301
|
Buzsáki G. Theta rhythm of navigation: Link between path integration and landmark navigation, episodic and semantic memory. Hippocampus 2005; 15:827-40. [PMID: 16149082 DOI: 10.1002/hipo.20113] [Citation(s) in RCA: 582] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Five key topics have been reverberating in hippocampal-entorhinal cortex (EC) research over the past five decades: episodic and semantic memory, path integration ("dead reckoning") and landmark ("map") navigation, and theta oscillation. We suggest that the systematic relations between single cell discharge and the activity of neuronal ensembles reflected in local field theta oscillations provide a useful insight into the relationship among these terms. In rats trained to run in direction-guided (1-dimensional) tasks, hippocampal cell assemblies discharge sequentially, with different assemblies active on opposite runs, i.e., place cells are unidirectional. Such tasks do not require map representation and are formally identical with learning sequentially occurring items in an episode. Hebbian plasticity, acting within the temporal window of the theta cycle, converts the travel distances into synaptic strengths between the sequentially activated and unidirectionally connected assemblies. In contrast, place representations by hippocampal neurons in 2-dimensional environments are typically omnidirectional, characteristic of a map. Generation of a map requires exploration, essentially a dead reckoning behavior. We suggest that omnidirectional navigation through the same places (junctions) during exploration gives rise to omnidirectional place cells and, consequently, maps free of temporal context. Analogously, multiple crossings of common junction(s) of episodes convert the common junction(s) into context-free or semantic memory. Theta oscillation can hence be conceived as the navigation rhythm through both physical and mnemonic space, facilitating the formation of maps and episodic/semantic memories.
Collapse
Affiliation(s)
- György Buzsáki
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, 07102, USA.
| |
Collapse
|
302
|
Parslow DM, Morris RG, Fleminger S, Rahman Q, Abrahams S, Recce M. Allocentric spatial memory in humans with hippocampal lesions. Acta Psychol (Amst) 2005; 118:123-47. [PMID: 15627413 DOI: 10.1016/j.actpsy.2004.10.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
An immersive virtual reality (IVR) system was used to investigate allocentric spatial memory in a patient (PR) who had selective hippocampal damage, and also in patients who had undergone unilateral temporal lobectomies (17 right TL and 19 left TL), their performance compared against normal control groups. A human analogue of the Olton [Olton (1979). Hippocampus, space, and memory. Behavioural Brain Science, 2, 315] spatial maze was developed, consisting of a virtual room, a central virtual circular table and an array of radially arranged up-turned 'shells.' The participant had to search these shells in turn in order to find a blue 'cube' that would then 'move' to another location and so on, until all the shells had been target locations. Within-search errors could be made when the participants returned to a previously visited location during a search, and between-search errors when they revisited previously successful, but now incorrect locations. PR made significantly more between-search errors than his control group, but showed no increase in within-search errors. The right TL group showed a similar pattern of impairment, but the left TL group showed no impairment. This finding implicates the right hippocampal formation in spatial memory functioning in a scenario in which the visual environment was controlled so as to eliminate extraneous visual cues.
Collapse
Affiliation(s)
- David M Parslow
- Department of Psychology, Institute of Psychiatry, University of London, De Crespigny Park, SE5 8AF London, UK
| | | | | | | | | | | |
Collapse
|
303
|
O'Keefe J, Burgess N. Dual phase and rate coding in hippocampal place cells: theoretical significance and relationship to entorhinal grid cells. Hippocampus 2005; 15:853-66. [PMID: 16145693 PMCID: PMC2677681 DOI: 10.1002/hipo.20115] [Citation(s) in RCA: 350] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We review the ideas and data behind the hypothesis that hippocampal pyramidal cells encode information by their phase of firing relative to the theta rhythm of the EEG. Particular focus is given to the further hypothesis that variations in firing rate can encode information independently from that encoded by firing phase. We discuss possible explanation of the phase-precession effect in terms of interference between two independent oscillatory influences on the pyramidal cell membrane potential, and the extent to which firing phase reflects internal dynamics or external (environmental) variables. Finally, we propose a model of the firing of the recently discovered "grid cells" in entorhinal cortex as part of a path-integration system, in combination with place cells and head-direction cells.
Collapse
Affiliation(s)
- John O'Keefe
- Department of Anatomy and Developmental Biology, University College London.
| | | |
Collapse
|
304
|
Maurer AP, Vanrhoads SR, Sutherland GR, Lipa P, McNaughton BL. Self-motion and the origin of differential spatial scaling along the septo-temporal axis of the hippocampus. Hippocampus 2005; 15:841-52. [PMID: 16145692 DOI: 10.1002/hipo.20114] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Spatial scaling of place specific activity in the hippocampus varies systematically from the septal pole (high resolution) to the temporal pole (low resolution). Place fields get progressively larger, and the probability of observing a field in a given environment gets progressively smaller. It was previously found that decoupling movement in space from ambulation, by having the animal actively ride on a mobile platform, results in marked enlargement of the spatial scale factor in the dorsal hippocampus and a reduction in the increase in theta rhythm power with running speed, suggesting that a self-motion signal determines the spatial scale at which the hippocampal population vector updates. These results led to the hypothesis that the gain of the self-motion signal may vary systematically along the septo-temporal axis of the hippocampus. To test this hypothesis, EEG theta rhythm and ensembles of CA1 pyramidal cells and interneurons were recorded from the extreme dorsal and middle portions of the hippocampus. Pyramidal cell population vectors representing successive locations became decorrelated over substantially shorter distances in the dorsal than in the middle hippocampus. Dorsal pyramidal cells had smaller place fields, higher mean and peak firing rates, and higher intrinsic oscillation frequencies during track running than that of middle pyramidal cells. Both dorsal pyramidal cells and interneurons had more elevated mean rates during running, compared with rest, than that of the corresponding cell classes in the middle hippocampus, and both cell classes increased their rates more as a function of speed in the dorsal hippocampus.The amplitude, but not the frequency of fissure recorded theta rhythm, increased more as a function of running speed in the dorsal than in the middle hippocampus. We conclude that variation in the neuronal response to movement speed is the likely basis for the systematic variation in spatial scaling along the septo-temporal axis of the hippocampus.
Collapse
Affiliation(s)
- Andrew P Maurer
- Neural Systems, Memory, and Aging, University of Arizona, Tucson, 85724, USA
| | | | | | | | | |
Collapse
|
305
|
Howard MW, Fotedar MS, Datey AV. The temporal context model in spatial navigation and relational learning: toward a common explanation of medial temporal lobe function across domains. Psychol Rev 2005; 112:75-116. [PMID: 15631589 PMCID: PMC1421376 DOI: 10.1037/0033-295x.112.1.75] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The medial temporal lobe (MTL) has been studied extensively at all levels of analysis, yet its function remains unclear. Theory regarding the cognitive function of the MTL has centered along 3 themes. Different authors have emphasized the role of the MTL in episodic recall, spatial navigation, or relational memory. Starting with the temporal context model (M. W. Howard & M. J. Kahana, 2002a), a distributed memory model that has been applied to benchmark data from episodic recall tasks, the authors propose that the entorhinal cortex supports a gradually changing representation of temporal context and the hippocampus proper enables retrieval of these contextual states. Simulation studies show this hypothesis explains the firing of place cells in the entorhinal cortex and the behavioral effects of hippocampal lesion in relational memory tasks. These results constitute a first step toward a unified computational theory of MTL function that integrates neurophysiological, neuropsychological, and cognitive findings.
