351
|
Wiesinger F, Menini A, Solana AB. Looping Star. Magn Reson Med 2018; 81:57-68. [DOI: 10.1002/mrm.27440] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/29/2018] [Accepted: 02/13/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Florian Wiesinger
- ASL Europe, GE Healthcare; Munich Germany
- Department of Neuroimaging; Institute of Psychiatry, Psychology & Neuroscience, King's College London; London United Kingdom
| | | | | |
Collapse
|
352
|
Jaeschke SH, Robson MD, Hess AT. Cardiac gating using scattering of an 8-channel parallel transmit coil at 7T. Magn Reson Med 2018; 80:633-640. [PMID: 29230860 PMCID: PMC5947608 DOI: 10.1002/mrm.27038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/27/2017] [Accepted: 11/17/2017] [Indexed: 12/24/2022]
Abstract
PURPOSE To establish a cardiac signal from scattering matrix or scattering coefficient measurements made on a 7T 8-channel parallel transmit (pTx) system, and to evaluate its use for cardiac gating. METHODS Measurements of the scattering matrix and scattering coefficients were acquired using a monitoring pulse sequence and during a standard cine acquisition, respectively. Postprocessing used an independent component analysis and gating feature identification. The effect of the phase of the excitation radiofrequency (RF) field ( B1+ shim) on the cardiac signal was simulated for multiple B1+ shim configurations, and cine images were reconstructed from both the scattering coefficients and electrocardiogram (ECG). RESULTS The cardiac motion signal was successfully identified in all subjects with a mean signal-to-noise ratio of 33.1 and 5.7 using the scattering matrix and scattering coefficient measurements, respectively. The dominant gating feature in the cardiac signal was a peak aligned with end-systole that occurred on average at 311 and 391 ms after the ECG trigger, with a mean standard deviation of 13.4 and 18.1 ms relative to ECG when using the scattering matrix and scattering coefficients measurements, respectively. The scattering coefficients showed a dependence on B1+ shim with some shim configurations not showing any cardiac signal. Cine images were successfully reconstructed using the scattering coefficients with minimal differences compared to those using ECG. CONCLUSION We have shown that the scattering of a pTx RF coil can be used to estimate a cardiac signal, and that scattering matrix and coefficients can be used to cardiac gate MRI acquisitions with the scattering matrix providing a superior cardiac signal. Magn Reson Med 80:633-640, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Sven H.F. Jaeschke
- University of Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe HospitalOxfordUnited Kingdom
| | - Matthew D. Robson
- University of Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe HospitalOxfordUnited Kingdom
| | - Aaron T. Hess
- University of Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe HospitalOxfordUnited Kingdom
| |
Collapse
|
353
|
Fast, free-breathing and motion-minimized techniques for pediatric body magnetic resonance imaging. Pediatr Radiol 2018; 48:1197-1208. [PMID: 30078042 DOI: 10.1007/s00247-018-4116-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/26/2018] [Accepted: 03/11/2018] [Indexed: 12/26/2022]
Abstract
Magnetic resonance imaging (MRI) is the preferred imaging modality in children with complex medical issues. Patient motion and respiration remain major challenges in pediatric abdominal MRI. Young children ages 3 months to 6 years are unable to cooperate or perform breath-holding and frequently require deep sedation or general anesthesia to undergo MRI. Given the growing concerns associated with the use of sedation and anesthesia as well as the adverse impact on workflow, developing and implementing fast and motion-resistant MRI sequences are of great interest. Fast sequences such as single-shot fast spin echo and balanced steady-state free precession are useful as quick anatomical surveys on routine abdominal MRI. The widespread utilization of parallel imaging and sequences with radial k-space sampling has contributed to decreasing scan time and improving image quality, respectively. Newer strategies including compressed sensing, simultaneous multi-slice acquisition, and hybrid approaches hold the prospect of faster image acquisition that could significantly reduce the need for sedation in this vulnerable population and decrease the time of anesthesia in cases where it is indicated.
Collapse
|
354
|
Kecskemeti S, Samsonov A, Velikina J, Field AS, Turski P, Rowley H, Lainhart JE, Alexander AL. Robust Motion Correction Strategy for Structural MRI in Unsedated Children Demonstrated with Three-dimensional Radial MPnRAGE. Radiology 2018; 289:509-516. [PMID: 30063192 DOI: 10.1148/radiol.2018180180] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose To develop and evaluate a retrospective method to minimize motion artifacts in structural MRI. Materials and Methods The motion-correction strategy was developed for three-dimensional radial data collection and demonstrated with MPnRAGE, a technique that acquires high-resolution volumetric magnetization-prepared rapid gradient-echo, or MPRAGE, images with multiple tissue contrasts. Forty-four pediatric participants (32 with autism spectrum disorder [mean age ± standard deviation, 13 years ± 3] and 12 age-matched control participants [mean age, 12 years ± 3]) were imaged without sedation. Images with and images without retrospective motion correction were scored by using a Likert scale (0-4 for unusable to excellent) by two experienced neuroradiologists. The Tenengrad metric (a reference-free measure of image sharpness) and statistical analyses were performed to determine the effects of performing retrospective motion correction. Results MPnRAGE T1-weighted images with retrospective motion correction were all judged to have good or excellent quality. In some cases, retrospective motion correction improved the image quality from unusable (Likert score of 0) to good (Likert score of 3). Overall, motion correction improved mean Likert scores from 3.0 to 3.8 and reduced standard deviations from 1.1 to 0.4. Image quality was significantly improved with motion correction (Mann-Whitney U test; P < .001). Intraclass correlation coefficients for absolute agreement of Tenengrad scores with reviewers 1 and 2 were 0.92 and 0.88 (P < .0005 for both), respectively. In no cases did the retrospective motion correction induce severe image degradation. Conclusion Retrospective motion correction of MPnRAGE data were shown to be highly effective for consistently improving image quality of T1-weighted MRI in unsedated pediatric participants, while also enabling multiple tissue contrasts to be reconstructed for structural analysis. © RSNA, 2018 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Steven Kecskemeti
- From the Waisman Center (S.K., J.E.L., A.L.A.) and Departments of Radiology (S.K., A.S., A.S.F., P.T., H.R.), Medical Physics (J.V., A.L.A.), and Psychiatry (J.E.L., A.L.A.), University of Wisconsin-Madison, T123 Waisman Center, 1500 Highland Ave, Madison, WI 53705
| | - Alexey Samsonov
- From the Waisman Center (S.K., J.E.L., A.L.A.) and Departments of Radiology (S.K., A.S., A.S.F., P.T., H.R.), Medical Physics (J.V., A.L.A.), and Psychiatry (J.E.L., A.L.A.), University of Wisconsin-Madison, T123 Waisman Center, 1500 Highland Ave, Madison, WI 53705
| | - Julia Velikina
- From the Waisman Center (S.K., J.E.L., A.L.A.) and Departments of Radiology (S.K., A.S., A.S.F., P.T., H.R.), Medical Physics (J.V., A.L.A.), and Psychiatry (J.E.L., A.L.A.), University of Wisconsin-Madison, T123 Waisman Center, 1500 Highland Ave, Madison, WI 53705
| | - Aaron S Field
- From the Waisman Center (S.K., J.E.L., A.L.A.) and Departments of Radiology (S.K., A.S., A.S.F., P.T., H.R.), Medical Physics (J.V., A.L.A.), and Psychiatry (J.E.L., A.L.A.), University of Wisconsin-Madison, T123 Waisman Center, 1500 Highland Ave, Madison, WI 53705
| | - Patrick Turski
- From the Waisman Center (S.K., J.E.L., A.L.A.) and Departments of Radiology (S.K., A.S., A.S.F., P.T., H.R.), Medical Physics (J.V., A.L.A.), and Psychiatry (J.E.L., A.L.A.), University of Wisconsin-Madison, T123 Waisman Center, 1500 Highland Ave, Madison, WI 53705
| | - Howard Rowley
- From the Waisman Center (S.K., J.E.L., A.L.A.) and Departments of Radiology (S.K., A.S., A.S.F., P.T., H.R.), Medical Physics (J.V., A.L.A.), and Psychiatry (J.E.L., A.L.A.), University of Wisconsin-Madison, T123 Waisman Center, 1500 Highland Ave, Madison, WI 53705
| | - Janet E Lainhart
- From the Waisman Center (S.K., J.E.L., A.L.A.) and Departments of Radiology (S.K., A.S., A.S.F., P.T., H.R.), Medical Physics (J.V., A.L.A.), and Psychiatry (J.E.L., A.L.A.), University of Wisconsin-Madison, T123 Waisman Center, 1500 Highland Ave, Madison, WI 53705
| | - Andrew L Alexander
- From the Waisman Center (S.K., J.E.L., A.L.A.) and Departments of Radiology (S.K., A.S., A.S.F., P.T., H.R.), Medical Physics (J.V., A.L.A.), and Psychiatry (J.E.L., A.L.A.), University of Wisconsin-Madison, T123 Waisman Center, 1500 Highland Ave, Madison, WI 53705
| |
Collapse
|
355
|
Zhou Z, Han F, Yoshida T, Nguyen KL, Finn JP, Hu P. Improved 4D cardiac functional assessment for pediatric patients using motion-weighted image reconstruction. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 31:747-756. [PMID: 30043124 DOI: 10.1007/s10334-018-0694-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/06/2018] [Accepted: 07/08/2018] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Our aim was to develop and evaluate a motion-weighted reconstruction technique for improved cardiac function assessment in 4D magnetic resonance imaging (MRI). MATERIALS AND METHODS A flat-topped, two-sided Gaussian kernel was used to weigh k-space data in each target cardiac phase and adjacent two temporal phases during the proposed phase-by-phase reconstruction algorithm. The proposed method (Strategy 3) was used to reconstruct 18 cardiac phases based on data acquired using a previously proposed technique [4D multiphase steady-state imaging with contrast enhancement (MUSIC) technique and its self-gated extension using rotating Cartesian k-space (ROCK-MUSIC) from 12 pediatric patients. As a comparison, the same data set was reconstructed into nine phases using a phase-by-phase method (Strategy 1), 18 phases using view sharing (Strategy 4), and 18 phases using a temporal regularized method (Strategy 2). Regional image sharpness and left ventricle volumetric measurements were used to compare the four reconstructions quantitatively. RESULTS Strategies 1 and 4 generated significantly sharper images of static structures (P ≤ 0.018) than Strategies 2 and 3 but significantly more blurry (P ≤ 0.021) images of the heart. Left ventricular volumetric measurements from the nine-phase reconstruction (Strategy 1) correlated moderately (r < 0.8) with the 2D cine, whereas the remaining three techniques had a higher correlation (r > 0.9). The computational burden of Strategy 2 was six times that of Strategy 3. CONCLUSION The proposed method of motion-weighted reconstruction improves temporal resolution in 4D cardiac imaging with a clinically practical workflow.
Collapse
Affiliation(s)
- Ziwu Zhou
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Fei Han
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Takegawa Yoshida
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Kim-Lien Nguyen
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Division of Cardiology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - John Paul Finn
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Biomedical Physics Inter-Departmental Graduate Program, University of California, Los Angeles, CA, USA
| | - Peng Hu
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Biomedical Physics Inter-Departmental Graduate Program, University of California, Los Angeles, CA, USA.
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, 300 UCLA Medical Plaza Suite B119, Los Angeles, CA, 90095, USA.
| |
Collapse
|
356
|
Lazarus C, Weiss P, Vignaud A, Ciuciu P. An empirical study of the maximum degree of undersampling in compressed sensing for T 2*-weighted MRI. Magn Reson Imaging 2018; 53:112-122. [PMID: 30036651 DOI: 10.1016/j.mri.2018.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/03/2018] [Accepted: 07/14/2018] [Indexed: 12/30/2022]
Abstract
Magnetic Resonance Imaging (MRI) is one of the most dynamic and safe imaging modalities used in clinical routine today. Yet, one major limitation to this technique resides in its long acquisition times. Over the last decade, Compressed Sensing (CS) has been increasingly used to address this issue and offers to shorten MR scans by reconstructing images from undersampled Fourier data. Nevertheless, a quantitative guide on the degree of acceleration applicable to a given acquisition scenario is still lacking today, leading in practice to a trial-and-error approach in the selection of the appropriate undersampling factor. In this study, we shortly point out the existing theoretical sampling results in CS and their limitations which motivate the focus of this work: an empirical and quantitative analysis of the maximum degree of undersampling allowed by CS in the specific context of T2*-weighted MRI. We make use of a generic method based on retrospective undersampling to quantitatively deduce the maximum acceleration factor Rmax which preserves a desired image quality as a function of the image resolution and the available signal-to-noise ratio (SNR). Our results quantify how larger acceleration factors can be applied to higher resolution images as long as a minimum SNR is guaranteed. In practice however, the maximum acceleration factor for a given resolution appears to be constrained by the available SNR inherent to the considered acquisition. Our analysis enables to take this a priori knowledge into account, allowing to derive a sequence-specific maximum acceleration factor adapted to the intrinsic SNR of any MR pipeline. These results obtained on an analytical T2*-weighted phantom image were corroborated by prospective experiments performed on MR data collected with radial trajectories on a 7 T scanner with the same contrast. The proposed framework allows to study other sequence weightings and therefore better optimize sequences when accelerated using CS.
