiratory exposure to marine phycotoxins is of increasing concern. Inhalation of sea spray aerosols (SSAs), during harmful Karenia brevis and Ostreopsis ovata blooms induces respiratory distress among others. The biogenics hypothesis, however, suggests that regular airborne exposure to natural products is health promoting via a downregulation of the mechanistic target of rapamycin (mTOR) pathway. Until now, little scientific evidence supported this hypothesis. The current explorative in vitro study investigated both health-affecting and potential health-promoting mechanisms of airborne phycotoxin exposure, by analyzing cell viability effects via cytotoxicity assays and effects on the mTOR pathway via western blotting. To that end, A549 and BEAS-2B lung cells were exposed to increasing concentrations (ng·L−1–mg·L−1) of (1) pure phycotoxins and (2) an extract of experimental aerosolized homoyessotoxin (hYTX). The lowest cell viability effect concentrations were found for the examined yessotoxins (YTXs). Contradictory to the other phycotoxins, these YTXs only induced a partial cell viability decrease at the highest test concentrations. Growth inhibition and apoptosis, both linked to mTOR pathway activity, may explain these effects, as both YTXs were shown to downregulate this pathway. This proof-of-principle study supports the biogenics hypothesis, as specific aerosolizable marine products (e.g., YTXs) can downregulate the mTOR pathway.
Collapse
Affiliation(s)
- Emmanuel Van Acker
- Laboratory of Environmental Toxicology and Aquatic Ecology, Department of Animal Sciences and Aquatic Ecology, Ghent University, Campus Coupure, Coupure links 653, 9000 Ghent, Belgium
- Correspondence:
| | - Maarten De Rijcke
- Flanders Marine Institute (VLIZ), InnovOcean site, Wandelaarkaai 7, 8400 Ostend, Belgium
| | - Jana Asselman
- Laboratory of Environmental Toxicology and Aquatic Ecology, Department of Animal Sciences and Aquatic Ecology, Ghent University, Campus Coupure, Coupure links 653, 9000 Ghent, Belgium
- Greenbridge, Ghent University, Wetenschapspark 1, 8400 Ostend, Belgium
| | - Ilse M. Beck
- Laboratory for experimental cancer research (LECR), Department for Radiation Oncology and Experimental Cancer Research, Ghent University, Campus UZ, De Pintelaan 185, 9000 Ghent, Belgium
- Department Health Sciences, Odisee University College, 9000 Ghent, Belgium
| | - Steve Huysman
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Campus Merelbeke, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Campus Merelbeke, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Karel A.C. De Schamphelaere
- Laboratory of Environmental Toxicology and Aquatic Ecology, Department of Animal Sciences and Aquatic Ecology, Ghent University, Campus Coupure, Coupure links 653, 9000 Ghent, Belgium
| | - Colin R. Janssen
- Laboratory of Environmental Toxicology and Aquatic Ecology, Department of Animal Sciences and Aquatic Ecology, Ghent University, Campus Coupure, Coupure links 653, 9000 Ghent, Belgium
| |
Collapse
|
314
|
Identification of Two Kinase Inhibitors with Synergistic Toxicity with Low-Dose Hydrogen Peroxide in Colorectal Cancer Cells in vitro. Cancers (Basel) 2020; 12:cancers12010122. [PMID: 31906582 PMCID: PMC7016670 DOI: 10.3390/cancers12010122] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal carcinoma is among the most common types of cancers. With this disease, diffuse scattering in the abdominal area (peritoneal carcinosis) often occurs before diagnosis, making surgical removal of the entire malignant tissue impossible due to a large number of tumor nodules. Previous treatment options include radiation and its combination with intraperitoneal heat-induced chemotherapy (HIPEC). Both options have strong side effects and are often poor in therapeutic efficacy. Tumor cells often grow and proliferate dysregulated, with enzymes of the protein kinase family often playing a crucial role. The present study investigated whether a combination of protein kinase inhibitors and low-dose induction of oxidative stress (using hydrogen peroxide, H2O2) has an additive cytotoxic effect on murine, colorectal tumor cells (CT26). Protein kinase inhibitors from a library of 80 substances were used to investigate colorectal cancer cells for their activity, morphology, and immunogenicity (immunogenic cancer cell death, ICD) upon mono or combination. Toxic compounds identified in 2D cultures were confirmed in 3D cultures, and additive cytotoxicity was identified for the substances lavendustin A, GF109203X, and rapamycin. Toxicity was concomitant with cell cycle arrest, but except HMGB1, no increased expression of immunogenic markers was identified with the combination treatment. The results were validated for GF109203X and rapamycin but not lavendustin A in the 3D model of different colorectal (HT29, SW480) and pancreatic cancer cell lines (MiaPaca, Panc01). In conclusion, our in vitro data suggest that combining oxidative stress with chemotherapy would be conceivable to enhance antitumor efficacy in HIPEC.
Collapse
|
315
|
Ho YS, Hartley J. A bibliometric analysis of highly cited Phosphoinositide 3-Kinase (PI3K) research papers. COLLNET JOURNAL OF SCIENTOMETRICS AND INFORMATION MANAGEMENT 2020. [DOI: 10.1080/09737766.2020.1768172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yuh-Shan Ho
- Trend Research Centre, Asia University, No. 500, Lioufeng Road, Wufeng, Taichung 41354, Taiwan, R.O.C
| | | |
Collapse
|
316
|
Signaling Determinants of Glioma Cell Invasion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:129-149. [PMID: 32034712 DOI: 10.1007/978-3-030-30651-9_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tumor cell invasiveness is a critical challenge in the clinical management of glioma patients. In addition, there is accumulating evidence that current therapeutic modalities, including anti-angiogenic therapy and radiotherapy, can enhance glioma invasiveness. Glioma cell invasion is stimulated by both autocrine and paracrine factors that act on a large array of cell surface-bound receptors. Key signaling elements that mediate receptor-initiated signaling in the regulation of glioblastoma invasion are Rho family GTPases, including Rac, RhoA and Cdc42. These GTPases regulate cell morphology and actin dynamics and stimulate cell squeezing through the narrow extracellular spaces that are typical of the brain parenchyma. Transient attachment of cells to the extracellular matrix is also necessary for glioblastoma cell invasion. Interactions with extracellular matrix components are mediated by integrins that initiate diverse intracellular signalling pathways. Key signaling elements stimulated by integrins include PI3K, Akt, mTOR and MAP kinases. In order to detach from the tumor mass, glioma cells secrete proteolytic enzymes that cleave cell surface adhesion molecules, including CD44 and L1. Key proteases produced by glioma cells include uPA, ADAMs and MMPs. Increased understanding of the molecular mechanisms that control glioma cell invasion has led to the identification of molecular targets for therapeutic intervention in this devastating disease.
Collapse
|
317
|
Zanini S, Renzi S, Giovinazzo F, Bermano G. mTOR Pathway in Gastroenteropancreatic Neuroendocrine Tumor (GEP-NETs). Front Endocrinol (Lausanne) 2020; 11:562505. [PMID: 33304317 PMCID: PMC7701056 DOI: 10.3389/fendo.2020.562505] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) originate from neuroendocrine cells in the gastrointestinal tract. They are heterogeneous, and though initially considered rare tumors, the incidence of GEP-NENs has increased in the last few decades. Therapeutic approaches for the metastatic disease include surgery, radiological intervention by chemoembolisation, radiofrequency ablation, biological therapy in addition to somatostatin analogs, and PRRT therapy (177Lu-DOTATATE). The PI3K-AKT-mTOR pathway is essential in the regulation of protein translation, cell growth, and metabolism. Evidence suggests that the mTOR pathway is involved in malignant progression and resistance to treatment through over-activation of several mechanisms. PI3K, one of the main downstream of the Akt-mTOR axis, is mainly involved in the neoplastic process. This pathway is frequently deregulated in human tumors, making it a central target in the development of new anti-cancer treatments. Recent molecular studies identify potential targets within the PI3K/Akt/mTOR pathway in GEP-NENs. However, the use of target therapy has been known to lead to resistance due to several mechanisms such as feedback activation of alternative pathways, inactivation of protein kinases, and deregulation of the downstream mTOR components. Therefore, the specific role of targeted drugs for the management of GEP-NENs is yet to be well-defined. The variable clinical presentation of advanced neuroendocrine tumors is a significant challenge for designing studies. This review aims to highlight the role of the PI3K/Akt/mTOR pathway in the development of neuroendocrine tumors and further specify its potential as a therapeutic target in advanced stages.
Collapse
Affiliation(s)
- Sara Zanini
- Centre for Obesity Research and Education (CORE), School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Serena Renzi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Francesco Giovinazzo
- Fondazione Policlinico Universitario A. Gemelli Istituto di ricovero e cura a carattere scientifico (IRCCS), Department of Surgery -Transplantation Service, Rome, Italy
- *Correspondence: Francesco Giovinazzo
| | - Giovanna Bermano
- Centre for Obesity Research and Education (CORE), School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
- Giovanna Bermano
| |
Collapse
|
318
|
Zimmerman MA, Wilkison S, Qi Q, Chen G, Li PA. Mitochondrial dysfunction contributes to Rapamycin-induced apoptosis of Human Glioblastoma Cells - A synergistic effect with Temozolomide. Int J Med Sci 2020; 17:2831-2843. [PMID: 33162811 PMCID: PMC7645350 DOI: 10.7150/ijms.40159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/03/2020] [Indexed: 12/22/2022] Open
Abstract
Mammalian target of rapamycin (mTOR) is upregulated in a high percentage of glioblastomas. While a well-known mTOR inhibitor, rapamycin, has been shown to reduce glioblastoma survival, the role of mitochondria in achieving this therapeutic effect is less well known. Here, we examined mitochondrial dysfunction mechanisms that occur with the suppression of mTOR signaling. We found that, along with increased apoptosis, and a reduction in transformative potential, rapamycin treatment significantly affected mitochondrial health. Specifically, increased production of reactive oxygen species (ROS), depolarization of the mitochondrial membrane potential (MMP), and altered mitochondrial dynamics were observed. Furthermore, we verified the therapeutic potential of rapamycin-induced mitochondrial dysfunction through co-treatment with temzolomide (TMZ), the current standard of care for glioblastoma. Together these results demonstrate that the mitochondria remain a promising target for therapeutic intervention against human glioblastoma and that TMZ and rapamycin have a synergistic effect in suppressing glioblastoma viability, enhancing ROS production, and depolarizing MMP.