Collapse
|
306
|
|
307
|
Kallai J, Makany T, Karadi K, Jacobs WJ. Spatial orientation strategies in Morris-type virtual water task for humans. Behav Brain Res 2004; 159:187-96. [PMID: 15817182 DOI: 10.1016/j.bbr.2004.10.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2004] [Revised: 10/25/2004] [Accepted: 10/28/2004] [Indexed: 10/26/2022]
Abstract
The present study characterized frequent motion patterns (search strategies) that occurred during spatial navigation in a virtual maze. The research focused on identifying and characterizing some search strategies, the temporal progression of strategy-use, and their role in spatial performance. Participants were 112 undergraduate students (42 males and 70 females). We identified three search strategies that predicted spatial performance. Enfilading refers to an approach-withdrawal pattern of active exploration near a target location. Thigmotaxis refers to a search strategy that involves continuous contact with the circular wall of the maze. Visual scan involves active visual exploration while the subject remains in a fixed spatial location and turns round. In addition to identifying these motion patterns, some significant points of the spatial learning process were also detailed where strategies appeared to shift systematically. The applied search strategies in these transitional points have determined overall spatial performance.
Collapse
Affiliation(s)
- Janos Kallai
- Institute of Behavioral Sciences, University of Pecs, Hungary
| | | | | | | |
Collapse
|
308
|
Aota Y, Miyake Y. Neurogenesis performs the formation of the cognitive space in rat's navigation. Neurocomputing 2004. [DOI: 10.1016/j.neucom.2004.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
309
|
Pinto-Hamuy T, Montero VM, Torrealba F. Neurotoxic lesion of anteromedial/posterior parietal cortex disrupts spatial maze memory in blind rats. Behav Brain Res 2004; 153:465-70. [PMID: 15265644 DOI: 10.1016/j.bbr.2004.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Revised: 01/05/2004] [Accepted: 01/05/2004] [Indexed: 11/15/2022]
Abstract
The primary visual cortex of rats is surrounded laterally (in Oc2L) and medially (in Oc2M) by several peristriate visual areas. Previous studies from our laboratory demonstrated that bilateral lesions in Oc2L result in visual pattern discrimination deficit, and in failure to solve a conditional discrimination which requires figure-background association. In contrast, neurotoxic lesions of the rostral part of Oc2M (which contains the anteromedial and anterior peristriate visual areas, collectively referred to as AM complex) result in deficits in visuospatial discrimination, and in disruptions in visual tasks involving spatial memory. The objective of this study was to behaviorally test the role of AM complex in a spatial memory task in absence of visual cues. For this purpose, we analyzed memory retention of Lashley III maze in blind rats after bilateral ibotenate lesions in AM complex, or in the primary visual cortex (V1, Oc1), to test the hypothesis that AM complex is essential for this cognitive task. The results showed a significant loss of memory retention of the maze in rats with lesions in AM complex, but not in rats with lesions in V1. Furthermore, the retention loss in rats with AM complex lesions was positively and significantly correlated with the size of the lesion. The results indicate a critical role of AM complex in spatial memory mechanisms independent on visual cues. A probable homology of rat AM complex with the posterior parietal cortex of primates is discussed.
Collapse
Affiliation(s)
- Teresa Pinto-Hamuy
- Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | | | | |
Collapse
|
310
|
Wilson IA, Ikonen S, Gurevicius K, McMahan RW, Gallagher M, Eichenbaum H, Tanila H. Place cells of aged rats in two visually identical compartments. Neurobiol Aging 2004; 26:1099-106. [PMID: 15748790 DOI: 10.1016/j.neurobiolaging.2004.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Revised: 08/11/2004] [Accepted: 09/15/2004] [Indexed: 11/29/2022]
Abstract
Aged rats perform poorly on spatial learning tasks, a cognitive impairment which has been linked to the failure of hippocampal networks to fully encode changes in the external environment [Barnes CA, Suster MS, Shen J, McNaughton BL. Multistability of cognitive maps in the hippocampus of old rats. Nature 1997;388(6639):272-5; Wilson IA, Ikonen S, Gureviciene I, McMahan RW, Gallagher M, Eichenbaum H, et al. Cognitive aging and the hippocampus: how old rats represent new environments. J Neurosci 2004;24(15):3870-8]. To examine whether the impairment in hippocampal processing extends to conditions in which self-motion provides the cues for environmental change, we have analyzed spatial firing patterns of hippocampal pyramidal neurons in young and aged rats, as well as in young rats with selective cholinergic lesions, another model of cognitive aging. The rats walked between two visually identical environments, pitting self-motion cues that indicated environmental change against visual inputs that indicated no differences between environments. Our results indicated that place cells in both aged and cholinergic-lesioned rats were equally likely as those of young rats to create new spatial representations in the second compartment. These findings suggest that the hippocampal network of aged rats is able to process changes in internally generated cues without rigidity, but that incomplete processing of external landmark cues may lead to impaired spatial learning.
Collapse
Affiliation(s)
- Iain A Wilson
- Department of Neuroscience and Neurology, University of Kuopio, P.O. Box 1627 (Harjulantie 1), Kuopio 70211, Finland.
| | | | | | | | | | | | | |
Collapse
|
311
|
Florian C, Roullet P. Hippocampal CA3-region is crucial for acquisition and memory consolidation in Morris water maze task in mice. Behav Brain Res 2004; 154:365-74. [PMID: 15313024 DOI: 10.1016/j.bbr.2004.03.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Revised: 03/03/2004] [Accepted: 03/04/2004] [Indexed: 10/26/2022]
Abstract
This experiment investigated the involvement of the dorsal hippocampal CA3-region in the different phases of learning and memory in spatial and non-spatial tasks. To do so, we temporarily inactivated the CA3-subfield by a focal injection of diethyldithiocarbamate (DDC) which chelates most of the heavy metals present in this region. The effects of temporary inactivation of the CA3-region were examined in an associative task, the Morris water maze (MWM). To study the different phase of memory we used a new behavioural massed-procedure founded on four massed training sessions in the spatial and the non-spatial (cue) version of this task. In the spatial version, we showed that a bilateral injection of DDC into the CA3-region impairs the acquisition but not the recall of spatial information. The main result of this study is that the same injection performed immediately after the training session also perturbed memory consolidation. In the cue version of the MWM, we found no difference between the DDC-injected mice and their controls in acquisition or memory consolidation of non-spatial information. These results suggest that the hippocampal CA3-region is essential for spatial memory processes and specifically in memory consolidation of spatial information.
Collapse
Affiliation(s)
- Cédrick Florian
- Centre de Recherches sur la Cognition Animale (CRCA), CNRS UMR 5169, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 4, France
| | | |
Collapse
|
312
|
Hough GE, Bingman VP. Spatial response properties of homing pigeon hippocampal neurons: correlations with goal locations, movement between goals, and environmental context in a radial-arm arena. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2004; 190:1047-62. [PMID: 15449093 DOI: 10.1007/s00359-004-0562-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 08/05/2004] [Accepted: 08/05/2004] [Indexed: 11/24/2022]
Abstract
The amniote hippocampal formation plays an evolutionarily-conserved role in the neural representation of environmental space. However, species differences in spatial ecology nurture the expectation of species differences in how hippocampal neurons represent space. To determine the spatial response properties of homing pigeon ( Columba livia) HFneurons, we recorded from isolated units in birds freely navigating a radial arena in search of food present at four goal locations. Fifty of 76 neurons displayed firing rate variations that could be placed into three response categories. Location cells ( n=25) displayed higher firing rates at restricted locations in the arena space, often in proximity to goal locations. Path cells ( n=13) displayed higher firing rates as a pigeon moved between a subset of goal locations. Arena-off cells ( n=12) were more active when a pigeon was in a baseline holding space compared to inside the arena. Overall, reliability and coherence scores of the recorded neurons were lower compared to rat place cells. The differences in the spatial response profiles of pigeon hippocampal formation neurons, when compared to rats, provide a departure point for better understanding the relationship between spatial behavior and how hippocampal formation neurons participate in the representation of space.
