301
|
D'Souza DR, Salib MM, Bennett J, Mochin-Peters M, Asrani K, Goldblum SE, Renoud KJ, Shapiro P, Passaniti A. Hyperglycemia regulates RUNX2 activation and cellular wound healing through the aldose reductase polyol pathway. J Biol Chem 2009; 284:17947-55. [PMID: 19383984 DOI: 10.1074/jbc.m109.002378] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Diabetes mellitus accelerates cardiovascular microangiopathies and atherosclerosis, which are a consequence of hyperglycemia. The aldose reductase (AR) polyol pathway contributes to these microvascular complications, but how it mediates vascular damage in response to hyperglycemia is less understood. The RUNX2 transcription factor, which is repressed in diabetic animals, promotes vascular endothelial cell (EC) migration, proliferation, and angiogenesis. Here we show that physiological levels of glucose (euglycemia) increase RUNX2 DNA binding and transcriptional activity, whereas hyperglycemia does not. However, inhibition of AR reverses hyperglycemic suppression of RUNX2. IGF-1 secretion and IGF receptor phosphorylation by autocrine IGF-1 occur equally in euglycemic or hyperglycemic conditions, suggesting that reduced RUNX2 activity in response to hyperglycemia is not because of altered IGF-1/IGF receptor activation. AR also negatively regulates RUNX2-dependent vascular remodeling in an EC wounded monolayer assay, which is reversed by specific AR inhibition in hyperglycemia. Thus, euglycemia supports RUNX2 activity and promotes normal microvascular EC migration and wound healing, which are repressed under hyperglycemic conditions through the AR polyol pathway.
Collapse
Affiliation(s)
- David R D'Souza
- Department of Pathology, Graduate Program in Life Sciences, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
302
|
Baba SP, Wetzelberger K, Hoetker JD, Bhatnagar A. Posttranslational glutathiolation of aldose reductase (AKR1B1): a possible mechanism of protein recovery from S-nitrosylation. Chem Biol Interact 2009; 178:250-8. [PMID: 19061876 PMCID: PMC2929757 DOI: 10.1016/j.cbi.2008.11.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 11/06/2008] [Accepted: 11/07/2008] [Indexed: 11/26/2022]
Abstract
Nitric oxide (NO) is an important regulator of the catalytic activity of aldose reductase (AR). It reacts with the active site cysteines of AR and this reaction results in the formation of several kinetically distinct forms of the protein. The catalytic activity of AR is increased in the ischemic heart and this increase in activity is associated with NO-dependent modification of AR. During reperfusion, the enzyme reverts back to its un-activated form. Although, AR activation has been linked to thiol oxidation, the mechanisms of de-activation remain unclear. Here we report that treatment of recombinant human AR (AKR1B1) by a non-thiol-based NO-donor (DEANO) results in activation and S-nitrosylation of the protein. The nitrosylated (ARSNO), but not the reduced (ARSH), protein reacted with reduced glutathione (GSH) and this reaction resulted in the formation of glutathiolated AR (ARSSG). The modification of AR by NO was site-specific at Cys-298 and was not affected by selective mutation of the neighboring residue, Cys-303 to an alanine. Incubation of the glutathiolated AR (ARSSG) with GSH resulted in the regeneration of the reduced form of the protein (ARSH). Treatment of nitrosylated AR (ARSNO) with ascorbic acid also led to the conversion of the protein to its reduced form. These observations suggest that intracellular reductants such as GSH and ascorbate could convert the nitrosylated form of AR to its basal or reduced state. In general, such reductive reactions might represent a common mechanism for denitrosylating proteins or an "off" switch in NO-mediated signaling pathways involving protein S-nitrosylation reactions.
Collapse
Affiliation(s)
- Shahid Pervez Baba
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40202, United States
| | | | | | | |
Collapse
|
303
|
de Sousa SM, Rosselli LK, Kiyota E, da Silva JC, Souza GHMF, Peroni LA, Stach-Machado DR, Eberlin MN, Souza AP, Koch KE, Arruda P, Torriani IL, Yunes JA. Structural and kinetic characterization of a maize aldose reductase. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:98-104. [PMID: 19056286 DOI: 10.1016/j.plaphy.2008.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 10/19/2008] [Indexed: 05/27/2023]
Abstract
The aldo-keto reductases (AKRs) are classified as oxidoreductases and are found in organisms from prokaryotes to eukaryotes. The AKR superfamily consists of more than 120 proteins that are distributed throughout 14 families. Very few plant AKRs have been characterized and their biological functions remain largely unknown. Previous work suggests that AKRs may participate in stress tolerance by detoxifying reactive aldehyde species. In maize endosperm, the presence of an aldose reductase (AR; EC 1.1.1.21) enzyme has also been hypothesized based on the extensive metabolism of sorbitol. This manuscript identifies and characterizes an AKR from maize (Zea mays L.) with features of an AR. The cDNA clone, classified as AKR4C7, was expressed as a recombinant His-tag fusion protein in Escherichia coli. The product was purified by immobilized metal affinity chromatography followed by anion exchange chromatography. Circular dichroism spectrometry and SAXS analysis indicated that the AKR4C7 protein was stable, remained folded throughout the purification process, and formed monomers of a globular shape, with a molecular envelope similar to human AR. Maize AKR4C7 could utilize dl-glyceraldehyde and some pentoses as substrates. Although the maize AKR4C7 was able to convert sorbitol to glucose, the low affinity for this substrate indicated that AKR4C7 was probably a minimal contributor to sorbitol metabolism in maize seeds. Polyclonal antisera raised against AKR4C7 recognized at least three AR-like polypeptides in maize kernels, consistent with the presence of a small gene family. Diverse functions may have evolved for maize AKRs in association with specific physiological requirements of kernel development.
Collapse
Affiliation(s)
- Sylvia Morais de Sousa
- Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
304
|
Protein S-glutathionylation: a regulatory device from bacteria to humans. Trends Biochem Sci 2009; 34:85-96. [PMID: 19135374 DOI: 10.1016/j.tibs.2008.11.002] [Citation(s) in RCA: 474] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 11/19/2008] [Accepted: 11/20/2008] [Indexed: 01/25/2023]
Abstract
S-Glutathionylation is the specific post-translational modification of protein cysteine residues by the addition of the tripeptide glutathione, the most abundant and important low-molecular-mass thiol within most cell types. Protein S-glutathionylation is promoted by oxidative or nitrosative stress but also occurs in unstressed cells. It can serve to regulate a variety of cellular processes by modulating protein function and to prevent irreversible oxidation of protein thiols. Recent findings support an essential role for S-glutathionylation in the control of cell-signalling pathways associated with viral infections and with tumour necrosis factor-(-induced apoptosis. Glyceraldehyde-3-phosphate dehydrogenase has recently been implicated in the regulation of endothelin-1 synthesis by a novel, S-glutathionylation-based mechanism involving messenger RNA stability. Moreover, recent studies have identified S-glutathionylation as a redox signalling mechanism in plants.
Collapse
|
305
|
Srivastava SK, Ramana KV. Focus on molecules: nuclear factor-kappaB. Exp Eye Res 2009; 88:2-3. [PMID: 18472097 PMCID: PMC2606916 DOI: 10.1016/j.exer.2008.03.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 03/12/2008] [Accepted: 03/14/2008] [Indexed: 11/25/2022]
Affiliation(s)
- Satish K Srivastava
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | |
Collapse
|
306
|
Wevill M. Epidemiology, Pathophysiology, Causes, Morphology, and Visual Effects of Cataract. Ophthalmology 2009. [DOI: 10.1016/b978-0-323-04332-8.00073-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
307
|
Reddy ABM, Ramana KV, Srivastava S, Bhatnagar A, Srivastava SK. Aldose reductase regulates high glucose-induced ectodomain shedding of tumor necrosis factor (TNF)-alpha via protein kinase C-delta and TNF-alpha converting enzyme in vascular smooth muscle cells. Endocrinology 2009; 150:63-74. [PMID: 18772236 PMCID: PMC2630901 DOI: 10.1210/en.2008-0677] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chronic low-grade inflammation has emerged as a key contributor to the cardiovascular complications of diabetes, however, the mechanisms by which diabetes increases inflammation remain poorly understood. Here, we report that exposure to high glucose (HG) stimulates ectodomain shedding of TNF-alpha from rat aortic smooth muscle cells in culture. Our results show that exposure to HG decreases membrane-associated TNF-alpha. This decrease in unprocessed TNF-alpha was prevented by the aldose reductase (AR) inhibitor sorbinil and AR small interference RNA. Treatment with HG, but not equimolar mannitol or 3-O-methyl glucose, resulted in phosphorylation and activation of TNF-alpha converting enzyme (TACE) (ADAM17), which were attenuated by sorbinil or AR-specific small interference RNA. HG-induced TACE phosphorylation and TNF-alpha processing were also prevented by TNF-alpha protease inhibitor-1, an inhibitor of TACE. Inhibition of protein kinase C (PKC)-delta by rottlerin prevented HG-induced TACE activation and the accumulation of unprocessed TNF-alpha. Treatment with sorbinil decreased elevated levels of circulating TNF-alpha in streptozotocin-treated diabetic rats. Sorbinil treatment also decreased the expression of TNF-alpha, matrix metalloproteinase-2, matrix metalloproteinase-9, and increased tissue inhibitor of metalloproteinase-3 in vascular smooth muscle cells treated with HG and in balloon-injured carotid arteries of diabetic rats. These results indicate that HG-induced TNF-alpha shedding could be attributed to TACE activation, which is regulated, in part, by PKC-delta and AR. Therefore, inhibition of TACE by TNF-alpha protease inhibitor-1, or pharmacological inhibition of PKC-delta or AR may represent useful strategies for treating vascular inflammation associated with diabetes.
