301
|
Xia B, Heimbach T, Gollen R, Nanavati C, He H. A simplified PBPK modeling approach for prediction of pharmacokinetics of four primarily renally excreted and CYP3A metabolized compounds during pregnancy. AAPS JOURNAL 2013; 15:1012-24. [PMID: 23835676 DOI: 10.1208/s12248-013-9505-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/12/2013] [Indexed: 02/02/2023]
Abstract
During pregnancy, a drug's pharmacokinetics may be altered and hence anticipation of potential systemic exposure changes is highly desirable. Physiologically based pharmacokinetics (PBPK) models have recently been used to influence clinical trial design or to facilitate regulatory interactions. Ideally, whole-body PBPK models can be used to predict a drug's systemic exposure in pregnant women based on major physiological changes which can impact drug clearance (i.e., in the kidney and liver) and distribution (i.e., adipose and fetoplacental unit). We described a simple and readily implementable multitissue/organ whole-body PBPK model with key pregnancy-related physiological parameters to characterize the PK of reference drugs (metformin, digoxin, midazolam, and emtricitabine) in pregnant women compared with the PK in nonpregnant or postpartum (PP) women. Physiological data related to changes in maternal body weight, tissue volume, cardiac output, renal function, blood flows, and cytochrome P450 activity were collected from the literature and incorporated into the structural PBPK model that describes HV or PP women PK data. Subsequently, the changes in exposure (area under the curve (AUC) and maximum concentration (C max)) in pregnant women were simulated. Model-simulated PK profiles were overall in agreement with observed data. The prediction fold error for C max and AUC ratio (pregnant vs. nonpregnant) was less than 1.3-fold, indicating that the pregnant PBPK model is useful. The utilization of this simplified model in drug development may aid in designing clinical studies to identify potential exposure changes in pregnant women a priori for compounds which are mainly eliminated renally or metabolized by CYP3A4.
Collapse
Affiliation(s)
- Binfeng Xia
- Novartis Institutes for Biomedical Research, DMPK-Translational Sciences, One Health Plaza 436/3253, East Hanover, New Jersey, 07470, USA
| | | | | | | | | |
Collapse
|
302
|
Sahu S, Lata I, Gupta D. Management of pregnant female with meningioma for craniotomy. J Neurosci Rural Pract 2013; 1:35-7. [PMID: 21799618 PMCID: PMC3137832 DOI: 10.4103/0976-3147.63101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Intracranial meningioma during pregnancy challenges the skill of obstetricians, neurosurgeons and neuroanesthesiologists in resection of the tumor and to secure delivery of the baby. Advances in fetal and maternal monitoring, neuroanesthesia, and microsurgical techniques allow safe neurosurgical management of these patients. Urgent neurosurgical intervention is reserved for the management of malignancies, active hydrocephalus, and benign brain tumors associated with signs of impending herniation or progressive neurological deficit. Particular attention is given to maintain stable maternal hemodynamics to avoid uterine hypo perfusion and fetal hypoxia intraoperatively. Therefore, the major challenge of neuroanesthesia during pregnancy is to provide an appropriate balance between competing, and even contradictory, clinical goals of neuroanesthesiology and obstetric practice.
Collapse
Affiliation(s)
- Sandeep Sahu
- Department of Anaesthesiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, UP, India
| | | | | |
Collapse
|
303
|
Zorrilla CD, Wright R, Osiyemi OO, Yasin S, Baugh B, Brown K, Coate B, Verboven P, Mrus J, Falcon R, Kakuda TN. Total and unbound darunavir pharmacokinetics in pregnant women infected with HIV-1: results of a study of darunavir/ritonavir 600/100 mg administered twice daily. HIV Med 2013; 15:50-6. [PMID: 23731450 PMCID: PMC4231999 DOI: 10.1111/hiv.12047] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2013] [Indexed: 11/28/2022]
Abstract
Objectives Antiretroviral therapy during pregnancy is recommended to reduce the risk of mother-to-child transmission of HIV and for maternal care management. Physiological changes during pregnancy can affect pharmacokinetics, potentially altering pharmacological activity. We therefore evaluated the pharmacokinetics of twice-daily (bid) darunavir in HIV-1-infected pregnant women. Methods HIV-1-infected pregnant women receiving an antiretroviral regimen containing darunavir/ritonavir 600/100 mg bid were enrolled in this study. Total and unbound darunavir and total ritonavir plasma concentrations were obtained over 12 h during the second and third trimesters and postpartum. Total darunavir and ritonavir plasma concentrations were determined using a validated high-performance liquid chromatography tandem mass spectrometry assay and unbound darunavir was determined using 14C-darunavir-fortified plasma. Pharmacokinetic parameters were derived using noncompartmental analysis. Results Data were available for 14 women. The area under the plasma concentration–time curve from 0 to 12 h (AUC12h) for total darunavir was 17–24% lower during pregnancy than postpartum. The AUC12h for unbound darunavir was minimally reduced during pregnancy vs. postpartum. The minimum plasma concentration (Cmin) of total and unbound darunavir was on average 43–86% and 10–14% higher, respectively, during pregnancy vs. postpartum. The antiviral response (< 50 HIV-1 RNA copies/mL) was 33% at baseline and increased to 73–90% during treatment; the percentage CD4 count increased over time. One serious adverse event was reported (increased transaminase). All 12 infants born to women remaining in the study at delivery were HIV-1-negative; four of these infants were premature. Conclusions Total darunavir exposure decreased during pregnancy. No clinically relevant change in unbound (active) darunavir occurred during pregnancy, suggesting that no dose adjustment is required for darunavir/ritonavir 600/100 mg bid in pregnant women.
Collapse
Affiliation(s)
- C D Zorrilla
- University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
304
|
van Hasselt JGC, Andrew MA, Hebert MF, Tarning J, Vicini P, Mattison DR. The status of pharmacometrics in pregnancy: highlights from the 3(rd) American conference on pharmacometrics. Br J Clin Pharmacol 2013; 74:932-9. [PMID: 22452385 PMCID: PMC3522806 DOI: 10.1111/j.1365-2125.2012.04280.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Physiological changes during pregnancy may alter drug pharmacokinetics. Therefore, mechanistic understanding of these changes and, ultimately, clinical studies in pregnant women are necessary to determine if and how dosing regimens should be adjusted. Because of the typically limited number of patients who can be recruited in this patient group, efficient design and analysis of these studies is of special relevance. This paper is a summary of a conference session organized at the American Conference of Pharmacometrics in April 2011, around the topic of applying pharmacometric methodology to this important problem. The discussion included both design and analysis of clinical studies during pregnancy and in silico predictions. An overview of different pharmacometric methods relevant to this subject was given. The impact of pharmacometrics was illustrated using a range of case examples of studies around pregnancy.
Collapse
Affiliation(s)
- J G Coen van Hasselt
- Department of Clinical Pharmacology, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | | | | | | | | | | |
Collapse
|
305
|
Reimers A, Brodtkorb E. Second-generation antiepileptic drugs and pregnancy: a guide for clinicians. Expert Rev Neurother 2013; 12:707-17. [PMID: 22650173 DOI: 10.1586/ern.12.32] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
When treating pregnant women with antiepileptic drugs (AEDs), clinicians have to balance potential fetal adverse effects against the risks of uncontrolled maternal disease. Only recently have emerging scientic data provided a rational basis for treatment decisions considering both aspects. The focus of research is currently moving from the first to the second AED generation. Lamotrigine is relatively well studied, and data on other novel AEDs, such as levetiracetam, oxcarbazepine, topiramate, zonisamide, gabapentin and pregabalin, are in progress. Safety issues appear to be favorable for lamotrigine, and preliminary results are also promising for levetiracetam and oxcarbazepine. Drugs metabolized by uridine-diphospate glucuronosyl transferase or excreted unchanged by the kidneys are particularly susceptible to increased body clearance during pregnancy. Lamotrigine is subject to both mechanisms, and therapeutic serum levels may sometimes be difficult to maintain. The authors review the recommendations and clinical research on modern AED treatment during pregnancy, highlighting current experience with second-generation drugs.
