351
|
Birolo L, Sacchi S, Smaldone G, Molla G, Leo G, Caldinelli L, Pirone L, Eliometri P, Di Gaetano S, Orefice I, Pedone E, Pucci P, Pollegioni L. Regulating levels of the neuromodulatord-serine in human brain: structural insight into pLG72 andd-amino acid oxidase interaction. FEBS J 2016; 283:3353-70. [DOI: 10.1111/febs.13809] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/28/2016] [Accepted: 07/08/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Leila Birolo
- Dipartimento di Scienze Chimiche; Università degli Studi di Napoli Federico II; Napoli Italy
| | - Silvia Sacchi
- Dipartimento di Biotecnologie e Scienze della Vita; Università degli studi dell'Insubria; Varese Italy
- Centro Interuniversitario di Ricerca in Biotecnologie Proteiche “The Protein Factory”; Politecnico di Milano and Università degli studi dell'Insubria; Milano Italy
| | | | - Gianluca Molla
- Dipartimento di Biotecnologie e Scienze della Vita; Università degli studi dell'Insubria; Varese Italy
- Centro Interuniversitario di Ricerca in Biotecnologie Proteiche “The Protein Factory”; Politecnico di Milano and Università degli studi dell'Insubria; Milano Italy
| | - Gabriella Leo
- Dipartimento di Scienze Chimiche; Università degli Studi di Napoli Federico II; Napoli Italy
| | - Laura Caldinelli
- Dipartimento di Biotecnologie e Scienze della Vita; Università degli studi dell'Insubria; Varese Italy
- Centro Interuniversitario di Ricerca in Biotecnologie Proteiche “The Protein Factory”; Politecnico di Milano and Università degli studi dell'Insubria; Milano Italy
| | - Luciano Pirone
- Italian Research National Council; Institute of Biostructures and Bioimaging; Napoli Italy
| | - Patrick Eliometri
- Dipartimento di Biotecnologie e Scienze della Vita; Università degli studi dell'Insubria; Varese Italy
| | - Sonia Di Gaetano
- Italian Research National Council; Institute of Biostructures and Bioimaging; Napoli Italy
| | - Ida Orefice
- Dipartimento di Scienze Chimiche; Università degli Studi di Napoli Federico II; Napoli Italy
| | - Emilia Pedone
- Italian Research National Council; Institute of Biostructures and Bioimaging; Napoli Italy
| | - Piero Pucci
- Dipartimento di Scienze Chimiche; Università degli Studi di Napoli Federico II; Napoli Italy
| | - Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita; Università degli studi dell'Insubria; Varese Italy
- Centro Interuniversitario di Ricerca in Biotecnologie Proteiche “The Protein Factory”; Politecnico di Milano and Università degli studi dell'Insubria; Milano Italy
| |
Collapse
|
352
|
Hackos DH, Hanson JE. Diverse modes of NMDA receptor positive allosteric modulation: Mechanisms and consequences. Neuropharmacology 2016; 112:34-45. [PMID: 27484578 DOI: 10.1016/j.neuropharm.2016.07.037] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 12/21/2022]
Abstract
NMDA Receptors (NMDARs) play key roles in synaptic physiology and NMDAR hypofunction has been implicated in various neurological conditions. In recent years an increasing number of positive allosteric modulators (PAMs) of NMDARs have been discovered and characterized. These diverse PAM classes vary not only in their binding sites and GluN2 subunit selectivity profiles, but also in the nature of their impacts on channel function. Major differences exist in the degree of slowing of channel deactivation and shifting of apparent agonist affinity between different classes of PAMs. Here we review the diverse modes of potentiation by the currently known classes of NMDAR PAMs and discuss the potential consequences of different types of potentiation in terms of desirable and undesirable effects on brain function. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.
Collapse
Affiliation(s)
- David H Hackos
- Department of Neuroscience, 1 DNA Way, South San Francisco, CA 94080, United States.
| | - Jesse E Hanson
- Department of Neuroscience, 1 DNA Way, South San Francisco, CA 94080, United States.
| |
Collapse
|
353
|
Control of Appetite and Food Preference by NMDA Receptor and Its Co-Agonist d-Serine. Int J Mol Sci 2016; 17:ijms17071081. [PMID: 27399680 PMCID: PMC4964457 DOI: 10.3390/ijms17071081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 06/21/2016] [Accepted: 06/30/2016] [Indexed: 11/30/2022] Open
Abstract
Obesity causes a significant negative impact on health of human beings world-wide. The main reason for weight gain, which eventually leads to obesity, is excessive ingestion of energy above the body’s homeostatic needs. Therefore, the elucidation of detailed mechanisms for appetite control is necessary to prevent and treat obesity. N-methyl-d-aspartate (NMDA) receptor is a post-synaptic glutamate receptor and is important for excitatory neurotransmission. It is expressed throughout the nervous system, and is important for long-term potentiation. It requires both ligand (glutamate) and co-agonist (d-serine or glycine) for efficient opening of the channel to allow calcium influx. d-serine is contained in fermented foods and marine invertebrates, and brain d-serine level is maintained by synthesis in vivo and supply from food and gut microbiota. Although the NMDA receptor has been reported to take part in the central regulation of appetite, the role of d-serine had not been addressed. We recently reported that exogenous d-serine administration can suppress appetite and alter food preference. In this review, we will discuss how NMDA receptor and its co-agonist d-seine participate in the control of appetite and food preference, and elaborate on how this system could possibly be manipulated to suppress obesity.
Collapse
|
354
|
Balu DT, Li Y, Takagi S, Presti KT, Ramikie TS, Rook JM, Jones CK, Lindsley CW, Conn PJ, Bolshakov VY, Coyle JT. An mGlu5-Positive Allosteric Modulator Rescues the Neuroplasticity Deficits in a Genetic Model of NMDA Receptor Hypofunction in Schizophrenia. Neuropsychopharmacology 2016; 41:2052-61. [PMID: 26741285 PMCID: PMC4908650 DOI: 10.1038/npp.2016.2] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/01/2015] [Accepted: 01/02/2016] [Indexed: 12/13/2022]
Abstract
There is substantial evidence that NMDA receptor (NMDAR) hypofunction contributes to the pathophysiology of schizophrenia (SCZ). A recent large-scale genome-wide association study identified serine racemase (SR), the enzyme that produces the NMDAR co-agonist D-serine, as a risk gene for SCZ. Serine racemase knockout (SR-/-) mice, which lack D-serine, exhibit many of the neurochemical and behavioral abnormalities observed in SCZ. Metabotropic glutamate receptor 5 (mGlu5)-positive allosteric modulators (PAMs) are currently being developed to treat cognitive dysfunction. We used in vitro electrophysiology to determine whether the mGlu5 PAM VU0409551 directly enhances NMDAR function in hippocampal slices from adult male SR-/- mice. We administered VU0409551 systemically for 5 days to adult male wild-type C57BL/6 animals to determine the optimal dose to test in SR-/- mice. We used western blot analyses and trace-fear conditioning to determine whether 5 days of VU0409551 treatment could reverse the neuroplasticity and learning deficits, respectively, in SR-/- mice. We show that VU0409551 enhances NMDAR function and rescues long-term potentiation in hippocampal slices obtained from SR-/- mice. Systemic treatment with VU0409551 (10 and 30 mg/kg) to wild-type mice causes a dose-dependent increase in the Akt/GS3Kα/β signaling pathway, which is reduced in SR-/- mice and in SCZ. Furthermore, the administration of VU0409551 to SR-/- mice reverses their deficits in several neuroplasticity signaling pathways and improves their contextual fear memory. These results support positive allosteric modulation of mGlu5, particularly with VU0409551, as a viable mechanism to reverse the deficits in NMDAR function, synaptic plasticity, and memory that are known to be impaired in SCZ.
Collapse
Affiliation(s)
- Darrick T Balu
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA,Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, Belmont, MA, USA,Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA, Tel: +617 855 2329, Fax: +617 855 2705, E-mail:
| | - Yan Li
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Shunsuke Takagi
- Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, Belmont, MA, USA,Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kendall Taylor Presti
- Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, Belmont, MA, USA
| | - Teniel S Ramikie
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jerri M Rook
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Joseph T Coyle
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA,Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, Belmont, MA, USA
| |
Collapse
|
355
|
Zhang Y, Li P, Feng J, Wu M. Dysfunction of NMDA receptors in Alzheimer's disease. Neurol Sci 2016; 37:1039-47. [PMID: 26971324 PMCID: PMC4917574 DOI: 10.1007/s10072-016-2546-5] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/02/2016] [Indexed: 11/05/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs) play a pivotal role in the synaptic transmission and synaptic plasticity thought to underlie learning and memory. NMDARs activation has been recently implicated in Alzheimer's disease (AD) related to synaptic dysfunction. Synaptic NMDARs are neuroprotective, whereas overactivation of NMDARs located outside of the synapse cause loss of mitochondrial membrane potential and cell death. NMDARs dysfunction in the glutamatergic tripartite synapse, comprising presynaptic and postsynaptic neurons and glial cells, is directly involved in AD. This review discusses that both beta-amyloid (Aβ) and tau perturb synaptic functioning of the tripartite synapse, including alterations in glutamate release, astrocytic uptake, and receptor signaling. Particular emphasis is given to the role of NMDARs as a possible convergence point for Aβ and tau toxicity and possible reversible stages of the AD through preventive and/or disease-modifying therapeutic strategies.
Collapse
Affiliation(s)
- Yan Zhang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, 410078, Hunan, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, 410078, Hunan, China
| | - Peiyao Li
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, 410078, Hunan, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, 410078, Hunan, China
| | - Jianbo Feng
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, 410078, Hunan, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, 410078, Hunan, China
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China.
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, 410078, Hunan, China.
- Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, 410078, Hunan, China.
| |
Collapse
|
356
|
Ogino K, Hirata H. Defects of the Glycinergic Synapse in Zebrafish. Front Mol Neurosci 2016; 9:50. [PMID: 27445686 PMCID: PMC4925712 DOI: 10.3389/fnmol.2016.00050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/13/2016] [Indexed: 12/26/2022] Open
Abstract
Glycine mediates fast inhibitory synaptic transmission. Physiological importance of the glycinergic synapse is well established in the brainstem and the spinal cord. In humans, the loss of glycinergic function in the spinal cord and brainstem leads to hyperekplexia, which is characterized by an excess startle reflex to sudden acoustic or tactile stimulation. In addition, glycinergic synapses in this region are also involved in the regulation of respiration and locomotion, and in the nociceptive processing. The importance of the glycinergic synapse is conserved across vertebrate species. A teleost fish, the zebrafish, offers several advantages as a vertebrate model for research of glycinergic synapse. Mutagenesis screens in zebrafish have isolated two motor defective mutants that have pathogenic mutations in glycinergic synaptic transmission: bandoneon (beo) and shocked (sho). Beo mutants have a loss-of-function mutation of glycine receptor (GlyR) β-subunit b, alternatively, sho mutant is a glycinergic transporter 1 (GlyT1) defective mutant. These mutants are useful animal models for understanding of glycinergic synaptic transmission and for identification of novel therapeutic agents for human diseases arising from defect in glycinergic transmission, such as hyperekplexia or glycine encephalopathy. Recent advances in techniques for genome editing and for imaging and manipulating of a molecule or a physiological process make zebrafish more attractive model. In this review, we describe the glycinergic defective zebrafish mutants and the technical advances in both forward and reverse genetic approaches as well as in vivo visualization and manipulation approaches for the study of the glycinergic synapse in zebrafish.
