351
|
Kim W, Khan SK, Liu Y, Xu R, Park O, He Y, Cha B, Gao B, Yang Y. Hepatic Hippo signaling inhibits protumoural microenvironment to suppress hepatocellular carcinoma. Gut 2018; 67:1692-1703. [PMID: 28866620 PMCID: PMC6592016 DOI: 10.1136/gutjnl-2017-314061] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/30/2017] [Accepted: 06/09/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Hippo signalling is a recently identified major oncosuppressive pathway that plays critical roles in inhibiting hepatocyte proliferation, survival and hepatocellular carcinoma (HCC) formation. Hippo kinase (Mst1 and Mst2) inhibits HCC proliferation by suppressing Yap/Taz transcription activities. As human HCC is mainly driven by chronic liver inflammation, it is not clear whether Hippo signalling inhibits HCC by shaping its inflammatory microenvironment. DESIGN We have established a genetic HCC model by deleting Mst1 and Mst2 in hepatocytes. Functions of inflammatory responses in this model were characterised by molecular, cellular and FACS analysis, immunohistochemistry and genetic deletion of monocyte chemoattractant protein-1 (Mcp1) or Yap. Human HCC databases and human HCC samples were analysed by immunohistochemistry. RESULTS Genetic deletion of Mst1 and Mst2 in hepatocytes (DKO) led to HCC development, highly upregulated Mcp1 expression and massive infiltration of macrophages with mixed M1 and M2 phenotypes. Macrophage ablation or deletion of Mcp1 in DKO mice markedly reduced hepatic inflammation and HCC development. Moreover, Yap removal abolished induction of Mcp1 expression and restored normal liver growth in the Mst1/Mst2 DKO mice. Finally, we showed that MCP1 is a direct transcription target of YAP in hepatocytes and identified a strong gene expression correlation between YAP targets and MCP-1 in human HCCs. CONCLUSIONS Hippo signalling in hepatocytes maintains normal liver growth by suppressing macrophage infiltration during protumoural microenvironment formation through the inhibition of Yap-dependent Mcp1 expression, providing new targets and strategies to treat HCCs.
Collapse
Affiliation(s)
- Wantae Kim
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave. Boston, MA 02215, USA.,Genetic Disease Research Branch, National Human Genome Research Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Sanjoy Kumar Khan
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave. Boston, MA 02215, USA.,Genetic Disease Research Branch, National Human Genome Research Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Yuchen Liu
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave. Boston, MA 02215, USA
| | - Ruoshi Xu
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave. Boston, MA 02215, USA.,West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ogyi Park
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Boksik Cha
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.,Correspondence to:Yingzi Yang, PhD, Professor of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, 188 Longwood Avenue, Boston, MA, 02115, USA, Tel: 617–432–8304, Fax: 617–432–3246, , Bin Gao, MD, PhD, Senior Investigator, Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Room 2S-33, Bethesda, MD 20892, Tel: 301.443.3998; Fax: 301 480.0257,
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave. Boston, MA 02215, USA.,Genetic Disease Research Branch, National Human Genome Research Institute, National Institute of Health, Bethesda, MD 20892, USA.,Correspondence to:Yingzi Yang, PhD, Professor of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, 188 Longwood Avenue, Boston, MA, 02115, USA, Tel: 617–432–8304, Fax: 617–432–3246, , Bin Gao, MD, PhD, Senior Investigator, Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Room 2S-33, Bethesda, MD 20892, Tel: 301.443.3998; Fax: 301 480.0257,
| |
Collapse
|
352
|
Lynch RW, Hawley CA, Pellicoro A, Bain CC, Iredale JP, Jenkins SJ. An efficient method to isolate Kupffer cells eliminating endothelial cell contamination and selective bias. J Leukoc Biol 2018; 104:579-586. [PMID: 29607532 PMCID: PMC6175317 DOI: 10.1002/jlb.1ta0517-169r] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 02/14/2018] [Accepted: 02/27/2018] [Indexed: 12/23/2022] Open
Abstract
Multicolor flow cytometry and cell sorting are powerful immunologic tools for the study of hepatic mϕ, yet there is no consensus on the optimal method to prepare liver homogenates for these analyses. Using a combination of mϕ and endothelial cell reporter mice, flow cytometry, and confocal imaging, we have shown that conventional flow-cytometric strategies for identification of Kupffer cells (KCs) leads to inclusion of a significant proportion of CD31hi endothelial cells. These cells were present regardless of the method used to prepare cells for flow cytometry and represented endothelium tightly adhered to remnants of KC membrane. Antibodies to endothelial markers, such as CD31, were vital for their exclusion. This result brings into focus recently published microarray datasets that identify high expression of endothelial cell-associated genes by KCs compared with other tissue-resident mϕ. Our studies also revealed significant and specific loss of KCs among leukocytes with commonly used isolation methods that led to enrichment of proliferating and monocyte-derived mϕ. Hence, we present an optimal method to generate high yields of liver myeloid cells without bias for cell type or contamination with endothelial cells.
Collapse
Affiliation(s)
- Ruairi W. Lynch
- MRC Centre for Inflammation ResearchUniversity of EdinburghEdinburghUnited Kingdom
| | - Catherine A. Hawley
- MRC Centre for Inflammation ResearchUniversity of EdinburghEdinburghUnited Kingdom
| | - Antonella Pellicoro
- MRC Centre for Inflammation ResearchUniversity of EdinburghEdinburghUnited Kingdom
| | - Calum C. Bain
- MRC Centre for Inflammation ResearchUniversity of EdinburghEdinburghUnited Kingdom
| | - John P. Iredale
- MRC Centre for Inflammation ResearchUniversity of EdinburghEdinburghUnited Kingdom
| | - Stephen J. Jenkins
- MRC Centre for Inflammation ResearchUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
353
|
Allen J, Zhang J, Quickel MD, Kennett M, Patterson AD, Hankey-Giblin PA. Ron Receptor Signaling Ameliorates Hepatic Fibrosis in a Diet-Induced Nonalcoholic Steatohepatitis Mouse Model. J Proteome Res 2018; 17:3268-3280. [PMID: 30091925 DOI: 10.1021/acs.jproteome.8b00379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Liver fibrosis is commonly observed in the terminal stages of nonalcoholic steatohepatitis (NASH) and with no specific and effective antifibrotic therapies available, this disease is a major global health burden. The MSP/Ron receptor axis has been shown to have anti-inflammatory properties in a number of mouse models, due at least in part, to its ability to limit pro-inflammatory responses in tissue-resident macrophages and hepatocytes. In this study, we established the role of the Ron receptor in steatohepatitis-induced hepatic fibrosis using Ron ligand domain knockout mice on an apolipoprotein E knockout background (DKO). After 18 weeks of high-fat high-cholesterol feeding, loss of Ron activation resulted in exacerbated NASH-associated steatosis which is precedent to hepatocellular injury, inflammation and fibrosis. 1H nuclear magnetic resonance (NMR)-based metabolomics identified significant changes in serum metabolites that can modulate the intrahepatic lipid pool in hepatic steatosis. Serum from DKO mice had higher concentrations of lipids, VLDL/LDL and pyruvate, whereas glycine levels were reduced. Parallel to the aggravated steatohepatitis, increased accumulation of collagen, inflammatory immune cells and collagen producing-myofibroblasts were seen in the livers of DKO mice. Gene expression profiling revealed that DKO mice exhibited elevated expression of genes encoding Ron receptor ligand MSP, collagens, ECM remodeling proteins and pro-fibrogenic cytokines in the liver. Our results demonstrate the protective effects of Ron receptor activation on NASH-induced hepatic fibrosis.
Collapse
Affiliation(s)
- Joselyn Allen
- Department of Veterinary and Biomedical Sciences , The Pennsylvania State University , University Park , Pennsylvania United States
| | - Jingtao Zhang
- Department of Veterinary and Biomedical Sciences , The Pennsylvania State University , University Park , Pennsylvania United States
| | - Michael D Quickel
- Department of Veterinary and Biomedical Sciences , The Pennsylvania State University , University Park , Pennsylvania United States
| | - Mary Kennett
- Department of Veterinary and Biomedical Sciences , The Pennsylvania State University , University Park , Pennsylvania United States
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences , The Pennsylvania State University , University Park , Pennsylvania United States
| | - Pamela A Hankey-Giblin
- Department of Veterinary and Biomedical Sciences , The Pennsylvania State University , University Park , Pennsylvania United States
| |
Collapse
|
354
|
Cao X, Xue YJ, Du JL, Xu Q, Yang XC, Zeng Y, Wang BB, Wang HZ, Liu J, Cai KZ, Ma ZR. Induction and Suppression of Innate Antiviral Responses by Hepatitis A Virus. Front Microbiol 2018; 9:1865. [PMID: 30174659 PMCID: PMC6107850 DOI: 10.3389/fmicb.2018.01865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 07/25/2018] [Indexed: 12/25/2022] Open
Abstract
Hepatitis A virus (HAV) belongs to the family Picornaviridae. It is the pathogen of acute viral hepatitis caused by fecal-oral transmission. RNA viruses are sensed by pathogen-associated pattern recognition receptors (PRRs) such as Toll-like receptor 3 (TLR3), retinoic acid-inducible gene I (RIG-I), and melanoma differentiation-associated gene 5 (MDA5). PRR activation leads to production of type 1 interferon (IFN-α/β), serving as the first line of defense against viruses. However, HAV has developed various strategies to compromise the innate immune system and promote viral propagation within the host cells. The long coevolution of HAV in hosts has prompted the development of effective immune antagonism strategies that actively fight against host antiviral responses. Proteases encoded by HAV can cleave the mitochondrial antiviral signaling protein (MAVS, also known as IPS-1, VISA, or Cardif), TIR domain- containing adaptor inducing IFN-β (TRIF, also known as TICAM-1) and nuclear factor-κB (NF-κB) essential modulator (NEMO), which are key adaptor proteins in RIG-I-like receptor (RLR), TLR3 and NF-κB signaling, respectively. In this mini-review, we summarize all the recent progress on the interaction between HAV and the host, especially focusing on how HAV abrogates the antiviral effects of the innate immune system.
Collapse
Affiliation(s)
- Xin Cao
- College of Life Science and Engineering, Northwest Minzu University, Engineering & Technology Research Center for Animal Cell, Lanzhou, China
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Lanzhou, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yu-jia Xue
- College of Life Science and Engineering, Northwest Minzu University, Engineering & Technology Research Center for Animal Cell, Lanzhou, China
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Lanzhou, China
| | - Jiang-long Du
- College of Life Science and Engineering, Northwest Minzu University, Engineering & Technology Research Center for Animal Cell, Lanzhou, China
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Lanzhou, China
| | - Qiang Xu
- College of Life Science and Engineering, Northwest Minzu University, Engineering & Technology Research Center for Animal Cell, Lanzhou, China
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Lanzhou, China
| | - Xue-cai Yang
- College of Life Science and Engineering, Northwest Minzu University, Engineering & Technology Research Center for Animal Cell, Lanzhou, China
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Lanzhou, China
| | - Yan Zeng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bo-bo Wang
- College of Life Science and Engineering, Northwest Minzu University, Engineering & Technology Research Center for Animal Cell, Lanzhou, China
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Lanzhou, China
| | - Hai-zhen Wang
- Hebi Precision Medical Research Institute, People's Hospital of Hebi, Hebi, China
| | - Jing Liu
- Department of Medical OncologyPeople's Hospital of Hebi, Hebi, China
| | - Kui-zheng Cai
- College of Life Science and Engineering, Northwest Minzu University, Engineering & Technology Research Center for Animal Cell, Lanzhou, China
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Lanzhou, China
| | - Zhong-ren Ma
- College of Life Science and Engineering, Northwest Minzu University, Engineering & Technology Research Center for Animal Cell, Lanzhou, China
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Lanzhou, China
| |
Collapse
|
355
|
Feng Q, Yao J, Zhou G, Xia W, Lyu J, Li X, Zhao T, Zhang G, Zhao N, Yang J. Quantitative Proteomic Analysis Reveals That Arctigenin Alleviates Concanavalin A-Induced Hepatitis Through Suppressing Immune System and Regulating Autophagy. Front Immunol 2018; 9:1881. [PMID: 30177931 PMCID: PMC6109684 DOI: 10.3389/fimmu.2018.01881] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 07/30/2018] [Indexed: 12/24/2022] Open
Abstract
Concanavalin A-induced autoimmune hepatitis is a well-established experimental model for immune-mediated liver injury. It has been widely used in the therapeutic studies of immune hepatitis. The in-depth analysis of dysregulated proteins from comparative proteomic results indicated that the activation of immune system resulted in the deregulation of autophagy. Follow-up studies validated that some immune related proteins, including Stat1, Pkr, Atg7, and Adrm1, were indeed upregulated. The accumulations of LC3B-II and p62 were confirmed by immunohistochemistry and Western blot analyses. Arctigenin pretreatment significantly alleviated the liver injury, as evidenced by biochemical and histopathological investigations, whose protective effects were comparable with Prednisone acetate and Cyclosporin A. Arctigenin pretreatment decreased the levels of IL-6 and IFN-γ, but increased the ones of IL-10. Next, the quantitative proteomic analysis demonstrated that ARC pretreatment suppressed the activation of immune system through the inhibition of IFN-γ signaling, when it downregulated the protein expressions of Stat1, P-Stat1, Pkr, P-Pkr, Bnip3, Beclin1, Atg7, LC3B, Adrm1, and p62. Meanwhile, Arctigenin pretreatment also reduced the gene expressions of Stat1, Pkr, and Atg7. These results suggested that Arctigenin alleviated autophagy as well as apoptosis through inhibiting IFN-γ/IL-6/Stat1 pathway and IL-6/Bnip3 pathway. In summary, the comparative proteomic analysis revealed that the activation of immune system led to Concanavalin A-induced hepatitis. Both autophagy and apoptosis had important clinical implications for the treatment of immune hepatitis. Arctigenin might exert great therapeutic potential in immune-mediated liver injury.