Collapse
Affiliation(s)
- Mary A Zimmerman
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, 1801 Fayetteville St, Durham, NC, 27707, USA.,Department of Biology, University of Wisconsin-La Crosse, 1725 State St, La Crosse, WI, 54601, USA
| | - Samantha Wilkison
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, 1801 Fayetteville St, Durham, NC, 27707, USA.,Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27708, USA
| | - Qi Qi
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, 1801 Fayetteville St, Durham, NC, 27707, USA.,Department of Neurology, Neuroscience Center, General Hospital of Ningxia Medical University, and Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Yinchuan 750004, China
| | - Guisheng Chen
- Department of Neurology, Neuroscience Center, General Hospital of Ningxia Medical University, and Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Yinchuan 750004, China
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, 1801 Fayetteville St, Durham, NC, 27707, USA
| |
Collapse
|
319
|
Ibarra-Lecue I, Diez-Alarcia R, Morentin B, Meana JJ, Callado LF, Urigüen L. Ribosomal Protein S6 Hypofunction in Postmortem Human Brain Links mTORC1-Dependent Signaling and Schizophrenia. Front Pharmacol 2020; 11:344. [PMID: 32265715 DOI: 10.3389/fphar.2020.00344/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/09/2020] [Indexed: 05/20/2023] Open
Abstract
The mechanistic target of rapamycin (also known as mammalian target of rapamycin) (mTOR)-dependent signaling pathway plays an important role in protein synthesis, cell growth, and proliferation, and has been linked to the development of the central nervous system. Recent studies suggest that mTOR signaling pathway dysfunction could be involved in the etiopathogenesis of schizophrenia. The main goal of this study was to evaluate the status of mTOR signaling pathway in postmortem prefrontal cortex (PFC) samples of subjects with schizophrenia. For this purpose, we quantified the protein expression and phosphorylation status of the mTOR downstream effector ribosomal protein S6 as well as other pathway interactors such as Akt and GSK3β. Furthermore, we quantified the status of these proteins in the brain cortex of rats chronically treated with the antipsychotics haloperidol, clozapine, or risperidone. We found a striking decrease in the expression of total S6 and in its active phosphorylated form phospho-S6 (Ser235/236) in the brain of subjects with schizophrenia compared to matched controls. The chronic treatment with the antipsychotics haloperidol and clozapine affected both the expression of GSK3β and the activation of Akt [phospho-Akt (Ser473)] in rat brain cortex, while no changes were observed in S6 and phospho-S6 (Ser235/236) protein expression with any antipsychotic treatment. These findings provide further evidence for the involvement of the mTOR-dependent signaling pathway in schizophrenia and suggest that a hypofunctional S6 may have a role in the etiopathogenesis of this disorder.
Collapse
Affiliation(s)
- Inés Ibarra-Lecue
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain
| | - Rebeca Diez-Alarcia
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Benito Morentin
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Section of Forensic Pathology, Basque Institute of Legal Medicine, Bilbao, Spain
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Luis F Callado
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Leyre Urigüen
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
320
|
Rubinstein MM, Hyman DM, Caird I, Won H, Soldan K, Seier K, Iasonos A, Tew WP, O'Cearbhaill RE, Grisham RN, Hensley ML, Troso-Sandoval T, Sabbatini P, Guillen J, Selcuklu SD, Zimel C, Torrisi J, Aghajanian C, Makker V. Phase 2 study of LY3023414 in patients with advanced endometrial cancer harboring activating mutations in the PI3K pathway. Cancer 2019; 126:1274-1282. [PMID: 31880826 DOI: 10.1002/cncr.32677] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND PI3K pathway activation is common in endometrial cancer. We evaluated the safety and efficacy of the dual PI3K/mTOR inhibitor, LY3023414, in patients with advanced endometrial cancer harboring activating mutations in the PI3K pathway. METHODS We conducted a single-arm phase 2 study of monotherapy LY3023414. Eligible patients had advanced endometrial cancer of any grade, prior management with 1-4 cytotoxic lines, and PI3K pathway activation prospectively defined as a loss-of-function PTEN alteration or activating alteration in PIK3CA, AKT1, PIK3R1, PIK3R2, or MTOR. The primary objective was best overall response rate (ORR) per RECIST 1.1. RESULTS Twenty-eight patients were treated; histologies included endometroid (39%), carcinosarcoma (25%), serous (21%), and mixed (14%). Patients were heavily pretreated, with a median of 2 prior cytotoxic lines (range, 1-3). The most common alterations involved PIK3CA (68%), PTEN (43%), and PIK3R1 (32%). In the 25 efficacy-evaluable patients, the ORR was 16% (90% CI, 7%-100%), and the clinical benefit rate was 28% (90% CI, 16%-100%). Four patients had a confirmed partial response, and 2 responses lasted for >9 months. The median progression-free survival and overall survival were 2.5 months (95% CI, 1.2-3.0) and 9.2 months (95% CI, 5.0-15.9), respectively. The most common all-grade treatment-related adverse events were anemia (71%), hyperglycemia (71%), hypoalbuminemia (68%), and hypophosphatemia (61%). No correlation between molecular alterations and response was observed. CONCLUSION In patients with heavily pretreated advanced endometrial cancer prospectively selected for tumors with activating PI3K pathway mutations, LY3023414 demonstrated modest single-agent activity and a manageable safety profile.
Collapse
Affiliation(s)
- Maria M Rubinstein
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David M Hyman
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Imogen Caird
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Helen Won
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Krysten Soldan
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kenneth Seier
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexia Iasonos
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William P Tew
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Roisin E O'Cearbhaill
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Rachel N Grisham
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Martee L Hensley
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Tiffany Troso-Sandoval
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Paul Sabbatini
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Joyce Guillen
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - S Duygu Selcuklu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Catherine Zimel
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jean Torrisi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Carol Aghajanian
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Vicky Makker
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| |
Collapse
|
321
|
Lone MUD, Miyan J, Asif M, Malik SA, Dubey P, Singh V, Singh K, Mitra K, Pandey D, Haq W, Amita H, Singh PK, Kiess W, Kaessner F, Garten A, Bhadauria S. Direct physical interaction of active Ras with mSIN1 regulates mTORC2 signaling. BMC Cancer 2019; 19:1236. [PMID: 31856761 PMCID: PMC6921532 DOI: 10.1186/s12885-019-6422-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/02/2019] [Indexed: 11/14/2022] Open
Abstract
Background The mechanistic (or mammalian) target of rapamycin (mTOR), a Ser/Thr kinase, associates with different subunits forming two functionally distinct complexes, mTORC1 and mTORC2, regulating a diverse set of cellular functions in response to growth factors, cellular energy levels, and nutrients. The mechanisms regulating mTORC1 activity are well characterized; regulation of mTORC2 activity, however, remains obscure. While studies conducted in Dictyostelium suggest a possible role of Ras protein as a potential upstream regulator of mTORC2, definitive studies delineating the underlying molecular mechanisms, particularly in mammalian cells, are still lacking. Methods Protein levels were measured by Western blotting and kinase activity of mTORC2 was analyzed by in vitro kinase assay. In situ Proximity ligation assay (PLA) and co-immunoprecipitation assay was performed to detect protein-protein interaction. Protein localization was investigated by immunofluorescence and subcellular fractionation while cellular function of mTORC2 was assessed by assaying extent of cell migration and invasion. Results Here, we present experimental evidence in support of the role of Ras activation as an upstream regulatory switch governing mTORC2 signaling in mammalian cancer cells. We report that active Ras through its interaction with mSIN1 accounts for mTORC2 activation, while disruption of this interaction by genetic means or via peptide-based competitive hindrance, impedes mTORC2 signaling. Conclusions Our study defines the regulatory role played by Ras during mTORC2 signaling in mammalian cells and highlights the importance of Ras-mSIN1 interaction in the assembly of functionally intact mTORC2.
Collapse
Affiliation(s)
- Mehraj-U-Din Lone
- Division of Toxicology and Experimental Medicine, Central Drug Research Institute (CSIR), Lucknow, Uttar Pradesh, 226031, India
| | - Javed Miyan
- Division of Toxicology and Experimental Medicine, Central Drug Research Institute (CSIR), Lucknow, Uttar Pradesh, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India
| | - Mohammad Asif
- Division of Toxicology and Experimental Medicine, Central Drug Research Institute (CSIR), Lucknow, Uttar Pradesh, 226031, India
| | - Showkat A Malik
- Division of Toxicology and Experimental Medicine, Central Drug Research Institute (CSIR), Lucknow, Uttar Pradesh, 226031, India
| | - Parul Dubey
- Department of Surgical Oncology, King George Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Varsha Singh
- Division of Toxicology and Experimental Medicine, Central Drug Research Institute (CSIR), Lucknow, Uttar Pradesh, 226031, India
| | - Kavita Singh
- Electron Microscopy Unit, Sophisticated Analytical Instrumentation Facility, Central Drug Research Institute (CSIR), Lucknow, Uttar Pradesh, 226031, India
| | - Kalyan Mitra
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India.,Electron Microscopy Unit, Sophisticated Analytical Instrumentation Facility, Central Drug Research Institute (CSIR), Lucknow, Uttar Pradesh, 226031, India
| | - Deepali Pandey
- Medicinal and Process Chemistry Division, Central Drug Research Institute (CSIR), Lucknow, Uttar Pradesh, 226031, India
| | - Wahajul Haq
- Medicinal and Process Chemistry Division, Central Drug Research Institute (CSIR), Lucknow, Uttar Pradesh, 226031, India
| | - Himanshi Amita
- Division of Toxicology and Experimental Medicine, Central Drug Research Institute (CSIR), Lucknow, Uttar Pradesh, 226031, India
| | - Prince Kumar Singh
- Division of Toxicology and Experimental Medicine, Central Drug Research Institute (CSIR), Lucknow, Uttar Pradesh, 226031, India
| | - Wieland Kiess
- Center for Pediatric Research Leipzig, University Hospital for Children and Adolescents, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Franziska Kaessner
- Center for Pediatric Research Leipzig, University Hospital for Children and Adolescents, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Antje Garten
- Center for Pediatric Research Leipzig, University Hospital for Children and Adolescents, Faculty of Medicine, University of Leipzig, Leipzig, Germany.,Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Smrati Bhadauria
- Division of Toxicology and Experimental Medicine, Central Drug Research Institute (CSIR), Lucknow, Uttar Pradesh, 226031, India. .,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India.
| |
Collapse
|
322
|
Bhaoighill MN, Dunlop EA. Mechanistic target of rapamycin inhibitors: successes and challenges as cancer therapeutics. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:1069-1085. [PMID: 35582282 PMCID: PMC9019212 DOI: 10.20517/cdr.2019.87] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022]
Abstract
Delineating the contributions of specific cell signalling cascades to the development and maintenance of tumours has greatly informed our understanding of tumorigenesis and has advanced the modern era of targeted cancer therapy. It has been revealed that one of the key pathways regulating cell growth, the phosphatidylinositol 3-kinase/mechanistic target of rapamycin (PI3K/mTOR) signalling axis, is commonly dysregulated in cancer. With a specific, well-tolerated inhibitor of mTOR available, the impact of inhibiting this pathway at the level of mTOR has been tested clinically. This review highlights some of the promising results seen with mTOR inhibitors in the clinic and assesses some of the challenges that remain in predicting patient outcome following mTOR-targeted therapy.
