351
|
Camacho A, Simão M, Ea HK, Cohen-Solal M, Richette P, Branco J, Cancela ML. Iron overload in a murine model of hereditary hemochromatosis is associated with accelerated progression of osteoarthritis under mechanical stress. Osteoarthritis Cartilage 2016; 24:494-502. [PMID: 26403062 DOI: 10.1016/j.joca.2015.09.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/21/2015] [Accepted: 09/11/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Hereditary hemochromatosis (HH) is a disease caused by mutations in the Hfe gene characterised by systemic iron overload and associated with an increased prevalence of osteoarthritis (OA) but the role of iron overload in the development of OA is still undefined. To further understand the molecular mechanisms involved we have used a murine model of HH and studied the progression of experimental OA under mechanical stress. DESIGN OA was surgically induced in the knee joints of 10-week-old C57BL6 (wild-type) mice and Hfe-KO mice. OA progression was assessed using histology, micro CT, gene expression and immunohistochemistry at 8 weeks after surgery. RESULTS Hfe-KO mice showed a systemic iron overload and an increased iron accumulation in the knee synovial membrane following surgery. The histological OA score was significantly higher in the Hfe-KO mice at 8 weeks after surgery. Micro CT study of the proximal tibia revealed increased subchondral bone volume and increased trabecular thickness. Gene expression and immunohistochemical analysis showed a significant increase in the expression of matrix metallopeptidase 3 (MMP-3) in the joints of Hfe-KO mice compared with control mice at 8 weeks after surgery. CONCLUSIONS HH was associated with an accelerated development of OA in mice. Our findings suggest that synovial iron overload has a definite role in the progression of HH-related OA.
Collapse
Affiliation(s)
- A Camacho
- Department of Orthopedics, Centro Hospitalar Lisboa Central, Lisboa, Portugal; PhD Program in Medicine, NOVA Medical School, University Nova de Lisboa, Lisbon, Portugal; Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal.
| | - M Simão
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal; PhD Program in Biomedical Sciences, University of Algarve, Faro, Portugal
| | - H-K Ea
- Inserm 1132, Hôpital Lariboisière, Paris, France; Université Paris Diderot, UFR médicale, Assistance Publique-Hôpitaux de Paris, Hôpital Lariboisière, Fédération de Rhumatologie, Paris, France
| | - M Cohen-Solal
- Inserm 1132, Hôpital Lariboisière, Paris, France; Université Paris Diderot, UFR médicale, Assistance Publique-Hôpitaux de Paris, Hôpital Lariboisière, Fédération de Rhumatologie, Paris, France
| | - P Richette
- Inserm 1132, Hôpital Lariboisière, Paris, France; Université Paris Diderot, UFR médicale, Assistance Publique-Hôpitaux de Paris, Hôpital Lariboisière, Fédération de Rhumatologie, Paris, France
| | - J Branco
- Department of Rheumatology, Hospital Egas Moniz, Centro Hospitalar Lisboa Ocidental EPE, Lisbon, Portugal; CEDOC - Chronic Diseases Research Center, NOVA Medical School, University Nova de Lisboa, Lisbon, Portugal
| | - M L Cancela
- Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal; Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| |
Collapse
|
352
|
Kumfu S, Chattipakorn SC, Fucharoen S, Chattipakorn N. Effects of iron overload condition on liver toxicity and hepcidin/ferroportin expression in thalassemic mice. Life Sci 2016; 150:15-23. [PMID: 26921633 DOI: 10.1016/j.lfs.2016.02.082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/23/2015] [Accepted: 02/23/2016] [Indexed: 11/18/2022]
Abstract
AIMS Although iron-overload conditions can be found in β-thalassemic patients, resulting in cellular damage, particularly in the liver, the mechanism for this iron-mediated hepatic injury specifically in β-thalassemic (HT) mice is unclear. This study aimed to investigate the roles of L-type calcium channels (LTCC), T-type calcium channels (TTCC) and divalent metal transporter1 (DMT1) in iron-mediated hepatic injury in HT mice. MAIN METHODS Iron chelator deferoxamine (DFO), LTCC blocker, TTCC blocker and DMT1 blocker were used to determine the roles of these channels regarding liver iron accumulation, apoptosis and iron regulatory protein expression in HT mice. KEY FINDINGS TTCC and DMT1 blockers and DFO decreased liver iron and malondialdehyde (MDA) in HT mice indicating their antioxidant effects, whereas LTCC blocker produced no decrease in liver iron or MDA. However, only DFO decreased liver apoptosis through the reduced Bax/Bcl-2 ratio in wild type (WT) mice. The levels of iron regulatory hormone hepcidin were markedly higher in HT mice even before iron loading while ferroportin levels did not alter. Each of the pharmacological interventions increased ferroportin protein back to normal levels only in WT while HT mice showed no difference. SIGNIFICANCE Thalassemic mice have different hepcidin/ferroportin and apoptotic protein expression as a defense mechanism to iron-overload compared with those in WT mice. DFO was the most effective intervention in preventing liver apoptosis under iron-overload conditions in WT but did not have the same effect in HT mice.
Collapse
Affiliation(s)
- Sirinart Kumfu
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
353
|
Liu Z, Wang Y, Purro M, Xiong MP. Oxidation-Induced Degradable Nanogels for Iron Chelation. Sci Rep 2016; 6:20923. [PMID: 26868174 PMCID: PMC4751432 DOI: 10.1038/srep20923] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/13/2016] [Indexed: 01/22/2023] Open
Abstract
Iron overload can increase cellular oxidative stress levels due to formation of reactive oxygen species (ROS); untreated, it can be extremely destructive to organs and fatal to patients. Since elevated oxidative stress levels are inherent to the condition in such patients, oxidation-induced degradable nanogels for iron chelation were rationally designed by simultaneously polymerizing oxidation-sensitive host-guest crosslinkers between β-cyclodextrin (β-CD) and ferrocene (Fc) and iron chelating moieties composed of deferoxamine (DFO) into the final gel scaffold in reverse emulsion reaction chambers. UV-Vis absorption and atomic absorption spectroscopy (AAS) was used to verify iron chelating capability of nanogels. These materials can degrade into smaller chelating fragments at rates proportional to the level of oxidative stress present. Conjugating DFO reduces the cytotoxicity of the chelator in the macrophage cells. Importantly, the nanogel can effectively reduce cellular ferritin expression in iron overloaded cells and regulate intracellular iron levels at the same time, which is important for maintaining a homeostatic level of this critical metal in cells.
Collapse
Affiliation(s)
- Zhi Liu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison 777 Highland Avenue, Madison, WI 53705-2222, USA
| | - Yan Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison 777 Highland Avenue, Madison, WI 53705-2222, USA
| | - Max Purro
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison 777 Highland Avenue, Madison, WI 53705-2222, USA
| | - May P Xiong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison 777 Highland Avenue, Madison, WI 53705-2222, USA
| |
Collapse
|
354
|
Belaidi AA, Bush AI. Iron neurochemistry in Alzheimer's disease and Parkinson's disease: targets for therapeutics. J Neurochem 2016; 139 Suppl 1:179-197. [DOI: 10.1111/jnc.13425] [Citation(s) in RCA: 324] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/24/2015] [Accepted: 11/03/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Abdel A. Belaidi
- The Florey Institute for Neuroscience and Mental Health; The University of Melbourne; Parkville Vic. Australia
| | - Ashley I. Bush
- The Florey Institute for Neuroscience and Mental Health; The University of Melbourne; Parkville Vic. Australia
| |
Collapse
|
355
|
Iron metabolism and related genetic diseases: A cleared land, keeping mysteries. J Hepatol 2016; 64:505-515. [PMID: 26596411 DOI: 10.1016/j.jhep.2015.11.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022]
Abstract
Body iron has a very close relationship with the liver. Physiologically, the liver synthesizes transferrin, in charge of blood iron transport; ceruloplasmin, acting through its ferroxidase activity; and hepcidin, the master regulator of systemic iron. It also stores iron inside ferritin and serves as an iron reservoir, both protecting the cell from free iron toxicity and ensuring iron delivery to the body whenever needed. The liver is first in line for receiving iron from the gut and the spleen, and is, therefore, highly exposed to iron overload when plasma iron is in excess, especially through its high affinity for plasma non-transferrin bound iron. The liver is strongly involved when iron excess is related either to hepcidin deficiency, as in HFE, hemojuvelin, hepcidin, and transferrin receptor 2 related haemochromatosis, or to hepcidin resistance, as in type B ferroportin disease. It is less involved in the usual (type A) form of ferroportin disease which targets primarily the macrophagic system. Hereditary aceruloplasminemia raises important pathophysiological issues in light of its peculiar organ iron distribution.
Collapse
|
356
|
Oxidative stress and age-related changes in T cells: is thalassemia a model of accelerated immune system aging? Cent Eur J Immunol 2016; 41:116-24. [PMID: 27095931 PMCID: PMC4829813 DOI: 10.5114/ceji.2015.56973] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/20/2015] [Indexed: 12/21/2022] Open
Abstract
Iron overload in β-thalassemia major occurs mainly due to blood transfusion, an essential treatment for β-thalassemia major patients, which results in oxidative stress. It has been thought that oxidative stress causes elevation of immune system senescent cells. Under this condition, cells normally enhance in aging, which is referred to as premature immunosenescence. Because there is no animal model for immunosenescence, most knowledge on the immunosenescence pattern is based on induction of immunosenescence. In this review, we describe iron overload and oxidative stress in β-thalassemia major patients and how they make these patients a suitable human model for immunosenescence. We also consider oxidative stress in some kinds of chronic virus infections, which induce changes in the immune system similar to β-thalassemia major. In conclusion, a therapeutic approach used to improve the immune system in such chronic virus diseases, may change the immunosenescence state and make life conditions better for β-thalassemia major patients.
Collapse
|
357
|
Del Vecchio L, Longhi S, Locatelli F. Safety concerns about intravenous iron therapy in patients with chronic kidney disease. Clin Kidney J 2016; 9:260-7. [PMID: 26985378 PMCID: PMC4792617 DOI: 10.1093/ckj/sfv142] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 11/20/2015] [Indexed: 01/12/2023] Open
Abstract
Anaemia in chronic kidney disease (CKD) is managed primarily with erythropoiesis-stimulating agents (ESAs) and iron therapy. Following concerns around ESA therapy, intravenous (IV) iron is being administered more and more worldwide. However, it is still unclear whether this approach is safe at very high doses or in the presence of very high ferritin levels. Some observational studies have shown a relationship between either high ferritin level or high iron dose and increased risk of death, cardiovascular events, hospitalization or infection. Others have not been able to confirm these findings. However, they suffer from indication biases. On the other hand, the majority of randomized clinical trials have only a very short follow-up (and thus drug exposure) and are inadequate to assess the mortality risk. None of them have tested the role of different iron doses on hard end points. With the lack of clear evidence coming from well-designed and large-scale studies, several data suggest that excessive iron therapy may be toxic in several aspects, ranging from iron overload to tissue damage from labile iron. A number of experimental and clinical data suggest that either excessive iron therapy or iron overload may be a possible culprit of atherogenesis. The process seems to be mediated by oxidative stress. Iron therapy should also be used cautiously in the presence of active infections, since iron is essential for bacterial growth. Recently, the European Medicines Agency officially raised concerns about rare hypersensitivity reactions following IV iron administration. The balance has been in favour of benefits. In several European countries, this has created a lot of confusion and somewhat slowed the run towards excessive use. Altogether, IV iron remains a mainstay of anaemia treatment in CKD patients. However, in our opinion, its excessive use should be avoided, especially in patients with high ferritin levels and when ESA agents are not contraindicated.
Collapse
Affiliation(s)
- Lucia Del Vecchio
- Department of Nephrology and Dialysis , A. Manzoni Hospital , Lecco , Italy
| | - Selena Longhi
- Department of Nephrology and Dialysis , A. Manzoni Hospital , Lecco , Italy
| | | |
Collapse
|
358
|
He X, Yang X, Hai L, He D, He X, Wang K, Yang X. Single-layer MnO2 nanosheet quenched fluorescence ruthenium complexes for sensitive detection of ferrous iron. RSC Adv 2016. [DOI: 10.1039/c6ra15397f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Single-layer MnO2 nanosheet quenched fluorescence Ru(bipy)32+ complexes are established as turn-on fluorescence sensors for sensitive and label-free probing of ferrous iron in aqueous solutions, as well as living cells.