Collapse
Affiliation(s)
- Arne Reimers
- Department of Clinical Pharmacology, St. Olavs University Hospital, 7006 Trondheim, Norway
| | | |
Collapse
|
306
|
Cao L, Pu J, Cao QR, Chen BW, Lee BJ, Cui JH. Pharmacokinetics of puerarin in pregnant rats at different stages of gestation after oral administration. Fitoterapia 2013; 86:202-7. [DOI: 10.1016/j.fitote.2013.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/24/2013] [Accepted: 03/03/2013] [Indexed: 10/27/2022]
|
307
|
Ke AB, Nallani SC, Zhao P, Rostami-Hodjegan A, Isoherranen N, Unadkat JD. A physiologically based pharmacokinetic model to predict disposition of CYP2D6 and CYP1A2 metabolized drugs in pregnant women. Drug Metab Dispos 2013; 41:801-13. [PMID: 23355638 PMCID: PMC3608458 DOI: 10.1124/dmd.112.050161] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/25/2013] [Indexed: 12/20/2022] Open
Abstract
Conducting pharmacokinetic (PK) studies in pregnant women is challenging. Therefore, we asked if a physiologically based pharmacokinetic (PBPK) model could be used to evaluate different dosing regimens for pregnant women. We refined and verified our previously published pregnancy PBPK model by incorporating cytochrome P450 CYP1A2 suppression (based on caffeine PK) and CYP2D6 induction (based on metoprolol PK) into the model. This model accounts for gestational age-dependent changes in maternal physiology and hepatic CYP3A activity. For verification, the disposition of CYP1A2-metabolized drug theophylline (THEO) and CYP2D6-metabolized drugs paroxetine (PAR), dextromethorphan (DEX), and clonidine (CLO) during pregnancy was predicted. Our PBPK model successfully predicted THEO disposition during the third trimester (T3). Predicted mean postpartum to third trimester (PP:T3) ratios of THEO area under the curve (AUC), maximum plasma concentration, and minimum plasma concentration were 0.76, 0.95, and 0.66 versus observed values 0.75, 0.89, and 0.72, respectively. The predicted mean PAR steady-state plasma concentration (Css) ratio (PP:T3) was 7.1 versus the observed value 3.7. Predicted mean DEX urinary ratio (UR) (PP:T3) was 2.9 versus the observed value 1.9. Predicted mean CLO AUC ratio (PP:T3) was 2.2 versus the observed value 1.7. Sensitivity analysis suggested that a 100% induction of CYP2D6 during T3 was required to recover the observed PP:T3 ratios of PAR Css, DEX UR, and CLO AUC. Based on these data, it is prudent to conclude that the magnitude of hepatic CYP2D6 induction during T3 ranges from 100 to 200%. Our PBPK model can predict the disposition of CYP1A2, 2D6, and 3A drugs during pregnancy.
Collapse
Affiliation(s)
- Alice Ban Ke
- Department of Pharmaceutics, University of Washington, Box 357610, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
308
|
Olagunju A, Owen A, Cressey TR. Potential effect of pharmacogenetics on maternal, fetal and infant antiretroviral drug exposure during pregnancy and breastfeeding. Pharmacogenomics 2013; 13:1501-22. [PMID: 23057550 DOI: 10.2217/pgs.12.138] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mother-to-child-transmission rates of HIV in the absence of any intervention range between 20 and 45%. However, the provision of antiretroviral drugs (ARVs) during pregnancy, delivery and breastfeeding can reduce HIV transmission to less than 2%. Physiological changes during pregnancy can influence ARV disposition. Associations between SNPs in genes coding for metabolizing enzymes, and/or transporters, and ARVs disposition are well described; however, relatively little is known about the influence of these SNPs on ARV pharmacokinetics during pregnancy and lactation as well as their effect on distribution into the fetal compartment and breast milk excretion. Differences in maternal, fetal and infant ARV exposure due to SNPs may affect the efficacy and safety of ARVs used to prevent mother-to-child-transmission. The aim of this review is to provide an update on the effect of pregnancy-induced changes on the pharmacokinetics of ARVs and highlight the potential role of pharmacogenetics.
Collapse
|
309
|
Gurevich KG. Effect of blood protein concentrations on drug-dosing regimes: practical guidance. Theor Biol Med Model 2013; 10:20. [PMID: 23506635 PMCID: PMC3606132 DOI: 10.1186/1742-4682-10-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/11/2013] [Indexed: 01/21/2023] Open
Abstract
In this article the importance of blood proteins for drug dosing regimes is discussed. A simple mathematical model is presented for estimating recommended drug doses when the concentration of blood proteins is decreased. Practical guidance for drug dosing regimes is discussed and given in the form of a figure. It is demonstrated that correction of drug dosing regimes is needed only for when there is a high level of drug conjugation with blood proteins and a high degree of hypoalbuminaemia. An example of the use of this model is given.
Collapse
Affiliation(s)
- Konstantin G Gurevich
- Moscow State University of Medicine and Dentistry, Russian Federation, Moscow, Russia.
| |
Collapse
|
310
|
The pharmacokinetics, safety and efficacy of tenofovir and emtricitabine in HIV-1-infected pregnant women. AIDS 2013; 27:739-48. [PMID: 23169329 DOI: 10.1097/qad.0b013e32835c208b] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To describe the pharmacokinetics of tenofovir and emtricitabine in the third trimester of pregnant HIV-infected women and at postpartum. DESIGN A nonrandomized, open-label, multicentre phase IV study in HIV-infected pregnant women recruited from HIV treatment centres in Europe. METHODS HIV-infected pregnant women treated with the nucleotide/nucleoside analogue reverse transcriptase inhibitors (NRTIs) tenofovir disoproxil fumarate (TDF 300 mg; equivalent to 245 mg tenofovir disoproxil) and/or emtricitabine (FTC 200 mg) were included in the study. Twenty-four-hour pharmacokinetic curves were recorded in the third trimester (preferably week 33) and postpartum (preferably week 4-6). Collection of a cord blood sample and maternal sample at delivery was optional. Pharmacokinetic parameters were calculated using WinNonlin software version 5.3. Statistical analysis was conducted using SPSS version 16.0. RESULTS Thirty-four women were included in the analysis. Geometric mean ratios of third trimester vs. postpartum [90% confidence interval (CI)] were 0.77 (0.71-0.83) for TDF area under the curve (AUC0-24 h); 0.81 (0.68-0.96) for TDF Cmax and 0.79 (0.70-0.90) for TDF C24 h and 0.75 (0.68-0.82) for FTC AUC0-24 h; and 0.87 (0.77-0.99) for FTC Cmax and 0.77 (0.52-1.12) for FTC C24 h. The viral load close to delivery was less than 200 copies/ml in all but one patient, the average gestational age at delivery was 38 weeks. All children were tested HIV-negative and no congenital abnormalities were reported. CONCLUSION Although pharmacokinetic exposure of the NRTIs TDF and FTC during pregnancy is approximately 25% lower, this was not associated with virological failure in this study and did not result in mother-to-child transmission.
Collapse
|
311
|
Gaohua L, Abduljalil K, Jamei M, Johnson TN, Rostami-Hodjegan A. A pregnancy physiologically based pharmacokinetic (p-PBPK) model for disposition of drugs metabolized by CYP1A2, CYP2D6 and CYP3A4. Br J Clin Pharmacol 2013; 74:873-85. [PMID: 22725721 DOI: 10.1111/j.1365-2125.2012.04363.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AIMS Pregnant women are usually not part of the traditional drug development programme. Pregnancy is associated with major biological and physiological changes that alter the pharmacokinetics (PK) of drugs. Prediction of the changes to drug exposure in this group of patients may help to prevent under- or overtreatment. We have used a pregnancy physiologically based pharmacokinetic (p-PBPK) model to assess the likely impact of pregnancy on three model compounds, namely caffeine, metoprolol and midazolam, based on the knowledge of their disposition in nonpregnant women and information from in vitro studies. METHODS A perfusion-limited form of a 13-compartment full-PBPK model (Simcyp® Simulator) was used for the nonpregnant women, and this was extended to the pregnant state by applying known changes to all model components (including the gestational related activity of specific cytochrome P450 enzymes) and through the addition of an extra compartment to represent the fetoplacental unit. The uterus and the mammary glands were grouped into the muscle compartment. The model was implemented in Matlab Simulink and validated using clinical observations. RESULTS The p-PBPK model predicted the PK changes of three model compounds (namely caffeine, metoprolol and midazolam) for CYP1A2, CYP2D6 and CYP3A4 during pregnancy within twofold of observed values. The changes during the third trimester were predicted to be a 100% increase, a 30% decrease and a 35% decrease in the exposure of caffeine, metoprolol and midazolam, respectively, compared with the nonpregnant women. CONCLUSIONS In the absence of clinical data, the in silico prediction of PK behaviour during pregnancy can provide a valuable aid to dose adjustment in pregnant women. The performance of the model for drugs metabolized by a single enzyme to different degrees (high and low extraction) and for drugs that are eliminated by several different routes warrants further study.