Collapse
Affiliation(s)
| | - Elaine A Dunlop
- Division of Cancer and Genetics, Cardiff University, Cardiff, CF14 4XN, UK
| |
Collapse
|
323
|
Myers AP, Konstantinopoulos PA, Barry WT, Luo W, Broaddus RR, Makker V, Drapkin R, Liu J, Doyle A, Horowitz NS, Meric-Bernstam F, Birrer M, Aghajanian C, Coleman RL, Mills GB, Cantley LC, Matulonis UA, Westin SN. Phase II, 2-stage, 2-arm, PIK3CA mutation stratified trial of MK-2206 in recurrent endometrial cancer. Int J Cancer 2019; 147:413-422. [PMID: 31714586 DOI: 10.1002/ijc.32783] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 09/27/2019] [Accepted: 10/09/2019] [Indexed: 12/26/2022]
Abstract
Endometrial cancers have high rates of phosphoinositide 3-kinase (PI3K) pathway alterations. MK-2206 is an allosteric inhibitor of AKT, an effector kinase of PI3K signals. We hypothesized patients with tumors harboring PIK3CA mutations would be more likely to benefit from MK-2206 than those without PIK3CA mutation. A Phase II study was performed in patients with recurrent endometrial cancer; all histologies except carcinosarcoma were eligible. Up to two prior chemotherapy lines were permitted, excluding prior treatment with PI3K pathway inhibitors. The first 18 patients were treated with MK-2206 200 mg weekly. Due to unacceptable toxicity, dose was reduced to 135 mg. Co-primary endpoints were objective response rate (ORR) and progression-free survival at 6 months (6moPFS). Thirty-seven patients were enrolled (one ineligible). By somatic PIK3CA mutation analysis, nine patients were mutant (MT) [one with partial response (PR)/6moPFS, two with 6moPFS]. Twenty-seven patients were wild-type (WT) (one PR and four 6moPFS). Most common toxicities were rash (44%), fatigue (41%), nausea (42%) and hyperglycemia (31%). Grade 3 and 4 toxicities occurred in 25 and 17% of patients, respectively. Exploratory analysis found serous histology had greater 6moPFS as compared to all other histologies (5/8 vs. 2/28, p = 0.003). PTEN expression was associated with median time to progression (p = 0.04). No other significant associations with PI3K pathway alterations were identified. There is limited single agent activity of MK-2206 in PIK3CA MT and PIK3CA WT endometrial cancer populations. Activity was detected in patients with serous histology and due to their poor outcomes warrants further study (NCT01307631).
Collapse
Affiliation(s)
- Andrea P Myers
- Division of Hematology/Oncology, Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
| | | | | | - Weixiu Luo
- Division of Hematology/Oncology, Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
| | - Russell R Broaddus
- Department of Pathology, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Vicky Makker
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA
| | - Joyce Liu
- Division of Hematology/Oncology, Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
| | - Austin Doyle
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD
| | - Neil S Horowitz
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Dana Farber Cancer Institute, Boston, MA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Michael Birrer
- Division of Medical Oncology, Massachusetts General Hospital, Boston, MA
| | - Carol Aghajanian
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY
| | - Robert L Coleman
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Gordon B Mills
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Lewis C Cantley
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Ursula A Matulonis
- Division of Hematology/Oncology, Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas M. D. Anderson Cancer Center, Houston, TX
| |
Collapse
|
324
|
Langdon SP, Kay C, Um IH, Dodds M, Muir M, Sellar G, Kan J, Gourley C, Harrison DJ. Evaluation of the dual mTOR/PI3K inhibitors Gedatolisib (PF-05212384) and PF-04691502 against ovarian cancer xenograft models. Sci Rep 2019; 9:18742. [PMID: 31822716 PMCID: PMC6904563 DOI: 10.1038/s41598-019-55096-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/21/2019] [Indexed: 11/23/2022] Open
Abstract
This study investigated the antitumour effects of two dual mTOR/PI3K inhibitors, gedatolisib (WYE-129587/PKI-587/PF-05212384) and PF-04691502 against a panel of six human patient derived ovarian cancer xenograft models. Both dual mTOR/PI3K inhibitors demonstrated antitumour activity against all xenografts tested. The compounds produced tumour stasis during the treatment period and upon cessation of treatment, tumours re-grew. In several models, there was an initial rapid reduction of tumour volume over the first week of treatment before tumour stasis. No toxicity was observed during treatment. Biomarker studies were conducted in two xenograft models; phospho-S6 (Ser235/236) expression (as a readout of mTOR activity) was reduced over the treatment period in the responding xenograft but expression increased to control (no treatment) levels on cessation of treatment. Phospho-AKT (Ser473) expression (as a readout of PI3K) was inhibited by both drugs but less markedly so than phospho-S6 expression. Initial tumour volume reduction on treatment and regrowth rate after treatment cessation was associated with phospho-S6/total S6 expression ratio. Both drugs produced apoptosis but minimally influenced markers of proliferation (Ki67, phospho-histone H3). These results indicate that mTOR/PI3K inhibition can produce broad spectrum tumour growth stasis in ovarian cancer xenograft models during continuous chronic treatment and this is associated with apoptosis.
Collapse
Affiliation(s)
- Simon P Langdon
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom.
| | - Charlene Kay
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - In Hwa Um
- Pathology, School of Medicine, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9TF, United Kingdom
| | - Michael Dodds
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Morwenna Muir
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Grant Sellar
- Wyeth Translational Medicine Research Consortium, Sir James Black Centre, Dow Street, Dundee, DD1 5EH, United Kingdom
| | - Julie Kan
- Pfizer Translational Pharmacology, Oncology, San Diego, USA
| | - Charlie Gourley
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - David J Harrison
- Pathology, School of Medicine, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9TF, United Kingdom
| |
Collapse
|
325
|
Kim IH, Choi JW, Nam TJ. PYP1-4 peptide from Pyropia yezoensis protects against acetaminophen-induced hepatotoxicity in HepG2 cells. Exp Ther Med 2019; 19:849-860. [PMID: 32010245 PMCID: PMC6966212 DOI: 10.3892/etm.2019.8304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
Acetaminophen (APAP) is a widely used analgesic and antipyretic. It is safe at normal treatment doses; however, APAP overdose is a major cause of acute liver and kidney failure. A variety of methods to reduce the damage caused by APAP overdose have previously been evaluated. The protein-rich seaweed Pyropia yezoensis has antioxidant, antitumor and anti-inflammatory activities, and protects against cytotoxicity. However, little is known regarding the protective effects of P. yezoensis peptide against APAP-induced hepatotoxicity. The present study investigated the ability of P. yezoensis peptide (PYP1-4) to ameliorate the damage caused by APAP-induced hepatotoxicity using HepG2 as the model cell line in addition to the signaling pathways involved. Briefly, cell viability, nitric oxide, reactive oxygen species and apoptosis assays were performed in conjunction with western blot analysis and reverse transcription-quantitative PCR. First, the present study revealed the minimum toxic concentration of APAP (15 mM) and the resting concentration of PYP1-4 (0–500 ng/ml). Administration of PYP1-4 to APAP-induced cells decreased the nitric oxide and reactive oxygen species levels, and restored the levels of antioxidant-associated proteins (catalase, heme oxygenase 1, superoxide dismutase 2 and quinone oxidoreductase 1). PYP1-4 increased the translocation of nuclear factor, erythroid 2 like 2 to the nucleus and the activities of glycogen synthase kinase-3β, Akt and AMP-activated protein kinase. In addition, APAP induced apoptosis; however, PYP1-4 inhibited apoptosis by modulating the levels of pro-apoptotic markers (Bad), anti-apoptotic markers (Bcl-2 and BH3 interacting domain death agonist), caspases and poly (ADP-ribose) polymerase 1. Subsequently, the insulin-like growth factor 1 receptor signaling pathway was investigated to determine whether PYP1-4 treatment restored the levels of cell growth-associated factors during APAP-induced hepatotoxicity. PYP1-4 treatment impacted the levels of components of the insulin receptor substrate 1/PI3K/Akt and Ras/Raf/ERK signaling pathways, and promoted cell survival. Therefore, the P. yezoensis peptide PYP1-4 may be useful for preventing APAP-induced hepatotoxicity.
Collapse
Affiliation(s)
- In-Hye Kim
- Cell Biology Laboratory, Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| | - Jeong-Wook Choi
- Cell Biology Laboratory, Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| | - Taek-Jeong Nam
- Cell Biology Laboratory, Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea.,Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
326
|
Magaway C, Kim E, Jacinto E. Targeting mTOR and Metabolism in Cancer: Lessons and Innovations. Cells 2019; 8:cells8121584. [PMID: 31817676 PMCID: PMC6952948 DOI: 10.3390/cells8121584] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer cells support their growth and proliferation by reprogramming their metabolism in order to gain access to nutrients. Despite the heterogeneity in genetic mutations that lead to tumorigenesis, a common alteration in tumors occurs in pathways that upregulate nutrient acquisition. A central signaling pathway that controls metabolic processes is the mTOR pathway. The elucidation of the regulation and functions of mTOR can be traced to the discovery of the natural compound, rapamycin. Studies using rapamycin have unraveled the role of mTOR in the control of cell growth and metabolism. By sensing the intracellular nutrient status, mTOR orchestrates metabolic reprogramming by controlling nutrient uptake and flux through various metabolic pathways. The central role of mTOR in metabolic rewiring makes it a promising target for cancer therapy. Numerous clinical trials are ongoing to evaluate the efficacy of mTOR inhibition for cancer treatment. Rapamycin analogs have been approved to treat specific types of cancer. Since rapamycin does not fully inhibit mTOR activity, new compounds have been engineered to inhibit the catalytic activity of mTOR to more potently block its functions. Despite highly promising pre-clinical studies, early clinical trial results of these second generation mTOR inhibitors revealed increased toxicity and modest antitumor activity. The plasticity of metabolic processes and seemingly enormous capacity of malignant cells to salvage nutrients through various mechanisms make cancer therapy extremely challenging. Therefore, identifying metabolic vulnerabilities in different types of tumors would present opportunities for rational therapeutic strategies. Understanding how the different sources of nutrients are metabolized not just by the growing tumor but also by other cells from the microenvironment, in particular, immune cells, will also facilitate the design of more sophisticated and effective therapeutic regimen. In this review, we discuss the functions of mTOR in cancer metabolism that have been illuminated from pre-clinical studies. We then review key findings from clinical trials that target mTOR and the lessons we have learned from both pre-clinical and clinical studies that could provide insights on innovative therapeutic strategies, including immunotherapy to target mTOR signaling and the metabolic network in cancer.
Collapse
|
327
|
Abstract
One of the hallmarks of hormone receptor (HR)-positive breast cancer is its dependence on the phosphatidylinositol-3-kinase (PI3K) pathway. Here, we review the epidemiologic, functional, and pharmacologic interactions between oncogenic PI3K and the estrogen receptor (ER). We discuss the epidemiology of PI3K pathway alterations, mechanisms of resistance to PI3K inhibitors, and the current mechanistic landscape of crosstalk between PI3K and ER, which provide the rationale for dual ER and PI3K inhibition and is now a standard of care in the treatment of ER+ PIK3CA-mutant metastatic breast cancer. We outline newer studies in this field that delineate the clinically relevant overlaps between PI3K and parallel signaling pathways, insulin signaling, and ER epigenetic modifiers. We also identify several caveats with the current data and propose new strategies to overcome these bottlenecks.