Collapse
Affiliation(s)
- Kazutoyo Ogino
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University Sagamihara, Japan
| | - Hiromi Hirata
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University Sagamihara, Japan
| |
Collapse
|
357
|
Wu X, Zhang JT, Li D, Zhou J, Yang J, Zheng HL, Chen JG, Wang F. Aquaporin-4 deficiency facilitates fear memory extinction in the hippocampus through excessive activation of extrasynaptic GluN2B-containing NMDA receptors. Neuropharmacology 2016; 112:124-134. [PMID: 27373674 DOI: 10.1016/j.neuropharm.2016.06.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 06/11/2016] [Accepted: 06/28/2016] [Indexed: 12/22/2022]
Abstract
Aquaporin-4 (AQP-4) is the predominant water channel in the brain and primarily expressed in astrocytes. Astrocytes have been generally believed to play important roles in regulating synaptic plasticity and information processing. A growing number of evidence shows that AQP-4 plays a potential role in the regulation of astrocyte function. However, little is known about the function of AQP-4 for synaptic plasticity in the hippocampus. Therefore, we evaluated long-term depression (LTD) in the hippocampus and the extinction of fear memory of AQP-4 knockout (KO) and wild-type (WT) mice. We found that AQP-4 deficiency facilitated fear memory extinction and NMDA receptors (NMDARs)-dependent LTD in the CA3-CA1 pathway. Furthermore, AQP-4 deficiency selectively increased GluN2B-NMDAR-mediated excitatory postsynaptic currents (EPSCs). The excessive activation of extrasynaptic GluN2B-NMDAR contributed to the facilitation of NMDAR-dependent LTD and enhancement of fear memory extinction in AQP-4 KO mice. Thus, it appears that AQP-4 may be a potential target for intervention in fear memory extinction. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.
Collapse
Affiliation(s)
- Xin Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jie-Ting Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Di Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun Zhou
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui-Ling Zheng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, 430030, China; The Collaborative Innovation Center for Brain Science, Wuhan, 430030, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, 430030, China; The Collaborative Innovation Center for Brain Science, Wuhan, 430030, China.
| |
Collapse
|
358
|
Pai YH, Lim CS, Park KA, Cho HS, Lee GS, Shin YS, Kim HW, Jeon BH, Yoon SH, Park JB. Facilitation of AMPA receptor-mediated steady-state current by extrasynaptic NMDA receptors in supraoptic magnocellular neurosecretory cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:425-32. [PMID: 27382359 PMCID: PMC4930911 DOI: 10.4196/kjpp.2016.20.4.425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/06/2016] [Accepted: 06/09/2016] [Indexed: 01/02/2023]
Abstract
In addition to classical synaptic transmission, information is transmitted between cells via the activation of extrasynaptic receptors that generate persistent tonic current in the brain. While growing evidence supports the presence of tonic NMDA current (INMDA) generated by extrasynaptic NMDA receptors (eNMDARs), the functional significance of tonic INMDA in various brain regions remains poorly understood. Here, we demonstrate that activation of eNMDARs that generate INMDA facilitates the α-amino-3-hydroxy-5-methylisoxazole-4-proprionate receptor (AMPAR)-mediated steady-state current in supraoptic nucleus (SON) magnocellular neurosecretory cells (MNCs). In low-Mg2+ artificial cerebrospinal fluid (aCSF), glutamate induced an inward shift in Iholding (IGLU) at a holding potential (Vholding) of –70 mV which was partly blocked by an AMPAR antagonist, NBQX. NBQX-sensitive IGLU was observed even in normal aCSF at Vholding of –40 mV or –20 mV. IGLU was completely abolished by pretreatment with an NMDAR blocker, AP5, under all tested conditions. AMPA induced a reproducible inward shift in Iholding (IAMPA) in SON MNCs. Pretreatment with AP5 attenuated IAMPA amplitudes to ~60% of the control levels in low-Mg2+ aCSF, but not in normal aCSF at Vholding of –70 mV. IAMPA attenuation by AP5 was also prominent in normal aCSF at depolarized holding potentials. Memantine, an eNMDAR blocker, mimicked the AP5-induced IAMPA attenuation in SON MNCs. Finally, chronic dehydration did not affect IAMPA attenuation by AP5 in the neurons. These results suggest that tonic INMDA, mediated by eNMDAR, facilitates AMPAR function, changing the postsynaptic response to its agonists in normal and osmotically challenged SON MNCs.
Collapse
Affiliation(s)
- Yoon Hyoung Pai
- Department of Physiology, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Chae Seong Lim
- Department of Anesthesiology & Pain Medicine, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Kyung-Ah Park
- Department of Physiology, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Hyun Sil Cho
- Department of Physiology, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Gyu-Seung Lee
- Department of Physiology, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Yong Sup Shin
- Department of Anesthesiology & Pain Medicine, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Hyun-Woo Kim
- Department of Physiology, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Byeong Hwa Jeon
- Department of Physiology, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Seok Hwa Yoon
- Department of Anesthesiology & Pain Medicine, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Jin Bong Park
- Department of Physiology, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| |
Collapse
|
359
|
Abstract
Homochirality is fundamental for life. L-Amino acids are exclusively used as substrates for the polymerization and formation of peptides and proteins in living systems. However, D- amino acids were recently detected in various living organisms, including mammals. Of these D-amino acids, D-serine has been most extensively studied. D-Serine was found to play an important role as a neurotransmitter in the human central nervous system (CNS) by binding to the N-methyl- D-aspartate receptor (NMDAr). D-Serine binds with high affinity to a co-agonist site at the NMDAr and, along with glutamate, mediates several vital physiological and pathological processes, including NMDAr transmission, synaptic plasticity and neurotoxicity. Therefore, a key role for D-serine as a determinant of NMDAr mediated neurotransmission in mammalian CNS has been suggested. In this context, we review the known functions of D-serine in human physiology, such as CNS development, and pathology, such as neuro-psychiatric and neurodegenerative diseases related to NMDAr dysfunction.
Collapse
|
360
|
Viana da Silva S, Haberl MG, Zhang P, Bethge P, Lemos C, Gonçalves N, Gorlewicz A, Malezieux M, Gonçalves FQ, Grosjean N, Blanchet C, Frick A, Nägerl UV, Cunha RA, Mulle C. Early synaptic deficits in the APP/PS1 mouse model of Alzheimer's disease involve neuronal adenosine A2A receptors. Nat Commun 2016; 7:11915. [PMID: 27312972 PMCID: PMC4915032 DOI: 10.1038/ncomms11915] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/12/2016] [Indexed: 01/24/2023] Open
Abstract
Synaptic plasticity in the autoassociative network of recurrent connections among hippocampal CA3 pyramidal cells is thought to enable the storage of episodic memory. Impaired episodic memory is an early manifestation of cognitive deficits in Alzheimer's disease (AD). In the APP/PS1 mouse model of AD amyloidosis, we show that associative long-term synaptic potentiation (LTP) is abolished in CA3 pyramidal cells at an early stage. This is caused by activation of upregulated neuronal adenosine A2A receptors (A2AR) rather than by dysregulation of NMDAR signalling or altered dendritic spine morphology. Neutralization of A2AR by acute pharmacological inhibition, or downregulation driven by shRNA interference in a single postsynaptic neuron restore associative CA3 LTP. Accordingly, treatment with A2AR antagonists reverts one-trial memory deficits. These results provide mechanistic support to encourage testing the therapeutic efficacy of A2AR antagonists in early AD patients.
Collapse
MESH Headings
- Adenosine A2 Receptor Antagonists/pharmacology
- Alzheimer Disease/drug therapy
- Alzheimer Disease/genetics
- Alzheimer Disease/metabolism
- Alzheimer Disease/physiopathology
- Amyloid beta-Protein Precursor/genetics
- Amyloid beta-Protein Precursor/metabolism
- Animals
- CA3 Region, Hippocampal/drug effects
- CA3 Region, Hippocampal/metabolism
- CA3 Region, Hippocampal/pathology
- Dendritic Spines/drug effects
- Dendritic Spines/metabolism
- Dendritic Spines/ultrastructure
- Disease Models, Animal
- Gene Expression Regulation
- Humans
- Long-Term Potentiation
- Memory, Episodic
- Mice
- Mice, Transgenic
- Neuroprotective Agents/pharmacology
- Presenilin-1/genetics
- Presenilin-1/metabolism
- Pyrimidines/pharmacology
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptor, Adenosine A2A/genetics
- Receptor, Adenosine A2A/metabolism
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Signal Transduction
- Synapses/drug effects
- Synapses/metabolism
- Synapses/ultrastructure
- Triazines/pharmacology
- Triazoles/pharmacology
Collapse
Affiliation(s)
- Silvia Viana da Silva
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR 5297, F-33000 Bordeaux, France
- BEB PhD program CNC Coimbra, 3004-517 Coimbra, Portugal
| | | | - Pei Zhang
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR 5297, F-33000 Bordeaux, France
| | - Philipp Bethge
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR 5297, F-33000 Bordeaux, France
| | - Cristina Lemos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Nélio Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Adam Gorlewicz
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR 5297, F-33000 Bordeaux, France
| | - Meryl Malezieux
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR 5297, F-33000 Bordeaux, France
| | - Francisco Q. Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Noëlle Grosjean
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR 5297, F-33000 Bordeaux, France
| | - Christophe Blanchet
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR 5297, F-33000 Bordeaux, France
| | - Andreas Frick
- University of Bordeaux, Neurocentre Magendie, INSERM U862, F-33000 Bordeaux, France
| | - U Valentin Nägerl
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR 5297, F-33000 Bordeaux, France
| | - Rodrigo A. Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR 5297, F-33000 Bordeaux, France
| |
Collapse
|
361
|
Curcio M, Salazar IL, Mele M, Canzoniero LMT, Duarte CB. Calpains and neuronal damage in the ischemic brain: The swiss knife in synaptic injury. Prog Neurobiol 2016; 143:1-35. [PMID: 27283248 DOI: 10.1016/j.pneurobio.2016.06.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/22/2016] [Accepted: 05/09/2016] [Indexed: 12/26/2022]
Abstract
The excessive extracellular accumulation of glutamate in the ischemic brain leads to an overactivation of glutamate receptors with consequent excitotoxic neuronal death. Neuronal demise is largely due to a sustained activation of NMDA receptors for glutamate, with a consequent increase in the intracellular Ca(2+) concentration and activation of calcium- dependent mechanisms. Calpains are a group of Ca(2+)-dependent proteases that truncate specific proteins, and some of the cleavage products remain in the cell, although with a distinct function. Numerous studies have shown pre- and post-synaptic effects of calpains on glutamatergic and GABAergic synapses, targeting membrane- associated proteins as well as intracellular proteins. The resulting changes in the presynaptic proteome alter neurotransmitter release, while the cleavage of postsynaptic proteins affects directly or indirectly the activity of neurotransmitter receptors and downstream mechanisms. These alterations also disturb the balance between excitatory and inhibitory neurotransmission in the brain, with an impact in neuronal demise. In this review we discuss the evidence pointing to a role for calpains in the dysregulation of excitatory and inhibitory synapses in brain ischemia, at the pre- and post-synaptic levels, as well as the functional consequences. Although targeting calpain-dependent mechanisms may constitute a good therapeutic approach for stroke, specific strategies should be developed to avoid non-specific effects given the important regulatory role played by these proteases under normal physiological conditions.
