301
|
Zhou X, Yang G, Guan F. Biological Functions and Analytical Strategies of Sialic Acids in Tumor. Cells 2020; 9:E273. [PMID: 31979120 PMCID: PMC7072699 DOI: 10.3390/cells9020273] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/21/2022] Open
Abstract
Sialic acids, a subset of nine carbon acidic sugars, often exist as the terminal sugars of glycans on either glycoproteins or glycolipids on the cell surface. Sialic acids play important roles in many physiological and pathological processes via carbohydrate-protein interactions, including cell-cell communication, bacterial and viral infections. In particular, hypersialylation in tumors, as well as their roles in tumor growth and metastasis, have been widely described. Recent studies have indicated that the aberrant sialylation is a vital way for tumor cells to escape immune surveillance and keep malignance. In this article, we outline the present state of knowledge on the metabolic pathway of human sialic acids, the function of hypersialylation in tumors, as well as the recent labeling and analytical techniques for sialic acids. It is expected to offer a brief introduction of sialic acid metabolism and provide advanced analytical strategies in sialic acid studies.
Collapse
Affiliation(s)
- Xiaoman Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ganglong Yang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Feng Guan
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi’an 710069, China
| |
Collapse
|
302
|
Shu C, Zha H, Long H, Wang X, Yang F, Gao J, Hu C, Zhou L, Guo B, Zhu B. C3a-C3aR signaling promotes breast cancer lung metastasis via modulating carcinoma associated fibroblasts. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:11. [PMID: 31931851 PMCID: PMC6958674 DOI: 10.1186/s13046-019-1515-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023]
Abstract
Background Mounting evidence suggests that complement components promote tumor progression via modulating immune suppression, angiogenesis, or tumor cell proliferation. However, the role of C3a-C3aR signaling in regulating lung metastasis of breast cancer remains unknown. Methods We performed various ex-vivo and in-vivo assays. Genetic and pharmacological C3aR blockade models were applied to investigate the role of C3a-C3aR in metastasis of breast cancer. Results C3a-C3aR signaling in CAFs facilitates the metastasis of breast cancer. Mechanically, C3a-C3aR signaling augments pro-metastatic cytokine secretion and extracellular matrix components expression of CAFs via the activation of PI3K-AKT signaling. Genetic or pharmacological blockade of C3aR signaling effectively inhibited lung metastasis of breast cancer in mouse models. Conclusions C3a-C3aR signaling in CAFs facilitates the metastasis of breast cancer. Targeting C3aR signaling is a potential anti-metastasis strategy for breast cancer therapy.
Collapse
Affiliation(s)
- Chi Shu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, People's Republic of China
| | - Haoran Zha
- Department of Oncology, The General Hospital of the PLA Rocket Force, Beijing, 100088, People's Republic of China
| | - Haixia Long
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, People's Republic of China
| | - Xinxin Wang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, People's Republic of China
| | - Fei Yang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, People's Republic of China
| | - Jianbao Gao
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, People's Republic of China
| | - Chunyan Hu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, People's Republic of China
| | - Li Zhou
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, People's Republic of China
| | - Bo Guo
- Maternal & Child Health Research Institute, Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518101, People's Republic of China.
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China. .,Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, People's Republic of China.
| |
Collapse
|
303
|
Mechanisms of Resistance to Anti-CD38 Daratumumab in Multiple Myeloma. Cells 2020; 9:cells9010167. [PMID: 31936617 PMCID: PMC7017193 DOI: 10.3390/cells9010167] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
Daratumumab (Dara) is the first-in-class human-specific anti-CD38 mAb approved for the treatment of multiple myeloma (MM). Although recent data have demonstrated very promising results in clinical practice and trials, some patients do not achieve a partial response, and ultimately all patients undergo progression. Dara exerts anti-MM activity via antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), complement-dependent cytotoxicity (CDC), and immunomodulatory effects. Deregulation of these pleiotropic mechanisms may cause development of Dara resistance. Knowledge of this resistance may improve the therapeutic management of MM patients.
Collapse
|
304
|
Pan-cancer molecular subtypes revealed by mass-spectrometry-based proteomic characterization of more than 500 human cancers. Nat Commun 2019; 10:5679. [PMID: 31831737 PMCID: PMC6908580 DOI: 10.1038/s41467-019-13528-0] [Citation(s) in RCA: 347] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/11/2019] [Indexed: 01/04/2023] Open
Abstract
Mass-spectrometry-based proteomic profiling of human cancers has the potential for pan-cancer analyses to identify molecular subtypes and associated pathway features that might be otherwise missed using transcriptomics. Here, we classify 532 cancers, representing six tissue-based types (breast, colon, ovarian, renal, uterine), into ten proteome-based, pan-cancer subtypes that cut across tumor lineages. The proteome-based subtypes are observable in external cancer proteomic datasets surveyed. Gene signatures of oncogenic or metabolic pathways can further distinguish between the subtypes. Two distinct subtypes both involve the immune system, one associated with the adaptive immune response and T-cell activation, and the other associated with the humoral immune response. Two additional subtypes each involve the tumor stroma, one of these including the collagen VI interacting network. Three additional proteome-based subtypes—respectively involving proteins related to Golgi apparatus, hemoglobin complex, and endoplasmic reticulum—were not reflected in previous transcriptomics analyses. A data portal is available at UALCAN website. Mass-spectrometry-based profiling can be used to stratify tumours into molecular subtypes. Here, by classifying over 500 tumours, the authors show that this approach reveals proteomic subgroups which cut across tumour types.
Collapse
|
305
|
Yang H, Li W, Lv Y, Fan Q, Mao X, Long T, Xie L, Dong C, Yang R, Zhang H. Exploring the mechanism of clear cell renal cell carcinoma metastasis and key genes based on multi-tool joint analysis. Gene 2019; 720:144103. [DOI: 10.1016/j.gene.2019.144103] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/16/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022]
|
306
|
Weng SSH, Demir F, Ergin EK, Dirnberger S, Uzozie A, Tuscher D, Nierves L, Tsui J, Huesgen PF, Lange PF. Sensitive Determination of Proteolytic Proteoforms in Limited Microscale Proteome Samples. Mol Cell Proteomics 2019; 18:2335-2347. [PMID: 31471496 PMCID: PMC6823850 DOI: 10.1074/mcp.tir119.001560] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/09/2019] [Indexed: 12/15/2022] Open
Abstract
Protein N termini unambiguously identify truncated, alternatively translated or modified proteoforms with distinct functions and reveal perturbations in disease. Selective enrichment of N-terminal peptides is necessary to achieve proteome-wide coverage for unbiased identification of site-specific regulatory proteolytic processing and protease substrates. However, many proteolytic processes are strictly confined in time and space and therefore can only be analyzed in minute samples that provide insufficient starting material for current enrichment protocols. Here we present High-efficiency Undecanal-based N Termini EnRichment (HUNTER), a robust, sensitive and scalable method for the analysis of previously inaccessible microscale samples. HUNTER achieved identification of >1000 N termini from as little as 2 μg raw HeLa cell lysate. Broad applicability is demonstrated by the first N-terminome analysis of sorted human primary immune cells and enriched mitochondrial fractions from pediatric cancer patients, as well as protease substrate identification from individual Arabidopsis thaliana wild type and Vacuolar Processing Enzyme-deficient mutant seedlings. We further implemented the workflow on a liquid handling system and demonstrate the feasibility of clinical degradomics by automated processing of liquid biopsies from pediatric cancer patients.
Collapse
Affiliation(s)
- Samuel S H Weng
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada; Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital, Vancouver, Canada
| | - Fatih Demir
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Germany
| | - Enes K Ergin
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada; Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital, Vancouver, Canada
| | - Sabrina Dirnberger
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Germany
| | - Anuli Uzozie
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada; Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital, Vancouver, Canada
| | - Domenic Tuscher
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Germany
| | - Lorenz Nierves
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada; Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital, Vancouver, Canada
| | - Janice Tsui
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada; Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital, Vancouver, Canada
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany.
| | - Philipp F Lange
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada; Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital, Vancouver, Canada.
| |
Collapse
|
307
|
High Expression of TTYH3 is Related to Poor Clinical Outcomes in Human Gastric Cancer. J Clin Med 2019; 8:jcm8111762. [PMID: 31652813 PMCID: PMC6912211 DOI: 10.3390/jcm8111762] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Ion channels play important roles in regulating various cellular processes and malignant transformation. Expressions of some chloride channels have been suggested to be associated with patient survival in gastric cancer (GC). However, little is known about the expression and function of TTYH3, a gene encoding a chloride ion channel, in cancer progression. Here, we comprehensively analyzed the expression of TTYH3 and its clinical outcome in GC using publicly available cancer gene expression and patient survival data through various databases. We examined the differences of TTYH3 expression between cancers and their normal tissues using the Oncomine, UALCAN, and GEO (Gene Expression Omnibus) databases. TTYH3 expression was investigated from immunohistochemistry images using the Human Protein Atlas database. Copy number alterations and mutations of TTYH3 were analyzed using cBioPortal. The co-expression profile of TTYH3 in GC was revealed using Oncomine. The gene ontology and pathway analyses were done using those co-expressed genes via the Enrichr tool to explore the predicted signaling pathways in GC. TTYH3 mRNA and protein levels in GC were significantly greater than those in normal tissue. Kaplan–Meier analysis revealed the upregulation of TTYH3 expression, which was significantly correlated with worse patient survival. Collectively, our data suggest that TTYH3 might be a potential prognostic marker for GC patients.
Collapse
|
308
|
The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature 2019; 574:264-267. [PMID: 31578522 PMCID: PMC6858566 DOI: 10.1038/s41586-019-1608-2] [Citation(s) in RCA: 534] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022]
Abstract
Bacterial dysbiosis accompanies carcinogenesis in malignancies such as colon and liver cancer, and has recently been implicated in the pathogenesis of pancreatic ductal adenocarcinoma (PDA)1. However, the mycobiome has not been clearly implicated in tumorigenesis. Here we show that fungi migrate from the gut lumen to the pancreas, and that this is implicated in the pathogenesis of PDA. PDA tumours in humans and mouse models of this cancer displayed an increase in fungi of about 3,000-fold compared to normal pancreatic tissue. The composition of the mycobiome of PDA tumours was distinct from that of the gut or normal pancreas on the basis of alpha- and beta-diversity indices. Specifically, the fungal community that infiltrated PDA tumours was markedly enriched for Malassezia spp. in both mice and humans. Ablation of the mycobiome was protective against tumour growth in slowly progressive and invasive models of PDA, and repopulation with a Malassezia species-but not species in the genera Candida, Saccharomyces or Aspergillus-accelerated oncogenesis. We also discovered that ligation of mannose-binding lectin (MBL), which binds to glycans of the fungal wall to activate the complement cascade, was required for oncogenic progression, whereas deletion of MBL or C3 in the extratumoral compartment-or knockdown of C3aR in tumour cells-were both protective against tumour growth. In addition, reprogramming of the mycobiome did not alter the progression of PDA in Mbl- (also known as Mbl2) or C3-deficient mice. Collectively, our work shows that pathogenic fungi promote PDA by driving the complement cascade through the activation of MBL.
