351
|
Armstrong JA, Bieker JJ, Emerson BM. A SWI/SNF-related chromatin remodeling complex, E-RC1, is required for tissue-specific transcriptional regulation by EKLF in vitro. Cell 1998; 95:93-104. [PMID: 9778250 DOI: 10.1016/s0092-8674(00)81785-7] [Citation(s) in RCA: 253] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Erythroid Krüppel-like factor (EKLF) is necessary for stage-specific expression of the human beta-globin gene. We show that EKLF requires a SWI/SNF-related chromatin remodeling complex, EKLF coactivator-remodeling complex 1 (E-RC1), to generate a DNase I hypersensitive, transcriptionally active beta-globin promoter on chromatin templates in vitro. E-RC1 contains BRG1, BAF170, BAF155, and INI1 (BAF47) homologs of yeast SWI/SNF subunits, as well as a subunit unique to higher eukaryotes, BAF57, which is critical for chromatin remodeling and transcription with EKLF. E-RC1 displays functional selectivity toward transcription factors, since it cannot activate expression of chromatin-assembled HIV-1 templates with the E box-binding protein TFE-3. Thus, a member of the SWI/SNF family acts directly in transcriptional activation and may regulate subsets of genes by selectively interacting with specific DNA-binding proteins.
Collapse
Affiliation(s)
- J A Armstrong
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | |
Collapse
|
352
|
Satyal SH, Morimoto RI. Biochemical events in the activation and attenuation of the heat shock transcriptional response. J Biosci 1998. [DOI: 10.1007/bf02936123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
353
|
Näär AM, Beaurang PA, Robinson KM, Oliner JD, Avizonis D, Scheek S, Zwicker J, Kadonaga JT, Tjian R. Chromatin, TAFs, and a novel multiprotein coactivator are required for synergistic activation by Sp1 and SREBP-1a in vitro. Genes Dev 1998; 12:3020-31. [PMID: 9765204 PMCID: PMC317191 DOI: 10.1101/gad.12.19.3020] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/1998] [Accepted: 08/10/1998] [Indexed: 01/09/2023]
Abstract
The promoter selectivity factor Sp1 often cooperates with other enhancer-binding proteins to activate transcription. To study the molecular underpinnings of these regulatory events, we have reconstituted in vitro the synergy observed in vivo between Sp1 and the sterol-regulated factor SREBP-1a at the low density lipoprotein receptor (LDLR) promoter. Using a highly purified human transcription system, we found that chromatin, TAFs, and a novel SREBP-binding coactivator activity, which includes CBP, are all required to mediate full synergistic activation by Sp1 and SREBP-1a. The SREBP-binding domain of CBP inhibits activation by SREBP-1a and Sp1 in a dominant-negative fashion that is both chromatin- and activator-specific. Whereas recombinant CBP alone is not sufficient to mediate activation, a human cellular fraction containing CBP can support high levels of chromatin-dependent synergistic activation. Purification of this activity to near homogeneity resulted in the identification of a multiprotein coactivator, including CBP, that selectively binds to the SREBP-1a activation domain and is capable of mediating high levels of synergistic activation by SREBP/Sp1 on chromatin templates. The development of a reconstituted chromatin transcription system has allowed us to isolate a novel coactivator that is recruited by the SREBP-1a activation domain and that functions in concert with TFIID to coordinate the action of multiple activators at complex promoters in the context of chromatin.
Collapse
Affiliation(s)
- A M Näär
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
354
|
Syntichaki P, Thireos G. The Gcn5.Ada complex potentiates the histone acetyltransferase activity of Gcn5. J Biol Chem 1998; 273:24414-9. [PMID: 9733731 DOI: 10.1074/jbc.273.38.24414] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Gcn5 histone acetyltransferase (HAT) is part of a large multimeric complex that is required for transcriptional activation in yeast. This complex can acetylate in vitro and in a Gcn5-dependent manner both nucleosomal and free core histones. For this reason it is believed that part of the function of the Gcn5.Ada complex is chromatin remodeling effected by histone acetylation. The roles of the other subunits of this complex are not yet known. We have generated mutated Gcn5 proteins with severely attenuated in vitro HAT activities. Despite their apparent loss in HAT activity, these GCN5 derivatives complemented all the defects of a gcn5 strain. We have shown that when these mutated proteins were produced in yeast cells in the absence of another component of the complex, Ada2, their activity was still compromised. By contrast, when produced in the wild type context, they were partially capable of acetylating free histones and were even more active when nucleosomal arrays were used as substrates. Kinetic enzymatic analyses showed that the rate of catalysis by Gcn5 was enhanced when the mutated proteins were produced in yeast in the presence of Ada2. Because Ada2 is required for the assembly of Gcn5, we conclude that one role for components of the Gcn5.Ada complex is the potentiation of its HAT activity.
Collapse
Affiliation(s)
- P Syntichaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, 711 10 Crete, Greece
| | | |
Collapse
|
355
|
Jiménez-García E, Vaquero A, Espinás ML, Soliva R, Orozco M, Bernués J, Azorín F. The GAGA factor of Drosophila binds triple-stranded DNA. J Biol Chem 1998; 273:24640-8. [PMID: 9733760 DOI: 10.1074/jbc.273.38.24640] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Drosophila GAGA factor binds specifically to simple repeating d(GA.TC)n DNA sequences. These sequences are known to be capable of forming triple-stranded DNA as well as other non-B-DNA conformations. Here, it is shown that GAGA binds to a d[CT(GA.TC)]22 intermolecular triplex with similar specificity and affinity as to a regular double-stranded B-form d(GA.TC)22 sequence. The interaction of GAGA with triplex DNA cannot, however, stimulate transcription in vitro. The affinity of GAGA for triplexes of the purine motif, such as a d[AG(GA.TC)]22 intermolecular triplex, is significantly lower. The DNA binding domain of GAGA is sufficient for efficient binding to triplex DNA. Based on the reported solution structure of the complex of GAGA-DNA binding domain with double-stranded DNA, a model for its interaction with triplex DNA is proposed in which most of the protein-DNA contacts observed in duplex DNA are maintained, especially those occurring through the minor groove. The higher negative charge of the triplex is likely to have also an important contribution to both the specificity and affinity of the interaction.
Collapse
Affiliation(s)
- E Jiménez-García
- Departament de Biologia Molecular i Cellular, Centre d'Investigació i Desenvolupament, CSIC, Jordi Girona Salgado 18-26, 08034 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
356
|
Sif S, Stukenberg PT, Kirschner MW, Kingston RE. Mitotic inactivation of a human SWI/SNF chromatin remodeling complex. Genes Dev 1998; 12:2842-51. [PMID: 9744861 PMCID: PMC317164 DOI: 10.1101/gad.12.18.2842] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/1998] [Accepted: 07/31/1998] [Indexed: 11/25/2022]
Abstract
During mitosis, chromatin is condensed into mitotic chromosomes and transcription is inhibited, processes that might be opposed by the chromatin remodeling activity of the SWI/SNF complexes. Brg1 and hBrm, which are components of human SWI/SNF (hSWI/SNF) complexes, were recently shown to be phosphorylated during mitosis. This suggested that phosphorylation might be used as a switch to modulate SWI/SNF activity. Using an epitope-tag strategy, we have purified hSWI/SNF complexes at different stages of the cell cycle, and found that hSWI/SNF was inactive in cells blocked in G2-M. Mitotic hSWI/SNF contained Brg1 but not hBrm, and was phosphorylated on at least two subunits, hSWI3 and Brg1. In vitro, active hSWI/SNF from asynchronous cells can be phosphorylated and inactivated by ERK1, and reactivated by dephosphorylation. hSWI/SNF isolated as cells traversed mitosis regained activity when its subunits were dephosphorylated either in vitro or in vivo. We propose that this transitional inactivation and reactivation of hSWI/SNF is required for formation of a repressed chromatin structure during mitosis and reformation of an active chromatin structure as cells leave mitosis.