Collapse
Affiliation(s)
- N Vasan
- Human Oncology and Pathogenesis Program, New York, USA
- Departments of Medicine, New York, USA
| | - E Toska
- Human Oncology and Pathogenesis Program, New York, USA
| | - M Scaltriti
- Human Oncology and Pathogenesis Program, New York, USA
- Departments of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
328
|
Mathen P, Rowe L, Mackey M, Smart D, Tofilon P, Camphausen K. Radiosensitizers in the temozolomide era for newly diagnosed glioblastoma. Neurooncol Pract 2019; 7:268-276. [PMID: 32537176 DOI: 10.1093/nop/npz057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is a challenging diagnosis with almost universally poor prognosis. Though the survival advantage of postoperative radiation (RT) is well established, around 90% of patients will fail in the RT field. The high likelihood of local failure suggests the efficacy of RT needs to be improved to improve clinical outcomes. Radiosensitizers are an established method of enhancing RT cell killing through the addition of a pharmaceutical agent. Though the majority of trials using radiosensitizers have historically been unsuccessful, there continues to be interest with a variety of approaches having been employed. Epidermal growth factor receptor inhibitors, histone deacetylase inhibitors, antiangiogenic agents, and a number of other molecularly targeted agents have all been investigated as potential methods of radiosensitization in the temozolomide era. Outcomes have varied both in terms of toxicity and survival, but some agents such as valproic acid and bortezomib have demonstrated promising results. However, reporting of results in phase 2 trials in newly diagnosed GBM have been inconsistent, with no standard in reporting progression-free survival and toxicity. There is a pressing need for investigation of new agents; however, nearly all phase 3 trials of GBM patients of the past 25 years have demonstrated no improvement in outcomes. One proposed explanation for this is the selection of agents lacking sufficient preclinical data and/or based on poorly designed phase 2 trials. Radiosensitization may represent a viable strategy for improving GBM outcomes in newly diagnosed patients, and further investigation using agents with promising phase 2 data is warranted.
Collapse
Affiliation(s)
- Peter Mathen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Lindsay Rowe
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Megan Mackey
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - DeeDee Smart
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Philip Tofilon
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
329
|
Combined mTORC1/mTORC2 inhibition blocks growth and induces catastrophic macropinocytosis in cancer cells. Proc Natl Acad Sci U S A 2019; 116:24583-24592. [PMID: 31732667 DOI: 10.1073/pnas.1911393116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) pathway, which plays a critical role in regulating cellular growth and metabolism, is aberrantly regulated in the pathogenesis of a variety of neoplasms. Here we demonstrate that dual mTORC1/mTORC2 inhibitors OSI-027 and PP242 cause catastrophic macropinocytosis in rhabdomyosarcoma (RMS) cells and cancers of the skin, breast, lung, and cervix, whereas the effects are much less pronounced in immortalized human keratinocytes. Using RMS as a model, we characterize in detail the mechanism of macropinocytosis induction. Macropinosomes are distinct from endocytic vesicles and autophagosomes in that they are single-membrane bound vacuoles formed by projection, ruffling, and contraction of plasma membranes. They are positive for EEA-1 and LAMP-1 and contain watery fluid but not organelles. The vacuoles then merge and rupture, killing the cells. We confirmed the inhibition of mTORC1/mTORC2 as the underpinning mechanism for macropinocytosis. Exposure to rapamycin, an mTORC1 inhibitor, or mTORC2 knockdown alone had little or reduced effect relative to the combination. We further demonstrate that macropinocytosis depends on MKK4 activated by elevated reactive oxygen species. In a murine xenograft model, OSI-027 reduced RMS tumor growth. Molecular characterization of the residual tumors was consistent with the induction of macropinocytosis. Furthermore, relative to the control xenograft tumors, the residual tumors manifested reduced expression of cell proliferation markers and proteins that drive the epithelial mesenchymal transition. These data indicate a role of mTORC2 in regulating tumor growth by macropinocytosis and suggest that dual inhibitors could help block refractory or recurrent RMS and perhaps other neoplasms and other cancer as well.
Collapse
|
330
|
The Clinicopathological Spectrum of Acromegaly. J Clin Med 2019; 8:jcm8111962. [PMID: 31766255 PMCID: PMC6912315 DOI: 10.3390/jcm8111962] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Acromegaly results from a persistent excess in growth hormone with clinical features that may be subtle or severe. The most common cause of acromegaly is a pituitary tumor that causes excessive production of growth hormone (GH), and rare cases are due to an excess of the GH-releasing hormone (GHRH) or the ectopic production of GH. OBJECTIVE Discuss the different diseases that present with manifestations of GH excess and clinical acromegaly, emphasizing the distinct clinical and radiological characteristics of the different pathological entities. METHODS We performed a narrative review of the published clinicopathological information about acromegaly. An English-language search for relevant studies was conducted on PubMed from inception to 1 August 2019. The reference lists of relevant studies were also reviewed. RESULTS Pituitary tumors that cause GH excess have several variants, including pure somatotroph tumors that can be densely or sparsely granulated, or plurihormonal tumors that include mammosomatotroph, mixed somatotroph-lactotroph tumors and mature plurihomonal Pit1-lineage tumors, acidophil stem cell tumors and poorly-differentiated Pit1-lineage tumors. Each tumor type has a distinct pathophysiology, resulting in variations in clinical manifestations, imaging and responses to therapies. CONCLUSION Detailed clinicopathological information will be useful in the era of precision medicine, in which physicians tailor the correct treatment modality to each patient.
Collapse
|
331
|
Lee JS, Yost SE, Blanchard S, Schmolze D, Yin HH, Pillai R, Robinson K, Tang A, Martinez N, Portnow J, Wen W, Yim JH, Brauer HA, Ren Y, Luu T, Mortimer J, Yuan Y. Phase I clinical trial of the combination of eribulin and everolimus in patients with metastatic triple-negative breast cancer. Breast Cancer Res 2019; 21:119. [PMID: 31703728 PMCID: PMC6839083 DOI: 10.1186/s13058-019-1202-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/13/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Alteration of the PI3K/AKT/mTOR pathway is a common genomic abnormality detected in triple-negative breast cancer (TNBC). Everolimus acts synergistically with eribulin in TNBC cell lines and xenograft models. This phase I trial was designed to test the safety and tolerability of combining eribulin and everolimus in patients with metastatic TNBC. METHODS The primary objective of this study was to evaluate the safety and toxicities of the combination. Patients with metastatic TNBC who had up to four lines of prior chemotherapies were enrolled. The combination of eribulin and everolimus was tested using three dosing levels: A1 (everolimus 5 mg daily; eribulin 1.4 mg/m2 days 1 and 8 every 3 weeks), A2 (everolimus 7.5 mg daily; eribulin 1.4 mg/m2, days 1 and 8 every 3 weeks), and B1 (everolimus 5 mg daily; eribulin 1.1 mg/m2 days 1 and 8 every 3 weeks). RESULTS Twenty-seven patients with median age 55 years were enrolled. Among 8 evaluable patients who received dose level A1, 4 had dose-limiting toxicities (DLTs). Among 3 evaluable patients treated with dose level A2, 2 had DLTs. Among 12 evaluable patients who received dose level B1, 4 had DLTs. The DLTs were neutropenia, stomatitis, and hyperglycemia. Over the study period, 59% had a ≥ grade 3 toxicity, 44% had ≥ grade 3 hematologic toxicities, and 22% had grade 4 hematologic toxicities. The most common hematological toxicities were neutropenia, leukopenia, and lymphopenia. Thirty-three percent had grade 3 non-hematologic toxicities. The most common non-hematological toxicities were stomatitis, hyperglycemia, and fatigue. The median number of cycles completed was 4 (range 0-8). Among 25 eligible patients, 9 patients (36%) achieved the best response as partial response, 9 (36%) had stable disease, and 7 (28%) had progression. The median time to progression was 2.6 months (95% CI [2.1, 4.0]), and median overall survival (OS) was 8.3 months (95% CI [5.5, undefined]). CONCLUSION Eribulin 1.1 mg/m2 days 1 and 8 every 3 weeks with everolimus 5 mg daily was defined as the highest dose with acceptable toxicity (RP2D). The combination is safe, and efficacy is modest. A post hoc analysis showed that participants that used dexamethasone mouthwash stayed on treatment for one additional cycle. TRIAL REGISTRATION ClinicalTrials.gov, NCT02120469. Registered 18 April 2014.
Collapse
Affiliation(s)
- Jin Sun Lee
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center and Beckman Research Institute, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Susan E Yost
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center and Beckman Research Institute, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Suzette Blanchard
- Department of Biostatistics, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Daniel Schmolze
- Department of Pathology, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Hongwei Holly Yin
- Department of Pathology, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Raju Pillai
- Department of Pathology, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Kim Robinson
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center and Beckman Research Institute, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Aileen Tang
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center and Beckman Research Institute, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Norma Martinez
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center and Beckman Research Institute, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Jana Portnow
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center and Beckman Research Institute, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Wei Wen
- Department of Surgery, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - John H Yim
- Department of Surgery, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | | | - Yuqi Ren
- NanoString Technologies, Inc., Seattle, WA, USA
| | | | - Joanne Mortimer
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center and Beckman Research Institute, 1500 E. Duarte Road, Duarte, CA, 91010, USA.
| | - Yuan Yuan
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center and Beckman Research Institute, 1500 E. Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
332
|
mTOR signaling in Brown and Beige adipocytes: implications for thermogenesis and obesity. Nutr Metab (Lond) 2019; 16:74. [PMID: 31708995 PMCID: PMC6836431 DOI: 10.1186/s12986-019-0404-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022] Open
Abstract
Brown and beige adipocytes are mainly responsible for nonshivering thermogenesis or heat production, despite the fact that they have distinguished features in distribution, developmental origin, and functional activation. As a nutrient sensor and critical regulator of energy metabolism, mechanistic target of rapamycin (mTOR) also plays an important role in the development and functional maintenance of adipocytes. While the recent studies support the notion that mTOR (mTORC1 and mTORC2) related signaling pathways are of great significance for thermogenesis and the development of brown and beige adipocytes, the exact roles of mTOR in heat production are controversial. The similarities and disparities in terms of thermogenesis might be ascribed to the use of different animal models and experimental systems, distinct features of brown and beige adipocytes, and the complexity of regulatory networks of mTORC1 and mTORC2 in energy metabolism.