Collapse
Affiliation(s)
- Carole Lazarus
- NeuroSpin, CEA Saclay, Gif-sur-Yvette cedex 91191, France; Université Paris-Saclay, France; Parietal, INRIA, Palaiseau 91120, France
| | - Pierre Weiss
- ITAV USR3505 CNRS, Toulouse 31000, France; IMT UMR 5219 CNRS, Toulouse 31400, France
| | - Alexandre Vignaud
- NeuroSpin, CEA Saclay, Gif-sur-Yvette cedex 91191, France; Université Paris-Saclay, France.
| | - Philippe Ciuciu
- NeuroSpin, CEA Saclay, Gif-sur-Yvette cedex 91191, France; Université Paris-Saclay, France; Parietal, INRIA, Palaiseau 91120, France.
| |
Collapse
|
357
|
Dregely I, Prezzi D, Kelly‐Morland C, Roccia E, Neji R, Goh V. Imaging biomarkers in oncology: Basics and application to MRI. J Magn Reson Imaging 2018; 48:13-26. [PMID: 29969192 PMCID: PMC6587121 DOI: 10.1002/jmri.26058] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/26/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer remains a global killer alongside cardiovascular disease. A better understanding of cancer biology has transformed its management with an increasing emphasis on a personalized approach, so-called "precision cancer medicine." Imaging has a key role to play in the management of cancer patients. Imaging biomarkers that objectively inform on tumor biology, the tumor environment, and tumor changes in response to an intervention complement genomic and molecular diagnostics. In this review we describe the key principles for imaging biomarker development and discuss the current status with respect to magnetic resonance imaging (MRI). LEVEL OF EVIDENCE 5 TECHNICAL EFFICACY: Stage 5 J. Magn. Reson. Imaging 2018;48:13-26.
Collapse
Affiliation(s)
- Isabel Dregely
- Biomedical Engineering, School of Biomedical Engineering & Imaging SciencesKing's Health Partners, St Thomas' HospitalLondon, UK
| | - Davide Prezzi
- Cancer Imaging, School of Biomedical Engineering & Imaging Sciences King's College London, King's Health Partners, St Thomas' Hospital, LondonUK
- RadiologyGuy's & St Thomas' NHS Foundation TrustLondonUK
| | - Christian Kelly‐Morland
- Cancer Imaging, School of Biomedical Engineering & Imaging Sciences King's College London, King's Health Partners, St Thomas' Hospital, LondonUK
- RadiologyGuy's & St Thomas' NHS Foundation TrustLondonUK
| | - Elisa Roccia
- Biomedical Engineering, School of Biomedical Engineering & Imaging SciencesKing's Health Partners, St Thomas' HospitalLondon, UK
| | - Radhouene Neji
- Biomedical Engineering, School of Biomedical Engineering & Imaging SciencesKing's Health Partners, St Thomas' HospitalLondon, UK
- MR Research CollaborationsSiemens HealthcareFrimleyUK
| | - Vicky Goh
- Cancer Imaging, School of Biomedical Engineering & Imaging Sciences King's College London, King's Health Partners, St Thomas' Hospital, LondonUK
- RadiologyGuy's & St Thomas' NHS Foundation TrustLondonUK
| |
Collapse
|
358
|
Free-breathing quantification of hepatic fat in healthy children and children with nonalcoholic fatty liver disease using a multi-echo 3-D stack-of-radial MRI technique. Pediatr Radiol 2018; 48:941-953. [PMID: 29728744 DOI: 10.1007/s00247-018-4127-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/07/2018] [Accepted: 03/25/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND In adults, noninvasive chemical shift encoded Cartesian magnetic resonance imaging (MRI) and single-voxel magnetic resonance (MR) spectroscopy (SVS) accurately quantify hepatic steatosis but require breath-holding. In children, especially young and sick children, breath-holding is often limited or not feasible. Sedation can facilitate breath-holding but is highly undesirable. For these reasons, there is a need to develop free-breathing MRI technology that accurately quantifies steatosis in all children. OBJECTIVE This study aimed to compare non-sedated free-breathing multi-echo 3-D stack-of-radial (radial) MRI versus standard breath-holding MRI and SVS techniques in a group of children for fat quantification with respect to image quality, accuracy and repeatability. MATERIALS AND METHODS Healthy children (n=10, median age [±interquartile range]: 10.9 [±3.3] years) and overweight children with nonalcoholic fatty liver disease (NAFLD) (n=9, median age: 15.2 [±3.2] years) were imaged at 3 Tesla using free-breathing radial MRI, breath-holding Cartesian MRI and breath-holding SVS. Acquisitions were performed twice to assess repeatability (within-subject mean difference, MDwithin). Images and hepatic proton-density fat fraction (PDFF) maps were scored for image quality. Free-breathing and breath-holding PDFF were compared using linear regression (correlation coefficient, r and concordance correlation coefficient, ρc) and Bland-Altman analysis (mean difference). P<0.05 was considered significant. RESULTS In patients with NAFLD, free-breathing radial MRI demonstrated significantly less motion artifacts compared to breath-holding Cartesian (P<0.05). Free-breathing radial PDFF demonstrated a linear relationship (P<0.001) versus breath-holding SVS PDFF and breath-holding Cartesian PDFF with r=0.996 and ρc=0.994, and r=0.997 and ρc=0.995, respectively. The mean difference in PDFF between free-breathing radial MRI, breath-holding Cartesian MRI and breath-holding SVS was <0.7%. Repeated free-breathing radial MRI had MDwithin=0.25% for PDFF. CONCLUSION In this pediatric study, non-sedated free-breathing radial MRI provided accurate and repeatable hepatic PDFF measurements and improved image quality, compared to standard breath-holding MR techniques.
Collapse
|
359
|
Pednekar AS, Wang H, Flamm S, Cheong BY, Muthupillai R. Two-center clinical validation and quantitative assessment of respiratory triggered retrospectively cardiac gated balanced-SSFP cine cardiovascular magnetic resonance imaging in adults. J Cardiovasc Magn Reson 2018; 20:44. [PMID: 29950177 PMCID: PMC6022503 DOI: 10.1186/s12968-018-0467-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 05/25/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Breath-hold (BH) requirement remains the limiting factor on the spatio-temporal resolution and coverage of the cine balanced steady-state free precession (bSSFP) cardiovascular magnetic resonance (CMR) imaging. In this prospective two-center clinical trial, we validated the performance of a respiratory triggered (RT) bSSFP cine sequence for evaluation of biventricular function. METHODS Our study included 23 asymptomatic healthy subjects and 60 consecutive patients from Institute A (n = 39) and Institute B (n = 21) referred for a clinically indicated CMR study. We implemented a RT sequence with a respiratory synchronized drive to steady state (SS) of bSSFP signal, before the commencement of image data acquisition with prospective cardiac arrhythmia rejection and retrospectively cardiac gated reconstruction in real-time. Left (LV) and right (RV) ventricular function and LV mass were evaluated by using RT-bSSFP and conventional BH-bSSFP sequences with one cardiac cycle for SS preparation keeping all the imaging parameters identical. The performance of the sequences was evaluated by using quantitative and semi-quantitative metrics. RESULTS Global LV and RV functional parameters and LV mass obtained from the RT-bSSFP and BH-bSSFP sequences were in good agreement. Quantitative metrics designed to capture fluctuation in SS signal intensity showed no significant difference between sequences. In addition, blood-to-myocardial contrast was nearly identical between sequences. The combined clinical score for image quality was excellent or good for 100% of cases with the BH-bSSFP and 83% of cases with the RT-bSSFP sequence. The de facto image acquisition time for RT-bSSFP was statistically significantly longer than that for conventional BH-bSSFP (7.9 ± 3.4 min vs. 5.1 ± 2.6 min). CONCLUSIONS Cine RT-bSSFP is an alternative for evaluating global biventricular function with contrast and spatio-temporal resolutions that are similar to those attained by using the BH-bSSFP sequence, albeit with a modest time penalty and a small reduction in image quality.
Collapse
Affiliation(s)
- Amol S Pednekar
- Department of Radiology, Texas Children’s Hospital, 6701 Fannin Street, Suite D470.09, Houston, TX 77030-2399 USA
| | - Hui Wang
- Philips Healthcare, Gainesville, FL USA
| | - Scott Flamm
- Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, OH USA
| | - Benjamin Y. Cheong
- Department of Radiology, Baylor St. Luke’s Medical Center, Houston, TX USA
| | - Raja Muthupillai
- Department of Radiology, Baylor St. Luke’s Medical Center, Houston, TX USA
| |
Collapse
|
360
|
Han F, Zhou Z, Du D, Gao Y, Rashid S, Cao M, Shaverdian N, Hegde JV, Steinberg M, Lee P, Raldow A, Low DA, Sheng K, Yang Y, Hu P. Respiratory motion-resolved, self-gated 4D-MRI using Rotating Cartesian K-space (ROCK): Initial clinical experience on an MRI-guided radiotherapy system. Radiother Oncol 2018; 127:467-473. [DOI: 10.1016/j.radonc.2018.04.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 03/23/2018] [Accepted: 04/24/2018] [Indexed: 11/17/2022]
|
361
|
Kowalik GT, Steeden JA, Atkinson D, Montalt-Tordera J, Mortensen KH, Muthurangu V. Golden ratio stack of spirals for flexible angiographic imaging: Proof of concept in congenital heart disease. Magn Reson Med 2018; 81:90-101. [PMID: 29802643 DOI: 10.1002/mrm.27353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 11/11/2022]
Abstract
PURPOSE In this study, a golden ratio stack of spiral (GRASS) sequence that used both golden step and golden angle ordering was implemented. The aim was to demonstrate that GRASS acquisitions could be flexibly reconstructed as both cardiac-gated and time-resolved angiograms. METHODS Image quality of time-resolved and cardiac-gated reconstructions of the GRASS sequence were compared to 3 conventional stack of spirals (SoS) acquisitions in an in silico model. In 10 patients, the GRASS sequence was compared to conventional breath hold angiography (BH-MRA) in terms of image quality and for vessel measurement. Vessel measurements were also compared to cine images. RESULTS In the cardiac-gated in silico model, the image quality of GRASS was superior to regular and golden-angle with regular step SoS approaches. In the time-resolved model, GRASS image quality was comparable to the golden-angle with regular step technique and superior to regular SoS acquisitions. In patients, there was no difference in qualitative image scores between GRASS and BH-MRA, but SNR was lower. There was good agreement in vessel measurements between the GRASS reconstructions and conventional MR techniques (BH-MRA: 29.8 ± 5.6 mm, time-resolved GRASS-MRA: 29.9 ± 5.4 mm, SSFP diastolic: 29.4 ± 5.8 mm, cardiac-gated GRASS-MRA diastolic: 29.5 ± 5.5 mm, P > 0.87). CONCLUSION We have demonstrated that the GRASS acquisition enables flexible reconstruction of the same raw data as both time-resolved and cardiac-gated volumes. This may enable better interrogation of anatomy in congenital heart disease.