Collapse
Affiliation(s)
- S Sif
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
357
|
Cho H, Orphanides G, Sun X, Yang XJ, Ogryzko V, Lees E, Nakatani Y, Reinberg D. A human RNA polymerase II complex containing factors that modify chromatin structure. Mol Cell Biol 1998; 18:5355-63. [PMID: 9710619 PMCID: PMC109120 DOI: 10.1128/mcb.18.9.5355] [Citation(s) in RCA: 232] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/1998] [Accepted: 06/16/1998] [Indexed: 11/20/2022] Open
Abstract
We have isolated a human RNA polymerase II complex that contains chromatin structure remodeling activity and histone acetyltransferase activity. This complex contains the Srb proteins, the Swi-Snf complex, and the histone acetyltransferases CBP and PCAF in addition to RNA polymerase II. Notably, the general transcription factors are absent from this complex. The complex was purified by two different methods: conventional chromatography and affinity chromatography using antibodies directed against CDK8, the human homolog of the yeast Srb10 protein. Protein interaction studies demonstrate a direct interaction between RNA polymerase II and the histone acetyltransferases p300 and PCAF. Importantly, p300 interacts specifically with the nonphosphorylated, initiation-competent form of RNA polymerase II. In contrast, PCAF interacts with the elongation-competent, phosphorylated form of RNA polymerase II.
Collapse
Affiliation(s)
- H Cho
- Howard Hughes Medical Institute, Division of Nucleic Acid Enzymology, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
358
|
Venditti P, Di Croce L, Kauer M, Blank T, Becker PB, Beato M. Assembly of MMTV promoter minichromosomes with positioned nucleosomes precludes NF1 access but not restriction enzyme cleavage. Nucleic Acids Res 1998; 26:3657-66. [PMID: 9685480 PMCID: PMC147780 DOI: 10.1093/nar/26.16.3657] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To generate long arrays of nucleosomes within a topologically defined chromatin domain we have assembled minichromosomes on negatively supercoiled plasmid DNA with extracts from Drosophila preblastoderm embryos. These minichromosomes are dynamic substrates for energy-dependent nucleosome remodeling machines that facilitate the binding of various transcription factors but do not exhibit nucleosome positioning. In contrast, if such minichromosomes include the mouse mammary tumour virus (MMTV) promoter we find it wrapped around a nucleosome with similar translational and rotational position as in vivo . This structure precluded binding of NF1 to its cognate site at -75/-65 at salt concentrations between 60 and 120 mM, even in the presence of ATP, which rendered the NF1 site accessible to the restriction enzyme Hin fI. However, insertion of 30 bp just upstream of the NF1 site, which moves the site to the linker DNA, allowed ATP-dependent binding of NF1 to a fraction of the minichromosomes, even in the presence ofstoichiometric amounts of histone H1. The minichromosomes assembled in the Drosophila embryo extract reproduce important features of the native MMTV promoter chromatin and reveal differences in the ability of transcription factors and restriction enzymes to access their binding sites in positioned nucleosomes.
Collapse
Affiliation(s)
- P Venditti
- IMT, Institut für Molekularbiologie und Tumorforschung, Marburg, Emil-Mannkopff-Strasse 2, D-35033 Marburg, Germany and EMBL, Meyerhofstrasse 1, D-649117 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
359
|
Treich I, Ho L, Carlson M. Direct interaction between Rsc6 and Rsc8/Swh3,two proteins that are conserved in SWI/SNF-related complexes. Nucleic Acids Res 1998; 26:3739-45. [PMID: 9685490 PMCID: PMC147781 DOI: 10.1093/nar/26.16.3739] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The RSC complex of Saccharomyces cerevisiae is closely related to the SWI/SNF complex. Both complexes are involved in remodeling chromatin structure and they share conserved components. The RSC proteins Sth1, Rsc8/Swh3, Sfh1 and Rsc6 are homologs of the SWI/SNF proteins Swi2/Snf2, Swi3, Snf5 and Swp73 respectively. To investigate the RSC complex, we isolated a temperature-sensitive swh3 allele. A screen for multicopy suppressors yielded plasmids carrying the RSC6 and MAK31 loci. RSC6 also suppressed the formamide sensitivity of a strain with a C-terminal truncation of SWH3 . We show that Swh3 and Rsc6 fusion proteins interact in the two-hybrid system and that the swh3-ts mutation impairs this interaction. Finally, bacterially produced Swh3 and Rsc6 fusion proteins interact in vitro , supporting the genetic evidence for direct interaction between Swh3 and Rsc6 in vivo . We have previously shown that Swh3 also interacts with Sth1. These findings, together with the conservation of these proteins in the SWI/SNF complex and in mammalian SWI/SNF-related complexes, strongly suggest that these proteins form a structural core for the complex.
Collapse
Affiliation(s)
- I Treich
- Department of Genetics and Development and Institute of Cancer Research and Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
360
|
Wu SY, Kershnar E, Chiang CM. TAFII-independent activation mediated by human TBP in the presence of the positive cofactor PC4. EMBO J 1998; 17:4478-90. [PMID: 9687514 PMCID: PMC1170779 DOI: 10.1093/emboj/17.15.4478] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
TFIID is a multiprotein complex comprised of the TATA-binding protein (TBP) and an array of TBP-associated factors (TAFIIs). Whereas TBP is sufficient for basal transcription in conjunction with other general transcription factors and RNA polymerase II, TAFIIs are additionally required for activator-dependent transcription in mammalian cell-free transcription systems. However, recent in vivo studies carried out in yeast suggest that TAFIIs are not globally required for activator function. The discrepancy between in vivo yeast studies and in vitro mammalian cell-free systems remains to be resolved. In this study, we describe a mammalian cell-free transcription system reconstituted with only recombinant proteins and epitope-tagged multiprotein complexes. Transcriptional activation can be recapitulated in this highly purified in vitro transcription system in the absence of TAFIIs. This TBP-mediated activation is not induced by human mediator, another transcriptional coactivator complex potentially implicated in activator response. In contrast, general transcription factors TFIIH and TFIIA play a significant role in TBP-mediated activation, which can be detected in vitro with Gal4 fusion proteins containing various transcriptional activation domains. Our data, therefore, suggest that TFIIH and TFIIA can mediate activator function in the absence of TAFIIs.
Collapse
Affiliation(s)
- S Y Wu
- Department of Biochemistry, University of Illinois, Urbana 61801, USA
| | | | | |
Collapse
|
361
|
Abstract
Tremendous advances in the study of chromatin have revealed new classes of transcriptional regulators distinct from classical DNA-binding proteins. Many previously described transcription factors, coactivators, and adaptors are regulators of chromatin structure, interacting directly with the core histone proteins or with nucleosomes. This review describes a method used by our laboratory to examine the interactions of regulatory proteins with the core histone proteins. Far-Western analysis uses a protein probe to detect interactions with histones immobilized on membranes. Variations of this technique can detect the acetylation state of the interacting histones and whether the interaction occurs through the globular domain or the amino-terminal "tail" domain. In addition, we discuss complementary techniques for confirming histone-regulatory protein interactions.
Collapse
Affiliation(s)
- D G Edmondson
- Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston 77030, USA
| | | |
Collapse
|
362
|
Nightingale KP, Becker PB. Structural and functional analysis of chromatin assembled from defined histones. Methods 1998; 15:343-53. [PMID: 9740722 DOI: 10.1006/meth.1998.0638] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this review we describe how the extract-mediated chromatin assembly system derived from preblastoderm Drosophila embryos can be modified to assemble chromatin from defined histones. This approach combines the advantages of assembling (i) chromatin templates from homogeneous histones with (ii) an assembly system that generates chromatin with physiological nucleosome spacing and density and that contains the biological complexity of in vivo chromatin. We have used this technique to assemble nonacetylated and hyperacetylated histones into chromatin (K. P. Nightingale, R. Wellinger, J. Sogo, and P. B. Becker, 1998, EMBO J. 17, 2865-2876; W. A. Krajewski and P. B. Becker, 1998, Proc. Natl. Acad. Sci. USA 95, 1540-1545), and use this as an example to detail the structural and transcriptional assays used to compare and characterize these chromatin templates. The application of this procedure to assemble chromatin from recombinant histones should facilitate a wide variety of studies on the role(s) of histone mutants and variants.
