301
|
Zhou Q, Zhang Y, Lu X, Wang C, Pei X, Lu Y, Cao C, Xu C, Zhang B. Stable overexpression of mutated PTEN in Chinese hamster ovary cells enhances their performance and therapeutic antibody production. Biotechnol J 2021; 16:e2000623. [PMID: 34053183 DOI: 10.1002/biot.202000623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022]
Abstract
Chinese hamster ovary (CHO) cells with a high viable cell density (VCD), resilience to culture stress, and the capacity to continuously express recombinant proteins are highly desirable. Phosphatase and tension homology deleted on chromosome ten (PTEN) functions as a key negative regulator of the PI3K/Akt signaling pathway, mediating cell growth and survival. Its oncogenic mutant endows cells with an enhanced proliferation rate and resistance to death. In this study, the role of oncogenic PTEN C124S or G129E on the performance of CHO-K1 and CHO-IgG cells was investigated. Our results showed that CHO-K1 cells stably expressing PTEN C124S or G129E exhibited enhanced proliferation, reduced apoptosis rate, and increased transient expression of therapeutic antibodies compared to the control cells. Moreover, the stable overexpression of PTEN C124S or G129E endowed CHO-IgG cells with higher cell viability, VCD, and antibody titers (yield increased by approximately 0.77-fold) in the fed-batch culture process and enhanced their performance in response to the addition of sodium lactate. Moreover, the engineering of mutated PTEN in CHO-IgG cells did not alter antibody quality. Collectively, our data suggest that mutated PTEN is a potential target for improving the manufacture of therapeutic antibodies.
Collapse
Affiliation(s)
- Qin Zhou
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, P. R. China
| | - Yujie Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, P. R. China
| | - Xiaoxiang Lu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, P. R. China
| | - Chang Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, P. R. China
| | - Xinxin Pei
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, P. R. China
| | - Yafang Lu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, P. R. China
| | - Cheng Cao
- Beijing Institute of Biotechnology, Beijing, P. R. China
| | - Changzhi Xu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, P. R. China
| | - Buchang Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, P. R. China
| |
Collapse
|
302
|
Mannino GC, Averta C, Fiorentino TV, Succurro E, Spiga R, Mancuso E, Miceli S, Perticone M, Sciacqua A, Andreozzi F, Sesti G. The TRIB3 R84 variant is associated with increased left ventricular mass in a sample of 2426 White individuals. Cardiovasc Diabetol 2021; 20:115. [PMID: 34051802 PMCID: PMC8164223 DOI: 10.1186/s12933-021-01308-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/24/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Prior studies in animal models showed that increased cardiac expression of TRIB3 has a pathogenic role in inducing left ventricular mass (LVM). Whether alterations in TRIB3 expression or function have a pathogenic role in inducing LVM increase also in humans is still unsettled. In order to address this issue, we took advantage of a nonsynonymous TRIB3 Q84R polymorphism (rs2295490), a gain-of-function amino acid substitution impairing insulin signalling, and action in primary human endothelial cells which has been associated with insulin resistance, and early vascular atherosclerosis. METHODS SNP rs2295490 was genotyped in 2426 White adults in whom LVM index (LVMI) was assessed by validated echocardiography-derived measures. RESULTS After adjusting for age and sex, LVMI progressively and significantly increased from 108 to 113, to 125 g/m2 in Q84Q, Q84R, and R84R individuals, respectively (Q84R vs. Q84Q, P = 0.03; R84R vs. Q84Q, P < 0.0001). The association between LVMI and the Q84R and R84R genotype remained significant after adjusting for blood pressure, smoking habit, fasting glucose levels, glucose tolerance status, anti-hypertensive treatments, and lipid-lowering therapy (Q84R vs. Q84Q, P = 0.01; R84R vs. Q84Q, P < 0.0001). CONCLUSIONS We found that the gain-of-function TRIB3 Q84R variant is significantly associated with left ventricular mass in a large sample of White nondiabetic individual of European ancestry.
Collapse
Affiliation(s)
- Gaia Chiara Mannino
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Carolina Averta
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Elena Succurro
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Rosangela Spiga
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Elettra Mancuso
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Sofia Miceli
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Maria Perticone
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy.
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy.
| |
Collapse
|
303
|
Zang M, Guo X, Chen M. The role of microRNA-572 in the proliferation and chemotherapeutic treatment of prostate cancer. J Int Med Res 2021; 49:3000605211014363. [PMID: 34044640 PMCID: PMC8168039 DOI: 10.1177/03000605211014363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/06/2021] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE MicroRNAs (miRNAs) regulate prostate tumorigenesis and progression by involving different molecular pathways. In this study, we examined the role of miR-572 in prostate cancer (PCa). METHODS The proliferation rates of LNCaP and PC-3 PCa cells were studied using MTT assays. Transwell migration and Matrigel invasion assays were performed to evaluate cell migration and invasion, respectively. Protein expression levels were examined using western blotting. Docetaxel-induced apoptosis was evaluated by Caspase-Glo3/7 assays. The putative miR-572 binding site in the phosphatase and tensin homolog (PTEN) 3' untranslated region (3' UTR) was assessed with dual-luciferase reporter assays. Additionally, miR-572 expression levels in human PCa tissues were examined by qRT-PCR assays. RESULTS Upregulation of miR-572 promoted proliferation, migration, and invasion of PCa cells. Overexpression of miR-572 decreased sensitivity of PCa cells to docetaxel treatment by reducing docetaxel-induced apoptosis. MiR-572 can regulate migration and invasion in PCa cells. Furthermore, miR-572 could regulate expression of PTEN and p-AKT in PCa cells by directly binding to the PTEN 3' UTR. MiR-572 expression levels were increased in human PCa tissues and associated with PCa stage. CONCLUSIONS miR-572 displayed essential roles in PCa tumor growth and its expression level may be used to predict docetaxel treatment in these tumors.
Collapse
Affiliation(s)
- Mingcui Zang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Xun Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Manqiu Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun City, Jilin Province, China
| |
Collapse
|
304
|
Role of miRNA-19a in Cancer Diagnosis and Poor Prognosis. Int J Mol Sci 2021; 22:ijms22094697. [PMID: 33946718 PMCID: PMC8125123 DOI: 10.3390/ijms22094697] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/30/2022] Open
Abstract
Cancer is a multifactorial disease that affects millions of people every year and is one of the most common causes of death in the world. The high mortality rate is very often linked to late diagnosis; in fact, nowadays there are a lack of efficient and specific markers for the early diagnosis and prognosis of cancer. In recent years, the discovery of new diagnostic markers, including microRNAs (miRNAs), has been an important turning point for cancer research. miRNAs are small, endogenous, non-coding RNAs that regulate gene expression. Compelling evidence has showed that many miRNAs are aberrantly expressed in human carcinomas and can act with either tumor-promoting or tumor-suppressing functions. miR-19a is one of the most investigated miRNAs, whose dysregulated expression is involved in different types of tumors and has been potentially associated with the prognosis of cancer patients. The aim of this review is to investigate the role of miR-19a in cancer, highlighting its involvement in cell proliferation, cell growth, cell death, tissue invasion and migration, as well as in angiogenesis. On these bases, miR-19a could prove to be truly useful as a potential diagnostic, prognostic, and therapeutic marker.
Collapse
|
305
|
Zamudio-Martinez E, Herrera-Campos AB, Muñoz A, Rodríguez-Vargas JM, Oliver FJ. Tankyrases as modulators of pro-tumoral functions: molecular insights and therapeutic opportunities. J Exp Clin Cancer Res 2021; 40:144. [PMID: 33910596 PMCID: PMC8080362 DOI: 10.1186/s13046-021-01950-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022] Open
Abstract
Tankyrase 1 (TNKS1) and tankyrase 2 (TNKS2) are two homologous proteins that are gaining increasing importance due to their implication in multiple pathways and diseases such as cancer. TNKS1/2 interact with a large variety of substrates through the ankyrin (ANK) domain, which recognizes a sequence present in all the substrates of tankyrase, called Tankyrase Binding Motif (TBM). One of the main functions of tankyrases is the regulation of protein stability through the process of PARylation-dependent ubiquitination (PARdU). Nonetheless, there are other functions less studied that are also essential in order to understand the role of tankyrases in many pathways. In this review, we concentrate in different tankyrase substrates and we analyze in depth the biological consequences derived of their interaction with TNKS1/2. We also examine the concept of both canonical and non-canonical TBMs and finally, we focus on the information about the role of TNKS1/2 in different tumor context, along with the benefits and limitations of the current TNKS inhibitors targeting the catalytic PARP domain and the novel strategies to develop inhibitors against the ankyrin domain. Available data indicates the need for further deepening in the knowledge of tankyrases to elucidate and improve the current view of the role of these PARP family members and get inhibitors with a better therapeutic and safety profile.
Collapse
Affiliation(s)
- Esteban Zamudio-Martinez
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, CIBERONC, 18016, Granada, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, 28029, Madrid, Spain
| | | | - Alberto Muñoz
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, 28029, Madrid, Spain
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - José Manuel Rodríguez-Vargas
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, CIBERONC, 18016, Granada, Spain.
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, 28029, Madrid, Spain.
| | - F Javier Oliver
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, CIBERONC, 18016, Granada, Spain.
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, 28029, Madrid, Spain.
| |
Collapse
|
306
|
Satuman S, Sari DS, Rachmi E, Tanggo EH, Notobroto HB, Sudiana K, Mubarika S, Rantam FA, Soemarno S, Warsito EB. The Effect of Acute and Chronic Infection-Induced by AvrA Protein of Salmonella typhimurium on Radical Oxygen Species, Phosphatase and Tensin Homolog, and Cellular Homolog Expression During the Development of Colon Cancer. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.4945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AIM. The aim of the study was to analyze Avra's effector in inducing cancer stem cells into colon cancer through increased radical oxygen species (ROS), PTEN expression and c-myC as markers of tumorigenesis in mice model of the colorectal cancer infected with S. typhimurium.
METHODS. The study used balb c mice induced once a week by 10 mg / mL / day of AOM for 1-week and 12-week treatment period. Isolation of S. typhimurium specific protein had been carried out before being induced to mice in intraperitoneal manner in the amount of 40 mL / 50 mL. Propagation of S. typhimurium ATCC bacteria with MacConkey media and isolation of S. typhimurium protein were administered. The sample was divided into 4 groups, positive control group (group that was only exposed to azoxymethane (AOM), group exposed to both AOM and AvrA (AOM + AvrA), and group exposed to both AOM and S. typhimurium (AOM + S. typhimurium). Blood flow cytometry and soft tissue sampling for IHC and data analysis were then conducted.
RESULTS. The results of the study showed that there was an increase in the expression of ROS, PTEN and c-Myc. Increased ROS expression was found in the 12-week treatment period group and it was known that such increase was due to AOM + S. typhimurium (45.78 ± 2.93) induction compared to AOM, AOM + AvrA and control (p <0.05). PTEN and C-myc expression increased at the 12th week compared to the negative control.
CONCLUSION. Inflammation is the triggering factor for colorectal cancer, in which the expression of ROS, PTEN and c-Myc as the colorectal cancer markers increases in both the acute and chronic phases.
Collapse
|
307
|
Ginete C, Serrasqueiro B, Silva-Nunes J, Veiga L, Brito M. Identification of Genetic Variants in 65 Obesity Related Genes in a Cohort of Portuguese Obese Individuals. Genes (Basel) 2021; 12:603. [PMID: 33921825 PMCID: PMC8073382 DOI: 10.3390/genes12040603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Obesity is a major public health problem, which has a strong genetic component that interplays with environmental factors. Several genes are known to be implicated in the regulation of body weight. The identification of alleles that can be associated with obesity is a key element to control this pandemic. On the basis of a Portuguese population, 65 obesity-related genes are sequenced using Next-Generation Sequencing (NGS) in 72 individuals with obesity, in order to identify variants associated with monogenic obesity and potential risk factors. A total of 429 variants are identified, 129 of which had already been associated with the phenotype. Comparing our results with the European and Global frequencies, from 1000 Genomes project, 23 potential risk variants are identified. Six new variants are discovered in heterozygous carriers: four missense (genes ALMS1-NM_015120.4:c.5552C>T; SORCS1-NM_001013031.2:c.1072A>G and NM_001013031.2: c.2491A>C; TMEM67-NM_153704.5:c.158A>G) and two synonymous (genes BBS1-NM_024649.4:c.1437C>T; TMEM67-NM_153704.5:c.2583T>C). Functional studies should be performed to validate these new findings and evaluate their penetrance and pathogenicity. Regardless of no cases of monogenic obesity being identified, this kind of investigational study is important when we are still trying to understand the aetiology and pathophysiology of obesity. This will allow the identification of rare variants associated with obesity and the study of their prevalence in specific populational groups.