Collapse
Affiliation(s)
- Grzegorz Tomasz Kowalik
- UCL Institute of Cardiovascular Science, Centre for Cardiovascular Imaging, London, United Kingdom
| | - Jennifer Anne Steeden
- UCL Institute of Cardiovascular Science, Centre for Cardiovascular Imaging, London, United Kingdom
| | - David Atkinson
- University College London, Centre for Medical Imaging, Wolfson House, London, United Kingdom
| | - Javier Montalt-Tordera
- UCL Institute of Cardiovascular Science, Centre for Cardiovascular Imaging, London, United Kingdom
| | | | - Vivek Muthurangu
- UCL Institute of Cardiovascular Science, Centre for Cardiovascular Imaging, London, United Kingdom.,Great Ormond Street Hospital for Children, Great Ormond Street, London, United Kingdom
| |
Collapse
|
362
|
Paganelli C, Kipritidis J, Lee D, Baroni G, Keall P, Riboldi M. Image‐based retrospective 4D
MRI
in external beam radiotherapy: A comparative study with a digital phantom. Med Phys 2018; 45:3161-3172. [DOI: 10.1002/mp.12965] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Chiara Paganelli
- Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano Milano 20133 Italy
| | - John Kipritidis
- Northern Sydney Cancer Centre Royal North Shore Hospital Sydney NSW 2065 Australia
- ACRF Image X Institute Sydney Medical School University of Sydney Sydney NSW 2015 Australia
| | - Danny Lee
- Department of Radiation Oncology Calvary Mater Newcastle Newcastle NSW 2298 Australia
| | - Guido Baroni
- Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano Milano 20133 Italy
- Centro Nazionale di Adroterapia Oncologica Pavia 27100 Italy
| | - Paul Keall
- ACRF Image X Institute Sydney Medical School University of Sydney Sydney NSW 2015 Australia
| | - Marco Riboldi
- Department of Medical Physics Ludwig‐Maximilians‐Universitat Munchen Munich 80539 Germany
| |
Collapse
|
363
|
Eldeniz C, Fraum T, Salter A, Chen Y, Gach HM, Parikh PJ, Fowler KJ, An H. CAPTURE: Consistently Acquired Projections for Tuned and Robust Estimation: A Self-Navigated Respiratory Motion Correction Approach. Invest Radiol 2018; 53:293-305. [PMID: 29315083 PMCID: PMC5882511 DOI: 10.1097/rli.0000000000000442] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES In this study, we present a fully automated and robust self-navigated approach to obtain 4-dimensional (4-D) motion-resolved images during free breathing. MATERIALS AND METHODS The proposed method, Consistently Acquired Projections for Tuned and Robust Estimation (CAPTURE), is a variant of the stack-of-stars gradient-echo sequence. A 1-D navigator was consistently acquired at a fixed azimuthal angle for all stacks of spokes to reduce nonphysiological signal contamination due to system imperfections. The resulting projections were then "tuned" using complex phase rotation to adapt to scan-to-scan variations, followed by the detection of the respiratory curve. Four-dimensional motion-corrected and uncorrected images were then reconstructed via respiratory and temporal binning, respectively.This Health Insurance Portability and Accountability Act-compliant study was performed with Institutional Review Board approval. A phantom experiment was performed using a custom-made deformable motion phantom with an adjustable frequency and amplitude. For in vivo experiments, 10 healthy participants and 12 liver tumor patients provided informed consent and were imaged with the CAPTURE sequence.Two radiologists, blinded to which images were motion-corrected and which were not, independently reviewed the images and scored the image quality using a 5-point Likert scale. RESULTS In the respiratory motion phantom experiment, CAPTURE reversed the effects of motion blurring and restored edge sharpness from 36% to 78% of that observed in the images from the static scan.Despite large intra- and intersubject variability in respiration patterns, CAPTURE successfully detected the respiratory motion signal in all participants and significantly improved the image quality according to the subjective radiological assessments of 2 raters (P < 0.05 for both raters) with a 1 to 2-point improvement in the median Likert scores across the whole set of participants. Small lesions (<1 cm in size) which might otherwise be missed on uncorrected images because of motion blurring were more clearly depicted on the CAPTURE images. CONCLUSIONS CAPTURE provides a robust and fully automated solution for obtaining 4-D motion-resolved images in a free-breathing setting. With its unique tuning feature, CAPTURE can adapt to large intersubject and interscan variations. CAPTURE also enables better lesion delineation because of improved image sharpness, thereby increasing the visibility of small lesions.
Collapse
|
364
|
Haskell MW, Cauley SF, Wald LL. TArgeted Motion Estimation and Reduction (TAMER): Data Consistency Based Motion Mitigation for MRI Using a Reduced Model Joint Optimization. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:1253-1265. [PMID: 29727288 PMCID: PMC6633918 DOI: 10.1109/tmi.2018.2791482] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We introduce a data consistency based retrospective motion correction method, TArgeted Motion Estimation and Reduction (TAMER), to correct for patient motion in Magnetic Resonance Imaging (MRI). Specifically, a motion free image and motion trajectory are jointly estimated by minimizing the data consistency error of a SENSE forward model including rigid-body subject motion. In order to efficiently solve this large non-linear optimization problem, we employ reduced modeling in the parallel imaging formulation by assessing only a subset of target voxels at each step of the motion search. With this strategy we are able to effectively capture the tight coupling between the image voxel values and motion parameters. We demonstrate in simulations TAMER's ability to find similar search directions compared to a full model, with an average error of 22%, vs. 73% error when using previously proposed alternating methods. The reduced model decreased the computation time fold compared to a full image volume evaluation. In phantom experiments, our method successfully mitigates both translation and rotation artifacts, reducing image RMSE compared to a motion-free gold standard from 21% to 14% in a translating phantom, and from 17% to 10% in a rotating phantom. Qualitative image improvements are seen in human imaging of moving subjects compared to conventional reconstruction. Finally, we compare in vivo image results of our method to the state-of-the-art.
Collapse
|
365
|
Correia T, Ginami G, Cruz G, Neji R, Rashid I, Botnar RM, Prieto C. Optimized respiratory-resolved motion-compensated 3D Cartesian coronary MR angiography. Magn Reson Med 2018; 80:2618-2629. [PMID: 29682783 PMCID: PMC6220806 DOI: 10.1002/mrm.27208] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 11/29/2022]
Abstract
Purpose To develop a robust and efficient reconstruction framework that provides high‐quality motion‐compensated respiratory‐resolved images from free‐breathing 3D whole‐heart Cartesian coronary magnetic resonance angiography (CMRA) acquisitions. Methods Recently, XD‐GRASP (eXtra‐Dimensional Golden‐angle RAdial Sparse Parallel MRI) was proposed to achieve 100% scan efficiency and provide respiratory‐resolved 3D radial CMRA images by exploiting sparsity in the respiratory dimension. Here, a reconstruction framework for Cartesian CMRA imaging is proposed, which provides respiratory‐resolved motion‐compensated images by incorporating 2D beat‐to‐beat translational motion information to increase sparsity in the respiratory dimension. The motion information is extracted from interleaved image navigators and is also used to compensate for 2D translational motion within each respiratory phase. The proposed Optimized Respiratory‐resolved Cartesian Coronary MR Angiography (XD‐ORCCA) method was tested on 10 healthy subjects and 2 patients with cardiovascular disease, and compared against XD‐GRASP. Results The proposed XD‐ORCCA provides high‐quality respiratory‐resolved images, allowing clear visualization of the right and left coronary arteries, even for irregular breathing patterns. Compared with XD‐GRASP, the proposed method improves the visibility and sharpness of both coronaries. Significant differences (p < .05) in visible vessel length and proximal vessel sharpness were found between the 2 methods. The XD‐GRASP method provides good‐quality images in the absence of intraphase motion. However, motion blurring is observed in XD‐GRASP images for respiratory phases with larger motion amplitudes and subjects with irregular breathing patterns. Conclusion A robust respiratory‐resolved motion‐compensated framework for Cartesian CMRA has been proposed and tested in healthy subjects and patients. The proposed XD‐ORCCA provides high‐quality images for all respiratory phases, independently of the regularity of the breathing pattern.
Collapse
Affiliation(s)
- Teresa Correia
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Giulia Ginami
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Gastão Cruz
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,MR Research Collaborations, Siemens Healthcare Limited, Frimley, United Kingdom
| | - Imran Rashid
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
366
|
Kesner A, Pan T, Zaidi H. Data-driven motion correction will replace motion-tracking devices in molecular imaging-guided radiation therapy treatment planning. Med Phys 2018; 45:3477-3480. [PMID: 29679489 DOI: 10.1002/mp.12928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/14/2018] [Indexed: 12/25/2022] Open
Affiliation(s)
- Adam Kesner
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tinsu Pan
- Department of Imaging Physics, The University of Texas, M D Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1352, Houston, TX, 77030-4009, USA
| | | |
Collapse
|
367
|
Lv J, Chen K, Yang M, Zhang J, Wang X. Reconstruction of undersampled radial free-breathing 3D abdominal MRI using stacked convolutional auto-encoders. Med Phys 2018; 45:2023-2032. [PMID: 29574939 DOI: 10.1002/mp.12870] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 02/21/2018] [Accepted: 03/06/2018] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Free-breathing three-dimensional (3D) abdominal imaging is a challenging task for MRI, as respiratory motion severely degrades image quality. One of the most promising self-navigation techniques is the 3D golden-angle radial stack-of-stars (SOS) sequence, which has advantages in terms of speed, resolution, and allowing free breathing. However, streaking artifacts are still clearly observed in reconstructed images when undersampling is applied. This work presents a novel reconstruction approach based on a stacked convolutional auto-encoder (SCAE) network to solve this problem. METHODS Thirty healthy volunteers participated in our experiment. To build the dataset, reference and artifact-affected images were reconstructed using 451 golden-angle spokes and the first 20, 40, or 90 golden-angle spokes corresponding to acceleration rates of 31.4, 15.7, and 6.98, respectively. In the training step, we trained the SCAE by feeding it with patches from artifact-affected images. The SCAE outputs patches in the corresponding reference images. In the testing step, we applied the trained SCAE to map each input artifact-affected patch to the corresponding reference image patch. RESULT The SCAE-based reconstruction images with acceleration rates of 6.98 and 15.7 show nearly similar quality as the reference images. Additionally, the calculation time is below 1 s. Moreover, the proposed approach preserves important features, such as lesions not presented in the training set. CONCLUSION The preliminary results demonstrate the feasibility of the proposed SCAE-based strategy for correcting the streaking artifacts of undersampled free-breathing 3D abdominal MRI with a negligible reconstruction time.
Collapse
Affiliation(s)
- Jun Lv
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Kun Chen
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Ming Yang
- Vusion Tech Ltd. Co, Hefei, 230031, China
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.,College of Engineering, Peking University, Beijing, 100871, China
| | - Xiaoying Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.,Department of Radiology, Peking University First Hospital, Beijing, 100034, China
| |
Collapse
|
368
|
Benkert T, Mugler JP, Rigie DS, Sodickson DK, Chandarana H, Block KT. Hybrid T 2 - and T 1 -weighted radial acquisition for free-breathing abdominal examination. Magn Reson Med 2018; 80:1935-1948. [PMID: 29656522 DOI: 10.1002/mrm.27200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/14/2018] [Accepted: 03/09/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE Most clinical MR examinations require acquisition of different image contrasts. For abdominal exams, the scans are conventionally performed as separate acquisitions using respiratory gating or repeated breath holding, which can be time-inefficient and challenging for patients. Here, a hybrid imaging approach is described that creates T2 - and T1 -weighted images from a single scan and allows for free-breathing acquisition. THEORY AND METHODS T2 -weighted data is collected using 3D fast spin-echo (FSE) acquisition with motion-robust radial stack-of-stars sampling. The wait time between the FSE trains is used to acquire T1 -weighted gradient-echo (GRE) data. Improved robustness is achieved by extracting a respiratory signal from the GRE data and using it for motion-weighted reconstruction. RESULTS As validated in simulations and phantom scans, GRE acquisition in the wait time has minor effect on the signal strength and contrast. Volunteer scans at 1.5T showed that T2 - and T1 -weighted hybrid imaging is feasible during free-breathing. Furthermore, it has been demonstrated in a patient that hybrid imaging with T1 -weighted Dixon acquisition is possible. CONCLUSION The described hybrid sequence enables comprehensive T2 - and T1 -weighted imaging in a single scan. In addition to free-breathing abdominal examination, it promises value for clinical applications that are frequently affected by motion artifacts.
Collapse
Affiliation(s)
- Thomas Benkert
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - John P Mugler
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia
| | - David S Rigie
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - Daniel K Sodickson
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - Hersh Chandarana
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - Kai Tobias Block
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| |
Collapse
|
369
|
Abstract
Quantitative cardiovascular magnetic resonance (CMR) imaging can be used to characterize fibrosis, oedema, ischaemia, inflammation and other disease conditions. However, the need to reduce artefacts arising from body motion through a combination of electrocardiography (ECG) control, respiration control, and contrast-weighting selection makes CMR exams lengthy. Here, we show that physiological motions and other dynamic processes can be conceptualized as multiple time dimensions that can be resolved via low-rank tensor imaging, allowing for motion-resolved quantitative imaging with up to four time dimensions. This continuous-acquisition approach, which we name cardiovascular MR multitasking, captures — rather than avoids — motion, relaxation and other dynamics to efficiently perform quantitative CMR without the use of ECG triggering or breath holds. We demonstrate that CMR multitasking allows for T1 mapping, T1-T2 mapping and time-resolved T1 mapping of myocardial perfusion without ECG information and/or in free-breathing conditions. CMR multitasking may provide a foundation for the development of setup-free CMR imaging for the quantitative evaluation of cardiovascular health.