Collapse
|
312
|
Chikhani M, Hardman JG. Pharmacokinetic variation. ANAESTHESIA AND INTENSIVE CARE MEDICINE 2013. [DOI: 10.1016/j.mpaic.2013.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
313
|
Kromdijk W, Sikma MA, van den Broek MPH, Beijnen JH, Huitema ADR, de Lange DW. Pharmacokinetics of oseltamivir carboxylate in critically ill patients: each patient is unique. Intensive Care Med 2013; 39:977-8. [PMID: 23443310 PMCID: PMC7095329 DOI: 10.1007/s00134-013-2851-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2013] [Indexed: 01/30/2023]
|
314
|
Topletz AR, Le HN, Lee N, Chapman JD, Kelly EJ, Wang J, Isoherranen N. Hepatic Cyp2d and Cyp26a1 mRNAs and activities are increased during mouse pregnancy. Drug Metab Dispos 2013; 41:312-9. [PMID: 23150428 PMCID: PMC3558865 DOI: 10.1124/dmd.112.049379] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/13/2012] [Indexed: 11/22/2022] Open
Abstract
There is considerable evidence that drug disposition is altered during human pregnancy and based on probe drug studies, CYP2D6 activity increases during human pregnancy. The aim of this study was to determine whether the changes of CYP2D6 activity observed during human pregnancy could be replicated in the mouse, and explore possible mechanisms of increased CYP2D6 activity during pregnancy. Cyp2d11, Cyp2d22, Cyp2d26 and Cyp2d40 mRNA was increased (P < 0.05) on gestational days (GD) 15 and 19 compared with the non-pregnant controls. There was no change (P > 0.05) in Cyp2d9 and Cyp2d10 mRNA. In agreement with the increased Cyp2d mRNA, Cyp2d-mediated dextrorphan formation from dextromethorphan was increased 2.7-fold (P < 0.05) on GD19 (56.8±39.4 pmol/min/mg protein) when compared with the non-pregnant controls (20.8±11.2 pmol/min/mg protein). An increase in Cyp26a1 mRNA (10-fold) and retinoic acid receptor (Rar)β mRNA (2.8-fold) was also observed during pregnancy. The increase in Cyp26a1 and Rarβ mRNA during pregnancy indicates increased retinoic acid signaling in the liver during pregnancy. A putative retinoic acid response element was identified within the Cyp2d40 promoter and the mRNA of Cyp2d40 correlated (P < 0.05) with Cyp26a1 and Rarβ. These results show that Cyp2d mRNA is increased during mouse pregnancy the and mouse may provide a suitable model to investigate the mechanisms underlying the increased clearance of CYP2D6 probes observed during human pregnancy. Our findings also suggest that retinoic acid signaling in the liver is increased during pregnancy, which may have broader implications to energy homeostasis in the liver during pregnancy.
Collapse
Affiliation(s)
- Ariel R Topletz
- School of Pharmacy, Department of Pharmaceutics, University of Washington, Seattle, WA 98195-7610, USA
| | | | | | | | | | | | | |
Collapse
|
315
|
Shuster DL, Bammler TK, Beyer RP, Macdonald JW, Tsai JM, Farin FM, Hebert MF, Thummel KE, Mao Q. Gestational age-dependent changes in gene expression of metabolic enzymes and transporters in pregnant mice. Drug Metab Dispos 2013; 41:332-42. [PMID: 23175668 PMCID: PMC3558854 DOI: 10.1124/dmd.112.049718] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 11/21/2012] [Indexed: 01/31/2023] Open
Abstract
Pregnancy-induced changes in drug pharmacokinetics can be explained by changes in expression of drug-metabolizing enzymes and transporters and/or normal physiology. In this study, we determined gestational age-dependent expression profiles for all metabolic enzyme and transporter genes in the maternal liver, kidney, small intestine, and placenta of pregnant mice by microarray analysis. We specifically examined the expression of genes important for xenobiotic, bile acid, and steroid hormone metabolism and disposition, namely, cytochrome P450s (Cyp), UDP-glucuronosyltranserases (Ugt), sulfotransferases (Sult), and ATP-binding cassette (Abc), solute carrier (Slc), and solute carrier organic anion (Slco) transporters. Few Ugt and Sult genes were affected by pregnancy. Cyp17a1 expression in the maternal liver increased 3- to 10-fold during pregnancy, which was the largest observed change in the maternal tissues. Cyp1a2, most Cyp2 isoforms, Cyp3a11, and Cyp3a13 expression in the liver decreased on gestation days (gd) 15 and 19 compared with nonpregnant controls (gd 0). In contrast, Cyp2d40, Cyp3a16, Cyp3a41a, Cyp3a41b, and Cyp3a44 in the liver were induced throughout pregnancy. In the placenta, Cyp expression on gd 10 and 15 was upregulated compared with gd 19. Notable changes were also observed in Abc and Slc transporters. Abcc3 expression in the liver and Abcb1a, Abcc4, and Slco4c1 expression in the kidney were downregulated on gd 15 and 19. In the placenta, Slc22a3 (Oct3) expression on gd 10 was 90% lower than that on gd 15 and 19. This study demonstrates important gestational age-dependent expression of metabolic enzyme and transporter genes, which may have mechanistic relevance to drug disposition in human pregnancy.
Collapse
Affiliation(s)
- Diana L Shuster
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195-7610, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
316
|
Choi SY, Koh KH, Jeong H. Isoform-specific regulation of cytochromes P450 expression by estradiol and progesterone. Drug Metab Dispos 2013; 41:263-9. [PMID: 22837389 PMCID: PMC3558868 DOI: 10.1124/dmd.112.046276] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 07/26/2012] [Indexed: 12/26/2022] Open
Abstract
Results from clinical studies suggest that pregnancy alters hepatic drug metabolism in a cytochrome P450 (P450) isoform-specific manner, and rising concentrations of female hormones are potentially responsible for the changes. The objective of this study was to comprehensively characterize the effects of estrogen and progesterone on the expression and activity of major drug-metabolizing P450s. To this end, primary human hepatocytes were treated with estradiol and progesterone, and mRNA expression and activity levels of 10 different P450 isoforms were determined. The results showed that estradiol enhances CYP2A6, CYP2B6, and CYP3A4 expression, whereas progesterone induces CYP2A6, CYP2B6, CYP2C8, CYP3A4, and CYP3A5 expression. The induction was mainly observed when the average hormone concentrations were at the levels reached during pregnancy, suggesting that these effects are likely pregnancy-specific. Estradiol also increased enzyme activities of CYP2C9 and CYP2E1 without affecting the mRNA expression levels by unknown mechanisms. Taken together, our results show differential effects of estrogen and progesterone on P450 expression, suggesting involvement of different regulatory mechanisms in female hormone-mediated P450 regulation. Our findings potentially provide a basis in mechanistic understanding for altered drug metabolism during pregnancy.
Collapse
Affiliation(s)
- Su-Young Choi
- Department of Pharmacy Practice (MC 886), College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
317
|
Fortin MC, Aleksunes LM, Richardson JR. Alteration of the expression of pesticide-metabolizing enzymes in pregnant mice: potential role in the increased vulnerability of the developing brain. Drug Metab Dispos 2013; 41:326-31. [PMID: 23223497 PMCID: PMC3558862 DOI: 10.1124/dmd.112.049395] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/04/2012] [Indexed: 12/25/2022] Open
Abstract
Studies on therapeutic drug disposition in humans have shown significant alterations as the result of pregnancy. However, it is not known whether pesticide metabolic capacity changes throughout pregnancy, which could affect exposure of the developing brain. We sought to determine the effect of pregnancy on the expression of hepatic enzymes involved in the metabolism of pesticides. Livers were collected from virgin and pregnant C57BL/6 mice at gestational days (GD)7, GD11, GD14, GD17, and postpartum days (PD)1, PD15, and PD30. Relative mRNA expression of several enzymes involved in the metabolism of pesticides, including hepatic cytochromes (Cyp) P450s, carboxylesterases (Ces), and paraoxonase 1 (Pon1), were assessed in mice during gestation and the postpartum period. Compared with virgin mice, alterations in the expression occurred at multiple time points, with the largest changes observed on GD14. At this time point, the expression of most of the Cyps involved in pesticide metabolism in the liver (Cyp1a2, Cyp2d22, Cyp2c37, Cyp2c50, Cyp2c54, and Cyp3a11) were downregulated by 30% or more. Expression of various Ces isoforms and Pon1 were also decreased along with Pon1 activity. These data demonstrate significant alterations in the expression of key enzymes that detoxify pesticides during pregnancy, which could alter exposure of developing animals to these chemicals.
Collapse
Affiliation(s)
- Marie C Fortin
- Environmental and Occupational Health Sciences Institute, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
318
|
Isoherranen N, Thummel KE. Drug metabolism and transport during pregnancy: how does drug disposition change during pregnancy and what are the mechanisms that cause such changes? Drug Metab Dispos 2013; 41:256-62. [PMID: 23328895 PMCID: PMC3558867 DOI: 10.1124/dmd.112.050245] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/06/2012] [Indexed: 12/13/2022] Open
Abstract
There is increasing evidence that pregnancy alters the function of drug-metabolizing enzymes and drug transporters in a gestational-stage and tissue-specific manner. In vivo probe studies have shown that the activity of several hepatic cytochrome P450 enzymes, such as CYP2D6 and CYP3A4, is increased during pregnancy, whereas the activity of others, such as CYP1A2, is decreased. The activity of some renal transporters, including organic cation transporter and P-glycoprotein, also appears to be increased during pregnancy. Although much has been learned, significant gaps still exist in our understanding of the spectrum of drug metabolism and transport genes affected, gestational age-dependent changes in the activity of encoded drug metabolizing and transporting processes, and the mechanisms of pregnancy-induced alterations. In this issue of Drug Metabolism and Disposition, a series of articles is presented that address the predictability, mechanisms, and magnitude of changes in drug metabolism and transport processes during pregnancy. The articles highlight state-of-the-art approaches to studying mechanisms of changes in drug disposition during pregnancy, and illustrate the use and integration of data from in vitro models, animal studies, and human clinical studies. The findings presented show the complex inter-relationships between multiple regulators of drug metabolism and transport genes, such as estrogens, progesterone, and growth hormone, and their effects on enzyme and transporter expression in different tissues. The studies provide the impetus for a mechanism- and evidence-based approach to optimally managing drug therapies during pregnancy and improving treatment outcomes.