Collapse
|
333
|
Rybchyn MS, Islam KS, Brennan-Speranza TC, Cheng Z, Brennan SC, Chang W, Mason RS, Conigrave AD. Homer1 mediates CaSR-dependent activation of mTOR complex 2 and initiates a novel pathway for AKT-dependent β-catenin stabilization in osteoblasts. J Biol Chem 2019; 294:16337-16350. [PMID: 31527082 PMCID: PMC6827303 DOI: 10.1074/jbc.ra118.006587] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 08/19/2019] [Indexed: 11/06/2022] Open
Abstract
The calcium-sensing receptor (CaSR) is critical for skeletal development, but its mechanism of action in osteoblasts is not well-characterized. In the central nervous system (CNS), Homer scaffolding proteins form signaling complexes with two CaSR-related members of the G protein-coupled receptor (GPCR) family C, metabotropic glutamate receptor 1 (mGluR1) and mGluR5. Here, we show that CaSR and Homer1 are co-expressed in mineralized mouse bone and also co-localize in primary human osteoblasts. Co-immunoprecipitation experiments confirmed that Homer1 associates with CaSR in primary human osteoblasts. The CaSR-Homer1 protein complex, whose formation was increased in response to extracellular Ca2+, was bound to mechanistic target of rapamycin (mTOR) complex 2 (mTORC2), a protein kinase that phosphorylates and activates AKT Ser/Thr kinase (AKT) at Ser473 siRNA-based gene-silencing assays with primary osteoblasts revealed that both CaSR and Homer1 are required for extracellular Ca2+-stimulated AKT phosphorylation and thereby inhibit apoptosis and promote AKT-dependent β-catenin stabilization and cellular differentiation. To confirm the role of the CaSR-Homer1 complex in AKT initiation, we show that in HEK-293 cells, co-transfection with both Homer1c and CaSR, but neither with Homer1c nor CaSR alone, establishes sensitivity of AKT-Ser473 phosphorylation to increases in extracellular Ca2+ concentrations. These findings indicate that Homer1 mediates CaSR-dependent AKT activation via mTORC2 and thereby stabilizes β-catenin in osteoblasts.
Collapse
Affiliation(s)
- Mark S Rybchyn
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, University of Sydney, New South Wales 2006, Australia
| | - Kazi S Islam
- School of Life and Environmental Science, Charles Perkins Centre (D17) and Bosch Institute, University of Sydney, New South Wales 2006, Australia
| | - Tara C Brennan-Speranza
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, University of Sydney, New South Wales 2006, Australia
| | - Zhiqiang Cheng
- School of Medicine, University of California, San Francisco, California 94121
| | - Sarah C Brennan
- School of Life and Environmental Science, Charles Perkins Centre (D17) and Bosch Institute, University of Sydney, New South Wales 2006, Australia
| | - Wenhan Chang
- School of Medicine, University of California, San Francisco, California 94121
| | - Rebecca S Mason
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, University of Sydney, New South Wales 2006, Australia
| | - Arthur David Conigrave
- School of Life and Environmental Science, Charles Perkins Centre (D17) and Bosch Institute, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
334
|
Fankhauser M, Bechmann N, Lauseker M, Goncalves J, Favier J, Klink B, William D, Gieldon L, Maurer J, Spöttl G, Rank P, Knösel T, Orth M, Ziegler CG, Aristizabal Prada ET, Rubinstein G, Fassnacht M, Spitzweg C, Grossman AB, Pacak K, Beuschlein F, Bornstein SR, Eisenhofer G, Auernhammer CJ, Reincke M, Nölting S. Synergistic Highly Potent Targeted Drug Combinations in Different Pheochromocytoma Models Including Human Tumor Cultures. Endocrinology 2019; 160:2600-2617. [PMID: 31322702 PMCID: PMC6795182 DOI: 10.1210/en.2019-00410] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/14/2019] [Indexed: 01/09/2023]
Abstract
There are no officially approved therapies for metastatic pheochromocytomas apart from ultratrace 131I-metaiodbenzylguanidine therapy, which is approved only in the United States. We have, therefore, investigated the antitumor potential of molecular-targeted approaches in murine pheochromocytoma cell lines [monocyte chemoattractant protein (MPC)/monocyte chemoattractant protein/3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)], immortalized mouse chromaffin Sdhb-/- cells, three-dimensional pheochromocytoma tumor models (MPC/MTT spheroids), and human pheochromocytoma primary cultures. We identified the specific phosphatidylinositol-3-kinase α inhibitor BYL719 and the mammalian target of rapamycin inhibitor everolimus as the most effective combination in all models. Single treatment with clinically relevant doses of BYL719 and everolimus significantly decreased MPC/MTT and Sdhb-/- cell viability. A targeted combination of both inhibitors synergistically reduced MPC and Sdhb-/- cell viability and showed an additive effect on MTT cells. In MPC/MTT spheroids, treatment with clinically relevant doses of BYL719 alone or in combination with everolimus was highly effective, leading to a significant shrinkage or even a complete collapse of the spheroids. We confirmed the synergism of clinically relevant doses of BYL719 plus everolimus in human pheochromocytoma primary cultures of individual patient tumors with BYL719 attenuating everolimus-induced AKT activation. We have thus established a method to assess molecular-targeted therapies in human pheochromocytoma cultures and identified a highly effective combination therapy. Our data pave the way to customized combination therapy to target individual patient tumors.
Collapse
Affiliation(s)
- Maria Fankhauser
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, LMU München, Munich, Germany
| | - Nicole Bechmann
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany
| | - Michael Lauseker
- Institute for Medical Information Sciences, Biometry, and Epidemiology, Campus Grosshadern, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Judith Goncalves
- Institut National de la Santé et de la Recherche Médicale, UMR970, Paris-Cardiovascular Research Center, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Judith Favier
- Institut National de la Santé et de la Recherche Médicale, UMR970, Paris-Cardiovascular Research Center, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Barbara Klink
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- National Center of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg
- German Cancer Consortium, Dresden, Germany
| | | | - Laura Gieldon
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Cancer Consortium, Dresden, Germany
- German Cancer Research Center, Heidelberg, Germany
- Core Unit for Molecular Tumor Diagnostics, National Center for Tumor Diseases, Heidelberg, Germany
| | - Julian Maurer
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, LMU München, Munich, Germany
| | - Gerald Spöttl
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, LMU München, Munich, Germany
| | - Petra Rank
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, LMU München, Munich, Germany
| | - Thomas Knösel
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Michael Orth
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Christian G Ziegler
- Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | | | - German Rubinstein
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, LMU München, Munich, Germany
| | - Martin Fassnacht
- Department of Medicine I, Division of Endocrinology and Diabetology, University Hospital, University of Würzburg, Würzburg, Germany
| | - Christine Spitzweg
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, LMU München, Munich, Germany
| | - Ashley B Grossman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- Royal Free Hospital ENETS Centre of Excellence, London, United Kingdom
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Felix Beuschlein
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, LMU München, Munich, Germany
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, Universitätsspital Zürich, Zurich, Switzerland
| | - Stefan R Bornstein
- Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Graeme Eisenhofer
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany
- Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Christoph J Auernhammer
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, LMU München, Munich, Germany
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, LMU München, Munich, Germany
| | - Svenja Nölting
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, LMU München, Munich, Germany
- Correspondence: Svenja Nölting, MD, Med. Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstraße 1, 80336 Munich, Germany. E-mail:
| |
Collapse
|
335
|
McKeown CR, Cline HT. Nutrient restriction causes reversible G2 arrest in Xenopus neural progenitors. Development 2019; 146:146/20/dev178871. [PMID: 31649012 DOI: 10.1242/dev.178871] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/05/2019] [Indexed: 01/23/2023]
Abstract
Nutrient status affects brain development; however, the effects of nutrient availability on neural progenitor cell proliferation in vivo are poorly understood. Without food, Xenopus laevis tadpoles enter a period of stasis during which neural progenitor proliferation is drastically reduced, but resumes when food becomes available. Here, we investigate how neural progenitors halt cell division in response to nutrient restriction and subsequently re-enter the cell cycle upon feeding. We demonstrate that nutrient restriction causes neural progenitors to arrest in G2 of the cell cycle with increased DNA content, and that nutrient availability triggers progenitors to re-enter the cell cycle at M phase. Initiation of the nutrient restriction-induced G2 arrest is rapamycin insensitive, but cell cycle re-entry requires mTOR. Finally, we show that activation of insulin receptor signaling is sufficient to increase neural progenitor cell proliferation in the absence of food. A G2 arrest mechanism provides an adaptive strategy to control brain development in response to nutrient availability by triggering a synchronous burst of cell proliferation when nutrients become available. This may be a general cellular mechanism that allows developmental flexibility during times of limited resources.
Collapse
Affiliation(s)
| | - Hollis T Cline
- Department of Neuroscience, Scripps Research, La Jolla, CA 92037, USA
| |
Collapse
|
336
|
Rizk M, Rizq O, Oshima M, Nakajima-Takagi Y, Koide S, Saraya A, Isshiki Y, Chiba T, Yamazaki S, Ma A, Jin J, Iwama A, Mimura N. Akt inhibition synergizes with polycomb repressive complex 2 inhibition in the treatment of multiple myeloma. Cancer Sci 2019; 110:3695-3707. [PMID: 31571328 PMCID: PMC6890440 DOI: 10.1111/cas.14207] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022] Open
Abstract
Polycomb repressive complex 2 (PRC2) components, EZH2 and its homolog EZH1, and PI3K/Akt signaling pathway are focal points as therapeutic targets for multiple myeloma. However, the exact crosstalk between their downstream targets remains unclear. We herein elucidated some epigenetic interactions following Akt inhibition and demonstrated the efficacy of the combined inhibition of Akt and PRC2. We found that TAS-117, a potent and selective Akt inhibitor, downregulated EZH2 expression at the mRNA and protein levels via interference with the Rb-E2F pathway, while EZH1 was compensatively upregulated to maintain H3K27me3 modifications. Consistent with these results, the dual EZH2/EZH1 inhibitor, UNC1999, but not the selective EZH2 inhibitor, GSK126, synergistically enhanced TAS-117-induced cytotoxicity and provoked myeloma cell apoptosis. RNA-seq analysis revealed the activation of the FOXO signaling pathway after TAS-117 treatment. FOXO3/4 mRNA and their downstream targets were upregulated with the enhanced nuclear localization of FOXO3 protein after TAS-117 treatment. ChIP assays confirmed the direct binding of FOXO3 to EZH1 promoter, which was enhanced by TAS-117 treatment. Moreover, FOXO3 knockdown repressed EZH1 expression. Collectively, the present results reveal some molecular interactions between Akt signaling and epigenetic modulators, which emphasize the benefits of targeting PRC2 full activity and the Akt pathway as a therapeutic option for multiple myeloma.