Collapse
|
370
|
Ma D, Jiang Y, Chen Y, McGivney D, Mehta B, Gulani V, Griswold M. Fast 3D magnetic resonance fingerprinting for a whole-brain coverage. Magn Reson Med 2018; 79:2190-2197. [PMID: 28833436 PMCID: PMC5868964 DOI: 10.1002/mrm.26886] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/19/2017] [Accepted: 08/03/2017] [Indexed: 12/24/2022]
Abstract
PURPOSE The purpose of this study was to accelerate the acquisition and reconstruction time of 3D magnetic resonance fingerprinting scans. METHODS A 3D magnetic resonance fingerprinting scan was accelerated by using a single-shot spiral trajectory with an undersampling factor of 48 in the x-y plane, and an interleaved sampling pattern with an undersampling factor of 3 through plane. Further acceleration came from reducing the waiting time between neighboring partitions. The reconstruction time was accelerated by applying singular value decomposition compression in k-space. Finally, a 3D premeasured B1 map was used to correct for the B1 inhomogeneity. RESULTS The T1 and T2 values of the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology MRI phantom showed a good agreement with the standard values, with an average concordance correlation coefficient of 0.99, and coefficient of variation of 7% in the repeatability scans. The results from in vivo scans also showed high image quality in both transverse and coronal views. CONCLUSIONS This study applied a fast acquisition scheme for a fully quantitative 3D magnetic resonance fingerprinting scan with a total acceleration factor of 144 as compared with the Nyquist rate, such that 3D T1 , T2 , and proton density maps can be acquired with whole-brain coverage at clinical resolution in less than 5 min. Magn Reson Med 79:2190-2197, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Dan Ma
- Department of Radiology, Case Western Reserve University, Cleveland, OH
| | - Yun Jiang
- Department of Radiology, Case Western Reserve University, Cleveland, OH
| | - Yong Chen
- Department of Radiology, Case Western Reserve University, Cleveland, OH
| | - Debra McGivney
- Department of Radiology, Case Western Reserve University, Cleveland, OH
| | - Bhairav Mehta
- Department of Radiology, Case Western Reserve University, Cleveland, OH
| | - Vikas Gulani
- Department of Radiology, Case Western Reserve University, Cleveland, OH
| | - Mark Griswold
- Department of Radiology, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
371
|
Pahwa S, Liu H, Chen Y, Dastmalchian S, O'Connor G, Lu Z, Badve C, Yu A, Wright K, Chalian H, Rao S, Fu C, Vallines I, Griswold M, Seiberlich N, Zeng M, Gulani V. Quantitative perfusion imaging of neoplastic liver lesions: A multi-institution study. Sci Rep 2018; 8:4990. [PMID: 29563601 PMCID: PMC5862961 DOI: 10.1038/s41598-018-20726-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/16/2018] [Indexed: 12/14/2022] Open
Abstract
We describe multi-institutional experience using free-breathing, 3D Spiral GRAPPA-based quantitative perfusion MRI in characterizing neoplastic liver masses. 45 patients (age: 48–72 years) were prospectively recruited at University Hospitals, Cleveland, USA on a 3 Tesla (T) MRI, and at Zhongshan Hospital, Shanghai, China on a 1.5 T MRI. Contrast-enhanced volumetric T1-weighted images were acquired and a dual-input single-compartment model used to derive arterial fraction (AF), distribution volume (DV) and mean transit time (MTT) for the lesions and normal parenchyma. The measurements were compared using two-tailed Student’s t-test, with Bonferroni correction applied for multiple-comparison testing. 28 hepatocellular carcinoma (HCC) and 17 metastatic lesions were evaluated. No significant difference was noted in perfusion parameters of normal liver parenchyma and neoplastic masses at two centers (p = 0.62 for AF, 0.015 for DV, 0.42 for MTT for HCC, p = 0.13 for AF, 0.97 for DV, 0.78 for MTT for metastases). There was statistically significant difference in AF, DV, and MTT of metastases and AF and DV of HCC compared to normal liver parenchyma (p < 0.5/9 = 0.0055). A statistically significant difference was noted in the MTT of metastases compared to hepatocellular carcinoma (p < 0.001*10-5). In conclusion, 3D Spiral-GRAPPA enabled quantitative free-breathing perfusion MRI exam provides robust perfusion parameters.
Collapse
Affiliation(s)
- Shivani Pahwa
- Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Hao Liu
- Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong Chen
- Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Sara Dastmalchian
- Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Gregory O'Connor
- Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Ziang Lu
- Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Chaitra Badve
- Radiology, University Hospitals, Cleveland, OH, United States
| | - Alice Yu
- Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Katherine Wright
- Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Hamid Chalian
- Radiology, University Hospitals, Cleveland, OH, United States
| | - Shengxiang Rao
- Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Caixia Fu
- Siemens Shenzhen Magnetic Resonance Ltd, Shenzhen, China
| | | | - Mark Griswold
- Radiology, Case Western Reserve University, Cleveland, OH, United States.,Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Nicole Seiberlich
- Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Mengsu Zeng
- Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Vikas Gulani
- Radiology, Case Western Reserve University, Cleveland, OH, United States. .,Radiology, University Hospitals, Cleveland, OH, United States.
| |
Collapse
|
372
|
Kim B, Seo H, Kim D, Park H. Retrospective motion gating in cardiac MRI using a simultaneously acquired navigator. NMR IN BIOMEDICINE 2018; 31:e3874. [PMID: 29266452 DOI: 10.1002/nbm.3874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
A simultaneous acquisition technique of image and navigator signals (simultaneously acquired navigator, SIMNAV) is proposed for cardiac magnetic resonance imaging (CMRI) in Cartesian coordinates. To simultaneously acquire both image and navigator signals, a conventional balanced steady-state free precession (bSSFP) pulse sequence is modified by adding a radiofrequency (RF) pulse, which excites a supplementary slice for the navigator signal. Alternating phases of the RF pulses make it easy to separate the simultaneously acquired magnetic resonance data into image and navigator signals. The navigator signals of the proposed SIMNAV were compared with those of current gating devices and self-gating techniques for seven healthy subjects. In vivo experiments demonstrated that SIMNAV could provide cardiac cine images with sufficient image quality, similar to those from electrocardiogram (ECG) gating with breath-hold. SIMNAV can be used to acquire a cardiac cine image without requiring an ECG device and breath-hold, whilst maintaining feasible imaging time efficiency.
Collapse
Affiliation(s)
- Byungjai Kim
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Guseong-dong, Yuseong-gu, Daejeon, South Korea
| | - Hyunseok Seo
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Guseong-dong, Yuseong-gu, Daejeon, South Korea
| | - Dongchan Kim
- College of Medicine, Gachon University, Hambakmoero 191, Yeonsu-gu, Incheon, South Korea
| | - HyunWook Park
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Guseong-dong, Yuseong-gu, Daejeon, South Korea
| |
Collapse
|
373
|
Jimenez JE, Strigel RM, Johnson KM, Henze Bancroft LC, Reeder SB, Block WF. Feasibility of high spatiotemporal resolution for an abbreviated 3D radial breast MRI protocol. Magn Reson Med 2018; 80:1452-1466. [PMID: 29446125 DOI: 10.1002/mrm.27137] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE To develop a volumetric imaging technique with 0.8-mm isotropic resolution and 10-s/volume rate to detect and analyze breast lesions in a bilateral, dynamic, contrast-enhanced MRI exam. METHODS A local low-rank temporal reconstruction approach that also uses parallel imaging and spatial compressed sensing was designed to create rapid volumetric frame rates during a contrast-enhanced breast exam (vastly undersampled isotropic projection [VIPR] spatial compressed sensing with temporal local low-rank [STELLR]). The dynamic-enhanced data are subtracted in k-space from static mask data to increase sparsity for the local low-rank approach to maximize temporal resolution. A T1 -weighted 3D radial trajectory (VIPR iterative decomposition with echo asymmetry and least squares estimation [IDEAL]) was modified to meet the data acquisition requirements of the STELLR approach. Additionally, the unsubtracted enhanced data are reconstructed using compressed sensing and IDEAL to provide high-resolution fat/water separation. The feasibility of the approach and the dual reconstruction methodology is demonstrated using a 16-channel breast coil and a 3T MR scanner in 6 patients. RESULTS The STELLR temporal performance of subtracted data matched the expected temporal perfusion enhancement pattern in small and large vascular structures. Differential enhancement within heterogeneous lesions is demonstrated with corroboration from a basic reconstruction using a strict 10-second temporal footprint. Rapid acquisition, reliable fat suppression, and high spatiotemporal resolution are presented, despite significant data undersampling. CONCLUSION The STELLR reconstruction approach of 3D radial sampling with mask subtraction provides a high-performance imaging technique for characterizing enhancing structures within the breast. It is capable of maintaining temporal fidelity, while visualizing breast lesions with high detail over a large FOV to include both breasts.
Collapse
Affiliation(s)
- Jorge E Jimenez
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin
| | - Roberta M Strigel
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin.,Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin
| | - Leah C Henze Bancroft
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Scott B Reeder
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin.,Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin.,Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Emergency Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Walter F Block
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin.,Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
374
|
Chen L, Liu D, Zhang J, Xie B, Zhou X, Grimm R, Huang X, Wang J, Feng L. Free-breathing dynamic contrast-enhanced MRI for assessment of pulmonary lesions using golden-angle radial sparse parallel imaging. J Magn Reson Imaging 2018; 48:459-468. [PMID: 29437281 DOI: 10.1002/jmri.25977] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/30/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has been shown to be a promising technique for assessing lung lesions. However, DCE-MRI often suffers from motion artifacts and insufficient imaging speed. Therefore, highly accelerated free-breathing DCE-MRI is of clinical interest for lung exams. PURPOSE To test the performance of rapid free-breathing DCE-MRI for simultaneous qualitative and quantitative assessment of pulmonary lesions using Golden-angle RAdial Sparse Parallel (GRASP) imaging. STUDY TYPE Prospective. POPULATION Twenty-six patients (17 males, mean age = 55.1 ± 14.4) with known pulmonary lesions. FIELD STRENGTH/SEQUENCE 3T MR scanner; a prototype fat-saturated, T1 -weighted stack-of-stars golden-angle radial sequence for data acquisition and a Cartesian breath-hold volumetric-interpolated examination (BH-VIBE) sequence for comparison. ASSESSMENT After a dual-mode GRASP reconstruction, one with 3-second temporal resolution (3s-GRASP) and the other with 15-second temporal resolution (15s-GRASP), all GRASP and BH-VIBE images were pooled together for blind assessment by two experienced radiologists, who independently scored the overall image quality, lesion delineation, overall artifact level, and diagnostic confidence of each case. Perfusion analysis was performed for the 3s-GRASP images using a Tofts model to generate the volume transfer coefficient (Ktrans ) and interstitial volume (Ve ). STATISTICAL TESTS Nonparametric paired two-tailed Wilcoxon signed-rank test; Cohen's kappa; unpaired Student's t-test. RESULTS 15s-GRASP achieved comparable image quality with conventional BH-VIBE (P > 0.05), except for the higher overall artifact level in the precontrast phase (P = 0.018). The Ktrans and Ve in inflammation were higher than those in malignant lesions (Ktrans : 0.78 ± 0.52 min-1 vs. 0.37 ± 0.22 min-1 , P = 0.020; Ve : 0.36 ± 0.16 vs. 0.26 ± 0.1, P = 0.177). Also, the Ktrans and Ve in malignant lesions were also higher than those in benign lesions (Ktrans : 0.37 ± 0.22 min-1 vs. 0.04 ± 0.04 min-1 , P = 0.001; Ve : 0.26 ± 0.12 vs. 0.10 ± 0.00, P = 0.063). DATA CONCLUSION This feasibility study demonstrated the performance of high spatiotemporal resolution free-breathing DCE-MRI of the lung using GRASP for qualitative and quantitative assessment of pulmonary lesions. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2018;48:459-468.