Collapse
Affiliation(s)
- Gerald E Hough
- Department of Psychology and J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403, USA.
| | | |
Collapse
|
313
|
Yoganarasimha D, Knierim JJ. Coupling between place cells and head direction cells during relative translations and rotations of distal landmarks. Exp Brain Res 2004; 160:344-59. [PMID: 15340767 DOI: 10.1007/s00221-004-2016-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Accepted: 06/17/2004] [Indexed: 10/26/2022]
Abstract
Hippocampal place cells are selectively active when a rat occupies restricted locations in an environment, and head direction cells fire selectively when the rat's head is pointed in a particular direction in allocentric space. Both place cells and head direction cells are usually coupled, and they are controlled by a complex interaction between external landmarks and idiothetic cues. Most studies have investigated this interaction by rotating the landmarks in the environment. In contrast, a recent study translated the apparatus relative to the landmarks in an environment and found that most place cells maintained the same preferred location on the apparatus regardless of the location of the apparatus in the room. Because head direction cells are insensitive to the rat's location in an environment, the distal landmarks may influence the place field firing locations primarily by controlling the bearing of the head direction cell system. To address this question, ensembles of CA1 place cells and head direction cells of the anterior thalamus were recorded simultaneously, as a rectangular or circular track was moved to different locations in a room with distinct visual landmarks. Most place cells maintained their firing fields relative to the track when the track was translated, and head direction cells maintained the same preferred firing direction. When the distal landmarks were rotated around the track, the firing fields of place cells and the preferred directions of head direction cells rotated with the cues. These results suggest that the precise firing locations of place cells are controlled by an interaction between local and idiothetic cues, and the orientation of the CA1 ensemble representation relative to the distal landmarks may be controlled indirectly by the distal landmarks' influence over the bearing of the head direction cell system.
Collapse
Affiliation(s)
- D Yoganarasimha
- Department of Neurobiology & Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, University of Texas Medical School at Houston, P.O. Box 20708, Houston, TX 77225, USA
| | | |
Collapse
|
314
|
Poucet B, Lenck-Santini PP, Paz-Villagrán V, Save E. Place cells, neocortex and spatial navigation: a short review. ACTA ACUST UNITED AC 2004; 97:537-46. [PMID: 15242663 DOI: 10.1016/j.jphysparis.2004.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hippocampal place cells are characterized by location-specific firing, that is each cell fires in a restricted region of the environment explored by the rat. In this review, we briefly examine the sensory information used by place cells to anchor their firing fields in space and show that, among the various sensory cues that can influence place cell activity, visual and motion-related cues are the most relevant. We then explore the contribution of several cortical areas to the generation of the place cell signal with an emphasis on the role of the visual cortex and parietal cortex. Finally, we address the functional significance of place cell activity and demonstrate the existence of a clear relationship between place cell positional activity and spatial navigation performance. We conclude that place cells, together with head direction cells, provide information useful for spatially guided movements, and thus provide a unique model of how spatial information is encoded in the brain.
Collapse
Affiliation(s)
- Bruno Poucet
- Laboratory of Neurobiology and Cognition, LNC/CNRS, 31 Chemin Joseph-Aiguier, 13402 Marseille 20, France.
| | | | | | | |
Collapse
|
315
|
Ludvig N, Tang HM, Gohil BC, Botero JM. Detecting location-specific neuronal firing rate increases in the hippocampus of freely-moving monkeys. Brain Res 2004; 1014:97-109. [PMID: 15212996 DOI: 10.1016/j.brainres.2004.03.071] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2004] [Indexed: 10/26/2022]
Abstract
The spatial properties of the firing of hippocampal neurons have mainly been studied in (a) freely moving rodents, (b) non-human primates seated in a moveable primate chair with head fixed, and (c) epileptic patients subjected to virtual navigation. Although these studies have all revealed the ability of hippocampal neurons to generate spatially selective discharges, the detected firing patterns have been found to be considerably different, even conflicting, in many respects. The present cellular electrophysiological study employed squirrel monkeys (Saimiri sciureus), which moved freely on the walls and floor of a large test chamber. This permitted the examination of the spatial firing of hippocampal neurons in nearly ideal conditions, similar to those used in rodents, yet in a species that belongs to the primate Suborder Anthropoidea. The major findings were that: (1) a group of slow-firing complex-spike cells increased their basal, awake firing rate more than 20-fold, often above 30 spikes/s, when the monkey was in a particular location in the chamber, (2) these location-specific discharges occurred consistently, forming 4-25 s action potential volleys, and (3) fast-firing cells displayed no such electrical activity. Thus, during free movement in three dimensions, primate hippocampal complex-spike cells do generate high-frequency, location-specific action potential volleys. Since these cells are components of the medial temporal lobe memory system, their uncovered firing pattern may well be involved in the formation of declarative memories on places.
Collapse
Affiliation(s)
- Nandor Ludvig
- Department of Physiology and Pharmacology, State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Box 31, Brooklyn, NY 11203, USA.
| | | | | | | |
Collapse
|
316
|
Knierim JJ. How to avoid going bump in the night: object and place representations in the hippocampus. ACTA ACUST UNITED AC 2004; 124:3-6. [PMID: 15197221 PMCID: PMC2229604 DOI: 10.1085/jgp.200409097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- James J Knierim
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, University of Texas Medical School at Houston, Houston, TX 77225, USA
| |
Collapse
|
317
|
Etienne AS, Maurer R, Boulens V, Levy A, Rowe T. Resetting the path integrator: a basic condition for route-based navigation. ACTA ACUST UNITED AC 2004; 207:1491-508. [PMID: 15037644 DOI: 10.1242/jeb.00906] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During short excursions away from home, some mammals are known to update their position with respect to their point of departure through path integration (dead reckoning) by processing internal (idiothetic) signals generated by rotations and translations. Path integration (PI) is a continuously ongoing process in which errors accumulate. To remain functional over longer excursions, PI needs to be reset through position information from stable external references. We tested the homing behaviour of golden hamsters (Mesocricetus auratus W.) during hoarding excursions following a rotation of the arena and nest. In continuous darkness, the hamsters returned to their point of departure at the rotated nest, and therefore depended on PI only. In other trials, the animals were briefly presented with visual room cues during or at the end of the outward trip, visual cues being pitted by 67 degrees or 98 degrees against the animal's current self-generated position vector. After a fix, the animals headed for the usual (unrotated) nest location, as defined by room cues, independent of the timing of the fix. These results were obtained in two different geometrical settings and showed that, after the fix, the animals update their position, and not merely their head direction or internal compass, in a new reference frame. Thus, episodic fixes on familiar external references reset the PI and therefore greatly enhance the functional signification of navigation that is based on feedback information from locomotion.
Collapse
Affiliation(s)
- Ariane S Etienne
- FPSE, Université de Genève, 40 Boulevard du Pont-d'Arve, CH-1211 Genève 4, Switzerland
| | | | | | | | | |
Collapse
|
318
|
Liu P, Jarrard LE, Bilkey DK. Excitotoxic lesions of the pre- and parasubiculum disrupt the place fields of hippocampal pyramidal cells. Hippocampus 2004; 14:107-16. [PMID: 15058488 DOI: 10.1002/hipo.10161] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To determine what influence the pre- and parasubiculum regions of the hippocampal formation have on neural representations within the dorsal hippocampus, single-unit recordings were made as rats with bilateral ibotenic acid lesions centered on the former regions (n = 4) or control surgeries (n = 3) foraged freely. Spatial firing specificity was measured using an information content procedure. Cells from lesioned animals (n = 57) provided significantly less spatial information than cells from control animals (n = 44). Whereas some degree of location-related activity (place fields) was observed in 98% of neurons recorded from control animals, it was observed in only 65% of the neurons from lesioned animals. The spatial resolution of the intact place fields appeared to be compromised in lesioned animals as a result of their having a higher firing rate outside the place field. These findings indicate that the pre- and parasubiculum regions have a major role in maintaining the specificity of the place field firing of hippocampal pyramidal cells. Since previous data indicate that these lesioned animals displayed delay-dependent deficits in spatial tasks, these findings also suggest that a disruption in place field activity may be a causal factor in this spatial memory deficit.