Collapse
Affiliation(s)
- K P Nightingale
- Gene Expression Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
363
|
Motta MC, Landsberger N, Merli C, Badaracco G. In vitro reconstitution of Artemia satellite chromatin. J Biol Chem 1998; 273:18028-39. [PMID: 9660758 DOI: 10.1074/jbc.273.29.18028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the characterization of an in vitro chromatin assembly system derived from Artemia embryos and its application to the study of AluI-113 satellite DNA organization in nucleosomes. The system efficiently reconstitutes chromatin templates by associating DNA, core histones, and H1. The polynucleosomal complexes show physiological spacing of repeat length 190 +/- 5 base pairs, and the internucleosomal distances are modulated by energy-using activities that contribute to the dynamics of chromatin conformation. The assembly extract was used to reconstitute tandemly repeated AluI-113 sequences. The establishment of preferred histone octamer/satellite DNA interactions was observed. In vitro, AluI-113 elements dictated the same nucleosome translational localizations as found in vivo. Specific rotational constraints seem to be the central structural requirement for nucleosome association. Satellite dinucleosomes showed decreased translational mobility compared with mononucleosomes. This could be the consequence of interactions between rotationally positioned nucleosomes separated by linker DNA of uniform length. AluI-113 DNA led to weak cooperativity of nucleosome association in the proximal flanking regions, which decreased with distance. Moreover, the structural properties of satellite chromatin can spread, thus leading to a specific organization of adjacent nucleosomes.
Collapse
Affiliation(s)
- M C Motta
- Dipartimento di Biologia Stutterale e Funzionale III Facoltá di Scienze, Universitá di Milano, 21100 Varese, Italy
| | | | | | | |
Collapse
|
364
|
Lorch Y, Cairns BR, Zhang M, Kornberg RD. Activated RSC-nucleosome complex and persistently altered form of the nucleosome. Cell 1998; 94:29-34. [PMID: 9674424 DOI: 10.1016/s0092-8674(00)81218-0] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
RSC, an abundant, essential chromatin-remodeling complex, related to SWI/SNF complex, binds nucleosomes and naked DNA with comparable affinities, as shown by gel shift analysis. The RSC-nucleosome complex is converted in the presence of ATP to a slower migrating form. This activated complex exhibits greatly increased susceptibility to endo- and exonucleases but retains a full complement of histones. Activation persists in the absence of ATP, and on removal of RSC, the nucleosome is released in an altered form, with a diminished electrophoretic mobility, greater sedimentation rate, and marked instability at elevated ionic strength. The reaction is reversible in the presence of RSC and ATP, with conversion of the altered form back to the nucleosome.
Collapse
Affiliation(s)
- Y Lorch
- Department of Structural Biology, Stanford University School of Medicine, California 94305, USA
| | | | | | | |
Collapse
|
365
|
Grant PA, Schieltz D, Pray-Grant MG, Steger DJ, Reese JC, Yates JR, Workman JL. A subset of TAF(II)s are integral components of the SAGA complex required for nucleosome acetylation and transcriptional stimulation. Cell 1998; 94:45-53. [PMID: 9674426 DOI: 10.1016/s0092-8674(00)81220-9] [Citation(s) in RCA: 352] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A number of transcriptional coactivator proteins have been identified as histone acetyltransferase (HAT) proteins, providing a direct molecular basis for the coupling of histone acetylation and transcriptional activation. The yeast Spt-Ada-Gcn5-acetyltransferase (SAGA) complex requires the coactivator protein Gcn5 for HAT activity. Identification of protein subunits by mass spectrometry and immunoblotting revealed that the TATA binding protein-associated factors (TAF(II)s) TAF(II)90, -68/61, -60, -25/23, and -20/17 are integral components of this complex. In addition, TAF(II)68 was required for both SAGA-dependent nucleosomal HAT activity and transcriptional activation from chromatin templates in vitro. These results illustrate a role for certain TAF(II) proteins in the regulation of gene expression at the level of chromatin modification that is distinct from the TFIID complex and TAF(II)145.
Collapse
Affiliation(s)
- P A Grant
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park 16802-4500, USA
| | | | | | | | | | | | | |
Collapse
|
366
|
Wade PA, Jones PL, Vermaak D, Wolffe AP. A multiple subunit Mi-2 histone deacetylase from Xenopus laevis cofractionates with an associated Snf2 superfamily ATPase. Curr Biol 1998; 8:843-6. [PMID: 9663395 DOI: 10.1016/s0960-9822(98)70328-8] [Citation(s) in RCA: 334] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chromatin structure plays a crucial regulatory role in the control of gene expression. In eukaryotic nuclei, enzymatic complexes can alter this structure by both targeted covalent modification and ATP-dependent chromatin remodeling. Modification of histone amino termini by acetyltransferases and deacetylases correlates with transcriptional activation and repression [1-3], cell growth [4], and tumorigenesis [5]. Chromatin-remodeling enzymes of the Snf2 superfamily use ATP hydrolysis to restructure nucleosomes and chromatin, events which correlate with activation of transcription [6,7]. We purified a multi-subunit complex from Xenopus laevis eggs which contains six putative subunits including the known deacetylase subunits Rpd3 and RbAp48/p46 [8] as well as substoichiometric quantities of the deacetylase-associated protein Sin3 [9-13]. In addition, we identified one of the other components of the complex to be Mi-2, a Snf2 superfamily member previously identified as an autoantigen in the human connective tissue disease dermatomyositis [14,15]. We found that nucleosome-stimulated ATPase activity precisely copurified with both histone deacetylase activity and the deacetylase enzyme complex. This association of a histone deacetylase with a Snf2 superfamily ATPase suggests a functional link between these two disparate classes of chromatin regulators.
Collapse
Affiliation(s)
- P A Wade
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
367
|
Tsuchiya E, Hosotani T, Miyakawa T. A mutation in NPS1/STH1, an essential gene encoding a component of a novel chromatin-remodeling complex RSC, alters the chromatin structure of Saccharomyces cerevisiae centromeres. Nucleic Acids Res 1998; 26:3286-92. [PMID: 9628931 PMCID: PMC147684 DOI: 10.1093/nar/26.13.3286] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The NPS1/STH1 gene encodes a nuclear protein essential for the progression of G2/M phase in Saccharomyces cerevisiae . Nps1p shares homology to Snf2/Swi2p, a subunit of a protein complex known as the SNF/SWI complex. Recently, Nps1p was found to be a component of a protein complex termed RSC (3) essential for mitotic growth, whereas its function is unknown. We isolated a temperature-sensitive mutant allele of NPS1 , nps1-105, and found that the mutation increases the sensitivity to thiabendazole (TBZ). At the restrictive temperature, nps1-105 arrested at the G2/M phase in MAD1-dependent manner and missegregated the mini-chromosome with higher frequency than the wild type cells. The nuclease digestion of the chromatin of the mutant cells revealed that the mutation causes the alteration of the chromatin structure around centromeres at the restrictive temperature. The results suggested that, in the nps1-105 mutant, impaired chromatin structure surrounding centromeres may lead to an impairment of kinetochore function and the cells arrest at G2/M phase through the spindle-assembly checkpoint system.
Collapse
Affiliation(s)
- E Tsuchiya
- Department of Fermentation Technology, Faculty of Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| | | | | |
Collapse
|
368
|
Li J, Liang VC, Sedgwick T, Wong J, Shi YB. Unique organization and involvement of GAGA factors in transcriptional regulation of the Xenopus stromelysin-3 gene. Nucleic Acids Res 1998; 26:3018-25. [PMID: 9611250 PMCID: PMC147655 DOI: 10.1093/nar/26.12.3018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Expression of the matrix metalloproteinase (MMP) gene stromelysin-3 ( ST3 ) has been shown to be tightly associated with cell migration and apoptosis inmammals and amphibians. This contrasts with most other MMP genes. We demonstrate here that the Xenopus ST3 gene also has a structure distinct from other MMP genes, with its C-terminal half (the hemopexin domain) encoded by 4 instead of 6 exons, as in other MMP genes. Our primer extension analysis reveals the existence of two transcription start sites and at least one is needed for transcription of the promoter in transient transfection assays. Furthermore, our deletion analysis has demonstrated a requirement for at least one GAGA factor binding site for promoter function. In vitro DNA binding and mutational studies have provided strong evidence for the participation of GAGA or GAGA-like factors in transcriptional regulation of the frog ST3 gene. This contrasts with regulation of the human ST3 promoter. These results suggest that the ST3 gene evolved prior to most other metalloproteinase genes and uses distinct regulation pathways to achieve similar expression profiles and serve similar functions in mammals and amphibians.