Collapse
Affiliation(s)
- Lihua Chen
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Radiology, PLA 101st Hospital, Wuxi Jiangsu, China
| | - Daihong Liu
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiuquan Zhang
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bing Xie
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaoyue Zhou
- MR Collaboration, North East Asia, Siemens Healthcare, Shanghai, China
| | | | - Xuequan Huang
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Li Feng
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
375
|
Platt T, Umathum R, Fiedler TM, Nagel AM, Bitz AK, Maier F, Bachert P, Ladd ME, Wielpütz MO, Kauczor HU, Behl NG. In vivo self-gated 23
Na MRI at 7 T using an oval-shaped body resonator. Magn Reson Med 2018; 80:1005-1019. [DOI: 10.1002/mrm.27103] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/08/2017] [Accepted: 01/02/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Tanja Platt
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280; 69120 Heidelberg Germany
| | - Reiner Umathum
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280; 69120 Heidelberg Germany
| | - Thomas M. Fiedler
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280; 69120 Heidelberg Germany
| | - Armin M. Nagel
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280; 69120 Heidelberg Germany
- Institute of Radiology; University Hospital Erlangen, Maximiliansplatz 3; 91054 Erlangen Germany
| | - Andreas K. Bitz
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280; 69120 Heidelberg Germany
- Faculty of Electrical Engineering and Information Technology; University of Applied Sciences Aachen, Eupener Str. 70; 52066 Aachen Germany
| | - Florian Maier
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280; 69120 Heidelberg Germany
| | - Peter Bachert
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280; 69120 Heidelberg Germany
- Faculty of Physics and Astronomy; University of Heidelberg, Im Neuenheimer Feld 226; 69120 Heidelberg Germany
| | - Mark E. Ladd
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280; 69120 Heidelberg Germany
- Faculty of Physics and Astronomy; University of Heidelberg, Im Neuenheimer Feld 226; 69120 Heidelberg Germany
- Faculty of Medicine; University of Heidelberg, Im Neuenheimer Feld 672; 69120 Heidelberg Germany
| | - Mark O. Wielpütz
- Translational Lung Research Center (TLRC); University of Heidelberg, German Center for Lung Research (DZL), Im Neuenheimer Feld 430; 69120 Heidelberg Germany
- Department of Diagnostic and Interventional Radiology; University Hospital of Heidelberg, Im Neuenheimer Feld 110; 69120 Heidelberg Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine; Thoraxklinik at University of Heidelberg, Röntgenstr. 1; 69126 Heidelberg Germany
| | - Hans-Ulrich Kauczor
- Translational Lung Research Center (TLRC); University of Heidelberg, German Center for Lung Research (DZL), Im Neuenheimer Feld 430; 69120 Heidelberg Germany
- Department of Diagnostic and Interventional Radiology; University Hospital of Heidelberg, Im Neuenheimer Feld 110; 69120 Heidelberg Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine; Thoraxklinik at University of Heidelberg, Röntgenstr. 1; 69126 Heidelberg Germany
| | - Nicolas G.R. Behl
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280; 69120 Heidelberg Germany
| |
Collapse
|
376
|
Dynamic magnetic resonance imaging method based on golden-ratio cartesian sampling and compressed sensing. PLoS One 2018; 13:e0191569. [PMID: 29381709 PMCID: PMC5790254 DOI: 10.1371/journal.pone.0191569] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 01/08/2018] [Indexed: 11/19/2022] Open
Abstract
Dynamic magnetic resonance imaging (DMRI) is used to noninvasively trace the movements of organs and the process of drug delivery. The results can provide quantitative or semiquantitative pathology-related parameters, thus giving DMRI great potential for clinical applications. However, conventional DMRI techniques suffer from low temporal resolution and long scan time owing to the limitations of the k-space sampling scheme and image reconstruction algorithm. In this paper, we propose a novel DMRI sampling scheme based on a golden-ratio Cartesian trajectory in combination with a compressed sensing reconstruction algorithm. The results of two simulation experiments, designed according to the two major DMRI techniques, showed that the proposed method can improve the temporal resolution and shorten the scan time and provide high-quality reconstructed images.
Collapse
|
377
|
von zur Mühlen C, Reiss S, Krafft AJ, Besch L, Menza M, Zehender M, Heidt T, Maier A, Pfannebecker T, Zirlik A, Reinöhl J, Stachon P, Hilgendorf I, Wolf D, Diehl P, Wengenmayer T, Ahrens I, Bode C, Bock M. Coronary magnetic resonance imaging after routine implantation of bioresorbable vascular scaffolds allows non-invasive evaluation of vascular patency. PLoS One 2018; 13:e0191413. [PMID: 29370208 PMCID: PMC5784929 DOI: 10.1371/journal.pone.0191413] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/04/2018] [Indexed: 12/17/2022] Open
Abstract
Background Evaluation of recurrent angina after percutaneous coronary interventions is challenging. Since bioresorbable vascular scaffolds (BVS) cause no artefacts in magnetic resonance imaging (MRI) due to their polylactate-based backbone, evaluation of vascular patency by MRI might allow for non-invasive assessment and triage of patients with suspected BVS failure. Methods Patients with polylactate-based ABSORB-BVS in proximal coronary segments were examined with 3 Tesla MRI directly (baseline) and one year after implantation. For assessment of coronary patency, a high-resolution 3D spoiled gradient echo pulse sequence with fat-saturation, T2-preparation (TE: 40 ms), respiratory and end-diastolic cardiac gating, and a spatial resolution of (1.08 mm)3 was positioned parallel to the course of the vessel for bright blood imaging. In addition, a 3D navigator-gated T2-weighted variable flip angle turbo spin echo (TSE) sequence with dual-inversion recovery black-blood preparation and elliptical k-space coverage was applied with a voxel size of (1.14 mm)3. For quantitative evaluation lumen diameters of the scaffolded areas were measured in reformatted bright and black blood MR angiography data. Results 11 patients with implantation of 16 BVS in the proximal coronary segments were included, of which none suffered from major adverse cardiac events during the one year follow up. Vascular patency in all segments implanted with BVS could be reliably assessed by MRI at baseline and after one year, whereas segments with metal stents could not be evaluated due to artefacts. Luminal diameter within the BVS remained constant during the one year period. One patient with atypical angina after BVS implantation was noninvasively evaluated showing a patent vessel, also confirmed by coronary angiography. Conclusions Coronary MRI allows contrast-agent free and non-invasive assessment of vascular patency after ABSORB-BVS implantation. This approach might be supportive in the triage and improvement of diagnostic workflows in patients with postinterventional angina and scaffold implantation. Trial registration German Register of Clinical Studies DRKS00007456
Collapse
Affiliation(s)
- Constantin von zur Mühlen
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- * E-mail:
| | - Simon Reiss
- Department of Radiology–Medical Physics, University Medical Center Freiburg, Freiburg, Germany
| | - Axel J. Krafft
- Department of Radiology–Medical Physics, University Medical Center Freiburg, Freiburg, Germany
| | - Lisa Besch
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marius Menza
- Department of Radiology–Medical Physics, University Medical Center Freiburg, Freiburg, Germany
| | - Manfred Zehender
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Timo Heidt
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexander Maier
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Andreas Zirlik
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jochen Reinöhl
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Stachon
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dennis Wolf
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Diehl
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Wengenmayer
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ingo Ahrens
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Bode
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Bock
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Radiology–Medical Physics, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
378
|
Fuin N, Catalano OA, Scipioni M, Canjels LPW, Izquierdo-Garcia D, Pedemonte S, Catana C. Concurrent Respiratory Motion Correction of Abdominal PET and Dynamic Contrast-Enhanced-MRI Using a Compressed Sensing Approach. J Nucl Med 2018; 59:1474-1479. [PMID: 29371404 DOI: 10.2967/jnumed.117.203943] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/15/2018] [Indexed: 01/23/2023] Open
Abstract
We present an approach for concurrent reconstruction of respiratory motion-compensated abdominal dynamic contrast-enhanced (DCE)-MRI and PET data in an integrated PET/MR scanner. The MR and PET reconstructions share the same motion vector fields derived from radial MR data; the approach is robust to changes in respiratory pattern and does not increase the total acquisition time. Methods: PET and DCE-MRI data of 12 oncologic patients were simultaneously acquired for 6 min on an integrated PET/MR system after administration of 18F-FDG and gadoterate meglumine. Golden-angle radial MR data were continuously acquired simultaneously with PET data and sorted into multiple motion phases on the basis of a respiratory signal derived directly from the radial MR data. The resulting multidimensional dataset was reconstructed using a compressed sensing approach that exploits sparsity among respiratory phases. Motion vector fields obtained using the full 6-min (MC6-min) and only the last 1 min (MC1-min) of data were incorporated into the PET reconstruction to obtain motion-corrected PET images and in an MR iterative reconstruction algorithm to produce a series of motion-corrected DCE-MR images (moco_GRASP). The motion-correction methods (MC6-min and MC1-min) were evaluated by qualitative analysis of the MR images and quantitative analysis of SUVmax and SUVmean, contrast, signal-to-noise ratio (SNR), and lesion volume in the PET images. Results: Motion-corrected MC6-min PET images demonstrated 30%, 23%, 34%, and 18% increases in average SUVmax, SUVmean, contrast, and SNR and an average 40% reduction in lesion volume with respect to the non-motion-corrected PET images. The changes in these figures of merit were smaller but still substantial for the MC1-min protocol: 19%, 10%, 15%, and 9% increases in average SUVmax, SUVmean, contrast, and SNR; and a 28% reduction in lesion volume. Moco_GRASP images were deemed of acceptable or better diagnostic image quality with respect to conventional breath-hold Cartesian volumetric interpolated breath-hold examination acquisitions. Conclusion: We presented a method that allows the simultaneous acquisition of respiratory motion-corrected diagnostic quality DCE-MRI and quantitatively accurate PET data in an integrated PET/MR scanner with negligible prolongation in acquisition time compared with routine PET/DCE-MRI protocols.
Collapse
Affiliation(s)
- Niccolo Fuin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Onofrio A Catalano
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Michele Scipioni
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts.,Department of Information Engineering, University of Pisa, Pisa, Italy; and
| | - Lisanne P W Canjels
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - David Izquierdo-Garcia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Stefano Pedemonte
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
379
|
Bastkowski R, Weiss K, Maintz D, Giese D. Self-gated golden-angle spiral 4D flow MRI. Magn Reson Med 2018; 80:904-913. [PMID: 29344990 DOI: 10.1002/mrm.27085] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/07/2017] [Accepted: 12/20/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Rene Bastkowski
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
| | - Kilian Weiss
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
- Philips Healthcare Germany, Hamburg, Germany
| | - David Maintz
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
| | - Daniel Giese
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
380
|
Fischer P, Faranesh A, Pohl T, Maier A, Rogers T, Ratnayaka K, Lederman R, Hornegger J. An MR-Based Model for Cardio-Respiratory Motion Compensation of Overlays in X-Ray Fluoroscopy. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:47-60. [PMID: 28692969 PMCID: PMC5750091 DOI: 10.1109/tmi.2017.2723545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In X-ray fluoroscopy, static overlays are used to visualize soft tissue. We propose a system for cardiac and respiratory motion compensation of these overlays. It consists of a 3-D motion model created from real-time magnetic resonance (MR) imaging. Multiple sagittal slices are acquired and retrospectively stacked to consistent 3-D volumes. Slice stacking considers cardiac information derived from the ECG and respiratory information extracted from the images. Additionally, temporal smoothness of the stacking is enhanced. Motion is estimated from the MR volumes using deformable 3-D/3-D registration. The motion model itself is a linear direct correspondence model using the same surrogate signals as slice stacking. In X-ray fluoroscopy, only the surrogate signals need to be extracted to apply the motion model and animate the overlay in real time. For evaluation, points are manually annotated in oblique MR slices and in contrast-enhanced X-ray images. The 2-D Euclidean distance of these points is reduced from 3.85 to 2.75 mm in MR and from 3.0 to 1.8 mm in X-ray compared with the static baseline. Furthermore, the motion-compensated overlays are shown qualitatively as images and videos.
Collapse
|
381
|
Ahmad R, Hu HH, Krishnamurthy R, Krishnamurthy R. Reducing sedation for pediatric body MRI using accelerated and abbreviated imaging protocols. Pediatr Radiol 2018; 48:37-49. [PMID: 29292482 DOI: 10.1007/s00247-017-3987-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/13/2017] [Accepted: 09/12/2017] [Indexed: 12/01/2022]
Abstract
Magnetic resonance imaging (MRI) is an established diagnostic imaging tool for investigating pediatric disease. MRI allows assessment of structure, function, and morphology in cardiovascular imaging, as well as tissue characterization in body imaging, without the use of ionizing radiation. For MRI in children, sedation and general anesthesia (GA) are often utilized to suppress patient motion, which can otherwise compromise image quality and diagnostic efficacy. However, evidence is emerging that use of sedation and GA in children might have long-term neurocognitive side effects, in addition to the short-term procedure-related risks. These concerns make risk-benefit assessment of sedation and GA more challenging. Therefore, reducing or eliminating the need for sedation and GA is an important goal of imaging innovation and research in pediatric MRI. In this review, the authors focus on technical and clinical approaches to reducing and eliminating the use of sedation in the pediatric population based on image acquisition acceleration and imaging protocols abbreviation. This paper covers important physiological and technical considerations for pediatric body MR imaging and discusses MRI techniques that offer the potential of recovering diagnostic-quality images from accelerated scans. In this review, the authors also introduce the concept of reporting elements for important indications for pediatric body MRI and use this as a basis for abbreviating the MR protocols. By employing appropriate accelerated and abbreviated approaches based on an understanding of the imaging needs and reporting elements for a given clinical indication, it is possible to reduce sedation and GA for pediatric chest, cardiovascular and abdominal MRI.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Houchun Harry Hu
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Ramkumar Krishnamurthy
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Rajesh Krishnamurthy
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.
| |
Collapse
|
382
|
Johnston CM, Krafft AJ, Russe MF, Rog-Zielinska EA. A new look at the heart-novel imaging techniques. Herzschrittmacherther Elektrophysiol 2017; 29:14-23. [PMID: 29242981 DOI: 10.1007/s00399-017-0546-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/24/2017] [Indexed: 01/20/2023]
Abstract
The development and successful implementation of cutting-edge imaging technologies to visualise cardiac anatomy and function is a key component of effective diagnostic efforts in cardiology. Here, we describe a number of recent exciting advances in the field of cardiology spanning from macro- to micro- to nano-scales of observation, including magnetic resonance imaging, computed tomography, optical mapping, photoacoustic imaging, and electron tomography. The methodologies discussed are currently making the transition from scientific research to routine clinical use, albeit at different paces. We discuss the most likely trajectory of this transition into clinical research and standard diagnostics, and highlight the key challenges and opportunities associated with each of the methodologies.