Collapse
Affiliation(s)
- Ping Liu
- Department of Psychology, Neuroscience Research Centre, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
319
|
Allen GL, Kirasic KC, Rashotte MA, Haun DBM. Aging and path integration skill: kinesthetic and vestibular contributions to wayfinding. ACTA ACUST UNITED AC 2004; 66:170-9. [PMID: 15095949 DOI: 10.3758/bf03194870] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In a triangle completion task designed to assess path integration skill, younger and older adults performed similarly after being led, while blindfolded, along the route segments on foot, which provided both kinesthetic and vestibular information about the outbound path. In contrast, older adults' performance was impaired, relative to that of younger adults, after they were conveyed, while blindfolded, along the route segments in a wheelchair, which limited them principally to vestibular information. Correlational evidence suggested that cognitive resources were significant factors in accounting for age-related decline in path integration performance.
Collapse
Affiliation(s)
- Gary L Allen
- Department of Psychology, University of South Carolina, Columbia, South Carolina 29208, USA.
| | | | | | | |
Collapse
|
320
|
Abstract
It is often assumed that navigation implies the use, by animals, of landmarks indicating the location of the goal. However, many animals (including humans) are able to return to the starting point of a journey, or to other goal sites, by relying on self-motion cues only. This process is known as path integration, and it allows an agent to calculate a route without making use of landmarks. We review the current literature on path integration and its interaction with external, location-based cues. Special importance is given to the correlation between observable behavior and the activity pattern of particular neural cell populations that implement the internal representation of space. In mammals, the latter may well be the first high-level cognitive representation to be understood at the neural level.
Collapse
Affiliation(s)
- Ariane S Etienne
- Faculté de Psychologie et des Sciences de l'Education (FaPSE), University of Geneva, Geneva, Switzerland.
| | | |
Collapse
|
321
|
Chambers RA, Potenza MN, Hoffman RE, Miranker W. Simulated apoptosis/neurogenesis regulates learning and memory capabilities of adaptive neural networks. Neuropsychopharmacology 2004; 29:747-58. [PMID: 14702022 DOI: 10.1038/sj.npp.1300358] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Characterization of neuronal death and neurogenesis in the adult brain of birds, humans, and other mammals raises the possibility that neuronal turnover represents a special form of neuroplasticity associated with stress responses, cognition, and the pathophysiology and treatment of psychiatric disorders. Multilayer neural network models capable of learning alphabetic character representations via incremental synaptic connection strength changes were used to assess additional learning and memory effects incurred by simulation of coordinated apoptotic and neurogenic events in the middle layer. Using a consistent incremental learning capability across all neurons and experimental conditions, increasing the number of middle layer neurons undergoing turnover increased network learning capacity for new information, and increased forgetting of old information. Simulations also showed that specific patterns of neural turnover based on individual neuronal connection characteristics, or the temporal-spatial pattern of neurons chosen for turnover during new learning impacts new learning performance. These simulations predict that apoptotic and neurogenic events could act together to produce specific learning and memory effects beyond those provided by ongoing mechanisms of connection plasticity in neuronal populations. Regulation of rates as well as patterns of neuronal turnover may serve an important function in tuning the informatic properties of plastic networks according to novel informational demands. Analogous regulation in the hippocampus may provide for adaptive cognitive and emotional responses to novel and stressful contexts, or operate suboptimally as a basis for psychiatric disorders. The implications of these elementary simulations for future biological and neural modeling research on apoptosis and neurogenesis are discussed.
Collapse
Affiliation(s)
- R Andrew Chambers
- Division of Substance Abuse, Connecticut Mental Health Center, Yale University School of Medicine, USA.
| | | | | | | |
Collapse
|
322
|
Agnihotri NT, Hawkins RD, Kandel ER, Kentros C. The long-term stability of new hippocampal place fields requires new protein synthesis. Proc Natl Acad Sci U S A 2004; 101:3656-61. [PMID: 14985509 PMCID: PMC373518 DOI: 10.1073/pnas.0400385101] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hippocampus is critical for formation of spatial memories. Hippocampal pyramidal neurons in freely behaving animals exhibit spatially selective firing patterns, which taken together form an internal representation of the environment. This representation is thought to contribute to the hippocampal spatial memory system. Behavioral long-term memories differ from short-term memories in requiring the synthesis of new proteins. Does the development of the internal hippocampal representation also require the synthesis of new proteins? We found that blocking protein synthesis in the brain of mice by 95% does not affect short-term stability of newly formed hippocampal place fields but abolishes stability in the long term. By contrast, inhibiting protein synthesis does not affect the retention and recall of previously established fields in a familiar environment, indicating that protein synthesis-dependent reconsolidation is not required for recall. Our results indicate that place fields parallel both behavioral memories and the late phase of long-term potentiation in requiring the synthesis of new proteins for consolidation.
Collapse
Affiliation(s)
- Naveen T Agnihotri
- Center for Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
323
|
Abstract
The effect of memory on hippocampal neuronal activity was assessed as rats performed a spatial task that was impaired by fornix lesions. The influences of current location, recently entered places, and places about to be entered were compared. Three new findings emerged. (1) Current, retrospective, and prospective coding were common and recorded simultaneously in neural ensembles. (2) The origin of journeys influenced firing even when rats made detours, showing that recent memory could modulate neuronal activity more than spatial trajectory. (3) Diminished retrospective coding and, more markedly, reduced prospective coding in error trials suggested that the neuronal signal was important for task performance. The population of hippocampal neurons thus encoded information about the recent past, the present, and the imminent future, consistent with a neuronal mechanism for episodic memory.
Collapse
Affiliation(s)
- Janina Ferbinteanu
- Fishberg Research Center for Neurobiology, Kastor Neurobiology of Aging Laboratories, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
324
|
Affiliation(s)
- Seralynne D Vann
- School of Psychology, Cardiff University, PO Box 901, Cardiff CF10 3YG, UK.
| | | |
Collapse
|
325
|
Scorcioni R, Lazarewicz MT, Ascoli GA. Quantitative morphometry of hippocampal pyramidal cells: Differences between anatomical classes and reconstructing laboratories. J Comp Neurol 2004; 473:177-93. [PMID: 15101088 DOI: 10.1002/cne.20067] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The dendritic trees of hippocampal pyramidal cells play important roles in the establishment and regulation of network connectivity, synaptic plasticity, and firing dynamics. Several laboratories routinely reconstruct CA3 and CA1 dendrites to correlate their three-dimensional structure with biophysical, electrophysiological, and anatomical observables. To integrate and assess the consistency of the quantitative data available to the scientific community, we exhaustively analyzed 143 completely reconstructed neurons intracellularly filled and digitized in five different laboratories from 10 experimental conditions. Thirty morphometric parameters, including the most common neuroanatomical measurements, were extracted from all neurons. A consistent fraction of parameters (11 of 30) was significantly different between CA3 and CA1 cells. A considerably large number of parameters was also found that discriminated among neurons within the same morphological class, but reconstructed in different laboratories. These interlaboratory differences (8 of 30 parameters) far outweighed the differences between experimental conditions within a single lab, such as aging or preparation method (at most two significant parameters). The set of morphometrics separating anatomical regions and that separating reconstructing laboratories were almost entirely nonoverlapping. CA3 and CA1 neurons could be distinguished by global quantities such as branch order and Sholl distance. Differences among laboratories were largely due to local variables such as branch diameter and local bifurcation angles. Only one parameter (a ratio of branch diameters) separated both morphological classes and reconstructing laboratories. Compartmental simulations of electrophysiological activity showed that both differences between anatomical classes and reconstructing laboratories could dramatically affect the firing rate of these neurons under different experimental conditions.