Collapse
Affiliation(s)
- Qin Feng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Jingchun Yao
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Ge Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenkai Xia
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Jingang Lyu
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Xin Li
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Tao Zhao
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Guimin Zhang
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China.,School of Pharmacy, Linyi University, Linyi, China
| | - Ningwei Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Shimadzu Biomedical Research Laboratory, Shanghai, China
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
356
|
Silva AKS, Peixoto CA. Role of peroxisome proliferator-activated receptors in non-alcoholic fatty liver disease inflammation. Cell Mol Life Sci 2018; 75:2951-2961. [PMID: 29789866 PMCID: PMC11105365 DOI: 10.1007/s00018-018-2838-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/13/2018] [Accepted: 05/07/2018] [Indexed: 02/07/2023]
Abstract
Overweight and obesity have been identified as the most important risk factors for many diseases, including cardiovascular disease, type 2 diabetes and lipid disorders, such as non-alcoholic fatty liver disease (NAFLD). The metabolic changes associated with obesity are grouped to define metabolic syndrome, which is one of the main causes of morbidity and mortality in industrialized countries. NAFLD is considered to be the hepatic manifestation of metabolic syndrome and is one of the most prevalent liver diseases worldwide. Inflammation plays an important role in the development of numerous liver diseases, contributing to the progression to more severe stages, such as non-alcoholic steatohepatitis and hepatocellular carcinoma. Peroxisome proliferator-activated receptors (PPARs) are binder-activated nuclear receptors that are involved in the transcriptional regulation of lipid metabolism, energy balance, inflammation and atherosclerosis. Three isotypes are known: PPAR-α, PPARδ/β and PPAR-γ. These isotypes play different roles in diverse tissues and cells, including the inflammatory process. In this review, we discuss current knowledge on the role PPARs in the hepatic inflammatory process involved in NAFLD as well as new pharmacological strategies that target PPARs.
Collapse
Affiliation(s)
- Amanda Karolina Soares Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Avenida Professor Moraes Rego, s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil
- Biological Sciences of the Federal University of Pernambuco, Recife, PE, Brazil
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Avenida Professor Moraes Rego, s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil.
- Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil.
| |
Collapse
|
357
|
Molina-Molina E, Baccetto RL, Wang DQH, de Bari O, Krawczyk M, Portincasa P. Exercising the hepatobiliary-gut axis. The impact of physical activity performance. Eur J Clin Invest 2018; 48:e12958. [PMID: 29797516 PMCID: PMC8118139 DOI: 10.1111/eci.12958] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/21/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Physical inactivity puts the populations at risk of several health problems, while regular physical activity brings beneficial effects on cardiovascular disease, mortality and other health outcomes, including obesity, glycaemic control and insulin resistance. The hepatobiliary tract is greatly involved in several metabolic aspects which include digestion and absorption of nutrients in concert with intestinal motility, bile acid secretion and flow across the enterohepatic circulation and intestinal microbiota. Several metabolic abnormalities, including nonalcoholic fatty liver as well as cholesterol cholelithiasis, represent two conditions explained by changes of the aforementioned pathways. MATERIALS AND METHODS This review defines different training modalities and discusses the effects of physical activity in two metabolic disorders, that is nonalcoholic fatty liver disease (NAFLD) and cholelithiasis. Emphasis is given to pathogenic mechanisms involving intestinal bile acids, microbiota and inflammatory status. RESULTS A full definition of physical activity includes the knowledge of aerobic and endurance exercise, metabolic equivalent tasks, duration, frequency and intensity, beneficial and harmful effects. Physical activity influences the hepatobiliary-gut axis at different levels and brings benefits to fat distribution, liver fat and gallbladder disease while interacting with bile acids as signalling molecules, intestinal microbiota and inflammatory changes in the body. CONCLUSIONS Several beneficial effects of physical activity are anticipated on metabolic disorders linking liver steatosis, gallstone disease, gut motility, enterohepatic circulation of signalling bile acids in relation to intestinal microbiota and inflammatory changes.
Collapse
Affiliation(s)
- Emilio Molina-Molina
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| | - Raquel Lunardi Baccetto
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| | - David Q.-H. Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ornella de Bari
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
- Laboratory of Metabolic Liver Diseases, Centre for Preclinical Research, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
358
|
Tegge AN, Rodrigues RR, Larkin AL, Vu L, Murali TM, Rajagopalan P. Transcriptomic Analysis of Hepatic Cells in Multicellular Organotypic Liver Models. Sci Rep 2018; 8:11306. [PMID: 30054499 PMCID: PMC6063915 DOI: 10.1038/s41598-018-29455-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 07/11/2018] [Indexed: 02/08/2023] Open
Abstract
Liver homeostasis requires the presence of both parenchymal and non-parenchymal cells (NPCs). However, systems biology studies of the liver have primarily focused on hepatocytes. Using an organotypic three-dimensional (3D) hepatic culture, we report the first transcriptomic study of liver sinusoidal endothelial cells (LSECs) and Kupffer cells (KCs) cultured with hepatocytes. Through computational pathway and interaction network analyses, we demonstrate that hepatocytes, LSECs and KCs have distinct expression profiles and functional characteristics. Our results show that LSECs in the presence of KCs exhibit decreased expression of focal adhesion kinase (FAK) signaling, a pathway linked to LSEC dedifferentiation. We report the novel result that peroxisome proliferator-activated receptor alpha (PPARα) is transcribed in LSECs. The expression of downstream processes corroborates active PPARα signaling in LSECs. We uncover transcriptional evidence in LSECs for a feedback mechanism between PPARα and farnesoid X-activated receptor (FXR) that maintains bile acid homeostasis; previously, this feedback was known occur only in HepG2 cells. We demonstrate that KCs in 3D liver models display expression patterns consistent with an anti-inflammatory phenotype when compared to monocultures. These results highlight the distinct roles of LSECs and KCs in maintaining liver function and emphasize the need for additional mechanistic studies of NPCs in addition to hepatocytes in liver-mimetic microenvironments.
Collapse
Affiliation(s)
- Allison N Tegge
- Department of Computer Science, Virginia Tech, Blacksburg, USA
- Department of Statistics, Virginia Tech, Blacksburg, USA
| | - Richard R Rodrigues
- Genetics, Bioinformatics, and Computational Biology Ph.D. Program, Virginia Tech, Blacksburg, USA
| | - Adam L Larkin
- Department of Chemical Engineering, Virginia Tech, Blacksburg, USA
| | - Lucas Vu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, USA
| | - T M Murali
- Department of Computer Science, Virginia Tech, Blacksburg, USA.
- ICTAS Center for Systems Biology of Engineered Tissues, Virginia Tech, Blacksburg, USA.
| | - Padmavathy Rajagopalan
- Department of Chemical Engineering, Virginia Tech, Blacksburg, USA.
- ICTAS Center for Systems Biology of Engineered Tissues, Virginia Tech, Blacksburg, USA.
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, USA.
| |
Collapse
|
359
|
Seo HY, Kim MK, Lee SH, Hwang JS, Park KG, Jang BK. Kahweol Ameliorates the Liver Inflammation through the Inhibition of NF-κB and STAT3 Activation in Primary Kupffer Cells and Primary Hepatocytes. Nutrients 2018; 10:nu10070863. [PMID: 29973533 PMCID: PMC6073512 DOI: 10.3390/nu10070863] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023] Open
Abstract
Gut derived bacterial endotoxins, such as lipopolysaccharide (LPS), are involved in one of the important mechanisms that lead to inflammation associated with various liver diseases, including nonalcoholic fatty liver disease and alcoholic liver disease. Kahweol is a coffee-specific diterpene present in coffee bean and exhibits anti-angiogenic and anti-inflammatory activities. However, to date, the effect of kahweol on liver inflammation remains unknown. In this study, we examined whether kahweol exhibits a protective effect by inhibiting liver inflammation in primary Kupffer cells and primary hepatocytes cultures as well as their co-cultures. Kahweol decreased the LPS-induced production of interleukin 1 alpha, interleukin 1 beta, interleukin 6, and tumor necrosis factor alpha. The inhibitory effect of kahweol on the liver inflammation was associated with the down regulation of LPS-stimulated phospho-nuclear factor kappa B and -signal transducer and activator of transcription 3 expression. These results suggest that kahweol might be a novel potent agent to treat liver inflammation induced by LPS.
Collapse
Affiliation(s)
- Hye-Young Seo
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu 42601, Korea.
- Institute for Medical Science, Keimyung University School of Medicine, Daegu 42601, Korea.
| | - Mi-Kyung Kim
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu 42601, Korea.
- Institute for Medical Science, Keimyung University School of Medicine, Daegu 42601, Korea.
| | - So-Hee Lee
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu 42601, Korea.
- Institute for Medical Science, Keimyung University School of Medicine, Daegu 42601, Korea.
| | - Jae Seok Hwang
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu 42601, Korea.
| | - Keun-Gyu Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea.
| | - Byoung Kuk Jang
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu 42601, Korea.
- Institute for Medical Science, Keimyung University School of Medicine, Daegu 42601, Korea.
| |
Collapse
|
360
|
McCullough RL, McMullen MR, Sheehan MM, Poulsen KL, Roychowdhury S, Chiang DJ, Pritchard MT, Caballeria J, Nagy LE. Complement Factor D protects mice from ethanol-induced inflammation and liver injury. Am J Physiol Gastrointest Liver Physiol 2018; 315:G66-G79. [PMID: 29597356 PMCID: PMC6109707 DOI: 10.1152/ajpgi.00334.2017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/31/2018] [Accepted: 03/04/2018] [Indexed: 01/31/2023]
Abstract
Complement plays a crucial role in microbial defense and clearance of apoptotic cells. Emerging evidence suggests complement is an important contributor to alcoholic liver disease. While complement component 1, Q subcomponent (C1q)-dependent complement activation contributes to ethanol-induced liver injury, the role of the alternative pathway in ethanol-induced injury is unknown. Activation of complement via the classical and alternative pathways was detected in alcoholic hepatitis patients. Female C57BL/6J [wild type (WT)], C1q-deficient ( C1qa-/-, lacking classical pathway activation), complement protein 4-deficient ( C4-/-, lacking classical and lectin pathway activation), complement factor D-deficient ( FD-/-, lacking alternative pathway activation), and C1qa/FD-/- (lacking classical and alternative pathway activation) mice were fed an ethanol-containing liquid diet or pair-fed control diet for 4 or 25 days. Following chronic ethanol exposure, liver injury, steatosis, and proinflammatory cytokine expression were increased in WT but not C1qa-/-, C4-/-, or C1qa/FD-/- mice. In contrast, liver injury, steatosis, and proinflammatory mediators were robustly increased in ethanol-fed FD-/- mice compared with WT mice. Complement activation, assessed by hepatic accumulation of C1q and complement protein 3 (C3) cleavage products (C3b/iC3b/C3c), was evident in livers of WT mice in response to both short-term and chronic ethanol. While C1q accumulated in ethanol-fed FD-/- mice (short term and chronic), C3 cleavage products were detected after short-term but not chronic ethanol. Consistent with impaired complement activation, chronic ethanol induced the accumulation of apoptotic cells and fibrogenic responses in the liver of FD-/- mice. These data highlight the protective role of complement factor D (FD) and suggest that FD-dependent amplification of complement is an adaptive response that promotes hepatic healing and recovery in response to chronic ethanol. NEW & NOTEWORTHY Complement, a component of the innate immune system, is an important pathophysiological contributor to ethanol-induced liver injury. We have identified a novel role for factor D, a component of the alternative pathway, in protecting the liver from ethanol-induced inflammation, accumulation of apoptotic hepatocytes, and profibrotic responses. These data indicate a dual role of complement with regard to inflammatory and protective responses and suggest that accumulation of apoptotic cells impairs hepatic healing/recovery during alcoholic liver disease.