Collapse
Affiliation(s)
- C M Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Center, Medical Center - University of Freiburg, and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - A J Krafft
- Department of Radiology, Medical Physics, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - M F Russe
- Department of Radiology, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - E A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center, Medical Center - University of Freiburg, and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
383
|
Feng L, Huang C, Shanbhogue K, Sodickson DK, Chandarana H, Otazo R. RACER-GRASP: Respiratory-weighted, aortic contrast enhancement-guided and coil-unstreaking golden-angle radial sparse MRI. Magn Reson Med 2017; 80:77-89. [PMID: 29193260 DOI: 10.1002/mrm.27002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE To develop and evaluate a novel dynamic contrast-enhanced imaging technique called RACER-GRASP (Respiratory-weighted, Aortic Contrast Enhancement-guided and coil-unstReaking Golden-angle RAdial Sparse Parallel) MRI that extends GRASP to include automatic contrast bolus timing, respiratory motion compensation, and coil-weighted unstreaking for improved imaging performance in liver MRI. METHODS In RACER-GRASP, aortic contrast enhancement (ACE) guided k-space sorting and respiratory-weighted sparse reconstruction are performed using aortic contrast enhancement and respiratory motion signals extracted directly from the acquired data. Coil unstreaking aims to weight multicoil k-space according to streaking artifact level calculated for each individual coil during image reconstruction, so that coil elements containing a high level of streaking artifacts contribute less to the final results. Self-calibrating GRAPPA operator gridding was applied as a pre-reconstruction step to reduce computational burden in the subsequent iterative reconstruction. The RACER-GRASP technique was compared with standard GRASP reconstruction in a group of healthy volunteers and patients referred for clinical liver MR examination. RESULTS Compared with standard GRASP, RACER-GRASP significantly improved overall image quality (average score: 3.25 versus 3.85) and hepatic vessel sharpness/clarity (average score: 3.58 versus 4.0), and reduced residual streaking artifact level (average score: 3.23 versus 3.94) in different contrast phases. RACER-GRASP also enabled automatic timing of the arterial phases. CONCLUSIONS The aortic contrast enhancement-guided sorting, respiratory motion suppression and coil unstreaking introduced by RACER-GRASP improve upon the imaging performance of standard GRASP for free-breathing dynamic contrast-enhanced MRI of the liver. Magn Reson Med 80:77-89, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Li Feng
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Chenchan Huang
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Krishna Shanbhogue
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Daniel K Sodickson
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Hersh Chandarana
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Ricardo Otazo
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
384
|
Tomi-Tricot R, Gras V, Mauconduit F, Legou F, Boulant N, Gebhardt M, Ritter D, Kiefer B, Zerbib P, Rahmouni A, Vignaud A, Luciani A, Amadon A. B1
artifact reduction in abdominal DCE-MRI using kT
-points: First clinical assessment of dynamic RF shimming at 3T. J Magn Reson Imaging 2017; 47:1562-1571. [DOI: 10.1002/jmri.25908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/09/2017] [Indexed: 11/05/2022] Open
Affiliation(s)
| | - Vincent Gras
- NeuroSpin/UNIRS, CEA, Paris-Saclay; Gif-sur-Yvette Cedex France
| | | | - François Legou
- Department of Radiology; AP-HP, CHU Henri Mondor; Cedex France
| | - Nicolas Boulant
- NeuroSpin/UNIRS, CEA, Paris-Saclay; Gif-sur-Yvette Cedex France
| | | | | | | | - Pierre Zerbib
- Department of Radiology; AP-HP, CHU Henri Mondor; Cedex France
| | - Alain Rahmouni
- Department of Radiology; AP-HP, CHU Henri Mondor; Cedex France
- Université Paris-Est Créteil Val de Marne; Créteil Cedex France
| | | | - Alain Luciani
- Department of Radiology; AP-HP, CHU Henri Mondor; Cedex France
- Université Paris-Est Créteil Val de Marne; Créteil Cedex France
- INSERM Unité U955, Equipe 18, Molecular Virology and Immunology - Physiopathology and Therapeutic of Chronic Viral Hepatitis; Créteil France
| | - Alexis Amadon
- NeuroSpin/UNIRS, CEA, Paris-Saclay; Gif-sur-Yvette Cedex France
| |
Collapse
|
385
|
|
386
|
Chen F, Zhang T, Cheng JY, Shi X, Pauly JM, Vasanawala SS. Autocalibrating motion-corrected wave-encoding for highly accelerated free-breathing abdominal MRI. Magn Reson Med 2017; 78:1757-1766. [PMID: 27943402 PMCID: PMC5466545 DOI: 10.1002/mrm.26567] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 10/26/2016] [Accepted: 11/10/2016] [Indexed: 02/06/2023]
Abstract
PURPOSE To develop a motion-robust wave-encoding technique for highly accelerated free-breathing abdominal MRI. METHODS A comprehensive 3D wave-encoding-based method was developed to enable fast free-breathing abdominal imaging: (a) auto-calibration for wave-encoding was designed to avoid extra scan for coil sensitivity measurement; (b) intrinsic butterfly navigators were used to track respiratory motion; (c) variable-density sampling was included to enable compressed sensing; (d) golden-angle radial-Cartesian hybrid view-ordering was incorporated to improve motion robustness; and (e) localized rigid motion correction was combined with parallel imaging compressed sensing reconstruction to reconstruct the highly accelerated wave-encoded datasets. The proposed method was tested on six subjects and image quality was compared with standard accelerated Cartesian acquisition both with and without respiratory triggering. Inverse gradient entropy and normalized gradient squared metrics were calculated, testing whether image quality was improved using paired t-tests. RESULTS For respiratory-triggered scans, wave-encoding significantly reduced residual aliasing and blurring compared with standard Cartesian acquisition (metrics suggesting P < 0.05). For non-respiratory-triggered scans, the proposed method yielded significantly better motion correction compared with standard motion-corrected Cartesian acquisition (metrics suggesting P < 0.01). CONCLUSION The proposed methods can reduce motion artifacts and improve overall image quality of highly accelerated free-breathing abdominal MRI. Magn Reson Med 78:1757-1766, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Feiyu Chen
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Tao Zhang
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Joseph Y. Cheng
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Xinwei Shi
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - John M. Pauly
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | | |
Collapse
|
387
|
Stemkens B, Benkert T, Chandarana H, Bittman ME, Van den Berg CA, Lagendijk JJ, Sodickson DK, Tijssen RH, Block KT. Adaptive bulk motion exclusion for improved robustness of abdominal magnetic resonance imaging. NMR IN BIOMEDICINE 2017; 30:e3830. [PMID: 28885742 PMCID: PMC5643254 DOI: 10.1002/nbm.3830] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/03/2017] [Accepted: 08/14/2017] [Indexed: 05/09/2023]
Abstract
Non-Cartesian magnetic resonance imaging (MRI) sequences have shown great promise for abdominal examination during free breathing, but break down in the presence of bulk patient motion (i.e. voluntary or involuntary patient movement resulting in translation, rotation or elastic deformations of the body). This work describes a data-consistency-driven image stabilization technique that detects and excludes bulk movements during data acquisition. Bulk motion is identified from changes in the signal intensity distribution across different elements of a multi-channel receive coil array. A short free induction decay signal is acquired after excitation and used as a measure to determine alterations in the load distribution. The technique has been implemented on a clinical MR scanner and evaluated in the abdomen. Six volunteers were scanned and two radiologists scored the reconstructions. To show the applicability to other body areas, additional neck and knee images were acquired. Data corrupted by bulk motion were successfully detected and excluded from image reconstruction. An overall increase in image sharpness and reduction of streaking and shine-through artifacts were seen in the volunteer study, as well as in the neck and knee scans. The proposed technique enables automatic real-time detection and exclusion of bulk motion during MR examinations without user interaction. It may help to improve the reliability of pediatric MRI examinations without the use of sedation.
Collapse
Affiliation(s)
- Bjorn Stemkens
- Department of RadiotherapyUniversity Medical Center Utrechtthe Netherlands
| | - Thomas Benkert
- Center for Advanced Imaging Innovation and Research (CAIR), Department of RadiologyNew York University School of MedicineNew YorkNYUSA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of RadiologyNew York University School of MedicineNew YorkNYUSA
| | - Hersh Chandarana
- Center for Advanced Imaging Innovation and Research (CAIR), Department of RadiologyNew York University School of MedicineNew YorkNYUSA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of RadiologyNew York University School of MedicineNew YorkNYUSA
| | - Mark E. Bittman
- Center for Advanced Imaging Innovation and Research (CAIR), Department of RadiologyNew York University School of MedicineNew YorkNYUSA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of RadiologyNew York University School of MedicineNew YorkNYUSA
| | | | - Jan J.W. Lagendijk
- Department of RadiotherapyUniversity Medical Center Utrechtthe Netherlands
| | - Daniel K. Sodickson
- Center for Advanced Imaging Innovation and Research (CAIR), Department of RadiologyNew York University School of MedicineNew YorkNYUSA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of RadiologyNew York University School of MedicineNew YorkNYUSA
| | - Rob H.N. Tijssen
- Department of RadiotherapyUniversity Medical Center Utrechtthe Netherlands
| | - Kai Tobias Block
- Center for Advanced Imaging Innovation and Research (CAIR), Department of RadiologyNew York University School of MedicineNew YorkNYUSA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of RadiologyNew York University School of MedicineNew YorkNYUSA
| |
Collapse
|
388
|
Mazzoli V, Schoormans J, Froeling M, Sprengers AM, Coolen BF, Verdonschot N, Strijkers GJ, Nederveen AJ. Accelerated 4D self-gated MRI of tibiofemoral kinematics. NMR IN BIOMEDICINE 2017; 30:e3791. [PMID: 28873255 DOI: 10.1002/nbm.3791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
Anatomical (static) magnetic resonance imaging (MRI) is the most useful imaging technique for the evaluation and assessment of internal derangement of the knee, but does not provide dynamic information and does not allow the study of the interaction of the different tissues during motion. As knee pain is often only experienced during dynamic tasks, the ability to obtain four-dimensional (4D) images of the knee during motion could improve the diagnosis and provide a deeper understanding of the knee joint. In this work, we present a novel approach for dynamic, high-resolution, 4D imaging of the freely moving knee without the need for external triggering. The dominant knee of five healthy volunteers was scanned during a flexion/extension task. To evaluate the effects of non-uniform motion and poor coordination skills on the quality of the reconstructed images, we performed a comparison between fully free movement and movement instructed by a visual cue. The trigger signal for self-gating was extracted using principal component analysis (PCA), and the images were reconstructed using a parallel imaging and compressed sensing reconstruction pipeline. The reconstructed 4D movies were scored for image quality and used to derive bone kinematics through image registration. Using our method, we were able to obtain 4D high-resolution movies of the knee without the need for external triggering hardware. The movies obtained with and without instruction did not differ significantly in terms of image scoring and quantitative values for tibiofemoral kinematics. Our method showed to be robust for the extraction of the self-gating signal even for uninstructed motion. This can make the technique suitable for patients who, as a result of pain, may find it difficult to comply exactly with instructions. Furthermore, bone kinematics can be derived from accelerated MRI without the need for additional hardware for triggering.
Collapse
Affiliation(s)
- Valentina Mazzoli
- Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
- Orthopedic Research Laboratory, Radboud University Medical Center, Nijmegen, the Netherlands
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jasper Schoormans
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, the Netherlands
| | - Martijn Froeling
- Department of Radiology, University Medical Center, Utrecht, the Netherlands
| | - Andre M Sprengers
- Orthopedic Research Laboratory, Radboud University Medical Center, Nijmegen, the Netherlands
- Laboratory for Biomechanical Engineering, University of Twente, Enschede, the Netherlands
| | - Bram F Coolen
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, the Netherlands
| | - Nico Verdonschot
- Orthopedic Research Laboratory, Radboud University Medical Center, Nijmegen, the Netherlands
- Laboratory for Biomechanical Engineering, University of Twente, Enschede, the Netherlands
| | - Gustav J Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, the Netherlands
| | - Aart J Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
389
|
Martin T, Hoffman J, Alger JR, McNitt-Gray M, Wang DJ. Low-dose CT perfusion with projection view sharing. Med Phys 2017; 45:101-113. [PMID: 29080274 DOI: 10.1002/mp.12640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/13/2017] [Accepted: 10/19/2017] [Indexed: 12/25/2022] Open
Abstract
PURPOSE CT Perfusion (CTP) is a widely used clinical imaging modality. However, CTP typically involves the use of substantial radiation dose (CTDIvol ≥~200 mGy). The purpose of this study is to present a low-dose CTP technique using a projection view-sharing reconstruction algorithm originally developed for dynamic MRI - "K-space Weighted Image Contrast" (KWIC). METHODS The KWIC reconstruction is based on an angle-bisection scheme. In KWIC, a Fourier transform was performed along each projection to form a "k-space"-like CT data space, based on the central-slice theorem. As a projection view-sharing technique, KWIC preserves the spatiotemporal resolution of undersampled CTP data by progressively increasing the number of projection views shared for more distant regions of "k-space". KWIC reconstruction was evaluated on a digital FORBILD head phantom with numerically simulated time-varying objects. The numerically simulated scans were undersampled using the angle-bisection scheme to achieve 50%, 25%, and 12.5% of the original dose (288, 144, and 72 projections, respectively). The area-under-the-curve (AUC), time-to-peak (TTP), and full width half maximum (FWHM) were measured in KWIC recons and compared to fully sampled filtered back projection (FBP) reconstructions. KWIC reconstruction and dose reduction was also implemented for three clinical CTP cases (45 s, 1156 projections per turn, 1 s/turn, CTDIvol 217 mGy). Quantitative perfusion metrics were computed and compared between KWIC reconstructed CTP data and those of standard FBP reconstruction. RESULTS The AUC, TTP, and FWHM in the numerical simzulations were unaffected by the undersampling/dose reduction (down to 12.5% dose) with KWIC reconstruction compared to the fully sampled FBP reconstruction. The normalized root-mean-square-error (NRMSE) of the AUC in the FORBILD head phantom is 0.04, 0.05, and 0.07 for 50%, 25%, and 12.5% KWIC, respectively, as compared to FBP reconstruction. The cerebral blood flow (CBF) and cerebral blood volume had no significant difference between FBP and 50%, 25%, and 12.5% KWIC reconstructions (P > 0.05). CONCLUSIONS This study demonstrates that KWIC preserves perfusion metrics for CTP with substantially reduced dose. Clinical implementation will require further investigation into methods of rapid switching of a CT x-ray source.