Collapse
Affiliation(s)
- Ruggero Scorcioni
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | | | | |
Collapse
|
326
|
Abstract
The role of the hippocampus in the representation of 'place' has been attributed to the place cells, whose spatially localised firing suggests their participation in forming a cognitive map of the environment. That this map is necessary for spatial memory formation is indicated by the propensity of almost all navigational tasks to be disrupted by hippocampal damage. The hippocampus has also long been implicated in the formation of episodic memories, and the unusually plastic nature of hippocampal synapses testifies to its probable mnemonic role. Arguably, the place cell representation should, if it is to support spatial learning, be modifiable according to known principles of synaptic reorganization. The present article reviews evidence that the place cell representation is indeed plastic, and that its plasticity depends on the same neurobiological mechanisms known to underlie experimentally induced synaptic plasticity. Inferences are drawn regarding the architecture of the spatial representation and the principles by which it is modified. Spatial learning is promising to be the first kind of memory which is completely understood at all levels, from molecular through circuitry to behaviour and beyond.
Collapse
|
327
|
Mudra R, Douglas RJ. Self-correction mechanism for path integration in a modular navigation system on the basis of an egocentric spatial map. Neural Netw 2003; 16:1373-88. [PMID: 14622890 DOI: 10.1016/j.neunet.2003.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Classical Computer Science approaches to navigation by autonomous robots continue to make good progress. However, we have only a limited understanding of how navigation is implemented in the neural networks of animals, which still perform very much better in navigational tasks than robots. In this paper we explore the implementation of neural network based navigation in a simple robot. We use a modular navigation system that contains separate representations of visual input and the path integration process. These representations are combined to influence the behavior of a robot. Both representations are encoded within recurrent neuronal networks. The outputs of the representations are vectors of polar values that encode the location of the nearest object, or of a specific place in the environment. The robot manoeuvres in relation to these attended locations, in the context of its egocentric spatial map. During ego-motion towards a goal, the network representation of the goal moves in a counter-movement due to applied motor feedback. The robot's position is continuously compared against its visual input, and mismatches between the visually perceived goal position and its spatial representation are corrected.
Collapse
Affiliation(s)
- Regina Mudra
- Institute of Neuroinformatics, University/ETH Zürich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | |
Collapse
|
328
|
Knierim JJ, Rao G. Distal landmarks and hippocampal place cells: effects of relative translation versus rotation. Hippocampus 2003; 13:604-17. [PMID: 12921350 DOI: 10.1002/hipo.10092] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hippocampal neurons are selectively active when a rat occupies restricted locations in an environment. These place cells derive their specificity from a multitude of sources, including idiothetic cues and sensory input derived from both distal and local landmarks. Most experiments have attempted to dissociate the relative strengths and roles played by these sources by rotating one set against the other. Few studies have addressed the effects of relative translation of the local cue set versus salient distal landmarks. To address this question, ensembles of place cells were recorded as a rectangular or circular track was moved to different locations in a room with controlled visual landmarks. Place cells primarily maintained their firing fields relative to the track (i.e., occupying new locations relative to the distal landmarks), even though the track could occupy completely nonoverlapping regions of the room. When the distal landmarks were rotated around the circular track, however, the place fields rotated with the landmarks, demonstrating that the cues were perceptible to the rat. These results suggest that, under these conditions, the spatial tuning of place cells may derive from an interaction between local and idiothetic cues, which define the precise firing locations of the cells and the relationships between them, and distal landmarks, which set the orientation of the ensemble representation relative to the external environment.
Collapse
Affiliation(s)
- James J Knierim
- Department of Neurobiology and Anatomy, University of Texas-Houston Medical School, Houston, Texas 77225, USA.
| | | |
Collapse
|
329
|
Dragoi G, Harris KD, Buzsáki G. Place representation within hippocampal networks is modified by long-term potentiation. Neuron 2003; 39:843-53. [PMID: 12948450 DOI: 10.1016/s0896-6273(03)00465-3] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the brain, information is encoded by the firing patterns of neuronal ensembles and the strength of synaptic connections between individual neurons. We report here that representation of the environment by "place" cells is altered by changing synaptic weights within hippocampal networks. Long-term potentiation (LTP) of intrinsic hippocampal pathways abolished existing place fields, created new place fields, and rearranged the temporal relationship within the affected population. The effect of LTP on neuron discharge was rate and context dependent. The LTP-induced "remapping" occurred without affecting the global firing rate of the network. The findings support the view that learned place representation can be accomplished by LTP-like synaptic plasticity within intrahippocampal networks.
Collapse
Affiliation(s)
- George Dragoi
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | | | | |
Collapse
|
330
|
Wallace DG, Whishaw IQ. NMDA lesions of Ammon's horn and the dentate gyrus disrupt the direct and temporally paced homing displayed by rats exploring a novel environment: evidence for a role of the hippocampus in dead reckoning. Eur J Neurosci 2003; 18:513-23. [PMID: 12911747 DOI: 10.1046/j.1460-9568.2003.02772.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dead reckoning, a form of navigation used to locate a present position and to return to a starting position, is used by rats to return to their home base. The present experiment examined whether dead reckoning is displayed by rats during their first exploratory excursions in a novel environment and also examined whether the behaviour requires the integrity of the cells of the hippocampus. Experimental rats, those with NMDA (N-methyl d-aspartate) lesions of Ammon's horn and the dentate gyrus, and control rats could leave a cage to explore a large circular table under light and dark conditions. Home base behaviour, use of olfactory cues, and thigmotaxic- based navigation were evaluated. Temporal, topographical and kinematic analyses were conducted on the first three exploratory excursions that extended at least halfway across the table. Groups did not differ in numbers of exits from the home base, lingering near the home base, distance travelled, or the use of surface cues as might be exemplified by thigmotaxic and olfactory behaviour. Temporal, topographical and kinematic reconstructions of homing behaviour, however, indicated that control rats, but not hippocampal rats, made direct high velocity return trips to the home base in both the light and the dark. Peak velocity of the trips occurred at the trip midpoint, independent of trip distance, suggesting the movements were preplanned. These results are discussed in relation to the ideas that dead reckoning is used in the homing of exploring rats and that this form of navigation involves the hippocampus.
Collapse
Affiliation(s)
- Douglas G Wallace
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, T1K 3M4 Canada.
| | | |
Collapse
|
331
|
French SJ, Totterdell S. Individual nucleus accumbens-projection neurons receive both basolateral amygdala and ventral subicular afferents in rats. Neuroscience 2003; 119:19-31. [PMID: 12763065 DOI: 10.1016/s0306-4522(03)00150-7] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The nucleus accumbens is regarded as the limbic-motor interface, in view of its limbic afferent and somatomotor and autonomic efferent connections. Within the accumbens, there appear to be specific areas in which limbic afferent fibres, derived from the hippocampus and the amygdala, overlap. These afferent inputs have been suggested to converge monosynaptically on cells within the accumbens and are hypothesized to play a role in paradigms such as conditioned place preference. Convergence between inputs from basolateral amygdala and hippocampus can be demonstrated with electrophysiological recording methods, but these do not conclusively preclude polysynaptic mechanisms. We examined the synaptic input to the projection neurons of the accumbens, the medium-sized densely spiny neurons. We labelled the projection neurons with a small injection of biotinylated dextran amine into the accumbens, and the afferents from the basolateral amygdala and ventral subiculum of the hippocampus with injections of biotinylated dextran amine and Phaseolus vulgaris-leucoagglutinin respectively, and revealed the anterogradely labelled fibres with different chromogens. The labelled accumbens-projection neurons were studied with correlated light and electron microscopy for identified monosynaptic inputs. With this technique we have demonstrated anatomically that monosynaptic convergence between the ventral subicular region of the hippocampus and the basolateral region of the amygdala occurs at the level of the proximal as well as distal dendrites. Finally, we suggest that these anatomical arrangements may represent the framework for the integrative role that has been assigned to the accumbens.