Collapse
Affiliation(s)
- Xing He
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Hunan University
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
| | - Xiaoxiao Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Hunan University
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
| | - Luo Hai
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Hunan University
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
| | - Dinggeng He
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Hunan University
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Hunan University
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Hunan University
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
| | - Xue Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Hunan University
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
| |
Collapse
|
359
|
Mantuano A, Barroso RC, Nogueira LP, Colaço MV, Mota CL, Pickler A, Braz D, Salata C, Ferreira-Machado S, de Almeida CE, Gianoncelli A. Alterations in Low-Z Elements Distribution in Heart Tissue after Treatments to Breast Cancer Using LEXRF Technique. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ajac.2016.711068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
360
|
Cozzolino M, Funk F, Rakov V, Phan O, Teitelbaum I. Preclinical Pharmacokinetics, Pharmacodynamics and Safety of Sucroferric Oxyhydroxide. Curr Drug Metab 2015; 15:953-65. [PMID: 25658128 PMCID: PMC4997947 DOI: 10.2174/1389200216666150206124424] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/10/2015] [Accepted: 01/23/2015] [Indexed: 12/12/2022]
Abstract
Sucroferric oxyhydroxide (VELPHORO®) is a polynuclear iron-based phosphate binder recently approved for the treatment of hyperphosphataemia in patients with chronic kidney disease (CKD). As a number of the available phosphate binders do not provide the optimal combination of good efficacy, adequate tolerability and low pill burden, sucroferric oxyhydroxide constitutes a promising alternative. Among the attributes of an ideal phosphate binder is minimal absorption and, hence, low risk of systemic toxicity. Accordingly, the iron-releasing properties and absorption, distribution, metabolism and excretion (ADME) profile of sucroferric oxyhydroxide, as well as the possibility of iron accumulation and toxicity, were investigated in a series of preclinical studies. The effect of sucroferric oxyhydroxide on the progression of vascular calcification was also investigated. Sucroferric oxyhydroxide exhibited a high phosphate-binding capacity and low iron-releasing properties across the physiological pH range found in the gastrointestinal tract. In the ADME studies, uptake of 59Fe-radiolabelled sucroferric oxyhydroxide was low in rats and dogs (<1% from a 50 mg Fe/kg bodyweight dose), with the majority of absorbed iron located in red blood cells. Long-term (up to 2 years) administration of sucroferric oxyhydroxide in rats and dogs was associated with modest increases in tissue iron levels and no iron toxicity. Moreoever, in uraemic rats, sucroferric oxyhydroxide was associated with reduced progression of vascular calcification compared with calcium carbonate. In conclusion, sucroferric oxyhydroxide offers a new option for the treatment of hyperphosphataemia, with a high phosphate-binding capacity, minimal iron release, and low potential for iron accumulation and toxicity.
Collapse
Affiliation(s)
- Mario Cozzolino
- Department of Health Sciences, University of Milan, Renal Division, San Paolo Hospital, Via A. Di Rudinì, 8 20142 Milan, Italy.
| | | | | | | | | |
Collapse
|
361
|
Nakamura K, Kawakami T, Yamamoto N, Tomizawa M, Fujiwara T, Ishii T, Harigae H, Ogasawara K. Activation of the NLRP3 inflammasome by cellular labile iron. Exp Hematol 2015; 44:116-24. [PMID: 26577567 DOI: 10.1016/j.exphem.2015.11.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 10/28/2015] [Accepted: 11/01/2015] [Indexed: 01/17/2023]
Abstract
Cellular labile iron, which contains chelatable redox-active Fe(2+), has been implicated in iron-mediated cellular toxicity leading to multiple organ dysfunction. Iron homeostasis is controlled by monocytes/macrophages through their iron recycling and storage capacities. Furthermore, iron sequestration by monocytes/macrophages is regulated by pro-inflammatory cytokines including interleukin-1, highlighting the importance of these cells in the crosstalk between inflammation and iron homeostasis. However, a role for cellular labile iron in monocyte/macrophage-mediated inflammatory responses has not been defined. Here we describe how cellular labile iron activates the NLRP3 inflammasome in human monocytes. Stimulation of lipopolysaccharide-primed peripheral blood mononuclear cells with ferric ammonium citrate increases the level of cellular Fe(2+) levels in monocytes and induces production of interleukin-1β in a dose-dependent manner. This ferric ammonium citrate-induced interleukin-1β production is dependent on caspase-1 and is significantly inhibited by an Fe(2+)-specific chelator. Ferric ammonium citrate consistently induced interleukin-1β secretion in THP1 cells, but not in NLRP3-deficient THP1 cells, indicating a requirement for the NLRP3 inflammasome. Additionally, activation of the inflammasome is mediated by potassium efflux, reactive oxygen species-mediated mitochondrial dysfunction, and lysosomal membrane permeabilization. Thus, these results suggest that monocytes/macrophages not only sequestrate iron during inflammation, but also mediate inflammation in response to cellular labile iron, which provides novel insights into the role of iron in chronic inflammation.
Collapse
Affiliation(s)
- Kyohei Nakamura
- Department of Immunobiology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan; Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Kawakami
- Department of Immunobiology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan; Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Naoki Yamamoto
- Department of Immunobiology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Miyu Tomizawa
- Department of Immunobiology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Tohru Fujiwara
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomonori Ishii
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideo Harigae
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kouetsu Ogasawara
- Department of Immunobiology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan.
| |
Collapse
|
362
|
Abstract
With repeated blood transfusions, patients with thalassemia major rapidly become loaded with iron, often surpassing hepatic metal accumulation capacity within ferritin shells and infiltrating heart and endocrine organs. That pathological scenario contrasts with the physiological one, which is characterized by an efficient maintenance of all plasma iron bound to circulating transferrin, due to a tight control of iron ingress into plasma by the hormone hepcidin. Within cells, most of the acquired iron becomes protein-associated, as once released from endocytosed transferrin, it is used within mitochondria for the synthesis of protein prosthetic groups or it is incorporated into enzyme active centers or alternatively sequestered within ferritin shells. A few cell types also express the iron extrusion transporter ferroportin, which is under the negative control of circulating hepcidin. However, that system only backs up the major cell regulated iron uptake/storage machinery that is poised to maintain a basal level of labile cellular iron for metabolic purposes without incurring potentially toxic scenarios. In thalassemia and other transfusion iron-loading conditions, once transferrin saturation exceeds about 70%, labile forms of iron enter the circulation and can gain access to various types of cells via resident transporters or channels. Within cells, they can attain levels that exceed their ability to chemically cope with labile iron, which has a propensity for generating reactive oxygen species (ROS), thereby inducing oxidative damage. This scenario occurs in the heart of hypertransfused thalassemia major patients who do not receive adequate iron-chelation therapy. Iron that accumulates in cardiomyocytes forms agglomerates that are detected by T2* MRI. The labile forms of iron infiltrate the mitochondria and damage cells by inducing noxious ROS formation, resulting in heart failure. The very rapid relief of cardiac dysfunction seen after intensive iron-chelation therapy in some patients with thalassemia major is thought to be due to the relief of the cardiac mitochondrial dysfunction caused by oxidative stress or to the removal of labile iron interference with calcium fluxes through cardiac calcium channels. In fact, improvement occurs well before there is any significant improvement in the total level of cardiac iron loading. The oral iron chelator deferiprone, because of its small size and neutral charge, demonstrably enters cells and chelates labile iron, thereby rapidly reducing ROS formation, allowing better mitochondrial activity and improved cardiac function. Deferiprone may also rapidly improve arrhythmias in patients who do not have excessive cardiac iron. It maintains the flux of iron in the direction hemosiderin to ferritin to free iron, and it allows clearance of cardiac iron in the presence of other iron chelators or when used alone. To date, the most commonly used chelator combination therapy is deferoxamine plus deferiprone, whereas other combinations are in the process of assessment. In summary, it is imperative that patients with thalassemia major have iron chelators continuously present in their circulation to prevent exposure of the heart to labile iron, reduce cardiac toxicity, and improve cardiac function.
Collapse
Affiliation(s)
- Vasilios Berdoukas
- Section of Hematology, Division of Hematology, Oncology, and Blood & Marrow Transplantation, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA 90027, USA.
| | - Thomas D Coates
- Section of Hematology, Division of Hematology, Oncology, and Blood & Marrow Transplantation, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA 90027, USA
| | - Zvi Ioav Cabantchik
- Alexander Silberman Institute of Life Science, Hebrew University of Jerusalem, E Safra Campus at Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
363
|
Cortés-Puch I, Remy KE, Solomon SB, Sun J, Wang D, Al-Hamad M, Kelly SM, Sinchar D, Bellavia L, Kanias T, Popovsky MA, Kim-Shapiro DB, Klein HG, Natanson C. In a canine pneumonia model of exchange transfusion, altering the age but not the volume of older red blood cells markedly alters outcome. Transfusion 2015; 55:2564-75. [PMID: 26469998 PMCID: PMC4644122 DOI: 10.1111/trf.13275] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/29/2015] [Accepted: 06/30/2015] [Indexed: 01/28/2023]
Abstract
BACKGROUND Massive exchange transfusion of 42-day-old red blood cells (RBCs) in a canine model of Staphylococcus aureus pneumonia resulted in in vivo hemolysis with increases in cell-free hemoglobin (CFH), transferrin-bound iron (TBI), non-transferrin-bound iron (NTBI), and mortality. We have previously shown that washing 42-day-old RBCs before transfusion significantly decreased NTBI levels and mortality, but washing 7-day-old RBCs increased mortality and CFH levels. We now report the results of altering volume, washing, and age of RBCs. STUDY DESIGN AND METHODS Two-year-old purpose-bred infected beagles were transfused with increasing volumes (5-10, 20-40, or 60-80 mL/kg) of either 42- or 7-day-old RBCs (n = 36) or 80 mL/kg of either unwashed or washed RBCs with increasing storage age (14, 21, 28, or 35 days; n = 40). RESULTS All volumes transfused (5-80 mL/kg) of 42-day-old RBCs resulted in alike (i.e., not significantly different) increases in TBI during transfusion as well as in CFH, lung injury, and mortality rates after transfusion. Transfusion of 80 mL/kg RBCs stored for 14, 21, 28, and 35 days resulted in increased CFH and NTBI in between levels found at 7 and 42 days of storage. However, washing RBCs of intermediate ages (14-35 days) does not alter NTBI and CFH levels or mortality rates. CONCLUSIONS Preclinical data suggest that any volume of 42-day-old blood potentially increases risks during established infection. In contrast, even massive volumes of 7-day-old blood result in minimal CFH and NTBI levels and risks. In contrast to the extremes of storage, washing blood stored for intermediate ages does not alter risks of transfusion or NTBI and CFH clearance.