Collapse
|
309
|
Mishra R, Rana S. A rational search for discovering potential neutraligands of human complement fragment 5a (hC5a). Bioorg Med Chem 2019; 27:115052. [DOI: 10.1016/j.bmc.2019.115052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 12/13/2022]
|
310
|
Samson JM, Ravindran Menon D, Smith DE, Baird E, Kitano T, Gao D, Tan AC, Fujita M. Clinical implications of ALDH1A1 and ALDH1A3 mRNA expression in melanoma subtypes. Chem Biol Interact 2019; 314:108822. [PMID: 31580832 DOI: 10.1016/j.cbi.2019.108822] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 08/23/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022]
Abstract
Aldehyde dehydrogenase (ALDH) activity is not only a valuable marker for cancer cells with stem-like features, but also plays a vital role in drug resistance and disease progression in many tumors including melanoma. However, the precise role of ALDH activity in patient prognosis remains unclear. In this study, using the Cancer Genome Atlas (TCGA) RNA-sequencing expression data, we analyzed gene expression of ALDH isozymes in melanoma tumors to define the expression patterns and the prognostic and predictive values of these enzymes. We found that ALDH1A1 and ALDH1A3 had both higher and broader expression ranges in melanoma patients, and that ALDH1A3 expression correlated with better overall survival in metastatic melanoma. Further, stratification of the TCGA cohorts by the mutational subtypes of melanoma specifically revealed that expression of ALDH1A3 correlated with better prognosis in metastatic BRAF-mutant melanoma while expression of ALDH1A1 correlated with better prognosis in BRAF wild-type melanoma. Gene set enrichment analysis (GSEA) of these cohorts identified upregulation in oxidative phosphorylation, adipogenesis, and fatty acid metabolism signaling in ALDH1Alo patients, suggesting BRAF/MEK inhibitor resistance in that subset of patients. On the other hand, GSEA of ALDH1A3hi cohorts revealed upregulation in glycolysis, hypoxia and angiogenesis, suggesting BRAF/MEK inhibitor sensitivity in that subset of patients. Gene expression analysis using pre-treatment tumor samples supports high ALDH1A3 expression before BRAF/MEK inhibitor treatment as predictive of better treatment response in BRAF-mutant melanoma patients. Our study provides evidence that high ALDH1A3 mRNA expression is not only a prognostic marker but also a predictive marker for BRAF/MEK inhibitor treatment response in BRAF-mutant metastatic melanoma patients.
Collapse
Affiliation(s)
- Jenny Mae Samson
- Department of Dermatology, University of Colorado Denver, Aurora, CO, 80045, United States
| | - Dinoop Ravindran Menon
- Department of Dermatology, University of Colorado Denver, Aurora, CO, 80045, United States
| | - Derek E Smith
- Department of Biostatistics & Informatics, University of Colorado Denver, Aurora, CO 80045, United States
| | - Erika Baird
- Department of Dermatology, University of Colorado Denver, Aurora, CO, 80045, United States
| | - Takayuki Kitano
- Department of Dermatology, University of Colorado Denver, Aurora, CO, 80045, United States; School of Medicine, University of the Ryukyus, Nishihara, Okinawa, 903-0215, Japan
| | - Dexiang Gao
- Department of Biostatistics & Informatics, University of Colorado Denver, Aurora, CO 80045, United States
| | - Aik-Choon Tan
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, Aurora, CO, 80045, United States.
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Denver, Aurora, CO, 80045, United States; Denver VA Medical Center, Denver, CO, 80220, United States; Department of Immunology & Microbiology, University of Colorado Denver, Aurora, CO, 80045, United States.
| |
Collapse
|
311
|
Varricchi G, de Paulis A, Marone G, Galli SJ. Future Needs in Mast Cell Biology. Int J Mol Sci 2019; 20:E4397. [PMID: 31500217 PMCID: PMC6769913 DOI: 10.3390/ijms20184397] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
The pathophysiological roles of mast cells are still not fully understood, over 140 years since their description by Paul Ehrlich in 1878. Initial studies have attempted to identify distinct "subpopulations" of mast cells based on a relatively small number of biochemical characteristics. More recently, "subtypes" of mast cells have been described based on the analysis of transcriptomes of anatomically distinct mouse mast cell populations. Although mast cells can potently alter homeostasis, in certain circumstances, these cells can also contribute to the restoration of homeostasis. Both solid and hematologic tumors are associated with the accumulation of peritumoral and/or intratumoral mast cells, suggesting that these cells can help to promote and/or limit tumorigenesis. We suggest that at least two major subsets of mast cells, MC1 (meaning anti-tumorigenic) and MC2 (meaning pro-tumorigenic), and/or different mast cell mediators derived from otherwise similar cells, could play distinct or even opposite roles in tumorigenesis. Mast cells are also strategically located in the human myocardium, in atherosclerotic plaques, in close proximity to nerves and in the aortic valve. Recent studies have revealed evidence that cardiac mast cells can participate both in physiological and pathological processes in the heart. It seems likely that different subsets of mast cells, like those of cardiac macrophages, can exert distinct, even opposite, effects in different pathophysiological processes in the heart. In this chapter, we have commented on possible future needs of the ongoing efforts to identify the diverse functions of mast cells in health and disease.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80138 Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80138 Naples, Italy.
- WAO Center of Excellence, 80138 Naples, Italy.
| | - Amato de Paulis
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80138 Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80138 Naples, Italy.
- WAO Center of Excellence, 80138 Naples, Italy.
| | - Gianni Marone
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80138 Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80138 Naples, Italy.
- WAO Center of Excellence, 80138 Naples, Italy.
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), 80138 Naples, Italy.
| | - Stephen J Galli
- Departments of Pathology and of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5176, USA.
| |
Collapse
|
312
|
Lushington GH, Barnes AC. Protein Glycation: An Old Villain is Shedding Secrets. Comb Chem High Throughput Screen 2019; 22:362-369. [DOI: 10.2174/1386207322666190704094356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/02/2019] [Accepted: 06/10/2019] [Indexed: 01/16/2023]
Abstract
:
The glycation of proteins is non-physiological post-translational incorporation of
carbohydrates onto the free amines or guanidines of proteins and some lipids. Although the
existence of glycated proteins has been known for forty years, a full understanding of their
pathogenic nature has been slow in accruing. In recent years, however, glycation has gained widespread
acceptance as a contributing factor in numerous metabolic, autoimmune, and neurological
disorders, tying together several confounding aspects of disease etiology. From diabetes, arthritis,
and lupus, to multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer’s, and Parkinson’s
diseases, an emerging glycation/inflammation paradigm now offers significant new insight into a
physiologically important toxicological phenomenon. It exposes novel drug targets and treatment
options, and may even lay foundations for long-awaited breakthroughs.
:
This ‘current frontier’ article briefly profiles current knowledge regarding the underlying causes
of glycation, the structural biology implications of such modifications, and their pathological
consequences. Although several emerging therapeutic strategies for addressing glycation
pathologies are introduced, the primary purpose of this mini-review is to raise awareness of the
challenges and opportunities inherent in this emerging new medicinal target area.
Collapse
|
313
|
Label-Free Proteomics Revealed Oxidative Stress and Inflammation as Factors That Enhance Chemoresistance in Luminal Breast Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5357649. [PMID: 31485295 PMCID: PMC6702830 DOI: 10.1155/2019/5357649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/22/2019] [Accepted: 07/01/2019] [Indexed: 12/29/2022]
Abstract
Breast cancer is the leading cause of cancer-associated death among women worldwide. Its high mortality rate is related to resistance towards chemotherapies, which is one of the major challenges of breast cancer research. In this study, we used label-free mass spectrometry- (MS-) based proteomics to investigate the differences between circulating proteins in the plasma of patients with chemoresponsive and chemoresistant luminal A breast cancer. MS analysis revealed 205 differentially expressed proteins. Furthermore, we used in silico tools to build protein-protein interaction networks. Most of the upregulated proteins in the chemoresistant group were closely related and tightly linked. The predominant networks were related to oxidative stress, the inflammatory response, and the complement cascade. Through this analysis, we identified inflammation and oxidative stress as central processes of breast cancer chemoresistance. Furthermore, we confirmed our hypothesis by evaluating oxidative stress and performing cytokine profiling in our cohort. The connections among oxidative stress, inflammation, and the complement system described in our study seem to indicate a pivotal axis in breast cancer chemoresistance. Hence, these findings will have significant clinical implications for improving therapies to bypass breast cancer chemoresistance in the future.
Collapse
|
314
|
Regulation of Immunity in Breast Cancer. Cancers (Basel) 2019; 11:cancers11081080. [PMID: 31366131 PMCID: PMC6721298 DOI: 10.3390/cancers11081080] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancer affects millions of women worldwide, leading to many deaths and significant economic burden. Although there are numerous treatment options available, the huge potentials of immunotherapy in the management of localized and metastatic breast cancer is currently being explored. However, there are significant gaps in understanding the complex interactions between the immune system and breast cancer. The immune system can be pro-tumorigenic and anti-tumorigenic depending on the cells involved and the conditions of the tumor microenvironment. In this review, we discuss current knowledge of breast cancer, including treatment options. We also give a brief overview of the immune system and comprehensively highlight the roles of different cells of the immune system in breast tumorigenesis, including recent research discoveries. Lastly, we discuss some immunotherapeutic strategies for the management of breast cancer.
Collapse
|
315
|
Riihilä P, Nissinen L, Knuutila J, Rahmati Nezhad P, Viiklepp K, Kähäri VM. Complement System in Cutaneous Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:ijms20143550. [PMID: 31331124 PMCID: PMC6678994 DOI: 10.3390/ijms20143550] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
Epidermal keratinocyte-derived cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer with high mortality rates in the advanced stage. Chronic inflammation is a recognized risk factor for cSCC progression and the complement system, as a part of innate immunity, belongs to the microenvironment of tumors. The complement system is a double-edged sword in cancer, since complement activation is involved in anti-tumor cytotoxicity and immune responses, but it also promotes cancer progression directly and indirectly. Recently, the role of several complement components and inhibitors in the regulation of progression of cSCC has been shown. In this review, we will discuss the role of complement system components and inhibitors as biomarkers and potential new targets for therapeutic intervention in cSCC.
Collapse
Affiliation(s)
- Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Jaakko Knuutila
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Pegah Rahmati Nezhad
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Kristina Viiklepp
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland.
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland.
| |
Collapse
|
316
|
Mao Y, Xue P, Li L, Xu P, Cai Y, Chu X, Jiang P, Zhu S. Bioinformatics analysis of mRNA and miRNA microarray to identify the key miRNA‑gene pairs in small‑cell lung cancer. Mol Med Rep 2019; 20:2199-2208. [PMID: 31257520 PMCID: PMC6691276 DOI: 10.3892/mmr.2019.10441] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023] Open
Abstract
Small-cell lung cancer (SCLC) is a type of lung cancer with early metastasis, and high recurrence and mortality rates. The molecular mechanism is still unclear and further research is required. The aim of the present study was to examine the pathogenesis and potential molecular markers of SCLC by comparing the differential expression of mRNA and microRNA (miRNA) between SCLC tissue and normal lung tissue. A transcriptome sequencing dataset (GSE6044) and a non-coding RNA sequence dataset (GSE19945) were downloaded from the Gene Expression Omnibus (GEO) database. In total, 451 differentially expressed genes (DEGs) and 134 differentially expressed miRNAs (DEMs) were identified using the R limma software package and the GEO2R tool of the GEO, respectively. The Gene Ontology function was significantly enriched for 28 terms, and the Kyoto Encyclopedia of Genes and Genomes database had 19 enrichment pathways, mainly related to ‘cell cycle’, ‘DNA replication’ and ‘oocyte meiosis mismatch repair’. The protein-protein interaction network was constructed using Cytoscape software to identify the molecular mechanisms of key signaling pathways and cellular activities in SCLC. The 1,402 miRNA-gene pairs encompassed 602 target genes of the DEMs using miRNAWalk, which is a bioinformatics platform that predicts DEM target genes and miRNA-gene pairs. There were 19 overlapping genes regulated by 32 miRNAs between target genes of the DEMs and DEGs. Bioinformatics analysis may help to better understand the role of DEGs, DEMs and miRNA-gene pairs in cell proliferation and signal transduction. The related hub genes may be used as biomarkers for the diagnosis and prognosis of SCLC, and as potential drug targets.