Collapse
Affiliation(s)
- Rebecca L McCullough
- Department of Pathobiology, Center for Liver Disease Research, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio
| | - Megan R McMullen
- Department of Pathobiology, Center for Liver Disease Research, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio
| | - Megan M Sheehan
- Department of Pathobiology, Center for Liver Disease Research, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio
| | - Kyle L Poulsen
- Department of Pathobiology, Center for Liver Disease Research, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio
| | - Sanjoy Roychowdhury
- Department of Pathobiology, Center for Liver Disease Research, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio
| | - Dian J Chiang
- Division of Gastroenterology, Swedish Medical Group , Seattle, Washington
| | - Michele T Pritchard
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center , Kansas City, Kansas
| | - Juan Caballeria
- Institut d'Investigacions Biomediques August Pi iSunyer, Hospital Clinic of Barcelona , Barcelona , Spain
| | - Laura E Nagy
- Department of Pathobiology, Center for Liver Disease Research, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio
- Department of Gastroenterology and Hepatology, Cleveland Clinic , Cleveland, Ohio
| |
Collapse
|
361
|
Lu TF, Yang TH, Zhong CP, Shen C, Lin WW, Gu GX, Xia Q, Xu N. Dual Effect of Hepatic Macrophages on Liver Ischemia and Reperfusion Injury during Liver Transplantation. Immune Netw 2018; 18:e24. [PMID: 29984042 PMCID: PMC6026692 DOI: 10.4110/in.2018.18.e24] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 12/14/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is a major complication in liver transplantation (LT) and it is closely related to the recovery of grafts' function. Researches has verified that both innate and adaptive immune system are involved in the development of IRI and Kupffer cell (KC), the resident macrophages in the liver, play a pivotal role both in triggering and sustaining the sterile inflammation. Damage-associated molecular patterns (DAMPs), released by the initial dead cell because of the ischemia insult, firstly activate the KC through pattern recognition receptors (PRRs) such as toll-like receptors. Activated KCs is the dominant players in the IRI as it can secret various pro-inflammatory cytokines to exacerbate the injury and recruit other types of immune cells from the circulation. On the other hand, KCs can also serve in a contrary way to ameliorate IRI by upregulating the anti-inflammatory factors. Moreover, new standpoint has been put forward that KCs and macrophages from the circulation may function in different way to influence the inflammation. Managements towards KCs are expected to be the effective way to improve the IRI.
Collapse
Affiliation(s)
- Tian-Fei Lu
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Tai-Hua Yang
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medicine School, Hannover 30625, Germany
| | - Cheng-Peng Zhong
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Chuan Shen
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Wei-Wei Lin
- Department of Laboratory, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Guang-Xiang Gu
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Ning Xu
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
362
|
Li M, Song K, Huang X, Fu S, Zeng Q. GDF‑15 prevents LPS and D‑galactosamine‑induced inflammation and acute liver injury in mice. Int J Mol Med 2018; 42:1756-1764. [PMID: 29956733 DOI: 10.3892/ijmm.2018.3747] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/22/2018] [Indexed: 11/06/2022] Open
Abstract
Growth differentiation factor‑15 (GDF‑15) is a transforming growth factor (TGF)‑β superfamily member with a poorly characterized biological activity, speculated to be implicated in several diseases. The present study aimed to determine whether GDF‑15 participates in sepsis‑induced acute liver injury in mice. Lipopolysaccharide (LPS) and D‑galactosamine (D‑GalN) were administered to mice to induce acute liver injury. Survival of mice, histological changes in liver tissue, and levels of inflammatory biomarkers in serum and liver tissue were evaluated following treatment with GDF‑15. The underlying mechanism was investigated by western blotting, ELISA, flow cytometry, and reverse transcription‑quantitative polymerase chain reaction using Kupffer cells. The results demonstrated that GDF‑15 prevented LPS/D‑GalN‑induced death, increase in inflammatory cell infiltration and serum alanine aminotransferase and aspartate aminotransferase activities. In addition, GDF‑15 treatment reduced the production of hepatic malondialdehyde and myeloperoxidase, and attenuated the increase of interleukin (IL)‑6, tumor necrosis factor (TNF)‑α, and IL‑1β expression in serum and liver tissue, accompanied by inducible nitric oxide synthase (iNOS) inactivation in the liver. Similar changes in the expression of inflammatory cytokines, IL‑6, TNF‑α and IL‑1β, and iNOS activation were observed in the Kupffer cells. Further mechanistic experiments revealed that GDF‑15 effectively protected against LPS‑induced nuclear factor (NF)‑κB pathway activation by regulating TGFβ‑activated kinase 1 (TAK1) phosphorylation in Kupffer cells. In conclusion, GDF‑15 reduced the activation of pro‑inflammatory factors, and prevented LPS‑induced liver injury, most likely by disrupting TAK1 phosphorylation, and consequently inhibiting the activation of the NF‑κB pathway in the liver.
Collapse
Affiliation(s)
- Min Li
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Kui Song
- Department of Hematology, The First Affiliated Hospital of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Xiaowen Huang
- Department of Pediatrics, Boai Hospital of Zhongshan City, Zhongshan, Guangdong 528400, P.R. China
| | - Simao Fu
- Department of Pediatrics, Boai Hospital of Zhongshan City, Zhongshan, Guangdong 528400, P.R. China
| | - Qiyi Zeng
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
363
|
Heidari R, Ahmadi F, Rahimi HR, Azarpira N, Hosseinzadeh M, Najibi A, Niknahad H. Exacerbated liver injury of antithyroid drugs in endotoxin-treated mice. Drug Chem Toxicol 2018; 42:615-623. [PMID: 29722569 DOI: 10.1080/01480545.2018.1459668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drug-induced liver injury is a major concern in clinical studies as well as in post-marketing surveillance. Previous evidence suggested that drug exposure during periods of inflammation could increase an individual's susceptibility to drug hepatoxicity. The antithyroid drugs, methimazole (MMI) and propylthiouracil (PTU) can cause adverse reactions in patients, with liver as a usual target. We tested the hypothesis that MMI and PTU could be rendered hepatotoxic in animals undergoing a modest inflammation. Mice were treated with a nonhepatotoxic dose of LPS (100 µg/kg, i.p) or its vehicle. Nonhepatotoxic doses of MMI (10, 25 and 50 mg/kg, oral) and PTU (10, 25 and 50 mg/kg, oral) were administered two hours after LPS treatment. It was found that liver injury was evident only in animals received both drug and LPS, as estimated by increases in serum alanine aminotransferase (ALT), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), and TNF-α. An increase in liver myeloperoxidase (MPO) enzyme activity and tissue lipid peroxidation (LPO) in addition of liver glutathione (GSH) depletion were also detected in LPS and antithyroid drugs cotreated animals. Furthermore, histopathological changes including, endotheliitis, fatty changes, severe inflammatory cells infiltration (hepatitis) and sinusoidal congestion were detected in liver tissue. Methyl palmitate (2 g/kg, i.v, 44 hours before LPS), as a macrophage suppressor, significantly alleviated antithyroids hepatotoxicity in LPS-treated animals. The results indicate a synergistic liver injury from antithyroid drugs and bacterial lipopolysaccharide coexposure.
Collapse
Affiliation(s)
- Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Ahmadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Reza Rahimi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.,Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Massood Hosseinzadeh
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asma Najibi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
364
|
Ibrahim SH, Hirsova P, Gores GJ. Non-alcoholic steatohepatitis pathogenesis: sublethal hepatocyte injury as a driver of liver inflammation. Gut 2018; 67:963-972. [PMID: 29367207 PMCID: PMC5889737 DOI: 10.1136/gutjnl-2017-315691] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/20/2017] [Accepted: 01/04/2018] [Indexed: 02/06/2023]
Abstract
A subset of patients with non-alcoholic fatty liver disease develop an inflammatory condition, termed non-alcoholic steatohepatitis (NASH). NASH is characterised by hepatocellular injury, innate immune cell-mediated inflammation and progressive liver fibrosis. The mechanisms whereby hepatic inflammation occurs in NASH remain incompletely understood, but appear to be linked to the proinflammatory microenvironment created by toxic lipid-induced hepatocyte injury, termed lipotoxicity. In this review, we discuss the signalling pathways induced by sublethal hepatocyte lipid overload that contribute to the pathogenesis of NASH. Furthermore, we will review the role of proinflammatory, proangiogenic and profibrotic hepatocyte-derived extracellular vesicles as disease biomarkers and pathogenic mediators during lipotoxicity. We also review the potential therapeutic strategies to block the feed-forward loop between sublethal hepatocyte injury and liver inflammation.
Collapse
Affiliation(s)
- Samar H Ibrahim
- Division of Pediatrics Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA,Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Petra Hirsova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic,Department of Pharmacology, Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
365
|
Eggink LL, Roby KF, Cote R, Kenneth Hoober J. An innovative immunotherapeutic strategy for ovarian cancer: CLEC10A and glycomimetic peptides. J Immunother Cancer 2018; 6:28. [PMID: 29665849 PMCID: PMC5905120 DOI: 10.1186/s40425-018-0339-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/03/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Receptors specific for the sugar N-acetylgalactosamine (GalNAc) include the human type II, C-type lectin receptor macrophage galactose-type lectin/C-type lectin receptor family member 10A (MGL/CLEC10A/CD301) that is expressed prominently by human peripheral immature dendritic cells, dendritic cells in the skin, alternatively-activated (M2a) macrophages, and to lesser extents by several other types of tissues. CLEC10A is an endocytic receptor on antigen-presenting cells and has been proposed to play an important role in maturation of dendritic cells and initiation of an immune response. In this study, we asked whether a peptide that binds in the GalNAc-binding site of CLEC10A would serve as an effective tool to activate an immune response against ovarian cancer. METHODS A 12-mer sequence emerged from a screen of a phage display library with a GalNAc-specific lectin. The peptide, designated svL4, and a shorter peptide consisting of the C-terminal 6 amino acids, designated sv6D, were synthesized as tetravalent structures based on a tri-lysine core. In silico and in vitro binding assays were developed to evaluate binding of the peptides to GalNAc-specific receptors. Endotoxin-negative peptide solutions were administered by subcutaneous injection and biological activity of the peptides was determined by secretion of cytokines and the response of peritoneal immune cells in mice. Anti-cancer activity was studied in a murine model of ovarian cancer. RESULTS The peptides bound to recombinant human CLEC10A with high avidity, with half-maximal binding in the low nanomolar range. Binding to the receptor was Ca2+-dependent. Subcutaneous injection of low doses of peptides into mice on alternate days resulted in several-fold expansion of populations of mature immune cells within the peritoneal cavity. Peptide sv6D effectively suppressed development of ascites in a murine ovarian cancer model as a monotherapy and in combination with the chemotherapeutic drug paclitaxel or the immunotherapeutic antibody against the receptor PD-1. Toxicity, including antigenicity and release of cytotoxic levels of cytokines, was not observed. CONCLUSION sv6D is a functional ligand for CLEC10A and induces maturation of immune cells in the peritoneal cavity. The peptide caused a highly significant extension of survival of mice with implanted ovarian cancer cells with a favorable toxicity and non-antigenic profile.
Collapse
Affiliation(s)
- Laura L Eggink
- Susavion Biosciences, Inc., 1615 W. University Drive, Suite 132, Tempe, AZ, 85281, USA
| | | | - Robert Cote
- Susavion Biosciences, Inc., 1615 W. University Drive, Suite 132, Tempe, AZ, 85281, USA
| | - J Kenneth Hoober
- Susavion Biosciences, Inc., 1615 W. University Drive, Suite 132, Tempe, AZ, 85281, USA.
| |
Collapse
|
366
|
Han YH, Kim HJ, Na H, Nam MW, Kim JY, Kim JS, Koo SH, Lee MO. RORα Induces KLF4-Mediated M2 Polarization in the Liver Macrophages that Protect against Nonalcoholic Steatohepatitis. Cell Rep 2018; 20:124-135. [PMID: 28683306 DOI: 10.1016/j.celrep.2017.06.017] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 05/04/2017] [Accepted: 06/02/2017] [Indexed: 12/20/2022] Open
Abstract
The regulation of M1/M2 polarization in liver macrophages is closely associated with the progression of nonalcoholic steatohepatitis (NASH); however, the mechanism involved in this process remains unclear. Here, we describe the orphan nuclear receptor retinoic-acid-related orphan receptor α (RORα) as a key regulator of M1/M2 polarization in hepatic residential Kupffer cells (KCs) and infiltrated monocyte-derived macrophages. RORα enhanced M2 polarization in KCs by inducing the kruppel-like factor 4. M2 polarization was defective in KCs and bone-marrow-derived macrophages of the myeloid-specific RORα null mice, and these mice were susceptible to HFD-induced NASH. We found that IL-10 played an important role in connecting the function of M2 KCs to lipid accumulation and apoptosis in hepatocytes. Importantly, M2 polarization was controlled by a RORα activator, JC1-40, which improved symptoms of NASH. Our results suggest that the M2-promoting effects of RORα in liver macrophages may provide better therapeutic strategies against NASH.