Collapse
Affiliation(s)
- Catarina Ginete
- H&TRC Health and Technology Research Center, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (C.G.); (B.S.); (J.S.-N.); (L.V.)
| | - Bernardo Serrasqueiro
- H&TRC Health and Technology Research Center, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (C.G.); (B.S.); (J.S.-N.); (L.V.)
| | - José Silva-Nunes
- H&TRC Health and Technology Research Center, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (C.G.); (B.S.); (J.S.-N.); (L.V.)
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário de Lisboa Central, 1150-199 Lisbon, Portugal
- NOVA Medical School/Faculdade de Ciências Médicas, New University of Lisbon, 1169-056 Lisbon, Portugal
| | - Luísa Veiga
- H&TRC Health and Technology Research Center, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (C.G.); (B.S.); (J.S.-N.); (L.V.)
| | - Miguel Brito
- H&TRC Health and Technology Research Center, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (C.G.); (B.S.); (J.S.-N.); (L.V.)
| |
Collapse
|
308
|
Cao H, Yang M, Yang Y, Fang J, Cui Y. PBK/TOPK promotes chemoresistance to oxaliplatin in hepatocellular carcinoma cells by regulating PTEN. Acta Biochim Biophys Sin (Shanghai) 2021; 53:584-592. [PMID: 33772548 DOI: 10.1093/abbs/gmab028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Indexed: 11/14/2022] Open
Abstract
Oxaliplatin (OXA) resistance limits the efficiency of treatment for hepatocellular carcinoma (HCC). Studies have shown that the PDZ-binding kinase (PBK) plays important roles in tumors. However, the role of PBK in HCC is still a problem. In this study, we explored whether PBK is involved in the chemoresistance to OXA in HCC. Expressions of PBK in six HCC cell lines and one human hepatocytes line were determined by real-time quantitative PCR and western blot analysis. SNU-182 and HepG2 cells were chosen to induce OXA resistance. PBK was silenced or overexpressed in OXA-resistant and sensitive cell lines. Then, cell proliferation, migration, and invasion were measured by cholecystokinin-8 assay and Transwell assay, respectively. The Cancer Genome Atlas dataset showed that PBK is highly expressed in HCC and signifies poor prognosis to patient with HCC. Results showed that expression of PBK in HCC cells was significantly higher than that in THLE2 cells, and it was further increased in OXA-resistant HCC cells. Silencing of PBK promoted the sensitivity of drug-resistant HCC cells to OXA. Overexpression of PBK relieved the apoptosis induced by OXA and promoted the migration and invasion of OXA-sensitive HCC cells. Thus, this study revealed that high PBK expression is correlated with OXA resistance in HCC cells, which may provide a promising therapeutic target for treating HCC.
Collapse
Affiliation(s)
- Hongmin Cao
- Oncology Department, SSL Central Hospital of Dongguan City, The Third People’s Hospital of Dongguan City, Dongguan 523326, China
| | - Mei Yang
- Oncology Department, SSL Central Hospital of Dongguan City, The Third People’s Hospital of Dongguan City, Dongguan 523326, China
| | - Yufeng Yang
- Department of Pathology, SSL Central Hospital of Dongguan City, The Third People’s Hospital of Dongguan City, Dongguan 523326, China
| | - Jiayan Fang
- Oncology Department, SSL Central Hospital of Dongguan City, The Third People’s Hospital of Dongguan City, Dongguan 523326, China
| | - Yejia Cui
- Department of Clinical Laboratory, SSL Central Hospital of Dongguan City, The Third People’s Hospital of Dongguan City, Dongguan 523326, China
| |
Collapse
|
309
|
Azizi MIHN, Othman I, Naidu R. The Role of MicroRNAs in Lung Cancer Metabolism. Cancers (Basel) 2021; 13:cancers13071716. [PMID: 33916349 PMCID: PMC8038585 DOI: 10.3390/cancers13071716] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are short-strand non-coding RNAs that are responsible for post-transcriptional regulation of many biological processes. Their differential expression is important in supporting tumorigenesis by causing dysregulation in normal biological functions including cell proliferation, apoptosis, metastasis and invasion and cellular metabolism. Cellular metabolic processes are a tightly regulated mechanism. However, cancer cells have adapted features to circumvent these regulations, recognizing metabolic reprogramming as an important hallmark of cancer. The miRNA expression profile may differ between localized lung cancers, advanced lung cancers and solid tumors, which lead to a varying extent of metabolic deregulation. Emerging evidence has shown the relationship between the differential expression of miRNAs with lung cancer metabolic reprogramming in perpetuating tumorigenesis. This review provides an insight into the role of different miRNAs in lung cancer metabolic reprogramming by targeting key enzymes, transporter proteins or regulatory components alongside metabolic signaling pathways. These discussions would allow a deeper understanding of the importance of miRNAs in tumor progression therefore providing new avenues for diagnostic, therapeutic and disease management applications.
Collapse
|
310
|
Monteiro R, Hallikeri K, Sudhakaran A. PTEN and α-SMA Expression and Diagnostic Role in Oral Submucous Fibrosis and Oral Squamous Cell Carcinoma with Concomitant Oral Submucous Fibrosis. EJOURNAL OF ORAL MAXILLOFACIAL RESEARCH 2021; 12:e3. [PMID: 33959238 PMCID: PMC8085678 DOI: 10.5037/jomr.2021.12103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/04/2021] [Indexed: 01/21/2023]
Abstract
Objectives The diagnostic role and correlation between phosphatase and tensin homologue and alpha-smooth muscle actin in oral submucous fibrosis and oral squamous cell carcinoma with concomitant oral submucous fibrosis was analysed by this case control study. The mechanism by which phosphatase and tensin homologue controls myofibroblast expression was also evaluated. Material and Methods Overall, 10 normal mucosa, 30 oral submucous fibrosis (OSF) and 30 oral squamous cell carcinoma (OSCC) with OSF were stained immunohistochemically with phosphatase and tensin homologue (PTEN) and alpha-smooth muscle actin (α-SMA). Percentage positivity, pattern of expression was statistically compared using Pearson’s Chi-square and Fischer exact tests. The correlation between markers was analysed using Spearman correlation. Results OSF and OSCC affected males predominantly with majority below 40 years and above 40 years of age respectively. Percentage of PTEN positive cells was statistically significant with gender (P = 0.024) and α-SMA distribution of pattern showed a significant correlation with habits (P = 0.018). A significant decrease in nuclear PTEN positivity (P < 0.001) and a gradual increase in α-SMA cytoplasmic expression was noted from NM to OSF and OSCC. A statistically significant weak inverse correlation existed between PTEN and α-SMA. Conclusions A reduced phosphatase and tensin homologue expression in oral submucous fibrosis makes it more prone for malignant transformation. An increase in stromal desmoplasia modifies differentiation, invasive and proliferative capacity of tumour cells. As phosphatase and tensin homologue functions through P-Akt pathway, P-Akt with phosphatase and tensin homologue could be a therapeutic target.
Collapse
Affiliation(s)
- Roshni Monteiro
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, SDM College of Dental Sciences and Hospital, DharwadIndia
| | - Kaveri Hallikeri
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, SDM College of Dental Sciences and Hospital, DharwadIndia
| | - Archana Sudhakaran
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, SDM College of Dental Sciences and Hospital, DharwadIndia
| |
Collapse
|
311
|
Amani J, Gorjizadeh N, Younesi S, Najafi M, Ashrafi AM, Irian S, Gorjizadeh N, Azizian K. Cyclin-dependent kinase inhibitors (CDKIs) and the DNA damage response: The link between signaling pathways and cancer. DNA Repair (Amst) 2021; 102:103103. [PMID: 33812232 DOI: 10.1016/j.dnarep.2021.103103] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/16/2021] [Indexed: 02/08/2023]
Abstract
At the cellular level, DNA repair mechanisms are crucial in maintaining both genomic integrity and stability. DNA damage appears to be a central culprit in tumor onset and progression. Cyclin-dependent kinases (CDKs) and their regulatory partners coordinate the cell cycle progression. Aberrant CDK activity has been linked to a variety of cancers through deregulation of cell-cycle control. Besides DNA damaging agents and chromosome instability (CIN), disruptions in the levels of cell cycle regulators including cyclin-dependent kinase inhibitors (CDKIs) would result in unscheduled proliferation and cell division. The INK4 and Cip/Kip (CDK interacting protein/kinase inhibitor protein) family of CDKI proteins are involved in cell cycle regulation, transcription regulation, apoptosis, and cell migration. A thorough understanding of how these CDKIs regulate the DNA damage response through multiple signaling pathways may provide an opportunity to design efficient treatment strategies to inhibit carcinogenesis.
Collapse
Affiliation(s)
- Jafar Amani
- Applied Microbiology Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nassim Gorjizadeh
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Simin Younesi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| | - Mojtaba Najafi
- Department of Genetics, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Golestan, Iran
| | - Arash M Ashrafi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Saeed Irian
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Negar Gorjizadeh
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Khalil Azizian
- Department of Clinical Microbiology, Sirjan School of Medical Sciences, Sirjan, Iran.
| |
Collapse
|
312
|
Li X, Zhang W. Expression of PD-L1 in EBV-associated malignancies. Int Immunopharmacol 2021; 95:107553. [PMID: 33765613 DOI: 10.1016/j.intimp.2021.107553] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/22/2021] [Accepted: 02/28/2021] [Indexed: 02/06/2023]
Abstract
Epstein-Barr virus infection is closely related to the occurrence and development of a variety of malignant tumors. Tumor immunotherapy has been combined with modern biological high-tech technology, and has become the fourth cancer treatment mode after surgery, chemotherapy and radiotherapy. In 2013, immunotherapy was named the first of ten scientific breakthroughs by science. It aims to control and destroy tumor cells by stimulating and enhancing autoimmune function. In recent years, immune checkpoint inhibitors (ICIs) targeting PD-L1 have become a research hotspot in the field of cancer. Recent studies have shown that EBV infection can upregulate PD-L1 through complex mechanisms. Further understanding of these mechanisms and prevention of hyperprogressive disease (HPD) can make PD-L1 immune checkpoint inhibitors an effective way of immunotherapy for EBV related malignant tumors.
Collapse
Affiliation(s)
- Xiaoxu Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China; Clinical Laboratory, The Second People's Hospital of Wuhu City, Wuhu 241001, Anhui, People's Republic of China
| | - Wenling Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
313
|
Wang N, Wang C, Zhao H, He Y, Lan B, Sun L, Gao Y. The MAMs Structure and Its Role in Cell Death. Cells 2021; 10:cells10030657. [PMID: 33809551 PMCID: PMC7999768 DOI: 10.3390/cells10030657] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
The maintenance of cellular homeostasis involves the participation of multiple organelles. These organelles are associated in space and time, and either cooperate or antagonize each other with regards to cell function. Crosstalk between organelles has become a significant topic in research over recent decades. We believe that signal transduction between organelles, especially the endoplasmic reticulum (ER) and mitochondria, is a factor that can influence the cell fate. As the cellular center for protein folding and modification, the endoplasmic reticulum can influence a range of physiological processes by regulating the quantity and quality of proteins. Mitochondria, as the cellular "energy factory," are also involved in cell death processes. Some researchers regard the ER as the sensor of cellular stress and the mitochondria as an important actuator of the stress response. The scientific community now believe that bidirectional communication between the ER and the mitochondria can influence cell death. Recent studies revealed that the death signals can shuttle between the two organelles. Mitochondria-associated membranes (MAMs) play a vital role in the complex crosstalk between the ER and mitochondria. MAMs are known to play an important role in lipid synthesis, the regulation of Ca2+ homeostasis, the coordination of ER-mitochondrial function, and the transduction of death signals between the ER and the mitochondria. Clarifying the structure and function of MAMs will provide new concepts for studying the pathological mechanisms associated with neurodegenerative diseases, aging, and cancers. Here, we review the recent studies of the structure and function of MAMs and its roles involved in cell death, especially in apoptosis.