Collapse
Affiliation(s)
- Aramati B M Reddy
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-0647, USA
| | | | | | | | | |
Collapse
|
308
|
Ohmura C, Watada H, Azuma K, Shimizu T, Kanazawa A, Ikeda F, Yoshihara T, Fujitani Y, Hirose T, Tanaka Y, Kawamori R. Aldose reductase inhibitor, epalrestat, reduces lipid hydroperoxides in type 2 diabetes. Endocr J 2009; 56:149-56. [PMID: 18997444 DOI: 10.1507/endocrj.k08e-237] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The increased flux of polyol pathway induced by hyperglycemia is implicated in the pathogenesis of various complications associated with diabetic, which results in increased oxidative stress. Because oxidative stress causes tissue damage in patients with diabetes, searching for an effective strategy to reduce oxidative stress in clinical setting is important in order to prevent diabetic complications. The aim of this study was to evaluate the effects of aldose reductase inhibition on oxidative stress in patients with type 2 diabetes mellitus. The subjects of this study were 21 patients with type 2 diabetes. We compared the levels of various oxidative stress markers and antioxidants including plasma thiobarbituric acid-reactive substances, malondialdehyde-modified low-density lipoprotein, vitamin E, beta-carotene and lipid hydroperoxides in erythrocytes at baseline with those measured after a 3-month course of epalrestat (150 mg/day), an aldose reductase inhibitor. While administration of epalrestat did not result in significant changes in plasma thiobarbituric acid-reactive substances, malondialdehyde-modified low-density lipoprotein, vitamin E, or beta-carotene, it significantly reduced lipid hydroperoxides in erythrocytes. Given the importance of measuring lipid hydroperoxides in erythrocytes as an index of oxidative stress, these results highlight the potential usefulness of epalrestat in reducing oxidative stress in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Chie Ohmura
- Department of Medicine, Metabolism and Endocrinology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
309
|
Relationship between Aldose reductase and superoxide dismutase inhibition capacities of indole-based analogs of melatonin derivatives. ARCH BIOL SCI 2009. [DOI: 10.2298/abs0904675d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Aldose reductase (AR) has been implicated in the etiology of diabetic complications. Under diabetic conditions, the elevated vascular glucose level causes an increased flux through the polyol pathway, which induces functional and morphological changes associated with secondary diabetic complications such as cataract, neuropathy, and nephrop?athy. Oxidative stress, antioxidants, and the polyol pathway have recently been found to be linked in pathological states. A large number of structurally different compounds have been studied as potent in vitro AR inhibitors (ARIs). However, with few exceptions, these compounds did not show clinical benefit, and some even produced serious side effects. In view of the ARI activity of certain indole derivative compounds and antioxidant properties of melatonin, we investigated some indole-based analogs of melatonin derivatives. Antioxidant and ARI activity tests were applied to nine indole derivatives that are substituted at the third and fifth positions. Also, the relationship between ARI and antioxidant enzyme activity is discussed.
Collapse
|
310
|
Carbone V, Zhao HT, Chung R, Endo S, Hara A, El-Kabbani O. Correlation of binding constants and molecular modelling of inhibitors in the active sites of aldose reductase and aldehyde reductase. Bioorg Med Chem 2008; 17:1244-50. [PMID: 19121944 DOI: 10.1016/j.bmc.2008.12.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 12/08/2008] [Accepted: 12/10/2008] [Indexed: 01/12/2023]
Abstract
Aldose reductase (ALR2) belongs to the aldo-keto reductase (AKR) superfamily of enzymes, is the first enzyme involved in the polyol pathway of glucose metabolism and has been linked to the pathologies associated with diabetes. Molecular modelling studies together with binding constant measurements for the four inhibitors Tolrestat, Minalrestat, quercetin and 3,5-dichlorosalicylic acid (DCL) were used to determine the type of inhibition, and correlate inhibitor potency and binding energies of the complexes with ALR2 and the homologous aldehyde reductase (ALR1), another member of the AKR superfamily. Our results show that the four inhibitors follow either uncompetitive or non-competitive inhibition pattern of substrate reduction for ALR1 and ALR2. Overall, there is correlation between the IC(50) (concentration giving 50% inhibition) values of the inhibitors for the two enzymes and the binding energies (DeltaH) of the enzyme-inhibitor complexes. Additionally, the results agree with the detailed structural information obtained by X-ray crystallography suggesting that the difference in inhibitor binding for the two enzymes is predominantly mediated by non-conserved residues. In particular, Arg312 in ALR1 (missing in ALR2) contributes favourably to the binding of DCL through an electrostatic interaction with the inhibitor's electronegative halide atom and undergoes a conformational change upon Tolrestat binding. In ALR2, Thr113 (Tyr116 in ALR1) forms electrostatic interactions with the fluorobenzyl moiety of Minalrestat and the 3- and 4-hydroxy groups on the phenyl ring of quercetin. Our modelling studies suggest that Minalrestat's binding to ALR1 is accompanied by a conformational change including the side chain of Tyr116 to achieve the selectivity for ALR1 over ALR2.
Collapse
Affiliation(s)
- Vincenzo Carbone
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | | | | |
Collapse
|
311
|
Chethan S, Dharmesh SM, Malleshi NG. Inhibition of aldose reductase from cataracted eye lenses by finger millet (Eleusine coracana) polyphenols. Bioorg Med Chem 2008; 16:10085-90. [DOI: 10.1016/j.bmc.2008.10.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 10/01/2008] [Accepted: 10/02/2008] [Indexed: 10/21/2022]
|
312
|
Jung HA, Jung YJ, Yoon NY, Jeong DM, Bae HJ, Kim DW, Na DH, Choi JS. Inhibitory effects of Nelumbo nucifera leaves on rat lens aldose reductase, advanced glycation endproducts formation, and oxidative stress. Food Chem Toxicol 2008; 46:3818-26. [DOI: 10.1016/j.fct.2008.10.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 10/01/2008] [Indexed: 10/21/2022]
|
313
|
Tammali R, Reddy ABM, Ramana KV, Petrash JM, Srivastava SK. Aldose reductase deficiency in mice prevents azoxymethane-induced colonic preneoplastic aberrant crypt foci formation. Carcinogenesis 2008; 30:799-807. [PMID: 19028703 DOI: 10.1093/carcin/bgn246] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aldose reductase (AR; EC 1.1.1.21), an nicotinamide adenine dinucleotide phosphate-dependent aldo-keto reductase, has been shown to be involved in oxidative stress signaling initiated by inflammatory cytokines, chemokines and growth factors. Recently, we have shown that inhibition of this enzyme prevents the growth of colon cancer cells in vitro as well as in nude mice xenografts. Herein, we investigated the mediation of AR in the formation of colonic preneoplastic aberrant crypt foci (ACF) using azoxymethane (AOM)-induced colon cancer mice model. Male BALB/c mice were administrated with AOM without or with AR inhibitor, sorbinil and at the end of the protocol, all the mice were euthanized and colons were evaluated for ACF formation. Administration of sorbinil significantly lowered the number of AOM-induced ACF. Similarly, AR-null mice administered with AOM demonstrated significant resistance to ACF formation. Furthermore, inhibition of AR or knockout of AR gene in the mice significantly prevented AOM-induced expression of inducible nitric oxide synthase and cyclooxygenase-2 proteins as well as their messenger RNA. AR inhibition or knockdown also significantly decreased the phosphorylation of protein kinase C (PKC) beta2 and nuclear factor kappa binding protein as well as expression of preneoplastic marker proteins such as cyclin D1 and beta-catenin in mice colons. Our results suggest that AR mediates the formation of ACF in AOM-treated mice and thereby inhibition of AR could provide an effective chemopreventive approach for the treatment of colon cancer.