Collapse
Affiliation(s)
- Yun Mao
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Peng Xue
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China
| | - Linlu Li
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Pengpeng Xu
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Yafang Cai
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Xuelei Chu
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Pengyuan Jiang
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Shijie Zhu
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China
| |
Collapse
|
317
|
Comparative transcriptome analysis of peripheral blood mononuclear cells in renal transplant recipients in everolimus- and tacrolimus-based immunosuppressive therapy. Eur J Pharmacol 2019; 859:172494. [PMID: 31238062 DOI: 10.1016/j.ejphar.2019.172494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 12/19/2022]
Abstract
To better define the biological impact of immunosuppression on peripheral blood mononuclear cells (PBMC), we employed RNASeq analysis to compare the whole transcriptomic profile of a group of renal transplant recipients undergoing maintenance treatment with Everolimus (EVE) with those treated with Tacrolimus (TAC). Then, obtained results were validated by classical biomolecular methodologies. The statistical analysis allowed the identification of four genes discriminating the 2 study groups: Sushi Domain Containing 4 (SUSD4, P = 0.02), T Cell Leukemia/Lymphoma 1A (TCL1A, P = 0.02), adhesion G protein-coupled receptor E3 (ADGRE3, P = 0.01), Immunoglobulin Heavy Constant Gamma 3 (IGHG3, P = 0.03). All of them were significantly down-regulated in patients treated with EVE compared to TAC. The Area under Receiver Operating Characteristic (AUROC) of the final model based on these 4 genes was 73.1% demonstrating its good discriminative power. RT-PCR and ELISA validated transcriptomic results. Additionally, an in vitro model confirmed that EVE significantly down-regulates (P<0.001) TCL1A, SUSD4, ADGRE3 and IgHG3 in PBMCs as well as in T cells and monocytes isolated from healthy subjects. Taken together, our data, revealed, for the first time, a new four gene-based transcriptomic fingerprint down-regulated by EVE in PBMCs of renal transplant patients that could improve the available knowledge regarding some of the biological/cellular effects of the mTOR-Is (including their antineoplastic and immune-regulatory properties).
Collapse
|
318
|
Roumenina LT, Daugan MV, Noé R, Petitprez F, Vano YA, Sanchez-Salas R, Becht E, Meilleroux J, Clec'h BL, Giraldo NA, Merle NS, Sun CM, Verkarre V, Validire P, Selves J, Lacroix L, Delfour O, Vandenberghe I, Thuilliez C, Keddani S, Sakhi IB, Barret E, Ferré P, Corvaïa N, Passioukov A, Chetaille E, Botto M, de Reynies A, Oudard SM, Mejean A, Cathelineau X, Sautès-Fridman C, Fridman WH. Tumor Cells Hijack Macrophage-Produced Complement C1q to Promote Tumor Growth. Cancer Immunol Res 2019; 7:1091-1105. [PMID: 31164356 DOI: 10.1158/2326-6066.cir-18-0891] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/01/2019] [Accepted: 05/30/2019] [Indexed: 11/16/2022]
Abstract
Clear-cell renal cell carcinoma (ccRCC) possesses an unmet medical need, particularly at the metastatic stage, when surgery is ineffective. Complement is a key factor in tissue inflammation, favoring cancer progression through the production of complement component 5a (C5a). However, the activation pathways that generate C5a in tumors remain obscure. By data mining, we identified ccRCC as a cancer type expressing concomitantly high expression of the components that are part of the classical complement pathway. To understand how the complement cascade is activated in ccRCC and impacts patients' clinical outcome, primary tumors from three patient cohorts (n = 106, 154, and 43), ccRCC cell lines, and tumor models in complement-deficient mice were used. High densities of cells producing classical complement pathway components C1q and C4 and the presence of C4 activation fragment deposits in primary tumors correlated with poor prognosis. The in situ orchestrated production of C1q by tumor-associated macrophages (TAM) and C1r, C1s, C4, and C3 by tumor cells associated with IgG deposits, led to C1 complex assembly, and complement activation. Accordingly, mice deficient in C1q, C4, or C3 displayed decreased tumor growth. However, the ccRCC tumors infiltrated with high densities of C1q-producing TAMs exhibited an immunosuppressed microenvironment, characterized by high expression of immune checkpoints (i.e., PD-1, Lag-3, PD-L1, and PD-L2). Our data have identified the classical complement pathway as a key inflammatory mechanism activated by the cooperation between tumor cells and TAMs, favoring cancer progression, and highlight potential therapeutic targets to restore an efficient immune reaction to cancer.
Collapse
Affiliation(s)
- Lubka T Roumenina
- INSERM, UMR_S 1138, Cordeliers Research Center, Team "Complement and diseases", Paris, France. .,Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France.,Cordeliers Research Center, Sorbonne University, Paris, France
| | - Marie V Daugan
- INSERM, UMR_S 1138, Cordeliers Research Center, Team "Complement and diseases", Paris, France.,Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France.,Cordeliers Research Center, Sorbonne University, Paris, France
| | - Rémi Noé
- INSERM, UMR_S 1138, Cordeliers Research Center, Team "Complement and diseases", Paris, France.,Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France.,Cordeliers Research Center, Sorbonne University, Paris, France
| | - Florent Petitprez
- Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France.,Cordeliers Research Center, Sorbonne University, Paris, France.,INSERM, UMR_S 1138, Cordeliers Research Center, Team "Cancer, Immune Control and Escape", Paris, France.,Programme Cartes d'Identité des Tumeurs, Ligue Nationale contre le Cancer, Paris, France
| | - Yann A Vano
- Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France.,Cordeliers Research Center, Sorbonne University, Paris, France.,INSERM, UMR_S 1138, Cordeliers Research Center, Team "Cancer, Immune Control and Escape", Paris, France.,Department of Oncology, Georges Pompidou European Hospital, Assistance Publique Hopitaux de Paris, Paris, France
| | | | - Etienne Becht
- Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France.,Cordeliers Research Center, Sorbonne University, Paris, France.,INSERM, UMR_S 1138, Cordeliers Research Center, Team "Cancer, Immune Control and Escape", Paris, France
| | - Julie Meilleroux
- INSERM, UMR_S 1138, Cordeliers Research Center, Team "Complement and diseases", Paris, France.,Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France.,INSERM, UMR_S 1138, Cordeliers Research Center, Team "Cancer, Immune Control and Escape", Paris, France.,Department of Pathology, Institut Universitaire du Cancer Toulouse - Oncopole, Toulouse, France
| | - Bénédicte Le Clec'h
- INSERM, UMR_S 1138, Cordeliers Research Center, Team "Complement and diseases", Paris, France.,Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France.,INSERM, UMR_S 1138, Cordeliers Research Center, Team "Cancer, Immune Control and Escape", Paris, France
| | - Nicolas A Giraldo
- Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France.,Cordeliers Research Center, Sorbonne University, Paris, France.,INSERM, UMR_S 1138, Cordeliers Research Center, Team "Cancer, Immune Control and Escape", Paris, France
| | - Nicolas S Merle
- INSERM, UMR_S 1138, Cordeliers Research Center, Team "Complement and diseases", Paris, France.,Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France.,Cordeliers Research Center, Sorbonne University, Paris, France
| | - Cheng-Ming Sun
- Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France.,Cordeliers Research Center, Sorbonne University, Paris, France.,INSERM, UMR_S 1138, Cordeliers Research Center, Team "Cancer, Immune Control and Escape", Paris, France
| | - Virginie Verkarre
- Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France.,Department of Pathology, Georges Pompidou European Hospital, Assistance Publique Hopitaux de Paris, Paris, France
| | - Pierre Validire
- Department of Pathology, Institut Mutualiste Montsouris, Paris, France
| | - Janick Selves
- Department of Pathology, Institut Universitaire du Cancer Toulouse - Oncopole, Toulouse, France
| | - Laetitia Lacroix
- Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France.,Cordeliers Research Center, Sorbonne University, Paris, France.,INSERM, UMR_S 1138, Cordeliers Research Center, Team "Cancer, Immune Control and Escape", Paris, France
| | | | | | | | - Sonia Keddani
- INSERM, UMR_S 1138, Cordeliers Research Center, Team "Complement and diseases", Paris, France.,Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France.,Cordeliers Research Center, Sorbonne University, Paris, France
| | - Imene B Sakhi
- INSERM, UMR_S 1138, Cordeliers Research Center, Team "Complement and diseases", Paris, France.,Cordeliers Research Center, Sorbonne University, Paris, France
| | - Eric Barret
- Department of Urology, Institut Mutualiste Montsouris, Paris, France
| | - Pierre Ferré
- Pierre Fabre Research Institute, Toulouse, France
| | | | | | | | - Marina Botto
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Aurélien de Reynies
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale contre le Cancer, Paris, France
| | - Stephane Marie Oudard
- Department of Oncology, Georges Pompidou European Hospital, Assistance Publique Hopitaux de Paris, Paris, France
| | - Arnaud Mejean
- Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France.,Department of Urology, Georges Pompidou European Hospital, Assistance Publique Hopitaux de Paris, Paris, France
| | - Xavier Cathelineau
- Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France.,Department of Urology, Institut Mutualiste Montsouris, Paris, France
| | - Catherine Sautès-Fridman
- Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France.,Cordeliers Research Center, Sorbonne University, Paris, France.,INSERM, UMR_S 1138, Cordeliers Research Center, Team "Cancer, Immune Control and Escape", Paris, France
| | - Wolf H Fridman
- Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France. .,Cordeliers Research Center, Sorbonne University, Paris, France.,INSERM, UMR_S 1138, Cordeliers Research Center, Team "Cancer, Immune Control and Escape", Paris, France
| |
Collapse
|
319
|
Kim HS, Kim KM, Lee SB, Kim GR, Han YD, Cho MS, Hur H, Lee KY, Kim NK, Min BS. Clinicopathological and biomolecular characteristics of stage IIB/IIC and stage IIIA colon cancer: Insight into the survival paradox. J Surg Oncol 2019; 120:423-430. [PMID: 31134644 DOI: 10.1002/jso.25515] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND A survival paradox of stage IIB/IIC and IIIA colon cancer has been consistently observed throughout revisions of the TNM system. This study aimed to understand this paradox with clinicopathological and molecular differences. METHODS Clinicopathological characteristics of patients with pathologically confirmed stage IIB/IIC or IIIA colon cancer were retrospectively reviewed from a database. Publicly available molecular data were retrieved, and intrinsic subtypes were identified and subjected to gene sets enrichment analysis (GSEA). RESULTS Among the 159 patients included in the clinicopathological analysis, those at stage IIB/IIC had worse 3-year disease-free and overall survival than those at stage IIIA (59.3% vs 91.7%, P < 0.001 and 82.7% vs 98.5%, P < 0.001, respectively), even after adjusting for confounding factors. Data of 95 patients were retrieved from public databases, demonstrating a higher frequency of the microsatellite instable subtype in stage IIB/IIC. The consensus molecular subtype distribution pattern differed between the groups. The GSEA further suggested the protumor inflammatory reaction might be more prominent in stage IIB/IIC. CONCLUSIONS The survival paradox in colon cancer was confirmed and appears to be a multifactorial phenomenon not attributed to a single clinicopathologic factor. However, the greater molecular heterogeneity in stage IIB/IIC could contribute to the poor prognosis.