Collapse
Affiliation(s)
- J Li
- Laboratory of Molecular Embryology, NICHD/NIH, Building 18T, Room 106, Bethesda, MD 20892-5431, USA
| | | | | | | | | |
Collapse
|
369
|
Alexiadis V, Varga-Weisz PD, Bonte E, Becker PB, Gruss C. In vitro chromatin remodelling by chromatin accessibility complex (CHRAC) at the SV40 origin of DNA replication. EMBO J 1998; 17:3428-38. [PMID: 9628878 PMCID: PMC1170679 DOI: 10.1093/emboj/17.12.3428] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
DNA replication is initiated by binding of initiation factors to the origin of replication. Nucleosomes are known to inhibit the access of the replication machinery to origin sequences. Recently, nucleosome remodelling factors have been identified that increase the accessibility of nucleosomal DNA to transcription regulators. To test whether the initiation of DNA replication from an origin covered by nucleosomes would also benefit from the action of nucleosome remodelling factors, we reconstituted SV40 DNA into chromatin in Drosophila embryo extracts. In the presence of T-antigen and ATP, a chromatin-associated cofactor allowed efficient replication from a nucleosomal origin in vitro. In search of the energy-dependent cofactor responsible we found that purified 'chromatin accessibility complex' (CHRAC) was able to alter the nucleosomal structure at the origin allowing the binding of T-antigen and efficient initiation of replication. These experiments provide evidence for the involvement of a nucleosome remodelling machine in structural changes at the SV40 origin of DNA replication in vitro.
Collapse
Affiliation(s)
- V Alexiadis
- University of Konstanz, Division of Biology, Konstanz, Germany
| | | | | | | | | |
Collapse
|
370
|
Abstract
Chromatin has shifted into the focus of attention as a key to understanding the regulation of nuclear processes such as transcription. Protein machines have been described that use the energy of ATP to render chromatin dynamic and hence active, but which may also be involved in chromatin assembly. The discovery of three different Drosophila nucleosome remodeling complexes that contain imitation switch (ISWI), an ATPase with a high degree of sequence conservation from yeast to human, points to a central function of this ATPase in chromatin dynamics.
Collapse
|
371
|
Abstract
Transcription initiation by RNA polymerase II (RNA pol II) requires interaction between cis-acting promoter elements and trans-acting factors. The eukaryotic promoter consists of core elements, which include the TATA box and other DNA sequences that define transcription start sites, and regulatory elements, which either enhance or repress transcription in a gene-specific manner. The core promoter is the site for assembly of the transcription preinitiation complex, which includes RNA pol II and the general transcription fctors TBP, TFIIB, TFIIE, TFIIF, and TFIIH. Regulatory elements bind gene-specific factors, which affect the rate of transcription by interacting, either directly or indirectly, with components of the general transcriptional machinery. A third class of transcription factors, termed coactivators, is not required for basal transcription in vitro but often mediates activation by a broad spectrum of activators. Accordingly, coactivators are neither gene-specific nor general transcription factors, although gene-specific coactivators have been described in metazoan systems. Transcriptional repressors include both gene-specific and general factors. Similar to coactivators, general transcriptional repressors affect the expression of a broad spectrum of genes yet do not repress all genes. General repressors either act through the core transcriptional machinery or are histone related and presumably affect chromatin function. This review focuses on the global effectors of RNA polymerase II transcription in yeast, including the general transcription factors, the coactivators, and the general repressors. Emphasis is placed on the role that yeast genetics has played in identifying these factors and their associated functions.
Collapse
Affiliation(s)
- M Hampsey
- Department of Biochemistry, Division of Nucleic Acids Enzymology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854-5635, USA.
| |
Collapse
|
372
|
Längst G, Becker PB, Grummt I. TTF-I determines the chromatin architecture of the active rDNA promoter. EMBO J 1998; 17:3135-45. [PMID: 9606195 PMCID: PMC1170652 DOI: 10.1093/emboj/17.11.3135] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transcription of ribosomal genes assembled into chromatin requires binding of the transcription termination factor TTF-I to the promoter-proximal terminator T0. To analyze the mechanism of TTF-I-mediated transcriptional activation, we have used mutant templates with altered sequence, polarity and distance of T0 with respect to the transcription start site. Transcription activation by TTF-I is chromatin specific and requires the precise positioning of the terminator relative to the promoter. Whereas termination by TTF-I depends on the correct orientation of a terminator, TTF-I-mediated transcriptional activation is orientation independent. TTF-I can bind to nucleosomal DNA in the absence of enzymatic activities that destabilize nucleosome structure. Chromatin-bound TTF-I synergizes with ATP-dependent cofactors present in extracts of Drosophila embryos and mouse cells to position a nucleosome over the rDNA promoter and the transcription start site. Nucleosome positioning correlates tightly with the activation of rDNA transcription. We suggest that transcriptional activation by TTF-I is a stepwise process involving the creation of a defined promoter architecture and that the positioning of a nucleosome is compatible with, if not a prerequisite for, transcription initiation from rDNA chromatin.
Collapse
Affiliation(s)
- G Längst
- German Cancer Research Center, Division of Molecular Biology of the Cell II, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
373
|
Wilkins RC, Lis JT. GAGA factor binding to DNA via a single trinucleotide sequence element. Nucleic Acids Res 1998; 26:2672-8. [PMID: 9592153 PMCID: PMC147603 DOI: 10.1093/nar/26.11.2672] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
GAGA transcription factor (GAF) is an essential protein in Drosophila , important for the transcriptional regulation of numerous genes. GAF binds to GA repeats in the promoters of these genes via a DNA-binding domain containing a single zinc finger. While GAF binding sites are typically composed of 3.5 GA repeats, the Drosophila hsp70 gene contains much smaller elements, some of which are as little as three bases (GAG) in length. Interestingly, the binding of GAF to more distant trinucleotide elements is relatively strong and not appreciably affected by the removal of larger GA arrays in the promoter. Moreover, a simple synthetic GAG sequence is sufficient to bind GAF in vitro . Here we directly compare the affinity of GAF for different sequence elements by immunoprecipitation and gel mobility shift analysis. Furthermore, our measures of the concentration of GAF in vivo indicate that it is a highly abundant nuclear protein, prevalent enough to occupy a sizable fraction of correspondingly abundant trinucleotide sites.
Collapse
Affiliation(s)
- R C Wilkins
- Section of Genetics and Development, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
374
|
Zhang Y, Sun ZW, Iratni R, Erdjument-Bromage H, Tempst P, Hampsey M, Reinberg D. SAP30, a novel protein conserved between human and yeast, is a component of a histone deacetylase complex. Mol Cell 1998; 1:1021-31. [PMID: 9651585 DOI: 10.1016/s1097-2765(00)80102-1] [Citation(s) in RCA: 232] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Histone acetylation plays a key role in the regulation of eukaryotic gene expression. Recently, histone acetylation and deacetylation were found to be catalyzed by structurally distinct, multisubunit complexes that mediate, respectively, activation and repression of transcription. Here, we identify SAP30 as a novel component of the human histone deacetylase complex that includes Sin3, the histone deacetylases HDAC1 and HDAC2, histone binding proteins RbAp46 and RbAp48, as well as other polypeptides. Moreover, we describe a SAP30 homolog in yeast that is functionally related to Sin3 and the histone deacetylase Rpd3. The human SAP30 complex is active in deacetylating core histone octamers, but inactive in deacetylating nucleosomal histones due to the inability of the histone binding proteins RbAp46 and RbAp48 to gain access to nucleosomal histones. These results define SAP30 as a component of a histone deacetylase complex conserved among eukaryotic organisms.