Collapse
Affiliation(s)
- Nan Wang
- China Japan Union Hospital, Jilin University, Changchun 130031, China; (N.W.); (C.W.); (H.Z.); (Y.H.); (B.L.)
| | - Chong Wang
- China Japan Union Hospital, Jilin University, Changchun 130031, China; (N.W.); (C.W.); (H.Z.); (Y.H.); (B.L.)
| | - Hongyang Zhao
- China Japan Union Hospital, Jilin University, Changchun 130031, China; (N.W.); (C.W.); (H.Z.); (Y.H.); (B.L.)
| | - Yichun He
- China Japan Union Hospital, Jilin University, Changchun 130031, China; (N.W.); (C.W.); (H.Z.); (Y.H.); (B.L.)
| | - Beiwu Lan
- China Japan Union Hospital, Jilin University, Changchun 130031, China; (N.W.); (C.W.); (H.Z.); (Y.H.); (B.L.)
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China
- Correspondence: (L.S.); (Y.G.)
| | - Yufei Gao
- China Japan Union Hospital, Jilin University, Changchun 130031, China; (N.W.); (C.W.); (H.Z.); (Y.H.); (B.L.)
- Correspondence: (L.S.); (Y.G.)
| |
Collapse
|
314
|
Zhu P, Chen S, Zhang W, Duan G, Jin Y. Essential Role of Non-Coding RNAs in Enterovirus Infection: From Basic Mechanisms to Clinical Prospects. Int J Mol Sci 2021; 22:2904. [PMID: 33809362 PMCID: PMC7999384 DOI: 10.3390/ijms22062904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/31/2022] Open
Abstract
Enteroviruses (EVs) are common RNA viruses that can cause various types of human diseases and conditions such as hand, foot, and mouth disease (HFMD), myocarditis, meningitis, sepsis, and respiratory disorders. Although EV infections in most patients are generally mild and self-limiting, a small number of young children can develop serious complications such as encephalitis, acute flaccid paralysis, myocarditis, and cardiorespiratory failure, resulting in fatalities. Established evidence has suggested that certain non-coding RNAs (ncRNAs) such as microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs) are involved in the occurrence and progression of many human diseases. Recently, the involvement of ncRNAs in the course of EV infection has been reported. Herein, the authors focus on recent advances in the understanding of ncRNAs in EV infection from basic viral pathogenesis to clinical prospects, providing a reference basis and new ideas for disease prevention and research directions.
Collapse
Affiliation(s)
- Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
| | - Weiguo Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
| |
Collapse
|
315
|
Yang X, Ding W, Qian X, Jiang P, Chen Q, Zhang X, Lu Y, Wu J, Sun F, Pan Z, Li X, Pan W. Schistosoma japonicum Infection Leads to the Reprogramming of Glucose and Lipid Metabolism in the Colon of Mice. Front Vet Sci 2021; 8:645807. [PMID: 33791356 PMCID: PMC8006365 DOI: 10.3389/fvets.2021.645807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/17/2021] [Indexed: 01/21/2023] Open
Abstract
The deposition of Schistosoma japonicum (S. japonicum) eggs commonly induces inflammation, fibrosis, hyperplasia, ulceration, and polyposis in the colon, which poses a serious threat to human health. However, the underlying mechanism is largely neglected. Recently, the disorder of glucose and lipid metabolism was reported to participate in the liver fibrosis induced by the parasite, which provides a novel clue for studying the underlying mechanism of the intestinal pathology of the disease. This study focused on the metabolic reprogramming profiles of glucose and lipid in the colon of mice infected by S. japonicum. We found that S. japonicum infection shortened the colonic length, impaired intestinal integrity, induced egg-granuloma formation, and increased colonic inflammation. The expression of key enzymes involved in the pathways regulating glucose and lipid metabolism was upregulated in the colon of infected mice. Conversely, phosphatase and tensin homolog deleted on chromosome ten (PTEN) and its downstream signaling targets were significantly inhibited after infection. In line with these results, in vitro stimulation with soluble egg antigens (SEA) downregulated the expression of PTEN in CT-26 cells and induced metabolic alterations similar to that observed under in vivo results. Moreover, PTEN over-expression prevented the reprogramming of glucose and lipid metabolism induced by SEA in CT-26 cells. Overall, the present study showed that S. japonicum infection induces the reprogramming of glucose and lipid metabolism in the colon of mice, and PTEN may play a vital role in mediating this metabolic reprogramming. These findings provide a novel insight into the pathogenicity of S. japonicum in hosts.
Collapse
Affiliation(s)
- Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Weimin Ding
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China.,School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Xinyu Qian
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China.,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China
| | - Pengfei Jiang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Qingqing Chen
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China.,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China
| | - Xin Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China.,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China
| | - Yang Lu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China.,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China
| | - Jiacheng Wu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China.,The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, China
| | - Fenfen Sun
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Zhihua Pan
- National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Xiangyang Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
316
|
Wei Y, Wang T, Zhang N, Ma Y, Shi S, Zhang R, Zheng X, Zhao L. LncRNA TRHDE-AS1 inhibit the scar fibroblasts proliferation via miR-181a-5p/PTEN axis. J Mol Histol 2021; 52:419-426. [PMID: 33675502 PMCID: PMC8012339 DOI: 10.1007/s10735-021-09968-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 02/23/2021] [Indexed: 11/25/2022]
Abstract
Hypertrophic scar (HS), a fibroproliferative disorder caused by abnormal wound healing after skin injury, which is characterized by excessive deposition of extracellular matrix and invasive growth of fibroblasts. Recent studies have shown that some non-coding RNA implicated the formation of HS, but the mechanism remains unclear. In this study, we found that lncRNA TRHDE-AS1 was downregulated in HS tissues and HSFs, and the level of lncRNA TRHDE-AS1 negatively correlated with the level of miR-181a-5p in HS tissue and HSFs. Overexpressed lncRNA TRHDE-AS1 significantly suppressed miR-181a-5p level, while promoted HSFs apoptosis and inhibited HSFs proliferation. Further study shown that PTEN was a direct target of miR-181a-5p, and lncRNA TRHDE-AS1 served as a molecular sponge for miR-181a-5p to regulate the expression of PTEN. Overexpression of PTEN could eliminate lncRNA TRHDE-AS1-mediated proliferation suppression of HSFs. In conclusion, our study suggested that lncRNA TRHDE-AS1/miR-181a-5p/PTEN axis plays an important role in promoting hypertrophic scar formation, which may be effectively used as a therapeutic target for hypertrophic scar treatment.
Collapse
Affiliation(s)
- Yanping Wei
- Department of Dermatology, People's Hospital of Jiaozuo City, Jiaozuo, 454002, China.
| | - Tingting Wang
- Xinxiang Medical University, Xinxiang, 453003, China
| | | | - Yunyun Ma
- Henan Medical College, Zhengzhou, 451191, China
| | - Siji Shi
- Department of Dermatology, People's Hospital of Jiaozuo City, Jiaozuo, 454002, China
| | - Ruxing Zhang
- Department of Neurology, The Fifth People's Hospital of Jiaozuo, Jiaozuo, 454000, China
| | - Xianzhao Zheng
- Department of Neurology, People's Hospital of Jiaozuo City, Jiaozuo, 454002, China
| | - Lindong Zhao
- Department of Dermatology, People's Hospital of Jiaozuo City, Jiaozuo, 454002, China
| |
Collapse
|
317
|
Kim GW, Siddiqui A. The role of N6-methyladenosine modification in the life cycle and disease pathogenesis of hepatitis B and C viruses. Exp Mol Med 2021; 53:339-345. [PMID: 33742132 PMCID: PMC8080661 DOI: 10.1038/s12276-021-00581-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent modification of mammalian cellular RNAs. m6A methylation is linked to epigenetic regulation of several aspects of gene expression, including RNA stability, splicing, nuclear export, RNA folding, and translational activity. m6A modification is reversibly catalyzed by methyltransferases (m6A writers) and demethylases (m6A erasers), and the dynamics of m6A-modified RNA are regulated by m6A-binding proteins (m6A readers). Recently, several studies have shown that m6A methylation sites have been identified in hepatitis B virus (HBV) transcripts and the hepatitis C virus (HCV) RNA genome. Here, we review the role of m6A modification in HBV/HCV replication and its contribution to liver disease pathogenesis. A better understanding of the functions of m6A methylation in the life cycles of HBV and HCV is required to establish the role of these modifications in liver diseases associated with these viral infections.
Collapse
Affiliation(s)
- Geon-Woo Kim
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Aleem Siddiqui
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
318
|
Juarez-Flores A, Zamudio GS, José MV. Novel gene signatures for stage classification of the squamous cell carcinoma of the lung. Sci Rep 2021; 11:4835. [PMID: 33649335 PMCID: PMC7921642 DOI: 10.1038/s41598-021-83668-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
The squamous cell carcinoma of the lung (SCLC) is one of the most common types of lung cancer. As GLOBOCAN reported in 2018, lung cancer was the first cause of death and new cases by cancer worldwide. Typically, diagnosis is made in the later stages of the disease with few treatment options available. The goal of this work was to find some key components underlying each stage of the disease, to help in the classification of tumor samples, and to increase the available options for experimental assays and molecular targets that could be used in treatment development. We employed two approaches. The first was based in the classic method of differential gene expression analysis, network analysis, and a novel concept known as network gatekeepers. The second approach was using machine learning algorithms. From our combined approach, we identified two sets of genes that could function as a signature to identify each stage of the cancer pathology. We also arrived at a network of 55 nodes, which according to their biological functions, they can be regarded as drivers in this cancer. Although biological experiments are necessary for their validation, we proposed that all these genes could be used for cancer development treatments.
Collapse
Affiliation(s)
- Angel Juarez-Flores
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Ciudad Universitaria, Mexico
| | - Gabriel S Zamudio
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Ciudad Universitaria, Mexico
| | - Marco V José
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Ciudad Universitaria, Mexico.
| |
Collapse
|
319
|
Baghery Saghchy Khorasani A, Pourbagheri-Sigaroodi A, Pirsalehi A, Safaroghli-Azar A, Zali MR, Bashash D. The PI3K/Akt/mTOR signaling pathway in gastric cancer; from oncogenic variations to the possibilities for pharmacologic interventions. Eur J Pharmacol 2021; 898:173983. [PMID: 33647255 DOI: 10.1016/j.ejphar.2021.173983] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 12/24/2022]
Abstract
Genetic and epigenetic alterations have been under concentrated investigations for many years in order to unearth the molecules regulating human cancer pathogenesis. However, the identification of a wide range of dysregulated genes and their protein products has raised a question regarding how the results of this large collection of alterations could converge into a formation of one malignancy. The answer may be found in the signaling cascades that regulate the survival and metabolism of the cells. Aberrancies of each participant molecule of such cascades may well result in augmented viability and unlimited proliferation of cancer cells. Among various signaling pathways, the phosphatidylinositol-3-kinase (PI3K) axis has been shown to be activated in about one-third of human cancers. One of the malignancies that is mostly affected by this axis is gastric cancer (GC), one of the most fatal cancers worldwide. In the present review, we aimed to illustrate the significance of the PI3K/Akt/mTOR axis in the pathogenesis of GC and also provided a wide perspective about the application of the inhibitors of this axis in the therapeutic strategies of this malignancy.