Collapse
Affiliation(s)
- Yong-Hyun Han
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeon-Ji Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyelin Na
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Woo Nam
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ju-Yeon Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jun-Seok Kim
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Seung-Hoi Koo
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Mi-Ock Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
367
|
Nishiwaki H, Ito M, Negishi S, Sobue S, Ichihara M, Ohno K. Molecular hydrogen upregulates heat shock response and collagen biosynthesis, and downregulates cell cycles: meta-analyses of gene expression profiles. Free Radic Res 2018; 52:434-445. [PMID: 29424253 DOI: 10.1080/10715762.2018.1439166] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Molecular hydrogen exerts its effect on multiple pathologies, including oxidative stress, inflammation, and apoptosis. However, its molecular mechanisms have not been fully elucidated. In order to explore the effects of molecular hydrogen, we meta-analysed gene expression profiles modulated by molecular hydrogen. We performed microarray analysis of the mouse liver with or without drinking hydrogen water. We also integrated two previously reported microarray datasets of the rat liver into meta-analyses. We used two categories of meta-analysis methods: the cross-platform method and the conventional meta-analysis method (Fisher's method). For each method, hydrogen-modulated pathways were analysed by (i) the hypergeometric test (HGT) in the class of over-representation analysis (ORA), (ii) the gene set enrichment analysis (GSEA) in the class of functional class scoring (FCS), and (iii) the signalling pathway impact analysis (SPIA), pathway regulation score (PRS), and others in the class of pathway topology-based approach (PTA). Pathways in the collagen biosynthesis and the heat-shock response were up-regulated according to (a) HGT with the cross-platform method, (b) GSEA with the cross-platform method, and (c) PRS with the cross-platform method. Pathways in cell cycles were down-regulated according to (a) HGT with the cross-platform method, (b) GSEA with the cross-platform method, and (d) GSEA with the conventional meta-analysis method. Because the heat-shock response leads to up-regulation of collagen biosynthesis and a transient arrest of cell cycles, induction of the heat-shock response is likely to be a primary event induced by molecular hydrogen in the liver of wild-type rodents.
Collapse
Affiliation(s)
- Hiroshi Nishiwaki
- a Division of Neurogenetics , Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Mikako Ito
- a Division of Neurogenetics , Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Shuto Negishi
- a Division of Neurogenetics , Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Sayaka Sobue
- b Department of Biomedical Sciences , College of Life and Health Sciences, Chubu University , Kasugai , Japan
| | - Masatoshi Ichihara
- b Department of Biomedical Sciences , College of Life and Health Sciences, Chubu University , Kasugai , Japan
| | - Kinji Ohno
- a Division of Neurogenetics , Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine , Nagoya , Japan
| |
Collapse
|
368
|
Frawley RP, Smith M, Cesta MF, Hayes-Bouknight S, Blystone C, Kissling GE, Harris S, Germolec D. Immunotoxic and hepatotoxic effects of perfluoro-n-decanoic acid (PFDA) on female Harlan Sprague–Dawley rats and B6C3F1/N mice when administered by oral gavage for 28 days. J Immunotoxicol 2018. [DOI: 10.1080/1547691x.2018.1445145] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Rachel P. Frawley
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Matthew Smith
- Richard Bland College of William & Mary, South Prince George, VA, USA
| | - Mark F. Cesta
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Chad Blystone
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Grace E. Kissling
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Shawn Harris
- Social & Scientific Systems, Inc., Durham, NC, USA
| | - Dori Germolec
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
369
|
Torquato BGS, Oliveira MS, Juliano GR, Aguiar LS, Juliano GR, Silveira LMD, Espíndula AP, Oliveira LF, Cavellani CL, Oliveira FAD, Teixeira VDPA, Ferraz MLF. Analysis of the collagen fibers on autopsied patients’ uterus with the Acquired Immunodeficiency Syndrome. REVISTA BRASILEIRA DE SAÚDE MATERNO INFANTIL 2018. [DOI: 10.1590/1806-93042018000100010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract Objectives: to compare the percentage of collagen fibers in the autopsied women’s uterine body and cervix with and without the Acquired Immunodeficiency Syndrome (Aids). Methods: 30 autopsied women’s medical files were selected from 1988 to 2013. 30 fragments of the uterine body and 30 cervix were collected and then divided into two groups, 15 with Aids and 15 without, The quantification of the collagen fibers of the uterine body and cervix was performed on slides stained with picrosirius, using the KS-300® system. Results: the percentage of collagen fibers was lower for cervix (U=336544; p=0.001) and higher for the uterine body (U=308726,5; p=0.004) in the retroviral group when compared to the group without the disease. The percentage was higher for cervix than the uterine body in the group with Aids (t=0,4793; p=0.0031). the same result was found in the group without Aids (t=2,397; p=0.0637). Conclusions: the increase in the percentage of collagen fibers in the uterine body of women with Aids’ indicates an immune response for viral infection and reveals a failure in keeping the infection restricted to the cervix. The interpretation of the histochemical and morphometric parameters can be useful in the diagnosis associated to HIV infection, contributing for clinical improvement and life expectancy.
Collapse
|
370
|
Abstract
The phenomenal advances in pharmaceutical sciences over the last few decades have led to the development of new therapeutics like peptides, proteins, RNAs, DNAs and highly potent small molecules. Fruitful applications of these therapeutics have been challenged by several anatomical and physiological barriers that limit adequate drug disposition at the site-of-action and by off-target drug distribution to undesired tissues, which together result in the reduced effectiveness and increased side effects of therapeutic agents. As such, the development of drug delivery and targeting systems has been recognised as a cornerstone for future drug development. Research in pharmaceutical sciences is now devoted to tackling delivery challenges through engineering delivery systems that move beyond conventional dosage forms and regimens into state-of-the-art targeted drug delivery tailored toward specific therapeutic needs. Modern drug delivery systems comprise passive and active targeting approaches. While passive targeting relies on the natural course of distribution of drugs or drug carriers in the body, as governed by their physicochemical properties, active targeting often exploits targeting moieties that home preferentially into target tissues. Here, we provide an overview of theories of and approaches to passive and active drug delivery. As the design of drug delivery is dependent on the unique structure of target tissues and organs, we present our discussion in an organ-specific manner with the aim to inspire the development of new strategies for curing disease with high accuracy and efficiency.
Collapse
Affiliation(s)
- Mohammad Alsaggar
- a Department of Pharmaceutical Technology, College of Pharmacy , Jordon University of Science and Technology , Irbid , Jordan
| | - Dexi Liu
- b Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy , University of Georgia , Athens , GA , USA
| |
Collapse
|
371
|
Zhong X, Liu H. Honokiol attenuates diet-induced non-alcoholic steatohepatitis by regulating macrophage polarization through activating peroxisome proliferator-activated receptor γ. J Gastroenterol Hepatol 2018; 33:524-532. [PMID: 28670854 DOI: 10.1111/jgh.13853] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/17/2017] [Accepted: 06/25/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIM Non-alcoholic steatohepatitis (NASH) may develop into hepatic cirrhosis. This study aimed to investigate whether honokiol could prevent NASH induced by high-cholesterol and high-fat (CL) diet in mice and the possible mechanism involved. METHODS Mice were fed with CL diet for 12 weeks to establish a NASH model; honokiol (0.02% w/w in diet) was added to evaluate its effect on NASH. Murine peritoneal macrophages, RAW264.7 and ANA-1 cells, were used to explore the possible mechanisms of honokiol on macrophage polarization. RESULTS Mice developed NASH after fed with CL diet for 12 weeks. Honokiol supplementation alleviated insulin resistance, hepatic steatosis, inflammation, and fibrosis induced by CL diet. Immunohistochemistry showed that honokiol induced more M2 macrophages in livers compared with CL diet alone. Honokiol decreased M1 marker genes (TNFα and MCP-1) and increased M2 marker gene (YM-1, IL-10, IL-4R and IL-13) expression in mice liver compared with CL diet. Moreover, treatment with honokiol lowered alanine aminotransferase and aspartate aminotransferase in serum and preserved liver from lipid peroxidation, evidenced by lowered hepatic malondialdehyde level. Honokiol has antioxidant function, as honokiol upregulated hepatic glutathione and superoxide dismutase level and downregulated hepatic CYP2E1 protein level. Hepatic peroxisome proliferator-activated receptor γ (PPARγ) and its target genes were upregulated by honokiol. Furthermore, honokiol (10 μM) treatment in mouse peritoneal cells, RAW264.7 cells and ANA-1 cells, led to M2 macrophage polarization, whereas a PPARγ antagonist, GW9662, abolished this effect of honokiol. CONCLUSIONS Honokiol can attenuate CL diet-induced NASH and the mechanism in which possibly is polarizing macrophages to M2 phenotype via PPARγ activation.
Collapse
Affiliation(s)
- Xueqing Zhong
- Department of Gastroenterology, The Ninth People's Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai City, 200011, China
| | - Hailin Liu
- Department of Gastroenterology, The Ninth People's Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai City, 200011, China
| |
Collapse
|
372
|
Li Y, Xu Y, Fleischer CC, Huang J, Lin R, Yang L, Mao H. Impact of Anti-Biofouling Surface Coatings on the Properties of Nanomaterials and Their Biomedical Applications. J Mater Chem B 2018; 6:9-24. [PMID: 29479429 PMCID: PMC5821433 DOI: 10.1039/c7tb01695f] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Understanding and subsequently controlling non-specific interactions between engineered nanomaterials and biological environment have become increasingly important for further developing and advancing nanotechnology for biomedical applications. Such non-specific interactions, also known as the biofouling effect, mainly associate with the adsorption of biomolecules (such as proteins, DNAs, RNAs, and peptides) onto the surface of nanomaterials and the adhesion or uptake of nanomaterials by various cells. By altering the surface properties of nanomaterials the biofouling effect can lead to in situ changes of physicochemical properties, pharmacokinetics, functions, and toxicity of nanomaterials. This review provides discussions on the current understanding of the biofouling effect, the factors that affect the non-specific interactions associated with biofouling, and the impact of the biofouling effect on the performances and functions of nanomaterials. An overview of the development and applications of various anti-biofouling coating materials to preserve and improve the properties and functions of engineered nanomaterials for intended biomedical applications is also provided.