Collapse
Affiliation(s)
- Irene Cortés-Puch
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Kenneth E. Remy
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Steven B. Solomon
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Junfeng Sun
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Dong Wang
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Mariam Al-Hamad
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Seth M. Kelly
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Derek Sinchar
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213
| | - Landon Bellavia
- Department of Physics and the Translational Science Center, Wake Forest University, Winston-Salem, NC 27109
| | - Tamir Kanias
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213
| | | | - Daniel B. Kim-Shapiro
- Department of Physics and the Translational Science Center, Wake Forest University, Winston-Salem, NC 27109
| | - Harvey G. Klein
- Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Charles Natanson
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA
| |
Collapse
|
364
|
Bhoiwala DL, Song Y, Cwanger A, Clark E, Zhao LL, Wang C, Li Y, Song D, Dunaief JL. CD1 Mouse Retina Is Shielded From Iron Overload Caused by a High Iron Diet. Invest Ophthalmol Vis Sci 2015; 56:5344-52. [PMID: 26275132 DOI: 10.1167/iovs.15-17026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE High RPE iron levels have been associated with age-related macular degeneration. Mutation of the ferroxidase ceruloplasmin leads to RPE iron accumulation and degeneration in patients with aceruloplasminemia; mice lacking ceruloplasmin and its homolog hephaestin have a similar RPE degeneration. To determine whether a high iron diet (HID) could cause RPE iron accumulation, possibly contributing to RPE oxidative stress in AMD, we tested the effect of dietary iron on mouse RPE iron. METHODS Male CD1 strain mice were fed either a standard iron diet (SID) or the same diet with extra iron added (HID) for either 3 months or 10 months. Mice were analyzed with immunofluorescence and Perls' histochemical iron stain to assess iron levels. Levels of ferritin, transferrin receptor, and oxidative stress gene mRNAs were measured by quantitative PCR (qPCR) in neural retina (NR) and isolated RPE. Morphology was assessed in plastic sections. RESULTS Ferritin immunoreactivity demonstrated a modest increase in the RPE in 10-month HID mice. Analysis by qPCR showed changes in mRNA levels of iron-responsive genes, indicating moderately increased iron in the RPE of 10-month HID mice. However, even by age 18 months, there was no Perls' signal in the retina or RPE and no retinal degeneration. CONCLUSIONS These findings indicate that iron absorbed from the diet can modestly increase the level of iron deposition in the wild-type mouse RPE without causing RPE or retinal degeneration. This suggests regulation of retinal iron uptake at the blood-retinal barriers.
Collapse
Affiliation(s)
- Devang L Bhoiwala
- F. M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States 2Albany Medical College, Albany, New York, United States
| | - Ying Song
- F. M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alyssa Cwanger
- F. M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Esther Clark
- F. M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Liang-liang Zhao
- F. M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States 3Department of Ophthalmology, The Second Hospital of Jilin University, Jilin, China
| | - Chenguang Wang
- F. M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States 3Department of Ophthalmology, The Second Hospital of Jilin University, Jilin, China
| | - Yafeng Li
- F. M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Delu Song
- F. M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Joshua L Dunaief
- F. M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
365
|
Erythrocyte Catalase Activity in More Frequent Microcytic Hypochromic Anemia: Beta-Thalassemia Trait and Iron Deficiency Anemia. Adv Hematol 2015; 2015:343571. [PMID: 26527217 PMCID: PMC4615862 DOI: 10.1155/2015/343571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/10/2015] [Accepted: 09/16/2015] [Indexed: 01/02/2023] Open
Abstract
Most common microcytic hypochromic anemias are iron deficiency anemia (IDA) and β-thalassemia trait (BTT), in which oxidative stress (OxS) has an essential role. Catalase causes detoxification of H2O2 in cells, and it is an indispensable antioxidant enzyme. The study was designed to measure erythrocyte catalase activity (ECAT) in patients with IDA (10) or BTT (21), to relate it with thalassemia mutation type (β0 or β+) and to compare it with normal subjects (67). Ninety-eight individuals were analyzed since September 2013 to June 2014 in Tucumán, Argentina. Total blood count, hemoglobin electrophoresis at alkaline pH, HbA2, catalase, and iron status were performed. β-thalassemic mutations were determined by real-time PCR. Normal range for ECAT was 70,0–130,0 MU/L. ECAT was increased in 14% (3/21) of BTT subjects and decreased in 40% (4/10) of those with IDA. No significant difference (p = 0,245) was shown between normal and BTT groups, while between IDA and normal groups the difference was proved to be significant (p = 0,000). In β0 and β+ groups, no significant difference (p = 0,359) was observed. An altered ECAT was detected in IDA and BTT. These results will help to clarify how the catalase activity works in these anemia types.
Collapse
|
366
|
Hepcidin-induced hypoferremia is a critical host defense mechanism against the siderophilic bacterium Vibrio vulnificus. Cell Host Microbe 2015; 17:47-57. [PMID: 25590758 DOI: 10.1016/j.chom.2014.12.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/13/2014] [Accepted: 11/06/2014] [Indexed: 12/21/2022]
Abstract
Hereditary hemochromatosis, an iron overload disease caused by a deficiency in the iron-regulatory hormone hepcidin, is associated with lethal infections by siderophilic bacteria. To elucidate the mechanisms of this susceptibility, we infected wild-type and hepcidin-deficient mice with the siderophilic bacterium Vibrio vulnificus and found that hepcidin deficiency results in increased bacteremia and decreased survival of infected mice, which can be partially ameliorated by dietary iron depletion. Additionally, timely administration of hepcidin agonists to hepcidin-deficient mice induces hypoferremia that decreases bacterial loads and rescues these mice from death, regardless of initial iron levels. Studies of Vibrio vulnificus growth ex vivo show that high iron sera from hepcidin-deficient mice support extraordinarily rapid bacterial growth and that this is inhibited in hypoferremic sera. Our findings demonstrate that hepcidin-mediated hypoferremia is a host defense mechanism against siderophilic pathogens and suggest that hepcidin agonists may improve infection outcomes in patients with hereditary hemochromatosis or thalassemia.
Collapse
|
367
|
Michalke B, Aslanoglou L, Ochsenkühn-Petropoulou M, Bergström B, Berthele A, Vinceti M, Lucio M, Lidén G. An approach for manganese biomonitoring using a manganese carrier switch in serum from transferrin to citrate at slightly elevated manganese concentration. J Trace Elem Med Biol 2015; 32:145-54. [PMID: 26302922 DOI: 10.1016/j.jtemb.2015.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 12/13/2022]
Abstract
After high-dose-short-term exposure (usually from occupational exposure) and even more under low-dose long term exposure (mainly environmental) manganese (Mn) biomonitoring is still problematic since these exposure scenarios are not necessarily reflected by a significant increase of total Mn in blood or serum. Usually, Mn concentrations of exposed and unexposed persons overlap and individual differentiation is often not possible. In this paper Mn speciation on a large sample size (n=180) was used in order to be able to differentiate between highly Mn-exposed or low or unexposed individuals at low total Mn concentration in serum (Mn(S)). The whole sample set consisted of three subsets from Munich, Emilia Romagna region in Italy and from Sweden. It turned out that also at low total Mn(S) concentrations a change in major Mn carriers in serum takes place from Mn-transferrin (Mn-Tf(S)) towards Mn-citrate (Mn-Cit(S)) with high statistical significance (p<0.000002). This carrier switch from Mn-Tf(S) to Mn-Cit(S) was observed between Mn(S) concentrations of 1.5μg/L to ca. 1.7μg/L. Parallel to this carrier change, for sample donors from Munich where serum and cerebrospinal fluid were available, the concentration of Mn beyond neural barriers - analysed as Mn in cerebrospinal fluid (Mn(C)) - positively correlates to Mn-Cit(S) when Mn(S) concentration was above 1.7μg/L. The correlation between Mn-Cit(S) and Mn(C) reflects the facilitated Mn transport through neural barrier by means of Mn-citrate. Regional differences in switch points from Mn-Tf(S) to Mn-Cit(S) were observed for the three sample subsets. It is currently unknown whether these differences are due to differences in location, occupation, health status or other aspects. Based on our results, Mn-Cit(S) determination was considered as a potential means for estimating the Mn load in brain and CSF, i.e., it could be used as a biomarker for Mn beyond neural barrier. For a simpler Mn-Cit(S) determination than size exclusion chromatography inductively coupled plasma mass spectrometry (SEC-ICP-MS), ultrafiltration (UF) of serum samples was tested for suitability, the latter possibly being a preferred choice for routine occupational medicine laboratories. Our results revealed that UF could be an alternative if methodical prerequisites and limitations are carefully considered. These prerequisites were determined to be a thorough cleaning procedure at a minimum Mn(S) concentration >1.5μg/L, as at lower concentrations a wide scattering of the measured concentrations in comparison to the standardized SEC-ICP-MS results were observed.
Collapse
Affiliation(s)
- B Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich - German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany.
| | - L Aslanoglou
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich - German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; School of Chemical Engineering, Laboratory of Inorganic and Analytical Chemistry, National Technical University of Athens, Greece
| | - M Ochsenkühn-Petropoulou
- School of Chemical Engineering, Laboratory of Inorganic and Analytical Chemistry, National Technical University of Athens, Greece
| | - B Bergström
- Örebro University Hospital, Department of Occupational and Environmental Medicine, SE-70185 Örebro, Sweden
| | - A Berthele
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - M Vinceti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, University of Modena and Reggio Emilia, Modena, Italy
| | - M Lucio
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich - German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
| | - G Lidén
- Department of Analytical Chemistry and Environmental Science, Atmospheric Science Unit, Stockholm University, SE-106 90 Stockholm, Sweden
| |
Collapse
|
368
|
Sokolova EA, Shadrina AS, Sevost'ianova KS, Shevela AI, Soldatsky EY, Seliverstov EI, Demekhova MY, Shonov OA, Ilyukhin EA, Smetanina MA, Voronina EN, Zolotukhin IA, Filipenko ML. HFE p.C282Y gene variant is associated with varicose veins in Russian population. Clin Exp Med 2015; 16:463-70. [PMID: 26416403 DOI: 10.1007/s10238-015-0377-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/08/2015] [Indexed: 11/29/2022]
Abstract
Recently, the association of polymorphism rs1800562 (p.C282Y) in the hemochromatosis (HFE) gene with the increased risk of venous ulceration was shown. We hypothesized that HFE gene polymorphism might be involved not only in ulceration process, but also in susceptibility to primary varicose veins. We genotyped HFE p.C282Y (rs1800562) and p.H63D (rs1799945) variants in patients with primary varicose veins (n = 463) and in the control group (n = 754). In our study, p.282Y variant (rs1800562 A allele) was significantly associated with the risk of varicose veins (OR 1.79, 95 % CI = 1.11-2.89, P = 0.02). A borderline significant reverse association of p.63D variant (rs1799945 G allele) with venous leg ulcer development was revealed in Russians (OR 0.25, 95 % CI = 0.06-1.00, P = 0.05), but not in the meta-analysis (P = 0.56). We conclude that the HFE gene polymorphism can affect the risk of developing primary varicose veins.
Collapse
Affiliation(s)
- Ekaterina A Sokolova
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk, 630090, Russia.,Novosibirsk State University, 2 Pirogov Avenue, Novosibirsk, 630090, Russia
| | - Alexandra S Shadrina
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk, 630090, Russia.,Novosibirsk State University, 2 Pirogov Avenue, Novosibirsk, 630090, Russia
| | - Kseniya S Sevost'ianova
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk, 630090, Russia
| | - Andrey I Shevela
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk, 630090, Russia
| | - Evgenii Yu Soldatsky
- Pirogov Russian National Research Medical University, 1 Ostrovitianova Street, Moscow, 117997, Russia
| | - Evgenii I Seliverstov
- Pirogov Russian National Research Medical University, 1 Ostrovitianova Street, Moscow, 117997, Russia
| | - Marina Yu Demekhova
- Private Surgery Center «Medalp», 54 Leningradskaya Street, Saint Petersburg, 197758, Russia
| | - Oleg A Shonov
- Private Surgery Center «Medalp», 54 Leningradskaya Street, Saint Petersburg, 197758, Russia
| | - Evgenii A Ilyukhin
- Private Surgery Center «Medalp», 54 Leningradskaya Street, Saint Petersburg, 197758, Russia
| | - Mariya A Smetanina
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk, 630090, Russia
| | - Elena N Voronina
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk, 630090, Russia.,Novosibirsk State University, 2 Pirogov Avenue, Novosibirsk, 630090, Russia
| | - Igor A Zolotukhin
- Pirogov Russian National Research Medical University, 1 Ostrovitianova Street, Moscow, 117997, Russia
| | - Maxim L Filipenko
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk, 630090, Russia. .,Novosibirsk State University, 2 Pirogov Avenue, Novosibirsk, 630090, Russia.
| |
Collapse
|
369
|
de Swart L, Hendriks JCM, van der Vorm LN, Cabantchik ZI, Evans PJ, Hod EA, Brittenham GM, Furman Y, Wojczyk B, Janssen MCH, Porter JB, Mattijssen VEJM, Biemond BJ, MacKenzie MA, Origa R, Galanello R, Hider RC, Swinkels DW. Second international round robin for the quantification of serum non-transferrin-bound iron and labile plasma iron in patients with iron-overload disorders. Haematologica 2015; 101:38-45. [PMID: 26385212 DOI: 10.3324/haematol.2015.133983] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/18/2015] [Indexed: 01/19/2023] Open
Abstract
Non-transferrin-bound iron and its labile (redox active) plasma iron component are thought to be potentially toxic forms of iron originally identified in the serum of patients with iron overload. We compared ten worldwide leading assays (6 for non-transferrin-bound iron and 4 for labile plasma iron) as part of an international inter-laboratory study. Serum samples from 60 patients with four different iron-overload disorders in various treatment phases were coded and sent in duplicate for analysis to five different laboratories worldwide. Some laboratories provided multiple assays. Overall, highest assay levels were observed for patients with untreated hereditary hemochromatosis and β-thalassemia intermedia, patients with transfusion-dependent myelodysplastic syndromes and patients with transfusion-dependent and chelated β-thalassemia major. Absolute levels differed considerably between assays and were lower for labile plasma iron than for non-transferrin-bound iron. Four assays also reported negative values. Assays were reproducible with high between-sample and low within-sample variation. Assays correlated and correlations were highest within the group of non-transferrin-bound iron assays and within that of labile plasma iron assays. Increased transferrin saturation, but not ferritin, was a good indicator of the presence of forms of circulating non-transferrin-bound iron. The possibility of using non-transferrin-bound iron and labile plasma iron measures as clinical indicators of overt iron overload and/or of treatment efficacy would largely depend on the rigorous validation and standardization of assays.