Collapse
Affiliation(s)
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Pirsalehi
- Department of Internal Medicine, School of Medicine, Ayatollah Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ava Safaroghli-Azar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
320
|
Kim GW, Imam H, Khan M, Mir SA, Kim SJ, Yoon SK, Hur W, Siddiqui A. HBV-Induced Increased N6 Methyladenosine Modification of PTEN RNA Affects Innate Immunity and Contributes to HCC. Hepatology 2021; 73:533-547. [PMID: 32394474 PMCID: PMC7655655 DOI: 10.1002/hep.31313] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Epitranscriptomic modification of RNA has emerged as the most prevalent form of regulation of gene expression that affects development, differentiation, metabolism, viral infections, and most notably cancer. We have previously shown that hepatitis B virus (HBV) transcripts are modified by N6 methyladenosine (m6 A) addition. HBV also affects m6 A modification of several host RNAs, including phosphatase and tensin homolog (PTEN), a well-known tumor suppressor. PTEN plays a critical role in antiviral innate immunity and the development of hepatocellular carcinoma (HCC). Reports have shown that PTEN controlled interferon regulatory factor 3 (IRF-3) nuclear localization by negative phosphorylation of IRF-3 at Ser97, and PTEN reduced carcinogenesis by inhibiting the phosphatidylinositol-3-kinase (PI3K)/AKT pathway. APPROACH AND RESULTS Here, we show that HBV significantly increases the m6 A modification of PTEN RNA, which contributes to its instability with a corresponding decrease in PTEN protein levels. This is reversed in cells in which the expression of m6 A methyltransferases is silenced. PTEN expression directly increases activated IRF-3 nuclear import and subsequent interferon synthesis. In the absence of PTEN, IRF-3 dephosphorylation at the Ser97 site is decreased and interferon synthesis is crippled. In chronic HBV patient biopsy samples, m6 A-modified PTEN mRNA levels were uniformly up-regulated with a concomitant decrease of PTEN mRNA levels. HBV gene expression also activated the PI3K/AKT pathway by regulating PTEN mRNA stability in HCC cell lines. CONCLUSIONS The m6 A epitranscriptomic regulation of PTEN by HBV affects innate immunity by inhibiting IRF-3 nuclear import and the development of HCC by activating the PI3K/AKT pathway. Our studies collectively provide new insights into the mechanisms of HBV-directed immune evasion and HBV-associated hepatocarcinogenesis through m6 A modification of the host PTEN mRNAs.
Collapse
Affiliation(s)
- Geon-Woo Kim
- Division of Infectious DiseasesDepartment of MedicineUniversity of California, San DiegoLa JollaCA
| | - Hasan Imam
- Division of Infectious DiseasesDepartment of MedicineUniversity of California, San DiegoLa JollaCA
| | - Mohsin Khan
- Division of Infectious DiseasesDepartment of MedicineUniversity of California, San DiegoLa JollaCA
| | - Saiful Anam Mir
- Division of Infectious DiseasesDepartment of MedicineUniversity of California, San DiegoLa JollaCA
| | - Seong-Jun Kim
- Center for Convergent Research of Emerging Virus InfectionKorea Research Institute of Chemical TechnologyDaejeonSouth Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research CenterCollege of MedicineThe Catholic University of KoreaSeoulSouth Korea.,Division of HepatologyDepartment of Internal MedicineSeoul St. Mary's HospitalCollege of MedicineThe Catholic University of KoreaSeoulSouth Korea
| | - Wonhee Hur
- The Catholic University Liver Research CenterCollege of MedicineThe Catholic University of KoreaSeoulSouth Korea
| | - Aleem Siddiqui
- Division of Infectious DiseasesDepartment of MedicineUniversity of California, San DiegoLa JollaCA
| |
Collapse
|
321
|
Hensley AP, McAlinden A. The role of microRNAs in bone development. Bone 2021; 143:115760. [PMID: 33220505 PMCID: PMC8019264 DOI: 10.1016/j.bone.2020.115760] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
Epigenetic regulation is critical for proper bone development. Evidence from a large body of published literature informs us that microRNAs (miRNAs) are important epigenetic factors that control many aspects of bone development, homeostasis, and repair processes. These small non-coding RNAs function at the post-transcriptional level to suppress expression of specific target genes. Many target genes may be affected by one miRNA resulting in alteration in cellular pathways and networks. Therefore, changes in levels or activity of a specific miRNA (e.g. via genetic mutations, disease scenarios, or by over-expression or inhibition strategies in vitro or in vivo) can lead to substantial changes in cell processes including proliferation, metabolism, apoptosis and differentiation. In this review, Section 1 briefly covers general background information on processes that control bone development as well as the biogenesis and function of miRNAs. In Section 2, we discuss the importance of miRNAs in skeletal development based on findings from in vivo mouse models and human clinical reports. Section 3 focuses on describing more recent data from the last three years related to miRNA regulation of osteoblast differentiation in vitro. Some of these studies also involve utilization of an in vivo rodent model to study the effects of miRNA modulation in scenarios of osteoporosis, bone repair or ectopic bone formation. In Section 4, we provide some recent information from studies analyzing the potential of miRNA-mediated crosstalk in bone and how exosomes containing miRNAs from one bone cell may affect the differentiation or function of another bone cell type. We then conclude by summarizing where the field currently stands with respect to miRNA-mediated regulation of osteogenesis and how information gained from developmental processes can be instructive in identifying potential therapeutic miRNA targets for the treatment of certain bone conditions.
Collapse
Affiliation(s)
- Austin P Hensley
- Department of Biomedical Engineering, Washington University School of Medicine, St Louis, MO, United States of America
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, United States of America; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, United States of America; Shriners Hospital for Children - St Louis, St Louis, MO, United States of America.
| |
Collapse
|
322
|
Wisnu W, Alwi I, Nafrialdi N, Harimurti K, Pemayun TGD, Jusman SWA, Santoso DIS, Harahap AR, Suwarto S, Subekti I. The Differential Effects of Propylthiouracil and Methimazole as Graves' Disease Treatment on Vascular Atherosclerosis Markers: A Randomized Clinical Trial. Front Endocrinol (Lausanne) 2021; 12:796194. [PMID: 34987480 PMCID: PMC8721229 DOI: 10.3389/fendo.2021.796194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Hyperthyroidism is related to vascular atherosclerosis. Propylthiouracil (PTU) and methimazole, other than their antithyroid effects, may have different mechanisms in preventing atherogenesis in Graves' disease. OBJECTIVE This study aimed to investigate the effect of antithyroid drugs on markers of vascular atherosclerosis in Graves' hyperthyroidism. METHODS This study was a single-blind, randomized clinical trial conducted on 36 patients with Graves' disease in Cipto Mangunkusumo General Hospital, Jakarta, Indonesia, from June 2019 until July 2020. Graves' disease was diagnosed from clinical manifestation of hyperthyroidism with diffuse goiter and then confirmed by thyroid stimulation hormone (TSH), free T4 (fT4), and TSH-receptor antibody (TRAb) measurements. Participants were randomly assigned to either a PTU or a methimazole treatment group and followed up for 3 months. Markers of vascular atherosclerosis were represented by adhesion molecules [intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin], carotid artery stiffness [pulse wave velocity (PWV)], and thickness [carotid intima media thickness (cIMT)]. RESULTS By the end of the study, 24 participants reached euthyroid condition (13 from the PTU group and 11 from the methimazole group). After 3 months of follow-up, in the PTU group, we noticed an improvement of ICAM-1 [pretreatment: 204.1 (61.3) vs. posttreatment: 141.6 (58.4) ng/ml; p = 0.001], VCAM-1 [837 (707-977) vs. 510 (402-630) ng/ml; p < 0.001] and E-selectin [32.1 (24.1-42.7) vs. 28.2 (21.6-36.8) ng/ml; p = 0.045] in the PTU group. In the methimazole group, only VCAM-1 improvement [725 (565-904) vs. 472 (367-590); p = 0.001] was observed. Meanwhile, we found no significant changes in PWV or cIMT in either group. CONCLUSION Antithyroid treatment in Graves' disease leads to improvement in adhesion molecules, with a lesser effect on methimazole, whereas there were no significant changes in PWV or cIMT. PTU may have a better mechanism compared with methimazole in terms of improving adhesion molecules.
Collapse
Affiliation(s)
- Wismandari Wisnu
- Division of Endocrine, Metabolism and Diabetes, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Idrus Alwi
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Nafrialdi Nafrialdi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Kuntjoro Harimurti
- Division of Geriatrics, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Tjokorda Gede D. Pemayun
- Division of Endocrine, Metabolism, and Diabetes, Department of Internal Medicine, Faculty of Medicine, Diponegoro University, Dr. Kariadi General Hospital, Semarang, Indonesia
| | - Sri Widia A. Jusman
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Dewi Irawati S. Santoso
- Department of Medical Physiology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Suhendro Suwarto
- Division of Tropical and Infectious Disease, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Imam Subekti
- Division of Endocrine, Metabolism and Diabetes, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
- *Correspondence: Imam Subekti,
| |
Collapse
|
323
|
Ferreira RG, Narvaez LEM, Espíndola KMM, Rosario ACRS, Lima WGN, Monteiro MC. Can Nimesulide Nanoparticles Be a Therapeutic Strategy for the Inhibition of the KRAS/PTEN Signaling Pathway in Pancreatic Cancer? Front Oncol 2021; 11:594917. [PMID: 34354940 PMCID: PMC8329661 DOI: 10.3389/fonc.2021.594917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is an aggressive, devastating disease due to its invasiveness, rapid progression, and resistance to surgical, pharmacological, chemotherapy, and radiotherapy treatments. The disease develops from PanINs lesions that progress through different stages. KRAS mutations are frequently observed in these lesions, accompanied by inactivation of PTEN, hyperactivation of the PI3K/AKT pathway, and chronic inflammation with overexpression of COX-2. Nimesulide is a selective COX-2 inhibitor that has shown anticancer effects in neoplastic pancreatic cells. This drug works by increasing the levels of PTEN expression and inhibiting proliferation and apoptosis. However, there is a need to improve nimesulide through its encapsulation by solid lipid nanoparticles to overcome problems related to the hepatotoxicity and bioavailability of the drug.
Collapse
Affiliation(s)
- Roseane Guimarães Ferreira
- Neuroscience and Cell Biology Post-Graduation Program, Laboratory of In Vitro Tests, Immunology and Microbiology-LABEIM, Biological Sciences Institute, Federal University of Pará/UFPA, Belém, Brazil
| | - Luis Eduardo Mosquera Narvaez
- Pharmaceutical Science Post-Graduation Program, Laboratory of In Vitro Tests, Immunology and Microbiology-LABEIM, Health Science Institute, Federal University of Pará/UFPA, Belém, Brazil
| | - Kaio Murilo Monteiro Espíndola
- Pharmaceutical Science Post-Graduation Program, Laboratory of In Vitro Tests, Immunology and Microbiology-LABEIM, Health Science Institute, Federal University of Pará/UFPA, Belém, Brazil
| | - Amanda Caroline R. S. Rosario
- Pharmaceutical Science Post-Graduation Program, Laboratory of In Vitro Tests, Immunology and Microbiology-LABEIM, Health Science Institute, Federal University of Pará/UFPA, Belém, Brazil
| | - Wenddy Graziela N. Lima
- Pharmaceutical Science Post-Graduation Program, Laboratory of In Vitro Tests, Immunology and Microbiology-LABEIM, Health Science Institute, Federal University of Pará/UFPA, Belém, Brazil
| | - Marta Chagas Monteiro
- Neuroscience and Cell Biology Post-Graduation Program, Laboratory of In Vitro Tests, Immunology and Microbiology-LABEIM, Biological Sciences Institute, Federal University of Pará/UFPA, Belém, Brazil
- Pharmaceutical Science Post-Graduation Program, Laboratory of In Vitro Tests, Immunology and Microbiology-LABEIM, Health Science Institute, Federal University of Pará/UFPA, Belém, Brazil
- *Correspondence: Marta Chagas Monteiro,
| |
Collapse
|
324
|
She X, Lin Y, Liang R, Liu Z, Gao X, Ye J. RNA-Binding Motif Protein 38 as a Potential Biomarker and Therapeutic Target in Cancer. Onco Targets Ther 2020; 13:13225-13236. [PMID: 33380811 PMCID: PMC7769143 DOI: 10.2147/ott.s278755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
RNA-binding proteins (RBPs) act as a key factor in gene regulation by governing RNA metabolism. They contribute to the expression and functions of most RNAs by binding to them and forming complexes. RNA-binding motif protein 38 (RBM38), a member of the RBP family, alters the stability and translation of targeted mRNAs to affect various biological processes, such as cell proliferation, cell cycle arrest, and myogenic differentiation. RBM38 contains a highly conserved RNA recognition motif (RRM) consisting of two subunits, RNP1 and RNP2, which specifically bind to RNAs. Recent studies have revealed that RBM38 regulates the mRNA stability of several tumor-related genes, such as p53, mdm2, p63, p73, p21, and c-Myc, by binding to their 3′ untranslated regions (3′ UTRs); thus, RBM38 modulates targeted gene expression and affects the biological processes of tumors. In addition, abnormal RBM38 expression in some malignant tumors and its correlation with prognosis have been documented in many studies, indicating its value for potential clinical applications. In this review, we present an overview of RBM38, specifically highlighting its relationship with tumor manifestation and development. A brief overview of the potential use of RBM38 in cancer therapy is also included to provide ideas for further research on RBM38.