Collapse
Affiliation(s)
- Yuancheng Li
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yaolin Xu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Candace C Fleischer
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jing Huang
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Run Lin
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, People's Republic of China
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
373
|
Bartkowiak T, Jaiswal AR, Ager CR, Chin R, Chen CH, Budhani P, Ai M, Reilley MJ, Sebastian MM, Hong DS, Curran MA. Activation of 4-1BB on Liver Myeloid Cells Triggers Hepatitis via an Interleukin-27-Dependent Pathway. Clin Cancer Res 2018; 24:1138-1151. [PMID: 29301830 DOI: 10.1158/1078-0432.ccr-17-1847] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/04/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022]
Abstract
Purpose: Agonist antibodies targeting the T-cell costimulatory receptor 4-1BB (CD137) are among the most effective immunotherapeutic agents across preclinical cancer models. In the clinic, however, development of these agents has been hampered by dose-limiting liver toxicity. Lack of knowledge of the mechanisms underlying this toxicity has limited the potential to separate 4-1BB agonist-driven tumor immunity from hepatotoxicity.Experimental Design: The capacity of 4-1BB agonist antibodies to induce liver toxicity was investigated in immunocompetent mice, with or without coadministration of checkpoint blockade, via (i) measurement of serum transaminase levels, (ii) imaging of liver immune infiltrates, and (iii) qualitative and quantitative assessment of liver myeloid and T cells via flow cytometry. Knockout mice were used to clarify the contribution of specific cell subsets, cytokines, and chemokines.Results: We find that activation of 4-1BB on liver myeloid cells is essential to initiate hepatitis. Once activated, these cells produce interleukin-27 that is required for liver toxicity. CD8 T cells infiltrate the liver in response to this myeloid activation and mediate tissue damage, triggering transaminase elevation. FoxP3+ regulatory T cells limit liver damage, and their removal dramatically exacerbates 4-1BB agonist-induced hepatitis. Coadministration of CTLA-4 blockade ameliorates transaminase elevation, whereas PD-1 blockade exacerbates it. Loss of the chemokine receptor CCR2 blocks 4-1BB agonist hepatitis without diminishing tumor-specific immunity against B16 melanoma.Conclusions: 4-1BB agonist antibodies trigger hepatitis via activation and expansion of interleukin-27-producing liver Kupffer cells and monocytes. Coadministration of CTLA-4 and/or CCR2 blockade may minimize hepatitis, but yield equal or greater antitumor immunity. Clin Cancer Res; 24(5); 1138-51. ©2018 AACR.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CTLA-4 Antigen/antagonists & inhibitors
- CTLA-4 Antigen/immunology
- Cell Line, Tumor/transplantation
- Chemical and Drug Induced Liver Injury/etiology
- Chemical and Drug Induced Liver Injury/immunology
- Chemical and Drug Induced Liver Injury/pathology
- Drug Evaluation, Preclinical
- Humans
- Interleukins/immunology
- Interleukins/metabolism
- Liver/cytology
- Liver/drug effects
- Liver/immunology
- Liver/pathology
- Male
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myeloid Cells/drug effects
- Myeloid Cells/immunology
- Myeloid Cells/metabolism
- Receptors, CCR2/antagonists & inhibitors
- Receptors, CCR2/immunology
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Skin Neoplasms/drug therapy
- Skin Neoplasms/immunology
- Skin Neoplasms/pathology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9/agonists
Collapse
Affiliation(s)
- Todd Bartkowiak
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Ashvin R Jaiswal
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Casey R Ager
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Renee Chin
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chao-Hsien Chen
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Pratha Budhani
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Midan Ai
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Matthew J Reilley
- Department of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Manu M Sebastian
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David S Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael A Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
374
|
Crawford JM, Bioulac-Sage P, Hytiroglou P. Structure, Function, and Responses to Injury. MACSWEEN'S PATHOLOGY OF THE LIVER 2018:1-87. [DOI: 10.1016/b978-0-7020-6697-9.00001-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
375
|
Pérez-Cabeza de Vaca R, Domínguez-López M, Guerrero-Celis N, Rodríguez-Aguilera JR, Chagoya de Sánchez V. Inflammation is regulated by the adenosine derivative molecule, IFC-305, during reversion of cirrhosis in a CCl4 rat model. Int Immunopharmacol 2018; 54:12-23. [DOI: 10.1016/j.intimp.2017.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 10/03/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023]
|
376
|
Pappachan JM, Babu S, Krishnan B, Ravindran NC. Non-alcoholic Fatty Liver Disease: A Clinical Update. J Clin Transl Hepatol 2017; 5:384-393. [PMID: 29226105 PMCID: PMC5719196 DOI: 10.14218/jcth.2017.00013] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/31/2017] [Accepted: 06/24/2017] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently the most common chronic liver disease in developed countries because of the obesity epidemic. The disease increases liver-related morbidity and mortality, and often increases the risk for other comorbidities, such as type 2 diabetes and cardiovascular disease. Insulin resistance related to metabolic syndrome is the main pathogenic trigger that, in association with adverse genetic, humoral, hormonal and lifestyle factors, precipitates development of NAFLD. Biochemical markers and radiological imaging, along with liver biopsy in selected cases, help in diagnosis and prognostication. Intense lifestyle changes aiming at weight loss are the main therapeutic intervention to manage cases. Insulin sensitizers, antioxidants, lipid lowering agents, incretin-based drugs, weight loss medications, bariatric surgery and liver transplantation may be necessary for management in some cases along with lifestyle measures. This review summarizes the latest evidence on the epidemiology, natural history, pathogenesis, diagnosis and management of NAFLD.
Collapse
Affiliation(s)
- Joseph M Pappachan
- Department of Endocrinology, Diabetes & Metabolism, Royal Lancaster Infirmary, University Hospitals of Morecambe Bay NHS Trust, Lancaster, UK
| | - Shithu Babu
- Department of Medicine, Dorset County Hospital, Dorchester, UK
| | - Babu Krishnan
- Department of Gastroenterology & Hepatology, Royal Bournemouth Hospital, Bournemouth, UK
| | - Nishal C Ravindran
- Department of Gastroenterology & Hepatology, Hinchingbrooke Hospital, Hinchingbrooke, Huntingdon, UK
| |
Collapse
|
377
|
Abstract
As the HIV population continues to live longer as a result of antiretroviral therapy, liver-related mortality has become one of the leading causes of non-AIDS related death in this patient population. The liver possesses a remarkable regenerative capacity but undergoes complex biological changes in response to aging and inflammation that result in decreased cellular regeneration and a tipping of the scales towards fibrogenesis. Patients with HIV infection have serological evidence of ongoing inflammation, with elevations in some biomarkers persisting despite adequate virologic control. In addition, HIV-co-infected patients have markers of advanced age on liver biopsy and increased prevalence of fibrosis as compared to an age-matched HCV mono-infected cohort. In this review, we will discuss the biology of aging, age-related changes in the liver, and the relevant mechanisms by which HIV causes inflammation in the context of accelerated aging, fibrosis of the liver, and other viral co-infection.
Collapse
Affiliation(s)
- Austin W Chan
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, 315 Trent Dr, PO Box 102359, Durham, NC, 27710, USA.
| | - Yuval A Patel
- Division of Gastroenterology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Steve Choi
- Division of Gastroenterology, Durham VA Medical Center, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
378
|
Russell JO, Monga SP. Wnt/β-Catenin Signaling in Liver Development, Homeostasis, and Pathobiology. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 13:351-378. [PMID: 29125798 DOI: 10.1146/annurev-pathol-020117-044010] [Citation(s) in RCA: 334] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The liver is an organ that performs a multitude of functions, and its health is pertinent and indispensable to survival. Thus, the cellular and molecular machinery driving hepatic functions is of utmost relevance. The Wnt signaling pathway is one such signaling cascade that enables hepatic homeostasis and contributes to unique hepatic attributes such as metabolic zonation and regeneration. The Wnt/β-catenin pathway plays a role in almost every facet of liver biology. Furthermore, its aberrant activation is also a hallmark of various hepatic pathologies. In addition to its signaling function, β-catenin also plays a role at adherens junctions. Wnt/β-catenin signaling also influences the function of many different cell types. Due to this myriad of functions, Wnt/β-catenin signaling is complex, context-dependent, and highly regulated. In this review, we discuss the Wnt/β-catenin signaling pathway, its role in cell-cell adhesion and liver function, and the cell type-specific roles of Wnt/β-catenin signaling as it relates to liver physiology and pathobiology.
Collapse
Affiliation(s)
- Jacquelyn O Russell
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Pittsburgh Liver Research Center, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15261, USA;
| |
Collapse
|
379
|
Risalde MA, Rivero-Juárez A, Romero-Palomo F, Frías M, López-López P, Cano-Terriza D, García-Bocanegra I, Jiménez-Ruíz S, Camacho Á, Machuca I, Gomez-Villamandos JC, Rivero A. Persistence of hepatitis E virus in the liver of non-viremic naturally infected wild boar. PLoS One 2017; 12:e0186858. [PMID: 29117209 PMCID: PMC5678868 DOI: 10.1371/journal.pone.0186858] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/09/2017] [Indexed: 12/16/2022] Open
Abstract
Hepatitis E virus (HEV) is an emerging zoonotic pathogen with pigs and wild boar serving as reservoirs for human infection through direct contact with infected animals or the consumption of raw or undercooked pork products. The liver is considered the main target site of HEV replication in swine and an important organ in the pathogenesis of the disease. The aim of this study was to characterize the target liver cells for HEV entry in naturally infected wild boar and to evaluate the type and severity of the pathological changes in order to reach a better understanding of the hepatic pathogenic mechanisms involved in hepatitis E. In total, 58 livers from hunted wild boar were histopathologically evaluated. The presence of specific HEV antibodies in serum was determined by indirect ELISA. Immunohistochemistry was used for the detection of HEV antigen and Real time RT-PCR to detect HEV RNA in liver and serum. HEV seroprevalence in these animals was of 5.197% (CI95%: 1.77–14.14). By Real time RT-PCR, HEV was detected in the liver tissue of four wild boar (6.8%; CI95%: 2.7–16.4) and only one animal was also positive in serum (1.7%; CI95%: 0.3–9.1). The non-viremic animals naturally infected with HEV presented evidence of liver infection, mainly in Kupffer cells and liver sinusoidal endothelial cells, without apparent associated hepatitis lesions. This study supports the hypothesis that low viral titers may persist in the liver of non-viremic individuals, giving thus the possibility of consumption of contaminated liver of animals diagnosed as HEV-negative in serum. Further immunopathogenic studies are necessary to elucidate the mechanisms responsible for this process and to evaluate the protocols of HEV diagnosis in animals destined for human consumption.
Collapse
Affiliation(s)
- María A. Risalde
- Unidad de Enfermedades Infecciosas, Hospital Universitario Reina Sofía de Córdoba, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Antonio Rivero-Juárez
- Unidad de Enfermedades Infecciosas, Hospital Universitario Reina Sofía de Córdoba, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Fernando Romero-Palomo
- Dpto. de Anatomía y Anatomía Patológica Veterinaria, Facultad de Veterinaria, Universidad de Córdoba (UCO)—Agrifood Excellence International Campus (ceiA3), Córdoba, Spain
| | - Mario Frías
- Unidad de Enfermedades Infecciosas, Hospital Universitario Reina Sofía de Córdoba, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Pedro López-López
- Unidad de Enfermedades Infecciosas, Hospital Universitario Reina Sofía de Córdoba, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - David Cano-Terriza
- Dpto. de Sanidad Animal, Facultad de Veterinaria, UCO—ceiA3, Córdoba, Spain
| | | | - Saúl Jiménez-Ruíz
- Dpto. de Sanidad Animal, Facultad de Veterinaria, UCO—ceiA3, Córdoba, Spain
| | - Ángela Camacho
- Unidad de Enfermedades Infecciosas, Hospital Universitario Reina Sofía de Córdoba, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Isabel Machuca
- Unidad de Enfermedades Infecciosas, Hospital Universitario Reina Sofía de Córdoba, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - José C. Gomez-Villamandos
- Dpto. de Anatomía y Anatomía Patológica Veterinaria, Facultad de Veterinaria, Universidad de Córdoba (UCO)—Agrifood Excellence International Campus (ceiA3), Córdoba, Spain
| | - Antonio Rivero
- Unidad de Enfermedades Infecciosas, Hospital Universitario Reina Sofía de Córdoba, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- * E-mail:
| |
Collapse
|
380
|
Secchi MF, Crescenzi M, Masola V, Russo FP, Floreani A, Onisto M. Heparanase and macrophage interplay in the onset of liver fibrosis. Sci Rep 2017; 7:14956. [PMID: 29097791 PMCID: PMC5668295 DOI: 10.1038/s41598-017-14946-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/18/2017] [Indexed: 12/26/2022] Open
Abstract
The heparan sulfate endoglycosidase heparanase (HPSE) is involved in tumor growth, chronic inflammation and fibrosis. Since a role for HPSE in chronic liver disease has not been demonstrated to date, the current study was aimed at investigating the involvement of HPSE in the pathogenesis of chronic liver injury. Herein, we revealed that HPSE expression increased in mouse livers after carbon tetrachloride (CCl4)-mediated chronic induction of fibrosis, but with a trend to decline during progression of the disease. In mouse fibrotic liver tissues HPSE immunostaining was restricted in necro-inflammatory areas, co-localizing with F4/80 macrophage marker and TNF-α. TNF-α treatment induced HPSE expression as well as HPSE secretion in U937 macrophages. Moreover, macrophage-secreted HPSE regulated the expression of α-SMA and fibronectin in hepatic stellate LX-2 cells. Finally, HPSE activity increased in the plasma of patients with liver fibrosis but it inversely correlated with liver stiffness. Our results suggest the involvement of HPSE in early phases of reaction to liver damage and inflammatory macrophages as an important source of HPSE. HPSE seems to play a key role in the macrophage-mediated activation of hepatic stellate cells (HSCs), thus suggesting that HPSE targeting could be a new therapeutic option in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Maria Francesca Secchi
- University of Padova, Dept. Biomedical Sciences, 35121, Padova, Italy
- University of Padova, Dept. of Surgery, Oncology and Gastroenterology, 35124, Padova, Italy
| | - Marika Crescenzi
- University of Padova, Dept. of Surgery, Oncology and Gastroenterology, 35124, Padova, Italy
| | - Valentina Masola
- University of Padova, Dept. Biomedical Sciences, 35121, Padova, Italy
- University of Verona, Dept. of Medicine, 37134, Verona, Italy
| | - Francesco Paolo Russo
- University of Padova, Dept. of Surgery, Oncology and Gastroenterology, 35124, Padova, Italy.
| | - Annarosa Floreani
- University of Padova, Dept. of Surgery, Oncology and Gastroenterology, 35124, Padova, Italy
| | - Maurizio Onisto
- University of Padova, Dept. Biomedical Sciences, 35121, Padova, Italy.
| |
Collapse
|
381
|
Kaspar MB, Sterling RK. Mechanisms of liver disease in patients infected with HIV. BMJ Open Gastroenterol 2017; 4:e000166. [PMID: 29119002 PMCID: PMC5663263 DOI: 10.1136/bmjgast-2017-000166] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/20/2017] [Accepted: 09/03/2017] [Indexed: 12/20/2022] Open
Abstract
Objective To describe the various mechanisms of liver disease in patients with HIV infection, and to link these mechanisms to disease states which may utilise them. Background Non-AIDS causes of morbidity and mortality are becoming increasingly common in patients chronically infected with HIV. In particular, liver-related diseases have risen to become one of the leading causes of non-AIDS-related death. A thorough understanding of the mechanisms driving the development of liver disease in these patients is essential when evaluating and caring for these patients. Methods The literature regarding mechanisms of liver disease by which different disease entities may cause hepatic injury and fibrosis was reviewed and synthesised. Results A number of discrete mechanisms of injury were identified, to include: oxidative stress, mitochondrial injury, lipotoxicity, immune-mediated injury, cytotoxicity, toxic metabolite accumulation, gut microbial translocation, systemic inflammation, senescence and nodular regenerative hyperplasia. Disease states may use any number of these mechanisms to exert their effect on the liver. Conclusions The mechanisms by which liver injury may occur in patients with HIV infection are numerous. Most disease states use multiple mechanisms to cause hepatic injury and fibrosis.