Collapse
Affiliation(s)
- Mohamed Rizk
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ola Rizq
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Medical Oncology, LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Motohiko Oshima
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yaeko Nakajima-Takagi
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shuhei Koide
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Atsunori Saraya
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yusuke Isshiki
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Hematology, Chiba University Hospital, Chiba, Japan.,Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tetsuhiro Chiba
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Yamazaki
- Division of Stem Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Anqi Ma
- Department of Pharmacological Sciences, Mount Sinai Center for Therapeutics Discovery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Oncological Sciences, Mount Sinai Center for Therapeutics Discovery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jian Jin
- Department of Pharmacological Sciences, Mount Sinai Center for Therapeutics Discovery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Oncological Sciences, Mount Sinai Center for Therapeutics Discovery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Naoya Mimura
- Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan
| |
Collapse
|
337
|
Synergistic Anti-Tumor Effect of mTOR Inhibitors with Irinotecan on Colon Cancer Cells. Cancers (Basel) 2019; 11:cancers11101581. [PMID: 31627299 PMCID: PMC6826690 DOI: 10.3390/cancers11101581] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/02/2019] [Accepted: 10/11/2019] [Indexed: 12/22/2022] Open
Abstract
Advanced colorectal cancer has a poor prognosis because of metastasis formation and resistance to combined therapies. Downstream of PI3K/Akt and Ras/MAPK pathways, the mTOR kinase plays a decisive role in treatment failure. We previously established that irinotecan has antiangiogenic properties and it is known that new mammalian target of rapamycin (mTOR) catalytic AZD inhibitors, unlike rapamycin, target both mTORC1 and mTORC2. Thus, we hypothesized that the complete inhibition of the PI3K/AKT/mTOR/HIF-1α axis with mTOR catalytic inhibitors and low doses of irinotecan may have antitumor effects. We showed that the AZD8055 and AZD2014 inhibitors were much more potent than rapamycin to reduce cell viability of four colon cell lines. On the other hand, whereas AZD2014 alone inhibits migration by 40%, the drug combination led to 70% inhibition. Similarly, neither irinotecan nor AZD2014 significantly reduced cell invasion, whereas a combination of the two inhibits invasion by 70%. In vivo, irinotecan and AZD2014 combination drastically reduced ectopic patient-derived colon tumor growth and this combination was more potent than Folfox or Folfiri. Finally, the combination totally inhibited liver and lung metastases developed from orthotopic implantation of SW480 cells. Thus, the use of mTOR catalytic inhibitors, in association with other chemotherapeutic agents like irinotecan at low doses, is potentially a hope for colon cancer treatment.
Collapse
|
338
|
Kirstein AS, Augustin A, Penke M, Cea M, Körner A, Kiess W, Garten A. The Novel Phosphatidylinositol-3-Kinase (PI3K) Inhibitor Alpelisib Effectively Inhibits Growth of PTEN-Haploinsufficient Lipoma Cells. Cancers (Basel) 2019; 11:E1586. [PMID: 31627436 PMCID: PMC6826943 DOI: 10.3390/cancers11101586] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 01/08/2023] Open
Abstract
Germline mutations in the tumor suppressor gene PTEN cause PTEN Hamartoma Tumor Syndrome (PHTS). Pediatric patients with PHTS frequently develop lipomas. Treatment attempts with the mTORC1 inhibitor rapamycin were unable to reverse lipoma growth. Recently, lipomas associated with PIK3CA-related overgrowth syndrome were successfully treated with the novel PI3K inhibitor alpelisib. Here, we tested whether alpelisib has growth-restrictive effects and induces cell death in lipoma cells. We used PTEN-haploinsufficient lipoma cells from three patients and treated them with alpelisib alone or in combination with rapamycin. We tested the effect of alpelisib on viability, proliferation, cell death, induction of senescence, adipocyte differentiation, and signaling at 1-100 µM alpelisib. Alpelisib alone or in combination with rapamycin reduced proliferation in a concentration- and time-dependent manner. No cell death but an induction of senescence was detected after alpelisib incubation for 72 h. Alpelisib treatment led to a reduced phosphorylation of AKT, mTOR, and ribosomal protein S6. Rapamycin treatment alone led to increased AKT phosphorylation. This effect could be reversed by combining rapamycin with alpelisib. Alpelisib reduced the size of lipoma spheroids by attenuating adipocyte differentiation. Since alpelisib was well tolerated in first clinical trials, this drug alone or in combination with rapamycin is a potential new treatment option for PHTS-related adipose tissue overgrowth.
Collapse
Affiliation(s)
- Anna S Kirstein
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany.
| | - Adrien Augustin
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany.
- Faculty of Medicine, University of Liège, 4000 Liege, Belgium.
| | - Melanie Penke
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany.
| | - Michele Cea
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genoa, 16100 Genoa, Italy.
- IRCCS Polyclinic Hospital San Martino, 16100 Genoa, Italy.
| | - Antje Körner
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany.
| | - Wieland Kiess
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany.
| | - Antje Garten
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany.
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
339
|
Gong C, Ai J, Fan Y, Gao J, Liu W, Feng Q, Liao W, Wu L. NCAPG Promotes The Proliferation Of Hepatocellular Carcinoma Through PI3K/AKT Signaling. Onco Targets Ther 2019; 12:8537-8552. [PMID: 31802891 PMCID: PMC6801502 DOI: 10.2147/ott.s217916] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/26/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose Studies show that high expression of non-SMC condensin I complex subunit G (NCAPG) is associated with many tumors. In this study, we explore the mechanism by which NCAPG promotes proliferation in hepatocellular carcinoma (HCC). Patients and methods Liver cancer and paracancerous tissue specimens of 90 HCC patients were collected, and expression levels of NCAPG in these tissues and cell lines were evaluated by Western blotting and immunohistochemistry. HCC cells were transfected with siRNAs and plasmids, and pathway activators or inhibitors were added. The 5-ethynyl-2ʹ-deoxyuridine (EdU) proliferation assay was used to measure cell proliferation. Flow cytometry was used to evaluate cell apoptosis. Western blot assays were performed as a standard procedure to detect total protein expression. Treated HCC cells were subcutaneously injected into nude mice. Results Analysis using the Oncomine database showed that NCAPG was upregulated in HCC and immunohistochemistry and Western blot assays showed it was upregulated in both HCC tissues and HCC cell lines. The overexpression of NCAPG could promote HCC cell proliferation and reduce HCC cell apoptosis. More importantly, RNA-sequencing analysis predicted that NCAPG plays a role in the HCC via PI3K-AKT signaling pathway. The PI3K/AKT/FOXO4 pathway was aberrantly activated, and the expressions of apoptosis-related protein were altered when NCAPG was overexpressed or silenced both in vitro and in vivo. LY294002, a PI3K inhibitor, could eliminate the NCAPG role of promoting HCC cell proliferation and reducing HCC cell apoptosis, while 740Y-P, a PI3K activator, contributed to the opposite effect. Conclusion NCAPG functions as an oncogene in HCC and plays a role in promoting cell proliferation and antiapoptosis through activating the PI3K/AKT/FOXO4 pathway.
Collapse
Affiliation(s)
- Chengwu Gong
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Jiyuan Ai
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Yun Fan
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430000, People's Republic of China
| | - Jun Gao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Weiwei Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Qian Feng
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Wenjun Liao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Linquan Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| |
Collapse
|
340
|
Westin SN, Sill MW, Coleman RL, Waggoner S, Moore KN, Mathews CA, Martin LP, Modesitt SC, Lee S, Ju Z, Mills GB, Schilder RJ, Fracasso PM, Birrer MJ, Aghajanian C. Safety lead-in of the MEK inhibitor trametinib in combination with GSK2141795, an AKT inhibitor, in patients with recurrent endometrial cancer: An NRG Oncology/GOG study. Gynecol Oncol 2019; 155:420-428. [PMID: 31623857 DOI: 10.1016/j.ygyno.2019.09.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We sought to determine safety and efficacy of the AKT inhibitor, GSK2141795, combined with the MEK inhibitor, trametinib, in endometrial cancer. METHODS Patients with measurable recurrent endometrial cancer were eligible. One to two prior cytotoxic regimens were allowed; prior use of a MEK or PI3K pathway inhibitor was excluded. Initial trial design consisted of a KRAS mutation stratified randomized phase II with a safety lead-in evaluating the combination. For the safety lead in, the previously recommended phase 2 dose (RP2D; trametinib 1.5 mg, GSK2141795 50 mg) was chosen for Dose Level 1 (DL1). RESULTS Of 26 enrolled patients, 14 were treated on DL1 and 12 were treated on DL-1 (trametinib 1.5 mg, GSK2141795 25 mg). Most common histologies were endometrioid (58%) and serous (27%). Four of 25 (16%) patients were KRAS mutant. Dose limiting toxicities (DLTs) were assessed during cycle 1. DL1 had 8 DLTs (hypertension (n = 2), mucositis (2), rash (2), dehydration, stroke/acute kidney injury). DL1 was deemed non-tolerable so DL-1 was explored. DL-1 had no DLTs. Sixty-five percent of patients had ≥ grade 3 toxicity. There were no responses in DL1 (0%, 90%CI 0-15%) and 1 response in DL-1 (8.3%, 90%CI 0.4-33.9%). Proportion PFS at 6 months for DL1 is 14%, and 25% for DL-1. CONCLUSION The combination of trametinib and GSK2141795 had high levels of toxicity in endometrial cancer at the previously RP2D but was tolerable at a reduced dose. Due to insufficient preliminary efficacy at a tolerable dose, the Phase II study was not initiated.
Collapse
Affiliation(s)
- Shannon N Westin
- Department of Gynecologic Oncology, University of Texas M. D Anderson Cancer Center, USA.
| | - Michael W Sill
- NRG Oncology Statistics and Data Management Center Buffalo Office, Roswell Park Cancer Institute, USA.
| | - Robert L Coleman
- Department of Gynecologic Oncology, University of Texas M. D Anderson Cancer Center, USA.
| | - Steven Waggoner
- Department of Gynecologic Oncology, Case Western Reserve University, USA.
| | - Kathleen N Moore
- Department of Gynecologic Oncology, University of Oklahoma Health Sciences Center, Stephenson Cancer Center, USA.
| | - Cara A Mathews
- Department of Gynecologic Oncology, Women & Infants Hospital, USA.
| | - Lainie P Martin
- Department of Hematology/Oncology, Fox Chase Cancer Center, USA.
| | - Susan C Modesitt
- Director of Gynecologic Oncology Division, University of Virginia, USA.
| | - Sanghoon Lee
- Department of Medicine and the UVA Cancer Center, University of Virginia, USA.
| | - Zhenlin Ju
- Department of Bioinformatics and Computational Biology, University of Texas M. D Anderson Cancer Center, USA.
| | - Gordon B Mills
- Department of Medicine and the UVA Cancer Center, University of Virginia, USA.
| | - Russell J Schilder
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, USA.
| | - Paula M Fracasso
- Department of Systems Biology, University of Texas M.D Anderson Cancer Center, USA.
| | | | - Carol Aghajanian
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, USA.
| |
Collapse
|
341
|
Chan JJ, Tan TJY, Dent RA. Novel therapeutic avenues in triple-negative breast cancer: PI3K/AKT inhibition, androgen receptor blockade, and beyond. Ther Adv Med Oncol 2019; 11:1758835919880429. [PMID: 31636720 PMCID: PMC6785914 DOI: 10.1177/1758835919880429] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/13/2019] [Indexed: 01/09/2023] Open
Abstract
Multiomic analyses have shed light upon the molecular heterogeneity and complexity of triple-negative breast cancers (TNBCs). With increasing recognition that TNBC is not a single disease entity but encompasses different disease subtypes, a one-size-fits-all treatment paradigm has become obsolete. In this context, the inhibition of phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) and androgen receptor (AR) signaling pathways have emerged as potential therapeutic strategies against selected tumors. In this paper, we reviewed the preclinical rationale, predictive biomarkers, efficacy, and safety data from early phase trials, and the future directions for these two biomarker-directed treatment approaches in TNBC.