Collapse
Affiliation(s)
- Ho Seung Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Kyeong Min Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Sat Byol Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea.,Department of Surgery, Open NBI Convergence Technology Laboratory, Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Ga Ram Kim
- Department of Radiology, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
| | - Yoon Dae Han
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Min Soo Cho
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Hyuk Hur
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Kang Young Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Nam Kyu Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Byung Soh Min
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea.,Department of Surgery, Open NBI Convergence Technology Laboratory, Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
320
|
Geller A, Yan J. The Role of Membrane Bound Complement Regulatory Proteins in Tumor Development and Cancer Immunotherapy. Front Immunol 2019; 10:1074. [PMID: 31164885 PMCID: PMC6536589 DOI: 10.3389/fimmu.2019.01074] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/26/2019] [Indexed: 12/17/2022] Open
Abstract
It has long been understood that the control and surveillance of tumors within the body involves an intricate dance between the adaptive and innate immune systems. At the center of the interplay between the adaptive and innate immune response sits the complement system—an evolutionarily ancient response that aids in the destruction of microorganisms and damaged cells, including cancer cells. Membrane-bound complement regulatory proteins (mCRPs), such as CD46, CD55, and CD59, are expressed throughout the body in order to prevent over-activation of the complement system. These mCRPs act as a double-edged sword however, as they can also over-regulate the complement system to the extent that it is no longer effective at eliminating cancerous cells. Recent studies are now indicating that mCRPs may function as a biomarker of a malignant transformation in numerous cancer types, and further, are being shown to interfere with anti-tumor treatments. This highlights the critical roles that therapeutic blockade of mCRPs can play in cancer treatment. Furthermore, with the complement system having the ability to both directly and indirectly control adaptive T-cell responses, the use of a combinatorial approach of complement-related therapy along with other T-cell activating therapies becomes a logical approach to treatment. This review will highlight the biomarker-related role that mCRP expression may have in the classification of tumor phenotype and predicted response to different anti-cancer treatments in the context of an emerging understanding that complement activation within the Tumor Microenvironment (TME) is actually harmful for tumor control. We will discuss what is known about complement activation and mCRPs relating to cancer and immunotherapy, and will examine the potential for combinatorial approaches of anti-mCRP therapy with other anti-tumor therapies, especially checkpoint inhibitors such as anti PD-1 and PD-L1 monoclonal antibodies (mAbs). Overall, mCRPs play an essential role in the immune response to tumors, and understanding their role in the immune response, particularly in modulating currently used cancer therapeutics may lead to better clinical outcomes in patients with diverse cancer types.
Collapse
Affiliation(s)
- Anne Geller
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Jun Yan
- Immuno-Oncology Program, Department of Medicine, The James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
321
|
Todoric J, Karin M. The Fire within: Cell-Autonomous Mechanisms in Inflammation-Driven Cancer. Cancer Cell 2019; 35:714-720. [PMID: 31085174 DOI: 10.1016/j.ccell.2019.04.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/24/2019] [Accepted: 04/04/2019] [Indexed: 02/07/2023]
Abstract
Inflammatory cells are important for tumor initiation and promotion, providing cancer cells with cytokines that enhance cell proliferation and survival. Although malignant epithelial cells were traditionally considered to be on the receiving end of these microenvironmental interactions, recent studies show that epithelial cells can undergo inflammatory reprogramming on their own. Such epigenetic switches are often triggered by chronic tissue injury and play important roles in tissue repair. By converting terminally differentiated cells that harbor even a single oncogenic mutation to a less differentiated state with a higher proliferative potential, cell-autonomous inflammation is an important contributor to tumor initiation.
Collapse
Affiliation(s)
- Jelena Todoric
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Laboratory Medicine, Medical University of Vienna, Vienna 1090, Austria
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
322
|
Kleczko EK, Kwak JW, Schenk EL, Nemenoff RA. Targeting the Complement Pathway as a Therapeutic Strategy in Lung Cancer. Front Immunol 2019; 10:954. [PMID: 31134065 PMCID: PMC6522855 DOI: 10.3389/fimmu.2019.00954] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022] Open
Abstract
Lung cancer is the leading cause of cancer death in men and women. Lung adenocarcinoma (LUAD), represents approximately 40% of all lung cancer cases. Advances in recent years, such as the identification of oncogenes and the use of immunotherapies, have changed the treatment of LUAD. Yet survival rates still remain low. Additionally, there is still a gap in understanding the molecular and cellular interactions between cancer cells and the immune tumor microenvironment (TME). Defining how cancer cells with distinct oncogenic drivers interact with the TME and new strategies for enhancing anti-tumor immunity are greatly needed. The complement cascade, a central part of the innate immune system, plays an important role in regulation of adaptive immunity. Initially it was proposed that complement activation on the surface of cancer cells would inhibit cancer progression via membrane attack complex (MAC)-dependent killing. However, data from several groups have shown that complement activation promotes cancer progression, probably through the actions of anaphylatoxins (C3a and C5a) on the TME and engagement of immunoevasive pathways. While originally shown to be produced in the liver, recent studies show localized complement production in numerous cell types including immune cells and tumor cells. These results suggest that complement inhibitory drugs may represent a powerful new approach for treatment of NSCLC, and numerous new anti-complement drugs are in clinical development. However, the mechanisms by which complement is activated and affects tumor progression are not well understood. Furthermore, the role of local complement production vs. systemic activation has not been carefully examined. This review will focus on our current understanding of complement action in LUAD, and describe gaps in our knowledge critical for advancing complement therapy into the clinic.
Collapse
Affiliation(s)
- Emily K Kleczko
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jeff W Kwak
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Erin L Schenk
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Raphael A Nemenoff
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
323
|
Akbarpour M, Wu Q, Liu X, Sun H, Lecuona E, Tomic R, Bhorade S, Mohanakumar T, Bharat A. Clinical relevance of lung-restricted antibodies in lung transplantation. Hum Immunol 2019; 80:595-601. [PMID: 31078336 DOI: 10.1016/j.humimm.2019.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/01/2019] [Accepted: 04/23/2019] [Indexed: 12/23/2022]
Abstract
Lung transplant is a definitive treatment for several end-stage lung diseases. However, the high incidence of allograft rejection limits the overall survival following lung transplantation. Traditionally, alloimmunity directed against human leukocyte antigens (HLA) has been implicated in transplant rejection. Recently, the clinical impact of non-HLA lung-restricted antibodies (LRA) has been recognized and extensive research has demonstrated that they may play a dominant role in the development of lung allograft rejection. The immunogenic lung-restricted antigens that have been identified include amongst others, collagen type I, collagen type V, and k-alpha 1 tubulin. Pre-existing antibodies against these lung-restricted antigens are prevalent in patients undergoing lung transplantation and have emerged as one of the predominant risk factors for primary graft dysfunction which limits short-term survival following lung transplantation. Additionally, LRA have been shown to predispose to chronic lung allograft rejection, the predominant cause of poor long-term survival. This review will discuss ongoing research into the mechanisms of development of LRA as well as the pathogenesis of associated lung allograft injury.
Collapse
Affiliation(s)
- Mahzad Akbarpour
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qiang Wu
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xianpeng Liu
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Haiying Sun
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emilia Lecuona
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rade Tomic
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sangeeta Bhorade
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Ankit Bharat
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
324
|
Guo Q, Huang F, Goncalves C, Del Rincón SV, Miller WH. Translation of cancer immunotherapy from the bench to the bedside. Adv Cancer Res 2019; 143:1-62. [PMID: 31202357 DOI: 10.1016/bs.acr.2019.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The tremendous success of immune checkpoint blockades has revolutionized cancer management. Our increased understanding of the cell types that compose the tumor microenvironment (TME), including those of the innate and adaptive immune system, has helped to shape additional immune modulatory strategies in cancer care. Pre-clinical and clinical investigations targeting novel checkpoint interactions and key pathways that regulate cancer immunity continue to increase rapidly. Various combinatorial drug regimens are being tested in attempt to achieve durable response and survival rates of patients with cancer. This review provides an overview of specific components of the TME, an introduction to novel immune checkpoints, followed by a survey of present day and future combination immune modulatory therapies. The idea that the immune system can recognize and destroy tumor cells was first described in the cancer immunosurveillance hypothesis of Burnet and Thomas. However, early experimental evidence failed to support the concept. It was not until the late 1990s when seminal papers clearly showed the existence of cancer immunosurveillance, leading to the cancer immunoediting hypothesis. In this century, progress in the understanding of negative regulators of the immune response led to the discovery that inhibition of these regulators in patients with cancer could lead to dramatic and durable remissions. Drs. Tasuku Honjo and James P. Allison were awarded the Nobel Prize in 2018 for their pioneering work in this field. We now see rapid advances in cancer immunology and emerging effective therapies revolutionizing cancer care across tumor types in the clinic, while pre-clinical research is moving from a focus on the malignant cells themselves to dissect the highly heterogenic and complex multi-cellular tumor microenvironment (TME).
Collapse
Affiliation(s)
- Qianyu Guo
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Fan Huang
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Christophe Goncalves
- Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Sonia V Del Rincón
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Wilson H Miller
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada; Rossy Cancer Network, Montreal, QC, Canada.
| |
Collapse
|
325
|
Zhu Y, Pick H, Gasilova N, Li X, Lin TE, Laeubli HP, Zippelius A, Ho PC, Girault HH. MALDI Detection of Exosomes: A Potential Tool for Cancer Studies. Chem 2019. [DOI: 10.1016/j.chempr.2019.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
326
|
Pio R, Ajona D, Ortiz-Espinosa S, Mantovani A, Lambris JD. Complementing the Cancer-Immunity Cycle. Front Immunol 2019; 10:774. [PMID: 31031765 PMCID: PMC6473060 DOI: 10.3389/fimmu.2019.00774] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/25/2019] [Indexed: 12/12/2022] Open
Abstract
Reactivation of cytotoxic CD8+ T-cell responses has set a new direction for cancer immunotherapy. Neutralizing antibodies targeting immune checkpoint programmed cell death protein 1 (PD-1) or its ligand (PD-L1) have been particularly successful for tumor types with limited therapeutic options such as melanoma and lung cancer. However, reactivation of T cells is only one step toward tumor elimination, and a substantial fraction of patients fails to respond to these therapies. In this context, combination therapies targeting more than one of the steps of the cancer-immune cycle may provide significant benefits. To find the best combinations, it is of upmost importance to understand the interplay between cancer cells and all the components of the immune response. This review focuses on the elements of the complement system that come into play in the cancer-immunity cycle. The complement system, an essential part of innate immunity, has emerged as a major regulator of cancer immunity. Complement effectors such as C1q, anaphylatoxins C3a and C5a, and their receptors C3aR and C5aR1, have been associated with tolerogenic cell death and inhibition of antitumor T-cell responses through the recruitment and/or activation of immunosuppressive cell subpopulations such as myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), or M2 tumor-associated macrophages (TAMs). Evidence is provided to support the idea that complement blocks many of the effector routes associated with the cancer-immunity cycle, providing the rationale for new therapeutic combinations aimed to enhance the antitumor efficacy of anti-PD-1/PD-L1 checkpoint inhibitors.