Collapse
Affiliation(s)
- Ravinder Tammali
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0647, USA
| | | | | | | | | |
Collapse
|
314
|
Kabututu Z, Manin M, Pointud JC, Maruyama T, Nagata N, Lambert S, Lefrançois-Martinez AM, Martinez A, Urade Y. Prostaglandin F2alpha synthase activities of aldo-keto reductase 1B1, 1B3 and 1B7. J Biochem 2008; 145:161-8. [PMID: 19010934 DOI: 10.1093/jb/mvn152] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Here, we show that three enzymes belonging to the 1B group of the aldo-keto reductase (AKR) superfamily, i.e., human placental aldose reductase (AKR1B1), mouse kidney aldose reductase (AKR1B3) and mouse vas deferens protein (AKR1B7), catalyse the reduction of prostaglandin (PG) H(2), a common intermediate of various prostanoids, to form PGF(2alpha) in the presence of NADPH. AKR1B1, AKR1B3 and AKR1B7 displayed higher affinities for PGH(2) (K(m) = 1.9, 9.3 and 3.8 microM, respectively) and V(max) values (26, 53 and 44 nmol/min/mg protein, respectively) than did the human lung PGF(2alpha) synthase (AKR1C3; 18 microM and 4 nmol/min/mg protein, respectively). The PGF(2alpha) synthase activity of AKR1B1 and AKR1B3 was efficiently inhibited by two AKR inhibitors, tolrestat (K(i) = 3.6 and 0.26 microM, respectively) and sorbinil (K(i) = 21.7 and 0.89 microM, respectively), in a non-competitive or mixed-type manner, whereas that of AKR1B7 was not sensitive to these inhibitors (K(i) = 9.2 and 18 mM, respectively). These data provide a molecular basis for investigating novel functional roles for AKR1B members and PGF(2alpha) as mediators of physiological and pathological processes in mammalian organisms.
Collapse
Affiliation(s)
- Zakayi Kabututu
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
315
|
Yadav UCS, Ighani-Hosseinabad F, van Kuijk FJGM, Srivastava SK, Ramana KV. Prevention of posterior capsular opacification through aldose reductase inhibition. Invest Ophthalmol Vis Sci 2008; 50:752-9. [PMID: 19011011 DOI: 10.1167/iovs.08-2322] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The purpose of this study was to evaluate the effect of aldose reductase (AR) inhibition on posterior capsular opacification (PCO) with the use of a pig eye capsular bag model. METHODS Pig eye capsular bags were prepared by capsulorhexis and cultured in medium without or with AR inhibitors for 7 days. Immunostaining was performed in paraformaldehyde-fixed capsular bags to determine the expression of proliferating cell nuclear antigen (PCNA), alpha-smooth muscle actin (SMA), beta-crystallin, and intercellular adhesion molecule (ICAM)-1. The effect of AR inhibition on basic fibroblast growth factor (BFGF)-induced mitogenic signaling in cultured human lens epithelial cells (HLECs) was examined. Cell growth was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and cell counting, the expression of alpha-SMA, beta-crystallin, and ICAM-1 by Western blot and immunocytochemical analysis, protein kinases by Western blot analysis, and NF-kappaB activation by gel shift and reporter assays. RESULTS During culture of pig eye capsular bags, residual cells on both the anterior and the posterior capsule showed vigorous growth. Treatment with AR inhibitors significantly prevented the lens epithelial cell growth in capsular bags and expression of alpha-SMA, beta-crystallin, and ICAM-1. HLECs showed a dose-dependent response to BFGF, proliferation at lower concentrations (<20 ng/mL) and differentiation/transdifferentiation at higher concentrations (>50 ng/mL). Inhibition of AR also prevented the BFGF-induced activation of ERK1/2, JNK, and NF-kappaB in HLECs. CONCLUSIONS Results suggest that AR is required for lens epithelial cell growth and differentiation/transdifferentiation in the capsular bags, indicating that inhibition of AR could be a potential therapeutic target in the prevention of PCO.
Collapse
Affiliation(s)
- Umesh C S Yadav
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-0647, USA
| | | | | | | | | |
Collapse
|
316
|
Mieyal JJ, Gallogly MM, Qanungo S, Sabens EA, Shelton MD. Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid Redox Signal 2008; 10:1941-88. [PMID: 18774901 PMCID: PMC2774718 DOI: 10.1089/ars.2008.2089] [Citation(s) in RCA: 428] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sulfhydryl chemistry plays a vital role in normal biology and in defense of cells against oxidants, free radicals, and electrophiles. Modification of critical cysteine residues is an important mechanism of signal transduction, and perturbation of thiol-disulfide homeostasis is an important consequence of many diseases. A prevalent form of cysteine modification is reversible formation of protein mixed disulfides (protein-SSG) with glutathione (GSH). The abundance of GSH in cells and the ready conversion of sulfenic acids and S-nitroso derivatives to S-glutathione mixed disulfides suggests that reversible S-glutathionylation may be a common feature of redox signal transduction and regulation of the activities of redox sensitive thiol-proteins. The glutaredoxin enzyme has served as a focal point and important tool for evolution of this regulatory mechanism, because it is a specific and efficient catalyst of protein-SSG deglutathionylation. However, mechanisms of control of intracellular Grx activity in response to various stimuli are not well understood, and delineation of specific mechanisms and enzyme(s) involved in formation of protein-SSG intermediates requires further attention. A large number of proteins have been identified as potentially regulated by reversible S-glutathionylation, but only a few studies have documented glutathionylation-dependent changes in activity of specific proteins in a physiological context. Oxidative stress is a hallmark of many diseases which may interrupt or divert normal redox signaling and perturb protein-thiol homeostasis. Examples involving changes in S-glutathionylation of specific proteins are discussed in the context of diabetes, cardiovascular and lung diseases, cancer, and neurodegenerative diseases.
Collapse
Affiliation(s)
- John J Mieyal
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA.
| | | | | | | | | |
Collapse
|
317
|
Bozdağ-Dündar O, Evranos B, Daş-Evcimen N, Sarıkaya M, Ertan R. Synthesis and aldose reductase inhibitory activity of some new chromonyl-2,4-thiazolidinediones. Eur J Med Chem 2008; 43:2412-7. [DOI: 10.1016/j.ejmech.2008.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 11/28/2007] [Accepted: 01/08/2008] [Indexed: 12/14/2022]
|
318
|
Hagopian K, Ramsey JJ, Weindruch R. Caloric restriction counteracts age-related changes in the activities of sorbitol metabolizing enzymes from mouse liver. Biogerontology 2008; 10:471-9. [PMID: 18953666 DOI: 10.1007/s10522-008-9191-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 10/16/2008] [Indexed: 11/24/2022]
Abstract
The influence of caloric restriction (CR) on hepatic sorbitol-metabolizing enzyme activities was investigated in young and old mice. Aldose reductase and sorbitol dehydrogenase activities were significantly lower in old CR mice than in old controls. Young CR mice showed decreased aldose reductase activity and a trend towards decreased sorbitol dehydrogenase when compared to controls. Metabolites of the pathway, namely sorbitol, glucose and fructose were decreased by CR in young and old mice. Pyruvate levels were decreased by CR in both young and old mice, while lactate decreased only in old CR. Malate levels increased in old CR but remained unchanged in young CR, when compared with controls. Accordingly, the lactate/pyruvate and malate/pyruvate ratios in young and old CR mice were increased, indicating increased NADH/NAD and NADPH/NADP redox couples, respectively. The results indicate that decreased glucose levels under CR conditions lead to decreased sorbitol pathway enzyme activities and metabolite levels, and could contribute to the beneficial effects of long-term CR through decreased sorbitol levels and NADPH sparing.
Collapse
Affiliation(s)
- Kevork Hagopian
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | | | | |
Collapse
|
319
|
Huang Q, Sheibani N. High glucose promotes retinal endothelial cell migration through activation of Src, PI3K/Akt1/eNOS, and ERKs. Am J Physiol Cell Physiol 2008; 295:C1647-57. [PMID: 18945941 DOI: 10.1152/ajpcell.00322.2008] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hyperglycemia impacts retinal vascular function and promotes the development and progression of diabetic retinopathy, which ultimately results in growth of new blood vessels and loss of vision. How high glucose affects retinal endothelial cell (EC) properties requires further investigation. Here we determined the impact of high glucose on mouse retinal EC function in vitro. High glucose significantly enhanced the migration of retinal EC without impacting their proliferation, apoptosis, adhesion, and capillary morphogenesis. The enhanced migration of retinal EC under high glucose was reversed in the presence of the antioxidant N-acetylcysteine, suggesting increased oxidative stress under high-glucose conditions. Retinal EC under high-glucose conditions also expressed increased levels of fibronectin, osteopontin, and alpha(v)beta(3)-integrin, and reduced levels of thrombospondin-1. These changes were concomitant with sustained activation of the downstream prosurvival and promigratory signaling pathways, including Src kinase, phosphatidylinositol 3-kinase/Akt1/endothelial nitric oxide synthase, and ERKs. The sustained activation of these signaling pathways was essential for enhanced migration of retinal EC under high-glucose conditions. Together, our results indicate the exposure of retinal EC to high glucose promotes a promigratory phenotype. Thus alterations in the proangiogenic properties of retinal EC during diabetes may contribute to the development and pathogenesis of diabetic retinopathy.