Collapse
Affiliation(s)
- Louise de Swart
- Departments of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan C M Hendriks
- Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisa N van der Vorm
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Z Ioav Cabantchik
- Department of Biochemical Chemistry, Hebrew University of Jerusalem, Israel
| | | | - Eldad A Hod
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Gary M Brittenham
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | | | - Boguslaw Wojczyk
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Mirian C H Janssen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - John B Porter
- Department of Haematology, University College London, UK
| | | | - Bart J Biemond
- Department of Hematology, Academic Medical Center, Amsterdam, The Netherlands
| | - Marius A MacKenzie
- Departments of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Raffaella Origa
- Department of Biomedical Science and Biotechnology, Regional Microcythemia Hospital, University of Cagliari, Italy
| | - Renzo Galanello
- Department of Biomedical Science and Biotechnology, Regional Microcythemia Hospital, University of Cagliari, Italy
| | - Robert C Hider
- Institute of Pharmaceutical Science, King's College London, UK
| | - Dorine W Swinkels
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
370
|
Rivella S. β-thalassemias: paradigmatic diseases for scientific discoveries and development of innovative therapies. Haematologica 2015; 100:418-30. [PMID: 25828088 DOI: 10.3324/haematol.2014.114827] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
β-thalassemias are monogenic disorders characterized by defective synthesis of the β-globin chain, one of the major components of adult hemoglobin. A large number of mutations in the β-globin gene or its regulatory elements have been associated with β-thalassemias. Due to the complexity of the regulation of the β-globin gene and the role of red cells in many physiological processes, patients can manifest a large spectrum of phenotypes, and clinical requirements vary from patient to patient. It is important to consider the major differences in the light of potential novel therapeutics. This review summarizes the main discoveries and mechanisms associated with the synthesis of β-globin and abnormal erythropoiesis, as well as current and novel therapies.
Collapse
Affiliation(s)
- Stefano Rivella
- Department of Pediatrics Hematology-Oncology Department of Cell and Developmental Biology Weill Cornell Medical College New York, NY, USA
| |
Collapse
|
371
|
Litton E, Xiao J, Allen CT, Ho KM. Iron-restricted erythropoiesis and risk of red blood cell transfusion in the intensive care unit: a prospective observational study. Anaesth Intensive Care 2015; 43:612-6. [PMID: 26310412 DOI: 10.1177/0310057x1504300510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2025]
Abstract
Intravenous (IV) iron can decrease transfusion requirements in selected patients with low, normal and moderately elevated ferritin. Whether the syndrome of iron-restricted erythropoiesis (IRE), diagnosed by iron studies, identifies critically ill patients at risk for subsequent red blood cell (RBC) transfusion, and hence, provides a simple method to determine response to IV iron therapy, is uncertain. We aimed to describe the characteristics of patients with IRE on admission to intensive care and determine the optimal variables to identify patients at risk of RBC transfusion who may benefit from early administration of IV iron. The study included 201 consecutive ICU admissions from a single 23-bed combined medical/surgical ICU. The prevalence of IRE on admission to ICU, defined according to ferritin <300 µg/l and transferrin saturation <20%, was 26.2% (95% CI 19.9 to 32.4). The proportion of patients with IRE subsequently receiving RBC transfusion was significantly lower than the proportion of patients without IRE receiving RBC transfusion (absolute mean difference 18.9% [95% CI 4.7 to 33.1, P <0.001]). IRE was not independently associated with risk of transfusion on multivariate analysis, however, a prognostic model with three risk factors (RBC transfusion prior to ICU admission, Hb <100 g/l and ICU length of stay >3 days), had good discrimination and calibration for predicting transfusion (receiver operator curve area under the curve 0.87 [95% CI 0.79 to 0.94, P=0.88], Hosmer-Lemeshow 6.21; P=0.1). Excluding iron overload and using simple prognostic criteria to identify patients at high risk of RBC transfusion may be a preferable strategy for identifying critically ill patients who may benefit from IV iron.
Collapse
Affiliation(s)
- E Litton
- Clinical Senior Lecturer, School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia
| | - J Xiao
- Registrar, Department of Intensive Care Medicine, Royal Perth Hospital, Perth, Western Australia
| | - C T Allen
- Staff Specialist, Department of Intensive Care Medicine, Royal Perth Hospital, Perth, Western Australia
| | - K M Ho
- Staff Specialist and Clinical Associate Professor, School of Population Health, University of Western Australia, Perth, Western Australia
| |
Collapse
|
372
|
Aljwaid H, White DL, Collard KJ, Moody AJ, Pinkney JH. Non-transferrin-bound iron is associated with biomarkers of oxidative stress, inflammation and endothelial dysfunction in type 2 diabetes. J Diabetes Complications 2015; 29:943-9. [PMID: 26104728 DOI: 10.1016/j.jdiacomp.2015.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/14/2015] [Accepted: 05/18/2015] [Indexed: 12/19/2022]
Abstract
AIMS To investigate the association between circulating non-transferrin-bound iron [NTBI], and markers of oxidative stress, endothelial function and inflammation in subjects with type 2 diabetes and non-diabetic subjects with varying degrees of obesity. METHODS Plasma NTBI was measured by HPLC, together with total iron, iron-binding capacity, transferrin saturation and soluble transferrin receptor, together with total and reduced ascorbate, malondialdehyde [MDA], E-selectin and high-sensitivity c-reactive protein [hs-CRP] in groups of 28 subjects with type 2 diabetes, 28 non-obese controls and 17 obese non-diabetic subjects. RESULTS Levels of NTBI were higher than controls in the diabetes group, but the total serum iron levels were lower. MDA levels were higher than controls in both the diabetes and obese groups, and this was associated with higher levels of oxidised ascorbate. hs-CRP levels were higher in both the diabetes and obese groups, and E-selectin was significantly higher in the diabetes group. There were strong positive correlations between HbA1c levels and NTBI [P<0.01], HbA1c and E-selectin [P<0.001] and NTBI and E-selectin [P<0.02] in the diabetes group. CONCLUSION These results support the hypothesis that iron-mediated oxidative stress may be a mechanism linking poor glycaemic control with vascular dysfunction in type 2 diabetes.
Collapse
Affiliation(s)
- Husam Aljwaid
- School of Biological Sciences, Faculty of Science & Environment, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| | - Desley L White
- School of Health Professions, Faculty of Health & Human Sciences, University of Plymouth, Derriford Road, Plymouth, UK.
| | - Keith J Collard
- School of Health Professions, Faculty of Health & Human Sciences, University of Plymouth, Derriford Road, Plymouth, UK.
| | - A John Moody
- School of Biological Sciences, Faculty of Science & Environment, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| | - Jonathan H Pinkney
- Centre for Biomedical Research, Translational and Stratified Medicine, Peninsula Schools of Medicine & Dentistry, Plymouth, UK.
| |
Collapse
|
373
|
Agüera ML, Martin-Malo A, Alvarez-Lara MA, Garcia-Montemayor VE, Canton P, Soriano S, Aljama P. Efficiency of Original versus Generic Intravenous Iron Formulations in Patients on Haemodialysis. PLoS One 2015; 10:e0135967. [PMID: 26322790 PMCID: PMC4555833 DOI: 10.1371/journal.pone.0135967] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 07/28/2015] [Indexed: 01/04/2023] Open
Abstract
AIMS The appropriate use of intravenous (i.v.) iron is essential to minimise the requirements for erythropoiesis-stimulating agents (ESAs). The clinical efficacy of generic i.v. iron compared to the original formulation is controversial. We evaluated the changes that were induced after switching from a generic i.v. iron to an original formulation in a stable, prevalent haemodialysis (HD) population. METHODS A total of 342 patients were included, and the follow-up period was 56 weeks for each formulation. Anaemia parameters and doses of ESA and i.v. iron were prospectively recorded before and after the switch from generic to original i.v. iron. RESULTS To maintain the same haemoglobin (Hb) levels after switching from the generic to the original formulation, the requirements for i.v. iron doses were reduced by 34.3% (from 52.8±33.9 to 34.7±31.8 mg/week, p<0.001), and the ESA doses were also decreased by 12.5% (from 30.6±23.6 to 27±21 μg/week, p<0.001). The erythropoietin resistance index declined from 8.4±7.7 to 7.4±6.7 IU/kg/week/g/dl after the switch from the generic to the original drug (p = 0.001). After the switch, the transferrin saturation ratio (TSAT) and serum ferritin levels rose by 6.8% (p<0.001) and 12.4% (p = 0.001), respectively. The mortality rate was similar for both periods. CONCLUSIONS The iron and ESA requirements are lower with the original i.v. iron compared to the generic drug. In addition, the uses of the original formulation results in higher ferritin and TSAT levels despite the lower dose of i.v. iron. Further studies are necessary to analyse the adverse effects of higher i.v. iron dosages.
Collapse
Affiliation(s)
- Maria Luisa Agüera
- Servicio de Nefrología. Hospital Universitario Reina Sofía, Córdoba, Spain; Instituto Maimónides de investigación biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Córdoba, Spain; RedInRen, Instituto de salud Carlos III, Spain
- * E-mail:
| | - Alejandro Martin-Malo
- Servicio de Nefrología. Hospital Universitario Reina Sofía, Córdoba, Spain; Instituto Maimónides de investigación biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Córdoba, Spain; RedInRen, Instituto de salud Carlos III, Spain
| | - Maria Antonia Alvarez-Lara
- Servicio de Nefrología. Hospital Universitario Reina Sofía, Córdoba, Spain; Instituto Maimónides de investigación biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Córdoba, Spain; RedInRen, Instituto de salud Carlos III, Spain
| | | | | | - Sagrario Soriano
- Servicio de Nefrología. Hospital Universitario Reina Sofía, Córdoba, Spain; Instituto Maimónides de investigación biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Córdoba, Spain; RedInRen, Instituto de salud Carlos III, Spain
| | - Pedro Aljama
- Servicio de Nefrología. Hospital Universitario Reina Sofía, Córdoba, Spain; Instituto Maimónides de investigación biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Córdoba, Spain; RedInRen, Instituto de salud Carlos III, Spain
| |
Collapse
|
374
|
Aron AT, Ramos-Torres KM, Cotruvo JA, Chang CJ. Recognition- and reactivity-based fluorescent probes for studying transition metal signaling in living systems. Acc Chem Res 2015. [PMID: 26215055 PMCID: PMC4542203 DOI: 10.1021/acs.accounts.5b00221] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Metals are essential for life, playing critical
roles in all aspects
of the central dogma of biology (e.g., the transcription and translation
of nucleic acids and synthesis of proteins). Redox-inactive alkali,
alkaline earth, and transition metals such as sodium, potassium, calcium,
and zinc are widely recognized as dynamic signals, whereas redox-active
transition metals such as copper and iron are traditionally thought
of as sequestered by protein ligands, including as static enzyme cofactors,
in part because of their potential to trigger oxidative stress and
damage via Fenton chemistry. Metals in biology can be broadly categorized
into two pools: static and labile. In the former, proteins and other
macromolecules tightly bind metals; in the latter, metals are bound relatively
weakly to cellular ligands, including proteins and low molecular weight
ligands. Fluorescent probes can be useful tools for
studying the roles of transition metals in their labile forms. Probes
for imaging transition metal dynamics in living systems must meet
several stringent criteria. In addition to exhibiting desirable photophysical
properties and biocompatibility, they must be selective and show a
fluorescence turn-on response to the metal of interest. To meet this
challenge, we have pursued two general strategies for metal detection,
termed “recognition” and “reactivity”.