Collapse
Affiliation(s)
- Ruben Pio
- Program in Solid Tumors (CIMA) and Department of Biochemistry and Genetics (School of Medicine), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Daniel Ajona
- Program in Solid Tumors (CIMA) and Department of Biochemistry and Genetics (School of Medicine), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Sergio Ortiz-Espinosa
- Program in Solid Tumors (CIMA) and Department of Biochemistry and Genetics (School of Medicine), University of Navarra, Pamplona, Spain
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, Humanitas University, Milan, Italy
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - John D. Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
327
|
Ajona D, Ortiz-Espinosa S, Pio R, Lecanda F. Complement in Metastasis: A Comp in the Camp. Front Immunol 2019; 10:669. [PMID: 31001273 PMCID: PMC6457318 DOI: 10.3389/fimmu.2019.00669] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/12/2019] [Indexed: 12/19/2022] Open
Abstract
The complement system represents a pillar of the innate immune response. This system, critical for host defense against pathogens, encompasses more than 50 soluble, and membrane-bound proteins. Emerging evidence underscores its clinical relevance in tumor progression and its role in metastasis, one of the hallmarks of cancer. The multistep process of metastasis entails the acquisition of advantageous functions required for the formation of secondary tumors. Thus, targeting components of the complement system could impact not only on tumor initiation but also on several crucial steps along tumor dissemination. This novel vulnerability could be concomitantly exploited with current strategies overcoming tumor-mediated immunosuppression to provide a substantial clinical benefit in the treatment of metastatic disease. In this review, we offer a tour d'horizon on recent advances in this area and their prospective potential for cancer treatment.
Collapse
Affiliation(s)
- Daniel Ajona
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Sergio Ortiz-Espinosa
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Ruben Pio
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Fernando Lecanda
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| |
Collapse
|
328
|
Complement activation during intravascular hemolysis: Implication for sickle cell disease and hemolytic transfusion reactions. Transfus Clin Biol 2019; 26:116-124. [PMID: 30879901 DOI: 10.1016/j.tracli.2019.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Intravascular hemolysis is a hallmark of a large spectrum of diseases, including the sickle cell disease (SCD), and is characterized by liberation of red blood cell (RBC) degradation products in the circulation. Released Hb, heme, RBC fragments and microvesicles (MVs) exert pro-inflammatory, pro-oxidative and cytotoxic effects and contribute to vascular and tissue damage. The innate immune complement system not only contributes to the RBC lysis, but it is also itself activated by heme, RBC MVs and the hypoxia-altered endothelium, amplifying thus the cell and tissue damage. This review focuses on the implication of the complement system in hemolysis and hemolysis-mediated injuries in SCD and in cases of delayed hemolytic transfusion reactions (DHTR). We summarize the evidences for presence of biomarkers of complement activation in patients with SCD and the mechanisms of complement activation in DHTR. We discuss the role of antibodies-dependent activation of the classical complement pathway as well as the heme-dependent activation of the alternative pathway. Finally, we describe the available evidences for the efficacy of therapeutic blockade of complement in cases of DHTR. In conclusion, complement blockade is holding promises but future prospective studies are required to introduce Eculizumab or another upcoming complement therapeutic for DHTR and even in SCD.
Collapse
|
329
|
Banach P, Dereziński P, Matuszewska E, Matysiak J, Bochyński H, Kokot ZJ, Nowak-Markwitz E. MALDI-TOF-MS Analysis in the Identification of Urine Proteomic Patterns of Gestational Trophoblastic Disease. Metabolites 2019; 9:metabo9020030. [PMID: 30744112 PMCID: PMC6409522 DOI: 10.3390/metabo9020030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/02/2019] [Accepted: 02/03/2019] [Indexed: 12/20/2022] Open
Abstract
Gestational trophoblastic disease (GTD) is a group of highly aggressive, rare tumors. Human chorionic gonadotropin is a common biomarker used in the diagnosis and monitoring of GTD. To improve our knowledge of the pathology of GTD, we performed protein-peptide profiling on the urine of patients affected with gestational trophoblastic neoplasm (GTN). We analyzed urine samples from patients diagnosed with GTN (n = 26) and from healthy pregnant and non-pregnant controls (n = 17) using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Ions were examined in a linear mode over a m/z range of 1000–10,000. All GTN urine samples were analyzed before and after treatment and compared with those of the controls. The statistical analyses included multivariate classification algorithms as well as ROC curves. Urine sample analyses revealed there were significant differences in the composition of the ions between the evaluated groups. Comparing the pre-treatment and group with the pregnant controls, we identified two discriminatory proteins: hemoglobin subunit α (m/z = 1951.81) and complement C4A (m/z = 1895.43). Then, comparing urine samples from the post-treatment cases with those from the non-pregnant controls, we identified the peptides uromodulin fragments (m/z = 1682.34 and 1913.54) and complement C4A (m/z = 1895.43).
Collapse
Affiliation(s)
- Paulina Banach
- Gynecologic Oncology Department, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland.
| | - Paweł Dereziński
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| | - Eliza Matuszewska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| | - Hubert Bochyński
- Gynecologic Oncology Department, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland.
| | - Zenon J Kokot
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| | - Ewa Nowak-Markwitz
- Gynecologic Oncology Department, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland.
| |
Collapse
|
330
|
Fujita K, Hayashi T, Matsushita M, Uemura M, Nonomura N. Obesity, Inflammation, and Prostate Cancer. J Clin Med 2019; 8:jcm8020201. [PMID: 30736371 PMCID: PMC6406330 DOI: 10.3390/jcm8020201] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/02/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
The prevalence of obesity is increasing in the world, and obesity-induced disease, insulin-resistance, cardiovascular disease, and malignancies are becoming a problem. Epidemiological studies have shown that obesity is associated with advanced prostate cancer and that obese men with prostate cancer have a poorer prognosis. Obesity induces systemic inflammation via several mechanisms. High-fat diet-induced prostate cancer progresses via adipose-secretory cytokines or chemokines. Inflammatory cells play important roles in tumor progression. A high-fat diet or obesity changes the local profile of immune cells, such as myeloid-derived suppressor cells and macrophages, in prostate cancer. Tumor-associated neutrophils, B cells, and complements may promote prostate cancer in the background of obesity. Interventions to control systemic and/or local inflammation and changes in lifestyle may also be viable therapies for prostate cancer.
Collapse
Affiliation(s)
- Kazutoshi Fujita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | - Takuji Hayashi
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | - Makoto Matsushita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | - Motohide Uemura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
331
|
Jiang L, Wang Y, Zhu F, Liu G, Liu H, Ji H, Zheng S, Li B. Molecular Mechanism of Anti-Cancer Activity of the Nano-Drug C-PC/CMC-CD59sp NPs in Cervical Cancer. J Cancer 2019; 10:92-104. [PMID: 30662529 PMCID: PMC6329869 DOI: 10.7150/jca.27462] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/21/2018] [Indexed: 12/12/2022] Open
Abstract
The novel tumor targeted nano-drug C-PC/CMC-CD59sp nanoparticles were constructed with carbocymethyl chitosan (CMC), C-phycocyanin (C-PC) and CD59 specific ligand peptide (CD59sp). The anti-tumor drug mechanism of the C-PC/CMC-CD59sp NPs was further explored in cervical cancer cells (HeLa and SiHa) in vitro and in vivo. We found that the C-PC/CMC-CD59sp NPs could inhibit the proliferation and induce G0/G1 cell cycle arrest in cervical cancer HeLa and SiHa cells, and the cell proliferation was reduced in a dose-dependent manner. We further found that the C-PC/CMC-CD59sp NPs regulated the cell cycle via up-regulating the expression of p21, and then down-regulating the expressions of Cyclin D1 and CDK4 in vivo. Compared with C-PC and C-PC/CMC NPs, the pro-apoptosis effects of the C-PC/CMC-CD59sp NPs were more significant for HeLa and SiHa cells in vitro. Moreover, the C-PC/CMC-CD59sp NPs up-regulated the expression of cleaved caspase-3 and down-regulated the expression of bcl-2. In addition, compared with C-PC and C-PC/CMC, the C-PC/CMC-CD59sp NPs significantly inhibited MMP-2 protein expression in vivo. Our data suggested that the anti-tumor effects of C-PC/CMC-CD59sp NPs were better than C-PC and C-PC/CMC NPs. Our laboratory constructed a new drug delivery system and proved the effective antitumor effects of C-PC/CMC-CD59sp, which would widen the application of C-PC as a potential anti cervical cancer drug.
Collapse
Affiliation(s)
- Liangqian Jiang
- Department of Genetics and Cell Biology, Basic medical school, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Yujuan Wang
- Department of Genetics and Cell Biology, Basic medical school, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Feng Zhu
- Department of Genetics and Cell Biology, Basic medical school, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Guoxiang Liu
- Department of Genetics and Cell Biology, Basic medical school, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Huihui Liu
- Department of Genetics and Cell Biology, Basic medical school, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Huanhuan Ji
- Department of Genetics and Cell Biology, Basic medical school, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Shuhua Zheng
- The Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bing Li
- Department of Genetics and Cell Biology, Basic medical school, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| |
Collapse
|
332
|
Rahman MR, Islam T, Al-Mamun MA, Zaman T, Karim MR, Moni MA. The influence of depression on ovarian cancer: Discovering molecular pathways that identify novel biomarkers and therapeutic targets. INFORMATICS IN MEDICINE UNLOCKED 2019. [DOI: 10.1016/j.imu.2019.100207] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
333
|
Fayazfar S, Zali H, Arefi Oskouie A, Asadzadeh Aghdaei H, Rezaei Tavirani M, Nazemalhosseini Mojarad E. Early diagnosis of colorectal cancer via plasma proteomic analysis of CRC and advanced adenomatous polyp. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2019; 12:328-339. [PMID: 31749922 PMCID: PMC6820836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM This paper aimed to identify new candidate biomarkers in blood for early diagnosis of CRC. BACKGROUND Colorectal cancer (CRC) is the third most widespread malignancies increasing globally. The high mortality rate associated with colorectal cancer is due to the delayed diagnosis in an advanced stage while the metastasis has occurred. For better clinical management and subsequently to reduce mortality of CRC, early detection biomarkers are in high demand. METHODS A 2D-PAGE separation of proteins was performed followed by tandem mass Spectrometry (MALDI-TOF-TOF) to discover potential plasma protein markers for CRC and AA (advanced adenomas). Furthermore, western blot method was used to confirm a part of the results in colorectal tissue samples. RESULTS The significantly altered proteins including HPR, HP, ALB, KRT1, APOA1, FGB, IGJ and C4A were down-regulated in polyp relative to normal, and CRC compare to polyp surprisingly, and inversely, ORM2 was up-regulated with the fold change ≥ 2 and p-value ≤ 0.05. We also surveyed APOA1, FGB, and C4A for further confirmation of their expression changes by western blotting. All three of them showed a decreasing trend from normal toward CRC tissue samples as it mentioned before, but just changes of FGB and C4A were significant. CONCLUSION The results demonstrated that plasma proteins can be less invasive markers for the detection of CRC. FGB and C4A can be considered as plasma potential biomarkers to early diagnosis of CRC patients and understanding the underlying procedures in tumorigenesis. Undoubtedly, the additional study must be conducted on large scale cohorts to verify the results.