Collapse
Affiliation(s)
- Qiong Huang
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792-4673, USA
| | | |
Collapse
|
320
|
Endotoxin causes pulmonary hypertension by upregulating smooth muscle endothelin type-B receptors: role of aldose reductase. Shock 2008; 30:189-96. [PMID: 18091567 DOI: 10.1097/shk.0b013e318160f03b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Endothelin-1 (ET-1), a potent vasoconstrictor and mitogen, is upregulated in pulmonary tissue during endotoxemia and contributes markedly to endotoxin-induced pulmonary hypertension. It is, however, unknown whether the ET receptors, ET(A) and ET(B), are differentially regulated in endotoxemic pulmonary vasculature and how this may impact on pulmonary vascular tone. To investigate this topic, we used isolated perfused lungs, pulmonary endothelial cells (ECs), and pulmonary vascular smooth muscle cells (SMCs) of the rat. During a 6-h endotoxin exposure, isolated perfused lungs developed significant pulmonary hypertension that was markedly attenuated by antagonizing ET(A) or ET(B) receptors using subtype-selective or a mixed ET(A/B) receptor antagonist. Peptide levels of big ET-1 and ET-1 and gene expression of prepro-ET-1 were increased after endotoxin challenge in all tissues. In endotoxemic isolated perfused lungs and ECs, the significant rise of mature ET-1 seen in controls after ET(B) receptor or mixed antagonism disappeared completely. However, this effect was preserved in endotoxemic SMCs. In ECs, endotoxin markedly downregulated maximum ET(B) receptor sites and ET(B) mRNA levels, whereas in SMCs, it generated substantial ET(B) receptor upregulation and moderate ET(A) receptor downregulation. The aldose reductase inhibitors sorbinil and zopolrestat mitigated endotoxin-induced pulmonary hypertension, ET-1 stimulation, and differential ET(B) receptor regulation. We conclude that endotoxin-induced pulmonary hypertension in the rat results from a loss of endothelial and concomitant gain of vascular smooth muscle ET(B) receptors. These changes are at least partly mediated by aldose reductase.
Collapse
|
321
|
Parthasarathy C, Renuka VN, Balasubramanian K. Sex steroids enhance insulin receptors and glucose oxidation in Chang liver cells. Clin Chim Acta 2008; 399:49-53. [PMID: 18834871 DOI: 10.1016/j.cca.2008.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 08/30/2008] [Accepted: 09/06/2008] [Indexed: 11/25/2022]
Abstract
BACKGROUND The present study was designed to assess the effect of sex steroids (testosterone and 17beta-estradiol) on insulin receptor expression, insulin binding and glucose oxidation in human liver cell line. METHODS Non-malignant Chang liver cells were treated with different concentrations of testosterone and 17beta-estradiol dissolved in serum free medium for 24 h to identify the effective dose of both steroids for further studies. Cells with 70-80% confluency were challenged with testosterone (0.1 micromol/l), 17beta-estradiol (0.1 micromol/l) and their combination along with insulin as a positive control for 24 h. After the treatment period, insulin receptor mRNA expression, cell surface insulin binding and (14)C-glucose oxidation were assessed. RESULTS Both testosterone and 17beta-estradiol significantly increased the insulin receptor mRNA expression, cell surface insulin binding and (14)C-glucose oxidation compared to basal, but the increase was not at par with the effect of insulin. Compared to individual effects of testosterone and 17beta-estradiol, their combination significantly increased the glucose oxidation similar to that of insulin. CONCLUSION It is concluded from the present study that testosterone and 17beta-estradiol can directly enhance insulin receptor mRNA expression, insulin binding and glucose oxidation in Chang liver cells and thereby glucose metabolism.
Collapse
Affiliation(s)
- Chandrakesan Parthasarathy
- Department of Endocrinology, Dr. ALM. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai-600 113, Tamil Nadu, India
| | | | | |
Collapse
|
322
|
Tang WH, Wu S, Wong TM, Chung SK, Chung SSM. Polyol pathway mediates iron-induced oxidative injury in ischemic-reperfused rat heart. Free Radic Biol Med 2008; 45:602-10. [PMID: 18549825 DOI: 10.1016/j.freeradbiomed.2008.05.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 04/18/2008] [Accepted: 05/02/2008] [Indexed: 12/20/2022]
Abstract
Recent studies have shown that the polyol pathway is involved in ischemia-reperfusion (I/R)-induced myocardial infarction, but the mechanism is unclear. We previously found that lack of aldose reductase (AR), the first enzyme of the polyol pathway, attenuated the increase in transferrin (Tf) level in I/R brain, suggesting that AR contributes to iron-catalyzed free radical-induced damage. We therefore investigated if this mechanism occurs in I/R hearts. We found that inhibition of AR or sorbitol dehydrogenase (SDH), the second enzyme of the polyol pathway, both attenuated the I/R-mediated increases in HIF-1alpha, Tf, TfR, and intracellular iron content and reduced the I/R-induced infarct area of the heart. Further, administration of niacin, which replenishes NAD+, the cofactor for SDH, also normalized TfR and HIF-1alpha levels in I/R hearts. These results suggest that during I/R polyol pathway activity increases the cytosolic NADH/NAD+ ratio. This activates HIF-1alpha that induces the expression of TfR, which in turn increases Tf uptake and iron accumulation and exacerbates oxidative damage that increases the lipid peroxidation. This was confirmed by the fact that administration of the iron chelator deferoxamine attenuated the I/R-induced myocardial infarction.
Collapse
Affiliation(s)
- Wai Ho Tang
- Department of Physiology, Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | | | | | | | | |
Collapse
|
323
|
Drel VR, Pacher P, Ali TK, Shin J, Julius U, El-Remessy AB, Obrosova IG. Aldose reductase inhibitor fidarestat counteracts diabetes-associated cataract formation, retinal oxidative-nitrosative stress, glial activation, and apoptosis. Int J Mol Med 2008. [PMID: 18506358 DOI: 10.3892/ijmm.21.6.667] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This study was aimed at evaluating the potent and specific aldose reductase inhibitor fidarestat, on diabetes-associated cataract formation, and retinal oxidative-nitrosative stress, glial activation, and apoptosis. Control and streptozotocin-diabetic rats were treated with or without fidarestat (16 mg kg(-1)d(-1)) for 10 weeks after an initial 2-week period without treatment. Lens changes were evaluated by indirect ophthalmoscopy and portable slit lamp. Nitrotyrosine, poly(ADP-ribose), and glial fibrillary acidic protein expression were assessed by immunohistochemistry. The rate of apoptosis was quantified in flat-mounted retinas by TUNEL assay with immunoperoxidase staining. To dissect the effects of high glucose exposure in retinal microvascular cells, primary bovine retinal pericytes and endothelial cells were cultured in 5 or 30 mM glucose, with or without fidarestat (10 microM) for 3-14 days. Apoptosis was assessed by TUNEL assay, nitrotyrosine and poly(ADP-ribose) by immunocytochemistry, and Bax and Bcl-2 expression by Western blot analyses. Fidarestat treatment prevented diabetic cataract formation and counteracted retinal nitrosative stress, and poly(ADP-ribose) polymerase activation, as well as glial activation. The number of TUNEL-positive nuclei (mean +/- SEM) was increased approximately 4-fold in diabetic rats vs. controls (207+/-33 vs. 49+/-4, p<0.01), and this increase was partially prevented by fidarestat (106+/-34, p<0.05 vs. untreated diabetic group). The apoptotic cell number increased with the prolongation of exposure of both pericytes and endothelial cells to high glucose levels. Fidarestat counteracted nitrotyrosine and poly(ADP-ribose) accumulation and apoptosis in both cell types. Antiapoptotic effect of fidarestat in high glucose-exposed retinal pericytes was not associated with the inhibition of Bax or increase in Bcl-2 expression. In conclusion, the findings, i) support an important role for aldose reductase in diabetes-associated cataract formation, and retinal oxidative-nitrosative stress, glial activation, and apoptosis, and ii) provide a rationale for the development of aldose reductase inhibitors, and, in particular, fidarestat, for the prevention and treatment of diabetic ocular complications.
Collapse
Affiliation(s)
- Viktor R Drel
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | | | | | | | | | | | | |
Collapse
|
324
|
Gorelik S, Ligumsky M, Kohen R, Kanner J. The stomach as a "bioreactor": when red meat meets red wine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:5002-5007. [PMID: 18540628 DOI: 10.1021/jf703700d] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
To determine the stomach bioreactor capability for food oxidation or antioxidation, rats were fed red turkey meat cutlets (meal A) or red turkey meat cutlets and red wine concentrate (meal B). The hydroperoxides (LOOH) and malondialdehyde (MDA) levels of the stomach contents were evaluated during and after digestion; the postprandial plasma MDA level was also evaluated. In independently fed rats, the stomach LOOH concentration fell substantially 90 min following the meal, and the addition of red wine polyphenols enhanced LOOH reduction 3-fold. A similar trend was obtained for MDA. After pyloric ligation, the stomach contents of rats fed red meat homogenate showed >2-fold increases in LOOH and MDA accumulation. The postprandial plasma MDA level increased significantly by 50% following meal A and was maintained or even fell by 34% below basal level following meal B. The findings show that consumption of partially oxidized food could increase lipid peroxidation in the stomach and the absorption of cytotoxic lipid peroxidation products into the body. The addition of antioxidants such as red wine polyphenols to the meal may alter these outcomes. These findings explain the potentially harmful effects of oxidized fats in foods and the important benefit of consuming dietary polyphenols during the meal.