Collapse
Affiliation(s)
- Xiaomin She
- Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Yan Lin
- Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Rong Liang
- Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Ziyu Liu
- Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Xing Gao
- Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Jiazhou Ye
- Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| |
Collapse
|
325
|
Wu Z, Luo J, Huang T, Yi R, Ding S, Xie C, Xu A, Zeng Y, Wang X, Song Y, Shi X, Long H. MiR-4310 induced by SP1 targets PTEN to promote glioma progression. Cancer Cell Int 2020; 20:567. [PMID: 33327965 PMCID: PMC7745362 DOI: 10.1186/s12935-020-01650-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Background miRNAs have been reported to be involved in multiple biological processes of gliomas. Here, we aimed to analyze miR-4310 and its correlation genes involved in the progression of human glioma. Methods miR-4310 expression levels were examined in glioma and non-tumor brain (NB) tissues. The molecular mechanisms of miR-4310 expression and its effects on cell proliferation, migration, and invasion were explored using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide, Transwell chamber, Boyden chamber, and western blot analyses, as well as its effect on tumorigenesis was explored in vivo in nude mice. The relationships between miR-4310, SP1, phosphatase, and tensin homolog (PTEN) were explored using chromatin immunoprecipitation, agarose gel electrophoresis, electrophoresis mobility shift, and dual-luciferase reporter gene assays. Results miR-4310 expression was upregulated in glioma tissues compared to that in NB tissues. Overexpressed miR-4310 promoted glioma cell proliferation, migration, and invasion in vitro, as well as tumorigenesis in vivo. The inhibition of miR-4310 expression was sufficient to reverse these results. Mechanistic analyses revealed that miR-4310 promoted glioma progression through the PI3K/AKT pathway by targeting PTEN. Additionally, SP1 induced the expression of miR-4310 by binding to its promoter region. Conclusion miR-4310 promotes the progression of glioma by targeting PTEN and activating the PI3K/AKT pathway; meanwhile, the expression of miR-4310 was induced by SP1.
Collapse
Affiliation(s)
- Zhiyong Wu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China.,Department of Neurosurgery, Shenzhen Longgang Central Hospital (The Second Affiliated Hospital of the Chinese University of Hong Kong ((Shenzhen)), Shenzhen, 518116, Guangdong, People's Republic of China
| | - Jie Luo
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Tengyue Huang
- Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, 341000, Ganzhou, Jiangxi, People's Republic of China
| | - Renhui Yi
- Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, 341000, Ganzhou, Jiangxi, People's Republic of China
| | - Shengfeng Ding
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Cheng Xie
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - An'qi Xu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Yu Zeng
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072, Shanghai, People's Republic of China
| | - Xizhao Wang
- Department of Neurosurgery, The First Hospital of Quanzhou Affiliated to Fujian Medical University, 362000, Quanzhou, Fujian, People's Republic of China
| | - Ye Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Xiaofeng Shi
- Department of Neurosurgery, Shenzhen Longgang Central Hospital (The Second Affiliated Hospital of the Chinese University of Hong Kong ((Shenzhen)), Shenzhen, 518116, Guangdong, People's Republic of China.
| | - Hao Long
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
326
|
Hamadneh L, Abuarqoub R, Alhusban A, Bahader M. Upregulation of PI3K/AKT/PTEN pathway is correlated with glucose and glutamine metabolic dysfunction during tamoxifen resistance development in MCF-7 cells. Sci Rep 2020; 10:21933. [PMID: 33318536 PMCID: PMC7736849 DOI: 10.1038/s41598-020-78833-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Tamoxifen resistance is emerging as a big challenge in endocrine therapy of luminal A breast cancer patients. In this study, we aimed to determine the molecular changes of PI3K/AKT/PTEN signaling pathway during tamoxifen-resistance development using gradually increased doses of tamoxifen in one model, while fixing tamoxifen treatment dose at 35 μM for several times in the second model. An upregulation of AKT/PI3K genes was noticed at 30 μM tamoxifen concentration in cells treated with a gradual increase of tamoxifen doses. In the second model, significant upregulation of AKT1 was seen in cells treated with 35 μM tamoxifen for three times. All genes studied showed a significant increase in expression in resistant cells treated with 50 µM and 35 µM six times tamoxifen. These genes’ upregulation was accompanied by PTEN and GSK3 ß genes’ down-regulation, and it was in correlation to the changes in the metabolic rate of glucose in tamoxifen-resistant models. A significant increase in glucose consumption rate from culture media was observed in tamoxifen resistant cells with the highest consumption rate reported in the first day of culturing. Increased glucose consumption rates were also correlated with GLUL significant gene expression and non-significant change in c-MYC gene expression that may lead to increased endogenous glutamine synthesis. As a result, several molecular and metabolic changes precede acquired tamoxifen resistance could be used as resistance biomarkers or targets to reverse tamoxifen resistance.
Collapse
Affiliation(s)
- Lama Hamadneh
- Faculty of Pharmacy, AL-Zaytoonah University of Jordan, Amman, 11733, Jordan.
| | - Rama Abuarqoub
- Faculty of Pharmacy, AL-Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Ala Alhusban
- Faculty of Pharmacy, AL-Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Mohamad Bahader
- Faculty of Pharmacy, AL-Zaytoonah University of Jordan, Amman, 11733, Jordan
| |
Collapse
|
327
|
Fiuji H, Nassiri M. Gene expression profiling of chromosome 10 in PTEN-knockout (−/−) human neural and mesenchymal stem cells: A system biology study. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
328
|
Borić Škaro D, Filipović N, Mizdrak M, Glavina Durdov M, Šolić I, Kosović I, Lozić M, Racetin A, Jurić M, Ljutić D, Vukojević K. SATB1 and PTEN expression patterns in biopsy proven kidney diseases. Acta Histochem 2020; 122:151631. [PMID: 33152540 DOI: 10.1016/j.acthis.2020.151631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/24/2020] [Accepted: 09/17/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND In present study we investigated expression pattern of the special tissue markers. SATB1 and PTEN to evaluate possible influence in pathophysiology and development of various biopsy proven kidney diseases. METHODS The 32 kidney biopsy samples were analysed using light, immunofluorescence and electron microscopy. There were 19 samples in proliferative and 13 samples in non- proliferative group of renal diseases. As control group, 9 specimens of healthy kidney tissue taken after surgery of kidney tumour were used. SATB1 and PTEN markers were used for immunofluorescence staining. Analysed tissue structures were glomeruli, proximal convoluted tubules (PCT) and distal convoluted tubules (DCT). The number of SATB1 and PTEN cells were calculated and the data compared between kidney structures, disease groups and control specimens. RESULTS Both markers were positive in all investigated kidney structures, with expression generally, more prominent in tubular epithelial cells than in glomeruli, with the highest staining intensity rate as well as highest rate of both markers in DCT of proliferative diseases group (SATB1 64.5 %, PTEN 52 %). There was statistically significant difference in SATB1 expression in all tissue structures of interest in proliferative as well as non- proliferative group compared to control group (p < 0.01-p < 0.0001). PTEN expression were found significantly decreased in PCT of both disease groups in regard to control (PTEN 25.3 % and 23.8 % vs. 41.1 % (p < 0.01 and p < 0.001 respectively). CONCLUSION SATB1 and PTEN could be considered as markers influenced in kidney disease development. SATB1/PTEN expression should be further investigated as useful markers of kidney disease activity as well as potential therapeutic target.
Collapse
|
329
|
Daniel-García L, Vergara P, Navarrete A, González RO, Segovia J. Simultaneous Treatment with Soluble Forms of GAS1 and PTEN Reduces Invasiveness and Induces Death of Pancreatic Cancer Cells. Onco Targets Ther 2020; 13:11769-11779. [PMID: 33235464 PMCID: PMC7680188 DOI: 10.2147/ott.s260671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/06/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction Pancreatic carcinoma cells exhibit a pronounced tendency to invade along and through intra and extrapancreatic nerves, even during the early stages of the disease, a phenomenon called perineural invasion (PNI). Thus, we sought to determine the effects of the simultaneous expression of soluble forms of GAS1 and PTEN (tGAS1 and PTEN-L) inhibiting tumor growth and invasiveness. Materials and Methods We employed a lentiviral system to simultaneously express tGAS1 and PTEN-L; in order to determine the effects of the treatments, cell viability and apoptosis as well as the expression of the transgenes by ELISA and intracellular signaling as ascertained by the activation of AKT and ERK1/2 were measured; cell invasiveness was determined using a Boyden chamber assay; and the effects of the treatment were measured in vivo in a mouse model. Results In the present work, we show that the combined treatment with tGAS1 and PTEN-L inhibits the growth of pancreatic cancer cells, by reducing the activities of both AKT and ERK 1/2, decreases cell invasiveness, and restrains tumor growth in a mouse model. Conclusion The combined administration of tGAS1 and PTEN-L could be a valuable adjunct therapy for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Lizbeth Daniel-García
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City 07300, Mexico
| | - Paula Vergara
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City 07300, Mexico
| | - Araceli Navarrete
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City 07300, Mexico
| | - Rosa O González
- Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapala, Mexico City 09340, México
| | - Jose Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City 07300, Mexico
| |
Collapse
|
330
|
Saik OV, Klimontov VV. Bioinformatic Reconstruction and Analysis of Gene Networks Related to Glucose Variability in Diabetes and Its Complications. Int J Mol Sci 2020; 21:ijms21228691. [PMID: 33217980 PMCID: PMC7698756 DOI: 10.3390/ijms21228691] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Glucose variability (GV) has been recognized recently as a promoter of complications and therapeutic targets in diabetes. The aim of this study was to reconstruct and analyze gene networks related to GV in diabetes and its complications. For network analysis, we used the ANDSystem that provides automatic network reconstruction and analysis based on text mining. The network of GV consisted of 37 genes/proteins associated with both hyperglycemia and hypoglycemia. Cardiovascular system, pancreas, adipose and muscle tissues, gastrointestinal tract, and kidney were recognized as the loci with the highest expression of GV-related genes. According to Gene Ontology enrichment analysis, these genes are associated with insulin secretion, glucose metabolism, glycogen biosynthesis, gluconeogenesis, MAPK and JAK-STAT cascades, protein kinase B signaling, cell proliferation, nitric oxide biosynthesis, etc. GV-related genes were found to occupy central positions in the networks of diabetes complications (cardiovascular disease, diabetic nephropathy, retinopathy, and neuropathy) and were associated with response to hypoxia. Gene prioritization analysis identified new gene candidates (THBS1, FN1, HSP90AA1, EGFR, MAPK1, STAT3, TP53, EGF, GSK3B, and PTEN) potentially involved in GV. The results expand the understanding of the molecular mechanisms of the GV phenomenon in diabetes and provide molecular markers and therapeutic targets for future research.