Collapse
Affiliation(s)
- Y Zhang
- Howard Hughes Medical Institute, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | |
Collapse
|
375
|
Spangenberg C, Eisfeld K, Stünkel W, Luger K, Flaus A, Richmond TJ, Truss M, Beato M. The mouse mammary tumour virus promoter positioned on a tetramer of histones H3 and H4 binds nuclear factor 1 and OTF1. J Mol Biol 1998; 278:725-39. [PMID: 9614938 DOI: 10.1006/jmbi.1998.1718] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Modulation of eukaryotic gene expression is influenced by the organization of regulatory DNA-elements in chromatin. The mouse mammary tumor virus (MMTV) promoter exhibits regularly positioned nucleosomes that reduce the accessibility of the binding sites for sequence-specific transcription factors, in particular nuclear factor (NF1). Hormonal induction of the MMTV promoter is accompanied by remodeling of the nucleosomal structure, but the biochemical nature of these structural changes is unknown. Using recombinant histones, we have now assembled the MMTV promoter in particles containing either an octamer of the histones H3, H4, H2A and H2B or a tetramer of histones H3 and H4, and have compared the two particles in terms of structure, positioning, and exclusion of transcription factors. Using site-directed hydroxy radicals to map histone locations, two main nucleosome positions are found with dyads at position -107 and at -127. The same two main positions are found for particles containing only the H3/H4 tetramer, showing that the absence of H2A/H2B dimers does not alter positioning. The rotational orientation of the DNA double helix in both types of particles is essentially identical. However, the ends of the nucleosomal DNA as well as its central region are more accessible to cleavage reagents in the tetramer particle than in the octamer particle. In agreement with these structural features, the transcription factors NF1 and OTF1 were able to bind to their cognate sites on the tetramer particle, while they could not gain access to the same sites on the surface of the octamer particle. The DNase I digestion pattern of octamers treated with partially purified SWI/SNF complex from HeLa cells in the presence of ATP is indistinguishable from that of tetramer particles, suggesting that the SWI/SNF complex promotes ATP-dependent remodeling of the octamer particle but not of tetramer particles. These results are compatible with a hormone-induced removal of histone H2A/H2B during MMTV induction.
Collapse
Affiliation(s)
- C Spangenberg
- Institut für Molekularbiologie und Tumorforshung, Philipps-Universität, Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
376
|
Nightingale KP, Wellinger RE, Sogo JM, Becker PB. Histone acetylation facilitates RNA polymerase II transcription of the Drosophila hsp26 gene in chromatin. EMBO J 1998; 17:2865-76. [PMID: 9582280 PMCID: PMC1170627 DOI: 10.1093/emboj/17.10.2865] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A number of activators are known to increase transcription by RNA polymerase (pol) II through protein acetylation. While the physiological substrates for those acetylases are poorly defined, possible targets include general transcription factors, activator proteins and histones. Using a cell-free system to reconstitute chromatin with increased histone acetylation levels, we directly tested for a causal role of histone acetylation in transcription by RNA pol II. Chromatin, containing either control or acetylated histones, was reconstituted to comparable nucleosome densities and characterized by electron microscopy after psoralen cross-linking as well as by in vitro transcription. While H1-containing control chromatin severely repressed transcription of our model hsp26 gene, highly acetylated chromatin was significantly less repressive. Acetylation of histones, and particularly of histone H4, affected transcription at the level of initiation. Monitoring the ability of the transcription machinery to associate with the promoter in chromatin, we found that heat shock factor, a crucial regulator of heat shock gene transcription, profited most from histone acetylation. These experiments demonstrate that histone acetylation can modulate activator access to their target sites in chromatin, and provide a causal link between histone acetylation and enhanced transcription initiation of RNA pol II in chromatin.
Collapse
Affiliation(s)
- K P Nightingale
- Gene Expression Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | |
Collapse
|
377
|
Howe L, Iskandar M, Ausió J. Folding of chromatin in the presence of heterogeneous histone H1 binding to nucleosomes. J Biol Chem 1998; 273:11625-9. [PMID: 9565581 DOI: 10.1074/jbc.273.19.11625] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have reconstituted oligonucleosome complexes containing histone H1 starting from a synthetic DNA template, consisting of 12 tandemly arranged 208-base pair fragments of the 5 S rRNA gene, purified HeLa histone octamers, and histone H1. A ratio of histone H1 per histone octamer used in the reconstitution (0.8-0.9 mol of histone H1/mol of histone octamer) similar to that observed in vivo was used. The reconstituted chromatin complexes exhibit a salt-dependent folding, which is almost indistinguishable from that exhibited by chromatin fragments obtained from nuclease digestion of native chromatin. The folding of this reconstituted chromatin complex seems to be rather independent of the symmetrical or asymmetrical position occupied by H1 in the individual nucleosomes. Binding of histone H1 to the oligonucleosome complexes, under the stoichiometric binding conditions used, had no inhibitory effect on the transcriptional potential of these complexes.
Collapse
Affiliation(s)
- L Howe
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | | | | |
Collapse
|
378
|
Citterio E, Rademakers S, van der Horst GT, van Gool AJ, Hoeijmakers JH, Vermeulen W. Biochemical and biological characterization of wild-type and ATPase-deficient Cockayne syndrome B repair protein. J Biol Chem 1998; 273:11844-51. [PMID: 9565609 DOI: 10.1074/jbc.273.19.11844] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cockayne syndrome (CS) is a nucleotide excision repair disorder characterized by sun (UV) sensitivity and severe developmental problems. Two genes have been shown to be involved: CSA and CSB. Both proteins play an essential role in preferential repair of transcription-blocking lesions from active genes. In this study we report the purification and characterization of baculovirus-produced HA-His6-tagged CSB protein (dtCSB), using a highly efficient three-step purification protocol. Microinjection of dtCSB protein in CS-B fibroblasts shows that it is biologically functional in vivo. dtCSB exhibits DNA-dependent ATPase activity, stimulated by naked as well as nucleosomal DNA. Using structurally defined DNA oligonucleotides, we show that double-stranded DNA and double-stranded DNA with partial single-stranded character but not true single-stranded DNA act as efficient cofactors for CSB ATPase activity. Using a variety of substrates, no overt DNA unwinding by dtCSB could be detected, as found with other SNF2/SWI2 family proteins. By site-directed mutagenesis the invariant lysine residue in the NTP-binding motif of CSB was substituted with a physicochemically related arginine. As expected, this mutation abolished ATPase activity. Surprisingly, the mutant protein was nevertheless able to partially rescue the defect in recovery of RNA synthesis after UV upon microinjection in CS-B fibroblasts. These results indicate that integrity of the conserved nucleotide-binding domain is important for the in vivo function of CSB but that also other properties independent from ATP hydrolysis may contribute to CSB biological functions.
Collapse
Affiliation(s)
- E Citterio
- Medical Genetics Centre Department of Cell Biology and Genetics, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
379
|
Okada M, Hirose S. Chromatin remodeling mediated by Drosophila GAGA factor and ISWI activates fushi tarazu gene transcription in vitro. Mol Cell Biol 1998; 18:2455-61. [PMID: 9566866 PMCID: PMC110625 DOI: 10.1128/mcb.18.5.2455] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
GAGA factor is known to remodel the chromatin structure in concert with nucleosome-remodeling factor NURF in a Drosophila embryonic S150 extract. The promoter region of the Drosophila fushi tarazu (ftz) gene carries several binding sites for GAGA factor. Both the GAGA factor-binding sites and GAGA factor per se are necessary for the proper expression of ftz in vivo. We observed transcriptional activation of the ftz gene when a preassembled chromatin template was incubated with GAGA factor and the S150 extract. The chromatin structure within the ftz promoter was specifically disrupted by incubation of the preassembled chromatin with GAGA factor and the S150 extract. Both transcriptional activation and chromatin disruption were blocked by an antiserum raised against ISWI or by base substitutions in the GAGA factor-binding sites in the ftz promoter region. These results demonstrate that GAGA factor- and ISWI-mediated disruption of the chromatin structure within the promoter region of ftz activates transcription on the chromatin template.