Collapse
Affiliation(s)
- Shlomit Gorelik
- Department of Pharmaceutics, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | |
Collapse
|
325
|
Shi L, Wang Y, Tu S, Li X, Sun M, Srivastava S, Xu N, Bhatnagar A, Liu S. The responses of mitochondrial proteome in rat liver to the consumption of moderate ethanol: the possible roles of aldo-keto reductases. J Proteome Res 2008; 7:3137-45. [PMID: 18597514 DOI: 10.1021/pr700853j] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A large body of evidence supports the view that mitochondria are a primary target of alcohol stress. Changes in mitochondrial proteins due to moderate ethanol intake, however, have not been broadly and accurately estimated. For this study, rats were fed low doses of ethanol and the mitochondria were isolated from heart, kidney, and liver, using ultracentrifugation with Nycodenz density gradient. The mitochondrial proteins were well resolved upon two-dimensional electrophoresis (2DE), and the alcohol-responsive 2DE spots were identified by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF/TOF MS). Compared with the control group, the proteins extracted from liver mitochondria of ethanol-fed rats exhibited the significant changes on 2DE images, whereas the 2DE images obtained from the kidney and the heart mitochondria remained almost unchanged by ethanol feeding. Significantly, over 50% of the alcohol-responsive proteins in liver mitochondria were members of aldo-keto reductase family (AKR), which were usually present in cytoplasm. The organelle distributions of AKR proteins in liver mitochondria were further confirmed by Western blot analysis as well as by confocal microscopy. In addition, translocations of AKR were examined in the CHANG cell line, which was cultured with and without ethanol. The results of Western blot strongly suggested that the abundances of AKR proteins in the mitochondria were greatly reduced by the presence of ethanol in culture medium. The results of this study show that, even with moderate ethanol feeding, the mitochondrial proteome in rat liver was more sensitive to alcohol stress than that of either the kidney or the heart. The translocation of AKR proteins may be involved in the detoxification of liver cells.
Collapse
Affiliation(s)
- Liang Shi
- Beijing Genomics Institute, Chinese Academy of Science, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
326
|
Cunha JM, Jolivalt CG, Ramos KM, Gregory JA, Calcutt NA, Mizisin AP. Elevated lipid peroxidation and DNA oxidation in nerve from diabetic rats: effects of aldose reductase inhibition, insulin, and neurotrophic factors. Metabolism 2008; 57:873-81. [PMID: 18555826 PMCID: PMC2518323 DOI: 10.1016/j.metabol.2008.01.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 01/28/2008] [Indexed: 12/11/2022]
Abstract
We investigated the effect of treatment with an aldose reductase inhibitor, insulin, or select neurotrophic factors on the generation of oxidative damage in peripheral nerve. Rats were either treated with streptozotocin to induce insulin-deficient diabetes or fed with a diet containing 40% d-galactose to promote hexose metabolism by aldose reductase. Initial time course studies showed that lipid peroxidation and DNA oxidation were significantly elevated in sciatic nerve after 1 week or 2 weeks of streptozotocin-induced diabetes, respectively, and that both remained elevated after 12 weeks of diabetes. The increase in nerve lipid peroxidation was completely prevented or reversed by treatment with the aldose reductase inhibitor, ICI 222155, or by insulin, but not by the neurotrophic factors, prosaptide TX14(A) or neurotrophin-3. The increase in nerve DNA oxidation was significantly prevented by insulin treatment. In contrast, up to 16 weeks of galactose feeding did not alter nerve lipid peroxidation or protein oxidation, despite evidence of ongoing nerve conduction deficits. These observations demonstrate that nerve oxidative damage develops early after the onset of insulin-deficient diabetes and that it is not induced by increased hexose metabolism by aldose reductase per se, but rather is a downstream consequence of flux through this enzyme. Furthermore, the beneficial effect of prosaptide TX14(A) and neurotrophin-3 on nerve function and structure in diabetic rats is not due to amelioration of increased lipid peroxidation.
Collapse
Affiliation(s)
- Joice M. Cunha
- Department of Pathology, University of California San Diego, La Jolla, CA
| | | | - Khara M. Ramos
- Department of Pathology, University of California San Diego, La Jolla, CA
| | - Joshua A. Gregory
- Department of Pathology, University of California San Diego, La Jolla, CA
| | - Nigel A. Calcutt
- Department of Pathology, University of California San Diego, La Jolla, CA
| | - Andrew P. Mizisin
- Department of Pathology, University of California San Diego, La Jolla, CA
| |
Collapse
|
327
|
Liu W, Liu P, Tao S, Deng Y, Li X, Lan T, Zhang X, Guo F, Huang W, Chen F, Huang H, Zhou SF. Berberine inhibits aldose reductase and oxidative stress in rat mesangial cells cultured under high glucose. Arch Biochem Biophys 2008; 475:128-34. [DOI: 10.1016/j.abb.2008.04.022] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2008] [Revised: 04/15/2008] [Accepted: 04/18/2008] [Indexed: 11/26/2022]
|
328
|
L-Arginine prevents metabolic effects of high glucose in diabetic mice. FEBS Lett 2008; 582:2609-14. [PMID: 18586034 DOI: 10.1016/j.febslet.2008.06.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 06/10/2008] [Accepted: 06/19/2008] [Indexed: 12/31/2022]
Abstract
We tested the hypothesis that activation of the polyol pathway and protein kinase C (PKC) during diabetes is due to loss of NO. Our results show that after 4 weeks of streptozotocin-induced diabetes, treatment with L-arginine restored NO levels and prevented tissue accumulation of sorbitol in mice, which was accompanied by an increase in glutathiolation of aldose reductase. L-Arginine treatment decreased superoxide generation in the aorta, total PKC activity and PKC-beta(II) phosphorylation in the heart, and the plasma levels of triglycerides and soluble ICAM. These data suggest that increasing NO bioavailability by L-arginine corrects the major biochemical abnormalities of diabetes.
Collapse
|
329
|
Maccari R, Ottanà R, Ciurleo R, Rakowitz D, Matuszczak B, Laggner C, Langer T. Synthesis, induced-fit docking investigations, and in vitro aldose reductase inhibitory activity of non-carboxylic acid containing 2,4-thiazolidinedione derivatives. Bioorg Med Chem 2008; 16:5840-52. [PMID: 18492610 DOI: 10.1016/j.bmc.2008.04.072] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 04/23/2008] [Accepted: 04/30/2008] [Indexed: 01/12/2023]
Abstract
In continuation of our studies, we here report a series of non-carboxylic acid containing 2,4-thiazolidinedione derivatives, analogues of previously synthesized carboxylic acids which we had found to be very active in vitro aldose reductase (ALR2) inhibitors. Although the replacement of the carboxylic group with the carboxamide or N-hydroxycarboxamide one decreased the in vitro ALR2 inhibitory effect, this led to the identification of mainly non-ionized derivatives with micromolar ALR2 affinity. The 5-arylidene moiety deeply influenced the activity of these 2,4-thiazolidinediones. Our induced-fit docking studies suggested that 5-(4-hydroxybenzylidene)-substituted derivatives may bind the polar recognition region of the ALR2 active site by means of the deprotonated phenol group, while their acetic chain and carbonyl group at position 2 of the thiazolidinedione ring form a tight net of hydrogen bonds with amino acid residues of the lipophilic specificity pocket of the enzyme.
Collapse
Affiliation(s)
- Rosanna Maccari
- Dipartimento Farmaco-chimico, Facoltà di Farmacia, Università di Messina, Polo Universitario dell'Annunziata, 98168 Messina, Italy.