Collapse
Affiliation(s)
- Thomas Martin
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - John Hoffman
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeff R Alger
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael McNitt-Gray
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Danny Jj Wang
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA.,Laboratory of FMRI Technology (LOFT), Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
390
|
Piekarski E, Chitiboi T, Ramb R, Latson LA, Bhatla P, Feng L, Axel L. Two-dimensional XD-GRASP provides better image quality than conventional 2D cardiac cine MRI for patients who cannot suspend respiration. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 31:49-59. [PMID: 29067539 DOI: 10.1007/s10334-017-0655-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 09/16/2017] [Accepted: 09/28/2017] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Residual respiratory motion degrades image quality in conventional cardiac cine MRI (CCMRI). We evaluated whether a free-breathing (FB) radial imaging CCMRI sequence with compressed sensing reconstruction [extradimensional (e.g. cardiac and respiratory phases) golden-angle radial sparse parallel, or XD-GRASP] could provide better image quality than a conventional Cartesian breath-held (BH) sequence in an unselected population of patients undergoing clinical CCMRI. MATERIALS AND METHODS One hundred one patients who underwent BH and FB imaging in a midventricular short-axis plane at a matching location were included. Visual and quantitative image analysis was performed by two blinded experienced readers, using a five-point qualitative scale to score overall image quality and visual signal-to-noise ratio (SNR) grade, with measures of noise and sharpness. End-diastolic and end-systolic left ventricular areas were also measured and compared for both BH and FB images. RESULTS Image quality was generally better with the BH cines (overall quality grade for BH vs FB images 4 vs 2.9, p < 0.001; noise 0.06 vs 0.08 p < 0.001; SNR grade 4.1 vs 3, p < 0.001), except for sharpness (p = 0.48). There were no significant differences between BH and FB images regarding end-diastolic or end-systolic areas (p = 0.35 and p = 0.12). Eighteen of the 101 patients had poor BH image quality (grade 1 or 2). In this subgroup, the quality of the FB images was better (p = 0.0032), as was the SNR grade (p = 0.003), but there were no significant differences regarding noise and sharpness (p = 0.45 and p = 0.47). CONCLUSION Although FB XD-GRASP CCMRI was visually inferior to conventional BH CCMRI in general, it provided improved image quality in the subgroup of patients with respiratory-motion-induced artifacts on BH images.
Collapse
Affiliation(s)
- Eve Piekarski
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, 660 First Ave., New York, NY, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave., New York, NY, USA
| | - Teodora Chitiboi
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, 660 First Ave., New York, NY, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave., New York, NY, USA
| | - Rebecca Ramb
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, 660 First Ave., New York, NY, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave., New York, NY, USA
| | - Larry A Latson
- Department of Radiology, New York University Langone Medical Center, 650 First Ave., New York, NY, USA
| | - Puneet Bhatla
- Department of Radiology, New York University Langone Medical Center, 650 First Ave., New York, NY, USA
| | - Li Feng
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, 660 First Ave., New York, NY, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave., New York, NY, USA
| | - Leon Axel
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, 660 First Ave., New York, NY, USA.
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave., New York, NY, USA.
- Department of Radiology, New York University Langone Medical Center, 650 First Ave., New York, NY, USA.
| |
Collapse
|
391
|
Crowe LA, Manasseh G, Chmielewski A, Hachulla AL, Speicher D, Greiser A, Muller H, de Perrot T, Vallee JP, Salomir R. Spatially Resolved MR-Compatible Doppler Ultrasound: Proof of Concept for Triggering of Diagnostic Quality Cardiovascular MRI for Function and Flow Quantification at 3T. IEEE Trans Biomed Eng 2017; 65:294-306. [PMID: 29053451 DOI: 10.1109/tbme.2017.2764111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE We demonstrate the use of a magnetic-resonance (MR)-compatible ultrasound (US) imaging probe using spatially resolved Doppler for diagnostic quality cardiovascular MR imaging (MRI) as an initial step toward hybrid US/MR fetal imaging. METHODS A newly developed technology for a dedicated MR-compatible phased array ultrasound-imaging probe acquired pulsed color Doppler carotid images, which were converted in near-real time to a trigger signal for cardiac cine and flow quantification MRI. Ultrasound and MR data acquired simultaneously were interference free. Conventional electrocardiogram (ECG) and the proposed spatially resolved Doppler triggering were compared in 10 healthy volunteers. A synthetic "false-triggered" image was retrospectively processed using metric optimized gating (MOG). Images were scored by expert readers, and sharpness, cardiac function and aortic flow were quantified. Four-dimensional (4-D) flow (two volunteers) showed feasibility of Doppler triggering over a long acquisition time. RESULTS Imaging modalities were compatible. US probe positioning was stable and comfortable. Image quality scores and quantified sharpness were statistically equal for Doppler- and ECG-triggering (p ). ECG-, Doppler-triggered, and MOG ejection fractions were equivalent (p ), with false-triggered values significantly lower (p < 0.0005). Aortic flow showed no difference between ECG- and Doppler-triggered and MOG (p > 0.05). 4-D flow quantification gave consistent results between ECG and Doppler triggering. CONCLUSION We report interference-free pulsed color Doppler ultrasound during MR data acquisition. Cardiovascular MRI of diagnostic quality was successfully obtained with pulsed color Doppler triggering. SIGNIFICANCE The hardware platform could further enable advanced free-breathing cardiac imaging. Doppler ultrasound triggering is applicable where ECG is compromised due to pathology or interference at higher magnetic fields, and where direct ECG is impossible, i.e., fetal imaging.
Collapse
|
392
|
Jiang W, Ong F, Johnson KM, Nagle SK, Hope TA, Lustig M, Larson PEZ. Motion robust high resolution 3D free-breathing pulmonary MRI using dynamic 3D image self-navigator. Magn Reson Med 2017; 79:2954-2967. [PMID: 29023975 DOI: 10.1002/mrm.26958] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 08/16/2017] [Accepted: 09/14/2017] [Indexed: 01/01/2023]
Abstract
PURPOSE To achieve motion robust high resolution 3D free-breathing pulmonary MRI utilizing a novel dynamic 3D image navigator derived directly from imaging data. METHODS Five-minute free-breathing scans were acquired with a 3D ultrashort echo time (UTE) sequence with 1.25 mm isotropic resolution. From this data, dynamic 3D self-navigating images were reconstructed under locally low rank (LLR) constraints and used for motion compensation with one of two methods: a soft-gating technique to penalize the respiratory motion induced data inconsistency, and a respiratory motion-resolved technique to provide images of all respiratory motion states. RESULTS Respiratory motion estimation derived from the proposed dynamic 3D self-navigator of 7.5 mm isotropic reconstruction resolution and a temporal resolution of 300 ms was successful for estimating complex respiratory motion patterns. This estimation improved image quality compared to respiratory belt and DC-based navigators. Respiratory motion compensation with soft-gating and respiratory motion-resolved techniques provided good image quality from highly undersampled data in volunteers and clinical patients. CONCLUSION An optimized 3D UTE sequence combined with the proposed reconstruction methods can provide high-resolution motion robust pulmonary MRI. Feasibility was shown in patients who had irregular breathing patterns in which our approach could depict clinically relevant pulmonary pathologies. Magn Reson Med 79:2954-2967, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Wenwen Jiang
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California, USA
| | - Frank Ong
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin, Madison, Madison, Wisconsin, USA.,Department of Radiology, University of Wisconsin, Madison, Madison, Wisconsin, USA
| | - Scott K Nagle
- Department of Medical Physics, University of Wisconsin, Madison, Madison, Wisconsin, USA.,Department of Radiology, University of Wisconsin, Madison, Madison, Wisconsin, USA
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Michael Lustig
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California, USA.,Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
| | - Peder E Z Larson
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California, USA.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| |
Collapse
|
393
|
Clinical Feasibility of Free-Breathing Dynamic T1-Weighted Imaging With Gadoxetic Acid–Enhanced Liver Magnetic Resonance Imaging Using a Combination of Variable Density Sampling and Compressed Sensing. Invest Radiol 2017; 52:596-604. [DOI: 10.1097/rli.0000000000000385] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
394
|
Freedman JN, Collins DJ, Bainbridge H, Rank CM, Nill S, Kachelrieß M, Oelfke U, Leach MO, Wetscherek A. T2-Weighted 4D Magnetic Resonance Imaging for Application in Magnetic Resonance-Guided Radiotherapy Treatment Planning. Invest Radiol 2017; 52:563-573. [PMID: 28459800 PMCID: PMC5581953 DOI: 10.1097/rli.0000000000000381] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/20/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The aim of this study was to develop and verify a method to obtain good temporal resolution T2-weighted 4-dimensional (4D-T2w) magnetic resonance imaging (MRI) by using motion information from T1-weighted 4D (4D-T1w) MRI, to support treatment planning in MR-guided radiotherapy. MATERIALS AND METHODS Ten patients with primary non-small cell lung cancer were scanned at 1.5 T axially with a volumetric T2-weighted turbo spin echo sequence gated to exhalation and a volumetric T1-weighted stack-of-stars spoiled gradient echo sequence with golden angle spacing acquired in free breathing. From the latter, 20 respiratory phases were reconstructed using the recently developed 4D joint MoCo-HDTV algorithm based on the self-gating signal obtained from the k-space center. Motion vector fields describing the respiratory cycle were obtained by deformable image registration between the respiratory phases and projected onto the T2-weighted image volume. The resulting 4D-T2w volumes were verified against the 4D-T1w volumes: an edge-detection method was used to measure the diaphragm positions; the locations of anatomical landmarks delineated by a radiation oncologist were compared and normalized mutual information was calculated to evaluate volumetric image similarity. RESULTS High-resolution 4D-T2w MRI was obtained. Respiratory motion was preserved on calculated 4D-T2w MRI, with median diaphragm positions being consistent with less than 6.6 mm (2 voxels) for all patients and less than 3.3 mm (1 voxel) for 9 of 10 patients. Geometrical positions were coherent between 4D-T1w and 4D-T2w MRI as Euclidean distances between all corresponding anatomical landmarks agreed to within 7.6 mm (Euclidean distance of 2 voxels) and were below 3.8 mm (Euclidean distance of 1 voxel) for 355 of 470 pairs of anatomical landmarks. Volumetric image similarity was commensurate between 4D-T1w and 4D-T2w MRI, as mean percentage differences in normalized mutual information (calculated over all respiratory phases and patients), between corresponding respiratory phases of 4D-T1w and 4D-T2w MRI and the tie-phase of 4D-T1w and 3-dimensional T2w MRI, were consistent to 0.41% ± 0.37%. Four-dimensional T2w MRI displayed tumor extent, structure, and position more clearly than corresponding 4D-T1w MRI, especially when mobile tumor sites were adjacent to organs at risk. CONCLUSIONS A methodology to obtain 4D-T2w MRI that retrospectively applies the motion information from 4D-T1w MRI to 3-dimensional T2w MRI was developed and verified. Four-dimensional T2w MRI can assist clinicians in delineating mobile lesions that are difficult to define on 4D-T1w MRI, because of poor tumor-tissue contrast.