Collapse
|
319
|
Tomson T, Landmark CJ, Battino D. Antiepileptic drug treatment in pregnancy: Changes in drug disposition and their clinical implications. Epilepsia 2013; 54:405-14. [DOI: 10.1111/epi.12109] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Torbjörn Tomson
- Department of Clinical Neuroscience; Karolinska Institutet; Stockholm; Sweden
| | - Cecilie Johannessen Landmark
- Department of Pharmacy and Biomedical Science; Faculty of Health Sciences; Oslo and Akershus University College of Applied Sciences; Oslo; Norway
| | - Dina Battino
- Epilepsy Center; Department of Neurophysiology; IRCCS Foundation Carlo Besta Neurological Institute; Milan; Italy
| |
Collapse
|
320
|
Chairat K, Tarning J, White NJ, Lindegardh N. Pharmacokinetic properties of anti-influenza neuraminidase inhibitors. J Clin Pharmacol 2013; 53:119-39. [PMID: 23436258 DOI: 10.1177/0091270012440280] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 11/09/2011] [Indexed: 01/21/2023]
Abstract
Neuraminidase inhibitors are the mainstay of anti-influenza treatment. Oseltamivir is the most widely used drug but is currently available only as an oral formulation. Resistance spreads rapidly in seasonal H1N1 influenza A viruses, which were universally resistant in 2008, because of the H275Y mutation in the neuraminidase (NA) gene. Oseltamivir is a prodrug for the active carboxylate metabolite. Ex vivo conversion in blood samples may have confounded early pharmacokinetic studies. Oseltamivir shows dose linear kinetics, and oseltamivir carboxylate has an elimination half-life (t(1/2) β) after oral administration in healthy individuals of approximately 7.7 hours. Oseltamivir carboxylate is eliminated primarily by tubular secretion, and both clearance and tissue distribution are reduced by probenecid. The H275Y mutation in NA confers high-level oseltamivir resistance and intermediate peramivir resistance but does not alter zanamivir susceptibility. Zanamivir is available as a powder for inhalation, and a parenteral form is under development. Zanamivir distributes in an apparent volume of distribution approximating that of extracellular water and is rapidly eliminated (t(1/2) β of approximately 3.0 hours). Peramivir is slowly eliminated (t(1/2) β of 7.7-20.8 hours) and is prescribed as either a once-daily injection or as a single infusion. Laninamivir is a recently developed slowly eliminated compound for administration by inhalation.
Collapse
Affiliation(s)
- Kalayanee Chairat
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | | |
Collapse
|
321
|
Morrissey KM, Stocker SL, Wittwer MB, Xu L, Giacomini KM. Renal Transporters in Drug Development. Annu Rev Pharmacol Toxicol 2013; 53:503-29. [DOI: 10.1146/annurev-pharmtox-011112-140317] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kari M. Morrissey
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158; , , , ,
| | - Sophie L. Stocker
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158; , , , ,
| | - Matthias B. Wittwer
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158; , , , ,
| | - Lu Xu
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158; , , , ,
| | - Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158; , , , ,
| |
Collapse
|
322
|
Bogen DL, Perel JM, Helsel JC, Hanusa BH, Romkes M, Nukui T, Friedman CR, Wisner KL. Pharmacologic evidence to support clinical decision making for peripartum methadone treatment. Psychopharmacology (Berl) 2013; 225:441-51. [PMID: 22926004 PMCID: PMC3537905 DOI: 10.1007/s00213-012-2833-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 07/26/2012] [Indexed: 11/24/2022]
Abstract
RATIONALE Limited pharmacological data are available to guide methadone treatment during pregnancy and postpartum. OBJECTIVES Study goals were to (1) characterize changes in methadone dose across childbearing, (2) determine enantiomer-specific methadone withdrawal kinetics from steady state during late pregnancy, (3) assess enantiomer-specific changes in methadone level/dose (L/D) ratios across childbearing, and (4) explore relationships between CYP2B6, CYP2C19, and CYP3A4 single-nucleotide polymorphisms and maternal dose, plasma concentration, and L/D. METHODS Methadone dose changes and timed plasma samples were obtained for women on methadone (n = 25) followed prospectively from third trimester of pregnancy to 3 months postpartum. RESULTS Participants were primarily white, Medicaid insured, and multiparous. All women increased their dose from first to end of second trimester (mean peak increase = 23 mg/day); 71 % of women increased from second trimester to delivery (mean peak increase = 19 mg/day). Half took a higher dose 3 months postpartum than at delivery despite significantly larger clearance during late pregnancy. Third trimester enantiomer-specific methadone half-lives (range R-methadone 14.7-24.9 h; S-methadone, 8.02-18.9 h) were about half of those reported in non-pregnant populations. In three women with weekly 24-h methadone levels after delivery, L/D increased within 1-2 weeks after delivery. Women with the CYP2B6 Q172 variant GT genotype have consistently higher L/D values for S-methadone across both pregnancy and postpartum. CONCLUSIONS Most women require increases in methadone dose across pregnancy. Given the shorter half-life and larger clearances during pregnancy, many pregnant women may benefit from split methadone dosing. L/D increases quickly after delivery and doses should be lowered rapidly after delivery.
Collapse
Affiliation(s)
- D. L. Bogen
- Department of Pediatrics, Division of General Academic Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA
,Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - J. M. Perel
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA
,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA
| | - J. C. Helsel
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA
,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA
| | - B. H. Hanusa
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - M. Romkes
- Center for Clinical Pharmacology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - T. Nukui
- Center for Clinical Pharmacology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - C. R. Friedman
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - K. L. Wisner
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
323
|
Wen X, Donepudi AC, Thomas PE, Slitt AL, King RS, Aleksunes LM. Regulation of hepatic phase II metabolism in pregnant mice. J Pharmacol Exp Ther 2013; 344:244-52. [PMID: 23055538 PMCID: PMC3533409 DOI: 10.1124/jpet.112.199034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/05/2012] [Indexed: 02/06/2023] Open
Abstract
Phase II enzymes, including Ugts, Sults, and Gsts, are critical for the disposition and detoxification of endo- and xenobiotics. In this study, the mRNA and protein expression of major phase II enzymes, as well as key regulatory transcription factors, were quantified in livers of time-matched pregnant and virgin control C57BL/6 mice on gestation days (GD) 7, 11, 14, 17, and postnatal days (PND) 1, 15, and 30. Compared with virgin controls, the mRNA expression of Ugt1a1, 1a6, 1a9, 2a3, 2b1, 2b34, and 2b35 decreased 40 to 80% in pregnant dams. Protein expression of Ugt1a6 also decreased and corresponded with reduced in vitro glucuronidation of bisphenol A in S9 fractions from livers of pregnant mice. Similar to Ugts levels, Gsta1 and a4 mRNAs were reduced in pregnant dams in mid to late gestation; however no change in protein expression was observed. Conversely, Sult1a1, 2a1/2, and 3a1 mRNAs increased 100 to 500% at various time points in pregnant and lactating mice and corresponded with enhanced in vitro sulfation of acetaminophen in liver S9 fractions. Coinciding with maximal decreases in Ugts as well as increases in Sults, the expression of transcription factors CAR, PPARα, and PXR and their target genes were downregulated, whereas ERα mRNA was upregulated. Collectively, these data demonstrate altered regulation of hepatic phase II metabolism in mice during pregnancy and suggest that CAR, PPARα, PXR, and ERα signaling pathways may be candidate signaling pathways responsible for these changes.
Collapse
Affiliation(s)
- Xia Wen
- Dept. of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Rd. Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
324
|
Urinary ochratoxin A and ochratoxin alpha in pregnant women. Food Chem Toxicol 2012; 50:4487-92. [DOI: 10.1016/j.fct.2012.09.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 08/10/2012] [Accepted: 09/26/2012] [Indexed: 01/22/2023]
|
325
|
Mathad JS, Gupta A. Tuberculosis in pregnant and postpartum women: epidemiology, management, and research gaps. Clin Infect Dis 2012; 55:1532-49. [PMID: 22942202 PMCID: PMC3491857 DOI: 10.1093/cid/cis732] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 08/16/2012] [Indexed: 12/25/2022] Open
Abstract
Tuberculosis is most common during a woman's reproductive years and is a major cause of maternal-child mortality. National guidelines for screening and management vary widely owing to insufficient data. In this article, we review the available data on (1) the global burden of tuberculosis in women of reproductive age; (2) how pregnancy and the postpartum period affect the course of tuberculosis; (3) how to screen and diagnose pregnant and postpartum women for active and latent tuberculosis; (4) the management of active and latent tuberculosis in pregnancy and the postpartum period, including the safety of tuberculosis medications; and (5) infant outcomes. We also include data on HIV/tuberculosis coinfection and drug-resistant tuberculosis. Finally, we highlight research gaps in tuberculosis in pregnant and postpartum women.