Our design of transition metal probes makes use of a recognition-based
approach for copper and nickel and a reactivity-based approach for
cobalt and iron. This Account summarizes progress in our laboratory
on both the development and application of fluorescent probes to identify
and study the signaling roles of transition metals in biology. In
conjunction with complementary methods for direct metal detection
and genetic and/or pharmacological manipulations, fluorescent probes
for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give three
recent examples from our laboratory and collaborations in which applications
of chemical probes reveal that labile copper contributes to various
physiologies. The first example shows that copper is an endogenous
regulator of neuronal activity, the second illustrates cellular prioritization
of mitochondrial copper homeostasis, and the third identifies the “cuprosome” as a new copper storage compartment in Chlamydomonas reinhardtii green algae. Indeed, recognition-
and reactivity-based fluorescent probes have helped to uncover new
biological roles for labile transition metals, and the further development
of fluorescent probes, including ones with varied Kd values and new reaction triggers and recognition receptors,
will continue to reveal exciting and new biological roles for labile
transition metals.
Collapse
Affiliation(s)
- Allegra T. Aron
- Department of Chemistry, ‡Department of Molecular and Cell
Biology, and the §Howard Hughes
Medical Institute, University of California, Berkeley, California 94720, United States
| | - Karla M. Ramos-Torres
- Department of Chemistry, ‡Department of Molecular and Cell
Biology, and the §Howard Hughes
Medical Institute, University of California, Berkeley, California 94720, United States
| | - Joseph A. Cotruvo
- Department of Chemistry, ‡Department of Molecular and Cell
Biology, and the §Howard Hughes
Medical Institute, University of California, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, ‡Department of Molecular and Cell
Biology, and the §Howard Hughes
Medical Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
375
|
|
376
|
Jenkitkasemwong S, Wang CY, Coffey R, Zhang W, Chan A, Biel T, Kim JS, Hojyo S, Fukada T, Knutson MD. SLC39A14 Is Required for the Development of Hepatocellular Iron Overload in Murine Models of Hereditary Hemochromatosis. Cell Metab 2015; 22:138-50. [PMID: 26028554 PMCID: PMC4497937 DOI: 10.1016/j.cmet.2015.05.002] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 03/04/2015] [Accepted: 04/24/2015] [Indexed: 01/07/2023]
Abstract
Nearly all forms of hereditary hemochromatosis are characterized by pathological iron accumulation in the liver, pancreas, and heart. These tissues preferentially load iron because they take up non-transferrin-bound iron (NTBI), which appears in the plasma during iron overload. Yet, how tissues take up NTBI is largely unknown. We report that ablation of Slc39a14, the gene coding for solute carrier SLC39A14 (also called ZIP14), in mice markedly reduced the uptake of plasma NTBI by the liver and pancreas. To test the role of SLC39A14 in tissue iron loading, we crossed Slc39a14(-/-) mice with Hfe(-/-) and Hfe2(-/-) mice, animal models of type 1 and type 2 (juvenile) hemochromatosis, respectively. Slc39a14 deficiency in hemochromatotic mice greatly diminished iron loading of the liver and prevented iron deposition in hepatocytes and pancreatic acinar cells. The data suggest that inhibition of SLC39A14 may mitigate hepatic and pancreatic iron loading and associated pathologies in iron overload disorders.
Collapse
Affiliation(s)
- Supak Jenkitkasemwong
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Chia-Yu Wang
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Richard Coffey
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Wei Zhang
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Alan Chan
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Thomas Biel
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Jae-Sung Kim
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Shintaro Hojyo
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Deutsches Rheuma-Forschungszentrum Berlin, Osteoimmunology, Charitéplatz, 10117 Berlin, Germany
| | - Toshiyuki Fukada
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa 142-8666, Japan; Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8055, Japan
| | - Mitchell D Knutson
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
377
|
Nakanishi T, Hasuike Y, Nanami M, Yahiro M, Kuragano T. Novel iron-containing phosphate binders and anemia treatment in CKD: oral iron intake revisited. Nephrol Dial Transplant 2015; 31:1588-94. [PMID: 26142396 DOI: 10.1093/ndt/gfv268] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/05/2015] [Indexed: 01/01/2023] Open
Abstract
Recent reports have shown that novel phosphate binders containing iron are not only efficacious for the treatment of hyperphosphatemia but also may reduce the need for erythropoiesis-stimulating agents and intravenous (IV) iron for anemia management in patients on maintenance hemodialysis (MHD). Possible healthcare cost savings, which have not been demonstrated in a long-term study, may be an additional advantage of using such multi-pronged treatment strategies for the control of both hyperphosphatemia and iron needs. It is currently assumed that oral iron supplementation is less efficient than the IV route in patients with chronic kidney disease (CKD). The unexpected efficacy of novel iron-containing phosphate binders, such as ferric citrate, in repleting insufficient iron stores and improving the anemia of CKD could change this view. Previous assumptions of self-controlled iron uptake by 'mucosal block' or hepcidin, or else by impaired intestinal iron absorption due to CKD-associated inflammation cannot be reconciled with recent observations of the effects of ferric citrate administration. Citrate in the intestinal lumen may partly contribute to the acceleration of iron absorption. Animal experiments and clinical studies have also shown that oral iron overload can cause excessive iron accumulation despite high hepcidin levels, which are not able to block iron absorption completely. However, like with IV iron agents, no long-term safety data exist with respect to the effects of iron-containing phosphate binders on 'hard' patient outcomes. Future randomized prospective studies in patients with CKD are necessary to establish the safety of oral iron-containing phosphate binders for the control of both hyperphosphatemia and renal anemia.
Collapse
Affiliation(s)
- Takeshi Nakanishi
- Department of Internal Medicine, Division of Kidney and Dialysis, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yukiko Hasuike
- Department of Internal Medicine, Division of Kidney and Dialysis, Hyogo College of Medicine, Nishinomiya, Japan
| | - Masayoshi Nanami
- Department of Internal Medicine, Division of Kidney and Dialysis, Hyogo College of Medicine, Nishinomiya, Japan
| | - Mana Yahiro
- Department of Internal Medicine, Division of Kidney and Dialysis, Hyogo College of Medicine, Nishinomiya, Japan
| | - Takahiro Kuragano
- Department of Internal Medicine, Division of Kidney and Dialysis, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
378
|
Du J, Wagner BA, Buettner GR, Cullen JJ. Role of labile iron in the toxicity of pharmacological ascorbate. Free Radic Biol Med 2015; 84:289-295. [PMID: 25857216 PMCID: PMC4739508 DOI: 10.1016/j.freeradbiomed.2015.03.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 11/17/2022]
Abstract
Pharmacological ascorbate has been shown to induce toxicity in a wide range of cancer cell lines. Pharmacological ascorbate in animal models has shown promise for use in cancer treatment. At pharmacological concentrations the oxidation of ascorbate produces a high flux of H2O2 via the formation of ascorbate radical (Asc(•-)). The rate of oxidation of ascorbate is principally a function of the level of catalytically active metals. Iron in cell culture media contributes significantly to the rate of H2O2 generation. We hypothesized that increasing intracellular iron would enhance ascorbate-induced cytotoxicity and that iron chelators could modulate the catalytic efficiency with respect to ascorbate oxidation. Treatment of cells with the iron-chelators deferoxamine (DFO) or dipyridyl (DPD) in the presence of 2mM ascorbate decreased the flux of H2O2 generated by pharmacological ascorbate and reversed ascorbate-induced toxicity. Conversely, increasing the level of intracellular iron by preincubating cells with Fe-hydroxyquinoline (HQ) increased ascorbate toxicity and decreased clonogenic survival. These findings indicate that redox metal metals, e.g., Fe(3+)/Fe(2+), have an important role in ascorbate-induced cytotoxicity. Approaches that increase catalytic iron could potentially enhance the cytotoxicity of pharmacological ascorbate in vivo.
Collapse
Affiliation(s)
- Juan Du
- Department of Surgery, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Brett A Wagner
- Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Garry R Buettner
- Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa College of Medicine, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, Iowa City, IA, USA
| | - Joseph J Cullen
- Department of Surgery, University of Iowa College of Medicine, Iowa City, IA 52242, USA; Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa College of Medicine, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, Iowa City, IA, USA; Veterans Affairs Medical Center, Iowa City, IA, USA.
| |
Collapse
|
379
|
Bergeron RJ, Bharti N, McManis JS, Wiegand J. Metabolically programmed iron chelators. Bioorg Med Chem 2015; 23:5954-71. [PMID: 26231739 DOI: 10.1016/j.bmc.2015.06.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/15/2015] [Accepted: 06/23/2015] [Indexed: 01/19/2023]
Abstract
Extensive structure activity relationship (SAR) studies focused on the desferrithiocin [DFT, (S)-4,5-dihydro-2-(3-hydroxy-2-pyridinyl)-4-methyl-4-thiazolecarboxylic acid] pharmacophore have led to three different DFT analogs being evaluated clinically for the treatment of iron overload diseases, for example, thalassemia. The SAR work revealed that the lipophilicity of a ligand, as determined by its partition between octanol and water, logP(app), could have a profound effect on the drug's iron clearing efficiency (ICE), organ distribution, and toxicity profile. While within a given structural family the more lipophilic a chelator the better the ICE, unfortunately, the more lipophilic ligands are often more toxic. Thus, a balance between lipophilicity, ICE, and toxicity must be achieved. In the current study, we introduce the concept of 'metabolically programmed' iron chelators, that is, highly lipophilic, orally absorbable, effective deferration agents which, once absorbed, are quickly converted to their nontoxic, hydrophilic counterparts.
Collapse
Affiliation(s)
- Raymond J Bergeron
- JHMHC, Department of Medicinal Chemistry, University of Florida, Box 100485, Gainesville, FL 32610-0485, United States.
| | - Neelam Bharti
- JHMHC, Department of Medicinal Chemistry, University of Florida, Box 100485, Gainesville, FL 32610-0485, United States
| | - James S McManis
- JHMHC, Department of Medicinal Chemistry, University of Florida, Box 100485, Gainesville, FL 32610-0485, United States
| | - Jan Wiegand
- JHMHC, Department of Medicinal Chemistry, University of Florida, Box 100485, Gainesville, FL 32610-0485, United States
| |
Collapse
|
380
|
Nolte F, Angelucci E, Breccia M, Gattermann N, Santini V, Vey N, Hofmann WK. Updated recommendations on the management of gastrointestinal disturbances during iron chelation therapy with Deferasirox in transfusion dependent patients with myelodysplastic syndrome - Emphasis on optimized dosing schedules and new formulations. Leuk Res 2015; 39:1028-33. [PMID: 26293555 DOI: 10.1016/j.leukres.2015.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/04/2015] [Accepted: 06/16/2015] [Indexed: 11/29/2022]
Abstract
Myelodysplastic syndromes (MDS) are oligoclonal hematopoietic disorders characterized by peripheral cytopenias with anemias being the most prevalent feature. The majority of patients will depend on regular transfusions of packed red blood cells (PRBC) during the course of the disease. Particularly patients with MDS and low risk for transformation into acute myeloid leukemia and low risk of early death will receive PRBC transfusions on a regular basis, which puts them at high risk for transfusional iron overload. Transfusion dependence has been associated with negative impact on organ function and reduced life expectancy. Recently, several retrospective but also some prospective studies have indicated, that transfusion dependent patients with MDS might benefit from consequent iron chelation with regard to morbidity and mortality. However, low treatment adherence due to adverse events mainly gastrointestinal in nature is an important obstacle in achieving sufficient iron chelation in MDS patients. Here, we will summarize and discuss the existing data on Deferasirox in low risk MDS published so far and provide recommendations for optimal management of gastrointestinal adverse events during iron chelation aiming at improving treatment compliance and, hence, sufficiently removing excess iron from the patients.