Collapse
Affiliation(s)
- Joshua N. Freedman
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David J. Collins
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hannah Bainbridge
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christopher M. Rank
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simeon Nill
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc Kachelrieß
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Uwe Oelfke
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin O. Leach
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Wetscherek
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
395
|
Baron CA, Dwork N, Pauly JM, Nishimura DG. Rapid compressed sensing reconstruction of 3D non-Cartesian MRI. Magn Reson Med 2017; 79:2685-2692. [PMID: 28940748 DOI: 10.1002/mrm.26928] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 11/10/2022]
Abstract
PURPOSE Conventional non-Cartesian compressed sensing requires multiple nonuniform Fourier transforms every iteration, which is computationally expensive. Accordingly, time-consuming reconstructions have slowed the adoption of undersampled 3D non-Cartesian acquisitions into clinical protocols. In this work we investigate several approaches to minimize reconstruction times without sacrificing accuracy. METHODS The reconstruction problem can be reformatted to exploit the Toeplitz structure of matrices that are evaluated every iteration, but it requires larger oversampling than what is strictly required by nonuniform Fourier transforms. Accordingly, we investigate relative speeds of the two approaches for various nonuniform Fourier transform kernel sizes and oversampling for both GPU and CPU implementations. Second, we introduce a method to minimize matrix sizes by estimating the image support. Finally, density compensation weights have been used as a preconditioning matrix to improve convergence, but this increases noise. We propose a more general approach to preconditioning that allows a trade-off between accuracy and convergence speed. RESULTS When using a GPU, the Toeplitz approach was faster for all practical parameters. Second, it was found that properly accounting for image support can prevent aliasing errors with minimal impact on reconstruction time. Third, the proposed preconditioning scheme improved convergence rates by an order of magnitude with negligible impact on noise. CONCLUSION With the proposed methods, 3D non-Cartesian compressed sensing with clinically relevant reconstruction times (<2 min) is feasible using practical computer resources. Magn Reson Med 79:2685-2692, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Corey A Baron
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Nicholas Dwork
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - John M Pauly
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Dwight G Nishimura
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
396
|
Stemkens B, Glitzner M, Kontaxis C, de Senneville BD, Prins FM, Crijns SPM, Kerkmeijer LGW, Lagendijk JJW, van den Berg CAT, Tijssen RHN. Effect of intra-fraction motion on the accumulated dose for free-breathing MR-guided stereotactic body radiation therapy of renal-cell carcinoma. ACTA ACUST UNITED AC 2017; 62:7407-7424. [DOI: 10.1088/1361-6560/aa83f7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
397
|
Sengupta S, Smith DS, Smith AK, Welch EB, Smith SA. Dynamic Imaging of the Eye, Optic Nerve, and Extraocular Muscles With Golden Angle Radial MRI. Invest Ophthalmol Vis Sci 2017; 58:4390–4398. [PMID: 28813574 PMCID: PMC5559179 DOI: 10.1167/iovs.17-21861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose The eye and its accessory structures, the optic nerve and the extraocular muscles, form a complex dynamic system. In vivo magnetic resonance imaging (MRI) of this system in motion can have substantial benefits in understanding oculomotor functioning in health and disease, but has been restricted to date to imaging of static gazes only. The purpose of this work was to develop a technique to image the eye and its accessory visual structures in motion. Methods Dynamic imaging of the eye was developed on a 3-Tesla MRI scanner, based on a golden angle radial sequence that allows freely selectable frame-rate and temporal-span image reconstructions from the same acquired data set. Retrospective image reconstructions at a chosen frame rate of 57 ms per image yielded high-quality in vivo movies of various eye motion tasks performed in the scanner. Motion analysis was performed for a left-right version task where motion paths, lengths, and strains/globe angle of the medial and lateral extraocular muscles and the optic nerves were estimated. Results Offline image reconstructions resulted in dynamic images of bilateral visual structures of healthy adults in only ∼15-s imaging time. Qualitative and quantitative analyses of the motion enabled estimation of trajectories, lengths, and strains on the optic nerves and extraocular muscles at very high frame rates of ∼18 frames/s. Conclusions This work presents an MRI technique that enables high-frame-rate dynamic imaging of the eyes and orbital structures. The presented sequence has the potential to be used in furthering the understanding of oculomotor mechanics in vivo, both in health and disease.
Collapse
Affiliation(s)
- Saikat Sengupta
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - David S Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Alex K Smith
- The Centre for Functional MRI of the Brain, The University of Oxford, Oxford, United Kingdom
| | - E Brian Welch
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
398
|
Qu J, Zhang H, Wang Z, Zhang F, Liu H, Ding Z, Li Y, Ma J, Zhang Z, Zhang S, Dong Y, Jiang L, Zhang W, Grimm R, Kiefer B, Kamel IR, Qin J, Li H. Comparison between free-breathing radial VIBE on 3-T MRI and endoscopic ultrasound for preoperative T staging of resectable oesophageal cancer, with histopathological correlation. Eur Radiol 2017; 28:780-787. [PMID: 28799124 DOI: 10.1007/s00330-017-4963-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/04/2017] [Accepted: 06/22/2017] [Indexed: 01/23/2023]
Abstract
OBJECTIVES To compare the T staging of resectable oesophageal cancer (OC) using radial VIBE (r-VIBE) and endoscopic ultrasound (EUS) with pathological confirmation of the T stage. METHODS Forty-three patients with endoscopically proven OC and indeterminate T1/T2/T3/T4a stage by computed tomography (CT) and EUS were imaged on a 3-T magnetic resonance imaging (MRI) scanner. T stage was scored on MRI and EUS by two independent radiologists and one endoscopist, respectively, and compared with postoperative pathological findings. T staging agreement between r-VIBE and EUS with postoperative pathological T staging was analysed by a kappa test. RESULTS EUS and pathological T staging showed agreement of 69.8% (30/43). Radial VIBE and pathological T staging agreement was 86.0% (37/43) and 90.7% (39/43) for readers 1 and 2, respectively. High accuracy for T1/T2 stage was obtained for both r-VIBE readers (90.5% and 100% for reader 1 and reader 2, respectively) and EUS reader (100%). For T3/T4, r-VIBE showed accuracy of 81.8% and 90.9% for reader 1 and reader 2, respectively, while for EUS, accuracy was only 68.2% compared with pathological T staging. CONCLUSIONS Contrast-enhanced r-VIBE is comparable to EUS in T staging of resectable OC with stage of T1/T2, and is superior to EUS in staging of T3/T4 lesions. KEY POINTS • Radial VIBE may be useful in preoperative T staging of OC • Accuracy of staging on r-VIBE is higher in T1/2 than in T3/4 • Accuracy of EUS was 100% and 68.2% for T1/T2 and T3/T4 stage • Inter-reader agreement of T staging for r-VIBE was good.
Collapse
Affiliation(s)
- Jinrong Qu
- Department of Radiology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China, 450008
| | - Hongkai Zhang
- Department of Radiology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China, 450008
| | - Zhaoqi Wang
- Department of Radiology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China, 450008
| | - Fengguang Zhang
- Department of Radiology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China, 450008
| | - Hui Liu
- NEA MR Collaboration, Siemens Ltd., China, Shanghai, China, 201318
| | - Zhidan Ding
- Department of Thoracic surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China, 450008
| | - Yin Li
- Department of Thoracic surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China, 450008
| | - Jie Ma
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China, 450008
| | - Zhongxian Zhang
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China, 450008
| | - Shouning Zhang
- Department of Radiology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China, 450008
| | - Yafeng Dong
- Department of Radiology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China, 450008
| | - Lina Jiang
- Department of Radiology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China, 450008
| | - Wei Zhang
- Department of Endoscopic Ultrasound, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China, 450008
| | - Robert Grimm
- MR-Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany, 91052
| | - Berthold Kiefer
- MR-Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany, 91052
| | - Ihab R Kamel
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205-2196, USA
| | - Jianjun Qin
- Department of Thoracic surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China, 450008.
| | - Hailiang Li
- Department of Radiology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China, 450008.
| |
Collapse
|
399
|
Hess AT, Tunnicliffe EM, Rodgers CT, Robson MD. Diaphragm position can be accurately estimated from the scattering of a parallel transmit RF coil at 7 T. Magn Reson Med 2017; 79:2164-2169. [PMID: 28771792 PMCID: PMC5836958 DOI: 10.1002/mrm.26866] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/12/2017] [Accepted: 07/19/2017] [Indexed: 11/10/2022]
Abstract
Purpose To evaluate the use of radiofrequency scattering of a parallel transmit coil to track diaphragm motion. Methods Measurements made during radiofrequency excitation on an 8‐channel parallel transmit coil by the directional couplers of the radiofrequency safety monitor were combined and converted into diaphragm position. A 30‐s subject‐specific calibration with an MRI navigator was used to determine a diaphragm estimate from each directional‐coupler measure. Seven healthy volunteers were scanned at 7 T, in which images of the diaphragm were continuously acquired and directional couplers were monitored during excitation radiofrequency pulses. The ability to detect coughing was evaluated in one subject. The method was implemented on the scanner and evaluated for diaphragm gating of a free‐breathing cardiac cine. Results Six of the seven scans were successful. In these subjects, the root mean square difference between MRI and scattering estimation of the superior–inferior diaphragm position was 1.4 ± 0.5 mm. On the scanner, the position was calculated less than 2 ms after every radiofrequency pulse. A prospectively gated (echocardiogram and respiration) high‐resolution free‐breathing cine showed no respiratory artifact and sharp blood‐myocardium definition. Conclusions Transmit coil scattering is sensitive to diaphragm motion and provides rapid, quantitative, and accurate monitoring of respiration. Magn Reson Med 79:2164–2169, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Aaron T Hess
- University of Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Elizabeth M Tunnicliffe
- University of Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Christopher T Rodgers
- University of Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Matthew D Robson
- University of Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| |
Collapse
|
400
|
Küstner T, Schwartz M, Martirosian P, Gatidis S, Seith F, Gilliam C, Blu T, Fayad H, Visvikis D, Schick F, Yang B, Schmidt H, Schwenzer NF. MR-based respiratory and cardiac motion correction for PET imaging. Med Image Anal 2017; 42:129-144. [PMID: 28800546 DOI: 10.1016/j.media.2017.08.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/18/2017] [Accepted: 08/01/2017] [Indexed: 01/22/2023]
Abstract
PURPOSE To develop a motion correction for Positron-Emission-Tomography (PET) using simultaneously acquired magnetic-resonance (MR) images within 90 s. METHODS A 90 s MR acquisition allows the generation of a cardiac and respiratory motion model of the body trunk. Thereafter, further diagnostic MR sequences can be recorded during the PET examination without any limitation. To provide full PET scan time coverage, a sensor fusion approach maps external motion signals (respiratory belt, ECG-derived respiration signal) to a complete surrogate signal on which the retrospective data binning is performed. A joint Compressed Sensing reconstruction and motion estimation of the subsampled data provides motion-resolved MR images (respiratory + cardiac). A 1-POINT DIXON method is applied to these MR images to derive a motion-resolved attenuation map. The motion model and the attenuation map are fed to the Customizable and Advanced Software for Tomographic Reconstruction (CASToR) PET reconstruction system in which the motion correction is incorporated. All reconstruction steps are performed online on the scanner via Gadgetron to provide a clinically feasible setup for improved general applicability. The method was evaluated on 36 patients with suspected liver or lung metastasis in terms of lesion quantification (SUVmax, SNR, contrast), delineation (FWHM, slope steepness) and diagnostic confidence level (3-point Likert-scale). RESULTS A motion correction could be conducted for all patients, however, only in 30 patients moving lesions could be observed. For the examined 134 malignant lesions, an average improvement in lesion quantification of 22%, delineation of 64% and diagnostic confidence level of 23% was achieved. CONCLUSION The proposed method provides a clinically feasible setup for respiratory and cardiac motion correction of PET data by simultaneous short-term MRI. The acquisition sequence and all reconstruction steps are publicly available to foster multi-center studies and various motion correction scenarios.
Collapse
Affiliation(s)
- Thomas Küstner
- Institute of Signal Processing and System Theory, University of Stuttgart, Stuttgart, Germany; Department of Radiology, University of Tübingen, Tübingen, Germany.
| | - Martin Schwartz
- Institute of Signal Processing and System Theory, University of Stuttgart, Stuttgart, Germany; Section on Experimental Radiology, University of Tübingen, Germany
| | | | - Sergios Gatidis
- Department of Radiology, University of Tübingen, Tübingen, Germany
| | - Ferdinand Seith
- Department of Radiology, University of Tübingen, Tübingen, Germany
| | - Christopher Gilliam
- Department of Electronic Engineering, Chinese University of Hong Kong, Hong Kong
| | - Thierry Blu
- Department of Electronic Engineering, Chinese University of Hong Kong, Hong Kong
| | - Hadi Fayad
- INSERM U1101, LaTIM, University of Bretagne, Brest, France
| | | | - F Schick
- Section on Experimental Radiology, University of Tübingen, Germany
| | - B Yang
- Institute of Signal Processing and System Theory, University of Stuttgart, Stuttgart, Germany
| | - H Schmidt
- Department of Radiology, University of Tübingen, Tübingen, Germany
| | - N F Schwenzer
- Department of Radiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|