Collapse
Affiliation(s)
- Jyoti S Mathad
- Division of Infectious Diseases, Weill Cornell Medical College, New York, New York 10065, USA.
| | | |
Collapse
|
326
|
|
327
|
Berveiller P, Vinot C, Mir O, Broutin S, Deroussent A, Seck A, Camps S, Paci A, Gil S, Tréluyer JM. Comparative transplacental transfer of taxanes using the human perfused cotyledon placental model. Am J Obstet Gynecol 2012; 207:514.e1-7. [PMID: 23174392 DOI: 10.1016/j.ajog.2012.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 09/14/2012] [Accepted: 10/03/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVES The use of taxanes (paclitaxel and docetaxel) in pregnant cancer patients is increasing. We aimed to compare their transplacental transfer using the gold standard human placental perfusion model, to guide drug selection. STUDY DESIGN Term placentas were perfused with paclitaxel or docetaxel and 2 different albumin concentrations. Main transfer parameters such as fetal transfer rate (FTR), clearance index, and placental uptake of taxanes were assessed. RESULTS Twelve placentas were perfused, 6 with paclitaxel and 6 with docetaxel. Mean FTR of paclitaxel decreased significantly from 5.67 ± 0.02% in low albumin conditions to 1.72 ± 0.09% in physiological albumin conditions. Similarly, mean clearance index decreased significantly from 0.22 ± 0.02 to 0.09 ± 0.01. Regarding docetaxel, mean FTR were similar in low albumin and physiological conditions (5.03 ± 0.60% and 4.04 ± 0.22%, respectively) while mean clearance index decreased significantly from 0.18 ± 0.02 to 0.13 ± 0.01. Taxanes accumulation in cotyledon was similar for docetaxel and paclitaxel: 4.54 ± 1.84% vs 3.31 ± 1.88%, respectively. CONCLUSION Transplacental transfer and placental accumulation of paclitaxel and docetaxel were low and similar, especially in physiological conditions of albumin. Further studies are warranted to optimize the selection of a taxane in pregnant cancer patients.
Collapse
|
328
|
Hoglund RM, Adam I, Hanpithakpong W, Ashton M, Lindegardh N, Day NPJ, White NJ, Nosten F, Tarning J. A population pharmacokinetic model of piperaquine in pregnant and non-pregnant women with uncomplicated Plasmodium falciparum malaria in Sudan. Malar J 2012. [PMID: 23190801 PMCID: PMC3551687 DOI: 10.1186/1475-2875-11-398] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background Pregnancy is associated with an increased risk of developing a malaria infection and a higher risk of developing severe malaria. The pharmacokinetic properties of many anti-malarials are also altered during pregnancy, often resulting in a decreased drug exposure. Piperaquine is a promising anti-malarial partner drug used in a fixed-dose combination with dihydroartemisinin. The aim of this study was to investigate the population pharmacokinetics of piperaquine in pregnant and non-pregnant Sudanese women with uncomplicated Plasmodium falciparum malaria. Method Symptomatic patients received a standard dose regimen of the fixed dose oral piperaquine-dihydroartemisinin combination treatment. Densely sampled plasma aliquots were collected and analysed using a previously described LC-MS/MS method. Data from 12 pregnant and 12 non-pregnant women were analysed using nonlinear mixed-effects modelling. A Monte Carlo Mapped Power (MCMP) analysis was conducted based on a previously published study to evaluate the power of detecting covariates in this relatively small study. Results A three-compartment disposition model with a transit-absorption model described the observed data well. Body weight was added as an allometric function on all clearance and volume parameters. A statistically significant decrease in estimated terminal piperaquine half-life in pregnant compared with non-pregnant women was found, but there were no differences in post-hoc estimates of total piperaquine exposure. The MCMP analysis indicated a minimum of 13 pregnant and 13 non-pregnant women were required to identify pregnancy as a covariate on relevant pharmacokinetic parameters (80% power and p=0.05). Pregnancy was, therefore, evaluated as a categorical and continuous covariate (i.e. estimate gestational age) in a full covariate approach. Using this approach pregnancy was not associated with any major change in piperaquine elimination clearance. However, a trend of increasing elimination clearance with increasing gestational age could be seen. Conclusions The population pharmacokinetic properties of piperaquine were well described by a three-compartment disposition model in pregnant and non-pregnant women with uncomplicated malaria. The modelling approach showed no major difference in piperaquine exposure between the two groups and data presented here do not warrant a dose adjustment in pregnancy in this vulnerable population.
Collapse
Affiliation(s)
- Richard M Hoglund
- Unit for Pharmacokinetics and Drug Metabolism, Department of Pharmacology, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
329
|
Antunes NDJ, Cavalli RC, Marques MP, Lanchote VL. Stereoselective Determination of Metoprolol and its Metabolite α-Hydroxymetoprolol in Plasma by LC-MS/MS: Application to Pharmacokinetics during Pregnancy. Chirality 2012; 25:1-7. [DOI: 10.1002/chir.22102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 06/25/2012] [Indexed: 11/05/2022]
Affiliation(s)
- Natalícia De Jesus Antunes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto; São Paulo; Brazil
| | - Ricardo Carvalho Cavalli
- Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto; São Paulo; Brazil
| | - Maria Paula Marques
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto; São Paulo; Brazil
| | - Vera Lucia Lanchote
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto; São Paulo; Brazil
| |
Collapse
|
330
|
Thomas SHL, Yates LM. Prescribing without evidence - pregnancy. Br J Clin Pharmacol 2012; 74:691-7. [PMID: 22607226 PMCID: PMC3477338 DOI: 10.1111/j.1365-2125.2012.04332.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 05/01/2012] [Indexed: 12/01/2022] Open
Abstract
Prescribing of medicines during pregnancy is common, and for some groups of women is essential for maintaining maternal and therefore fetal health. Pregnant women and prescribers are rightly concerned, however, about the potential adverse fetal effects of medicines. These may include fetal death or stillbirth, congenital malformations, developmental impairment, neonatal effects or late carcinogenesis. It is therefore essential that the risks and benefits for mother and fetus are considered carefully before prescribing in pregnancy. This is often challenging because of the paucity of information available. To complicate the issue further, drug pharmacokinetics are commonly altered in pregnancy, potentially affecting optimal dosing as well as interpretation of plasma concentration measurements, with specific information on individual drugs seldom available. Most drugs cross the placenta, especially lipophilic drugs and those with low plasma protein binding. Active membrane transporters also have an important role in enhancing or preventing drug transfer, although this is not yet clearly understood. Animal studies have limited applicability to humans because of species-specific effects, and clinical trials in pregnancy are only undertaken in special circumstances. Prescribers therefore need to rely on observational studies of fetal outcomes following drug exposure in human pregnancy. These often involve limited numbers, and data are also subject to confounding and bias, making interpretation difficult. It therefore remains essential that appropriate mechanisms for systematic data collection, including congenital malformation registries, teratology information services, pregnancy registers and linked population registries, are maintained and enhanced to increase the amount and quality of information available.
Collapse
Affiliation(s)
- Simon H L Thomas
- UK Teratology Information Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, UK.
| | | |
Collapse
|
331
|
A PBPK Model to Predict Disposition of CYP3A-Metabolized Drugs in Pregnant Women: Verification and Discerning the Site of CYP3A Induction. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2012; 1:e3. [PMID: 23835883 PMCID: PMC3606941 DOI: 10.1038/psp.2012.2] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Besides logistical and ethical concerns, evaluation of safety and efficacy of medications in pregnant women is complicated by marked changes in pharmacokinetics (PK) of drugs. For example, CYP3A activity is induced during the third trimester (T3). We explored whether a previously published physiologically based pharmacokinetic (PBPK) model could quantitatively predict PK profiles of CYP3A-metabolized drugs during T3, and discern the site of CYP3A induction (i.e., liver, intestine, or both). The model accounted for gestational age-dependent changes in maternal physiological function and hepatic CYP3A activity. For model verification, mean plasma area under the curve (AUC), peak plasma concentration (Cmax), and trough plasma concentration (Cmin) of midazolam (MDZ), nifedipine (NIF), and indinavir (IDV) were predicted and compared with published studies. The PBPK model successfully predicted MDZ, NIF, and IDV disposition during T3. A sensitivity analysis suggested that CYP3A induction in T3 is most likely hepatic and not intestinal. Our PBPK model is a useful tool to evaluate different dosing regimens during T3 for drugs cleared primarily via CYP3A metabolism.
Collapse
|
332
|
Shea AK, Oberlander TF, Rurak D. Fetal serotonin reuptake inhibitor antidepressant exposure: maternal and fetal factors. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2012; 57:523-9. [PMID: 23073029 DOI: 10.1177/070674371205700902] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Prenatal serotonin reuptake inhibitor exposure is common and neonatal outcomes vary greatly, often leading to confusion about whether to use or even continue antenatal use of these antidepressants. Importantly, some but not all infants are affected, which raises questions about how maternal drug metabolism contributes to fetal drug exposure. To address this key question, our paper reviews the role of key maternal, fetal, and placental pharmacokinetic, metabolic, and genetic factors that affect the extent of fetal drug exposure. Considering the role of these factors may further our understanding of variables that may assist in optimizing maternal psychopharmacotherapy during pregnancy and neonatal outcomes.