Collapse
Affiliation(s)
- Michele Curcio
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ivan L Salazar
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
| | - Miranda Mele
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | - Carlos B Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| |
Collapse
|
362
|
Kamada Y, Hashimoto R, Yamamori H, Yasuda Y, Takehara T, Fujita Y, Hashimoto K, Miyoshi E. Impact of plasma transaminase levels on the peripheral blood glutamate levels and memory functions in healthy subjects. BBA CLINICAL 2016; 5:101-107. [PMID: 27051595 PMCID: PMC4802405 DOI: 10.1016/j.bbacli.2016.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Blood aspartate aminotransferase (AST) and alanine transaminase (ALT) levels are the most frequently reliable biomarkers of liver injury. Although AST and ALT play central roles in glutamate production as transaminases, peripheral blood levels of AST and ALT have been regarded only as liver injury biomarkers. Glutamate is a principal excitatory neurotransmitter, which affects memory functions in the brain. In this study, we investigated the impact of blood transaminase levels on blood glutamate concentration and memory. METHODS Psychiatrically, medically, and neurologically healthy subjects (n = 514, female/male: 268/246) were enrolled in this study through local advertisements. Plasma amino acids (glutamate, glutamine, glycine, d-serine, and l-serine) were measured using a high performance liquid chromatography system. The five indices, verbal memory, visual memory, general memory, attention/concentration, and delayed recall of the Wechsler Memory Scale-Revised were used to measure memory functions. RESULTS Both plasma AST and ALT had a significant positive correlation with plasma glutamate levels. Plasma AST and ALT levels were significantly negatively correlated with four of five memory functions, and plasma glutamate was significantly negatively correlated with three of five memory functions. Multivariate analyses demonstrated that plasma AST, ALT, and glutamate levels were significantly correlated with memory functions even after adjustment for gender and education. CONCLUSIONS As far as we know, this is the first report which could demonstrate the impact of blood transaminase levels on blood glutamate concentration and memory functions in human. These findings are important for the interpretation of obesity-induced metabolic syndrome with elevated transaminases and cognitive dysfunction.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- Alanine aminotransferase
- Aspartate aminotransferase
- BBB, blood brain barrier
- GOT, glutamate-oxalacetate transaminase
- GPT, glutamate-pyruvate transaminase
- Gln, glutamine
- Glu, glutamate
- Glutamate
- Gly, glycine
- MSG, monosodium glutamate
- Memory function
- Mets, metabolic syndrome
- NAFL, nonalcoholic fatty liver
- NAFLD, nonalcoholic fatty liver disease
- NASH, nonalcoholic steatohepatitis
- WMS-R, Wechsler Memory Scale-Revised
Collapse
Affiliation(s)
- Yoshihiro Kamada
- Department of Molecular Biochemistry & Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Ryota Hashimoto
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hidenaga Yamamori
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yuka Yasuda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Chiba 260-8670, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry & Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
363
|
Weinberg JM, Bienholz A, Venkatachalam MA. The role of glycine in regulated cell death. Cell Mol Life Sci 2016; 73:2285-308. [PMID: 27066896 PMCID: PMC4955867 DOI: 10.1007/s00018-016-2201-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 01/22/2023]
Abstract
The cytoprotective effects of glycine against cell death have been recognized for over 28 years. They are expressed in multiple cell types and injury settings that lead to necrosis, but are still not widely appreciated or considered in the conceptualization of cell death pathways. In this paper, we review the available data on the expression of this phenomenon, its relationship to major pathophysiologic pathways that lead to cell death and immunomodulatory effects, the hypothesis that it involves suppression by glycine of the development of a hydrophilic death channel of molecular dimensions in the plasma membrane, and evidence for its impact on disease processes in vivo.
Collapse
Affiliation(s)
- Joel M Weinberg
- Division of Nephrology, Department of Internal Medicine, Veterans Affairs Ann Arbor Healthcare System and University of Michigan, Room 1560, MSRB II, Ann Arbor, MI, 48109-0676, USA.
| | - Anja Bienholz
- Department of Nephrology, University Duisburg-Essen, 45122, Essen, Germany
| | - M A Venkatachalam
- Department of Pathology, University of Texas Health Science Center, San Antonio, TX, 78234, USA
| |
Collapse
|
364
|
Ultimate Translation: Developing Therapeutics Targeting on N-Methyl-d-Aspartate Receptor. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 76:257-309. [PMID: 27288080 DOI: 10.1016/bs.apha.2016.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
N-Methyl-d-aspartate receptors (NMDARs) are broadly distributed in the central nervous system (CNS), where they mediate excitatory signaling. NMDAR-mediated neurotransmission (NMDARMN) is the molecular engine of learning, memory and cognition, which are the basis for high cortical function. NMDARMN is also critically involved in the development and plasticity of CNS. Due to its essential and critical role, either over- or under-activation of NMDARMN can contribute substantially to the development of CNS disorders. The involvement of NMDARMN has been demonstrated in a variety of CNS disorders, including schizophrenia, depression, posttraumatic stress disorder, aging, mild cognitive impairment and Alzheimer's dementia, amyotrophic lateral sclerosis, and anti-NMDAR encephalitis. Several targets to "correct" or "reset" the NMDARMN in these CNS disorders have been identified and confirmed. With analogy to aminergic treatments, these targets include the glycine/d-serine co-agonist site, channel ionophore, glycine transporter-1, and d-amino acid oxidase. It is still early days in terms of developing novel therapeutics targeting the NMDAR. However, agents modulating NMDARMN hold promise as the next generation of CNS therapeutics.
Collapse
|
365
|
Pósfai B, Cserép C, Hegedüs P, Szabadits E, Otte DM, Zimmer A, Watanabe M, Freund TF, Nyiri G. Synaptic and cellular changes induced by the schizophrenia susceptibility gene G72 are rescued by N-acetylcysteine treatment. Transl Psychiatry 2016; 6:e807. [PMID: 27163208 PMCID: PMC5070069 DOI: 10.1038/tp.2016.74] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/19/2016] [Accepted: 03/20/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic studies have linked the primate-specific gene locus G72 to the development of schizophrenia and bipolar disorder. Transgenic mice carrying the entire gene locus express G72 mRNA in dentate gyrus (DG) and entorhinal cortex, causing altered electrophysiological properties of their connections. These transgenic mice exhibit behavioral alterations related to psychiatric diseases, including cognitive deficits that can be reversed by treatment with N-acetylcysteine, which was also found to be effective in human patients. Here, we show that G72 transgenic mice have larger excitatory synapses with an increased amount of N-methyl-d-aspartate (NMDA) receptors in the molecular layer of DG, compared with wild-type littermates. Furthermore, transgenic animals have lower number of dentate granule cells with a parallel, but an even stronger decrease in the number of excitatory synapses in the molecular layer. Importantly, we also show that treatment with N-acetylcysteine can effectively normalize all these changes in transgenic animals, resulting in a state similar to wild-type mice. Our results show that G72 transcripts induce robust alterations in the glutamatergic system at the synaptic level that can be rescued with N-acetylcysteine treatment.
Collapse
Affiliation(s)
- B Pósfai
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - C Cserép
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - P Hegedüs
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - E Szabadits
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - D M Otte
- Medical Faculty, Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | - A Zimmer
- Medical Faculty, Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | - M Watanabe
- Department of Anatomy and Embryology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - T F Freund
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - G Nyiri
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
366
|
Sacchi S, Binelli G, Pollegioni L. G72 primate-specific gene: a still enigmatic element in psychiatric disorders. Cell Mol Life Sci 2016; 73:2029-39. [PMID: 26914235 PMCID: PMC11108296 DOI: 10.1007/s00018-016-2165-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/19/2016] [Accepted: 02/15/2016] [Indexed: 01/12/2023]
Abstract
Numerous studies have demonstrated a link between genetic markers on chromosome 13 and schizophrenia, bipolar affective disorder, and other psychiatric phenotypes. The G72/G30 genes (transcribed in opposite directions) are located on chromosome 13q33, a region demonstrating strong evidence for linkage with various neuropsychiatric disorders. G72/G30 was identified in 2002 as a schizophrenia susceptibility locus; however, subsequent association studies did not reach consensus on single SNPs within the locus. Simultaneously, a new vision for the genetic architecture of psychiatric disorders suggested that schizophrenia was a quantitative trait, therefore ascribable to potentially hundreds of genes and subjected to the vagaries of the environment. The main protein product of G72 gene is named pLG72 or D-amino acid oxidase activator DAOA (153 amino acids) and its function is still debated. Functional analyses, also showing controversial results, indicate that pLG72 contributes to N-methyl-D-aspartate receptor modulation by affecting activity of the flavoprotein D-amino acid oxidase, the enzyme responsible for degrading the neuromodulator D-serine. In this review we, for the first time, summarize findings from molecular genetic linkage and association studies concerning G72 gene, cellular and molecular studies on pLG72, and investigations performed on G72/G30 transgenic mice. This will help elucidate the role of psychosis susceptibility genes, which will have a major impact on our understanding of disease pathophysiology and thus change classification and treatment.
Collapse
Affiliation(s)
- Silvia Sacchi
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, via J. H. Dunant 3, 21100, Varese, Italy
- The Protein Factory, Centro Interuniversitario di Biotecnologie Proteiche, Università degli studi dell'Insubria and Politecnico di Milano, Milano, Italy
| | - Giorgio Binelli
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, via J. H. Dunant 3, 21100, Varese, Italy
| | - Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, via J. H. Dunant 3, 21100, Varese, Italy.
- The Protein Factory, Centro Interuniversitario di Biotecnologie Proteiche, Università degli studi dell'Insubria and Politecnico di Milano, Milano, Italy.
| |
Collapse
|
367
|
Sinclair D, Cesare J, McMullen M, Carlson GC, Hahn CG, Borgmann-Winter KE. Effects of sex and DTNBP1 (dysbindin) null gene mutation on the developmental GluN2B-GluN2A switch in the mouse cortex and hippocampus. J Neurodev Disord 2016; 8:14. [PMID: 27134685 PMCID: PMC4852102 DOI: 10.1186/s11689-016-9148-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/03/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neurodevelopmental disorders such as autism spectrum disorders and schizophrenia differentially impact males and females and are highly heritable. The ways in which sex and genetic vulnerability influence the pathogenesis of these disorders are not clearly understood. The n-methyl-d-aspartate (NMDA) receptor pathway has been implicated in schizophrenia and autism spectrum disorders and changes dramatically across postnatal development at the level of the GluN2B-GluN2A subunit "switch" (a shift from reliance on GluN2B-containing receptors to reliance on GluN2A-containing receptors). We investigated whether sex and genetic vulnerability (specifically, null mutation of DTNBP1 [dysbindin; a possible susceptibility gene for schizophrenia]) influence the developmental GluN2B-GluN2A switch. METHODS Subcellular fractionation to enrich for postsynaptic density (PSD), together with Western blotting and kinase assay, were used to investigate the GluN2B-GluN2A switch in the cortex and hippocampus of male and female DTNBP1 null mutant mice and their wild-type littermates. Main effects of sex and DTNBP1 genotype, and interactions with age, were assessed using factorial ANOVA. RESULTS Sex differences in the GluN2B-GluN2A switch emerged across development at the frontal cortical synapse, in parameters related to GluN2B. Males across genotypes displayed higher GluN2B:GluN2A and GluN2B:GluN1 ratios (p < 0.05 and p < 0.01, respectively), higher GluN2B phosphorylation at Y1472 (p < 0.01), and greater abundance of PLCγ (p < 0.01) and Fyn (p = 0.055) relative to females. In contrast, effects of DTNBP1 were evident exclusively in the hippocampus. The developmental trajectory of GluN2B was disrupted in DTNBP1 null mice (genotype × age interaction p < 0.05), which also displayed an increased synaptic GluN2A:GluN1 ratio (p < 0.05) and decreased PLCγ (p < 0.05) and Fyn (only in females; p < 0.0005) compared to wild-types. CONCLUSIONS Sex and DTNBP1 mutation influence the GluN2B-GluN2A switch at the synapse in a brain-region-specific fashion involving pY1472-GluN2B, Fyn, and PLCγ. This highlights the possible mechanisms through which risk factors may mediate their effects on vulnerability to disorders of NMDA receptor dysfunction.