Collapse
Affiliation(s)
- S J French
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| | | |
Collapse
|
332
|
Kobayashi T, Tran AH, Nishijo H, Ono T, Matsumoto G. Contribution of hippocampal place cell activity to learning and formation of goal-directed navigation in rats. Neuroscience 2003; 117:1025-35. [PMID: 12654354 DOI: 10.1016/s0306-4522(02)00700-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Although extensive behavioral studies have demonstrated that hippocampal lesions impair navigation toward specific places, the role of hippocampal neuronal activity in the development of efficient navigation during place learning remains unknown. The aim of the present study was to investigate how hippocampal neuronal activity changes as rats learn to navigate efficiently to acquire rewards in an open field. Rats were pre-trained in a random reward task where intracranial self-stimulation rewards were provided at random locations. Then, the rats were trained in a novel place task where they were rewarded at two specific locations as they repeatedly shuttled between them. Hippocampal neuronal activity was recorded during the course of learning of the place task. The rats learned reward sites within several sessions, and gradually developed efficient navigation strategies throughout the learning sessions. Some hippocampal neurons gradually changed spatial firing as the learning proceeded, and discharged robustly near the reward sites when efficient navigation was established. Over the learning sessions, the neuronal activity was highly correlated to formation of efficient shuttling trajectories between the reward sites. At the end of the experiment, spatial firing patterns of the hippocampal neurons were re-examined in the random reward task. The specific spatial firing patterns of the neurons were preserved if the rats navigated, as if they expected to find rewards at the previously valid locations. However, those specific spatial firing patterns were not observed in rats pursuing random trajectories. These results suggest that hippocampal neurons have a crucial role in formation of an efficient navigation.
Collapse
Affiliation(s)
- T Kobayashi
- Brain-Operative Expression Team, Brainway Group, Brain Science Institute, RIKEN (The Institute of Physical and Chemical Research), Hirosawa, Wako, 351-0198, Saitama, Japan
| | | | | | | | | |
Collapse
|
333
|
White NM, Holahan MR, Goffaux P. Involuntary, unreinforced (pure) spatial learning is impaired by fimbria-fornix but not by dorsal hippocampus lesions. Hippocampus 2003; 13:324-33. [PMID: 12722973 DOI: 10.1002/hipo.10080] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pure spatial learning occurs when rats acquire information about an environment while exploring it in the absence of reinforcers. We previously reported that voluntary, unreinforced exploration of a radial maze retards subsequent reinforced conditioned cue preference (CCP) learning in the same maze. In the present experiment, we examined the effects of involuntary, unreinforced pre-exposure to a radial maze. During pre-exposure, rats were moved by an experimenter between the ends of two arms of a radial maze five times in 30 min. This form of pre-exposure retarded CCP learning, whereas rats that were not pre-exposed and rats that were pre-exposed to a maze in a different room displayed normal CCP learning. These findings suggest that some information specific to the maze environment was acquired during involuntary unreinforced pre-exposure to it. In experiment 2, the retardation of reinforced CCP learning by involuntary unreinforced pre-exposure was eliminated by fimbria-fornix lesions made before pre-exposure but was unaffected by fimbria-fornix lesions made after pre-exposure but before training. Large neurotoxic lesions of the dorsal hippocampus made before pre-exposure had no effect on the retardation of CCP learning, but the rats with these lesions were impaired on a standard test of reinforced spatial learning in a water maze. The lesion effects in experiment 2 are similar to those previously reported for voluntary exploration and suggest that pure spatial learning may occur during both voluntary exploration of and involuntary exposure to an environment in the absence of reinforcers. Pure spatial learning can apparently occur with exposure to two different locations within an environment, but the rats do not have to move between the locations voluntarily. An intact fimbria-fornix is required for acquisition but not expression of this form of learning. The hippocampus is not involved in this form of learning.
Collapse
Affiliation(s)
- Norman M White
- Department of Psychology, McGill University, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
334
|
Rosenzweig ES, Redish AD, McNaughton BL, Barnes CA. Hippocampal map realignment and spatial learning. Nat Neurosci 2003; 6:609-15. [PMID: 12717437 DOI: 10.1038/nn1053] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2002] [Accepted: 03/12/2003] [Indexed: 11/09/2022]
Abstract
The spatial selectivity of hippocampal neurons suggests that they contribute to an internal representation of current location. The activity of hippocampal pyramidal cells was recorded while adult (10-13 months old) and aged (24-28 months old) rats performed a task in which two spatial reference frames were put in conflict. Rats attempted to find an unmarked goal whose position was fixed relative to only one of the two reference frames. The ability of a rat's hippocampus to adjust to the conflicting information and use the 'correct' position estimate (hippocampal map 'realignment') was correlated with the rat's ability to find the hidden goal. In addition, aged rats were impaired relative to adult rats in both goal-finding accuracy and map realignment. Thus, changes in the effectiveness with which the hippocampal spatial representation is updated on the basis of external cues may contribute to both within-age-group spatial learning variability and age-related spatial learning deficits.
Collapse
Affiliation(s)
- Ephron S Rosenzweig
- Arizona Research Laboratories, Division of Neural Systems, Memory, and Aging, 384 Life Sciences North, University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | |
Collapse
|
335
|
Renart A, Song P, Wang XJ. Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks. Neuron 2003; 38:473-85. [PMID: 12741993 DOI: 10.1016/s0896-6273(03)00255-1] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The concept of bell-shaped persistent neural activity represents a cornerstone of the theory for the internal representation of analog quantities, such as spatial location or head direction. Previous models, however, relied on the unrealistic assumption of network homogeneity. We investigate this issue in a network model where fine tuning of parameters is destroyed by heterogeneities in cellular and synaptic properties. Heterogeneities result in the loss of stored spatial information in a few seconds. Accurate encoding is recovered when a homeostatic mechanism scales the excitatory synapses to each cell to compensate for the heterogeneity in cellular excitability and synaptic inputs. Moreover, the more realistic model produces a wide diversity of tuning curves, as commonly observed in recordings from prefrontal neurons. We conclude that recurrent attractor networks in conjunction with appropriate homeostatic mechanisms provide a robust, biologically plausible theoretical framework for understanding the neural circuit basis of spatial working memory.