Collapse
Affiliation(s)
- Olga V. Saik
- Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia;
- Laboratory of Computer Proteomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090 Novosibirsk, Russia
- Correspondence:
| | - Vadim V. Klimontov
- Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia;
| |
Collapse
|
331
|
Götting I, Jendrossek V, Matschke J. A New Twist in Protein Kinase B/Akt Signaling: Role of Altered Cancer Cell Metabolism in Akt-Mediated Therapy Resistance. Int J Mol Sci 2020; 21:ijms21228563. [PMID: 33202866 PMCID: PMC7697684 DOI: 10.3390/ijms21228563] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer resistance to chemotherapy, radiotherapy and molecular-targeted agents is a major obstacle to successful cancer therapy. Herein, aberrant activation of the phosphatidyl-inositol-3-kinase (PI3K)/protein kinase B (Akt) pathway is one of the most frequently deregulated pathways in cancer cells and has been associated with multiple aspects of therapy resistance. These include, for example, survival under stress conditions, apoptosis resistance, activation of the cellular response to DNA damage and repair of radiation-induced or chemotherapy-induced DNA damage, particularly DNA double strand breaks (DSB). One further important, yet not much investigated aspect of Akt-dependent signaling is the regulation of cell metabolism. In fact, many Akt target proteins are part of or involved in the regulation of metabolic pathways. Furthermore, recent studies revealed the importance of certain metabolites for protection against therapy-induced cell stress and the repair of therapy-induced DNA damage. Thus far, the likely interaction between deregulated activation of Akt, altered cancer metabolism and therapy resistance is not yet well understood. The present review describes the documented interactions between Akt, its target proteins and cancer cell metabolism, focusing on antioxidant defense and DSB repair. Furthermore, the review highlights potential connections between deregulated Akt, cancer cell metabolism and therapy resistance of cancer cells through altered DSB repair and discusses potential resulting therapeutic implications.
Collapse
|
332
|
The emerging nature of Ubiquitin-specific protease 7 (USP7): a new target in cancer therapy. Drug Discov Today 2020; 26:490-502. [PMID: 33157193 DOI: 10.1016/j.drudis.2020.10.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022]
Abstract
Human ubiquitin-specific protease 7 (USP7) is a deubiquitinating enzyme that removes the ubiquitin (Ub) protein and spares substrates from degradation. Given its regulation of proteins involved in several cellular processes, abnormal expression and activity of USP7 are associated with several types of disease, including cancer. In this review, we summarize the developments in our understanding of USP7 over the past 5 years, focusing on its role in related cancers. Furthermore, we discuss clinical studies of USP7, including in vivo and pharmacological studies, as well as the development of USP7 inhibitors. A comprehensive understanding of USP7 will expand our knowledge of the structure and function of USP7-mediated signaling and shed light on drug discovery for different diseases in which USP7 is implicated.
Collapse
|
333
|
Leung JY, Chia K, Ong DST, Taneja R. Interweaving Tumor Heterogeneity into the Cancer Epigenetic/Metabolic Axis. Antioxid Redox Signal 2020; 33:946-965. [PMID: 31841357 DOI: 10.1089/ars.2019.7942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Significance: The epigenomic/metabolic landscape in cancer has been studied extensively in the past decade and forms the basis of various drug targets. Yet, cancer treatment remains a challenge, with clinical trials exhibiting limited efficacy and high relapse rates. Patients respond differently to therapy, which is fundamentally attributed to tumor heterogeneity, both across and within tumors. This review focuses on the interactions between the heterogeneous tumor microenvironment (TME) and the epigenomic/metabolic axis in cancer, as well as the emerging technologies under development to aid heterogeneity studies. Recent Advances: Interlinks between epigenetics and metabolism in cancer have been reported. Emerging studies have unveiled interactions between the TME and cancer cells that play a critical role in regulating epigenetics and reprogramming cancer metabolism, suggesting a three-way cross talk. Critical Issues: This cross talk accentuates the multiplex nature of cancer, and the importance of considering tumor heterogeneity in various epigenomic/metabolic cancer studies. Future Directions: With the advancement in single-cell profiling, it may be possible to identify cancer subclones and their unique vulnerabilities to develop a multimodal therapy. Drugs targeting the TME are currently being studied, and a better understanding of the TME in regulating cancer epigenetics and metabolism may hold the key to identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Jia Yu Leung
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kimberly Chia
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Derrick Sek Tong Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Molecular Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
334
|
Xu Y, Xue D, Bankhead A, Neamati N. Why All the Fuss about Oxidative Phosphorylation (OXPHOS)? J Med Chem 2020; 63:14276-14307. [PMID: 33103432 DOI: 10.1021/acs.jmedchem.0c01013] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Certain subtypes of cancer cells require oxidative phosphorylation (OXPHOS) to survive. Increased OXPHOS dependency is frequently a hallmark of cancer stem cells and cells resistant to chemotherapy and targeted therapies. Suppressing the OXPHOS function might also influence the tumor microenvironment by alleviating hypoxia and improving the antitumor immune response. Thus, targeting OXPHOS is a promising strategy to treat various cancers. A growing arsenal of therapeutic agents is under development to inhibit this biological process. This Perspective provides an overview of the structure and function of OXPHOS complexes, their biological functions in cancer, relevant research tools and models, as well as the limitations of OXPHOS as drug targets. We also focus on the current development status of OXPHOS inhibitors and potential therapeutic strategies to strengthen their clinical applications.
Collapse
Affiliation(s)
- Yibin Xu
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ding Xue
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Armand Bankhead
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Department of Biostatistics, University of Michigan, School of Public Health, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
335
|
Regulation of basal expression of hepatic PEPCK and G6Pase by AKT2. Biochem J 2020; 477:1021-1031. [PMID: 32096546 DOI: 10.1042/bcj20190570] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 01/11/2023]
Abstract
Hepatic glucose metabolism signaling downstream of insulin can diverge to multiple pathways including AKT. Genetic studies suggest that AKT is necessary for insulin to suppress gluconeogenesis. To specifically address the role of AKT2, the dominant liver isoform of AKT in the regulation of gluconeogenesis genes, we generated hepatocytes lacking AKT2 (Akt2-/-). We found that, in the absence of insulin signal, AKT2 is required for maintaining the basal level expression of phosphoenolpyruvate carboxyl kinase (PEPCK) and to a lesser extent G6Pase, two key rate-limiting enzymes for gluconeogenesis that support glucose excursion due to pyruvate loading. We further showed that this function of AKT2 is mediated by the phosphorylation of cyclic AMP response element binding (CREB). Phosphorylation of CREB by AKT2 is needed for CREB to induce the expression of PEPCK and likely represents a priming event for unstimulated cells to poise to receive glucagon and other signals. The inhibition of gluconeogenesis by insulin is also dependent on the reduced FOXO1 transcriptional activity at the promoter of PEPCK. When insulin signal is absent, this activity appears to be inhibited by AKT2 in manner that is independent of its phosphorylation by AKT. Together, this action of AKT2 on FOXO1 and CREB to maintain basal gluconeogenesis activity may provide fine-tuning for insulin and glucocorticoid/glucagon to regulate gluconeogenesis in a timely manner to meet metabolic needs.
Collapse
|
336
|
Smith SL, Pitt AR, Spickett CM. Approaches to Investigating the Protein Interactome of PTEN. J Proteome Res 2020; 20:60-77. [PMID: 33074689 DOI: 10.1021/acs.jproteome.0c00570] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The tumor suppressor phosphatase and tensin homologue (PTEN) is a redox-sensitive dual specificity phosphatase with an essential role in the negative regulation of the PI3K-AKT signaling pathway, affecting metabolic and cell survival processes. PTEN is commonly mutated in cancer, and dysregulation in the metabolism of PIP3 is implicated in other diseases such as diabetes. PTEN interactors are responsible for some functional roles of PTEN beyond the negative regulation of the PI3K pathway and are thus of great importance in cell biology. Both high-data content proteomics-based approaches and low-data content PPI approaches have been used to investigate the interactome of PTEN and elucidate further functions of PTEN. While low-data content approaches rely on co-immunoprecipitation and Western blotting, and as such require previously generated hypotheses, high-data content approaches such as affinity pull-down proteomic assays or the yeast 2-hybrid system are hypothesis generating. This review provides an overview of the PTEN interactome, including redox effects, and critically appraises the methods and results of high-data content investigations into the global interactome of PTEN. The biological significance of findings from recent studies is discussed and illustrates the breadth of cellular functions of PTEN that can be discovered by these approaches.
Collapse
Affiliation(s)
- Sarah L Smith
- School of Life and Health Sciences, Aston Triangle, Aston University, B4 7ET, Birmingham, U.K
| | - Andrew R Pitt
- School of Life and Health Sciences, Aston Triangle, Aston University, B4 7ET, Birmingham, U.K.,Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, U.K
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston Triangle, Aston University, B4 7ET, Birmingham, U.K
| |
Collapse
|
337
|
Bai D, Wu Y, Deol P, Nobumori Y, Zhou Q, Sladek FM, Liu X. Palmitic acid negatively regulates tumor suppressor PTEN through T366 phosphorylation and protein degradation. Cancer Lett 2020; 496:127-133. [PMID: 33039560 DOI: 10.1016/j.canlet.2020.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/19/2020] [Accepted: 10/06/2020] [Indexed: 01/22/2023]
Abstract
Chronic elevated free fatty (FFA) levels are linked to metabolic disorders and tumorigenesis. However, the molecular mechanism by which FFAs induce cancer remains poorly understood. Here, we show that the tumor suppressor PTEN protein levels were decreased in high fat diet (HFD) fed mice. As palmitic acid (PA, C16:0) showed a significant increase in the HFD fed mice, we further investigated its role in PTEN down regulation. Our studies revealed that exposure of cells to high doses of PA induced mTOR/S6K-mediated phosphorylation of PTEN at T366. The phosphorylation subsequently enhanced the interaction of PTEN with the E3 ubiquitin ligase WW domain-containing protein 2 (WWP2), which promoted polyubiquitination of PTEN and protein degradation. Consistent with PTEN degradation, exposure of cells to increased concentrations of PA also promoted PTEN-mediated AKT activation and cell proliferation. Significantly, a higher level of S6K activation, PTEN T366 phosphorylation, and AKT activation were also observed in the livers of the HFD fed mice. These results provide a molecular mechanism by which a HFD and elevated PA regulate cell proliferation through inactivation of tumor suppressor PTEN.