| | | | | | | | | | | | | |
Collapse
|
330
|
La Motta C, Sartini S, Salerno S, Simorini F, Taliani S, Marini AM, Da Settimo F, Marinelli L, Limongelli V, Novellino E. Acetic Acid Aldose Reductase Inhibitors Bearing a Five-Membered Heterocyclic Core with Potent Topical Activity in a Visual Impairment Rat Model. J Med Chem 2008; 51:3182-93. [DOI: 10.1021/jm701613h] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Concettina La Motta
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Stefania Sartini
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Silvia Salerno
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Francesca Simorini
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Sabrina Taliani
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Anna Maria Marini
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Federico Da Settimo
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Luciana Marinelli
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Vittorio Limongelli
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Ettore Novellino
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
331
|
Stefek M, Snirc V, Djoubissie PO, Majekova M, Demopoulos V, Rackova L, Bezakova Z, Karasu C, Carbone V, El-Kabbani O. Carboxymethylated pyridoindole antioxidants as aldose reductase inhibitors: Synthesis, activity, partitioning, and molecular modeling. Bioorg Med Chem 2008; 16:4908-20. [DOI: 10.1016/j.bmc.2008.03.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 03/05/2008] [Accepted: 03/14/2008] [Indexed: 01/25/2023]
|
332
|
Kaiserova K, Tang XL, Srivastava S, Bhatnagar A. Role of nitric oxide in regulating aldose reductase activation in the ischemic heart. J Biol Chem 2008; 283:9101-12. [PMID: 18223294 PMCID: PMC2431016 DOI: 10.1074/jbc.m709671200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 01/24/2008] [Indexed: 01/04/2023] Open
Abstract
Aldose reductase (AR) catalyzes the reduction of several aldehydes ranging from lipid peroxidation products to glucose. The activity of AR is increased in the ischemic heart due to oxidation of its cysteine residues, but the underlying mechanisms remain unclear. To examine signaling mechanisms regulating AR activation, we studied the role of nitric oxide (NO). Treatment with the NO synthase (NOS) inhibitor, N-nitro-l-arginine methyl ester prevented ischemia-induced AR activation and myocardial sorbitol accumulation in rat hearts subjected to global ischemia ex vivo or coronary ligation in situ, whereas inhibition of inducible NOS and neuronal NOS had no effect. Activation of AR in the ischemic heart was abolished by pretreatment with peroxynitrite scavengers hesperetin or 5, 10, 15, 20-tetrakis-[4-sulfonatophenyl]-porphyrinato-iron [III]. Site-directed mutagenesis and electrospray ionization mass spectrometry analyses showed that Cys-298 of AR was readily oxidized to sulfenic acid by peroxynitrite. Treatment with bradykinin and insulin led to a phosphatidylinositol 3-kinase (PI3K)-dependent increase in the phosphorylation of endothelial NOS at Ser-1177 and, even in the absence of ischemia, was sufficient in activating AR. Activation of AR by bradykinin and insulin was reversed upon reduction with dithiothreitol or by inhibiting NOS or PI3K. Treatment with AR inhibitors sorbinil or tolrestat reduced post-ischemic recovery in the rat hearts subjected to global ischemia and increased the infarct size when given before ischemia or upon reperfusion. These results suggest that AR is a cardioprotective protein and that its activation in the ischemic heart is due to peroxynitrite-mediated oxidation of Cys-298 to sulfenic acid via the PI3K/Akt/endothelial NOS pathway.
Collapse
Affiliation(s)
- Karin Kaiserova
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
333
|
Popov D, Constantinescu E. Arterial smooth muscle cells dysfunction in hyperglycaemia and hyperglycaemia associated with hyperlipidaemia: from causes to effects. Arch Physiol Biochem 2008; 114:150-60. [PMID: 18484281 DOI: 10.1080/13813450802033990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Given the important role of smooth muscle cells in arterial wall dysfunction in diabetes, as well as in diabetes associated with accelerated atherosclerosis, we provide a brief review of the recent achievements in identification of signalling molecules underlying their altered cellular responses, and examine the consequences of these pathological insults on smooth muscle cells properties. The original results emerging from the Golden Syrian hamster model (rendered diabetic or simultaneously hyperlipidaemic-diabetic) and from human aortic smooth muscle cells cultured in 25 mM glucose (to mimic diabetic condition) or sera of obese type 2 diabetic patients (to mimic the metabolic syndrome condition) are presented in this context. We conclude this review with several open issues disclosed by the most recent literature that deserve essential attention for targeting the translational medicine.
Collapse
Affiliation(s)
- Doina Popov
- Institute of Cellular Biology and Pathology N. Simionescu, 8 B.P. Hasdeu Street, Bucharest, Romania.
| | | |
Collapse
|
334
|
Wang SSS, Wu JW, Yamamoto S, Liu HS. Diseases of protein aggregation and the hunt for potential pharmacological agents. Biotechnol J 2008; 3:165-92. [DOI: 10.1002/biot.200700065] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
335
|
Wang H, Deng JL, Yue J, Li J, Hou YB. Prostaglandin E1 for preventing the progression of diabetic kidney disease. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2008. [DOI: 10.1002/14651858.cd006872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
336
|
Barski OA, Tipparaju SM, Bhatnagar A. The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab Rev 2008; 40:553-624. [PMID: 18949601 PMCID: PMC2663408 DOI: 10.1080/03602530802431439] [Citation(s) in RCA: 381] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aldo-keto reductase (AKR) superfamily comprises enzymes that catalyze redox transformations involved in biosynthesis, intermediary metabolism, and detoxification. Substrates of AKRs include glucose, steroids, glycosylation end-products, lipid peroxidation products, and environmental pollutants. These proteins adopt a (beta/alpha)(8) barrel structural motif interrupted by a number of extraneous loops and helixes that vary between proteins and bring structural identity to individual families. The human AKR family differs from the rodent families. Due to their broad substrate specificity, AKRs play an important role in the phase II detoxification of a large number of pharmaceuticals, drugs, and xenobiotics.
Collapse
Affiliation(s)
- Oleg A Barski
- Division of Cardiology, Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky 40202, USA.
| | | | | |
Collapse
|
337
|
|
338
|
Schiffelers RM, Fens MH, van Blijswijk JM, Bink DI, Storm G. Targeting the retinal microcirculation to treat diabetic sight problems. Expert Opin Ther Targets 2007; 11:1493-502. [PMID: 18028012 DOI: 10.1517/14728222.11.11.1493] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Diabetic retinopathy is a secondary complication of hyperglycemia caused by diabetes mellitus. The damage to the retina can ultimately cause vision loss as a result of increased capillary permeability and angiogenesis. Recent progress in the understanding of the mediators that drive angiogenesis, as well as the phenotypes of cells that are involved in this process, has provided a multitude of targets for pharmacologic intervention. This review presents the inhibitors of the biochemical processes that are at the root of diabetic retinopathy (i.e., non-enzymatic glycosylation of biomolecules, oxidative stress, activation of aldose reductase and activation of protein kinase C by formation of diacylglycerol) in addition to the inhibitors of the mechanical damage (i.e., increased vascular permeability, capillary occlusion and neovascularization).
Collapse
Affiliation(s)
- Raymond M Schiffelers
- Utrecht University, Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutics, Faculty of Science, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
339
|
Yadav UCS, Ramana KV, Awasthi YC, Srivastava SK. Glutathione level regulates HNE-induced genotoxicity in human erythroleukemia cells. Toxicol Appl Pharmacol 2007; 227:257-64. [PMID: 18096195 DOI: 10.1016/j.taap.2007.10.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 10/24/2007] [Accepted: 10/31/2007] [Indexed: 11/15/2022]
Abstract
4-hydroxy-trans-2-nonenal (HNE) is one of the most abundant and toxic lipid aldehydes formed during lipid peroxidation by reactive oxygen species. We have investigated the genotoxic effects of HNE and its regulation by cellular glutathione (GSH) levels in human erythroleukemia (K562) cells. Incubation of K562 cells with HNE (5-10 microM) significantly elicited a 3- to 5-fold increased DNA damage in a time- and dose-dependent manner as measured by comet assay. Depletion of GSH in cells by L-buthionine-[S,R]-sulfoximine (BSO) significantly increased HNE-induced DNA damage, whereas supplementation of GSH by incubating the cells with GSH-ethyl ester significantly decreased HNE-induced genotoxicity. Further, overexpression of mGSTA4-4, a HNE-detoxifying GST isozyme, significantly prevented HNE-induced DNA damage in cells, and ablation of GSTA4-4 and aldose reductase with respective siRNAs further augmented HNE-induced DNA damage. These results suggest that the genotoxicity of HNE is highly dependent on cellular GSH/GST/AR levels and favorable modulation of the aldehyde detoxification system may help in controlling the oxidative stress-induced complications.
Collapse
Affiliation(s)
- Umesh C S Yadav
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-0647, USA
| | | | | | | |
Collapse
|
340
|
Kim YN, Kim HK, Warda M, Kim N, Park WS, Prince ADB, Jeong DH, Lee DS, Kim KT, Han J. Toward a better understanding of preeclampsia: Comparative proteomic analysis of preeclamptic placentas. Proteomics Clin Appl 2007; 1:1625-36. [PMID: 21136660 DOI: 10.1002/prca.200700034] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Indexed: 11/05/2022]
Abstract
Preeclampsia (PE), a pregnancy-specific syndrome of hypertension, proteinuria, and other systemic disturbances, is a state of widespread endothelial dysfunction secondary to defective placentation. Morphologically, the current data displayed degenerative and apoptotic changes in the mitochondria and villous trophoblasts of preeclamptic placenta. To reveal the superimposing alterations in placental proteins that might explain the pathophysiology of PE, we performed 2-DE MALDI-TOF MS/MS proteomics analysis of differentially expressed placental proteins with placenta from eight normal and eight preeclamptic pregnancies. The identified proteins were confirmed by Western blot analysis. We also performed morphologic evaluation of preeclamptic placentas under both electron and light microscopy. The results disclosed the marked overexpression of chaperonin 60, GST, VDAC, ERp29, and cathepsin D in PE. These proteomics findings clearly suggest the possible cellular battle against mitochondria-originated oxidative stress during PE that either end up with recovery or apoptosis. These results provide a better understanding of proteomic alterations and may help in clarification of stress-related changes in preeclamptic placentas.