Collapse
Affiliation(s)
- Alfonso Renart
- Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, USA
| | | | | |
Collapse
|
336
|
Kavcic V, Duffy CJ. Attentional dynamics and visual perception: mechanisms of spatial disorientation in Alzheimer's disease. Brain 2003; 126:1173-81. [PMID: 12690056 DOI: 10.1093/brain/awg105] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Visuospatial disorientation forces Alzheimer's disease patients to abandon independent activities. We found previously that limitations of ambulatory and vehicular navigation are linked to impaired visual motion processing in Alzheimer's disease. We now hypothesize that these perceptual impairments reflect temporal constraints on visual attention. We evaluated attentional, perceptual and neuropsychological capacities in 14 Alzheimer's disease patients and 12 age-matched older normal controls. The temporal dynamics of visual attention were measured using rapid serial visual presentation (RSVP) to assess the attentional blink. Visual processing for spatial orientation was assessed using perceptual thresholds for optic flow, the visual motion seen during observer self-movement. Alzheimer's disease patients show an exaggerated attentional blink during RSVP, identifying the first of two targets but missing the second target depending on the number of intervening distractors. They also show a unique form of attentional masking in which they miss the first target but identify the second, again depending on the number of intervening distractors. Both types of RSVP errors are correlated with selectively elevated optic flow thresholds in Alzheimer's disease patients. This suggests that temporal constraints on visual perception might impair optic flow analysis and contribute to spatial disorientation in Alzheimer's disease. These findings are consistent with two-stage models of visual perception, suggesting that the working memory mechanisms in the second stage provide feedback control of input to category-specific perceptual processors in the first stage.
Collapse
Affiliation(s)
- Voyko Kavcic
- Department of Neurology, The University of Rochester Medical Center, Rochester, NY 14642-0673, USA
| | | |
Collapse
|
337
|
Muir GM, Bilkey DK. Theta- and movement velocity-related firing of hippocampal neurons is disrupted by lesions centered on the perirhinal cortex. Hippocampus 2003; 13:93-108. [PMID: 12625461 DOI: 10.1002/hipo.10052] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The hippocampus is critically involved in spatial memory and navigation. It has previously been proposed that, as part of this process, the hippocampus might have access to self-motion information. The possibility that some of this information may originate from the perirhinal cortex, a region involved in high-order multimodal processing, was tested in the present study by recording the responses of hippocampal complex-spike (place cells) and theta cells (putative interneurons) to movement velocity and to the movement-related theta rhythm EEG while rats with bilateral ibotenic acid lesions centered on the perirhinal cortex (n = 5), or control surgeries (n = 5), foraged in a rectangular environment. Perirhinal cortex lesions altered several characteristics of place and theta cell firing. First, the proportion of theta cells recorded was significantly lower in perirhinal lesion animals (8/39 units) compared to controls (22/53 units). Second, the firing of place cells recorded from lesion animals was phase-shifted so as to occur significantly earlier during the theta rhythm cycle than in place cells from controls (mean difference = 48.73 degrees). Third, the firing rates of a significantly lower proportion of place cells from lesion animals were modulated by the movement velocity of the animal compared to place cells from controls. These results indicate that the perirhinal cortex contributes to the responses of hippocampal CA1 place cells by providing information about self-movement and by controlling the timing of firing of these cells. This information may normally be utilized by the hippocampus during spatial memory and navigation processes.
Collapse
Affiliation(s)
- Gary M Muir
- Department of Psychology, University of Otago, Otago, Dunedin, New Zealand
| | | |
Collapse
|
338
|
Abstract
In the parallel map theory, the hippocampus encodes space with 2 mapping systems. The bearing map is constructed primarily in the dentate gyrus from directional cues such as stimulus gradients. The sketch map is constructed within the hippocampus proper from positional cues. The integrated map emerges when data from the bearing and sketch maps are combined. Because the component maps work in parallel, the impairment of one can reveal residual learning by the other. Such parallel function may explain paradoxes of spatial learning, such as learning after partial hippocampal lesions, taxonomic and sex differences in spatial learning, and the function of hippocampal neurogenesis. By integrating evidence from physiology to phylogeny, the parallel map theory offers a unified explanation for hippocampal function.
Collapse
Affiliation(s)
- Lucia F Jacobs
- Department of Psychology, University of California, Berkeley 94720-1650, USA.
| | | |
Collapse
|
339
|
Page WK, Duffy CJ. Heading representation in MST: sensory interactions and population encoding. J Neurophysiol 2003; 89:1994-2013. [PMID: 12686576 DOI: 10.1152/jn.00493.2002] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dorsal medial superior temporal cortex (MSTd)'s population response encodes heading direction from optic flow seen during fixation or pursuit. Vestibular responses in these neurons might enhance heading representation during self-movement in light or provide an alternative basis for heading representation during self-movement in darkness. We have compared these hypotheses by recording MSTd neuronal responses to translational self-movement in light and darkness, during fixation and pursuit. Translational movement in darkness, with gaze fixed, evokes transient vestibular responses during acceleration that reverse directionality during deceleration and persist without a fixation target. Movement in light increases the amplitude and duration of these responses so they mimic responses to simulated optic flow presented without translational movement. Pursuit of a stationary landmark during translational movement combines vestibular and visual effects with pursuit responses. Vestibular, visual, and pursuit effects interact so that single neuron heading responses vary across the stimulus period and between stimulus conditions. Combining single neuron responses by population vector summation yields stronger heading estimates in light than in darkness, with gaze fixed or during landmark pursuit. Adding translational movement to robust optic flow stimuli does not augment the population response. Vestibular signals enhance single neuron responses in light and maintain population heading estimation in darkness, potentially extending MSTd's heading representation across the continuum of naturalistic self-movement conditions.
Collapse
Affiliation(s)
- William K Page
- Departments of Neurology, Neurobiology, and Anatomy, Ophthalmology, Brain and Cognitive Sciences, and The Center for Visual Science, The University of Rochester Medical Center, Rochester, New York 14642, USA
| | | |
Collapse
|
340
|
Wilson IA, Ikonen S, McMahan RW, Gallagher M, Eichenbaum H, Tanila H. Place cell rigidity correlates with impaired spatial learning in aged rats. Neurobiol Aging 2003; 24:297-305. [PMID: 12498963 DOI: 10.1016/s0197-4580(02)00080-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In humans and in animals, some aged individuals are severely impaired in learning and memory capacity whereas others perform as well as young adults. In the present study, the spatial memory capacity of young and aged rats was characterized by the Morris water maze task, and then firing patterns of hippocampal "place cells" were assessed as the animals explored a familiar environment and a geometrically-altered version of the environment. Spatial representations of hippocampal cells in young and memory-intact aged rats changed upon exposure to the altered environment. In contrast, spatial representations of many cells in aged, memory-impaired rats were unaffected by the environmental alteration. Furthermore, combining all groups, the extent to which spatial representations distinguished the familiar and altered environments predicted learning capacity in the water maze. These findings suggest that a major component of memory impairment in aging may be the failure of the hippocampus to encode subtle differences in contextual information that differ across multiple experiences, such as the sequence of training trials in the water maze.
Collapse
Affiliation(s)
- I A Wilson
- Department of Neuroscience and Neurology, University of Kuopio, P.O. Box 1627, 70211 Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|
341
|
Rosenzweig ES, Barnes CA. Impact of aging on hippocampal function: plasticity, network dynamics, and cognition. Prog Neurobiol 2003; 69:143-79. [PMID: 12758108 DOI: 10.1016/s0301-0082(02)00126-0] [Citation(s) in RCA: 557] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Aging is associated with specific impairments of learning and memory, some of which are similar to those caused by hippocampal damage. Studies of the effects of aging on hippocampal anatomy, physiology, plasticity, and network dynamics may lead to a better understanding of age-related cognitive deficits. Anatomical and electrophysiological studies indicate that the hippocampus of the aged rat sustains a loss of synapses in the dentate gyrus, a loss of functional synapses in area CA1, a decrease in the NMDA-receptor-mediated response at perforant path synapses onto dentate gyrus granule cells, and an alteration of Ca(2+) regulation in area CA1. These changes may contribute to the observed age-related impairments of synaptic plasticity, which include deficits in the induction and maintenance of long-term potentiation (LTP) and lower thresholds for depotentiation and long-term depression (LTD). This shift in the balance of LTP and LTD could, in turn, impair the encoding of memories and enhance the erasure of memories, and therefore contribute to cognitive deficits experienced by many aged mammals. Altered synaptic plasticity may also change the dynamic interactions among cells in hippocampal networks, causing deficits in the storage and retrieval of information about the spatial organization of the environment. Further studies of the aged hippocampus will not only lead to treatments for age-related cognitive impairments, but may also clarify the mechanisms of learning in adult mammals.