Collapse
Affiliation(s)
- Matthew B Kaspar
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Richard K Sterling
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA.,Section of Hepatology, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA.,Division of Infectious Disease, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| |
Collapse
|
382
|
Gilboa D, Haim-Ohana Y, Deshet-Unger N, Ben-Califa N, Hiram-Bab S, Reuveni D, Zigmond E, Gassmann M, Gabet Y, Varol C, Neumann D. Erythropoietin enhances Kupffer cell number and activity in the challenged liver. Sci Rep 2017; 7:10379. [PMID: 28871174 PMCID: PMC5583293 DOI: 10.1038/s41598-017-11082-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/15/2017] [Indexed: 02/07/2023] Open
Abstract
Erythropoietin (EPO) is the main hormone driving mammalian erythropoiesis, with activity mediated via the surface receptor, EPO-R, on erythroid progenitor cells. Recombinant human EPO is currently used clinically for the treatment of anemia in patients with end-stage renal disease, and in certain cancer patients suffering from anemia induced either by the tumor itself or by chemotherapy. EPO-R expression is also detected in non-erythroid cells, including macrophages present in the peritoneum, spleen, and bone marrow (BM). Here we demonstrate that Kupffer cells (KCs) - the liver-resident macrophages - are EPO targets. We show that, in vitro, EPO initiated intracellular signalling and enhanced phagocytosis in a rat KC line (RKC-2) and in sorted KCs. Moreover, continuous EPO administration in mice, resulted in an increased number of KCs, up-regulation of liver EPO-R expression and elevated production of the monocyte chemoattractant CCL2, with corresponding egress of Ly6Chi monocytes from the BM. In a model of acute acetaminophen-induced liver injury, EPO administration increased the recruitment of Ly6Chi monocytes and neutrophils to the liver. Taken together, our results reveal a new role for EPO in stimulating KC proliferation and phagocytosis, and in recruiting Ly6Chi monocytes in response to liver injury.
Collapse
Affiliation(s)
- Dafna Gilboa
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yasmin Haim-Ohana
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Naamit Deshet-Unger
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nathalie Ben-Califa
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sahar Hiram-Bab
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Debby Reuveni
- The Research Center for Digestive Tract and Liver Diseases, Sourasky Medical Center and Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ehud Zigmond
- The Research Center for Digestive Tract and Liver Diseases, Sourasky Medical Center and Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Max Gassmann
- Institute for Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chen Varol
- The Research Center for Digestive Tract and Liver Diseases, Sourasky Medical Center and Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Drorit Neumann
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
383
|
Kupffer cells activation promoted binge drinking-induced fatty liver by activating lipolysis in white adipose tissues. Toxicology 2017; 390:53-60. [DOI: 10.1016/j.tox.2017.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/23/2017] [Accepted: 09/01/2017] [Indexed: 02/07/2023]
|
384
|
Stradiot L, Verhulst S, Roosens T, Øie C, Moya I, Halder G, Mannaerts I, van Grunsven L. Functionality based method for simultaneous isolation of rodent hepatic sinusoidal cells. Biomaterials 2017; 139:91-101. [DOI: 10.1016/j.biomaterials.2017.05.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/26/2017] [Accepted: 05/29/2017] [Indexed: 01/20/2023]
|
385
|
Hepatic Immune Microenvironment in Alcoholic and Nonalcoholic Liver Disease. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6862439. [PMID: 28852648 PMCID: PMC5567444 DOI: 10.1155/2017/6862439] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/06/2017] [Indexed: 01/18/2023]
Abstract
Many types of innate (natural killer cells, natural killer T cells, and Kupffer cells/macrophages) and adaptive (T cells and B cells) immune cells are enriched within the liver and function in liver physiology and pathology. Liver pathology is generally induced by two types of immunologic insults: failure to eliminate antigens derived from the gastrointestinal tract which are important for host defense and an impaired tissue protective tolerance mechanism that helps reduce the negative outcomes of immunopathology. Accumulating evidence from the last several decades suggests that hepatic immune cells play an important role in the pathogenesis of alcoholic and nonalcoholic liver injury and inflammation in humans and mice. Here, we focus on the roles of innate and adaptive immune cells in the development and maintenance of alcoholic liver disease and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Additionally, the pathogenesis of liver disease and new therapeutic targets for preventing and treating alcoholic liver disease and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis are discussed.
Collapse
|
386
|
Saikia P, Bellos D, McMullen MR, Pollard KA, de la Motte C, Nagy LE. MicroRNA 181b-3p and its target importin α5 regulate toll-like receptor 4 signaling in Kupffer cells and liver injury in mice in response to ethanol. Hepatology 2017; 66:602-615. [PMID: 28257601 PMCID: PMC5519440 DOI: 10.1002/hep.29144] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/02/2017] [Accepted: 02/28/2017] [Indexed: 12/13/2022]
Abstract
UNLABELLED Increased inflammatory signaling by Kupffer cells contributes to alcoholic liver disease (ALD). Here we investigated the impact of small, specific-sized hyaluronic acid of 35 kD (HA35) on ethanol-induced sensitization of Kupffer cells, as well as ethanol-induced liver injury in mice. Unbiased analysis of microRNA (miRNA) expression in Kupffer cells identified miRNAs regulated by both ethanol and HA35. Toll-like receptor 4 (TLR4)-mediated signaling was assessed in primary cultures of Kupffer cells from ethanol- and pair-fed rats after treatment with HA35. Female C57BL6/J mice were fed ethanol or pair-fed control diets and treated or not with HA35. TLR4 signaling was increased in Kupffer cells by ethanol; this sensitization was normalized by ex vivo treatment with HA35. Next generation sequencing of Kupffer cell miRNA identified miRNA 181b-3p (miR181b-3p) as sensitive to both ethanol and HA35. Importin α5, a protein involved in p65 translocation to the nucleus, was identified as a target of miR181b-3p; importin α5 protein was increased in Kupffer cells from ethanol-fed rats, but decreased by HA35 treatment. Overexpression of miR181b-3p decreased importin α5 expression and normalized lipopolysaccharide-stimulated tumor necrosis factor α expression in Kupffer cells from ethanol-fed rats. In a mouse model of ALD, ethanol feeding decreased miR181b-3p in liver and increased expression of importin α5 in nonparenchymal cells. Treatment with HA35 normalized these changes and also protected mice from ethanol-induced liver and intestinal injury. CONCLUSION miR181b-3p is dynamically regulated in Kupffer cells and mouse liver in response to ethanol and treatment with HA35. miR181b-3p modulates expression of importin α5 and sensitivity of TLR4-mediated signaling. This study identifies a miR181b-3p-importin α5 axis in regulating inflammatory signaling pathways in hepatic macrophages. (Hepatology 2017;66:602-615).
Collapse
Affiliation(s)
- Paramananda Saikia
- Department of Pathobiology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, Ohio.,Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Damien Bellos
- Department of Pathobiology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, Ohio.,Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Megan R McMullen
- Department of Pathobiology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, Ohio
| | - Katherine A Pollard
- Department of Pathobiology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, Ohio
| | - Carol de la Motte
- Department of Pathobiology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, Ohio.,Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Laura E Nagy
- Department of Pathobiology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, Ohio.,Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio.,Department of Gastroenterology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
387
|
HMGA2, a driver of inflammation, is associated with hypermethylation in acute liver injury. Toxicol Appl Pharmacol 2017; 328:34-45. [DOI: 10.1016/j.taap.2017.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/23/2017] [Accepted: 05/08/2017] [Indexed: 12/11/2022]
|
388
|
McCracken JM, Chalise P, Briley SM, Dennis KL, Jiang L, Duncan FE, Pritchard MT. C57BL/6 Substrains Exhibit Different Responses to Acute Carbon Tetrachloride Exposure: Implications for Work Involving Transgenic Mice. Gene Expr 2017; 17:187-205. [PMID: 28234577 PMCID: PMC5500426 DOI: 10.3727/105221617x695050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biological differences exist between strains of laboratory mice, and it is becoming increasingly evident that there are differences between substrains. In the C57BL/6 mouse, the primary substrains are called 6J and 6N. Previous studies have demonstrated that 6J and 6N mice differ in response to many experimental models of human disease. The aim of our study was to determine if differences exist between 6J and 6N mice in terms of their response to acute carbon tetrachloride (CCl4) exposure. Mice were given CCl4 once and were euthanized 12 to 96 h later. Relative to 6J mice, we found that 6N mice had increased liver injury but more rapid repair. This was because of the increased speed with which necrotic hepatocytes were removed in 6N mice and was directly related to increased recruitment of macrophages to the liver. In parallel, enhanced liver regeneration was observed in 6N relative to 6J mice. Hepatic stellate cell activation occurred earlier in 6N mice, but there was no difference in matrix metabolism between substrains. Taken together, these data demonstrate specific and significant differences in how the C57BL/6 substrains respond to acute CCl4, which has important implications for all mouse studies utilizing this model.
Collapse
Affiliation(s)
- Jennifer M. McCracken
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Prabhakar Chalise
- †Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Shawn M. Briley
- ‡Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Katie L. Dennis
- §Department of Pathology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lu Jiang
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Francesca E. Duncan
- ‡Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michele T. Pritchard
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
389
|
Kim EM, Kwak YS, YI MH, Kim JY, Sohn WM, Yong TS. Clonorchis sinensis antigens alter hepatic macrophage polarization in vitro and in vivo. PLoS Negl Trop Dis 2017; 11:e0005614. [PMID: 28542159 PMCID: PMC5460902 DOI: 10.1371/journal.pntd.0005614] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 06/06/2017] [Accepted: 04/28/2017] [Indexed: 01/12/2023] Open
Abstract
Clonorchis sinensis infection elicits hepatic inflammation, which can lead to cholangitis, periductal hepatic fibrosis, liver cirrhosis, and even cholangiocarcinoma. Hepatic macrophages are an intrinsic element of both innate and acquired immunity. This study was conducted to demonstrate the dynamics of hepatic macrophage polarization during C. sinensis infection in mice and to identify factors regulating this polarization. Treatment of hepatic macrophages isolated from normal mice with C. sinensis excretory/secretory products (ESPs) resulted in the preferential generation of classically activated hepatic macrophages (M1 macrophages) and the production of pro-inflammatory cytokines. Additionally, cells stimulated with C. sinensis ESPs exhibited changes in cellular morphology. During the early stages of C. sinensis infection, hepatic macrophages preferentially differentiated into M1 macrophages; however, during the C. sinensis mature worm stage, when eggs are released, there were significant increases in the abundance of both M1 macrophages and alternatively activated hepatic macrophages (M2 macrophages). Moreover, there was a further increase in the M2 macrophage count during the fibrotic and cirrhotic stage of infection. Notably, this fibrotic and cirrhotic stage promoted a strong increase in the proportion of Arg-1-producing macrophages (M2 phenotype), which were associated with fibrosis and tissue repair in the liver. Our results suggest that the dynamic polarization of hepatic macrophages as C. sinensis infection progresses is related to the histological lesions present in liver tissue. Hepatic macrophages thus play an important role in local immunity during C. sinensis infection. Infection with Clonorchis sinensis is a major public health problem in Asia, resulting in loss of liver function and chronic liver diseases, including cancers. However, to the best of our knowledge, the immune response to fluke infection in the liver has not been systematically investigated. Here, we demonstrated that C. sinensis infection triggered a shift in the characteristics of macrophages, the primary cells associated with host immunity, throughout the course of the worm’s life cycle. Eventually, the increased number of M2 macrophages may result in fibrosis and the remodeling of bile ducts within the liver. Our findings suggest that, while the infection initially led to changes in the immune response that facilitated C. sinensis survival, ongoing infection may also reduce the severity of disruption of liver function. Hepatic macrophages activated during C. sinensis infection may not only be operating in histological lesions around the bile duct, but may also play a role in local immunity.