Collapse
Affiliation(s)
- Young Nam Kim
- Department of Obstetrics and Gynecology, College of Medicine, Inje University, Busan, Korea; Paik Institute for Clinical Research, College of Medicine, Inje University, Busan, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
341
|
Kiyota E, de Sousa SM, dos Santos ML, da Costa Lima A, Menossi M, Yunes JA, Aparicio R. Crystallization and preliminary X-ray diffraction analysis of maize aldose reductase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:990-2. [PMID: 18007059 PMCID: PMC2339750 DOI: 10.1107/s1744309107052670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 10/23/2007] [Indexed: 11/11/2022]
Abstract
Maize aldose reductase (AR) is a member of the aldo-keto reductase superfamily. In contrast to human AR, maize AR seems to prefer the conversion of sorbitol into glucose. The apoenzyme was crystallized in space group P2(1)2(1)2(1), with unit-cell parameters a = 47.2, b = 54.5, c = 100.6 A and one molecule in the asymmetric unit. Synchrotron X-ray diffraction data were collected and a final resolution limit of 2.0 A was obtained after data reduction. Phasing was carried out by an automated molecular-replacement procedure and structural refinement is currently in progress. The refined structure is expected to shed light on the functional/enzymatic mechanism and the unusual activities of maize AR.
Collapse
Affiliation(s)
- Eduardo Kiyota
- Laboratório de Biologia Estrutural, Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas-SP, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas-SP, Brazil
| | - Sylvia Morais de Sousa
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas-SP, Brazil
| | - Marcelo Leite dos Santos
- Laboratório de Biologia Estrutural, Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas-SP, Brazil
| | - Aline da Costa Lima
- Laboratório de Biologia Estrutural, Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas-SP, Brazil
| | - Marcelo Menossi
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas-SP, Brazil
| | - José Andrés Yunes
- Laboratório de Biologia Molecular, Centro Infantil Boldrini, Campinas-SP, Brazil
| | - Ricardo Aparicio
- Laboratório de Biologia Estrutural, Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas-SP, Brazil
| |
Collapse
|
342
|
Yadav UCS, Srivastava SK, Ramana KV. Aldose reductase inhibition prevents endotoxin-induced uveitis in rats. Invest Ophthalmol Vis Sci 2007; 48:4634-42. [PMID: 17898287 PMCID: PMC2377062 DOI: 10.1167/iovs.07-0485] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
PURPOSE The purpose of the present study was to elucidate the role of the polyol pathway enzyme aldose reductase (AR) in the mediation of ocular inflammation in a rat model of endotoxin-induced uveitis (EIU). METHODS EIU was induced by a subcutaneous injection of 200 microg lipopolysaccharide (LPS) in male Lewis rats treated with the AR inhibitor, zopolrestat (25 mg/kg body weight, intraperitoneally) or its carrier. The rats were killed 24 hours after LPS injection, the eyes were enucleated immediately, and aqueous humor (AqH) was collected. The number of infiltrating cells, protein concentration, and levels of nitric oxide (NO), tumor necrosis factor (TNF)-alpha, and prostaglandin E(2) (PGE(2)) in the AqH were determined. Immunohistochemical analysis was performed in paraformaldehyde-fixed eye sections by staining with antibodies against iNOS, COX-2, TNF-alpha, NF-kappaB, and AR. The levels of reactive oxygen species (ROS) in rat eye sections were determined by dihydroethidium (hydroethidine) fluorescence staining. RESULTS In the EIU rat eye AqH, both the number of infiltrating cells and protein concentrations of the inflammatory markers, TNF-alpha, NO, and PGE(2) were significantly higher than in the control rats, and inhibition of AR by zopolrestat suppressed the LPS-induced increases. The LPS-induced increased expression of AR, TNF-alpha, iNOS, and COX-2 proteins in the ciliary body, corneal epithelium, and retinal wall was also significantly inhibited by zopolrestat. Furthermore, AR inhibition prevented the LPS-induced increased levels of ROS and activation of NF-kappaB in the ciliary body, corneal epithelium, and retinal wall of the rat eye. AR inhibition also prevented the LPS-induced activation of NF-kappaB and expression of COX-2 and iNOS in the human monocyte cell line U-937. CONCLUSIONS The results indicate that AR inhibition suppresses the inflammation in EIU by blocking the expression and release of inflammatory markers in ocular tissues, along with the attenuation of NF-kappaB activation. This finding suggests that AR inhibition could be a novel therapeutic target for the treatment of uveitis and associated ocular inflammation.
Collapse
Affiliation(s)
- Umesh C S Yadav
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-0647, USA
| | | | | |
Collapse
|
343
|
Carotenoid derived aldehydes-induced oxidative stress causes apoptotic cell death in human retinal pigment epithelial cells. Exp Eye Res 2007; 86:70-80. [PMID: 17977529 DOI: 10.1016/j.exer.2007.09.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 09/18/2007] [Accepted: 09/19/2007] [Indexed: 01/28/2023]
Abstract
Carotenoids have been advocated as potential therapeutic agents in treating age-related macular degeneration (AMD). In ocular tissues carotenoids may undergo oxidation and form carotenoid-derived aldehydes (CDA), which would be toxic to tissues. We have investigated the cytotoxic effects of CDA from beta-carotene, Lutein and Zeaxanthin on human retinal pigment epithelial cells (ARPE-19). The serum-starved ARPE-19 cells were treated with CDA without or with antioxidant, N-acetylcysteine (NAC) and cell viability, apoptosis, reactive oxygen species (ROS) levels, nuclear chromatin condensation as well as fragmentation, change in mitochondrial membrane potential (MMP) and activation of transcription factors NF-kappaB and AP-1 were determined. We observed a dose and time-dependent decline in cell viability upon incubation of ARPE-19 cells with CDA. The CDA treatment also led to elevation in ROS levels in a dose-dependent manner. Upon CDA treatment a significant number of apoptotic cells were observed. Also early apoptotic changes in ARPE-19 cells induced by CDA were associated with change in MMP. Increased nuclear chromatin condensation and fragmentation were also observed in cells treated with CDA. The cytotoxicity of CDA in ARPE-19 cells was significantly ameliorated by the antioxidant, NAC. Furthermore, CDA induced the activation of NF-kappaB and AP-1 which was significantly inhibited by NAC. Thus our results demonstrate that CDA could increase the oxidative stress in ARPE-19 cells by elevating ROS levels that would cause imbalance in cellular redox status, which could lead to cell death. This would suggest that high carotenoid supplementation for treatment of AMD should be used cautiously.
Collapse
|
344
|
La Motta C, Sartini S, Mugnaini L, Simorini F, Taliani S, Salerno S, Marini AM, Da Settimo F, Lavecchia A, Novellino E, Cantore M, Failli P, Ciuffi M. Pyrido[1,2-a]pyrimidin-4-one derivatives as a novel class of selective aldose reductase inhibitors exhibiting antioxidant activity. J Med Chem 2007; 50:4917-27. [PMID: 17845019 DOI: 10.1021/jm070398a] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
2-Phenyl-pyrido[1,2-a]pyrimidin-4-one derivatives bearing a phenol or a catechol moiety in position 2 were tested as aldose reductase (ALR2) inhibitors and exhibited activity levels in the micromolar/submicromolar range. Introduction of a hydroxy group in position 6 or 9 gave an enhancement of the inhibitory potency (compare 18, 19, 28, and 29 vs 13 and 14). Lengthening of the 2-side chain to benzyl determined a general reduction in activity. The lack or the methylation of the phenol or catechol hydroxyls gave inactive (10-12, 21, 22, 25-27) or scarcely active (15, 17, 20) compounds, thus demonstrating that the phenol or catechol hydroxyls are involved in the enzyme pharmacophoric recognition. Moreover, all the pyridopyrimidinones displayed significant antioxidant properties, with the best activity shown by the catechol derivatives. The theoretical binding mode of the most active compounds obtained by docking simulations into the ALR2 crystal structure was fully consistent with the structure-activity relationships in the pyrido[1,2-a]pyrimidin-4-one series.
Collapse
Affiliation(s)
- Concettina La Motta
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
345
|
Ramana KV, Tammali R, Reddy ABM, Bhatnagar A, Srivastava SK. Aldose reductase-regulated tumor necrosis factor-alpha production is essential for high glucose-induced vascular smooth muscle cell growth. Endocrinology 2007; 148:4371-84. [PMID: 17584970 DOI: 10.1210/en.2007-0512] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Diabetes is associated with increased generation of cytokines and tissue inflammation, but it is unclear how increased cytokine synthesis is causally related to the development of diabetic complications. Here, we report that exposure to high (25 mm) glucose, but not iso-osmotic concentrations of mannitol or 3-methyl glucose, increased TNF-alpha secretion by rat and human aortic smooth muscle cells in culture. The increase in TNF-alpha production was prevented by actinomycin D and cycloheximide, indicating transcriptional activation of TNF-alpha gene. High glucose (HG)-induced TNF-alpha release was specifically inhibited by protein kinase C (PKC)-delta inhibitor (Rottlerin; EMD Biosciences, San Diego, CA), but not PKC-beta2 inhibitor (CGP53353; Tocris Cookson Inc., Ellisville, MO), indicating the possible involvement of PKC-delta in HG signaling. TNF-alpha secretion was also prevented by pretreating cells with aldose reductase (AR) inhibitors, sorbinil or tolrestat and in cells treated with antisense AR mRNA. Inhibition of AR also prevented the increase in TNF-alpha mRNA. Addition of anti-TNF-alpha antibodies or soluble TNF-alpha receptors 1 and 2 to the medium or RNA interference ablation of TNF-alpha attenuated nuclear factor-kappaB activation and prevented HG-stimulated cell growth. These data indicate that AR is required for HG-induced TNF-alpha synthesis and release. In vivo, the release of TNF-alpha by HG leading to autocrine stimulation of TNF-alpha synthesis may be a critical step in the development of the cardiovascular complications of diabetes. Interruption of the autocrine effects of TNF-alpha may be a useful strategy for treating diabetic vasculopathies.