Collapse
Affiliation(s)
- M Okada
- Department of Genetics, The Graduate University for Advanced Studies, National Institute of Genetics, Mishima, Shizuoka-ken, Japan
| | | |
Collapse
|
380
|
Côté J, Peterson CL, Workman JL. Perturbation of nucleosome core structure by the SWI/SNF complex persists after its detachment, enhancing subsequent transcription factor binding. Proc Natl Acad Sci U S A 1998; 95:4947-52. [PMID: 9560208 PMCID: PMC20193 DOI: 10.1073/pnas.95.9.4947] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To investigate the mechanism of SWI/SNF action, we have analyzed the pathway by which SWI/SNF stimulates formation of transcription factor-bound nucleosome core complexes. We report here that the SWI/SNF complex binds directly to nucleosome cores and uses the energy of ATP hydrolysis to disrupt histone/DNA interactions, altering the preferred path of DNA bending around the histone octamer. This disruption occurs without dissociating the DNA from the surface of the histone octamer. ATP-dependent disruption of nucleosomal DNA by SWI/SNF generates an altered nucleosome core conformation that can persist for an extended period after detachment of the SWI/SNF complex. This disrupted conformation retains an enhanced affinity for the transcription factor GAL4-AH. Thus, ATP-dependent nucleosome core disruption and enhanced binding of the transcription factor can be temporally separated. These results indicate that SWI/SNF can act transiently in the remodeling of chromatin structure, even before interactions of transcription factors.
Collapse
Affiliation(s)
- J Côté
- Laval University Cancer Research Center, Hôtel-Dieu de Québec, Quebec City, Qc G1R 2J6, Canada.
| | | | | |
Collapse
|
381
|
Vestner B, Bustin M, Gruss C. Stimulation of replication efficiency of a chromatin template by chromosomal protein HMG-17. J Biol Chem 1998; 273:9409-14. [PMID: 9545265 DOI: 10.1074/jbc.273.16.9409] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effect of chromosomal protein HMG-17 on the replication of a chromatin template was studied with minichromosomes containing the SV40 origin of replication. The minichromosomes were assembled from M13 DNA in Xenopus egg extracts in either the absence or presence of HMG-17. Structural data show that HMG-17 was efficiently incorporated into the chromatin and induced an extended chromatin structure. Using an in vitro SV40 replication system, we find that minichromosomes containing HMG-17 replicate with higher efficiency than minichromosomes deficient of HMG-17. The replicational potential of chromatin was enhanced only when HMG-17 was incorporated into the template during, but not after, chromatin assembly. HMG-17 stimulated replication only from a chromatin template, but not from protein-free DNA. Thus, HMG-17 protein enhances the rate of replication of a chromatin template by unfolding the higher order chromatin structure and increasing the accessibility of target sequences to components of the replication machinery.
Collapse
Affiliation(s)
- B Vestner
- University of Konstanz, Division of Biology, Universitätsstr.10, 78457 Konstanz, Federal Republic of Germany
| | | | | |
Collapse
|
382
|
Abstract
The Sex combs reduced gene of the Antennapedia complex specifics the identities of the anterior thoracic and posterior head segments, including the primordium of the larval salivary gland. The Sex combs reduced transcription unit spans over 30 kb of genomic DNA, with another 40 kb of upstream cis-regulatory sequences. The pattern of Sex combs reduced transcription is set in the early embryo by the segmentation genes and is then maintained by two competing sets of proteins, the Polycomb group and the trithorax group. One of the trithorax group genes required for activation, the brahma gene, encodes an evolutionarily conserved DNA-stimulated ATPase that is part of a large protein complex. This complex facilitates the action of sequence-specific, DNA-binding proteins in regulating target genes, possibly by altering chromatin structure.
Collapse
Affiliation(s)
- J A Kennison
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-2785, USA.
| | | | | |
Collapse
|
383
|
Rozenblatt-Rosen O, Rozovskaia T, Burakov D, Sedkov Y, Tillib S, Blechman J, Nakamura T, Croce CM, Mazo A, Canaani E. The C-terminal SET domains of ALL-1 and TRITHORAX interact with the INI1 and SNR1 proteins, components of the SWI/SNF complex. Proc Natl Acad Sci U S A 1998; 95:4152-7. [PMID: 9539705 PMCID: PMC22457 DOI: 10.1073/pnas.95.8.4152] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ALL-1 gene was discovered by virtue of its involvement in human acute leukemia. Its Drosophila homolog trithorax (trx) is a member of the trx-Polycomb gene family, which maintains correct spatial expression of the Antennapedia and bithorax complexes during embryogenesis. The C-terminal SET domain of ALL-1 and TRITHORAX (TRX) is a 150-aa motif, highly conserved during evolution. We performed yeast two hybrid screening of Drosophila cDNA library and detected interaction between a TRX polypeptide spanning SET and the SNR1 protein. SNR1 is a product of snr1, which is classified as a trx group gene. We found parallel interaction in yeast between the SET domain of ALL-1 and the human homolog of SNR1, INI1 (hSNF5). These results were confirmed by in vitro binding studies and by demonstrating coimmunoprecipitation of the proteins from cultured cells and/or transgenic flies. Epitope-tagged SNR1 was detected at discrete sites on larval salivary gland polytene chromosomes, and these sites colocalized with around one-half of TRX binding sites. Because SNR1 and INI1 are constituents of the SWI/SNF complex, which acts to remodel chromatin and consequently to activate transcription, the interactions we observed suggest a mechanism by which the SWI/SNF complex is recruited to ALL-1/trx targets through physical interactions between the C-terminal domains of ALL-1 and TRX and INI1/SNR1.
Collapse
Affiliation(s)
- O Rozenblatt-Rosen
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
384
|
Ryan MP, Jones R, Morse RH. SWI-SNF complex participation in transcriptional activation at a step subsequent to activator binding. Mol Cell Biol 1998; 18:1774-82. [PMID: 9528749 PMCID: PMC121407 DOI: 10.1128/mcb.18.4.1774] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/1997] [Accepted: 01/06/1998] [Indexed: 02/07/2023] Open
Abstract
The SWI-SNF complex in yeast and related complexes in higher eukaryotes have been implicated in assisting gene activation by overcoming the repressive effects of chromatin. We show that the ability of the transcriptional activator GAL4 to bind to a site in a positioned nucleosome is not appreciably impaired in swi mutant yeast cells. However, chromatin remodeling that depends on a transcriptional activation domain shows a considerable, although not complete, SWI-SNF dependence, suggesting that the SWI-SNF complex exerts its major effect at a step subsequent to activator binding. We tested this idea further by comparing the SWI-SNF dependence of a reporter gene based on the GAL10 promoter, which has an accessible upstream activating sequence and a nucleosomal TATA element, with that of a CYC1-lacZ reporter, which has a relatively accessible TATA element. We found that the GAL10-based reporter gene showed a much stronger SWI-SNF dependence than did the CYC1-lacZ reporter with several different activators. Remarkably, transcription of the GAL10-based reporter by a GAL4-GAL11 fusion protein showed a nearly complete requirement for the SWI-SNF complex, strongly suggesting that SWI-SNF is needed to allow access of TFIID or the RNA polymerase II holoenzyme. Taken together, our results demonstrate that chromatin remodeling in vivo can occur by both SWI-SNF-dependent and -independent avenues and suggest that the SWI-SNF complex exerts its major effect in transcriptional activation at a step subsequent to transcriptional activator-promoter recognition.
Collapse
Affiliation(s)
- M P Ryan
- Molecular Genetics Program, Wadsworth Center, New York State Department of Health, and State University of New York School of Public Health, Albany 12201-2002, USA
| | | | | |
Collapse
|
385
|
Abstract
A hallmark feature of mitosis is the extinction of bulk cellular transcription. The mechanism by which transcription is abrogated is likely linked to mitotic specific events such as chromosome condensation. Recent studies that probe the structure of genes that can be reactivated rapidly after mitotic repression (early G1) suggest that there are structural distortions in the promoter regions of these genes. These distortions are absent in genes that are typically repressed or reactivated in later phases of the cell cycle (late G1, S, or G2). Such changes in the chromatin structure of these genes may create a transient window for transcription factor binding and rapid reactivation of genes in subsequent phases of the cell cycle.