Collapse
Affiliation(s)
- Jack J Chan
- Division of Medical Oncology, National Cancer Center Singapore, Singapore
| | - Tira J Y Tan
- Division of Medical Oncology, National Cancer Center Singapore, Singapore
| | - Rebecca A Dent
- Associate Professor, Division of Medical Oncology, National Cancer Center Singapore, 11 Hospital Drive, 169610, Singapore
| |
Collapse
|
342
|
Vega MI, Shi Y, Frost P, Huerta-Yepez S, Antonio-Andres G, Hernandez-Pando R, Lee J, Jung ME, Gera JF, Lichtenstein A. A Novel Therapeutic Induces DEPTOR Degradation in Multiple Myeloma Cells with Resulting Tumor Cytotoxicity. Mol Cancer Ther 2019; 18:1822-1831. [PMID: 31395691 PMCID: PMC6774835 DOI: 10.1158/1535-7163.mct-19-0115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/19/2019] [Accepted: 07/30/2019] [Indexed: 11/16/2022]
Abstract
Prior work indicates DEPTOR expression in multiple myeloma cells could be a therapeutic target. DEPTOR binds to mTOR via its PDZ domain and inhibits mTOR kinase activity. We previously identified a drug, which prevented mTOR-DEPTOR binding (NSC126405) and induced multiple myeloma cytotoxicity. We now report on a related therapeutic, drug 3g, which induces proteasomal degradation of DEPTOR. DEPTOR degradation followed drug 3g binding to its PDZ domain and was not due to caspase activation or enhanced mTOR phosphorylation of DEPTOR. Drug 3g enhanced mTOR activity, and engaged the IRS-1/PI3K/AKT feedback loop with reduced phosphorylation of AKT on T308. Activation of TORC1, in part, mediated multiple myeloma cytotoxicity. Drug 3g was more effective than NSC126405 in preventing binding of recombinant DEPTOR to mTOR, preventing binding of DEPTOR to mTOR inside multiple myeloma cells, in activating mTOR and inducing apoptosis in multiple myeloma cells. In vivo, drug 3g injected daily abrogated DEPTOR expression in xenograft tumors and induced an antitumor effect although modest weight loss was seen. Every-other-day treatment, however, was equally effective without weight loss. Drug 3g also reduced DEPTOR expression in normal tissues. Although no potential toxicity was identified in hematopoietic or hepatic function, moderate cardiac enlargement and glomerular mesangial hypertrophy was seen. DEPTOR protected multiple myeloma cells against bortezomib suggesting anti-DEPTOR drugs could synergize with proteasome inhibitors (PI). Indeed, combinations of drug NSC126405 + bortezomib were synergistic. In contrast, drug 3g was not and was even antagonistic. This antagonism was probably due to prevention of proteasomal DEPTOR degradation.
Collapse
Affiliation(s)
- Mario I Vega
- Hematology-Oncology, VA West LA-UCLA Medical Center, Los Angeles, California
| | - Yijiang Shi
- Hematology-Oncology, VA West LA-UCLA Medical Center, Los Angeles, California
| | - Patrick Frost
- Hematology-Oncology, VA West LA-UCLA Medical Center, Los Angeles, California
| | - Sara Huerta-Yepez
- Hospital Infantil de Mexico Federico Gomez, Mexico City, Mexico
- Pathology & Laboratory Medicine, UCLA Medical School, Los Angeles, California
| | - Gabriela Antonio-Andres
- Hospital Infantil de Mexico Federico Gomez, Mexico City, Mexico
- Pathology & Laboratory Medicine, UCLA Medical School, Los Angeles, California
| | | | | | - Michael E Jung
- Department of Chemistry & Biochemistry, University of California, Los Angeles, California
- Jonsson Cancer Center, University of California, Los Angeles, California
| | - Joseph F Gera
- Hematology-Oncology, VA West LA-UCLA Medical Center, Los Angeles, California
- Jonsson Cancer Center, University of California, Los Angeles, California
| | - Alan Lichtenstein
- Hematology-Oncology, VA West LA-UCLA Medical Center, Los Angeles, California.
- Jonsson Cancer Center, University of California, Los Angeles, California
| |
Collapse
|
343
|
Shi N, Yu H, Chen T. Inhibition of esophageal cancer growth through the suppression of PI3K/AKT/mTOR signaling pathway. Onco Targets Ther 2019; 12:7637-7647. [PMID: 31571914 PMCID: PMC6756275 DOI: 10.2147/ott.s205457] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/20/2019] [Indexed: 12/11/2022] Open
Abstract
Background The phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway is implicated in several cancers. AKT allosteric inhibitor MK2206 and dual PI3K and mTOR inhibitor BEZ235 are promising drug candidates with potential anti-tumor effects. Purpose In this study, we aimed to detect the activation of PI3K/AKT/mTOR pathway and assess the efficacy of MK2206 and BEZ235 in inhibiting esophageal cancer growth. Materials and methods We used three different systems including carcinogen-induced animal model, human esophageal squamous cell carcinoma (SCC) cell lines, and xenograft mouse model. Results Our data indicated that components of the PI3K/AKT/mTOR pathway were overexpressed and activated in esophageal SCC. MK2206 and BEZ235 inhibited cell proliferation, enhanced apoptosis, and induced cell-cycle arrest through downstream effectors SKP2, MCL-1, and cyclin D1 in esophageal SCC cells. MK2206 and BEZ235 also inhibited tumor growth in xenograft mice through the inhibition of AKT phosphorylation. MK2206/BEZ235 combination showed greater anti-tumor effect than MK2206 or BEZ235 alone. The enhanced efficacy of the combination was associated with the inhibition of phosphorylation ATK on both Thr308 and Ser473. Conclusion The combination of MK2206 and BEZ235 exhibits potent antitumor effects and may have important clinical applications for esophageal SCC treatment.
Collapse
Affiliation(s)
- Ni Shi
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Hao Yu
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Tong Chen
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
344
|
Borsari C, Rageot D, Dall'Asen A, Bohnacker T, Melone A, Sele AM, Jackson E, Langlois JB, Beaufils F, Hebeisen P, Fabbro D, Hillmann P, Wymann MP. A Conformational Restriction Strategy for the Identification of a Highly Selective Pyrimido-pyrrolo-oxazine mTOR Inhibitor. J Med Chem 2019; 62:8609-8630. [PMID: 31465220 DOI: 10.1021/acs.jmedchem.9b00972] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mechanistic target of rapamycin (mTOR) plays a pivotal role in growth and tumor progression and is an attractive target for cancer treatment. ATP-competitive mTOR kinase inhibitors (TORKi) have the potential to overcome limitations of rapamycin derivatives in a wide range of malignancies. Herein, we exploit a conformational restriction approach to explore a novel chemical space for the generation of TORKi. Structure-activity relationship (SAR) studies led to the identification of compound 12b with a ∼450-fold selectivity for mTOR over class I PI3K isoforms. Pharmacokinetic studies in male Sprague Dawley rats highlighted a good exposure after oral dosing and a minimum brain penetration. CYP450 reactive phenotyping pointed out the high metabolic stability of 12b. These results identify the tricyclic pyrimido-pyrrolo-oxazine moiety as a novel scaffold for the development of highly selective mTOR inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Chiara Borsari
- Department of Biomedicine , University of Basel , Mattenstrasse 28 , 4058 Basel , Switzerland
| | - Denise Rageot
- Department of Biomedicine , University of Basel , Mattenstrasse 28 , 4058 Basel , Switzerland
| | - Alix Dall'Asen
- PIQUR Therapeutics AG , Hochbergerstrasse 60 , 4057 Basel , Switzerland
| | - Thomas Bohnacker
- Department of Biomedicine , University of Basel , Mattenstrasse 28 , 4058 Basel , Switzerland
| | - Anna Melone
- Department of Biomedicine , University of Basel , Mattenstrasse 28 , 4058 Basel , Switzerland
| | - Alexander M Sele
- Department of Biomedicine , University of Basel , Mattenstrasse 28 , 4058 Basel , Switzerland
| | - Eileen Jackson
- Department of Biomedicine , University of Basel , Mattenstrasse 28 , 4058 Basel , Switzerland
| | - Jean-Baptiste Langlois
- Department of Biomedicine , University of Basel , Mattenstrasse 28 , 4058 Basel , Switzerland
| | - Florent Beaufils
- PIQUR Therapeutics AG , Hochbergerstrasse 60 , 4057 Basel , Switzerland
| | - Paul Hebeisen
- PIQUR Therapeutics AG , Hochbergerstrasse 60 , 4057 Basel , Switzerland
| | - Doriano Fabbro
- PIQUR Therapeutics AG , Hochbergerstrasse 60 , 4057 Basel , Switzerland
| | - Petra Hillmann
- PIQUR Therapeutics AG , Hochbergerstrasse 60 , 4057 Basel , Switzerland
| | - Matthias P Wymann
- Department of Biomedicine , University of Basel , Mattenstrasse 28 , 4058 Basel , Switzerland
| |
Collapse
|
345
|
Elaileh A, Saharia A, Potter L, Baio F, Ghafel A, Abdelrahim M, Heyne K. Promising new treatments for pancreatic cancer in the era of targeted and immune therapies. Am J Cancer Res 2019; 9:1871-1888. [PMID: 31598392 PMCID: PMC6780661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer mortality among men and women in the United States. Its incidence has been on the rise, with a projected two-fold increase by 2030. PDAC carries a poor prognosis due to a lack of effective screening tools, limited understanding of pathophysiology, and ineffective treatment modalities. Recently, there has been a revolution in the world of oncology with the advent of novel treatments to combat this disease. However, the 5-year survival of PDAC remains unchanged at a dismal 8%. The aim of this review is to bring together several studies and identify various recent modalities that have been promising in treating PDAC.