Collapse
Affiliation(s)
- Duncan Sinclair
- Department of Psychiatry, Neuropsychiatric Signaling Program, University of Pennsylvania, Philadelphia, PA USA ; Present address: Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, New South Wales Australia
| | - Joseph Cesare
- Department of Psychiatry, Neuropsychiatric Signaling Program, University of Pennsylvania, Philadelphia, PA USA
| | | | | | - Chang-Gyu Hahn
- Department of Psychiatry, Neuropsychiatric Signaling Program, University of Pennsylvania, Philadelphia, PA USA
| | - Karin E Borgmann-Winter
- Department of Psychiatry, Neuropsychiatric Signaling Program, University of Pennsylvania, Philadelphia, PA USA ; Department of Child and Adolescent Psychiatry, Children's Hospital of Philadelphia, Philadelphia, PA USA
| |
Collapse
|
368
|
Singh NS, Rutkowska E, Plazinska A, Khadeer M, Moaddel R, Jozwiak K, Bernier M, Wainer IW. Ketamine Metabolites Enantioselectively Decrease Intracellular D-Serine Concentrations in PC-12 Cells. PLoS One 2016; 11:e0149499. [PMID: 27096720 PMCID: PMC4838237 DOI: 10.1371/journal.pone.0149499] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/16/2016] [Indexed: 01/18/2023] Open
Abstract
D-Serine is an endogenous NMDA receptor co-agonist that activates synaptic NMDA receptors modulating neuronal networks in the cerebral cortex and plays a key role in long-term potentiation of synaptic transmission. D-serine is associated with NMDA receptor neurotoxicity and neurodegeneration and elevated D-serine concentrations have been associated with Alzheimer's and Parkinsons' diseases and amyotrophic lateral sclerosis. Previous studies have demonstrated that the ketamine metabolites (rac)-dehydronorketamine and (2S,6S)-hydroxynorketamine decrease intracellular D-serine concentrations in a concentration dependent manner in PC-12 cells. In the current study, PC-12 cells were incubated with a series of ketamine metabolites and the IC50 values associated with attenuated intracellular D-serine concentrations were determined. The results demonstrate that structural and stereochemical features of the studied compounds contribute to the magnitude of the inhibitory effect with (2S,6S)-hydroxynorketamine and (2R,6R)-hydroxynorketamine displaying the most potent inhibition with IC50 values of 0.18 ± 0.04 nM and 0.68 ± 0.09 nM. The data was utilized to construct a preliminary 3D-QSAR/pharmacophore model for use in the design of new and more efficient modulators of D-serine.
Collapse
Affiliation(s)
- Nagendra S. Singh
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, United States of America
| | - Ewelina Rutkowska
- Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
| | - Anita Plazinska
- Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
| | - Mohammed Khadeer
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, United States of America
| | - Ruin Moaddel
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, United States of America
| | - Krzysztof Jozwiak
- Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, United States of America
| | - Irving W. Wainer
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, United States of America
- * E-mail:
| |
Collapse
|
369
|
Modulation of Synaptic Plasticity by Glutamatergic Gliotransmission: A Modeling Study. Neural Plast 2016; 2016:7607924. [PMID: 27195153 PMCID: PMC4852535 DOI: 10.1155/2016/7607924] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/15/2016] [Indexed: 01/03/2023] Open
Abstract
Glutamatergic gliotransmission, that is, the release of glutamate from perisynaptic astrocyte processes in an activity-dependent manner, has emerged as a potentially crucial signaling pathway for regulation of synaptic plasticity, yet its modes of expression and function in vivo remain unclear. Here, we focus on two experimentally well-identified gliotransmitter pathways, (i) modulations of synaptic release and (ii) postsynaptic slow inward currents mediated by glutamate released from astrocytes, and investigate their possible functional relevance on synaptic plasticity in a biophysical model of an astrocyte-regulated synapse. Our model predicts that both pathways could profoundly affect both short- and long-term plasticity. In particular, activity-dependent glutamate release from astrocytes could dramatically change spike-timing-dependent plasticity, turning potentiation into depression (and vice versa) for the same induction protocol.
Collapse
|
370
|
Rueda CB, Llorente-Folch I, Traba J, Amigo I, Gonzalez-Sanchez P, Contreras L, Juaristi I, Martinez-Valero P, Pardo B, Del Arco A, Satrustegui J. Glutamate excitotoxicity and Ca2+-regulation of respiration: Role of the Ca2+ activated mitochondrial transporters (CaMCs). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1158-1166. [PMID: 27060251 DOI: 10.1016/j.bbabio.2016.04.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 12/21/2022]
Abstract
Glutamate elicits Ca(2+) signals and workloads that regulate neuronal fate both in physiological and pathological circumstances. Oxidative phosphorylation is required in order to respond to the metabolic challenge caused by glutamate. In response to physiological glutamate signals, cytosolic Ca(2+) activates respiration by stimulation of the NADH malate-aspartate shuttle through Ca(2+)-binding to the mitochondrial aspartate/glutamate carrier (Aralar/AGC1/Slc25a12), and by stimulation of adenine nucleotide uptake through Ca(2+) binding to the mitochondrial ATP-Mg/Pi carrier (SCaMC-3/Slc25a23). In addition, after Ca(2+) entry into the matrix through the mitochondrial Ca(2+) uniporter (MCU), it activates mitochondrial dehydrogenases. In response to pathological glutamate stimulation during excitotoxicity, Ca(2+) overload, reactive oxygen species (ROS), mitochondrial dysfunction and delayed Ca(2+) deregulation (DCD) lead to neuronal death. Glutamate-induced respiratory stimulation is rapidly inactivated through a mechanism involving Poly (ADP-ribose) Polymerase-1 (PARP-1) activation, consumption of cytosolic NAD(+), a decrease in matrix ATP and restricted substrate supply. Glutamate-induced Ca(2+)-activation of SCaMC-3 imports adenine nucleotides into mitochondria, counteracting the depletion of matrix ATP and the impaired respiration, while Aralar-dependent lactate metabolism prevents substrate exhaustion. A second mechanism induced by excitotoxic glutamate is permeability transition pore (PTP) opening, which critically depends on ROS production and matrix Ca(2+) entry through the MCU. By increasing matrix content of adenine nucleotides, SCaMC-3 activity protects against glutamate-induced PTP opening and lowers matrix free Ca(2+), resulting in protracted appearance of DCD and protection against excitotoxicity in vitro and in vivo, while the lack of lactate protection during in vivo excitotoxicity explains increased vulnerability to kainite-induced toxicity in Aralar +/- mice. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Carlos B Rueda
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Spain
| | - Irene Llorente-Folch
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Spain
| | - Javier Traba
- Cardiovascular and Pulmonary Branch, NHLBI, NIH, 20892 Bethesda, MD, USA
| | - Ignacio Amigo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 13560-970 São Paulo, Brazil
| | - Paloma Gonzalez-Sanchez
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Spain
| | - Laura Contreras
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Spain
| | - Inés Juaristi
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Spain
| | - Paula Martinez-Valero
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Spain
| | - Beatriz Pardo
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Spain
| | - Araceli Del Arco
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Spain; Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla la Mancha, Toledo 45071, Spain
| | - Jorgina Satrustegui
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Spain
| |
Collapse
|
371
|
Zhang WB, Ross PJ, Tu Y, Wang Y, Beggs S, Sengar AS, Ellis J, Salter MW. Fyn Kinase regulates GluN2B subunit-dominant NMDA receptors in human induced pluripotent stem cell-derived neurons. Sci Rep 2016; 6:23837. [PMID: 27040756 PMCID: PMC4819183 DOI: 10.1038/srep23837] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 03/15/2016] [Indexed: 12/28/2022] Open
Abstract
NMDA receptor (NMDAR)-mediated fast excitatory neurotransmission is implicated in a broad range of physiological and pathological processes in the mammalian central nervous system. The function and regulation of NMDARs have been extensively studied in neurons from rodents and other non-human species, and in recombinant expression systems. Here, we investigated human NMDARs in situ by using neurons produced by directed differentiation of human induced pluripotent stem cells (iPSCs). The resultant cells showed electrophysiological characteristics demonstrating that they are bona fide neurons. In particular, human iPSC-derived neurons expressed functional ligand-gated ion channels, including NMDARs, AMPA receptors, GABAA receptors, as well as glycine receptors. Pharmacological and electrophysiological properties of NMDAR-mediated currents indicated that these were dominated by receptors containing GluN2B subunits. The NMDAR currents were suppressed by genistein, a broad-spectrum tyrosine kinase inhibitor. The NMDAR currents were also inhibited by a Fyn-interfering peptide, Fyn(39–57), but not a Src-interfering peptide, Src(40–58). Together, these findings are the first evidence that tyrosine phosphorylation regulates the function of NMDARs in human iPSC-derived neurons. Our findings provide a basis for utilizing human iPSC-derived neurons in screening for drugs targeting NMDARs in neurological disorders.
Collapse
Affiliation(s)
- Wen-Bo Zhang
- Program in Neurosciences &Mental Health, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - P Joel Ross
- Program in Developmental &Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - YuShan Tu
- Program in Neurosciences &Mental Health, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Yongqian Wang
- Program in Neurosciences &Mental Health, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Simon Beggs
- Program in Neurosciences &Mental Health, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Ameet S Sengar
- Program in Neurosciences &Mental Health, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - James Ellis
- Program in Developmental &Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michael W Salter
- Program in Neurosciences &Mental Health, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
372
|
Pritchett D, Taylor AM, Barkus C, Engle SJ, Brandon NJ, Sharp T, Foster RG, Harrison PJ, Peirson SN, Bannerman DM. Searching for cognitive enhancement in the Morris water maze: better and worse performance in D-amino acid oxidase knockout (Dao(-/-)) mice. Eur J Neurosci 2016; 43:979-89. [PMID: 26833794 PMCID: PMC4855640 DOI: 10.1111/ejn.13192] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 12/17/2022]
Abstract
A common strategy when searching for cognitive‐enhancing drugs has been to target the N‐methyl‐d‐aspartate receptor (NMDAR), given its putative role in synaptic plasticity and learning. Evidence in favour of this approach has come primarily from studies with rodents using behavioural assays like the Morris water maze. D‐amino acid oxidase (DAO) degrades neutral D‐amino acids such as D‐serine, the primary endogenous co‐agonist acting at the glycine site of the synaptic NMDAR. Inhibiting DAO could therefore provide an effective and viable means of enhancing cognition, particularly in disorders like schizophrenia, in which NMDAR hypofunction is implicated. Indirect support for this notion comes from the enhanced hippocampal long‐term potentiation and facilitated water maze acquisition of ddY/Dao− mice, which lack DAO activity due to a point mutation in the gene. Here, in Dao knockout (Dao−/−) mice, we report both better and worse water maze performance, depending on the radial distance of the hidden platform from the side wall of the pool. Dao−/− mice displayed an increased innate preference for swimming in the periphery of the maze (possibly due to heightened anxiety), which facilitated the discovery of a peripherally located platform, but delayed the discovery of a centrally located platform. By contrast, Dao−/− mice exhibited normal performance in two alternative assays of long‐term spatial memory: the appetitive and aversive Y‐maze reference memory tasks. Taken together, these results question the proposed relationship between DAO inactivation and enhanced long‐term associative spatial memory. They also have generic implications for how Morris water maze studies are performed and interpreted.
Collapse
Affiliation(s)
- David Pritchett
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Amy M Taylor
- Department of Experimental Psychology, University of Oxford, Tinbergen Building, 9 South Parks Road, Oxford, OX1 3UD, UK
| | | | | | | | - Trevor Sharp
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Russell G Foster
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Paul J Harrison
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| | - Stuart N Peirson
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Tinbergen Building, 9 South Parks Road, Oxford, OX1 3UD, UK
| |
Collapse
|
373
|
Meunier CNJ, Dallérac G, Le Roux N, Sacchi S, Levasseur G, Amar M, Pollegioni L, Mothet JP, Fossier P. D-Serine and Glycine Differentially Control Neurotransmission during Visual Cortex Critical Period. PLoS One 2016; 11:e0151233. [PMID: 27003418 PMCID: PMC4803205 DOI: 10.1371/journal.pone.0151233] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 02/25/2016] [Indexed: 12/18/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) play a central role in synaptic plasticity. Their activation requires the binding of both glutamate and d-serine or glycine as co-agonist. The prevalence of either co-agonist on NMDA-receptor function differs between brain regions and remains undetermined in the visual cortex (VC) at the critical period of postnatal development. Here, we therefore investigated the regulatory role that d-serine and/or glycine may exert on NMDARs function and on synaptic plasticity in the rat VC layer 5 pyramidal neurons of young rats. Using selective enzymatic depletion of d-serine or glycine, we demonstrate that d-serine and not glycine is the endogenous co-agonist of synaptic NMDARs required for the induction and expression of Long Term Potentiation (LTP) at both excitatory and inhibitory synapses. Glycine on the other hand is not involved in synaptic efficacy per se but regulates excitatory and inhibitory neurotransmission by activating strychnine-sensitive glycine receptors, then producing a shunting inhibition that controls neuronal gain and results in a depression of synaptic inputs at the somatic level after dendritic integration. In conclusion, we describe for the first time that in the VC both D-serine and glycine differentially regulate somatic depolarization through the activation of distinct synaptic and extrasynaptic receptors.