Collapse
Affiliation(s)
- S John
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park 16802-4500, USA
| | | |
Collapse
|
386
|
Sukhodolets MV, Jin DJ. RapA, a novel RNA polymerase-associated protein, is a bacterial homolog of SWI2/SNF2. J Biol Chem 1998; 273:7018-23. [PMID: 9507009 DOI: 10.1074/jbc.273.12.7018] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified a novel Escherichia coli RNA polymerase (RNAP)-associated protein, an ATPase named RapA. Almost all of this 110-kDa protein in the cell copurifies with RNAP holoenzyme as a 1:1 complex. Purified to homogeneity, RapA also forms a stable complex with RNAP, as if it were a subunit of RNAP. The ATPase activity of RapA is stimulated by binding to RNAP, and thus, RapA and RNAP interact physically as well as functionally. Interestingly, RapA is a homolog of the SWI/SNF family of eukaryotic proteins whose members are involved in transcription activation, nucleosome remodeling, and DNA repair.
Collapse
Affiliation(s)
- M V Sukhodolets
- Laboratory of Molecular Biology, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
387
|
Mendenhall MD. Cyclin-dependent kinase inhibitors of Saccharomyces cerevisiae and Schizosaccharomyces pombe. Curr Top Microbiol Immunol 1998; 227:1-24. [PMID: 9479823 DOI: 10.1007/978-3-642-71941-7_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- M D Mendenhall
- Department of Biochemistry, University of Kentucky, Lexington 40536-0096, USA
| |
Collapse
|
388
|
Kadonaga JT. Eukaryotic transcription: an interlaced network of transcription factors and chromatin-modifying machines. Cell 1998; 92:307-13. [PMID: 9476891 DOI: 10.1016/s0092-8674(00)80924-1] [Citation(s) in RCA: 417] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- J T Kadonaga
- Department of Biology, Center for Molecular Genetics, University of California, San Diego, La Jolla 92093-0347, USA
| |
Collapse
|
389
|
Abstract
Most animals exhibit distinctive and diverse morphological features on their anterior-posterior body axis. However, underneath the variation in design and developmental strategies lies a shared ancient structural blueprint that is based on the expression patterns of Hox genes. Both the establishment and maintenance of the spatial and temporal distribution of Hox transcripts play an important role in determining axial pattern. The study of many animal systems, both vertebrate and invertebrate, suggests that the mechanisms used to establish Hox transcription are nearly as diverse as the body plans they specify. The strategies for maintenance of Hox expression pattern seem more conserved among different phyla, and rely on the action of Pc and trx group genes as well as auto- and cross-regulation among Hox genes. In mice, the sharing of regulatory elements coupled with auto- and cross-regulation could explain the conservation of the clustered arrangement of Hox genes. In contrast, fly Hox genes seem to have evolved insulators or boundary elements to avoid sharing regulatory regions. Differences in Hox transcription patterns can be correlated with morphological modifications in different species, and it seems likely that evolutionary variation of Hox cis-regulatory elements has played a major role in the emergence of novel body plans in different taxa of the animal kingdom.
Collapse
Affiliation(s)
- G Gellon
- Department of Biology, Yale University, New Haven, CT, USA
| | | |
Collapse
|
390
|
Abstract
The ubiquitous transcription factor, NF-Y, plays a pivotal role in the cell cycle regulation of the mammalian cyclin A, cdc25C, and cdc2 genes, in the S-phase activation of the ribonucleotide reductase R2 gene, in addition to its critical role as a key proximal promoter factor in the transcriptional regulation of the albumin, collagen, lipoprotein lipase, major histocompatibility complex class II, and a variety of other eukaryotic and viral genes. In this report, the NF-Y complex has been shown to possess histone acetyltransferase activity through physical association with the related histone acetyltransferase enzymes, human GCN5 and P/CAF in vivo. The assembled NF-YA:B:C complex, and the NF-YB:YC, NF-YB:YC (DNA binding-subunit interaction domain), and NF-YC:YB (DNA binding-subunit interaction domain) heterodimers were sufficient to support stable interaction with human GCN5 in vitro, suggesting that these histone acetyltransferases interact with a unique surface in the ancient YB:YC histone-fold motif. Deletion of either N- or C-terminal regions in human GCN5 disrupted interaction with NF-Y in vitro. In addition, human GCN5 was observed to activate NF-Y in transient transfections in vivo using a natural alpha 2(I) collagen promoter. These results suggest that these associated histone acetyltransferases may serve to modulate NF-Y transactivation potential by aiding disruption of local chromatin structure thereby facilitating NF-Y access to its CCAAT box DNA binding sites.
Collapse
Affiliation(s)
- R A Currie
- Laboratory of Gene Regulation, Picower Institute for Medical Research, Manhasset, New York 11030, USA
| |
Collapse
|
391
|
Orphanides G, LeRoy G, Chang CH, Luse DS, Reinberg D. FACT, a factor that facilitates transcript elongation through nucleosomes. Cell 1998; 92:105-16. [PMID: 9489704 DOI: 10.1016/s0092-8674(00)80903-4] [Citation(s) in RCA: 503] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The requirements for transcriptional activation by RNA polymerase II were examined using chromatin templates assembled in vitro and a transcription system composed of the human general transcription factors and RNA polymerase II. Activator-induced, energy-dependent chromatin remodeling promoted efficient preinitiation complex formation and transcription initiation, but was not sufficient for productive transcription. Polymerases that initiated transcription on remodeled chromatin templates encountered a block to transcription proximal to the promoter. Entry into productive transcription required an accessory factor present in HeLa cell nuclear extract, FACT (facilitates chromatin transcription), which we have purified. FACT acts subsequent to transcription initiation to release RNA polymerase II from a nucleosome-induced block to productive transcription. The biochemical properties and polypeptide composition of FACT suggest that it is a novel protein factor that facilitates transcript elongation through nucleosomes.
Collapse
Affiliation(s)
- G Orphanides
- Howard Hughes Medical Institute, Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway 08854, USA
| | | | | | | | | |
Collapse
|
392
|
Martínez-Balbás MA, Tsukiyama T, Gdula D, Wu C. Drosophila NURF-55, a WD repeat protein involved in histone metabolism. Proc Natl Acad Sci U S A 1998; 95:132-7. [PMID: 9419341 PMCID: PMC18150 DOI: 10.1073/pnas.95.1.132] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Drosophila nucleosome remodeling factor (NURF) is a protein complex of four distinct subunits that assists transcription factor-mediated chromatin remodeling. One NURF subunit, ISWI, is related to the transcriptional regulators Drosophila brahma and yeast SWI2/SNF2. We have determined peptide sequences and isolated cDNA clones for a second NURF component (the 55-kDa subunit). Immunological studies show that p55 is an integral subunit of NURF and is generally associated with polytene chromosomes. The predicted sequence of p55 reveals a WD repeat protein that is identical with the 55-kDa subunit of the Drosophila chromatin assembly factor (CAF-1). Given that WD repeat proteins related to p55 are associated with histone deacetylase and histone acetyltransferase, our findings suggest that p55 and its homologs may function as a common platform for the assembly of protein complexes involved in chromatin metabolism.
Collapse
Affiliation(s)
- M A Martínez-Balbás
- Laboratory of Molecular Cell Biology, National Cancer Institute, Building 37, Room 5E-26, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | | | | | |
Collapse
|
393
|
|
394
|
Abstract
Chromatin is a dynamic material; chromatin structures can repress transcription and their remodeling accompanies activation. Recent biochemical studies in Drosophila have revealed three multi-protein complexes with ATP-dependent chromatin restructuring activities. Although all contain the ATPase ISWI, their properties in vitro are markedly different, distinct from SWI-SNF and reveal intriguing connections to both transcription and chromatin assembly.