Collapse
Affiliation(s)
- Setareh Fayazfar
- Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Arefi Oskouie
- Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastroenterology Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Nazemalhosseini Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
334
|
Muntel J, Gandhi T, Verbeke L, Bernhardt OM, Treiber T, Bruderer R, Reiter L. Surpassing 10 000 identified and quantified proteins in a single run by optimizing current LC-MS instrumentation and data analysis strategy. Mol Omics 2019; 15:348-360. [DOI: 10.1039/c9mo00082h] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Optimization of chromatography and data analysis resulted in more than 10 000 proteins in a single shot at a validated FDR of 1% (two-species test) and revealed deep insights into the testis cancer physiology.
Collapse
|
335
|
Nguyen H, Kuril S, Bastian D, Kim J, Zhang M, Vaena SG, Dany M, Dai M, Heinrichs JL, Daenthanasanmak A, Iamsawat S, Schutt S, Fu J, Wu Y, Fairlie DP, Atkinson C, Ogretmen B, Tomlinson S, Yu XZ. Complement C3a and C5a receptors promote GVHD by suppressing mitophagy in recipient dendritic cells. JCI Insight 2018; 3:121697. [PMID: 30568037 DOI: 10.1172/jci.insight.121697] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 11/14/2018] [Indexed: 12/20/2022] Open
Abstract
Graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic cell transplantation (HCT). DCs play critical roles in GVHD induction. Modulating autophagy represents a promising therapeutic strategy for the treatment of immunological diseases. Complement receptors C3aR/C5aR expressed on DCs regulate immune responses by translating extracellular signals into intracellular activity. In the current study, we found that C3aR/C5aR deficiency enhanced ceramide-dependent lethal mitophagy (CDLM) in DCs. Cotransfer of host-type C3aR-/-/C5aR-/- DCs in the recipients significantly improved GVHD outcome after allogeneic HCT, primarily through enhancing CDLM in DCs. C3aR/C5aR deficiency in the host hematopoietic compartment significantly reduced GVHD severity via impairing Th1 differentiation and donor T cell glycolytic activity while enhancing Treg generation. Prophylactic treatment with C3aR/C5aR antagonists effectively alleviated GVHD while maintaining the graft-versus-leukemia (GVL) effect. Altogether, we demonstrate that inhibiting C3aR/C5aR induces lethal mitophagy in DCs, which represents a potential therapeutic approach to control GVHD while preserving the GVL effect.
Collapse
Affiliation(s)
- Hung Nguyen
- Department of Microbiology and Immunology and
| | - Sandeepkumar Kuril
- Division of Pediatric Hematology/Oncology, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Jisun Kim
- Department of Biochemistry and Molecular Biology and
| | | | | | - Mohammed Dany
- Department of Biochemistry and Molecular Biology and
| | - Min Dai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jessica Lauren Heinrichs
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | | | | | - Jianing Fu
- Columbia Center for Translational Immunology, Columbia University, New York City, New York, USA
| | - Yongxia Wu
- Department of Microbiology and Immunology and
| | - David P Fairlie
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Carl Atkinson
- Department of Microbiology and Immunology and.,Department of Surgery, Transplant Immunobiology Laboratory
| | | | - Stephen Tomlinson
- Department of Microbiology and Immunology and.,Research Service, Ralph H. Johnson Veterans Affairs Medical Center, and
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology and.,Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
336
|
Shen C, Hu G, Zhang S, Ao X, Zhou Q, Xiao P, Zhong Y. Immunophenotypic characterization of sphere-forming cells derived from the human renal cell carcinoma cell line 786-O. Am J Transl Res 2018; 10:3978-3990. [PMID: 30662644 PMCID: PMC6325489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
Cancer stem cells (CSCs) have been found in many different types of malignant tumors. In our previous study, we found that sphere-forming cells (SFCs) from the renal cell carcinoma (RCC) cell line SK-RC-42 are rich in CSCs. However, our previous reports are based on only one human RCC cell line, which makes it difficult to determine whether the findings from this cell line represent the general mechanisms in human RCC. Therefore, in this study, we attempted to evaluate whether the sphere culture method could enrich for CSCs from another human RCC cell line, 786-O, and to characterize their immunological phenotype. We discovered that a small population of 786-O cells was capable of growing as tumor spheres. The SFCs had many properties similar to CSCs, including greater ability to self-renew in vitro and in vivo, higher mRNA expression levels of several 'stemness' genes, stronger tumorigenicity and resistance to chemotherapeutic agents than monolayer adherent cells (MACs). The SFCs expressed low levels of MHC-I, HLA-DR, CD80, CD86, CD152 and CD154. Additionally, the SFCs had lower expression levels of Her2 and hTERT, FasL, Fas, the transcription factor forkhead box protein 3 (FoxP3) and activating natural killer cell receptors than did the MACs. In addition, both 786-O SFCs and MACs were weakly positive for B7-H4 expression, while the expression level of B7-H1 in 786-O SFCs was lower than that in MACs. Furthermore, 786-O SFCs and MACs both expressed substantial and comparable levels of membrane complement regulatory proteins (mCRPs). Finally, we found that 786-O SFCs triggered T cell apoptosis. These findings suggested that tumor spheres from 786-O cells are rich in CSCs. The immunological phenotype of the SFCs described in our study suggests that CSCs might play an important role in tumor immune evasion.
Collapse
Affiliation(s)
- Chanjuan Shen
- Department of Hematology, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South UniversityZhuzhou 412007, Hunan Province, China
| | - Guoyu Hu
- Department of Hematology, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South UniversityZhuzhou 412007, Hunan Province, China
| | - Shuren Zhang
- Department of Immunology, Cancer Institute, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing 100021, China
| | - Xiang Ao
- Department of Nephrology, Xiangya Hospital, Central South UniversityChangsha 410008, China
| | - Qiaoling Zhou
- Department of Nephrology, Xiangya Hospital, Central South UniversityChangsha 410008, China
| | - Ping Xiao
- Department of Nephrology, Xiangya Hospital, Central South UniversityChangsha 410008, China
| | - Yong Zhong
- Department of Nephrology, Xiangya Hospital, Central South UniversityChangsha 410008, China
| |
Collapse
|
337
|
Abstract
Aging is a key aspect of neoplasia at the level of cells, individuals and populations. Unrestrained expression and production of inflammatory mediators is a key feature of aging at the cellular and organism level. Inflammatory cells and mediators are a key component of the tumor microenvironment and drive tumor progression. Non-resolving smoldering inflammation increases the risk of cancer (the extrinsic pathway connecting inflammation and cancer). In the intrinsic pathway, genetic events that cause neoplasia (oncogenes and oncosupressor genes) orchestrate the construction of cancer-related inflammation. We argue that uncontrolled smoldering inflammation drives carcinogenesis in aging and acts as a common denominator linking aging and cancer.
Collapse
|
338
|
Vaisar T, Durbin-Johnson B, Whitlock K, Babenko I, Mehrotra R, Rocke DM, Afkarian M. Urine Complement Proteins and the Risk of Kidney Disease Progression and Mortality in Type 2 Diabetes. Diabetes Care 2018; 41:2361-2369. [PMID: 30150236 PMCID: PMC6196831 DOI: 10.2337/dc18-0699] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/19/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We examined the association of urine complement proteins with progression to end-stage renal disease (ESRD) or death in people with type 2 diabetes and proteinuric diabetic kidney disease (DKD). RESEARCH DESIGN AND METHODS Using targeted mass spectrometry, we quantified urinary abundance of 12 complement proteins in a predominantly Mexican American cohort with type 2 diabetes and proteinuric DKD (n = 141). The association of urine complement proteins with progression to ESRD or death was evaluated using time-to-event analyses. RESULTS At baseline, median estimated glomerular filtration rate (eGFR) was 54 mL/min/1.73 m2 and urine protein-to-creatinine ratio 2.6 g/g. Sixty-seven participants developed ESRD or died, of whom 39 progressed to ESRD over a median of 3.1 years and 40 died over a median 3.6 years. Higher urine CD59, an inhibitor of terminal complement complex formation, was associated with a lower risk of ESRD (hazard ratio [HR] [95% CI per doubling] 0.50 [0.29-0.87]) and death (HR [95% CI] 0.56 [0.34-0.93]), after adjustment for demographic and clinical covariates, including baseline eGFR and proteinuria. Higher urine complement components 4 and 8 were associated with lower risk of death (HR [95% CI] 0.57 [0.41-0.79] and 0.66 [0.44-0.97], respectively); higher urine factor H-related protein 2, a positive regulator of the alternative complement pathway, was associated with greater risk of death (HR [95% CI] 1.61 [1.05-2.48]) in fully adjusted models. CONCLUSIONS In a largely Mexican American cohort with type 2 diabetes and proteinuric DKD, urine abundance of several complement and complement regulatory proteins was strongly associated with progression to ESRD and death.
Collapse
Affiliation(s)
- Tomas Vaisar
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA
| | - Blythe Durbin-Johnson
- Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA
| | - Kathryn Whitlock
- Center for Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, WA
| | - Ilona Babenko
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA
| | - Rajnish Mehrotra
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA
| | - David M Rocke
- Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA
| | - Maryam Afkarian
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, CA
| |
Collapse
|
339
|
Shih AJ, Menzin A, Whyte J, Lovecchio J, Liew A, Khalili H, Bhuiya T, Gregersen PK, Lee AT. Identification of grade and origin specific cell populations in serous epithelial ovarian cancer by single cell RNA-seq. PLoS One 2018; 13:e0206785. [PMID: 30383866 PMCID: PMC6211742 DOI: 10.1371/journal.pone.0206785] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022] Open
Abstract
Here we investigated different cell populations within ovarian cancer using single-cell RNA seq: fourteen samples from nine patients with differing grades (high grade, low grade and benign) as well as different origin sites (primary and metastatic tumor site, ovarian in origin and fallopian in origin). We were able to identify sixteen distinct cell populations with specific cells correlated to high grade tumors, low grade tumors, benign and one population unique to a patient with a breast cancer relapse. Furthermore the proportion of these populations changes from primary to metastatic in a shift from mainly epithelial cells to leukocytes with few cancer epithelial cells in the metastases. Differential gene expression shows myeloid lineage cells are the primary cell group expressing soluble factors in primary samples while fibroblasts do so in metastatic samples. The leukocytes that were captured did not seem to be suppressed through known pro-tumor cytokines from any of the cell populations. Single cell RNA-seq is necessary to de-tangle cellular heterogeneity for better understanding of ovarian cancer progression.