Collapse
Affiliation(s)
- Claire N. J. Meunier
- Institut de Neuroscience Paris-Saclay (NeuroPSI), UMR 9197 CNRS-Université Paris-Sud, Bât 446, F-91405, Orsay cedex, France
| | - Glenn Dallérac
- Aix-Marseille University, CRN2M UMR7286 CNRS, 51 Bd Pierre Dramard, 13344, Marseille, France
| | - Nicolas Le Roux
- Institut de Neuroscience Paris-Saclay (NeuroPSI), UMR 9197 CNRS-Université Paris-Sud, Bât 446, F-91405, Orsay cedex, France
| | - Silvia Sacchi
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell’Insubria, via J.H. Dunant 3, Varese, Italy
- “The Protein Factory”, Centro Interuniversitario di Biotecnologie Proteiche, Politecnico di Milano, ICRM-CNR, Milano, Italy
- Università degli Studi dell’Insubria, via Mancinelli 7, Milano, Italy
| | - Grégoire Levasseur
- Aix-Marseille University, CRN2M UMR7286 CNRS, 51 Bd Pierre Dramard, 13344, Marseille, France
| | - Muriel Amar
- Institut de Neuroscience Paris-Saclay (NeuroPSI), UMR 9197 CNRS-Université Paris-Sud, Bât 446, F-91405, Orsay cedex, France
| | - Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell’Insubria, via J.H. Dunant 3, Varese, Italy
- “The Protein Factory”, Centro Interuniversitario di Biotecnologie Proteiche, Politecnico di Milano, ICRM-CNR, Milano, Italy
- Università degli Studi dell’Insubria, via Mancinelli 7, Milano, Italy
| | - Jean-Pierre Mothet
- Aix-Marseille University, CRN2M UMR7286 CNRS, 51 Bd Pierre Dramard, 13344, Marseille, France
- * E-mail: (PF); (JPM)
| | - Philippe Fossier
- Institut de Neuroscience Paris-Saclay (NeuroPSI), UMR 9197 CNRS-Université Paris-Sud, Bât 446, F-91405, Orsay cedex, France
- * E-mail: (PF); (JPM)
| |
Collapse
|
374
|
Dallérac G, Rouach N. Astrocytes as new targets to improve cognitive functions. Prog Neurobiol 2016; 144:48-67. [PMID: 26969413 DOI: 10.1016/j.pneurobio.2016.01.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/07/2016] [Accepted: 01/24/2016] [Indexed: 01/09/2023]
Abstract
Astrocytes are now viewed as key elements of brain wiring as well as neuronal communication. Indeed, they not only bridge the gap between metabolic supplies by blood vessels and neurons, but also allow fine control of neurotransmission by providing appropriate signaling molecules and insulation through a tight enwrapping of synapses. Recognition that astroglia is essential to neuronal communication is nevertheless fairly recent and the large body of evidence dissecting such role has focused on the synaptic level by identifying neuro- and gliotransmitters uptaken and released at synaptic or extrasynaptic sites. Yet, more integrated research deciphering the impact of astroglial functions on neuronal network activity have led to the reasonable assumption that the role of astrocytes in supervising synaptic activity translates in influencing neuronal processing and cognitive functions. Several investigations using recent genetic tools now support this notion by showing that inactivating or boosting astroglial function directly affects cognitive abilities. Accordingly, brain diseases resulting in impaired cognitive functions have seen their physiopathological mechanisms revisited in light of this primary protagonist of brain processing. We here provide a review of the current knowledge on the role of astrocytes in cognition and in several brain diseases including neurodegenerative disorders, psychiatric illnesses, as well as other conditions such as epilepsy. Potential astroglial therapeutic targets are also discussed.
Collapse
Affiliation(s)
- Glenn Dallérac
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University, Paris, France.
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University, Paris, France.
| |
Collapse
|
375
|
The NMDA Receptor and Schizophrenia: From Pathophysiology to Treatment. ADVANCES IN PHARMACOLOGY 2016; 76:351-82. [PMID: 27288082 DOI: 10.1016/bs.apha.2016.01.006] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Schizophrenia is a severe mental illness that affects almost 1% of the population worldwide. Even though the etiology of schizophrenia is uncertain, it is believed to be a neurodevelopmental disorder that results from a combination of environmental insults and genetic vulnerabilities. Over the past 20 years, there has been a confluence of evidence from many research disciplines pointing to alterations in excitatory signaling, particularly involving hypofunction of the N-methyl-d-aspartate receptor (NMDAR), as a key contributor to the schizophrenia disease process. This review describes the structure-function relationship of the NMDAR channel and how the glycine modulatory site acts as an important regulator of its activity. In addition, this review highlights the genetic, pharmacologic, and biochemical evidence supporting the hypothesis that NMDAR hypofunction contributes to the pathophysiology of schizophrenia. Finally, this chapter highlights some of the most recent and promising pharmacological strategies that are designed to either, directly or indirectly, augment NMDAR function in an effort to treat the cognitive and negative symptoms of schizophrenia that are not helped by currently available medications.
Collapse
|
376
|
Lin H, Jacobi AA, Anderson SA, Lynch DR. D-Serine and Serine Racemase Are Associated with PSD-95 and Glutamatergic Synapse Stability. Front Cell Neurosci 2016; 10:34. [PMID: 26941605 PMCID: PMC4766304 DOI: 10.3389/fncel.2016.00034] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/31/2016] [Indexed: 12/20/2022] Open
Abstract
D-serine is an endogenous coagonist at the glycine site of synaptic NMDA receptors (NMDARs), synthesized by serine racemase (SR) through conversion of L-serine. It is crucial for synaptic plasticity and is implicated in schizophrenia. Our previous studies demonstrated specific loss of SR, D-serine-responsive synaptic NMDARs, and glutamatergic synapses in cortical neurons lacking α7 nicotinic acetylcholine receptors, which promotes glutamatergic synapse formation and maturation during development. We thus hypothesize that D-serine and SR (D-serine/SR) are associated with glutamatergic synaptic development. Using morphological and molecular studies in cortical neuronal cultures, we demonstrate that D-serine/SR are associated with PSD-95 and NMDARs in postsynaptic neurons and with glutamatergic synapse stability during synaptic development. Endogenous D-serine and SR colocalize with PSD-95, but not presynaptic vesicular glutamate transporter 1 (VGLUT1), in glutamatergic synapses of cultured cortical neurons. Low-density astrocytes in cortical neuronal cultures lack SR expression but contain enriched D-serine in large vesicle-like structures, suggesting possible synthesis of D-serine in postsynaptic neurons and storage in astrocytes. More interestingly, endogenous D-serine and SR colocalize with PSD-95 in the postsynaptic terminals of glutamatergic synapses during early and late synaptic development, implicating involvement of D-serine/SR in glutamatergic synaptic development. Exogenous application of D-serine enhances the interactions of SR with PSD-95 and NR1, and increases the number of VGLUT1- and PSD-95-positive glutamatergic synapses, suggesting that exogenous D-serine enhances postsynaptic SR/PSD-95 signaling and stabilizes glutamatergic synapses during cortical synaptic development. This is blocked by NMDAR antagonist 2-amino-5-phosphonopentanoic acid (AP5) and 7-chlorokynurenic acid (7-CK), a specific antagonist at the glycine site of NMDARs, demonstrating that D-serine effects are mediated through postsynaptic NMDARs. Conversely, exogenous application of glycine has no such effects, suggesting D-serine, rather than glycine, modulates postsynaptic events. Taken together, our findings demonstrate that D-serine/SR are associated with PSD-95 and NMDARs in postsynaptic neurons and with glutamatergic synapse stability during synaptic development, implicating D-serine/SR as regulators of cortical synaptic and circuit development.
Collapse
Affiliation(s)
- Hong Lin
- Department of Pediatrics and Neurology, The Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - Ariel A Jacobi
- Department of Pediatrics and Neurology, The Children's Hospital of PhiladelphiaPhiladelphia, PA, USA; University of Pennsylvania School of Arts and SciencesPhiladelphia, PA, USA
| | - Stewart A Anderson
- Department of Child and Adolescent Psychiatry and Behavioral Services, The Children's Hospital of PhiladelphiaPhiladelphia, PA, USA; University of Pennsylvania Perelman School of MedicinePhiladelphia, PA, USA
| | - David R Lynch
- Department of Pediatrics and Neurology, The Children's Hospital of PhiladelphiaPhiladelphia, PA, USA; University of Pennsylvania Perelman School of MedicinePhiladelphia, PA, USA
| |
Collapse
|
377
|
Sershen H, Hashim A, Dunlop DS, Suckow RF, Cooper TB, Javitt DC. Modulating NMDA Receptor Function with D-Amino Acid Oxidase Inhibitors: Understanding Functional Activity in PCP-Treated Mouse Model. Neurochem Res 2016; 41:398-408. [PMID: 26857796 DOI: 10.1007/s11064-016-1838-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 01/14/2016] [Accepted: 01/17/2016] [Indexed: 02/07/2023]
Abstract
Deficits in N-methyl-D-aspartate receptor (NMDAR) function are increasingly linked to persistent negative symptoms and cognitive deficits in schizophrenia. Accordingly, clinical studies have been targeting the modulatory site of the NMDA receptor, based on the decreased function of NMDA receptor, to see whether increasing NMDA function can potentially help treat the negative and cognitive deficits seen in the disease. Glycine and D-serine are endogenous ligands to the NMDA modulatory site, but since high doses are needed to affect brain levels, related compounds are being developed, for example glycine transport (GlyT) inhibitors to potentially elevate brain glycine or targeting enzymes, such as D-amino acid oxidase (DAAO) to slow the breakdown and increase the brain level of D-serine. In the present study we further evaluated the effect of DAAO inhibitors 5-chloro-benzo[d]isoxazol-3-ol (CBIO) and sodium benzoate (NaB) in a phencyclidine (PCP) rodent mouse model to see if the inhibitors affect PCP-induced locomotor activity, alter brain D-serine level, and thereby potentially enhance D-serine responses. D-Serine dose-dependently reduced the PCP-induced locomotor activity at doses above 1000 mg/kg. Acute CBIO (30 mg/kg) did not affect PCP-induced locomotor activity, but appeared to reduce locomotor activity when given with D-serine (600 mg/kg); a dose that by itself did not have an effect. However, the effect was also present when the vehicle (Trappsol(®)) was tested with D-serine, suggesting that the reduction in locomotor activity was not related to DAAO inhibition, but possibly reflected enhanced bioavailability of D-serine across the blood brain barrier related to the vehicle. With this acute dose of CBIO, D-serine level in brain and plasma were not increased. Another weaker DAAO inhibitor NaB (400 mg/kg), and NaB plus D-serine also significantly reduced PCP-induced locomotor activity, but without affecting plasma or brain D-serine level, arguing against a DAAO-mediated effect. However, NaB reduced plasma L-serine and based on reports that NaB also elevates various plasma metabolites, for example aminoisobutyric acid (AIB), a potential effect via the System A amino acid carrier may be involved in the regulation of synaptic glycine level to modulate NMDAR function needs to be investigated. Acute ascorbic acid (300 mg/kg) also inhibited PCP-induced locomotor activity, which was further attenuated in the presence of D-serine (600 mg/kg). Ascorbic acid may have an action at the dopamine membrane carrier and/or altering redox mechanisms that modulate NMDARs, but this needs to be further investigated. The findings support an effect of D-serine on PCP-induced hyperactivity. They also offer suggestions on an interaction of NaB via an unknown mechanism, other than DAAO inhibition, perhaps through metabolomic changes, and find unexpected synergy between D-serine and ascorbic acid that supports combined NMDA glycine- and redox-site intervention. Although mechanisms of these specific agents need to be determined, overall it supports continued glutamatergic drug development.