Collapse
Affiliation(s)
- Florian Nolte
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Germany.
| | - Emanuele Angelucci
- Hematology and Bone Marrow Transplant Unit, and Medical Oncology Department, Ospedale Oncologico "Armando Businco", Cagliari, Italy
| | - Massimo Breccia
- Department of Cellular Biotechnologies and Hematology, "La Sapienza" University, Rome, Italy
| | - Norbert Gattermann
- Comprehensive Cancer Center and Department of Hematology, Oncology, and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany
| | - Valeria Santini
- Division of Hematology, University of Florence, Florence, Italy
| | - Norbert Vey
- Department of Hematology, Institute Paoli Calmettes, Marseille, France
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Germany
| |
Collapse
|
381
|
Wijarnpreecha K, Siri-Angkul N, Shinlapawittayatorn K, Charoenkwan P, Silvilairat S, Siwasomboon C, Visarutratna P, Srichairatanakool S, Tantiworawit A, Phrommintikul A, Chattipakorn SC, Chattipakorn N. Heart Rate Variability as an Alternative Indicator for Identifying Cardiac Iron Status in Non-Transfusion Dependent Thalassemia Patients. PLoS One 2015; 10:e0130837. [PMID: 26083259 PMCID: PMC4471165 DOI: 10.1371/journal.pone.0130837] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/26/2015] [Indexed: 12/27/2022] Open
Abstract
Background Iron-overload cardiomyopathy is a major cause of death in thalassemia patients due to the lack of an early detection strategy. Although cardiac magnetic resonance (CMR) T2* is used for early detection of cardiac iron accumulation, its availability is limited. Heart rate variability (HRV) has been used to evaluate cardiac autonomic function and found to be depressed in thalassemia. However, its direct correlation with cardiac iron accumulation has never been investigated. We investigated whether HRV can be used as an alternative indicator for early identification of cardiac iron deposition in thalassemia patients. Methods Ninety-nine non-transfusion dependent thalassemia patients (23.00 (17.00, 32.75) years, 35 male) were enrolled. The correlation between HRV recorded using 24-hour Holter monitoring and non-transferrin bound iron (NTBI), hemoglobin (Hb), serum ferritin, LV ejection fraction (LVEF), and CMR-T2* were determined. Results The median NTBI value was 3.15 (1.11, 6.59) μM. Both time and frequency domains of HRV showed a significant correlation with the NTBI level, supporting HRV as a marker of iron overload. Moreover, the LF/HF ratio showed a significant correlation with CMR-T2* with the receiver operating characteristic (ROC) curve of 0.684±0.063, suggesting that it could represent the cardiac iron deposit in thalassemia patients. HRV was also significantly correlated with serum ferritin and Hb. Conclusions This novel finding regarding the correlation between HRV and CMR-T2* indicates that HRV could be a potential marker in identifying early cardiac iron deposition prior to the development of LV dysfunction, and may be used as an alternative to CMR-T2* for screening cardiac iron status in thalassemia patients.
Collapse
Affiliation(s)
- Karn Wijarnpreecha
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Natthaphat Siri-Angkul
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Krekwit Shinlapawittayatorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Pimlak Charoenkwan
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
- Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Suchaya Silvilairat
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
- Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chate Siwasomboon
- Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pannee Visarutratna
- Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Adisak Tantiworawit
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Arintaya Phrommintikul
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
- * E-mail:
| |
Collapse
|
382
|
Codazzi F, Pelizzoni I, Zacchetti D, Grohovaz F. Iron entry in neurons and astrocytes: a link with synaptic activity. Front Mol Neurosci 2015; 8:18. [PMID: 26089776 PMCID: PMC4452822 DOI: 10.3389/fnmol.2015.00018] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 05/19/2015] [Indexed: 12/14/2022] Open
Abstract
Iron plays a fundamental role in the development of the central nervous system (CNS) as well as in several neuronal functions including synaptic plasticity. Accordingly, neuronal iron supply is tightly controlled: it depends not only on transferrin-bound iron but also on non-transferrin-bound iron (NTBI), which represents a relevant quote of the iron physiologically present in the cerebrospinal fluid (CSF). Different calcium permeable channels as well as the divalent metal transporter 1 (DMT1) have been proposed to sustain NTBI entry in neurons and astrocytes even though it remains an open issue. In both cases, it emerges that the control of iron entry is tightly linked to synaptic activity. The iron-induced oxidative tone can, in physiological conditions, positively influence the calcium levels and thus the synaptic plasticity. On the other hand, an excess of iron, with the ensuing uncontrolled production of reactive oxygen species (ROS), is detrimental for neuronal survival. A protective mechanism can be played by astrocytes that, more resistant to oxidative stress, can uptake iron, thereby buffering its concentration in the synaptic environment. This competence is potentiated when astrocytes undergo activation during neuroinflammation and neurodegenerative processes. In this minireview we focus on the mechanisms responsible for NTBI entry in neurons and astrocytes and on how they can be modulated during synaptic activity. Finally, we speculate on the relevance they may have in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Franca Codazzi
- Vita-Salute San Raffaele University Milan, Italy ; Division of Neuroscience, San Raffaele Scientific Institute and University Milan, Italy
| | - Ilaria Pelizzoni
- Division of Neuroscience, San Raffaele Scientific Institute and University Milan, Italy
| | - Daniele Zacchetti
- Division of Neuroscience, San Raffaele Scientific Institute and University Milan, Italy
| | - Fabio Grohovaz
- Vita-Salute San Raffaele University Milan, Italy ; Division of Neuroscience, San Raffaele Scientific Institute and University Milan, Italy
| |
Collapse
|
383
|
Abstract
Estimating radionuclide intakes from bioassays following chelation treatment presents a challenge to the dosimetrist due to the observed excretion enhancement of the particular radionuclide of concern where no standard biokinetic model exists. This document provides a Pu-DTPA biokinetic model that may be used for making such determination for plutonium intakes. The Pu-DTPA biokinetic model is intended to supplement the standard recommended biokinetic models. The model was used to evaluate several chelation strategies that resulted in providing recommendations for effective treatment. These recommendations supported early treatment for soluble particle inhalations and an initial 3-day series of DTPA treatments for wounds. Several late chelation strategies were also compared where reduced treatment frequencies proved to be as effective as multiple treatments. The Pu-DTPA biokinetic model can be used to assist in estimating initial intakes of transuranic radionuclides and for studying the effects of different treatment strategies.
Collapse
Affiliation(s)
- Kevin Konzen
- *CH2M-WG Idaho, LLC, Radiological Control, 1580 Sawtelle Street, Idaho Falls, ID 83402; †Department of Nuclear Engineering and Health Physics, Idaho State University, 921 South 8th Avenue, Stop 8060, Pocatello, ID 83209-8060
| | | |
Collapse
|
384
|
Bovine serum albumin-stabilized gold nanoclusters as a fluorescent probe for determination of ferrous ion in cerebrospinal fluids via the Fenton reaction. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1525-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
385
|
Abstract
The practice of intravenous iron supplementation has grown as nephrologists have gradually moved away from the liberal use of erythropoiesis-stimulating agents as the main treatment for the anemia of CKD. This approach, together with the introduction of large-dose iron preparations, raises the future specter of inadvertent iatrogenic iron toxicity. Concerns have been raised in original studies and reviews about cardiac complications and severe infections that result from long-term intravenous iron supplementation. Regarding the iron preparations specifically, even though all the currently available preparations appear to be relatively safe in the short term, little is known regarding their long-term safety. In this review we summarize current knowledge of iron metabolism with an emphasis on the sources and potentially harmful effects of labile iron, highlight the approaches to identifying labile iron in pharmaceutical preparations and body fluids and its potential toxic role as a pathogenic factor in the complications of CKD, and propose methods for its early detection in at-risk patients.
Collapse
Affiliation(s)
- Itzchak Slotki
- Division of Adult Nephrology, Shaare Zedek Medical Center and Hadassah Hebrew University of Jerusalem, Jerusalem, Israel; and
| | - Zvi Ioav Cabantchik
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
386
|
Treatment of β-Thalassemia/Hemoglobin E with Antioxidant Cocktails Results in Decreased Oxidative Stress, Increased Hemoglobin Concentration, and Improvement of the Hypercoagulable State. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:537954. [PMID: 26078808 PMCID: PMC4452506 DOI: 10.1155/2015/537954] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/22/2015] [Accepted: 04/30/2015] [Indexed: 01/29/2023]
Abstract
Studies on the antioxidant treatment for thalassemia have reported variable outcomes. However, treatment of thalassemia with a combination of hydrophobic and hydrophilic antioxidants and an iron chelator has not been studied. This study investigated the effects of antioxidant cocktails for the treatment of β-thalassemia/hemoglobin E (HbE), which is the most common form of β-thalassemia in Southeast Asia. Sixty patients were divided into two groups receiving N-acetylcysteine, deferiprone, and either curcuminoids (CUR) or vitamin E (Vit-E), and their hematological parameters, iron load, oxidative stress, and blood coagulation potential were evaluated. Patients were classified as responders if they showed the improvements of the markers of iron load and oxidative stress, otherwise as nonresponders. During treatment, the responders in both groups had significantly decreased iron load, oxidative stress, and coagulation potential and significantly increased antioxidant capacity and hemoglobin concentration. The significantly maximum increase (P < 0.01) in hemoglobin concentration was 11% at month 4 in CUR group responders and 10% at month 10 in Vit-E group responders. In conclusion, the two antioxidant cocktails can improve anemia, iron overload, oxidative stress, and hypercoagulable state in β-thalassemia/HbE.
Collapse
|
387
|
Jung IR, Choi SE, Jung JG, Lee SA, Han SJ, Kim HJ, Kim DJ, Lee KW, Kang Y. Involvement of iron depletion in palmitate-induced lipotoxicity of beta cells. Mol Cell Endocrinol 2015; 407:74-84. [PMID: 25779532 DOI: 10.1016/j.mce.2015.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/28/2015] [Accepted: 03/10/2015] [Indexed: 12/28/2022]
Abstract
High levels of plasma free fatty acid are thought to contribute to the loss of pancreatic beta-cells in type 2 diabetes. In particular, saturated fatty acid such as palmitate or stearate can induce apoptosis in cultured beta cells (lipotoxicity). Endoplasmic reticulum stress is a critical mediator of free fatty acid-induced lipotoxicity. Recently, disorders in mitochondrial respiratory metabolism have been linked to lipotoxicity. Since iron is a critical component of respiratory metabolism, this study is initiated to determine whether abnormal iron metabolism is involved in palmitate-induced beta cell death. Immunoblotting analysis showed that treatment of INS-1 beta cells with palmitate reduced the level of transferrin receptor 1 (TfR1), but increased the level of heavy chain ferritin (FTH). In addition, palmitate reduced intracellular labile iron pool. Whereas iron depletion through treatment with iron-chelators deferoxamine or deferasirox augmented palmitate-induced cell death, iron supplementation with ferric chloride, ferrous sulfate, or holo-transferrin significantly protected cells against palmitate-induced death. Furthermore, overexpression of TfR1 reduced palmitate-induced cell death, whereas knockdown of TfR1 augmented cell death. In particular, treatment with deferoxamine increased the level of endoplasmic reticulum (ER) stress markers phospho-PERK, phospho-eIF2α, CHOP and phospho-c-Jun N-terminal kinase. Treatment with chemical chaperone significantly protected cells against deferoxamine-induced apoptosis. Iron supplementation also protected cells against palmitate-induced primary islet death. These data suggest that iron depletion plays an important role in palmitate-induced beta cell death through inducing ER stress. Therefore, attempts to block iron depletion might be able to prevent beta cell loss in type 2 diabetes.