Collapse
Affiliation(s)
- B R Cairns
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
395
|
Sandaltzopoulos R, Becker PB. Heat shock factor increases the reinitiation rate from potentiated chromatin templates. Mol Cell Biol 1998; 18:361-7. [PMID: 9418883 PMCID: PMC121506 DOI: 10.1128/mcb.18.1.361] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transcription by RNA polymerase II is highly regulated at the level of initiation and elongation. Well-documented transcription activation mechanisms, such as the recruitment of TFIID and TFIIB, control the early phases of preinitiation complex formation. The heat shock genes provide an example for transcriptional regulation at a later step: in nuclei TFIID can be detected at the TATA box prior to heat induction. Using cell-free systems for chromatin reconstitution and transcription, we have analyzed the mechanisms by which heat shock factor (HSF) increases transcription of heat shock genes in chromatin. HSF affected transcription of naked DNA templates in multiple ways: (i) by speeding up the rate of preinitiation complex formation, (ii) by increasing the number of productive templates, and (iii) by increasing the reinitiation rate. Under the more physiological conditions of potentiated chromatin templates, HSF affected only the reinitiation rate. Activator-dependent reinitiation of transcription, obviating the slow assembly of the TFIID-TFIIA complex on a promoter, may be especially crucial for genes requiring a fast response to inducers.
Collapse
Affiliation(s)
- R Sandaltzopoulos
- Gene Expression Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
396
|
Elfring LK, Daniel C, Papoulas O, Deuring R, Sarte M, Moseley S, Beek SJ, Waldrip WR, Daubresse G, DePace A, Kennison JA, Tamkun JW. Genetic analysis of brahma: the Drosophila homolog of the yeast chromatin remodeling factor SWI2/SNF2. Genetics 1998; 148:251-65. [PMID: 9475737 PMCID: PMC1459776 DOI: 10.1093/genetics/148.1.251] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Drosophila brahma (brm) gene encodes an activator of homeotic genes related to the yeast chromatin remodeling factor SWI2/SNF2. Here, we report the phenotype of null and dominant-negative brm mutations. Using mosaic analysis, we found that the complete loss of brm function decreases cell viability and causes defects in the peripheral nervous system of the adult. A dominant-negative brm mutation was generated by replacing a conserved lysine in the ATP-binding site of the BRM protein with an arginine. This mutation eliminates brm function in vivo but does not affect assembly of the 2-MD BRM complex. Expression of the dominant-negative BRM protein caused peripheral nervous system defects, homeotic transformations, and decreased viability. Consistent with these findings, the BRM protein is expressed at relatively high levels in nuclei throughout the developing organism. Site-directed mutagenesis was used to investigate the functions of conserved regions of the BRM protein. Domain II is essential for brm function and is required for the assembly or stability of the BRM complex. In spite of its conservation in numerous eukaryotic regulatory proteins, the deletion of the bromodomain of the BRM protein has no discernible phenotype.
Collapse
Affiliation(s)
- L K Elfring
- Department of Biology, University of California, Santa Cruz 95064, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
397
|
Affiliation(s)
- G H Leno
- Department of Biochemistry, University of Mississippi Medical Center, Jackson 39216-4505, USA
| |
Collapse
|
398
|
Postnikov YV, Herrera JE, Hock R, Scheer U, Bustin M. Clusters of nucleosomes containing chromosomal protein HMG-17 in chromatin. J Mol Biol 1997; 274:454-65. [PMID: 9417927 DOI: 10.1006/jmbi.1997.1391] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chromosomal proteins HMG-14 and HMG-17 are nucleosome binding proteins which can function as architectural elements to alter the structure of the chromatin fiber and enhance transcription from chromatin templates. Here we study the spatial organization of these HMG proteins in the nucleus and the distribution of nucleosomes containing HMG-17 in the chromatin fiber. By confocal immunofluorescence microscopy we find that HMG-14/17 proteins are clustered into foci containing either HMG-14 or HMG-17. These results suggest that HMG-14/17 proteins segregate into distinct nuclear domains. Indeed, immunofractionation of defined length oligonucleosomes, with affinity pure antibodies to HMG-17, indicates that oligonucleosomes containing HMG-17 are devoid of HMG-14. Quantitative analysis indicates that in cellular chromatin nucleosomes containing HMG-17 are clustered. The average size of the cluster is six contiguous HMG-17-containing nucleosomes. The nucleosomes in this cluster contain either two or zero molecules of HMG-17 and a complete set of four core histones. We suggest that HMG-14/17 proteins modify the nucleosomal organization of the 30 nm chromatin fiber, to unfold the higher order chromatin structure and facilitate access to the underlying DNA sequence. Clustering of architectural elements, such as HMG proteins and linker histone subtypes into distinct domains, may lead to structural and functional heterogeneity along the chromatin fiber.
Collapse
Affiliation(s)
- Y V Postnikov
- Protein Section, LMC, DBS, NCI, NIH, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
399
|
Verdone L, Cesari F, Denis CL, Di Mauro E, Caserta M. Factors affecting Saccharomyces cerevisiae ADH2 chromatin remodeling and transcription. J Biol Chem 1997; 272:30828-34. [PMID: 9388226 DOI: 10.1074/jbc.272.49.30828] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The chromatin structure of the Saccharomyces cerevisiae ADH2 gene is modified during the switch from repressing (high glucose) to derepressing (low glucose) conditions of growth. Loss of protection toward micrococcal nuclease cleavage for the nucleosomes covering the TATA box and the RNA initiation sites (-1 and +1, respectively) is the major modification taking place and is strictly dependent on the presence of the transcriptional activator ADR1. To identify separate functions involved in the transition from a repressed to a transcribing promoter, we have analyzed the ADH2 chromatin organization in various genetic backgrounds. Deletion of the CCR4 gene coding for a general transcription factor impaired ADH2 expression without affecting chromatin remodeling. Growing yeast at 37 degrees C also resulted in chromatin remodeling at the ADH2 locus even under glucose repressing conditions. However, although this temperature-induced remodeling was dependent on the ADR1 protein, no ADH2 mRNA was observed. In addition, inactivating RNA polymerase II (and therefore, elongation) was found to have no effect on the ability to reconfigure nucleosomes. Taken together, these data indicate that chromatin remodeling by itself is insufficient to induce transcription at the ADH2 promoter.
Collapse
Affiliation(s)
- L Verdone
- Dipartimento di Genetica e Biologia Molecolare, Università "La Sapienza," 00185 Rome, Italy
| | | | | | | | | |
Collapse
|
400
|
Sewack GF, Hansen U. Nucleosome positioning and transcription-associated chromatin alterations on the human estrogen-responsive pS2 promoter. J Biol Chem 1997; 272:31118-29. [PMID: 9388265 DOI: 10.1074/jbc.272.49.31118] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The positioning of nucleosomes on a promoter is a significant determinant in its responsiveness to inducing signals. We have mapped the chromatin structure of the human, estrogen-responsive pS2 promoter at nucleotide level resolution within the context of its normal genomic location in human mammary epithelial cells. In vivo digestion by nucleases followed by ligation-mediated polymerase chain reaction analysis revealed two rotationally phased and translationally positioned nucleosomes within the promoter between nucleotide positions -450 and +7. The estrogen response elements at -400 and TATAA box at -35 are each located at the edge of a nucleosome. The two precisely positioned nucleosomes exist in both transformed and nontransformed human mammary epithelial cells, regardless of estrogen receptor status or transcriptional activity of the gene. However, two structural alterations correlate with the transcriptional potential of the promoter. In MCF-7 cells, in which the pS2 promoter is inducible, the chromatin exhibits an increased sensitivity to DNase I in a region of DNA adjacent to the TATAA box and an additional micrococcal nuclease-hypersensitive site in the linker DNA between the two positioned nucleosomes. We were also able to demonstrate that nucleotides -1100 to +10 of the pS2 promoter are sufficient to determine the positioning of these two nucleosomes. Our results establish the structural features of the chromatin covering the pS2 promoter as well as transcriptionally associated alterations, suggesting how the nucleosomal template influences transcriptional regulation by estrogen receptor.
Collapse
Affiliation(s)
- G F Sewack
- Department of Molecular Genetics, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|