Collapse
Affiliation(s)
- Henry Sershen
- Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA. .,NYU Langone Medical Center, Department of Psychiatry, New York, NY, 10016, USA.
| | - Audrey Hashim
- Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA
| | - David S Dunlop
- Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA
| | - Raymond F Suckow
- Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA.,New York State Psychiatric Institute, 1051 Riverside Dr., New York, NY, 10032, USA
| | - Tom B Cooper
- Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA.,New York State Psychiatric Institute, 1051 Riverside Dr., New York, NY, 10032, USA
| | - Daniel C Javitt
- Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA. .,Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA.
| |
Collapse
|
378
|
Li Y, Sun W, Han S, Li J, Ding S, Wang W, Yin Y. IGF-1-Involved Negative Feedback of NR2B NMDA Subunits Protects Cultured Hippocampal Neurons Against NMDA-Induced Excitotoxicity. Mol Neurobiol 2016; 54:684-696. [DOI: 10.1007/s12035-015-9647-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 12/16/2015] [Indexed: 11/28/2022]
|
379
|
Kiriyama Y, Nochi H. D-Amino Acids in the Nervous and Endocrine Systems. SCIENTIFICA 2016; 2016:6494621. [PMID: 28053803 PMCID: PMC5178360 DOI: 10.1155/2016/6494621] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/14/2016] [Indexed: 05/12/2023]
Abstract
Amino acids are important components for peptides and proteins and act as signal transmitters. Only L-amino acids have been considered necessary in mammals, including humans. However, diverse D-amino acids, such as D-serine, D-aspartate, D-alanine, and D-cysteine, are found in mammals. Physiological roles of these D-amino acids not only in the nervous system but also in the endocrine system are being gradually revealed. N-Methyl-D-aspartate (NMDA) receptors are associated with learning and memory. D-Serine, D-aspartate, and D-alanine can all bind to NMDA receptors. H2S generated from D-cysteine reduces disulfide bonds in receptors and potentiates their activity. Aberrant receptor activity is related to diseases of the central nervous system (CNS), such as Alzheimer's disease, amyotrophic lateral sclerosis, and schizophrenia. Furthermore, D-amino acids are detected in parts of the endocrine system, such as the pineal gland, hypothalamus, pituitary gland, pancreas, adrenal gland, and testis. D-Aspartate is being investigated for the regulation of hormone release from various endocrine organs. Here we focused on recent findings regarding the synthesis and physiological functions of D-amino acids in the nervous and endocrine systems.
Collapse
Affiliation(s)
- Yoshimitsu Kiriyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki, Kagawa 769-2193, Japan
| | - Hiromi Nochi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki, Kagawa 769-2193, Japan
- *Hiromi Nochi:
| |
Collapse
|
380
|
Banerjee A, Larsen RS, Philpot BD, Paulsen O. Roles of Presynaptic NMDA Receptors in Neurotransmission and Plasticity. Trends Neurosci 2015; 39:26-39. [PMID: 26726120 DOI: 10.1016/j.tins.2015.11.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/30/2015] [Accepted: 11/10/2015] [Indexed: 01/01/2023]
Abstract
Presynaptic NMDA receptors (preNMDARs) play pivotal roles in excitatory neurotransmission and synaptic plasticity. They facilitate presynaptic neurotransmitter release and modulate mechanisms controlling synaptic maturation and plasticity during formative periods of brain development. There is an increasing understanding of the roles of preNMDARs in experience-dependent synaptic and circuit-specific computation. In this review we summarize the latest understanding of compartment-specific expression and function of preNMDARs, and how they contribute to synapse-specific and circuit-level information processing.
Collapse
Affiliation(s)
- Abhishek Banerjee
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Benjamin D Philpot
- Department of Cell Biology and Physiology, Neuroscience Center, and Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA.
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
381
|
Stanic J, Carta M, Eberini I, Pelucchi S, Marcello E, Genazzani AA, Racca C, Mulle C, Di Luca M, Gardoni F. Rabphilin 3A retains NMDA receptors at synaptic sites through interaction with GluN2A/PSD-95 complex. Nat Commun 2015; 6:10181. [PMID: 26679993 PMCID: PMC4703873 DOI: 10.1038/ncomms10181] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 11/12/2015] [Indexed: 11/19/2022] Open
Abstract
NMDA receptor (NMDAR) composition and synaptic retention represent pivotal features in the physiology and pathology of excitatory synapses. Here, we identify Rabphilin 3A (Rph3A) as a new GluN2A subunit-binding partner. Rph3A is known as a synaptic vesicle-associated protein involved in the regulation of exo- and endocytosis processes at presynaptic sites. We find that Rph3A is enriched at dendritic spines. Protein-protein interaction assays reveals that Rph3A N-terminal domain interacts with GluN2A(1349-1389) as well as with PSD-95(PDZ3) domains, creating a ternary complex. Rph3A silencing in neurons reduces the surface localization of synaptic GluN2A and NMDAR currents. Moreover, perturbing GluN2A/Rph3A interaction with interfering peptides in organotypic slices or in vivo induces a decrease of the amplitude of NMDAR-mediated currents and GluN2A density at dendritic spines. In conclusion, Rph3A interacts with GluN2A and PSD-95 forming a complex that regulates NMDARs stabilization at postsynaptic membranes.
Collapse
Affiliation(s)
- Jennifer Stanic
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, Milano 20133, Italy
| | - Mario Carta
- Institut Interdisciplinaire de Neurosciences, University of Bordeaux, CNRS UMR 5297, Bordeaux 33000, France
| | - Ivano Eberini
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, Milano 20133, Italy
| | - Silvia Pelucchi
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, Milano 20133, Italy
| | - Elena Marcello
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, Milano 20133, Italy
| | - Armando A. Genazzani
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale ‘Amedeo Avogadro', Novara 28100, Italy
| | - Claudia Racca
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Christophe Mulle
- Institut Interdisciplinaire de Neurosciences, University of Bordeaux, CNRS UMR 5297, Bordeaux 33000, France
| | - Monica Di Luca
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, Milano 20133, Italy
| | - Fabrizio Gardoni
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, Milano 20133, Italy
| |
Collapse
|
382
|
Lewerenz J, Maher P. Chronic Glutamate Toxicity in Neurodegenerative Diseases-What is the Evidence? Front Neurosci 2015; 9:469. [PMID: 26733784 PMCID: PMC4679930 DOI: 10.3389/fnins.2015.00469] [Citation(s) in RCA: 502] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/24/2015] [Indexed: 12/13/2022] Open
Abstract
Together with aspartate, glutamate is the major excitatory neurotransmitter in the brain. Glutamate binds and activates both ligand-gated ion channels (ionotropic glutamate receptors) and a class of G-protein coupled receptors (metabotropic glutamate receptors). Although the intracellular glutamate concentration in the brain is in the millimolar range, the extracellular glutamate concentration is kept in the low micromolar range by the action of excitatory amino acid transporters that import glutamate and aspartate into astrocytes and neurons. Excess extracellular glutamate may lead to excitotoxicity in vitro and in vivo in acute insults like ischemic stroke via the overactivation of ionotropic glutamate receptors. In addition, chronic excitotoxicity has been hypothesized to play a role in numerous neurodegenerative diseases including amyotrophic lateral sclerosis, Alzheimer's disease and Huntington's disease. Based on this hypothesis, a good deal of effort has been devoted to develop and test drugs that either inhibit glutamate receptors or decrease extracellular glutamate. In this review, we provide an overview of the different pathways that are thought to lead to an over-activation of the glutamatergic system and glutamate toxicity in neurodegeneration. In addition, we summarize the available experimental evidence for glutamate toxicity in animal models of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jan Lewerenz
- Department of Neurology, Ulm UniversityUlm, Germany
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological StudiesLa Jolla, CA, USA
| |
Collapse
|
383
|
Fedder KN, Sabo SL. On the Role of Glutamate in Presynaptic Development: Possible Contributions of Presynaptic NMDA Receptors. Biomolecules 2015; 5:3448-66. [PMID: 26694480 PMCID: PMC4693286 DOI: 10.3390/biom5043448] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/22/2015] [Accepted: 11/26/2015] [Indexed: 12/23/2022] Open
Abstract
Proper formation and maturation of synapses during development is a crucial step in building the functional neural circuits that underlie perception and behavior. It is well established that experience modifies circuit development. Therefore, understanding how synapse formation is controlled by synaptic activity is a key question in neuroscience. In this review, we focus on the regulation of excitatory presynaptic terminal development by glutamate, the predominant excitatory neurotransmitter in the brain. We discuss the evidence that NMDA receptor activation mediates these effects of glutamate and present the hypothesis that local activation of presynaptic NMDA receptors (preNMDARs) contributes to glutamate-dependent control of presynaptic development. Abnormal glutamate signaling and aberrant synapse development are both thought to contribute to the pathogenesis of a variety of neurodevelopmental disorders, including autism spectrum disorders, intellectual disability, epilepsy, anxiety, depression, and schizophrenia. Therefore, understanding how glutamate signaling and synapse development are linked is important for understanding the etiology of these diseases.
Collapse
Affiliation(s)
- Karlie N Fedder
- Departments of Pharmacology and Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Shasta L Sabo
- Departments of Pharmacology and Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
384
|
Pál B. Astrocytic Actions on Extrasynaptic Neuronal Currents. Front Cell Neurosci 2015; 9:474. [PMID: 26696832 PMCID: PMC4673305 DOI: 10.3389/fncel.2015.00474] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/20/2015] [Indexed: 01/23/2023] Open
Abstract
In the last few decades, knowledge about astrocytic functions has significantly increased. It was demonstrated that astrocytes are not passive elements of the central nervous system (CNS), but active partners of neurons. There is a growing body of knowledge about the calcium excitability of astrocytes, the actions of different gliotransmitters and their release mechanisms, as well as the participation of astrocytes in the regulation of synaptic functions and their contribution to synaptic plasticity. However, astrocytic functions are even more complex than being a partner of the “tripartite synapse,” as they can influence extrasynaptic neuronal currents either by releasing substances or regulating ambient neurotransmitter levels. Several types of currents or changes of membrane potential with different kinetics and via different mechanisms can be elicited by astrocytic activity. Astrocyte-dependent phasic or tonic, inward or outward currents were described in several brain areas. Such currents, together with the synaptic actions of astrocytes, can contribute to neuromodulatory mechanisms, neurosensory and -secretory processes, cortical oscillatory activity, memory, and learning or overall neuronal excitability. This mini-review is an attempt to give a brief summary of astrocyte-dependent extrasynaptic neuronal currents and their possible functional significance.