Collapse
Affiliation(s)
- Eun-Min Kim
- Department of Environmental Medical Biology and Arthropods of Medical Importance Resource Research Bank, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - You Shine Kwak
- Department of Environmental Medical Biology and Arthropods of Medical Importance Resource Research Bank, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Myung-Hee YI
- Department of Environmental Medical Biology and Arthropods of Medical Importance Resource Research Bank, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Ju Yeong Kim
- Department of Environmental Medical Biology and Arthropods of Medical Importance Resource Research Bank, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Tai-Soon Yong
- Department of Environmental Medical Biology and Arthropods of Medical Importance Resource Research Bank, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
390
|
RBC Adherence of Immune Complexes Containing Botulinum Toxin Improves Neutralization and Macrophage Uptake. Toxins (Basel) 2017; 9:toxins9050173. [PMID: 28534855 PMCID: PMC5450721 DOI: 10.3390/toxins9050173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 12/24/2022] Open
Abstract
In the paralytic disease botulism, the botulinum neurotoxin (BoNT) passes through the bloodstream to reach and inactivate neuromuscular junctions. Monoclonal antibodies (mAbs) may be useful BoNT countermeasures, as mAb combinations can rapidly clear BoNT from the blood circulation. We have previously shown that the BoNT-neutralizing potency of mAbs can be improved through red blood cell (RBC) immunoadherence. For example, a fusion protein (FP) that adheres biotinylated mAbs to the RBC surface enabled a pair of mAbs to neutralize 5000 LD50 BoNT/A in the mouse protection assay. Here, we added two mAbs to that combination, creating a 4-mAb:FP complex that neutralized 40,000 LD50 BoNT/A in vivo, and analyzed functional correlates of neutralization. The FP enhanced potency of BoNT/A immune complexes, providing the greatest magnitude of benefit to the 4-mAb combination. RBC binding of a BoNT/A complexed with 4-mAb:FP exhibited a bi-phasic clearance process in vivo. Most of the complexes were cleared within five minutes; the rest were cleared gradually over many hours. Peritoneal macrophages showed better uptake of the 4-mAb complex than the 3-mAb complex, and this was not affected by the presence of the FP. However, the addition of RBCs to the 4-mAb:FP BoNT/A doubled macrophage uptake of the complexes. Lastly, the 4-mAb:FP BoNT/A complex synergistically induced M2 macrophage polarization, as indicated by IL-10 expression, whether or not RBCs were present. RBC-targeted immunoadherence through the FP is a potent enhancer of mAb-mediated BoNT/A neutralization in vivo, and can have positive effects on BoNT/A sequestration, immune complex uptake, and macrophage activation.
Collapse
|
391
|
Park JK, Shao M, Kim MY, Baik SK, Cho MY, Utsumi T, Satoh A, Ouyang X, Chung C, Iwakiri Y. An endoplasmic reticulum protein, Nogo-B, facilitates alcoholic liver disease through regulation of kupffer cell polarization. Hepatology 2017; 65:1720-1734. [PMID: 28090670 PMCID: PMC5397326 DOI: 10.1002/hep.29051] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 12/29/2016] [Accepted: 01/11/2017] [Indexed: 12/17/2022]
Abstract
UNLABELLED Nogo-B (Reticulon 4B) is an endoplasmic reticulum (ER) resident protein that regulates ER structure and function. Because ER stress is known to induce M2 macrophage polarization, we examined whether Nogo-B regulates M1/M2 polarization of Kupffer cells and alters the pathogenesis of alcoholic liver disease (ALD). M1 and M2 phenotypes were assessed in relation to Nogo-B expression and disease severity in liver specimens from ALD patients (NCT01875211). Liver specimens from wild-type (WT) and Nogo-B knockout (KO) mice fed a control or Lieber-DeCarli ethanol liquid diet (5% ethanol) for 6 weeks were analyzed for liver injury and steatosis. Kupffer cells isolated from WT and Nogo-B KO mice were assessed for M1 and M2 activation. A significant positive correlation was observed between Nogo-B positive Kupffer cells and disease severity in ALD patients (n = 30, r = 0.66, P = 0.048). Furthermore, Nogo-B-positive Kupffer cells were correlated with M1 activation (inducible nitric oxide synthase) (r = 0.50, P = 0.05) and negatively with markers of M2 status (CD163) (r = -0.48, P = 0.07) in these patients. WT mice exhibited significantly increased liver injury (P < 0.05) and higher hepatic triglyceride levels (P < 0.01) compared with Nogo-B KO mice in response to chronic ethanol feeding. Nogo-B in Kupffer cells promoted M1 polarization, whereas absence of Nogo-B increased ER stress and M2 polarization in Kupffer cells. CONCLUSION Nogo-B is permissive of M1 polarization of Kupffer cells, thereby accentuating liver injury in ALD in humans and mice. Nogo-B in Kupffer cells may represent a new therapeutic target for ALD. (Hepatology 2017;65:1720-1734).
Collapse
Affiliation(s)
- Jin-Kyu Park
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, 06520, U.S.A.,Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Mingjie Shao
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, 06520, U.S.A.,Transplantation Surgery Center, Third Xiangya Hospital, Central South University, Changsha, 410013, P.R. China
| | - Moon Young Kim
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, 06520, U.S.A.,Department of Internal Medicine, Wonju Severance Christian Hospital, Yonsei UniversityWonju College of Medicine, Wonju, Republic of Korea
| | - Soon Koo Baik
- Department of Internal Medicine, Wonju Severance Christian Hospital, Yonsei UniversityWonju College of Medicine, Wonju, Republic of Korea
| | - Mee Yon Cho
- Department of Pathology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Teruo Utsumi
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, 06520, U.S.A
| | - Ayano Satoh
- The Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Xinsho Ouyang
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, 06520, U.S.A
| | - Chuhan Chung
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, 06520, U.S.A.,VA CT Healthcare System, West Haven, CT, 06516, U.S.A
| | - Yasuko Iwakiri
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, 06520, U.S.A
| |
Collapse
|
392
|
Lonardo A, Nascimbeni F, Targher G, Bernardi M, Bonino F, Bugianesi E, Casini A, Gastaldelli A, Marchesini G, Marra F, Miele L, Morisco F, Petta S, Piscaglia F, Svegliati-Baroni G, Valenti L, Bellentani S. AISF position paper on nonalcoholic fatty liver disease (NAFLD): Updates and future directions. Dig Liver Dis 2017; 49:471-483. [PMID: 28215516 DOI: 10.1016/j.dld.2017.01.147] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 02/07/2023]
Abstract
This review summarizes our current understanding of nonalcoholic fatty liver disease (NAFLD), a multi-factorial systemic disease resulting from a complex interaction between a specific genetic background and multiple environmental/metabolic "hits". The role of gut microbiota, lipotoxicity, inflammation and their molecular pathways is reviewed in-depth. We also discuss the epidemiology and natural history of NAFLD by pinpointing the remarkably high prevalence of NAFLD worldwide and its inherent systemic complications: hepatic (steatohepatitis, advanced fibrosis and cirrhosis), cardio-metabolic (cardiovascular disease, cardiomyopathy, arrhythmias and type 2 diabetes) and neoplastic (primary liver cancers and extra-hepatic cancers). Moreover, we critically report on the diagnostic role of non-invasive biomarkers, imaging techniques and liver biopsy, which remains the reference standard for diagnosing the disease, but cannot be proposed to all patients with suspected NAFLD. Finally, the management of NAFLD is also reviewed, by highlighting the lifestyle changes and the pharmacological options, with a focus on the innovative drugs. We conclude that the results of ongoing studies are eagerly expected to lead to introduce into the clinical arena new diagnostic and prognostic biomarkers, prevention and surveillance strategies as well as to new drugs for a tailored approach to the management of NAFLD in the individual patient.
Collapse
|
393
|
Sun YY, Li XF, Meng XM, Huang C, Zhang L, Li J. Macrophage Phenotype in Liver Injury and Repair. Scand J Immunol 2017; 85:166-174. [PMID: 27491503 DOI: 10.1111/sji.12468] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/19/2016] [Indexed: 12/14/2022]
Abstract
Macrophages hold a critical position in the pathogenesis of liver injury and repair, in which their infiltrations is regarded as a main feature for both acute and chronic liver diseases. It is noted that, based on the distinct phenotypes and origins, hepatic macrophages are capable of clearing pathogens, promoting/or inhibiting liver inflammation, while regulating liver fibrosis and fibrolysis through interplaying with hepatocytes and hepatic stellate cells (HSC) via releasing different types of pro- or anti-inflammatory cytokines and growth factors. Macrophages are typically categorized into M1 or M2 phenotypes by adapting to local microenvironment during the progression of liver injury. In most occasions, M1 macrophages play a pro-inflammatory role in liver injury, while M2 macrophages exert an anti-inflammatory or pro-fibrotic role during liver repair and fibrosis. In this review, we focused on the up-to-date information about the phenotypic and functional plasticity of the macrophages and discussed the detailed mechanisms through which the phenotypes and functions of macrophages are regulated in different stages of liver injury and repair. Moreover, their roles in determining the fate of liver diseases were also summarized. Finally, the macrophage-targeted therapies against liver diseases were also be evaluated.
Collapse
Affiliation(s)
- Y-Y Sun
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University (AMU), Anhui Medical University, Hefei, China.,Anhui Institute of Innovative Drugs, Hefei, China
| | - X-F Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University (AMU), Anhui Medical University, Hefei, China.,Anhui Institute of Innovative Drugs, Hefei, China
| | - X-M Meng
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University (AMU), Anhui Medical University, Hefei, China.,Anhui Institute of Innovative Drugs, Hefei, China
| | - C Huang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University (AMU), Anhui Medical University, Hefei, China.,Anhui Institute of Innovative Drugs, Hefei, China
| | - L Zhang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University (AMU), Anhui Medical University, Hefei, China.,Anhui Institute of Innovative Drugs, Hefei, China
| | - J Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University (AMU), Anhui Medical University, Hefei, China.,Anhui Institute of Innovative Drugs, Hefei, China
| |
Collapse
|
394
|
Luo W, Xu Q, Wang Q, Wu H, Hua J. Effect of modulation of PPAR-γ activity on Kupffer cells M1/M2 polarization in the development of non-alcoholic fatty liver disease. Sci Rep 2017; 7:44612. [PMID: 28300213 PMCID: PMC5353732 DOI: 10.1038/srep44612] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/10/2017] [Indexed: 02/07/2023] Open
Abstract
Abnormal lipid-mediated hepatic inflammatory-immune dysfunction and chronic low grade inflammation play an important role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Macrophage polarization is an important mechanism for the regulation of inflammatory response. Since PPAR-γ has emerged as a master regulator of macrophage polarization, we aimed to investigate the lipid-induced macrophage/Kupffer cell polarization in vivo and in vitro, and explore the association between PPAR-γ activity and macrophages M1/M2 polarization shifting. Here we showed that long-term high-fat diet increased Kupffer cells content with M1-predominant phenotype and increasing production of pro-inflammatory cytokines. Saturated fatty acids polarized Kupffer cells/macrophages to an M1-predominant phenotype while n-3 PUFA polarized Kupffer cells/macrophages to an M2 phenotype, which was associated with activation of NF-κB signal pathway and PPAR-γ respectively. Furthermore, up-regulation of PPAR-γ shifted lipid-induced macrophages polarization from M1-predominant phenotype to M2 phenotype. Macrophages polarization switch was associated with the interaction between PPAR-γ and NF-κBp65 signal pathway. Rosiglitazone restored high-fat diet-induced imblance of Kupffer cells M1/M2 polarization and alleviated hepatic steatosis as well as local pro-inflammatory response. These findings suggest that manipulation of PPAR-γ activity has the potential to balance lipid-induced M1/M2 macrophage/Kupffer cell polarization, and leading to prevent the development of NAFLD.
Collapse
Affiliation(s)
- Wenjing Luo
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Qinyu Xu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Qi Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Huimin Wu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Jing Hua
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| |
Collapse
|
395
|
Li P, He K, Li J, Liu Z, Gong J. The role of Kupffer cells in hepatic diseases. Mol Immunol 2017; 85:222-229. [PMID: 28314211 DOI: 10.1016/j.molimm.2017.02.018] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/16/2017] [Accepted: 02/27/2017] [Indexed: 02/06/2023]
Abstract
Kupffer cells (KCs) constitute 80-90% of the tissue macrophages present in the body. Essential to innate and adaptive immunity, KCs are responsible for the swift containment and clearance of exogenous particulates and immunoreactive materials which are perceived as foreign and harmful to the body. Similar to other macrophages, KCs also sense endogenous molecular signals that may result from perturbed homeostasis of the host. KCs have been implicated in host defense and the pathogenesis of various hepatic diseases, including endotoxin tolerance, liver transplantation, nonalcoholic fatty liver disease, and alcoholic liver disease. In this review, we summarized some novel findings associated with the role of KCs in hepatic diseases, such as the origin and mechanisms KCs polarization, molecular basis for caspase-1 activation called "non-canonical inflammasome pathway" involving the cleavage of Gsdmd by caspase-11, the important role of microRNA in liver transplantation, and so on. A better understanding of KCs biological characteristics and immunologic function in liver homeostasis and pathology may pave the way to investigate new diagnostic and therapeutic approaches for hepatic diseases.