Collapse
Affiliation(s)
- Ahmed Elaileh
- Department of General Surgery, Houston Methodist HospitalHouston, Texas, USA
| | - Ashish Saharia
- Department of General Surgery, Houston Methodist HospitalHouston, Texas, USA
| | - Lucy Potter
- Department of General Surgery, Houston Methodist HospitalHouston, Texas, USA
| | - Flavio Baio
- Department of General Surgery, Houston Methodist HospitalHouston, Texas, USA
| | - Afnan Ghafel
- Department of Radiology, The University of JordanAmman, Jordan
| | - Maen Abdelrahim
- Department of General Surgery, Houston Methodist HospitalHouston, Texas, USA
| | - Kirk Heyne
- Department of General Surgery, Houston Methodist HospitalHouston, Texas, USA
| |
Collapse
|
346
|
Dual inhibition of the PI3K and MAPK pathways enhances nab-paclitaxel/gemcitabine chemotherapy response in preclinical models of pancreatic cancer. Cancer Lett 2019; 459:41-49. [DOI: 10.1016/j.canlet.2019.05.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/02/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
|
347
|
Wen W, Marcinkowski E, Luyimbazi D, Luu T, Xing Q, Yan J, Wang Y, Wu J, Guo Y, Tully D, Han ES, Yost SE, Yuan Y, Yim JH. Eribulin Synergistically Increases Anti-Tumor Activity of an mTOR Inhibitor by Inhibiting pAKT/pS6K/pS6 in Triple Negative Breast Cancer. Cells 2019; 8:cells8091010. [PMID: 31480338 PMCID: PMC6770784 DOI: 10.3390/cells8091010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 12/24/2022] Open
Abstract
Unlike other breast cancer subtypes, patients with triple negative breast cancer (TNBC) have poor outcomes and no effective targeted therapies, leaving an unmet need for therapeutic targets. Efforts to profile these tumors have revealed the PI3K/AKT/mTOR pathway as a potential target. Activation of this pathway also contributes to resistance to anti-cancer agents, including microtubule-targeting agents. Eribulin is one such microtubule-targeting agent that is beneficial in treating taxane and anthracycline refractory breast cancer. In this study, we compared the effect of eribulin on the PI3K/AKT/mTOR pathway with other microtubule-targeting agents in TNBC. We found that the phosphorylation of AKT was suppressed by eribulin, a microtubule depolymerizing agent, but activated by paclitaxel, a microtubule stabilizing agent. The combination of eribulin and everolimus, an mTOR inhibitor, resulted in an increased reduction of p-S6K1 and p-S6, a synergistic inhibition of cell survival in vitro, and an enhanced suppression of tumor growth in two orthotopic mouse models. These findings provide a preclinical foundation for targeting both the microtubule cytoskeleton and the PI3K/AKT/mTOR pathway in the treatment of refractory TNBC.
Collapse
Affiliation(s)
- Wei Wen
- Division of Surgery, Beckman Research Institute, City of Hope National Medical Center, 1500 East Duarte Rd., Duarte, CA 91010, USA
| | - Emily Marcinkowski
- Division of Surgery, Beckman Research Institute, City of Hope National Medical Center, 1500 East Duarte Rd., Duarte, CA 91010, USA
| | - David Luyimbazi
- Division of Surgery, Beckman Research Institute, City of Hope National Medical Center, 1500 East Duarte Rd., Duarte, CA 91010, USA
| | - Thehang Luu
- Department of Medical Oncology and Molecular Therapy, Beckman Research Institute, City of Hope National Medical Center, 1500 East Duarte Rd., Duarte, CA 91010, USA
| | - Quanhua Xing
- Division of Surgery, Beckman Research Institute, City of Hope National Medical Center, 1500 East Duarte Rd., Duarte, CA 91010, USA
| | - Jin Yan
- Division of Surgery, Beckman Research Institute, City of Hope National Medical Center, 1500 East Duarte Rd., Duarte, CA 91010, USA
| | - Yujun Wang
- Division of Surgery, Beckman Research Institute, City of Hope National Medical Center, 1500 East Duarte Rd., Duarte, CA 91010, USA
| | - Jun Wu
- Department of Comparative Medicine, Beckman Research Institute, City of Hope National Medical Center, 1500 East Duarte Rd., Duarte, CA 91010, USA
| | - Yuming Guo
- Department of Comparative Medicine, Beckman Research Institute, City of Hope National Medical Center, 1500 East Duarte Rd., Duarte, CA 91010, USA
| | - Dylan Tully
- Division of Surgery, Beckman Research Institute, City of Hope National Medical Center, 1500 East Duarte Rd., Duarte, CA 91010, USA
| | - Ernest S Han
- Division of Surgery, Beckman Research Institute, City of Hope National Medical Center, 1500 East Duarte Rd., Duarte, CA 91010, USA
| | - Susan E Yost
- Department of Medical Oncology and Molecular Therapy, Beckman Research Institute, City of Hope National Medical Center, 1500 East Duarte Rd., Duarte, CA 91010, USA
| | - Yuan Yuan
- Department of Medical Oncology and Molecular Therapy, Beckman Research Institute, City of Hope National Medical Center, 1500 East Duarte Rd., Duarte, CA 91010, USA
| | - John H Yim
- Division of Surgery, Beckman Research Institute, City of Hope National Medical Center, 1500 East Duarte Rd., Duarte, CA 91010, USA.
| |
Collapse
|
348
|
Movia D, Bazou D, Prina-Mello A. ALI multilayered co-cultures mimic biochemical mechanisms of the cancer cell-fibroblast cross-talk involved in NSCLC MultiDrug Resistance. BMC Cancer 2019; 19:854. [PMID: 31464606 PMCID: PMC6714313 DOI: 10.1186/s12885-019-6038-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/14/2019] [Indexed: 12/15/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer-related deaths worldwide. This study focuses on its most common form, Non-Small-Cell Lung Cancer (NSCLC). No cure exists for advanced NSCLC, and patient prognosis is extremely poor. Efforts are currently being made to develop effective inhaled NSCLC therapies. However, at present, reliable preclinical models to support the development of inhaled anti-cancer drugs do not exist. This is due to the oversimplified nature of currently available in vitro models, and the significant interspecies differences between animals and humans. Methods We have recently established 3D Multilayered Cell Cultures (MCCs) of human NSCLC (A549) cells grown at the Air-Liquid Interface (ALI) as the first in vitro tool for screening the efficacy of inhaled anti-cancer drugs. Here, we present an improved in vitro model formed by growing A549 cells and human fibroblasts (MRC-5 cell line) as an ALI multilayered co-culture. The model was characterized over 14-day growth and tested for its response to four benchmarking chemotherapeutics. Results ALI multilayered co-cultures showed an increased resistance to the four drugs tested as compared to ALI multilayered mono-cultures. The signalling pathways involved in the culture MultiDrug Resistance (MDR) were influenced by the cancer cell-fibroblast cross-talk, which was mediated through TGF-β1 release and subsequent activation of the PI3K/AKT/mTOR pathway. As per in vivo conditions, when inhibiting mTOR phosphorylation, MDR was triggered by activation of the MEK/ERK pathway activation and up-regulation in cIAP-1/2 expression. Conclusions Our study opens new research avenues for the development of alternatives to animal-based inhalation studies, impacting the development of anti-NSCLC drugs. Electronic supplementary material The online version of this article (10.1186/s12885-019-6038-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dania Movia
- Department of Clinical Medicine/Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, University of Dublin Trinity College, James's Street, D8, Dublin, Ireland.
| | - Despina Bazou
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Adriele Prina-Mello
- Department of Clinical Medicine/Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, University of Dublin Trinity College, James's Street, D8, Dublin, Ireland.,AMBER Centre, CRANN Institute, University of Dublin Trinity College, Dublin, Ireland
| |
Collapse
|
349
|
Galli G, Poissonnier A, Guégan JP, Charrier M, Sisirak V, Lazaro E, Truchetet ME, Richez C, Legembre P, Blanco P. HIV protease inhibitors and autoimmunity: An odd, but promising idea. Clin Exp Rheumatol 2019; 18:102370. [PMID: 31404704 DOI: 10.1016/j.autrev.2019.102370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Gaël Galli
- Service de Médecine Interne, FHU ACRONIM, Hôpital Haut Lévêque, Centre Hospitalier Universitaire, Avenue Magellan, 33600 Pessac, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcEpt, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Amanda Poissonnier
- CLCC Eugène Marquis, INSERM-UMR 1242, Université de Rennes, rue Bataille Flandres Dunkerque, 35042 Rennes, France; Equipe Ligue Contre Le Cancer, rue Bataille Flandres Dunkerque, 35042 Rennes, France
| | - Jean Philippe Guégan
- CLCC Eugène Marquis, INSERM-UMR 1242, Université de Rennes, rue Bataille Flandres Dunkerque, 35042 Rennes, France; Equipe Ligue Contre Le Cancer, rue Bataille Flandres Dunkerque, 35042 Rennes, France
| | - Manon Charrier
- Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcEpt, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; Service de Néphrologie, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, place Amélie Raba Léon, 33076 Bordeaux, France
| | - Vanja Sisirak
- Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcEpt, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Estibaliz Lazaro
- Service de Médecine Interne, FHU ACRONIM, Hôpital Haut Lévêque, Centre Hospitalier Universitaire, Avenue Magellan, 33600 Pessac, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcEpt, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Marie-Elise Truchetet
- Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcEpt, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; Service de Rhumatologie, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, place Amélie Raba Léon, 33076 Bordeaux, France
| | - Christophe Richez
- Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcEpt, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; Service de Rhumatologie, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, place Amélie Raba Léon, 33076 Bordeaux, France
| | - Patrick Legembre
- CLCC Eugène Marquis, INSERM-UMR 1242, Université de Rennes, rue Bataille Flandres Dunkerque, 35042 Rennes, France; Equipe Ligue Contre Le Cancer, rue Bataille Flandres Dunkerque, 35042 Rennes, France
| | - Patrick Blanco
- Laboratoire d'Immunologie et Immunogénétique, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, place Amélie Raba Léon, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcEpt, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France.
| |
Collapse
|
350
|
Murugan AK. mTOR: Role in cancer, metastasis and drug resistance. Semin Cancer Biol 2019; 59:92-111. [PMID: 31408724 DOI: 10.1016/j.semcancer.2019.07.003] [Citation(s) in RCA: 310] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/14/2019] [Accepted: 07/03/2019] [Indexed: 02/09/2023]
Abstract
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that gets inputs from the amino acids, nutrients, growth factor, and environmental cues to regulate varieties of fundamental cellular processes which include protein synthesis, growth, metabolism, aging, regeneration, autophagy, etc. The mTOR is frequently deregulated in human cancer and activating somatic mutations of mTOR were recently identified in several types of human cancer and hence mTOR is therapeutically targeted. mTOR inhibitors were commonly used as immunosuppressors and currently, it is approved for the treatment of human malignancies. This review briefly focuses on the structure and biological functions of mTOR. It extensively discusses the genetic deregulation of mTOR including amplifications and somatic mutations, mTOR-mediated cell growth promoting signaling, therapeutic targeting of mTOR and the mechanisms of resistance, the role of mTOR in precision medicine and other recent advances in further understanding the role of mTOR in cancer.
Collapse
Affiliation(s)
- Avaniyapuram Kannan Murugan
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Research Center (MBC 03), Riyadh, 11211, Saudi Arabia.
| |
Collapse
|