Collapse
Affiliation(s)
- Balázs Pál
- Department of Physiology, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| |
Collapse
|
385
|
Errico F, Mothet JP, Usiello A. d-Aspartate: An endogenous NMDA receptor agonist enriched in the developing brain with potential involvement in schizophrenia. J Pharm Biomed Anal 2015; 116:7-17. [DOI: 10.1016/j.jpba.2015.03.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/11/2015] [Accepted: 03/23/2015] [Indexed: 12/14/2022]
|
386
|
Genome-wide association study of NMDA receptor coagonists in human cerebrospinal fluid and plasma. Mol Psychiatry 2015; 20:1557-64. [PMID: 25666758 DOI: 10.1038/mp.2014.190] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/05/2014] [Accepted: 12/08/2014] [Indexed: 01/13/2023]
Abstract
The N-methyl-D-aspartate receptor (NMDAR) coagonists glycine, D-serine and L-proline play crucial roles in NMDAR-dependent neurotransmission and are associated with a range of neuropsychiatric disorders. We conducted the first genome-wide association study of concentrations of these coagonists and their enantiomers in plasma and cerebrospinal fluid (CSF) of human subjects from the general population (N=414). Genetic variants at chromosome 22q11.2, located in and near PRODH (proline dehydrogenase), were associated with L-proline in plasma (β=0.29; P=6.38 × 10(-10)). The missense variant rs17279437 in the proline transporter SLC6A20 was associated with L-proline in CSF (β=0.28; P=9.68 × 10(-9)). Suggestive evidence of association was found for the D-serine plasma-CSF ratio at the D-amino-acid oxidase (DAO) gene (β=-0.28; P=9.08 × 10(-8)), whereas a variant in SRR (that encodes serine racemase and is associated with schizophrenia) constituted the most strongly associated locus for the L-serine to D-serine ratio in CSF. All these genes are highly expressed in rodent meninges and choroid plexus, anatomical regions relevant to CSF physiology. The enzymes and transporters they encode may be targeted to further construe the nature of NMDAR coagonist involvement in NMDAR gating. Furthermore, the highlighted genetic variants may be followed up in clinical populations, for example, schizophrenia and 22q11 deletion syndrome. Overall, this targeted metabolomics approach furthers the understanding of NMDAR coagonist concentration variability and sets the stage for non-targeted CSF metabolomics projects.
Collapse
|
387
|
Bouvier G, Bidoret C, Casado M, Paoletti P. Presynaptic NMDA receptors: Roles and rules. Neuroscience 2015; 311:322-40. [DOI: 10.1016/j.neuroscience.2015.10.033] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/18/2015] [Accepted: 10/19/2015] [Indexed: 01/03/2023]
|
388
|
Heller JP, Rusakov DA. Morphological plasticity of astroglia: Understanding synaptic microenvironment. Glia 2015; 63:2133-51. [PMID: 25782611 PMCID: PMC4737250 DOI: 10.1002/glia.22821] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 03/02/2015] [Indexed: 12/27/2022]
Abstract
Memory formation in the brain is thought to rely on the remodeling of synaptic connections which eventually results in neural network rewiring. This remodeling is likely to involve ultrathin astroglial protrusions which often occur in the immediate vicinity of excitatory synapses. The phenomenology, cellular mechanisms, and causal relationships of such astroglial restructuring remain, however, poorly understood. This is in large part because monitoring and probing of the underpinning molecular machinery on the scale of nanoscopic astroglial compartments remains a challenge. Here we briefly summarize the current knowledge regarding the cellular organisation of astroglia in the synaptic microenvironment and discuss molecular mechanisms potentially involved in use-dependent astroglial morphogenesis. We also discuss recent observations concerning morphological astroglial plasticity, the respective monitoring methods, and some of the newly emerging techniques that might help with conceptual advances in the area.
Collapse
Affiliation(s)
- Janosch P Heller
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Dmitri A Rusakov
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, Queen Square, London, United Kingdom
| |
Collapse
|
389
|
Muniz BG, Isokawa M. Ghrelin receptor activity amplifies hippocampal N-methyl-d-aspartate receptor-mediated postsynaptic currents and increases phosphorylation of the GluN1 subunit at Ser896 and Ser897. Eur J Neurosci 2015; 42:3045-53. [PMID: 26490687 DOI: 10.1111/ejn.13107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 12/31/2022]
Abstract
Although ghrelin and its cognate receptor growth hormone secretagogue receptor (GHSR1a) are highly localized in the hypothalamic nuclei for the regulation of metabolic states and feeding, GHSR1a is also highly localized in the hippocampus, suggesting its involvement in extra-hypothalamic functions. Indeed, exogenous application of ghrelin has been reported to improve hippocampal learning and memory. However, the underlying mechanism of ghrelin regulation of hippocampal functions is poorly understood. Here, we report ghrelin-promoted phosphorylation of GluN1 and amplified N-methyl-d-aspartate receptor (NMDAR)-mediated excitatory postsynaptic currents in the CA1 pyramidal cells of the hippocampus in slice preparations. The ghrelin-induced responses were sensitive to a GHSR1a antagonist and inverse agonist, and were absent in GHSR1a homozygous knock-out mice. These results indicated that activation of GHSR1a was critical in the ghrelin-induced enhancement of the NMDAR function. Interestingly, heterozygous mouse hippocampi were also insensitive to ghrelin treatment, suggesting that a slight reduction in the availability of GHSR1a may be sufficient to negate the effect of ghrelin on GluN1 phosphorylation and NMDAR channel activities. In addition, NMDAR-mediated spike currents, which are of dendritic origin, were blocked by the GHSR1a antagonist, suggesting the presence of GHSR1a on the pyramidal cell dendrites in physical proximity to NMDAR. Together with our findings on the localization of GHSR1a in the CA1 region of the hippocampus, which was shown by fluorescent ghrelin binding, immunoreactivity, and enhanced green fluorescent protein reporter gene expression, we conclude that the activation of GHSR1a favours rapid modulation of the NMDAR-mediated glutamatergic synaptic transmission by phosphorylating GluN1 in the hippocampus.
Collapse
Affiliation(s)
- Brandon G Muniz
- Department of Health and Biomedical Sciences, The University of Texas Rio Grande Valley, One West University Boulevard, Brownsville, TX, 78520, USA
| | - Masako Isokawa
- Department of Health and Biomedical Sciences, The University of Texas Rio Grande Valley, One West University Boulevard, Brownsville, TX, 78520, USA
| |
Collapse
|
390
|
Jiang H, Wang X, Zhang H, Chang Y, Feng M, Wu S. Loss-of-function mutation of serine racemase attenuates excitotoxicity by intravitreal injection of N
-methyl-D-aspartate. J Neurochem 2015; 136:186-93. [PMID: 26485193 DOI: 10.1111/jnc.13400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/07/2015] [Accepted: 10/12/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Haiyan Jiang
- School of Optometry and Ophthalmology and the Eye Hospital; Wenzhou Medical University; Wenzhou Zhejiang China
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science; Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry; Wenzhou Zhejiang China
| | - Xianwei Wang
- School of Optometry and Ophthalmology and the Eye Hospital; Wenzhou Medical University; Wenzhou Zhejiang China
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science; Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry; Wenzhou Zhejiang China
| | - He Zhang
- School of Optometry and Ophthalmology and the Eye Hospital; Wenzhou Medical University; Wenzhou Zhejiang China
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science; Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry; Wenzhou Zhejiang China
| | - Yuhua Chang
- School of Optometry and Ophthalmology and the Eye Hospital; Wenzhou Medical University; Wenzhou Zhejiang China
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science; Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry; Wenzhou Zhejiang China
| | - Meiling Feng
- School of Optometry and Ophthalmology and the Eye Hospital; Wenzhou Medical University; Wenzhou Zhejiang China
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science; Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry; Wenzhou Zhejiang China
| | - Shengzhou Wu
- School of Optometry and Ophthalmology and the Eye Hospital; Wenzhou Medical University; Wenzhou Zhejiang China
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science; Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry; Wenzhou Zhejiang China
| |
Collapse
|
391
|
Köles L, Kató E, Hanuska A, Zádori ZS, Al-Khrasani M, Zelles T, Rubini P, Illes P. Modulation of excitatory neurotransmission by neuronal/glial signalling molecules: interplay between purinergic and glutamatergic systems. Purinergic Signal 2015; 12:1-24. [PMID: 26542977 DOI: 10.1007/s11302-015-9480-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/26/2015] [Indexed: 12/29/2022] Open
Abstract
Glutamate is the main excitatory neurotransmitter of the central nervous system (CNS), released both from neurons and glial cells. Acting via ionotropic (NMDA, AMPA, kainate) and metabotropic glutamate receptors, it is critically involved in essential regulatory functions. Disturbances of glutamatergic neurotransmission can be detected in cognitive and neurodegenerative disorders. This paper summarizes the present knowledge on the modulation of glutamate-mediated responses in the CNS. Emphasis will be put on NMDA receptor channels, which are essential executive and integrative elements of the glutamatergic system. This receptor is crucial for proper functioning of neuronal circuits; its hypofunction or overactivation can result in neuronal disturbances and neurotoxicity. Somewhat surprisingly, NMDA receptors are not widely targeted by pharmacotherapy in clinics; their robust activation or inhibition seems to be desirable only in exceptional cases. However, their fine-tuning might provide a promising manipulation to optimize the activity of the glutamatergic system and to restore proper CNS function. This orchestration utilizes several neuromodulators. Besides the classical ones such as dopamine, novel candidates emerged in the last two decades. The purinergic system is a promising possibility to optimize the activity of the glutamatergic system. It exerts not only direct and indirect influences on NMDA receptors but, by modulating glutamatergic transmission, also plays an important role in glia-neuron communication. These purinergic functions will be illustrated mostly by depicting the modulatory role of the purinergic system on glutamatergic transmission in the prefrontal cortex, a CNS area important for attention, memory and learning.
Collapse
Affiliation(s)
- László Köles
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary.
| | - Erzsébet Kató
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Adrienn Hanuska
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Patrizia Rubini
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany
| | - Peter Illes
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany.
| |
Collapse
|
392
|
Papouin T, Oliet SHR. Organization, control and function of extrasynaptic NMDA receptors. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130601. [PMID: 25225095 DOI: 10.1098/rstb.2013.0601] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
N-methyl D-aspartate receptors (NMDARs) exist in different forms owing to multiple combinations of subunits that can assemble into a functional receptor. In addition, they are located not only at synapses but also at extrasynaptic sites. There has been intense speculation over the past decade about whether specific NMDAR subtypes and/or locations are responsible for inducing synaptic plasticity and excitotoxicity. Here, we review the latest findings on the organization, subunit composition and endogenous control of NMDARs at extrasynaptic sites and consider their putative functions. Because astrocytes are capable of controlling NMDARs through the release of gliotransmitters, we also discuss the role of the glial environment in regulating the activity of these receptors.
Collapse
Affiliation(s)
- Thomas Papouin
- Neuroscience Department, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Stéphane H R Oliet
- Neurocentre Magendie, Inserm U862, Bordeaux, France Université de Bordeaux, Bordeaux, France
| |
Collapse
|
393
|
Facilitated glutamate release at Schaffer collateral to CA1 synapses has access to an exclusive population of NMDA receptors. Brain Res 2015; 1622:22-35. [PMID: 26100337 DOI: 10.1016/j.brainres.2015.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/18/2015] [Accepted: 06/09/2015] [Indexed: 11/24/2022]
Abstract
In order to explore short-term facilitation of the Schaffer collateral to CA1 synapse in mouse hippocampal brain slices, we measured the time course of the decay of the peak amplitude of successive EPSCs during progressive MK-801-dependent block (PMDB) of NMDAR responses to paired (R1 and R2) stimuli. We made the unexpected observation that the R2 response exhibited a slower PMDB decay constant than that of the R1 response. This indicated that the facilitated R2 response engages release sites with NMDARs that are protected from opening and consequent MK-801 block during the basal R1 response. We then utilized conditions that affect synaptic glutamate distribution to dissect the components of the distinct PMDB decay constants of the first and second of paired pulses. While extra-synaptic NMDARs and glutamate transporters appear to play only minor roles in the differences of the PMDB decay constant, we showed important roles for the R1 response itself and for glutamate diffusion in determining the PMDB decay constant of R2. We used a simple computational model with realistic parameters that allowed us to predict the time course of R2 decay based on the R1 decay time course.