Collapse
Affiliation(s)
- Dongmei Bai
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Yong Wu
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Poonamjot Deol
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Yumiko Nobumori
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Qi Zhou
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Frances M Sladek
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Xuan Liu
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
338
|
Tan Y, Zhang Z, Zheng C, Wintergerst KA, Keller BB, Cai L. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nat Rev Cardiol 2020; 17:585-607. [PMID: 32080423 PMCID: PMC7849055 DOI: 10.1038/s41569-020-0339-2] [Citation(s) in RCA: 446] [Impact Index Per Article: 89.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
The pathogenesis and clinical features of diabetic cardiomyopathy have been well-studied in the past decade, but effective approaches to prevent and treat this disease are limited. Diabetic cardiomyopathy occurs as a result of the dysregulated glucose and lipid metabolism associated with diabetes mellitus, which leads to increased oxidative stress and the activation of multiple inflammatory pathways that mediate cellular and extracellular injury, pathological cardiac remodelling, and diastolic and systolic dysfunction. Preclinical studies in animal models of diabetes have identified multiple intracellular pathways involved in the pathogenesis of diabetic cardiomyopathy and potential cardioprotective strategies to prevent and treat the disease, including antifibrotic agents, anti-inflammatory agents and antioxidants. Some of these interventions have been tested in clinical trials and have shown favourable initial results. In this Review, we discuss the mechanisms underlying the development of diabetic cardiomyopathy and heart failure in type 1 and type 2 diabetes mellitus, and we summarize the evidence from preclinical and clinical studies that might provide guidance for the development of targeted strategies. We also highlight some of the novel pharmacological therapeutic strategies for the treatment and prevention of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
- Wendy Novak Diabetes Center, University of Louisville, Norton Children's Hospital, Louisville, KY, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Zhiguo Zhang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Chao Zheng
- The Second Affiliated Hospital Center of Chinese-American Research Institute for Diabetic Complications, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kupper A Wintergerst
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
- Wendy Novak Diabetes Center, University of Louisville, Norton Children's Hospital, Louisville, KY, USA
- Division of Endocrinology, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Bradley B Keller
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
- Wendy Novak Diabetes Center, University of Louisville, Norton Children's Hospital, Louisville, KY, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
- Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
339
|
Wu Q, Ba-Alawi W, Deblois G, Cruickshank J, Duan S, Lima-Fernandes E, Haight J, Tonekaboni SAM, Fortier AM, Kuasne H, McKee TD, Mahmoud H, Kushida M, Cameron S, Dogan-Artun N, Chen W, Nie Y, Zhang LX, Vellanki RN, Zhou S, Prinos P, Wouters BG, Dirks PB, Done SJ, Park M, Cescon DW, Haibe-Kains B, Lupien M, Arrowsmith CH. GLUT1 inhibition blocks growth of RB1-positive triple negative breast cancer. Nat Commun 2020; 11:4205. [PMID: 32826891 PMCID: PMC7442809 DOI: 10.1038/s41467-020-18020-8] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a deadly form of breast cancer due to the development of resistance to chemotherapy affecting over 30% of patients. New therapeutics and companion biomarkers are urgently needed. Recognizing the elevated expression of glucose transporter 1 (GLUT1, encoded by SLC2A1) and associated metabolic dependencies in TNBC, we investigated the vulnerability of TNBC cell lines and patient-derived samples to GLUT1 inhibition. We report that genetic or pharmacological inhibition of GLUT1 with BAY-876 impairs the growth of a subset of TNBC cells displaying high glycolytic and lower oxidative phosphorylation (OXPHOS) rates. Pathway enrichment analysis of gene expression data suggests that the functionality of the E2F pathway may reflect to some extent OXPHOS activity. Furthermore, the protein levels of retinoblastoma tumor suppressor (RB1) strongly correlate with the degree of sensitivity to GLUT1 inhibition in TNBC, where RB1-negative cells are insensitive to GLUT1 inhibition. Collectively, our results highlight a strong and targetable RB1-GLUT1 metabolic axis in TNBC and warrant clinical evaluation of GLUT1 inhibition in TNBC patients stratified according to RB1 protein expression levels.
Collapse
Affiliation(s)
- Qin Wu
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, M5G 2M9, ON, Canada
| | - Wail Ba-Alawi
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, M5G 2M9, ON, Canada
| | - Genevieve Deblois
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, ON, Canada
| | - Jennifer Cruickshank
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2M9, Canada
| | - Shili Duan
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, ON, Canada
| | - Evelyne Lima-Fernandes
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, ON, Canada
| | - Jillian Haight
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2M9, Canada
| | - Seyed Ali Madani Tonekaboni
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, M5G 2M9, ON, Canada
| | - Anne-Marie Fortier
- Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Hellen Kuasne
- Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Trevor D McKee
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, ON, Canada
- Princess Margaret Cancer Centre, STTARR Innovation Facility, Toronto, ON, Canada
| | - Hassan Mahmoud
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, M5G 2M9, ON, Canada
- Faculty of Computer and Informatics, Benha University, Benha, Egypt
| | - Michelle Kushida
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain tumor Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Sarina Cameron
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, M5G 2M9, ON, Canada
| | - Nergiz Dogan-Artun
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, M5G 2M9, ON, Canada
| | - WenJun Chen
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Yan Nie
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, M5G 2M9, ON, Canada
| | - Lan Xin Zhang
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Ravi N Vellanki
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, ON, Canada
| | - Stanley Zhou
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, M5G 2M9, ON, Canada
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Bradly G Wouters
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, M5G 2M9, ON, Canada
| | - Peter B Dirks
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain tumor Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Division of Neurosurgery, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Departments of Molecular Genetics and Surgery, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Susan J Done
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2M9, Canada
| | - Morag Park
- Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - David W Cescon
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2M9, Canada
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, M5G 2M9, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, M5T 3A1, ON, Canada
- Ontario Institue for Cancer Research, Toronto, M5G 2M9, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, M5G 2M9, ON, Canada.
- Ontario Institue for Cancer Research, Toronto, M5G 2M9, ON, Canada.
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, M5G 2M9, ON, Canada.
| |
Collapse
|
340
|
Marcelo-Lewis KL, Moorthy S, Ileana-Dumbrava E. Tumor Genotype Is Shaping Immunophenotype and Responses to Immune Checkpoint Inhibitors in Solid Tumors. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2020; 3:121-127. [PMID: 35663256 PMCID: PMC9165574 DOI: 10.36401/jipo-20-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/03/2020] [Indexed: 05/22/2023]
Abstract
A major breakthrough in cancer treatment was ushered in by the development of immune checkpoint blockade therapy such as anti-CTLA4 antibody and anti-PD-1 and anti-programmed cell death-ligand 1 antibodies that are now approved for use in an increasing number of malignancies. Despite the relative success of immune checkpoint inhibitors with certain tumor types, many patients still fail to respond to such therapies, and the field is actively trying to understand the mechanisms of resistance, intrinsic or acquired, to immune checkpoint blockade. Herein, we discuss the roles that somatic genomic mutations in oncogenic pathways play in immune editing, as well as some of the current approaches toward improving response to immunotherapy.
Collapse
Affiliation(s)
- Kathrina L. Marcelo-Lewis
- Department of Thoracic/ Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shhyam Moorthy
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ecaterina Ileana-Dumbrava
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
341
|
Saleh R, Taha RZ, Sasidharan Nair V, Toor SM, Alajez NM, Elkord E. Transcriptomic Profiling of Circulating HLA-DR - Myeloid Cells, Compared with HLA-DR + Myeloid Antigen-presenting Cells. Immunol Invest 2020; 50:952-963. [PMID: 32727251 DOI: 10.1080/08820139.2020.1795875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells with potent immunosuppressive functions, which can inhibit the activation of immune responses under a steady-state condition and pathological conditions. We performed transcriptomic profiling of circulating CD33+HLA-DR+ myeloid antigen-presenting cells (APCs) and CD33+HLA-DR- myeloid cells (potentially MDSCs) in healthy individuals. We sorted both subpopulations from peripheral blood mononuclear cells (PBMCs) of 10 healthy donors and performed RNA sequencing (RNA-Seq). We found that several signaling pathways associated with the positive regulation of immune responses, such as antigen presentation/processing, FcγR-mediated phagocytosis and immune cell trafficking, phosphoinositide 3-kinase (PI3K)/Akt signaling, DC maturation, triggering receptor expressed on myeloid cells 1 (TREM1) signaling, nuclear factor of activated T cells (NFAT) and IL-8 signaling were downregulated in CD33+HLA-DR- myeloid cells. In contrast, pathways implicated in tumor suppression and anti-inflammation, including peroxisome proliferator-activated receptor (PPAR) and phosphatase and tensin homolog (PTEN), were upregulated in CD33+HLA-DR- myeloid cells. These data indicate that PPAR/PTEN axis could be upregulated in myeloid cells to keep the immune system in check in normal physiological conditions. Our data reveal some of the molecular and functional differences between CD33+HLA-DR+ APCs and CD33+HLA-DR- myeloid cells in a steady-state condition, reflecting the potential suppressive function of CD33+HLA-DR- myeloid cells to maintain immune tolerance. For future studies, the same methodological approach could be applied to perform transcriptomic profiling of myeloid subsets in pathological conditions.
Collapse
Affiliation(s)
- Reem Saleh
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Rowaida Z Taha
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Varun Sasidharan Nair
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Salman M Toor
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Nehad M Alajez
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Eyad Elkord
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| |
Collapse
|
342
|
Tait S, Baldassarre A, Masotti A, Calura E, Martini P, Varì R, Scazzocchio B, Gessani S, Del Cornò M. Integrated Transcriptome Analysis of Human Visceral Adipocytes Unravels Dysregulated microRNA-Long Non-coding RNA-mRNA Networks in Obesity and Colorectal Cancer. Front Oncol 2020; 10:1089. [PMID: 32714872 PMCID: PMC7351520 DOI: 10.3389/fonc.2020.01089] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity, and the obesity-associated inflammation, represents a major risk factor for the development of chronic diseases, including colorectal cancer (CRC). Dysfunctional visceral adipose tissue (AT) is now recognized as key player in obesity-associated morbidities, although the biological processes underpinning the increased CRC risk in obese subjects are still a matter of debate. Recent findings have pointed to specific alterations in the expression pattern of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), and long non-coding RNAs (lncRNAs), as mechanisms underlying dysfunctional adipocyte phenotype in obesity. Nevertheless, the regulatory networks and interrelated processes relevant for adipocyte functions, that may contribute to a tumor-promoting microenvironment, are poorly known yet. To this end, based on RNA sequencing data, we identified lncRNAs and miRNAs, which are aberrantly expressed in visceral adipocytes from obese and CRC subjects, as compared to healthy lean control, and validated a panel of modulated ncRNAs by real-time qPCR. Furthermore, by combining the differentially expressed lncRNA and miRNA profiles with the transcriptome analysis dataset of adipocytes from lean and obese subjects affected or not by CRC, lncRNA-miRNA-mRNA adipocyte networks were defined for obese and CRC subjects. This analysis highlighted several ncRNAs modulation that are common to both obesity and CRC or unique of each disorder. Functional enrichment analysis of network-related mRNA targets, revealed dysregulated pathways associated with metabolic processes, lipid and energy metabolism, inflammation, and cancer. Moreover, adipocytes from obese subjects affected by CRC exhibited a higher complexity, in terms of number of genes, lncRNAs, miRNAs, and biological processes found to be dysregulated, providing evidence that the transcriptional and post-transcriptional program of adipocytes from CRC patients is deeply affected by obesity. Overall, this study adds further evidence for a central role of visceral adipocyte dysfunctions in the obesity-cancer relationship.
Collapse
Affiliation(s)
- Sabrina Tait
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Andrea Masotti
- Bambino Gesù Children's Hospital-IRCCS, Research Laboratories, Rome, Italy
| | - Enrica Calura
- Department of Biology, University of Padua, Padua, Italy
| | - Paolo Martini
- Department of Biology, University of Padua, Padua, Italy
| | - Rosaria Varì
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Sandra Gessani
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Manuela Del Cornò
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
343
|
Fusco N, Sajjadi E, Venetis K, Gaudioso G, Lopez G, Corti C, Rocco EG, Criscitiello C, Malapelle U, Invernizzi M. PTEN Alterations and Their Role in Cancer Management: Are We Making Headway on Precision Medicine? Genes (Basel) 2020; 11:E719. [PMID: 32605290 PMCID: PMC7397204 DOI: 10.3390/genes11070719] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/27/2020] [Accepted: 06/27/2020] [Indexed: 12/15/2022] Open
Abstract
Alterations in the tumor suppressor phosphatase and tensin homolog (PTEN) occur in a substantial proportion of solid tumors. These events drive tumorigenesis and tumor progression. Given its central role as a downregulator of the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway, PTEN is deeply involved in cell growth, proliferation, and survival. This gene is also implicated in the modulation of the DNA damage response and in tumor immune microenvironment modeling. Despite the actionability of PTEN alterations, their role as biomarkers remains controversial in clinical practice. To date, there is still a substantial lack of validated guidelines and/or recommendations for PTEN testing. Here, we provide an update on the current state of knowledge on biologic and genetic alterations of PTEN across the most frequent solid tumors, as well as on their actual and/or possible clinical applications. We focus on possible tailored schemes for cancer patients' clinical management, including risk assessment, diagnosis, prognostication, and treatment.
Collapse
Affiliation(s)
- Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (K.V.); (E.G.R.)
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Elham Sajjadi
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Konstantinos Venetis
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (K.V.); (E.G.R.)