Collapse
Affiliation(s)
- Peizhi Li
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kun He
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinzheng Li
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zuojin Liu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jianping Gong
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
396
|
Brocker CN, Yue J, Kim D, Qu A, Bonzo JA, Gonzalez FJ. Hepatocyte-specific PPARA expression exclusively promotes agonist-induced cell proliferation without influence from nonparenchymal cells. Am J Physiol Gastrointest Liver Physiol 2017; 312:G283-G299. [PMID: 28082284 PMCID: PMC5401987 DOI: 10.1152/ajpgi.00205.2016] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 12/20/2016] [Accepted: 01/09/2017] [Indexed: 01/31/2023]
Abstract
Peroxisome proliferator-activated receptor-α (PPARA) is a nuclear transcription factor and key mediator of systemic lipid metabolism. Prolonged activation in rodents causes hepatocyte proliferation and hepatocellular carcinoma. Little is known about the contribution of nonparenchymal cells (NPCs) to PPARA-mediated cell proliferation. NPC contribution to PPARA agonist-induced hepatomegaly was assessed in hepatocyte (Ppara△Hep)- and macrophage (Ppara△Mac)-specific Ppara null mice. Mice were treated with the agonist Wy-14643 for 14 days, and response of conditional null mice was compared with conventional knockout mice (Ppara-/- ). Wy-14643 treatment caused weight loss and severe hepatomegaly in wild-type and Ppara△Mac mice, and histological analysis revealed characteristic hepatocyte swelling; Ppara△Hep and Ppara-/- mice were protected from these effects. Ppara△Mac serum chemistries, as well as aspartate aminotransferase and alanine aminotransferase levels, matched wild-type mice. Agonist-treated Ppara△Hep mice had elevated serum cholesterol, phospholipids, and triglycerides when compared with Ppara-/- mice, indicating a possible role for extrahepatic PPARA in regulating circulating lipid levels. BrdU labeling confirmed increased cell proliferation only in wild-type and Ppara△Mac mice. Macrophage PPARA disruption did not impact agonist-induced upregulation of lipid metabolism, cell proliferation, or DNA damage and repair-related gene expression, whereas gene expression was repressed in Ppara△Hep mice. Interestingly, downregulation of inflammatory cytokines IL-15 and IL-18 was dependent on macrophage PPARA. Cell type-specific regulation of target genes was confirmed in primary hepatocytes and Kupffer cells. These studies conclusively show that cell proliferation is mediated exclusively by PPARA activation in hepatocytes and that Kupffer cell PPARA has an important role in mediating the anti-inflammatory effects of PPARA agonists.
Collapse
Affiliation(s)
- Chad N Brocker
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jiang Yue
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Donghwan Kim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Aijuan Qu
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jessica A Bonzo
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
397
|
Natarajan V, Harris EN, Kidambi S. SECs (Sinusoidal Endothelial Cells), Liver Microenvironment, and Fibrosis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4097205. [PMID: 28293634 PMCID: PMC5331310 DOI: 10.1155/2017/4097205] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/16/2016] [Indexed: 01/17/2023]
Abstract
Liver fibrosis is a wound-healing response to chronic liver injury such as alcoholic/nonalcoholic fatty liver disease and viral hepatitis with no FDA-approved treatments. Liver fibrosis results in a continual accumulation of extracellular matrix (ECM) proteins and paves the way for replacement of parenchyma with nonfunctional scar tissue. The fibrotic condition results in drastic changes in the local mechanical, chemical, and biological microenvironment of the tissue. Liver parenchyma is supported by an efficient network of vasculature lined by liver sinusoidal endothelial cells (LSECs). These nonparenchymal cells are highly specialized resident endothelial cell type with characteristic morphological and functional features. Alterations in LSECs phenotype including lack of LSEC fenestration, capillarization, and formation of an organized basement membrane have been shown to precede fibrosis and promote hepatic stellate cell activation. Here, we review the interplay of LSECs with the dynamic changes in the fibrotic liver microenvironment such as matrix rigidity, altered ECM protein profile, and cell-cell interactions to provide insight into the pivotal changes in LSEC physiology and the extent to which it mediates the progression of liver fibrosis. Establishing the molecular aspects of LSECs in the light of fibrotic microenvironment is valuable towards development of novel therapeutic and diagnostic targets of liver fibrosis.
Collapse
Affiliation(s)
- Vaishaali Natarajan
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE, USA
| | - Edward N. Harris
- Department of Biochemistry, University of Nebraska, Lincoln, NE, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska, Lincoln, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Nebraska Center for the Prevention of Obesity Diseases, University of Nebraska, Lincoln, NE, USA
| | - Srivatsan Kidambi
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska, Lincoln, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Nebraska Center for the Prevention of Obesity Diseases, University of Nebraska, Lincoln, NE, USA
- Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE, USA
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
398
|
Granitzny A, Knebel J, Müller M, Braun A, Steinberg P, Dasenbrock C, Hansen T. Evaluation of a human in vitro hepatocyte-NPC co-culture model for the prediction of idiosyncratic drug-induced liver injury: A pilot study. Toxicol Rep 2017; 4:89-103. [PMID: 28959630 PMCID: PMC5615103 DOI: 10.1016/j.toxrep.2017.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/07/2017] [Indexed: 12/16/2022] Open
Abstract
Co-cultures of liver and immune cells can be used to detect iDILI compounds. Pro-inflammatory factors are involved in the development of iDILI. The co-exposure of a drug candidate with TNF might be sufficient to predict iDILI.
Interactions between hepatocytes and immune cells as well as inflammatory episodes are frequently discussed to play a critical role in the alteration of the individual susceptibility to idiosyncratic drug-induced liver injury (iDILI). To evaluate this hypothesis and to face the urgent need for predictive in vitro models, we established two co-culture systems based on two human cell lines in presence or absence of pro-inflammatory factors (LPS, TNF), i.e. hepatoma HepG2 cells co-cultured with monocytic or macrophage-like THP-1 cells. HepG2 monocultures served as control scenario. Mono- or co-cultures were treated with iDILI reference substances (Troglitazone [TGZ], Trovafloxacin [TVX], Diclofenac [DcL], Ketoconazole [KC]) or their non-iDILI partner compounds (Rosiglitazone, Levofloxacin, Acetylsalicylic Acid, Fluconazole). The liver cell viability was subsequently determined via WST-Assay. An enhanced cytotoxicity (synergy) or a hormetic response compared to the drug effect in the HepG2 monoculture was considered as iDILI positive. TGZ synergized in co-cultures with monocytes without an additional pro-inflammatory stimulus, while DcL and KC showed a hormetic response. All iDILI drugs synergized with TNF in the simple HepG2 monoculture, indicating its relevance as an initiator of iDILI. KC showed a synergy when co-exposed to both, monocytes and LPS, while TVX and DcL showed a synergy under the same conditions with macrophages. All described iDILI responses were not observed with the corresponding non-iDILI partner compounds. Our first results confirm that an inflammatory environment increases the sensitivity of liver cells towards iDILI compounds and point to an involvement of pro-inflammatory factors, especially TNF, in the development of iDILI.
Collapse
Key Words
- CD, cluster of differentiation
- Co-culture model
- DAMP, damage-associated molecular pattern
- Drug-induced liver injury
- EC, effective concentration
- EpCAM, epithelial cellular adhesion molecule
- HSP, heat shock protein
- Idiosyncratic
- Inflammation
- JNK, c-Jun N-terminal kinase
- LPS, bacterial lipopolysaccharide
- NF-κB, nuclear factor kappa B
- NPC, non-parenchymal cell
- NSAID, nonsteriodal anti-inflammatory drug
- PAMP, pathogen-associated molecular pattern
- Preclinical research
- SD, standard deviation
- TNF, tumor necrosis factor
- iDILI, idiosyncratic drug-induced liver injury
Collapse
Affiliation(s)
- Anne Granitzny
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| | - Jan Knebel
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| | - Meike Müller
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Member of the German Center for Lung Research (DZL), Biomedical Research in End stage and Obstructive Lung Disease (BREATH) research network, Member of the Cluster of Excellence Regenerative Biology to Reconstructive Therapy (REBIRTH), Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| | - Pablo Steinberg
- University of Veterinary Medicine Hannover (TiHo), Institute for Food Toxicology and Analytical Chemistry, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Clemens Dasenbrock
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| | - Tanja Hansen
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
- Corresponding author at: Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Department of In vitro and Mechanistic Toxicology, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany.Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM)Nikolai-Fuchs-Straße 1Hannover30625Germany
| |
Collapse
|
399
|
Ozoya OO, Chavez J, Sokol L, Dalia S. Optimizing antiviral agents for hepatitis B management in malignant lymphomas. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:39. [PMID: 28251118 DOI: 10.21037/atm.2016.12.25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The global scale of hepatitis B infection is well known but its impact is still being understood. Missed hepatitis B infection impacts lymphoma therapy especially increased risk of hepatitis B virus (HBV) reactivation and poor treatment outcomes. The presence of undiagnosed chronic hepatitis also undermines chronic HBV screening methods that are based on a positive HBsAg alone. The goal of this review is to evaluate the literature for optimizing antiviral therapy for lymphoma patients with HBV infection or at risk of HBV reactivation. Relevant articles for this review were identified by searching PubMed, Embase, Ovid Medline, and Scopus using the following terms, alone and in combination: "chronic hepatitis B", "occult hepatitis B", "special groups", "malignant lymphoma", "non-Hodgkin's lymphoma", "Hodgkin's lymphoma", "immunocompromised host", "immunosuppressive agents", "antiviral", "HBV reactivation". The period of the search was restricted to a 15-year period to limit the search to optimizing antiviral agents for HBV infection in malignant lymphomas [2001-2016]. Several clinical practice guidelines recommend nucleos(t)ide analogues-entecavir, tenofovir and lamivudine among others. These agents are best initiated along with or prior to immunosuppressive therapy. Additional methods recommended for optimizing antiviral therapy include laboratory modalities such as HBV genotyping, timed measurements of HBsAg and HBV DNA levels to measure and predict antiviral treatment response. In conclusion, optimizing antiviral agents for these patients require consideration of geographic prevalence of HBV, cost of antiviral therapy or testing, screening modality, hepatitis experts, type of immunosuppressive therapy and planned duration of therapy.
Collapse
Affiliation(s)
| | - Julio Chavez
- Department of Hematological Malignancies, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Lubomir Sokol
- Department of Hematological Malignancies, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Samir Dalia
- Oncology and Hematology, Mercy Clinic Joplin, Joplin, MO, USA
| |
Collapse
|
400
|
Wen J, Wu Y, Wei W, Li Z, Wang P, Zhu S, Dong W. Protective effects of recombinant human cytoglobin against chronic alcohol-induced liver disease in vivo and in vitro. Sci Rep 2017; 7:41647. [PMID: 28128325 PMCID: PMC5269723 DOI: 10.1038/srep41647] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/20/2016] [Indexed: 02/07/2023] Open
Abstract
Alcoholic liver disease (ALD) is an important worldwide public health issue with no satisfying treatment available since now. Here we explore the effects of recombinant human cytoglobin (rhCygb) on chronic alcohol-induced liver injury and the underlying mechanisms. In vivo studies showed that rhCygb was able to ameliorate alcohol-induced liver injury, significantly reversed increased serum index (ALT, AST, TG, TC and LDL-C) and decreased serum HDL-C. Histopathology observation of the liver of rats treated with rhCygb confirmed the biochemical data. Furthermore, rhCygb significantly inhibited Kupffer cells (KCs) proliferation and TNF-α expression in LPS-induced KCs. rhCygb also inhibited LPS-induced NADPH oxidase activity and ROS, NO and O2•- generation. These results collectively indicate that rhCygb exert the protective effect on chronic alcohol-induced liver injury through suppression of KC activation and oxidative stress. In view of its anti-oxidative stress and anti-inflammatory features, rhCygb might be a promising candidate for development as a therapeutic agent against ALD.
Collapse
Affiliation(s)
- Jian Wen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong Province 510515, P.R. China.,Department of Hematology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi Zhuang Autonomous Region 541002, P.R. China
| | - Yongbin Wu
- Department of Clinical Laboratory, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi Zhuang Autonomous Region 541002, P.R. China
| | - Wei Wei
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong Province 510515, P.R. China
| | - Zhen Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong Province 510515, P.R. China
| | - Ping Wang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong Province 510515, P.R. China
| | - Shiwei Zhu
- Department of Hematology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi Zhuang Autonomous Region 541002, P.R. China
| | - Wenqi Dong
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong Province 510515, P.R. China
| |
Collapse
|