Collapse
Affiliation(s)
- Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-0647, USA
| | | | | | | | | |
Collapse
|
346
|
Plebuch M, Soldan M, Hungerer C, Koch L, Maser E. Increased resistance of tumor cells to daunorubicin after transfection of cDNAs coding for anthracycline inactivating enzymes. Cancer Lett 2007; 255:49-56. [PMID: 17482758 DOI: 10.1016/j.canlet.2007.03.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 03/22/2007] [Accepted: 03/23/2007] [Indexed: 01/23/2023]
Abstract
Carbonyl reduction is a main but undesired metabolic pathway of the anti-cancer drug daunorubicin (DRC). The resulting alcohol metabolite daunorubicinol has a far less anti-tumor potency and, in addition, is responsible for the life-threatening cardiac toxicity that limits the clinical use of DRC. Elevated levels of carbonyl-reducing enzymes in cancer cells may therefore contribute to the development of DRC chemoresistance and affect the clinical outcome. In the present investigation, human pancreas carcinoma cells were transfected with three important DRC reductases, namely carbonyl reductase (CBR1), aldehyde reductase (AKR1A1) and aldose reductase (AKR1B1), and levels of resistance towards DCR determined. Overexpression of all three reductases lead to a higher DRC inactivation and to an elevation of chemoresistance (7-fold for CBR1, 4.5-fold for AKR1A1 and 3.7-fold for AKR1B1), when IC(50)-values were considered. Coadministration of DRC reductase inhibitors in DRC chemotherapy may be desirable since this would reduce the formation of the cardiotoxic alcohol metabolite and prevent drug resistance.
Collapse
Affiliation(s)
- Mariann Plebuch
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Strasse 10, 24105, Kiel, Germany
| | | | | | | | | |
Collapse
|
347
|
Laville E, Sayd T, Terlouw C, Chambon C, Damon M, Larzul C, Leroy P, Glénisson J, Chérel P. Comparison of sarcoplasmic proteomes between two groups of pig muscles selected for shear force of cooked meat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:5834-41. [PMID: 17567033 DOI: 10.1021/jf070462x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Two-dimensional electrophoresis was used to compare Longissimus sarcoplasmic protein abundance between two groups (tough meat and tender meat), defined on the basis of extreme Warner-Bratzler shear force values measured on cooked pork. Fourteen protein spots differed in quantity (P<0.05) between the two groups and were identified. Adypocyte fatty acid binding protein and acyl-CoA binding protein involved in lipid traffic and in the control of gene expression regulating cell proliferation and differentiation, and Enoyl-CoA hydratase, aldose reductase and triosephosphate isomerase indirectly related to lipid metabolism were overrepresented in the tender group. The tender group was further characterized by increased levels of proteins involved in protein folding and polymerization (initiation factor elf-3beta, chaperonin subunit 2, profilin II). The results suggest that the lower post-cooking shear force could at least in part be related to muscle adipogenetic and/or myogenetic status of which the possible underlying mechanisms are discussed.
Collapse
Affiliation(s)
- Elisabeth Laville
- Unité Recherches Qualité des Produits Animaux, Institut National de la Recherche Agronomique, 63122 St-Genès-Champanelle, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
348
|
Rao AA, Thota H, Gumpeny RS, Akula A, Changalasetty SB, Challa SR, Ravavarapu T, Akula SP, Divakar C, Srinivas K, Das UN. Bioinformatics analysis of diabetic retinopathy using functional protein sequences. Med Hypotheses 2007; 70:148-55. [PMID: 17548166 DOI: 10.1016/j.mehy.2007.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 03/06/2007] [Indexed: 01/08/2023]
Abstract
Diabetic retinopathy is the leading cause of blindness among patients with diabetes mellitus. We evaluated the role of several proteins that are likely to be involved in diabetic retinopathy by employing multiple sequence alignment using ClustalW tool and constructed a phylogram tree using functional protein sequences extracted from NCBI. Phylogram was constructed using Neighbor-Joining Algorithm in bioinformatics approach. It was observed that aldose reductase and nitric oxide synthase are closely associated with diabetic retinopathy. It is likely that vascular endothelial growth factor, pro-inflammatory cytokines, advanced glycation end products, and adhesion molecules that also play a role in diabetic retinopathy may do so by modulating the activities of aldose reductase and nitric oxide synthase. These results imply that methods designed to normalize aldose reductase and nitric oxide synthase activities could be of significant benefit in the prevention and treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Allam Appa Rao
- Department of Computer Science and Systems Engineering, Andhra University, Visakhapatnam 530 003, India.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
349
|
Ramana KV, Reddy ABM, Tammali R, Srivastava SK. Aldose reductase mediates endotoxin-induced production of nitric oxide and cytotoxicity in murine macrophages. Free Radic Biol Med 2007; 42:1290-302. [PMID: 17382209 PMCID: PMC1885210 DOI: 10.1016/j.freeradbiomed.2007.01.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 01/17/2007] [Accepted: 01/18/2007] [Indexed: 01/13/2023]
Abstract
Aldose reductase (AR) is a ubiquitously expressed protein with pleiotrophic roles as an efficient catalyst for the reduction of toxic lipid aldehydes and mediator of hyperglycemia, cytokine, and growth factor-induced redox-sensitive signals that cause secondary diabetic complications. Although AR inhibition has been shown to be protective against oxidative stress signals, the role of AR in regulating nitric oxide (NO) synthesis and NO-mediated apoptosis has not been elucidated to date. We therefore investigated the role of AR in regulating lipopolysaccharide (LPS)-induced NO synthesis and apoptosis in RAW 264.7 macrophages. Inhibition or RNA interference ablation of AR suppressed LPS-stimulated production of NO and overexpression of iNOS mRNA. Inhibition or ablation of AR also prevented the LPS-induced apoptosis, cell cycle arrest, activation of caspase-3, p38-MAPK, JNK, NF-kappaB, and AP1. In addition, AR inhibition prevented the LPS-induced down-regulation of Bcl-xl and up-regulation of Bax and Bak in macrophages. L-Arginine increased and L-NAME decreased the severity of cell death caused by LPS and AR inhibitors prevented it. Furthermore, inhibition of AR prevents cell death caused by HNE and GS-HNE, but not GS-DHN. Our findings for the first time suggest that AR-catalyzed lipid aldehyde-glutathione conjugates regulate the LPS-induced production of inflammatory marker NO and cytotoxicity in RAW 264.7 cells. Inhibition or ablation of AR activity may be a potential therapeutic target in endotoximia and other inflammatory diseases.
Collapse
Affiliation(s)
- Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | | | | | |
Collapse
|
350
|
Kanter JE, Johansson F, LeBoeuf RC, Bornfeldt KE. Do glucose and lipids exert independent effects on atherosclerotic lesion initiation or progression to advanced plaques? Circ Res 2007; 100:769-81. [PMID: 17395883 DOI: 10.1161/01.res.0000259589.34348.74] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It is becoming increasingly clear that suboptimal blood glucose control results in adverse effects on large blood vessels, thereby accelerating atherosclerosis and cardiovascular disease, manifested as myocardial infarction, stroke, and peripheral vascular disease. Cardiovascular disease is accelerated by both type 1 and type 2 diabetes. In type 1 diabetes, hyperglycemia generally occurs in the absence of elevated blood lipid levels, whereas type 2 diabetes is frequently associated with dyslipidemia. In this review article, we discuss hyperglycemia versus hyperlipidemia as culprits in diabetes-accelerated atherosclerosis and cardiovascular disease, with emphasis on studies in mouse models and isolated vascular cells. Recent studies on LDL receptor-deficient mice that are hyperglycemic, but exhibit no marked dyslipidemia compared with nondiabetic controls, show that diabetes in the absence of diabetes-induced hyperlipidemia is associated with an accelerated formation of atherosclerotic lesions, similar to what is seen in fat-fed nondiabetic mice. These effects of diabetes are masked in severely dyslipidemic mice, suggesting that the effects of glucose and lipids on lesion initiation might be mediated by similar mechanisms. Recent evidence from isolated endothelial cells demonstrates that glucose and lipids can induce endothelial dysfunction through similar intracellular mechanisms. Analogous effects of glucose and lipids are also seen in macrophages. Furthermore, glucose exerts many of its cellular effects through lipid mediators. We propose that diabetes without associated dyslipidemia accelerates atherosclerosis by mechanisms that can also be activated by hyperlipidemia.
Collapse
Affiliation(s)
- Jenny E Kanter
- Department of Pathology, University of Washington, Seattle, WA 98195-7470, USA
| | | | | | | |
Collapse
|