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
- Doctoral Program in Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Gabriella Gaudioso
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20131 Milan, Italy; (G.G.); (G.L.); (C.C.)
| | - Gianluca Lopez
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20131 Milan, Italy; (G.G.); (G.L.); (C.C.)
| | - Chiara Corti
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20131 Milan, Italy; (G.G.); (G.L.); (C.C.)
| | - Elena Guerini Rocco
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (K.V.); (E.G.R.)
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Carmen Criscitiello
- New Drugs and Early Drug Development for Innovative Therapies Division, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Umberto Malapelle
- Department of Public Health, University Federico II, 80138 Naples, Italy;
| | - Marco Invernizzi
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy;
| |
Collapse
|
344
|
Association of genetic variations in phosphatase and tensin homolog (PTEN) gene with polycystic ovary syndrome in South Indian women: a case control study. Arch Gynecol Obstet 2020; 302:1033-1040. [PMID: 32583210 DOI: 10.1007/s00404-020-05658-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/18/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE The purpose of the study was to investigate the association between gene phosphate and tensin homolog (PTEN) single nucleotide polymorphisms (SNPs) and risk of developing polycystic ovary syndrome (PCOS) in South Indian women. PTEN is one of the most important tumor suppressor genes that regulate cell proliferation, migration, and death. It is also involved in the maintenance of genome stability. PCOS is one of the most common endocrine disorders among women of reproductive age. It is a heterogeneous syndrome characterized by abnormal reproductive cycles, irregular ovulation, hormonal imbalance, hyperandrogenism, acne and hirsutism. RESEARCH QUESTION What is the association status of PTEN SNPs with PCOS? METHODS A total of 240 subjects were recruited in this case-control study comprising 110 patients with PCOS and 130 individuals without PCOS. All the subjects were of South Indian origin. The genotyping of PTEN SNPs (rs1903858 A/G, rs185262832G/A and rs10490920T/C) was carried out on DNA from subjects by polymerase chain reaction (PCR) and sequencing analysis. Haplotype frequencies for multiple loci and the standardized disequilibrium coefficient (D') for pairwise linkage disequilibrium (LD) were surveyed by Haploview Software. RESULTS Our results showed significant increase in the frequencies of rs1903858 A/G (P = 0.0016), rs185262832 G/A (P = 0.0122) and rs10490920 T/C (P = 0.0234) genotypes and alleles in cases compared to controls. CONCLUSION The PTEN (rs1903858A/G, rs185262832G/A and rs10490920T/C) gene polymorphisms may constitute an inheritable risk factor for PCOS in South Indian women.
Collapse
|
345
|
Chen L, Liu S, Tao Y. Regulating tumor suppressor genes: post-translational modifications. Signal Transduct Target Ther 2020; 5:90. [PMID: 32532965 PMCID: PMC7293209 DOI: 10.1038/s41392-020-0196-9] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 01/10/2023] Open
Abstract
Tumor suppressor genes cooperate with each other in tumors. Three important tumor suppressor proteins, retinoblastoma (Rb), p53, phosphatase, and tensin homolog deleted on chromosome ten (PTEN) are functionally associated and they regulated by post-translational modification (PTMs) as well. PTMs include phosphorylation, SUMOylation, acetylation, and other novel modifications becoming growing appreciated. Because most of PTMs are reversible, normal cells use them as a switch to control the state of cells being the resting or proliferating, and PTMs also involve in cell survival and cell cycle, which may lead to abnormal proliferation and tumorigenesis. Although a lot of studies focus on the importance of each kind of PTM, further discoveries shows that tumor suppressor genes (TSGs) form a complex "network" by the interaction of modification. Recently, there are several promising strategies for TSGs for they change more frequently than carcinogenic genes in cancers. We here review the necessity, characteristics, and mechanisms of each kind of post-translational modification on Rb, p53, PTEN, and its influence on the precise and selective function. We also discuss the current antitumoral therapies of Rb, p53 and PTEN as predictive, prognostic, and therapeutic target in cancer.
Collapse
Affiliation(s)
- Ling Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China.
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| |
Collapse
|
346
|
Murakami M, Ikeda Y, Nakagawa Y, Tsuji A, Kitagishi Y, Matsuda S. Special bioactive compounds and functional foods may exhibit neuroprotective effects in patients with dementia (Review). Biomed Rep 2020; 13:1. [PMID: 32509304 PMCID: PMC7271706 DOI: 10.3892/br.2020.1310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Dementia is a failure of cognitive ability characterized by severe neurodegeneration in select neural systems, and Alzheimer's disease (AD) is the most common type of neurodegenerative disease. Although numerous studies have provided insights into the pathogenesis of AD, the underlying signaling and molecular pathways mediating the progressive decline of cognitive function remain poorly understood. Recent progress in molecular biology has provided an improved understanding of the importance of molecular pathogenesis of AD, and has proposed an association between DNA repair mechanisms and AD. In particular, the fundamental roles of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) and breast cancer gene 1 (BRCA1) tumor suppressors have been shown to regulate the pathogenesis of neurodegeneration. Consequently, onset of neurodegenerative diseases may be deferred with the use of dietary neuroprotective agents which alter the signaling mediated by the aforementioned tumor suppressors. In a healthy neuron, homeostasis of key intracellular molecules is of great importance, and preventing neuronal apoptosis is one of the primary goals of treatments designed for dementia-associated diseases. In the present review, progress into the understanding of dietary regulation for preventing or limiting development of dementia is discussed with a focus on the modulatory roles of PTEN and BRCA1 signaling.
Collapse
Affiliation(s)
- Mutsumi Murakami
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Yukie Nakagawa
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
347
|
Wang L, Lu G, Shen HM. The Long and the Short of PTEN in the Regulation of Mitophagy. Front Cell Dev Biol 2020; 8:299. [PMID: 32478067 PMCID: PMC7237741 DOI: 10.3389/fcell.2020.00299] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022] Open
Abstract
Mitophagy is a key mitochondrial quality control mechanism for effective and selective elimination of damaged mitochondria through the autophagy-lysosome machinery. Defective mitophagy is associated with pathogenesis of important human diseases including neurodegenerative diseases, heart failure, innate immunity, and cancer. In the past two decades, the mechanistic studies of mitophagy have made many breakthroughs with the discoveries of phosphatase and tensin homolog (PTEN)-induced kinase protein 1 (PINK1)-parkin-mediated ubiquitin (Ub)-driven pathway and BCL2/adenovirus E1B 19 kDa protein-interacting proteins 3 (BNIP3)/NIX or FUN14 domain containing 1 (FUNDC1) mitochondrial receptor-mediated pathways. Recently, several isoforms of dual phosphatase PTEN, such as PTEN-long (PTEN-L), have been identified, and some of them are implicated in the mitophagy process via their protein phosphatase activity. In this review, we aim to discuss the regulatory roles of PTEN isoforms in mitophagy. These discoveries may provide new opportunities for development of novel therapeutic strategies for mitophagy-related diseases such as neurodegenerative disorders via targeting PTEN isoforms and mitophagy.
Collapse
Affiliation(s)
- Liming Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Guang Lu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
348
|
Ikeda Y, Murakami M, Nakagawa Y, Tsuji A, Kitagishi Y, Matsuda S. Diet induces hepatocyte protection in fatty liver disease via modulation of PTEN signaling. Biomed Rep 2020; 12:295-302. [PMID: 32382414 PMCID: PMC7201141 DOI: 10.3892/br.2020.1299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023] Open
Abstract
Fatty liver disease (FLD) is characterized by accumulation of excess fat in the liver. The underlying molecular mechanism associated with the progression of the disease has been in elusive. Hepatocellular demise due to increased oxidative stress resulting in an inflammatory response may be a key feature in FLD. Recent advances in molecular biology have led to an improved understanding of the molecular pathogenesis, suggesting a critical association between the PI3K/AKT/PTEN signaling pathway and FLD. In particular, PTEN has been associated with regulating the pathogenesis of hepatocyte degeneration. Given the function of mitochondria in reactive oxygen species (ROS) generation and the initiation of oxidative stress, the mitochondrial antioxidant network is of interest. It is vital to balance the activity of intracellular key molecules to maintain a healthy liver. Consequently, onset of FLD may be delayed using dietary protective agents that alter PTEN signaling and reduce ROS levels. The advancement of research on dietary regulation with a focus on modulatory roles in ROS generation and PTEN associated signaling is summarized in the current study, supporting further preventive and therapeutic exploration.
Collapse
Affiliation(s)
- Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Mutsumi Murakami
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Yukie Nakagawa
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| |
Collapse
|
349
|
Tang BL. Glucose, glycolysis, and neurodegenerative diseases. J Cell Physiol 2020; 235:7653-7662. [PMID: 32239718 DOI: 10.1002/jcp.29682] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/14/2020] [Indexed: 12/12/2022]
Abstract
Prolonged survival of a typical postmitotic neuron hinges on a balance between multiple processes, among these are a sustenance of ATP production and protection against reactive oxygen species. In neuropathological conditions, mitochondrial defects often lead to both a drop in ATP levels, as well as increase reactive oxygen species production from inefficient electron transport processes and NADPH-oxidases activities. The former often resulted in the phenomenon of compensatory aerobic glycolysis. The latter stretches the capacity of the cell's redox buffering capacity, and may lead to damages of key enzymes involved in energy metabolism. Several recent reports have indicated that enhancing glucose availability and uptake, as well as increasing glycolytic flux via pharmacological or genetic manipulation of glycolytic enzymes, could be protective in animal models of several major neurodegenerative diseases, including Parkinson's disease, Huntington's disease, and Amyotrophic lateral sclerosis. Activation of canonical Wnt signaling, which improves disease symptoms in mouse models of Alzheimer's disease also appears to work via an elevation of glycolytic enzymes and enhance glucose metabolism. Here, I discuss these findings and the possible underlying mechanisms of how an increase in glucose uptake and glycolysis could be neuroprotective. Increased glycolytic production of ATP would help alleviate energy deficiency, and ATP's hydrotropic effect may enhance solubility and clearance of toxic aggregates prevalent in many neurodegenerative diseases. Furthermore, channeling of glucose into the Pentose Phosphate Pathway would increase the redox buffering capacity of the cell.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
350
|
Liu YZ, Du XX, Zhao QQ, Jiao Q, Jiang H. The expression change of OTUD3-PTEN signaling axis in glioma cells. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:490. [PMID: 32395534 PMCID: PMC7210146 DOI: 10.21037/atm.2020.03.51] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Background OTU domain-containing protein 3 (OTUD3), as a deubiquitinase (DUB) belonging to the ovarian tumor protease (OTU) family, has been reported to suppress tumor via OTUD3-PTEN signaling axis. Glioma is the most common primary intracranial tumor with high invasiveness and poor prognosis. Although less than half of the patients have phosphatase and tension homologue deleted in chromosome 10 (PTEN) mutations or homozygous deletions, two-thirds of glioma possess diminished PTEN expression. Hence, it is conceivable that other obscure mechanisms may cause the decreased expression of the PTEN protein. Methods OTUD3 expression was assessed in human normal and glioma tissues at The Cancer Genome Atlas (TCGA) database (https://www.cancer.gov/) and Genotype-Tissue Expression (GTEx) database (https://commonfund.nih.gov/GTex). The mRNA levels of OTUD3 in C6 cells and primary astrocytes were detected using real-time fluorescence quantitative PCR. Western blot was performed to assay PTEN and OTUD3 protein expression in C6 cells and primary astrocytes. By generating Kaplan-Meier curves, we predicted the association between OTUD3 expression and prognosis in glioma patients. Results (I) OTUD3 transcription was markedly downregulated in glioma based on microarray data for gene expression between human gliomas and normal brain samples. (II) The mRNA levels of OTUD3 in C6 cells was significantly lower than that of in primary astrocytes. (III) The expressions of protein PTEN and OTUD3 in C6 cells were significantly decreased when compared with primary astrocytes. (IV) Glioma patients with high expression of OTUD3 had a longer survival time than patients with low expression. Conclusions Our present findings demonstrated that low expression of OTUD3 in glioma may be involved in PTEN related glioma and may contribute to patient survival.
Collapse
Affiliation(s)
- Yi-Zhen Liu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Xi-Xun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Qi-Qi Zhao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| |
Collapse
|