Collapse
Affiliation(s)
- Alison K Shea
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
333
|
Uemura K, Shimazutsu K, McClaine RJ, McClaine DJ, Manson RJ, White WD, Benni PB, Reynolds JD. Maternal and preterm fetal sheep responses to dexmedetomidine. Int J Obstet Anesth 2012; 21:339-47. [PMID: 22938943 DOI: 10.1016/j.ijoa.2012.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 06/12/2012] [Accepted: 06/19/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND The α(2) adrenergic receptor agonist dexmedetomidine has some unique pharmacologic properties that could benefit pregnant patients (and their fetuses) when they require sedation, analgesia, and/or anesthesia during pregnancy. The purpose of the present study was to delineate maternal and fetal responses to an intravenous infusion of dexmedetomidine. METHODS This study was conducted on surgically-recovered preterm sheep instrumented for physiologic recording and blood sampling. Maternal and fetal cardiovascular and blood gas parameters and fetal cerebral oxygenation levels were recorded before, during, and after 3h of dexmedetomidine infusion to the ewe at a rate of 1 μg/kg/h. RESULTS Drug infusion produced overt sedation but no apparent respiratory depression as evidenced by stable maternal arterial blood gases; fetal blood gases were also stable. The one blood parameter to change was serum glucose, By the end of the 3-h infusion, glucose increased from 49±10 to 104±33mg/dL in the ewe and from 22±3 to 48±16mg/dL in the fetus; it declined post-drug exposure but remained elevated compared to the starting levels (maternal, 63±12mg/dL, P=0.0497; and fetal, 24±4mg/dL, P=0.012). With respect to cardiovascular status, dexmedetomidine produced a decrease in maternal blood pressure and heart rate with fluctuations in uterine blood flow but had no discernable effect on fetal heart rate or mean arterial pressure. Likewise, maternal drug infusion had no effect on fetal cerebral oxygenation, as measured by in utero near-infrared spectroscopy. CONCLUSIONS Using a clinically-relevant dosing regimen, intravenous infusion of dexmedetomidine produced significant maternal sedation without altering fetal physiologic status. Results from this initial acute assessment support the conduct of further studies to determine if dexmedetomidine has clinical utility for sedation and pain control during pregnancy.
Collapse
Affiliation(s)
- K Uemura
- Department of Anesthesiology, Duke University Medical Centre, Durham, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
334
|
Population pharmacokinetic and pharmacodynamic modeling of amodiaquine and desethylamodiaquine in women with Plasmodium vivax malaria during and after pregnancy. Antimicrob Agents Chemother 2012; 56:5764-73. [PMID: 22926572 DOI: 10.1128/aac.01242-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Amodiaquine is effective for the treatment of Plasmodium vivax malaria, but there is little information on the pharmacokinetic and pharmacodynamic properties of amodiaquine in pregnant women with malaria. This study evaluated the population pharmacokinetic and pharmacodynamic properties of amodiaquine and its biologically active metabolite, desethylamodiaquine, in pregnant women with P. vivax infection and again after delivery. Twenty-seven pregnant women infected with P. vivax malaria on the Thai-Myanmar border were treated with amodiaquine monotherapy (10 mg/kg/day) once daily for 3 days. Nineteen women, with and without P. vivax infections, returned to receive the same amodiaquine dose postpartum. Nonlinear mixed-effects modeling was used to evaluate the population pharmacokinetic and pharmacodynamic properties of amodiaquine and desethylamodiaquine. Amodiaquine plasma concentrations were described accurately by lagged first-order absorption with a two-compartment disposition model followed by a three-compartment disposition of desethylamodiaquine under the assumption of complete in vivo conversion. Body weight was implemented as an allometric function on all clearance and volume parameters. Amodiaquine clearance decreased linearly with age, and absorption lag time was reduced in pregnant patients. Recurrent malaria infections in pregnant women were modeled with a time-to-event model consisting of a constant-hazard function with an inhibitory effect of desethylamodiaquine. Amodiaquine treatment reduced the risk of recurrent infections from 22.2% to 7.4% at day 35. In conclusion, pregnancy did not have a clinically relevant impact on the pharmacokinetic properties of amodiaquine or desethylamodiaquine. No dose adjustments are required in pregnancy.
Collapse
|
335
|
Tarning J, Kloprogge F, Piola P, Dhorda M, Muwanga S, Turyakira E, Nuengchamnong N, Nosten F, Day NPJ, White NJ, Guerin PJ, Lindegardh N. Population pharmacokinetics of Artemether and dihydroartemisinin in pregnant women with uncomplicated Plasmodium falciparum malaria in Uganda. Malar J 2012; 11:293. [PMID: 22913677 PMCID: PMC3502166 DOI: 10.1186/1475-2875-11-293] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/15/2012] [Indexed: 01/06/2023] Open
Abstract
Background Malaria in pregnancy increases the risk of maternal anemia, abortion and low birth weight. Approximately 85.3 million pregnancies occur annually in areas with Plasmodium falciparum transmission. Pregnancy has been reported to alter the pharmacokinetic properties of many anti-malarial drugs. Reduced drug exposure increases the risk of treatment failure. The objective of this study was to evaluate the population pharmacokinetic properties of artemether and its active metabolite dihydroartemisinin in pregnant women with uncomplicated P. falciparum malaria in Uganda. Methods Twenty-one women with uncomplicated P. falciparum malaria in the second and third trimesters of pregnancy received the fixed oral combination of 80 mg artemether and 480 mg lumefantrine twice daily for three days. Artemether and dihydroartemisinin plasma concentrations after the last dose administration were quantified using liquid chromatography coupled to tandem mass-spectroscopy. A simultaneous drug-metabolite population pharmacokinetic model for artemether and dihydroartemisinin was developed taking into account different disposition, absorption, error and covariate models. A separate modeling approach and a non-compartmental analysis (NCA) were also performed to enable a comparison with literature values and different modeling strategies. Results The treatment was well tolerated and there were no cases of recurrent malaria. A flexible absorption model with sequential zero-order and transit-compartment absorption followed by a simultaneous one-compartment disposition model for both artemether and dihydroartemisinin provided the best fit to the data. Artemether and dihydroartemisinin exposure was lower than that reported in non-pregnant populations. An approximately four-fold higher apparent volume of distribution for dihydroartemisinin was obtained by non-compartmental analysis and separate modeling compared to that from simultaneous modeling of the drug and metabolite. This highlights a potential pitfall when analyzing drug/metabolite data with traditional approaches. Conclusion The population pharmacokinetic properties of artemether and dihydroartemisinin, in pregnant women with uncomplicated P. falciparum malaria in Uganda, were described satisfactorily by a simultaneous drug-metabolite model without covariates. Concentrations of artemether and its metabolite dihydroartemisinin were relatively low in pregnancy compared to literature data. However, this should be interpreted with caution considered the limited literature available. Further studies in larger series are urgently needed for this vulnerable group.
Collapse
Affiliation(s)
- Joel Tarning
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
336
|
Fayet-Mello A, Buclin T, Guignard N, Cruchon S, Cavassini M, Grawe C, Gremlich E, Popp KA, Schmid F, Eap CB, Telenti A, Biollaz J, Decosterd LA, Martinez de Tejada B. Free and total plasma levels of lopinavir during pregnancy, at delivery and postpartum: implications for dosage adjustments in pregnant women. Antivir Ther 2012; 18:171-82. [PMID: 22914504 DOI: 10.3851/imp2328] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Physiological changes associated with pregnancy may alter antiretroviral plasma concentrations and might jeopardize prevention of mother-to-child HIV transmission. Lopinavir is one of the protease inhibitors more frequently prescribed during pregnancy in Europe. We described the free and total pharmacokinetics of lopinavir in HIV-infected pregnant and non-pregnant women, and evaluated whether significant alterations in its disposition and protein binding warrant systematic dosage adjustment. METHODS Plasma samples were collected at first, second and third trimester of pregnancy, at delivery, in umbilical cord and postpartum. Lopinavir free and total plasma concentrations were measured by HPLC-MS/MS. Bayesian calculations were used to extrapolate total concentrations to trough (Cmin). RESULTS A total of 42 HIV-positive pregnant women and 37 non-pregnant women on lopinavir/ritonavir were included in the study. Compared to postpartum and control values, total lopinavir Cmin was decreased moderately (31-39%) during pregnancy, and free Cmin minimally, showing significant alteration only at delivery (-35%). However, total and free Cmin remained in all patients above the target concentrations for wild-type virus of 1,000 ng/ml, and above the unbound IC50(WT) of 0.64-0.77 ng/ml of lopinavir, respectively. Lopinavir free fractions remained higher during pregnancy compared to postpartum and controls, and were influenced by α-1-acid-glycoprotein and albumin decrease. Free cord-to-mother ratio (0.43) was 2.7-fold higher than total cord-to-mother ratio (0.16), suggesting higher fetal exposure. CONCLUSIONS The moderate decrease of total lopinavir concentrations during pregnancy is not associated with proportional decrease in free concentrations. Both reach a nadir at delivery, albeit not to an extent that would put treatment-naive women at risk of insufficient exposure to the free, pharmacologically active concentrations of lopinavir. No dosage adjustment is therefore needed during pregnancy as it is unlikely to further enhance treatment efficacy but could potentially increase the risk of maternal and fetal toxicity. Nonetheless, in case of viral resistance in treatment-experienced pregnant women, loss of virological control or questionable adherence, it is justified to consider lopinavir dosage adjustment based on total plasma concentration measurement.