Collapse
Affiliation(s)
- Andrew J. Shih
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
- * E-mail:
| | - Andrew Menzin
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States of America
| | - Jill Whyte
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States of America
| | - John Lovecchio
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States of America
| | - Anthony Liew
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Houman Khalili
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Tawfiqul Bhuiya
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States of America
| | - Peter K. Gregersen
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States of America
| | - Annette T. Lee
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States of America
| |
Collapse
|
340
|
Zhang T, Guo J, Gu J, Wang Z, Wang G, Li H, Wang J. Identifying the key genes and microRNAs in colorectal cancer liver metastasis by bioinformatics analysis and in vitro experiments. Oncol Rep 2018; 41:279-291. [PMID: 30542696 PMCID: PMC6278419 DOI: 10.3892/or.2018.6840] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/16/2018] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC) is one of the principal causes of cancer‑associated mortality worldwide. The high incidence of liver metastasis is the leading risk factor of mortality in patients with CRC, and the mechanisms of CRC liver metastasis are poorly understood. In the present study, 7 datasets, including 3 gene expression profile datasets and 4 microRNA (miRNA) expression profile datasets were downloaded from the NCBI Gene Expression Omnibus (GEO) database to identify potential key genes and miRNAs, which may be candidate biomarkers for CRC liver metastasis. Differentially expressed (DE) genes (DEGs) and DE miRNAs of primary CRC tumor tissues and liver metastatic CRC tumor tissues were selected using the GEO2R tool. Gene Ontology and Kyoto Encyclopedia of Gene and Genome pathway enrichment analyses were conducted using the Database for Annotation, Visualization and Integrated Discovery online database. Furthermore, Cytoscape with cytoHubba and the Molecular Complex Detection (MCODE) plug‑in were used to visualize a protein‑protein interaction (PPI) network for these DEGs, and to screen hub genes and gene modules in the PPI network. In addition, the online databases, TargetScan, miRanda, PITA, miRWalk and miRDB, were used to identify the target genes of the DE miRNAs. In the present study, 141 DEGs (97 upregulated and 44 downregulated) and 3 DE miRNAs (2 upregulated and 1 downregulated) were screened from the 3 gene expression microarray datasets and 4 miRNA expression microarray datasets, respectively. In total, 10 hub genes with a high degree of connectivity were selected from the PPI network, including albumin (ALB), coagulation factor II (F2), thrombin, apolipoprotein H (APOH), serpin family C member 1 (SERPINC1), apolipoprotein A1 (APOA1), α‑1‑microglobulin/bikunin precursor (AMBP), apolipoprotein C3 (APOC3), plasminogen (PLG), α‑2 HS glycoprotein (AHSG) and apolipoprotein B (APOB). The most important module was detected in the PPI network using the MCODE plug‑in. A total of 20 DEGs were identified to be potential target genes of these DE miRNAs, and novel miRNA‑DEGs regulatory axes were constructed. In vitro experiments were performed to demonstrate that miR‑885 promoted CRC cell migration by, at least partially, decreasing the expression of von Willebrand factor (vWF) and insulin‑like growth factor binding protein 5 (IGFBP5). In conclusion, by using integrated bioinformatics analysis and in vitro experiments, key candidate genes were identified and novel miRNA‑mRNA regulatory axes in CRC liver metastasis were constructed, which may improve understanding of the molecular mechanisms underlying CRC liver metastasis.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jianrong Guo
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jian Gu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huili Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiliang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
341
|
Xiao Z, Cheng G, Jiao Y, Pan C, Li R, Jia D, Zhu J, Wu C, Zheng M, Jia J. Holo-Seq: single-cell sequencing of holo-transcriptome. Genome Biol 2018; 19:163. [PMID: 30333049 PMCID: PMC6193298 DOI: 10.1186/s13059-018-1553-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/28/2018] [Indexed: 02/02/2023] Open
Abstract
Current single-cell RNA-seq approaches are hindered by preamplification bias, loss of strand of origin information, and the inability to observe small-RNA and mRNA dual transcriptomes. Here, we introduce a single-cell holo-transcriptome sequencing (Holo-Seq) that overcomes all three hurdles. Holo-Seq has the same quantitative accuracy and uniform coverage with a complete strand of origin information as bulk RNA-seq. Most importantly, Holo-Seq can simultaneously observe small RNAs and mRNAs in a single cell. Furthermore, we acquire small RNA and mRNA dual transcriptomes of 32 human hepatocellular carcinoma single cells, which display the genome-wide super-enhancer activity and hepatic neoplasm kinetics of these cells.
Collapse
Affiliation(s)
- Zhengyun Xiao
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Guo Cheng
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Yang Jiao
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Chen Pan
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Ran Li
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Danmei Jia
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Jing Zhu
- Beijing Ming-tian Genetics Ltd., Beijing, 100070, People's Republic of China
| | - Chao Wu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.
| | - Min Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China.
| | - Junling Jia
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China.
| |
Collapse
|
342
|
Medler TR, Murugan D, Horton W, Kumar S, Cotechini T, Forsyth AM, Leyshock P, Leitenberger JJ, Kulesz-Martin M, Margolin AA, Werb Z, Coussens LM. Complement C5a Fosters Squamous Carcinogenesis and Limits T Cell Response to Chemotherapy. Cancer Cell 2018; 34:561-578.e6. [PMID: 30300579 PMCID: PMC6246036 DOI: 10.1016/j.ccell.2018.09.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/17/2018] [Accepted: 09/05/2018] [Indexed: 01/11/2023]
Abstract
Complement is a critical component of humoral immunity implicated in cancer development; however, its biological contributions to tumorigenesis remain poorly understood. Using the K14-HPV16 transgenic mouse model of squamous carcinogenesis, we report that urokinase (uPA)+ macrophages regulate C3-independent release of C5a during premalignant progression, which in turn regulates protumorigenic properties of C5aR1+ mast cells and macrophages, including suppression of CD8+ T cell cytotoxicity. Therapeutic inhibition of C5aR1 via the peptide antagonist PMX-53 improved efficacy of paclitaxel chemotherapy associated with increased presence and cytotoxic properties of CXCR3+ effector memory CD8+ T cells in carcinomas, dependent on both macrophage transcriptional programming and IFNγ. Together, these data identify C5aR1-dependent signaling as an important immunomodulatory program in neoplastic tissue tractable for combinatorial cancer immunotherapy.
Collapse
Affiliation(s)
- Terry R Medler
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Knight Cancer Research Building Room 3030, 2720 SW Moody Avenue, #KC-CDCB, Portland, OR 97201-5042, USA
| | - Dhaarini Murugan
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Knight Cancer Research Building Room 3030, 2720 SW Moody Avenue, #KC-CDCB, Portland, OR 97201-5042, USA
| | - Wesley Horton
- Department of Biomedical Engineering, Program in Computational Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sushil Kumar
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Knight Cancer Research Building Room 3030, 2720 SW Moody Avenue, #KC-CDCB, Portland, OR 97201-5042, USA
| | - Tiziana Cotechini
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Knight Cancer Research Building Room 3030, 2720 SW Moody Avenue, #KC-CDCB, Portland, OR 97201-5042, USA
| | - Alexandra M Forsyth
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Knight Cancer Research Building Room 3030, 2720 SW Moody Avenue, #KC-CDCB, Portland, OR 97201-5042, USA
| | - Patrick Leyshock
- Department of Biomedical Engineering, Program in Computational Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Justin J Leitenberger
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Molly Kulesz-Martin
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Knight Cancer Research Building Room 3030, 2720 SW Moody Avenue, #KC-CDCB, Portland, OR 97201-5042, USA; Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Adam A Margolin
- Department of Biomedical Engineering, Program in Computational Biology, Oregon Health & Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Zena Werb
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, Parker Immunotherapy Cancer Institute, University of California, San Francisco, CA 94143, USA
| | - Lisa M Coussens
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Knight Cancer Research Building Room 3030, 2720 SW Moody Avenue, #KC-CDCB, Portland, OR 97201-5042, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
343
|
Liu J, Guo Y, Huang Y, Xue H, Bai S, Zhu J, Xia X, Shen B, Fang W. Effects of insulin-like growth factor binding protein 3 on apoptosis of cutaneous squamous cell carcinoma cells. Onco Targets Ther 2018; 11:6569-6577. [PMID: 30323629 PMCID: PMC6178943 DOI: 10.2147/ott.s167187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Background Cutaneous squamous cell carcinoma (CSCC) is the second most common carcinoma worldwide. Clinical treatment for patients with CSCC remains non-ideal. Insulin-like growth factor binding protein 3 (IGFBP3), a member of the insulin-like growth (IGF) system, participates in several biological processes, including cellular proliferation and apoptosis. Here, we explored the functional role of IGFBP3 in apoptosis and proliferation of A431 cells, a human CSCC cell line. Materials and methods Differential expression analysis, immunohistochemistry, immunoblotting, TUNEL assay, and CCK8 assay techniques were used to investigate the IGFBP3 expression levels in both A431 cells and CSCC tissue surgically obtained from humans as well as to explore the functional role of IGFBP3 in the apoptosis and proliferation of A431 cells. Results By using normal epidermal keratinocytes for comparison, we identified the top 10 ranked differentially upregulated genes expressed in human cutaneous squamous cell carcinoma cell lines. Among these 10 genes, IGFBP3 was ranked number 1. By using immunohistochemistry, we found that the expression level of IGFBP3 was significantly elevated in CSCC tissue compared with that in normal human skin tissue. Knockdown of IGFBP3 in A431 cells by transfection with IGFBP3-specific siRNA markedly altered the expression of proteins that contribute to apoptosis via mitochondrial pathways, significantly suppressing the expression of Bax and active caspase-3, while significantly increasing B-cell lymphoma-2 expression. TUNEL assay confirmed the effect of knockdown of IGFBP3 on the apoptosis as well. In addition, knockdown of IGFBP3 inhibited the proliferation of A431 cells. Conclusion IGFBP3 is overexpressed in both CSCC cell lines and tissue. Knockdown of IGFBP3 enhanced the apoptosis via a mitochondrial pathway and inhibited the proliferation of A431 cells. These findings indicate that IGFBP3 may be a biomarker and a potential therapeutic target for CSCC.
Collapse
Affiliation(s)
- Jinli Liu
- Department of Dermatology, Anhui Provincial Hospital, Hefei 230001, Anhui, China
| | - Yuanyuan Guo
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yuanyuna Huang
- Department of Gastroenterology and Hepatology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, China
| | - Haowei Xue
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Suwen Bai
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jinhang Zhu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xianming Xia
- Department of Gastroenterology and Hepatology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, China
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Wei Fang
- Department of ICU, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266071, China,
| |
Collapse
|
344
|
Sauer E, Gauer B, Nascimento S, Nardi J, Göethel G, Costa B, Correia D, Matte U, Charão M, Arbo M, Duschl A, Moro A, Garcia SC. The role of B7 costimulation in benzene immunotoxicity and its potential association with cancer risk. ENVIRONMENTAL RESEARCH 2018; 166:91-99. [PMID: 29883905 DOI: 10.1016/j.envres.2018.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/24/2018] [Accepted: 05/26/2018] [Indexed: 06/08/2023]
Abstract
Benzene is a recognized human carcinogen; however, there are still some gaps in the knowledge regarding the mechanism of toxicity of this organic solvent and potential early biomarkers for the damage caused by it. In a previous study, our research group demonstrated that the adhesion molecules of the immune system (B7.1 and B7.2) could be potential biomarkers in the early detection of immunotoxicity caused by benzene exposure. Therefore, this study was developed to deepen the understanding regarding this important topic, aiming to contribute to the comprehension of the benzene toxicity mechanism mediated by B7.1 and B7.2 and its potential association with the risk of carcinogenicity. B7.1 and B7.2 protein expression in blood monocytes and B7.1 and B7.2 gene expression in PBMCs were evaluated. Additionally, complement C3 and C4 levels in serum were measured, as well as p53 gene expression in PBMCs. Seventy-four gas station workers (GSW group) and 71 non-occupationally exposed subjects (NEG) were evaluated. Our results demonstrated decreased levels of B7.1 and B7.2 protein and gene expression in the GSW group compared to the NEG (n = 71) (p < 0.01). Along the same lines, decreased levels of the complement system were observed in the GSW group (p < 0.01), demonstrating the impairment of this immune system pathway as well. Additionally, a reduction was observed in p53 gene expression in the GSA group (p < 0.01). These alterations were associated with both the benzene exposure biomarker evaluated, urinary trans, trans-muconic acid, and with exposure time (p < 0.05). Moreover, strong correlations were observed between the gene expression of p53 vs. B7.1 (r = 0.830; p < 0.001), p53 vs. B7.2 (r = 0.685; p < 0.001), and B7.1 vs. B7.2 (r = 0.702; p < 0.001). Taken together, these results demonstrate that the immune system co-stimulatory molecule pathway is affected by benzene exposure. Also, the decrease in p53 gene expression, even at low exposure levels, reinforces the carcinogenicity effect of benzene in this pathway. Therefore, our results suggest that the promotion of immune evasion together with a decrease in p53 gene expression may play an important role in the benzene toxicity mechanism. However, further and targeted studies are needed to confirm this proposition.