Collapse
Affiliation(s)
- Ephron S Rosenzweig
- Arizona Research Laboratories, Division of Neural Systems, Memory, and Aging, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
342
|
Della-Maggiore V, Grady CL, McIntosh AR. Dissecting the effect of aging on the neural substrates of memory: deterioration, preservation or functional reorganization? Rev Neurosci 2003; 13:167-81. [PMID: 12160260 DOI: 10.1515/revneuro.2002.13.2.167] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
One of the most common deficits observed during late adulthood is a loss in the ability to learn and remember new information. This cognitive ability depends mainly on the integrity of the hippocampal formation and the prefrontal cortex, which are especially susceptible to the effects of age. Here we provide a selective review of the literature gathered from studies carried out in humans and animals, examining the effect of aging on the functional anatomy of memory. We discuss some of the methodological and theoretical difficulties associated with the current approach to the study of aging and, in turn, a series of strategies that may be implemented to ensure the most accurate interpretation of the data. Altogether, the evidence discussed in this review supports the idea that there is no general age-related deterioration of the neural substrates of memory, but rather a differential effect in which some brain areas may be adversely affected while others may compensate for the neurobiological deterioration associated with age.
Collapse
Affiliation(s)
- Valeria Della-Maggiore
- Rotman Research Institute of Baycrest Centre, Department of Psychology, University of Toronto, Ontario, Canada.
| | | | | |
Collapse
|
343
|
Martin GM, Walker KM, Skinner DM. A single unstable visual cue impairs spatial learning in a water maze. LEARNING AND MOTIVATION 2003. [DOI: 10.1016/s0023-9690(02)00502-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
344
|
Spatial Representations and Spatial Updating. PSYCHOLOGY OF LEARNING AND MOTIVATION 2003. [DOI: 10.1016/s0079-7421(03)01004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
345
|
Skinner DM, Etchegary CM, Ekert-Maret EC, Baker CJ, Harley CW, Evans JH, Martin GM. An analysis of response, direction and place learning in an open field and T maze. ACTA ACUST UNITED AC 2003. [DOI: 10.1037/0097-7403.29.1.3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
346
|
Siegrist C, Etienne AS, Boulens V, Maurer R, Rowe T. Homing by path integration in a new environment. Anim Behav 2003. [DOI: 10.1006/anbe.2002.2036] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
347
|
Abstract
The hippocampus is one of the most researched structures of the brain. Studies of lesions in humans, primates and rodents have suggested to some that the primary role of the hippocampus is to act as a temporary memory buffer which is required for the consolidation of long-term memory. The famous case study of patient H.M., in particular, seemed to suggest that the hippocampus was of crucial importance for memory formation. However, recordings of single neurons in freely moving rodents did not support this notion. In such recordings, neurons were found that were active predominately when the animal passed through a particular area in space. Consequently, these neurons were termed 'place cells' and a theory was developed that suggested that the hippocampus acts as a 'cognitive map' that is required for spatial orientation. It was then found that H.M. had significant damage to his temporal lobes that included the amygdala, rhinal cortices, and other areas. Further case studies and selective hippocampal lesions in primates resulted in much milder amnestic symptoms, and lesions of defined cortical areas in the temporal lobes showed that a number of functions previously attributed to the hippocampus were in fact linked to these areas. Further analysis of neuronal activity in the hippocampus showed that not only is spatial information represented there, but also additional information, such as speed of movement, direction of movement, match or non-match detection, olfactorial identification, and others. In addition, it was found that selective lesions of the hippocampus in rodents impaired spatial navigation and memory formation only mildly. Only simultaneous lesions of several cortical areas in conjunction with the hippocamus could reproduce the impairments and symptoms that were previously thought to be observed after hippocampal lesions alone. In conclusion it is proposed that information processing and memory formation is shared by several brain areas that act as a functional system. This review presents evidence from many different studies that the hippocampus is part of this system and plays a supportive role in associating complex multimodal information and laying down new memory traces. In addition, the concept of allocating specific functions (such as the development of a cognitive map) exclusively to the hippocampus is rejected.
Collapse
|
348
|
Day LB, Ismail N, Wilczynski W. Use of Position and Feature Cues in Discrimination Learning by the Whiptail Lizard (Cnemidophorus inornatus). J Comp Psychol 2003; 117:440-8. [PMID: 14717646 DOI: 10.1037/0735-7036.117.4.440] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Animals use a variety of cue types to locate and discriminate objects. The ease with which particular cue types are learned varies across species and context. An enormous literature contains comparisons of spatial cue use to use of other cue types, but few experiments examine the ease with which various nonspatial cues are learned. In addition, few studies have examined cue use in reptiles. Thus, the authors compared whiptail lizards' (Cnemidophorus inornatus) ability to learn and reverse a discrimination using either position (left or right) or visual feature cues. Lizards learned and reversed the task using position cues faster and with greater accuracy than using feature cues.
Collapse
Affiliation(s)
- Lainy Baird Day
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
349
|
Brown JE, Yates BJ, Taube JS. Does the vestibular system contribute to head direction cell activity in the rat? Physiol Behav 2002; 77:743-8. [PMID: 12527029 DOI: 10.1016/s0031-9384(02)00928-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Head direction cells (HDC) located in several regions of the brain, including the anterior dorsal nucleus of the thalamus (ADN), postsubiculum (PoS), and lateral mammillary nuclei (LMN), provide the neural substrate for the determination of head direction. Although activity of HDC is influenced by various sensory signals and internally generated cues, lesion studies and some anatomical and physiological evidence suggest that vestibular inputs are critical for the maintenance of directional sensitivity of these cells. However, vestibular inputs must be transformed considerably in order to signal head direction, and the neuronal circuitry that accomplishes this signal processing has not been fully established. Furthermore, it is unclear why the removal of vestibular inputs abolishes the directional sensitivity of HDC, as visual and other sensory inputs and motor feedback signals strongly affect the firing of these neurons and would be expected to maintain their directional-related activity. Further physiological studies will be required to establish the role of vestibular system in producing HDC responses, and anatomical studies are needed to determine the neural circuitry that mediates vestibular influences on determination of head direction.
Collapse
Affiliation(s)
- J E Brown
- Department of Neuroscience, University of Pittsburgh, 15260, Pittsburgh, PA, USA
| | | | | |
Collapse
|
350
|
Paz-Villagràn V, Lenck-Santini PP, Save E, Poucet B. Properties of place cell firing after damage to the visual cortex. Eur J Neurosci 2002; 16:771-6. [PMID: 12270054 DOI: 10.1046/j.1460-9568.2002.02154.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hippocampal place cells were recorded while rats with lesions of the striate visual cortex foraged for food pellets in a cylindrical arena. Compared to control rats, rats with striate damage had place cells whose firing was less well organized in space, according to a measurement of spatial coherence. More importantly, the spatial location of firing fields in rats with striate lesions was poorly controlled by three-dimensional objects, unlike the fields of either normal sighted rats or early blind rats. These findings suggest a possible contribution of the striate visual cortex to the selection of cues used for anchoring place cell firing fields in space.
Collapse
Affiliation(s)
- Vietminh Paz-Villagràn
- Laboratory of Neurobiology and Cognition, CNRS, 31 chemin Joseph-Aiguier, 13402 Marseille cedex 20, France
| | | | | | | |
Collapse
|