Collapse
Affiliation(s)
- Aurélie Fayet-Mello
- Division of Clinical Pharmacology, University Hospital Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
337
|
Aleksunes LM, Yeager RL, Wen X, Cui JY, Klaassen CD. Repression of hepatobiliary transporters and differential regulation of classic and alternative bile acid pathways in mice during pregnancy. Toxicol Sci 2012; 130:257-68. [PMID: 22903823 DOI: 10.1093/toxsci/kfs248] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
During pregnancy, proper hepatobiliary transport and bile acid synthesis protect the liver from cholestatic injury and regulate the maternal and fetal exposure to bile acids, drugs, and environmental chemicals. The objective of this study was to determine the temporal messenger RNA (mRNA) and protein profiles of uptake and efflux transporters as well as bile acid synthetic and conjugating enzymes in livers from virgin and pregnant mice on gestational days (GD) 7, 11, 14, and 17 and postnatal days (PND) 1, 15, and 30. Compared with virgins, the mRNAs of most transporters were reduced approximately 50% in pregnant dams between GD11 and 17. Western blot and immunofluorescence staining confirmed the downregulation of Mrp3, 6, Bsep, and Ntcp proteins. One day after parturition, the mRNAs of many uptake and efflux hepatobiliary transporters remained low in pregnant mice. By PND30, the mRNAs of all transporters returned to virgin levels. mRNAs of the bile acid synthetic enzymes in the classic pathway, Cyp7a1 and 8b1, increased in pregnant mice, whereas mRNA and protein expression of enzymes in the alternative pathway of bile acid synthesis (Cyp27a1 and 39a1) and conjugating enzymes (Bal and Baat) decreased. Profiles of transporter and bile acid metabolism genes likely result from coordinated downregulation of transcription factor mRNA (CAR, LXR, PXR, PPARα, FXR) in pregnant mice on GD14 and 17. In conclusion, pregnancy caused a global downregulation of most hepatic transporters, which began as early as GD7 for some genes and was maximal by GD14 and 17, and was inversely related to increasing concentrations of circulating 17β-estradiol and progesterone as pregnancy progressed.
Collapse
Affiliation(s)
- Lauren M Aleksunes
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | |
Collapse
|
338
|
|
339
|
A GENS-based approach to cardiovascular pharmacology: impact on metabolism, pharmacokinetics and pharmacodynamics. Ther Deliv 2012; 2:1437-53. [PMID: 22826875 DOI: 10.4155/tde.11.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pharmacological outcomes depend on many factors, with many of them being sexually dimorphic. Thus, physiological gender/sex (GENS) differences can influence pharmacokinetics, pharmacodynamics and, thus, bioavailability and resulting in efficacy of treatment, meaning GENS differences should be an important consideration in therapeutics. In particular, drug response can change according to different hormonal environments. Therefore, GENS-specific differences have a particular clinical relevance in terms of drug delivery, especially for those substances with a narrow therapeutic margin. Since adverse effects are more frequent among women, safety is a key issue. Overall, the status of women, from a pharmacological point of view, is often different and less studied than that of men and deserves particular attention. Further studies focused on women's responses to drugs are necessary in order to make optimal pharmacotherapeutic decisions.
Collapse
|
340
|
|
341
|
Schmidt T, Bertermann R, Rusch GM, Hoffman GM, Dekant W. Biotransformation of 2,3,3,3-tetrafluoropropene (HFO-1234yf) in male, pregnant and non-pregnant female rabbits after single high dose inhalation exposure. Toxicol Appl Pharmacol 2012; 263:32-8. [DOI: 10.1016/j.taap.2012.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/25/2012] [Accepted: 05/26/2012] [Indexed: 10/28/2022]
Affiliation(s)
- Tobias Schmidt
- Institut für Toxikologie, Universität Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany
| | | | | | | | | |
Collapse
|
342
|
Giaginis C, Theocharis S, Tsantili-Kakoulidou A. Current toxicological aspects on drug and chemical transport and metabolism across the human placental barrier. Expert Opin Drug Metab Toxicol 2012; 8:1263-75. [PMID: 22780574 DOI: 10.1517/17425255.2012.699041] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Placenta plays an obligatory role in fetal growth and development by performing a multitude of functions, including embryo implantation, transport of nutrients and elimination of metabolic waste products and endocrine activity. Drugs and chemicals can transfer across the placental barrier from mother to fetus either by passive diffusion mechanisms and/or via a network of active transporters, which may lead to potential fetotoxicity effects. Placenta also expresses a wide variety of enzymes, being capable of metabolizing a large diversity of drugs and chemicals to metabolites of lower or even higher toxicity than parent compounds. AREAS COVERED The present review aims to summarize the current toxicological aspects in the emerging topic of drug transport and metabolism across the human placental barrier. EXPERT OPINION There is an emerging demand for accurate assessment of drug transport and metabolism across the human placental barrier, on the basis of a high throughput screening process in the early stages of drug design, to avoid drug candidates from potential fetotoxicity effects. In this aspect, combined studies, which take into account in vivo and in vitro investigations, as well as the ex vivo perfusion method and the recently developed computer-aided technologies, may significantly contribute to this direction.
Collapse
Affiliation(s)
- Constantinos Giaginis
- University of the Aegean, Department of Food Science and Nutrition, 2 Mitropoliti Ioakeim Street, Myrina, Lemnos 81400, Greece.
| | | | | |
Collapse
|
343
|
Rubinchik-Stern M, Eyal S. Drug Interactions at the Human Placenta: What is the Evidence? Front Pharmacol 2012; 3:126. [PMID: 22787449 PMCID: PMC3391695 DOI: 10.3389/fphar.2012.00126] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/14/2012] [Indexed: 01/16/2023] Open
Abstract
Pregnant women (and their fetuses) are treated with a significant number of prescription and non-prescription medications. Interactions among those drugs may affect their efficacy and toxicity in both mother and fetus. Whereas interactions that result in altered drug concentrations in maternal plasma are detectable, those involving modulation of placental transfer mechanisms are rarely reflected by altered drug concentrations in maternal plasma. Therefore, they are often overlooked. Placental-mediated interactions are possible because the placenta is not only a passive diffusional barrier, but also expresses a variety of influx and efflux transporters and drug-metabolizing enzymes. Current data on placental-mediated drug interactions are limited. In rodents, pharmacological or genetic manipulations of placental transporters significantly affect fetal drug exposure. In contrast, studies in human placentae suggest that the magnitude of such interactions is modest in most cases. Nevertheless, under certain circumstances, such interactions may be of clinical significance. This review describes currently known mechanisms of placental-mediated drug interactions and the potential implications of such interactions in humans. Better understanding of those mechanisms is important for minimizing fetal toxicity from drugs while improving their efficacy when directed to treat the fetus.
Collapse
|
344
|
Koh KH, Jurkovic S, Yang K, Choi SY, Jung JW, Kim KP, Zhang W, Jeong H. Estradiol induces cytochrome P450 2B6 expression at high concentrations: implication in estrogen-mediated gene regulation in pregnancy. Biochem Pharmacol 2012; 84:93-103. [PMID: 22484313 PMCID: PMC3376749 DOI: 10.1016/j.bcp.2012.03.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/21/2012] [Accepted: 03/22/2012] [Indexed: 12/19/2022]
Abstract
Pregnancy alters the rate and extent of drug metabolism, but little is known about the underlying molecular mechanism. We have found that 17β-estradiol (E2) upregulates expression of the major drug-metabolizing enzyme CYP2B6 in primary human hepatocytes. Results from promoter reporter assays in HepG2 cells revealed that E2 activates constitutive androstane receptor (CAR) and enhances promoter activity of CYP2B6, for which high concentrations of E2 reached during pregnancy were required. E2 triggered nuclear translocation of CAR in primary rat hepatocytes that were transiently transfected with human CAR as well as in primary human hepatocytes, further confirming transactivation of CAR by E2. E2-activated estrogen receptor (ER) also enhanced CYP2B6 promoter activity. The DNA-binding domain of ER was not required for the induction of CYP2B6 promoter activity by E2, suggesting involvement of a non-classical mechanism of ER action. Results from deletion and mutation assays as well as electrophorectic mobility shift and supershift assays revealed that two AP-1 binding sites (-1782/-1776 and -1664/-1658 of CYP2B6) are critical for ER-mediated activation of the CYP2B6 promoter by E2. Concurrent activation of both ER and CAR by E2 enhanced CYP2B6 expression in a synergistic manner. Our data demonstrate that at high concentrations reached during pregnancy, E2 activates both CAR and ER that synergistically induce CYP2B6 expression. These results illustrate pharmacological activity of E2 that would likely become prominent during pregnancy.