Collapse
Affiliation(s)
- Ik-Rak Jung
- Department of Physiology, Ajou University School of Medicine, Suwon, Kyunggi-do 442-749, Republic of Korea; Department of Biomedical Science, The Graduate School, Ajou University School of Medicine, Suwon, Kyunggi-do 442-749, Republic of Korea
| | - Sung-E Choi
- Department of Physiology, Ajou University School of Medicine, Suwon, Kyunggi-do 442-749, Republic of Korea
| | - Jong-Gab Jung
- Department of Biomedical Science, The Graduate School, Ajou University School of Medicine, Suwon, Kyunggi-do 442-749, Republic of Korea; Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Kyunggi-do 442-749, Republic of Korea
| | - Sang-A Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Kyunggi-do 442-749, Republic of Korea
| | - Seung Jin Han
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Kyunggi-do 442-749, Republic of Korea
| | - Hae Jin Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Kyunggi-do 442-749, Republic of Korea
| | - Dae Jung Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Kyunggi-do 442-749, Republic of Korea
| | - Kwan-Woo Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Kyunggi-do 442-749, Republic of Korea
| | - Yup Kang
- Department of Physiology, Ajou University School of Medicine, Suwon, Kyunggi-do 442-749, Republic of Korea; Department of Biomedical Science, The Graduate School, Ajou University School of Medicine, Suwon, Kyunggi-do 442-749, Republic of Korea.
| |
Collapse
|
388
|
Toblli JE, Cao G, Angerosa M. Ferrous sulfate, but not iron polymaltose complex, aggravates local and systemic inflammation and oxidative stress in dextran sodium sulfate-induced colitis in rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2585-97. [PMID: 26005335 PMCID: PMC4428360 DOI: 10.2147/dddt.s81863] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background and aims Iron deficiency is common in inflammatory bowel disease, yet oral iron therapy may worsen the disease symptoms and increase systemic and local oxidative stress. The aim of this study was to compare the effects of oral ferrous sulfate and iron polymaltose complex on inflammatory and oxidative stress markers in colitic rats. Methods Animals were divided into four groups with ten animals each. Rats of three groups received dextran sodium sulfate to induce colitis and animals of two of these groups received 5 mg iron/kg of body weight a day, as ferrous sulfate or iron polymaltose complex, for 7 days. Gross colon anatomy, histology of colon and liver, stainings of L-ferritin, Prussian blue, hepcidin, tumor necrosis factor-α, and interleukin-6, as well serum levels of liver enzymes, inflammatory markers, and iron markers, were assessed. Results Body weight, gross anatomy, crypt injury and inflammation scores, inflammatory parameters in liver and colon, as well as serum and liver hepcidin levels were not significantly different between colitic animals without iron treatment and colitic animals treated with iron polymaltose complex. In contrast, ferrous sulfate treatment caused significant worsening of these parameters. As opposed to ferrous sulfate, iron polymaltose complex caused less or no additional oxidative stress in the colon and liver compared to colitic animals without iron treatment. Conclusion Iron polymaltose complex had negligible effects on colonic tissue erosion, local or systemic oxidative stress, and local or systemic inflammation, even at high therapeutic doses, and may thus represent a valuable oral treatment of iron deficiency in inflammatory bowel disease.
Collapse
Affiliation(s)
- Jorge E Toblli
- Laboratory of Experimental Medicine, Hospital Alemán, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Gabriel Cao
- Laboratory of Experimental Medicine, Hospital Alemán, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Margarita Angerosa
- Laboratory of Experimental Medicine, Hospital Alemán, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
389
|
Akı ŞZ, Suyanı E, Cengiz M, Özenirler S, Elbeğ Ş, Paşaoğlu H, Sucak GT. Association between Plasma Endothelin-1, Transforming Growth Factor-β, Fibroblast Growth Factor, and Nitric Oxide Levels and Liver Injury in Hematopoietic Stem Cell Transplantation Recipients with Persistent Iron Overload after Transplantation. Biol Blood Marrow Transplant 2015; 21:948-953. [PMID: 25681034 DOI: 10.1016/j.bbmt.2015.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 02/03/2015] [Indexed: 01/19/2023]
Abstract
Graft-versus-host disease, iron overload, and infections are the major causes of liver dysfunction in allogeneic hematopoietic stem cell transplantation (AHSCT) recipients. We investigated the relationship between serum iron parameters and the levels of transforming growth factor-β (TGF-β), fibroblast growth factor (FGF), endothelin-1 (ET-1), and nitric oxide (NO) as predictors of chronic liver injury in 54 AHSCT recipients who survived at least a year after transplantation. Serum samples from patients were obtained for the evaluation of ET-1, TGF-β, FGF, NO, and nontransferrin bound iron at the first year follow-up visit using commercially available ELISA kits. Patients were categorized depending on serum ferritin and transferrin saturation levels. The parameters were compared between the groups, and survival analysis was also performed. Most of the AHSCT recipients (81.5%) were in complete remission during the study. After a median follow-up time of 73 months (range, 13 to 109 months), 72.2% of the patients were alive. Mean serum levels of ET-1, NO, TGF-β, and FGF were 81.54 ± 21.62 μmol/mL, 31.82 ± 26.42 μmol/mL, 2.56 ± 0.77 ng/mL, and 50.31 ± 32.69 pg/mL, respectively. Nineteen patients (35.2% of the cohort) had serum ferritin levels higher than 1000 ng/mL. Mean serum levels of ET-1, NO, TGF-β, and FGF were similar in patients with serum ferritin levels below or above 1000 ng/mL (P > .05). Serum ferritin levels were positively correlated with serum alanine aminotransferase (r = .284, P = .042) and γ-glutamyl transferase (r = .271, P = .05) levels and were negatively correlated with serum albumin levels (r = .295, P = .034). There was a significant positive correlation between serum transferrin saturation and alanine aminotransferase levels (r = .305, P = .03). Serum ET-1 level was positively correlated with alkaline phosphatase levels (r = .304, P = .026). In univariate Cox regression analysis serum levels of iron parameters, ET-1, NO, TGF-β, and FGF did not have an impact on overall survival (P > .05). The probability of progression-free survival was also similar in patients with ferritin levels above or below 1000 ng/mL (P = .275). The probability of survival was similar in patients with transferrin saturation ≥70% and <70% (P > .05). Serum iron parameters showed a positive correlation with liver injury. However, there was no correlation between fibrogenic cytokines and liver transaminases. Our results suggest that iron overload at least with the current levels of ferritin might have a relatively benign course. Prospective randomized trials will guide the actual role of iron chelation in the post-transplantation setting.
Collapse
Affiliation(s)
- Şahika Zeynep Akı
- Faculty of Medicine, Department of Haematology, Gazi University, Ankara, Turkey
| | - Elif Suyanı
- Faculty of Medicine, Department of Haematology, Gazi University, Ankara, Turkey
| | - Mustafa Cengiz
- Department of Gastroenterology, Dr. A.Y. Ankara Oncology Training and Research Hospital, Ankara, Turkey.
| | - Seren Özenirler
- Department of Gastroenterology, Gazi University, Ankara, Turkey
| | - Şehri Elbeğ
- Department of Biochemistry, Gazi University, Ankara, Turkey
| | | | - Gülsan Türköz Sucak
- Faculty of Medicine, Department of Haematology, Gazi University, Ankara, Turkey
| |
Collapse
|
390
|
Raha-Chowdhury R, Raha AA, Forostyak S, Zhao JW, Stott SRW, Bomford A. Expression and cellular localization of hepcidin mRNA and protein in normal rat brain. BMC Neurosci 2015; 16:24. [PMID: 25896789 PMCID: PMC4409766 DOI: 10.1186/s12868-015-0161-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/10/2015] [Indexed: 02/08/2023] Open
Abstract
Background Hepcidin is a peptide hormone belonging to the defensin family of cationic antimicrobial molecules that has an essential role in systemic iron homeostasis. The peptide is synthesised by hepatocytes and transported in the circulation to target tissues where it regulates the iron export function of the ferrous iron permease, ferroportin. In the brain hepcidin protein has been identified using immuno-histochemistry and mRNA by real-time PCR but not by in situ hybridisation raising the question of whether there is measurable transcription of the hepcidin gene in the central nervous system. Alternatively hepcidin could be transported as a hormone to the brain via the circulation. Results By RT-PCR hepcidin mRNA was present at low level throughout normal rat brain while in situ hybridisation to detect low-abundant mRNA revealed that transcripts were restricted to endothelium of blood vessels and choroid plexus. In contrast, hepcidin protein analysed by immuno-histochemistry was highly expressed in blood vessels, in endothelium and in pericytes. Hepcidin was also present in glial cells and in the olfactory bulb, sub-ventricular zone and dentate gyrus, areas where neurogenesis and synaptic plasticity are maintained throughout adult life. The hepcidin species identified by Western blotting in sub-ventricular zone, cortex and hippocampus migrated as a ~2.8 kDa band, identical in size to hepcidin present in normal rat serum suggesting that hepcidin in brain was the full-length biologically active 25 amino acid peptide. Hepcidin co-localised with ferroportin in ependymal cells of the sub-ventricular zone and in the corpus callosum consistent with a regulatory role in iron metabolism at these sites. Conclusions Hepcidin protein was widely expressed in brain parenchyma while levels of hepcidin gene transcription appeared to be below the limits of detection of the in situ hybridisation probes. This disparity suggests that not all hepcidin in the brain is transcribed in situ and may originate in part outside the brain. The properties of hepcidin as a cationic peptide hormone are reflected in the finding of hepcidin in the walls of blood vessels and in pericytes and glia, cells that may be involved in transporting the peptide into brain interstitium.
Collapse
Affiliation(s)
- Ruma Raha-Chowdhury
- John Van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK.
| | - Animesh Alexander Raha
- John Van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK. .,Institute of Liver Studies, King's College Hospital, London, UK.
| | - Serhiy Forostyak
- Department of Neuroscience Institute of Experimental Medicine Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | - Jing-Wei Zhao
- John Van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK.
| | - Simon Russell William Stott
- John Van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK.
| | - Adrian Bomford
- Institute of Liver Studies, King's College Hospital, London, UK.
| |
Collapse
|
391
|
Effect of C282Y genotype on self-reported musculoskeletal complications in hereditary hemochromatosis. PLoS One 2015; 10:e0122817. [PMID: 25822977 PMCID: PMC4378978 DOI: 10.1371/journal.pone.0122817] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/24/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Arthropathy that mimics osteoarthritis (OA) and osteoporosis (OP) is considered a complication of hereditary hemochromatosis (HH). We have limited data comparing OA and OP prevalence among HH patients with different hemochromatosis type 1 (HFE) genotypes. We investigated the prevalence of OA and OP in patients with HH by C282Y homozygosity and compound heterozygosity (C282Y/H63D) genotype. METHODS A total of 306 patients with HH completed a questionnaire. Clinical and demographic characteristics and presence of OA, OP and related complications were compared by genotype, adjusting for age, sex, body mass index (BMI), current smoking and menopausal status. RESULTS In total, 266 of the 306 patients (87%) were homozygous for C282Y, and 40 (13%) were compound heterozygous. The 2 groups did not differ by median age [60 (interquartile range [IQR] 53 to 68) vs. 61 (55 to 67) years, P=0.8], sex (female: 48.8% vs. 37.5%, P=0.18) or current smoking habits (12.4% vs. 10%, P=0.3). As compared with compound heterozygous patients, C282Y homozygous patients had higher median serum ferritin concentration at diagnosis [1090 (IQR 610 to 2210) vs. 603 (362 to 950) µg/L, P<0.001], higher median transferrin saturation [80% (IQR 66 to 91%) vs. 63% (55 to 72%), P<0.001]) and lower median BMI [24.8 (22.1 to 26.9) vs. 26.2 (23.5 to 30.3) kg/m2, P<0.003]. The overall prevalence of self-reported OA was significantly higher with C282Y homozygosity than compound heterozygosity (53.4% vs. 32.5%; adjusted odds ratio [aOR] 2.4 [95% confidence interval 1.2-5.0]), as was self-reported OP (25.6% vs. 7.5%; aOR 3.5 [1.1-12.1]). CONCLUSION Patients with C282Y homozygosity may be at increased risk of musculoskeletal complications of HH.