Collapse
Affiliation(s)
- Elisa Sauer
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Bruna Gauer
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Sabrina Nascimento
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jessica Nardi
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Gabriela Göethel
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Bárbara Costa
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Douglas Correia
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ursula Matte
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mariele Charão
- Instituto de Ciências das Saúde, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | - Marcelo Arbo
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Albert Duschl
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Angela Moro
- Faculdade Especializada na Área de Saúde do Rio Grande do Sul, Passo Fundo, RS, Brazil
| | - Solange Cristina Garcia
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
345
|
Bouwens van der Vlis TAM, Kros JM, Mustafa DAM, van Wijck RTA, Ackermans L, van Hagen PM, van der Spek PJ. The complement system in glioblastoma multiforme. Acta Neuropathol Commun 2018; 6:91. [PMID: 30208949 PMCID: PMC6134703 DOI: 10.1186/s40478-018-0591-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022] Open
Abstract
The human complement system is represents the main effector arm of innate immunity and its ambivalent function in cancer has been subject of ongoing dispute. Glioma stem-like cells (GSC) residing in specific niches within glioblastomas (GBM) are capable of self-renewal and tumor proliferation. Recent data are indicative of the influence of the complement system on the maintenance of these cells. It appears that the role of the complement system in glial tumorigenesis, particularly its influence on GSC niches and GSC maintenance, is significant and warrants further exploration for therapeutic interventions.
Collapse
|
346
|
Goto H, Shimono Y, Funakoshi Y, Imamura Y, Toyoda M, Kiyota N, Kono S, Takao S, Mukohara T, Minami H. Adipose-derived stem cells enhance human breast cancer growth and cancer stem cell-like properties through adipsin. Oncogene 2018; 38:767-779. [DOI: 10.1038/s41388-018-0477-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/28/2018] [Accepted: 08/02/2018] [Indexed: 12/19/2022]
|
347
|
Li H, Gong M, Zhao M, Wang X, Cheng W, Xia Y. LncRNAs KB-1836B5, LINC00566 and FAM27L are associated with the survival time of patients with ovarian cancer. Oncol Lett 2018; 16:3735-3745. [PMID: 30127984 PMCID: PMC6096172 DOI: 10.3892/ol.2018.9143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 05/09/2018] [Indexed: 12/23/2022] Open
Abstract
Ovarian cancer (OvCa) is the most common gynecological malignancy type in the United States in 2014. Functions of long non-coding RNAs (lncRNAs) in OvCa have attracted increasing attention from researchers. The present study aimed to identify an lncRNA-based signature for survival prediction in patients with OvCa. On the basis of lncRNA expression profiles from The Cancer Genome Atlas data portal, differentially expressed lncRNAs (DELs) were selected from patients with good prognosis and poor prognosis in the training set, from which the prognostic lncRNAs were identified using univariate and multivariate Cox regression analyses and used to construct a risk scoring system. The prognostic power of this lncRNA signature was tested in the training set and validated in validation dataset and entire dataset. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on the genes significantly associated with ≥1 prognostic lncRNA, and a total of 112 DELs were identified. LncRNAs KB-1836B5, long intergenic non-protein coding RNA 566 (LINC00566) and family with sequence similarity E5 (FAM27L) were determined to be prognostic lncRNAs. A three-lncRNAs signature-based risk scoring system was developed, which classified the patients from the training set into high-risk and low-risk groups with significantly different overall survival time. Risk stratification capability of the three-lncRNAs signature was validated in the validation and entire set. Multivariate Cox regression and data stratification analyses determined that the three-lncRNAs signature was independent of other clinical variables. GO and KEGG pathway enrichment analyses determined that the three prognostic lncRNAs may be involved in a number of metabolic processes and signaling pathways, including the mechanistic target of rapamycin signaling pathway, ubiquitin-mediated proteolysis, and complement and coagulation cascades pathways. In conclusion, the results of the present study demonstrated that the three-lncRNAs signature may be an independent biomarker for predicting prognosis in patients with OvCa.
Collapse
Affiliation(s)
- Huijian Li
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Department of Gynecology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Mi Gong
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Min Zhao
- Department of Gynecology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
348
|
Fatal enteric plexus neuropathy after one dose of ipilimumab plus nivolumab: a case report. J Immunother Cancer 2018; 6:82. [PMID: 30170630 PMCID: PMC6117974 DOI: 10.1186/s40425-018-0396-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/14/2018] [Indexed: 12/31/2022] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) are the treatment of choice for several cancers and can be associated with remarkable clinical benefit, but can also cause serious immune-related adverse events (irAEs). Management of rare and severe irAEs is challenged by an incomplete knowledge of their natural history and pathogenetic mechanisms. We report a case of fatal acute-onset gastro-intestinal (GI) hypomotility from myenteric plexus neuropathy following a single dose of ipilimumab plus nivolumab given for treatment of Merkel cell carcinoma (MCC). Case presentation A 66-year-old man with recurrent metastatic MCC involving several organs (liver, bones and disseminated retroperitoneal lymphadenopathy) developed profound pharyngeal dysphagia and ileus that started 7 days after receiving a single administration of combination immune checkpoint blockade consisting of nivolumab (3 mg/kg) and low-dose ipilimumab (1 mg/kg). A swallowing study showed oropharyngeal dysfunction and aspiration. Imaging studies were consistent with diffuse intestinal paresis. An extensive work-up did not reveal obvious causes of these symptoms, and enteric plexopathy was suspected. Empiric immune suppressive therapy was initiated urgently. Despite an escalating immunosuppressive regimen that included high dose steroids, tacrolimus and therapeutic plasma exchange, no improvement in GI motility was seen and the patient suffered repeated episodes of aspiration. Seven weeks after the onset of GI hypomotility, the patient succumbed to sepsis from intestinal perforations. At autopsy, histologic specimens obtained from the entire GI tract (pharynx to rectum) showed near complete loss of ganglion cells within the myenteric and submucosal plexuses. An associated inflammatory infiltrate was not seen, suggesting a ‘burned out’ phase of illness. C4d complement deposition was found at the ganglionic sites, suggesting antibody-mediated pathogenesis. Remarkably, at sites of previously suspected Merkel cell metastases, no residual viable Merkel cell carcinoma was identified. Conclusions GI-tract paresis due to myenteric neuritis is a rarely reported toxicity of ICIs. Because the window of reversibility is likely to be very brief, quick and decisive interventions are warranted. Subtle functional and anatomic perturbations of the myenteric nervous system from the use of ICIs may be more prevalent than realized and should be suspected and addressed in both clinical and investigational settings.
Collapse
|
349
|
Chang JC. TTP-like syndrome: novel concept and molecular pathogenesis of endotheliopathy-associated vascular microthrombotic disease. Thromb J 2018; 16:20. [PMID: 30127669 PMCID: PMC6087012 DOI: 10.1186/s12959-018-0174-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/07/2018] [Indexed: 02/07/2023] Open
Abstract
TTP is characterized by microangiopathic hemolytic anemia and thrombocytopenia associated with brain and kidney dysfunction. It occurs due to ADAMTS13 deficiency. TTP-like syndrome occurs in critically ill patients with the similar hematologic changes and additional organ dysfunction syndromes. Vascular microthrombotic disease (VMTD) includes both TTP and TTP-like syndrome because their underlying pathology is the same disseminated intravascular microthrombosis (DIT). Microthrombi are composed of platelet-unusually large von Willebrand factor multimers (ULVWF) complexes. TTP occurs as a result of accumulation of circulating ULVWF secondary to ADAMTS13 deficiency. This protease deficiency triggers microthrombogenesis, leading to "microthrombi" formation in microcirculation. Unlike TTP, TTP-like syndrome occurs in critical illnesses due to complement activation. Terminal C5b-9 complex causes channel formation to endothelial membrane, leading to endotheliopathy, which activates two different molecular pathways (i.e., inflammatory and microthrombotic). Activation of inflammatory pathway triggers inflammation. Activation of microthrombotic pathway promotes platelet activation and excessive endothelial exocytosis of ULVWF from endothelial cells (ECs). Overexpressed and uncleaved ULVWF become anchored to ECs as long elongated strings to recruit activated platelets, and assemble "microthrombi". In TTP, circulating microthrombi typically be lodged in microvasculature of the brain and kidney, but in TTP-like syndrome, microthrombi anchored to ECs of organs such as the lungs and liver as well as the brain and kidneys, leading to multiorgan dysfunction syndrome. TTP occurs as hereditary or autoimmune disease and is the phenotype of ADAMTS13 deficiency-associated VMTD. But TTP-like syndrome is hemostatic disorder occurring in critical illnesses and is the phenotype of endotheliopathy-associated VMTD. Thus, this author's contention is TTP and TTP-like syndrome are two distinctly different disorders with dissimilar underlying pathology and pathogenesis.
Collapse
Affiliation(s)
- Jae C. Chang
- Department of Medicine, University of California Irvine School of Medicine, Irvine, CA USA
| |
Collapse
|
350
|
Kochanek DM, Ghouse SM, Karbowniczek MM, Markiewski MM. Complementing Cancer Metastasis. Front Immunol 2018; 9:1629. [PMID: 30061895 PMCID: PMC6054933 DOI: 10.3389/fimmu.2018.01629] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/02/2018] [Indexed: 12/21/2022] Open
Abstract
Complement is an effector of innate immunity and a bridge connecting innate immunity and subsequent adaptive immune responses. It is essential for protection against infections and for orchestrating inflammatory responses. Recent studies have also demonstrated contribution of the complement system to several homeostatic processes that are traditionally not considered to be involved in immunity. Thus, complement regulates homeostasis and immunity. However, dysregulation of this system contributes to several pathologies including inflammatory and autoimmune diseases. Unexpectedly, studies of the last decade have also revealed that complement promotes cancer progression. Since the initial discovery of tumor promoting role of complement, numerous preclinical and clinical studies demonstrated contribution of several complement components to regulation of tumor growth through their direct interactions with the corresponding receptors on tumor cells or through suppression of antitumor immunity. Most of this work, however, focused on a role of complement in regulating growth of primary tumors. Only recently, a few studies showed that complement promotes cancer metastasis through its contribution to epithelial-to-mesenchymal transition and the premetastatic niche. This latter work has shown that complement activation and generation of complement effectors including C5a occur in organs that are target for metastasis prior to arrival of the very first tumor cells. C5a through its interactions with C5a receptor 1 inhibits antitumor immunity by activating and recruiting immunosuppressive cells from the bone marrow to the premetastatic niche and by regulating function and self-renewal of pulmonary tissue-resident alveolar macrophages. These new advancements provide additional evidence for multifaceted functions of complement in cancer.
Collapse
Affiliation(s)
- Dawn M Kochanek
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Shanawaz M Ghouse
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Magdalena M Karbowniczek
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Maciej M Markiewski
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| |
Collapse
|