Collapse
MESH Headings
- Adult
- Aryl Hydrocarbon Hydroxylases/genetics
- Aryl Hydrocarbon Hydroxylases/metabolism
- Binding Sites
- Cell Nucleus/metabolism
- Chromatin Immunoprecipitation
- Chromatography, High Pressure Liquid
- Constitutive Androstane Receptor
- Cytochrome P-450 CYP2B6
- Dose-Response Relationship, Drug
- Electrophoretic Mobility Shift Assay
- Estradiol/blood
- Estradiol/pharmacology
- Estrogens/blood
- Estrogens/pharmacology
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Enzymologic/drug effects
- Genes, Reporter
- Hep G2 Cells
- Hepatocytes/drug effects
- Hepatocytes/enzymology
- Humans
- Luciferases/genetics
- Middle Aged
- Nuclear Proteins/metabolism
- Oligonucleotide Array Sequence Analysis
- Oxidoreductases, N-Demethylating/genetics
- Oxidoreductases, N-Demethylating/metabolism
- Pregnancy/blood
- Pregnancy/genetics
- Promoter Regions, Genetic
- Real-Time Polymerase Chain Reaction
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Tandem Mass Spectrometry
- Transcription Factor AP-1/genetics
- Transcription Factor AP-1/metabolism
- Transcriptional Activation
Collapse
Affiliation(s)
- Kwi Hye Koh
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Steve Jurkovic
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Kyunghee Yang
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Su-Young Choi
- Center for Pharmaceutical Biotechnology, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jin Woo Jung
- Department of Molecular Biotechnology, Institute of Biomedical Science and Technology, Konkuk University, Seoul 143-701, South Korea
| | - Kwang Pyo Kim
- Department of Molecular Biotechnology, Institute of Biomedical Science and Technology, Konkuk University, Seoul 143-701, South Korea
| | - Wei Zhang
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hyunyoung Jeong
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
345
|
Abduljalil K, Furness P, Johnson TN, Rostami-Hodjegan A, Soltani H. Anatomical, Physiological and Metabolic Changes with Gestational Age during Normal Pregnancy. Clin Pharmacokinet 2012; 51:365-96. [DOI: 10.2165/11597440-000000000-00000] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
346
|
The impact of Caesarean delivery on paracetamol and ketorolac pharmacokinetics: a paired analysis. J Biomed Biotechnol 2012; 2012:437639. [PMID: 22675252 PMCID: PMC3363964 DOI: 10.1155/2012/437639] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/20/2012] [Accepted: 03/21/2012] [Indexed: 12/16/2022] Open
Abstract
Pharmacokinetics is a first, but essential step to improve population-tailored postoperative analgesia, also after Caesarean delivery. We therefore aimed to quantify the impact of caesarean delivery on the pharmacokinetics of intravenous (iv) paracetamol (2 g, single dose) and iv ketorolac tromethamine (30 mg, single dose) in 2 cohorts eachof 8 women at caesarean delivery and to compare these findings with postpartum to quantify intrapatient changes. We documented a higher median paracetamol clearance at delivery when compared to 10–15 weeks postpartum (11.7 to 6.4 L/h·m2, P < 0.01), even after correction for weight-related changes. Similar conclusions were drawn for ketorolac: median clearance was higher at delivery with a subsequent decrease (2.03 to 1.43 L/h·m2, P < 0.05) in postpartum (17–23 weeks). These differences likely reflect pregnancy- and caesarean-delivery-related changes in drug disposition. Moreover, postpartum paracetamol clearance was significantly lower when compared to estimates published in healthy young volunteers (6.4 versus 9.6 L/h·m2), while this was not the case for ketorolac (1.43 versus 1.48 L/h·m2). This suggests that postpartum is another specific status in young women that merits focused, compound-specific pharmacokinetic evaluation.
Collapse
|
347
|
Castellano JM, Narayan RL, Vaishnava P, Fuster V. Anticoagulation during pregnancy in patients with a prosthetic heart valve. Nat Rev Cardiol 2012; 9:415-24. [DOI: 10.1038/nrcardio.2012.69] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
348
|
Shintaku K, Hori S, Satoh H, Tsukimori K, Nakano H, Fujii T, Taketani Y, Ohtani H, Sawada Y. Prediction and evaluation of fetal toxicity induced by NSAIDs using transplacental kinetic parameters obtained from human placental perfusion studies. Br J Clin Pharmacol 2012; 73:248-56. [PMID: 21261677 DOI: 10.1111/j.1365-2125.2011.03921.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
AIM The use of nonsteroidal anti-inflammatory drugs (NSAIDs) in full-term pregnant women leads to fetal or neonatal toxicity, such as constriction of the ductus arteriosus (DA) and persistent pulmonary hypertension in the newborn. The aim of this study was to predict quantitatively the fetal toxicity of three NSAIDs (antipyrine, salicylic acid and diclofenac) using the transplacental pharmacokinetic parameters obtained from our previous placental perfusion studies. METHODS Human fetal plasma concentration profile after oral administration of each NSAID to the mother was estimated using the transplacental pharmacokinetic parameters and pharmacokinetic parameters in adult women. The fetal plasma concentration-response relationship for the three NSAIDs was estimated by pharmacokinetic/pharmacodynamic analysis of the results of previous studies investigating the effects of NSAIDs on the ratio of inner diameter of the DA to that of the pulmonary artery (DA/PA) in rats and the plasma concentration profiles of NSAIDs in pregnant rats. RESULTS The risk of constriction of the DA was well predicted by the model. Mean DA/PA ratio after oral administration of diclofenac to the mother was estimated to be 39.0%, whereas both of the corresponding values after oral administration of antipyrine and salicylic acid were estimated to be 5.9%. These results suggest that the fetal risk of diclofenac is higher than those of salicylic acid and antipyrine. CONCLUSIONS This study presents a novel approach to predict quantitatively the fetal risk of NSAIDs administered to the mother. Human placental perfusion study and pharmacokinetic/pharmacodynamic analysis may provide basic data for predicting human fetal toxicity of drugs.
Collapse
Affiliation(s)
- Kyohei Shintaku
- Department of Medico-Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
349
|
Abstract
As women delay childbirth, the incidence of pregnancy-associated breast cancer is expected to increase. A high degree of suspicion is necessary to ensure timely investigation and diagnosis of breast cancer in a pregnant woman with a suspicious breast lump. Surgery as an initial approach is more suitable when diagnosis is made in the first trimester and systemic therapy can be delayed to second trimester. Diagnosis of breast cancer in the later stages of pregnancy can be managed with primary chemotherapy or surgery. A multidisciplinary approach involving medical and surgical oncologists, high-risk obstetric care, genetic counselors, pharmacists, radiation oncologists, and neonatologist is highly recommended for the successful management of cancer and pregnancy.
Collapse
|
350
|
Kulo A, van de Velde M, de Hoon J, Verbesselt R, Devlieger R, Deprest J, Allegaert K. Pharmacokinetics of a loading dose of intravenous paracetamol post caesarean delivery. Int J Obstet Anesth 2012; 21:125-8. [PMID: 22341787 DOI: 10.1016/j.ijoa.2011.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 12/11/2011] [Accepted: 12/13/2011] [Indexed: 12/20/2022]
Abstract
BACKGROUND The postpartum period affects drug disposition, but data of intravenous paracetamol loading dose pharmacokinetics immediately following caesarean delivery have not yet been reported. METHODS Immediately following caesarean delivery, women received a 2-g loading dose of intravenous paracetamol. Plasma samples were collected at 1, 2, 4 and 6 h. Individual pharmacokinetics were calculated assuming a linear one-compartment model with instantaneous input and first-order output. Data were reported using median and range. RESULTS Twenty-eight patients undergoing caesarean delivery were recruited (age 31.5 [20-42] years, weight 79 [57-110] kg, body surface area 1.9 [1.5-2.4]m(2)). Median paracetamol plasma concentrations after 1, 2, 4 and 6 h were 22.5, 15.25, 7.9, and 3.9 mg/L respectively. Paracetamol clearance was 20.3 (11.8-62.8) L/h or 10.9 (7-23.8)L/hm(2), distribution volume 58.3 (42.9-156) L or 0.72 (0.52-1.56) L/kg. CONCLUSION Pharmacokinetics of intravenous paracetamol have been estimated following caesarean delivery. Although limited to a loading dose shortly after surgery, the results are clinically relevant since this is the first description in this patient population. These data provide evidence on which to base further integrated pharmacokinetic/pharmacodynamic studies in peripartum analgesia.
Collapse
Affiliation(s)
- A Kulo
- Center for Clinical Pharmacology, University Hospitals Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|