Collapse
|
392
|
Iron-induced damage in cardiomyopathy: oxidative-dependent and independent mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:230182. [PMID: 25878762 PMCID: PMC4387903 DOI: 10.1155/2015/230182] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/06/2015] [Accepted: 03/15/2015] [Indexed: 02/08/2023]
Abstract
The high incidence of cardiomyopathy in patients with hemosiderosis, particularly in transfusional iron overload, strongly indicates that iron accumulation in the heart plays a major role in the process leading to heart failure. In this context, iron-mediated generation of noxious reactive oxygen species is believed to be the most important pathogenetic mechanism determining cardiomyocyte damage, the initiating event of a pathologic progression involving apoptosis, fibrosis, and ultimately cardiac dysfunction. However, recent findings suggest that additional mechanisms involving subcellular organelles and inflammatory mediators are important factors in the development of this disease. Moreover, excess iron can amplify the cardiotoxic effect of other agents or events. Finally, subcellular misdistribution of iron within cardiomyocytes may represent an additional pathway leading to cardiac injury. Recent advances in imaging techniques and chelators development remarkably improved cardiac iron overload detection and treatment, respectively. However, increased understanding of the pathogenic mechanisms of iron overload cardiomyopathy is needed to pave the way for the development of improved therapeutic strategies.
Collapse
|
393
|
Dubick MA, Barr JL, Keen CL, Atkins JL. Ceruloplasmin and Hypoferremia: Studies in Burn and Non-Burn Trauma Patients. Antioxidants (Basel) 2015; 4:153-69. [PMID: 26785343 PMCID: PMC4665565 DOI: 10.3390/antiox4010153] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/25/2015] [Accepted: 02/28/2015] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE Normal iron handling appears to be disrupted in critically ill patients leading to hypoferremia that may contribute to systemic inflammation. Ceruloplasmin (Cp), an acute phase reactant protein that can convert ferrous iron to its less reactive ferric form facilitating binding to ferritin, has ferroxidase activity that is important to iron handling. Genetic absence of Cp decreases iron export resulting in iron accumulation in many organs. The objective of this study was to characterize iron metabolism and Cp activity in burn and non-burn trauma patients to determine if changes in Cp activity are a potential contributor to the observed hypoferremia. MATERIAL AND METHODS Under Brooke Army Medical Center Institutional Review Board approved protocols, serum or plasma was collected from burn and non-burn trauma patients on admission to the ICU and at times up to 14 days and measured for indices of iron status, Cp protein and oxidase activity and cytokines. RESULTS Burn patients showed evidence of anemia and normal or elevated ferritin levels. Plasma Cp oxidase activity in burn and trauma patients were markedly lower than controls on admission and increased to control levels by day 3, particularly in burn patients. Plasma cytokines were elevated throughout the 14 days study along with evidence of an oxidative stress. No significant differences in soluble transferrin receptor were noted among groups on admission, but levels in burn patients were lower than controls for the first 5 days after injury. CONCLUSION This study further established the hypoferremia and inflammation associated with burns and trauma. To our knowledge, this is the first study to show an early decrease in Cp oxidase activity in burn and non-burn trauma patients. The results support the hypothesis that transient loss of Cp activity contributes to hypoferremia and inflammation. Further studies are warranted to determine if decreased Cp activity increases the risk of iron-induced injury following therapeutic interventions such as transfusions with blood that has undergone prolonged storage in trauma resuscitation.
Collapse
Affiliation(s)
- Michael A Dubick
- Army Institute of Surgical Research, 3698 Chambers Pass, JBSA Fort Sam Houston, TX 78234, USA.
| | - Johnny L Barr
- Army Institute of Surgical Research, 3698 Chambers Pass, JBSA Fort Sam Houston, TX 78234, USA.
| | - Carl L Keen
- Departments of Nutrition and Internal Medicine, University of California, Davis, CA 95616, USA.
| | - James L Atkins
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| |
Collapse
|
394
|
Sudden sensorineural hearing loss and polymorphisms in iron homeostasis genes: new insights from a case-control study. BIOMED RESEARCH INTERNATIONAL 2015; 2015:834736. [PMID: 25789325 PMCID: PMC4348611 DOI: 10.1155/2015/834736] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/15/2014] [Accepted: 01/06/2015] [Indexed: 12/19/2022]
Abstract
Background. Even if various pathophysiological events have been proposed as explanations, the putative cause of sudden hearing loss remains unclear. Objectives. To investigate and to reveal associations (if any) between the main iron-related gene variants and idiopathic sudden sensorineural hearing loss. Study Design. Case-control study. Materials and Methods. A total of 200 sudden sensorineural hearing loss patients (median age 63.65 years; range 10-92) were compared with 400 healthy control subjects. The following genetic variants were investigated: the polymorphism c.-8CG in the promoter of the ferroportin gene (FPN1; SLC40A1), the two isoforms C1 and C2 (p.P570S) of the transferrin protein (TF), the amino acidic substitutions p.H63D and p.C282Y in the hereditary hemochromatosis protein (HFE), and the polymorphism c.-582AG in the promoter of the HEPC gene, which encodes the protein hepcidin (HAMP). Results. The homozygous genotype c.-8GG of the SLC40A1 gene revealed an OR for ISSNHL risk of 4.27 (CI 95%, 2.65-6.89; P = 0.001), being overrepresented among cases. Conclusions. Our study indicates that the homozygous genotype FPN1 -8GG was significantly associated with increased risk of developing sudden hearing loss. These findings suggest new research should be conducted in the field of iron homeostasis in the inner ear.
Collapse
|
395
|
Adam FI, Bounds PL, Kissner R, Koppenol WH. Redox Properties and Activity of Iron–Citrate Complexes: Evidence for Redox Cycling. Chem Res Toxicol 2015; 28:604-14. [DOI: 10.1021/tx500377b] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fatima I. Adam
- Institute of Inorganic Chemistry,
Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg
1, CH-8093 Zurich, Switzerland
| | - Patricia L. Bounds
- Institute of Inorganic Chemistry,
Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg
1, CH-8093 Zurich, Switzerland
| | - Reinhard Kissner
- Institute of Inorganic Chemistry,
Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg
1, CH-8093 Zurich, Switzerland
| | - Willem H. Koppenol
- Institute of Inorganic Chemistry,
Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg
1, CH-8093 Zurich, Switzerland
| |
Collapse
|
396
|
Puliyel M, Mainous AG, Berdoukas V, Coates TD. Iron toxicity and its possible association with treatment of Cancer: lessons from hemoglobinopathies and rare, transfusion-dependent anemias. Free Radic Biol Med 2015; 79:343-51. [PMID: 25463277 DOI: 10.1016/j.freeradbiomed.2014.10.861] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/22/2014] [Accepted: 10/30/2014] [Indexed: 01/19/2023]
Abstract
Exposure to elevated levels of iron causes tissue damage and organ failure, and increases the risk of cancer. The toxicity of iron is mediated through generation of oxidants. There is also solid evidence indicating that oxidant stress plays a significant role in a variety of human disease states, including malignant transformation. Iron toxicity is the main focus when managing thalassemia. However, the short- and long-term toxicities of iron have not been extensively considered in children and adults treated for malignancy, and only recently have begun to draw oncologists' attention. The treatment of malignancy can markedly increase exposure of patients to elevated toxic iron species without the need for excess iron input from transfusion. This under-recognized exposure likely enhances organ toxicity and may contribute to long-term development of secondary malignancy and organ failure. This review discusses the current understanding of iron metabolism, the mechanisms of production of toxic free iron species in humans, and the relation of the clinical marker, transferrin saturation (TS), to the presence of toxic free iron. We will present epidemiological data showing that high TS is associated with poor outcomes and development of cancer, and that lowering free iron may improve outcomes. Finally, we will discuss the possible relation between some late complications seen in survivors of cancer and those due to iron toxicity.
Collapse
Affiliation(s)
- Mammen Puliyel
- Section of Hematology, Childrens Center for Cancer, Blood Disease and Bone Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles California, USA
| | - Arch G Mainous
- Department of Health Services Research, Management and Policy, University of Florida, Gainesville, Fla. USA
| | - Vasilios Berdoukas
- Section of Hematology, Childrens Center for Cancer, Blood Disease and Bone Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles California, USA
| | - Thomas D Coates
- Section of Hematology, Childrens Center for Cancer, Blood Disease and Bone Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles California, USA.
| |
Collapse
|
397
|
Nitrosative stress and apoptosis in non-anemic healthy rats induced by intravenous iron sucrose similars versus iron sucrose originator. Biometals 2015; 28:279-92. [DOI: 10.1007/s10534-015-9822-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 01/07/2015] [Indexed: 01/01/2023]
|
398
|
Comparative proteomic study reveals the molecular aspects of delayed ocular symptoms induced by sulfur mustard. INTERNATIONAL JOURNAL OF PROTEOMICS 2015; 2015:659241. [PMID: 25685557 PMCID: PMC4320800 DOI: 10.1155/2015/659241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 12/10/2014] [Indexed: 12/18/2022]
Abstract
Objective. Sulfur mustard (SM) is a highly reactive alkylating agent which produces ocular, respiratory, and skin damages. Eyes are the most sensitive organ to SM due to high intrinsic metabolic and rapid turnover rate of corneal epithelium and aqueous-mucous interfaces of the cornea and conjunctiva. Here we investigate underlying molecular mechanism of SM exposure delayed effects which is still a controversial issue after about 30 years. Materials and Methods. Following ethical approval, we have analyzed serum proteome of ten severe SM exposed male patients with delayed eye symptoms with two-dimensional electrophoresis followed by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry. The western blotting was used to confirm the proteins that have been identified. Results. We have identified thirteen proteins including albumin, haptoglobin, and keratin isoforms as well as immunoglobulin kappa chain which showed upregulation while transferrin and alpha 1 antitrypsin revealed downregulation in these patients in comparison with healthy control group. Conclusions. Our results elevated participation of free iron circulatory imbalance and local matrix-metalloproteinase activity in development of delayed ocular symptoms induced by SM. It demonstrates that SM induced systemic toxicity leads to some serum protein changes that continually and gradually exacerbate the ocular surface injuries.
Collapse
|
399
|
Wijarnpreecha K, Kumfu S, Chattipakorn SC, Chattipakorn N. Cardiomyopathy Associated with Iron Overload: How Does Iron Enter Myocytes and What are the Implications for Pharmacological Therapy? Hemoglobin 2015; 39:9-17. [DOI: 10.3109/03630269.2014.987869] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
400
|
Abstract
The review deals with genetic, regulatory and clinical aspects of iron homeostasis and hereditary haemochromatosis. Haemochromatosis was first described in the second half of the 19th century as a clinical entity characterized by excessive iron overload in the liver. Later, increased absorption of iron from the diet was identified as the pathophysiological hallmark. In the 1970s genetic evidence emerged supporting the apparent inheritable feature of the disease. And finally in 1996 a new "haemochromatosis gene" called HFE was described which was mutated in about 85% of the patients. From the year 2000 onward remarkable progress was made in revealing the complex molecular regulation of iron trafficking in the human body and its disturbance in haemochromatosis. The discovery of hepcidin and ferroportin and their interaction in regulating the release of iron from enterocytes and macrophages to plasma were important milestones. The discovery of new, rare variants of non-HFE-haemochromatosis was explained by mutations in the multicomponent signal transduction pathway controlling hepcidin transcription. Inhibited transcription induced by the altered function of mutated gene products, results in low plasma levels of hepcidin which facilitate entry of iron from enterocytes into plasma. In time this leads to progressive accumulation of iron and subsequently development of disease in the liver and other parenchymatous organs. Being the major site of excess iron storage and hepcidin synthesis the liver is a cornerstone in maintaining normal systemic iron homeostasis. Its central pathophysiological role in HFE-haemochromatosis with downgraded hepcidin synthesis, was recently shown by the finding that liver transplantation normalized the hepcidin levels in plasma and there was no sign of iron accumulation in the new liver.
Collapse
Affiliation(s)
- Rune J Ulvik
- Department of Clinical Science, University of Bergen and Laboratory of Clinical Biochemistry, Haukeland University Hospital, Bergen N-5021, Norway.
| |
Collapse
|