Collapse
|
394
|
Some Operational Characteristics of Glycine Release in Rat Retina: The Role of Reverse Mode Operation of Glycine Transporter Type-1 (GlyT-1) in Ischemic Conditions. Neurochem Res 2015; 41:73-85. [PMID: 26364050 DOI: 10.1007/s11064-015-1713-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/26/2015] [Accepted: 08/28/2015] [Indexed: 10/23/2022]
Abstract
Rat posterior eyecups containing the retina were prepared, loaded with [(3)H]glycine and superfused in order to determine its release originated from glycinergic amacrine cells and/or glial cells. Deprivation of oxygen and glucose from the Krebs-bicarbonate buffer used for superfusion evoked a marked increase of [(3)H]glycine release, an effect that was found to be external Ca(2+)-independent. Whereas oxygen and glucose deprivation increased [(3)H]glycine release, its uptake was reduced suggesting that energy deficiency shifts glycine transporter type-1 operation from normal to reverse mode. The increased release of [(3)H]glycine evoked by oxygen and glucose deprivation was suspended by addition of the non-competitive glycine transporter type-1 inhibitor NFPS and the competitive inhibitor ACPPB further suggesting the involvement of this transporter in the mediation of [(3)H]glycine release. Oxygen and glucose deprivation also evoked [(3)H]glutamate release from rat retina and the concomitantly occurring release of the NMDA receptor agonist glutamate and the coagonist glycine makes NMDA receptor pathological overstimulation possible in hypoxic conditions. [(3)H]Glutamate release was suspended by addition of the excitatory amino acid transporter inhibitor TBOA. Sarcosine, a substrate inhibitor of glycine transporter type-1, also increased [(3)H]glycine release probably by heteroexchange shifting transporter operation into reverse mode. This effect of sarcosine was also external Ca(2+)-independent and could be suspended by NFPS. Energy deficiency in retina induced by ouabain, an inhibitor of the Na(+)-K(+)-dependent ATPase, and by rotenone, a mitochondrial complex I inhibitor added with the glycolytic inhibitor 2-deoxy-D-glucose, led to increase of retinal [(3)H]glycine efflux. These effects of ouabain and rotenone/2-deoxy-D-glucose could also be blocked by NFPS pointed to the preferential reverse mode operation of glycine transporter type-1 as a consequence of impaired cellular energy homeostasis. Immunohistochemical studies revealed that glycine transporter type-1, of which reverse mode operation assures [(3)H]glycine release, is expressed in amacrine cells in the inner nuclear and plexiform layers of the retina and also in Müller macroglia cells. We conclude that disruption of the balanced normal/reverse mode operation of glycine transporter type-1 is likely a significant factor contributing to neurotoxic processes of the retina. The possibility to inhibit glycine transporter type-1 mediated glycine efflux by drugs more potently than glycine uptake might offer some therapeutic potential for the treatment of various neurodegenerative disorders of the retina.
Collapse
|
395
|
Pittenger C. Glutamatergic agents for OCD and related disorders. CURRENT TREATMENT OPTIONS IN PSYCHIATRY 2015; 2:271-283. [PMID: 26301176 PMCID: PMC4540409 DOI: 10.1007/s40501-015-0051-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pharmacotherapy remains inadequate for many patients with OCD; there is an urgent need for alternative pharmacological strategies. Convergent evidence suggests imbalance in glutamate, the brain's primary excitatory neurotransmitter, in some patients. This has motivated interest in glutamate modulators in patients who are unresponsive to standard pharmacotherapeutic approaches. While no glutamate modulator can be considered proven as an efficacious treatment of OCD, promising suggestions of benefit have been reported for memantine and riluzole. The evidence is thinner for N-acetylcysteine, but this agent's low cost and benign side effect profile make it a reasonable consideration in certain patients. Intriguing research on D-cycloserine and ketamine suggest potential benefit as well. It is notable that these agents all work by different, and in some cases opposite, mechanisms; this suggests that we have much to learn about the role of glutamate dysregulation in the etiology of OCD, and of glutamate modulators in its treatment.
Collapse
Affiliation(s)
- Christopher Pittenger
- Child Study Center Yale University 34 Park Street, W315 New Haven, CT 06519 203-974-7675 (phone) 203-974-7805 (fax)
| |
Collapse
|
396
|
Terry-Lorenzo RT, Masuda K, Sugao K, Fang QK, Orsini MA, Sacchi S, Pollegioni L. High-Throughput Screening Strategy Identifies Allosteric, Covalent Human D-Amino Acid Oxidase Inhibitor. ACTA ACUST UNITED AC 2015; 20:1218-31. [DOI: 10.1177/1087057115600413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/21/2015] [Indexed: 01/14/2023]
Abstract
Genome-wide association studies have linked polymorphisms in the gene G72 to schizophrenia risk in several human populations. Although controversial, biochemical experiments have suggested that the mechanistic link of G72 to schizophrenia is due to the G72 protein product, pLG72, exerting a regulatory effect on human D-amino acid oxidase (hDAAO) activity. In an effort to identify hDAAO inhibitors of novel mechanism of action, we designed a pLG72-directed hDAAO activity assay suitable for high-throughput screening (HTS). During assay development, we confirmed that pLG72 was an inhibitor of hDAAO. Thus, our assay employed an IC20 pLG72 concentration that was high enough to allow dynamic pLG72-hDAAO complexes to form but with sufficient remaining hDAAO activity to measure during an HTS. After conducting an approximately 150,000-compound HTS, we further characterized a class of compound hits that were less potent hDAAO inhibitors when pLG72 was present. Focusing primarily on compound 2 [2-(2,5-dimethylphenyl)-6-fluorobenzo[d]isothiazol-3(2H)-on], we demonstrated that these compounds inhibited hDAAO via an allosteric, covalent mechanism. Although there is significant interest in the therapeutic potential of compound 2 and its analogues, their sensitivity to reducing agents and their capacity to bind cysteines covalently would need to be addressed during therapeutic drug development.
Collapse
Affiliation(s)
- Ryan T. Terry-Lorenzo
- Discovery and Preclinical Research Department, Sunovion Pharmaceuticals, Marlborough, MA, USA
| | - Keiki Masuda
- Genomic Science Laboratories, Sumitomo Dainippon Pharma (DSP), Osaka, Japan
| | - Kohtaroh Sugao
- Genomic Science Laboratories, Sumitomo Dainippon Pharma (DSP), Osaka, Japan
| | - Q. Kevin Fang
- Discovery and Preclinical Research Department, Sunovion Pharmaceuticals, Marlborough, MA, USA
| | - Michael A. Orsini
- Discovery and Preclinical Research Department, Sunovion Pharmaceuticals, Marlborough, MA, USA
| | - Silvia Sacchi
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell’Insubria, Varese, Italy, and The Protein Factory, Politecnico di Milano and Università degli Studi dell’Insubria, Milano, Italy
| | - Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell’Insubria, Varese, Italy, and The Protein Factory, Politecnico di Milano and Università degli Studi dell’Insubria, Milano, Italy
| |
Collapse
|
397
|
Effects of VU0410120, a novel GlyT1 inhibitor, on measures of sociability, cognition and stereotypic behaviors in a mouse model of autism. Prog Neuropsychopharmacol Biol Psychiatry 2015; 61:10-7. [PMID: 25784602 DOI: 10.1016/j.pnpbp.2015.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/02/2015] [Accepted: 03/07/2015] [Indexed: 01/08/2023]
Abstract
The NMDA receptor is a highly regulated glutamate-gated cationic channel receptor that has an important role in the regulation of sociability and cognition. The genetically-inbred Balb/c mouse has altered endogenous tone of NMDA receptor-mediated neurotransmission and is a model of impaired sociability, relevant to Autism Spectrum Disorders (ASDs). Because glycine is an obligatory co-agonist that works cooperatively with glutamate to promote opening of the ion channel, one prominent strategy to promote NMDA receptor-mediated neurotransmission involves inhibition of the glycine type 1 transporter (GlyT1). The current study evaluated the dose-dependent effects of VU0410120, a selective, high-affinity competitive GlyT1 inhibitor, on measures of sociability, cognition and stereotypic behaviors in Balb/c and Swiss Webster mice. The data show that doses of VU0410120 (i.e., 18 and 30mg/kg) that improve measures of sociability and spatial working memory in the Balb/c mouse strain elicit intense stereotypic behaviors in the Swiss Webster comparator strain (i.e., burrowing and jumping). Furthermore, the data suggest that selective GlyT1 inhibition improves sociability and spatial working memory at doses that do not worsen or elicit stereotypic behaviors in a social situation in the Balb/c strain. However, the elicitation of stereotypic behaviors in the Swiss Webster comparator strain at therapeutically relevant doses of VU0410120 suggest that genetic factors (i.e., mouse strain differences) influence sensitivity to GlyT1-elicited stereotypic behaviors, and emergence of intense stereotypic behaviors may be dose-limiting side effects of this interventional strategy.
Collapse
|
398
|
Mothet JP, Le Bail M, Billard JM. Time and space profiling of NMDA receptor co-agonist functions. J Neurochem 2015; 135:210-25. [DOI: 10.1111/jnc.13204] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/12/2015] [Accepted: 06/02/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Jean-Pierre Mothet
- Team ‘Gliotransmission and Synaptopathies’; Aix-Marseille Université; CNRS; CRN2M UMR7286; Marseille France
| | - Matildé Le Bail
- Team ‘Gliotransmission and Synaptopathies’; Aix-Marseille Université; CNRS; CRN2M UMR7286; Marseille France
| | - Jean-Marie Billard
- Center of Psychiatry and Neuroscience; University Paris Descartes; Sorbonne Paris City; UMR 894; Paris France
| |
Collapse
|
399
|
Singh NS, Bernier M, Camandola S, Khadeer MA, Moaddel R, Mattson MP, Wainer IW. Enantioselective inhibition of d-serine transport by (S)-ketamine. Br J Pharmacol 2015; 172:4546-4559. [PMID: 26140427 DOI: 10.1111/bph.13239] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 06/26/2015] [Accepted: 06/28/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Patients with major depressive disorder receiving racemic ketamine, (R,S)-ketamine, experience transient increases in Clinician-Administered Dissociative States Scale scores and a coincident drop in plasma d-serine levels. The results suggest that (R,S)-ketamine produces an immediate, concentration-dependent pharmacological effect on d-serine plasma concentrations. One potential source of this effect is (R,S)-ketamine-induced inhibition of the transporter ASCT2, which regulates intracellular d-serine concentrations. In this study, we tested this hypothesis by examining the effect of (S)- and (R)-ketamine on ASCT2-mediated transport of d-serine in PC-12 and 1321N1 cells and primary neuronal cells in culture. EXPERIMENTAL APPROACH Intracellular and extracellular d-serine levels were determined using capillary electrophoresis-laser-induced fluorescence and liquid chromatography-mass spectrometry respectively. Expression of ASCT2, Asc-1 and serine racemase was determined utilizing Western blotting. KEY RESULTS (S)-Ketamine produced a concentration-dependent increase in intracellular d-serine and reduced extracellular d-serine accumulation. In contrast, (R)-ketamine decreased both intracellular and extracellular d-serine levels. The ASCT2 inhibitor, benzyl-d-serine (BDS), and ASCT2 gene knockdown mimicked the action of (S)-ketamine on d-serine in PC-12 cells, while the Asc-1 agonist d-isoleucine reduced intracellular d-serine and increased extracellular d-serine accumulation. This response to d-isoleucine was not affected by BDS or (S)-ketamine. Primary cultures of rat neuronal cells expressed ASCT2 and were responsive to (S)-ketamine and BDS. (S)- and (R)-ketamine increased the expression of monomeric serine racemase in all the cells studied, with (S)-ketamine having the greatest effect. CONCLUSIONS AND IMPLICATIONS (S)-Ketamine decreased cellular export of d-serine via selective inhibition of ASCT2, and this could represent a possible source of dissociative effects observed with (R,S)-ketamine.
Collapse
Affiliation(s)
- Nagendra S Singh
- Laboratory of Clinical Investigation, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Simonetta Camandola
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Mohammed A Khadeer
- Laboratory of Clinical Investigation, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Ruin Moaddel
- Laboratory of Clinical Investigation, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Irving W Wainer
- Laboratory of Clinical Investigation, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
400
|
Miller OH, Moran JT, Hall BJ. Two cellular hypotheses explaining the initiation of ketamine's antidepressant actions: Direct inhibition and disinhibition. Neuropharmacology 2015. [PMID: 26211972 DOI: 10.1016/j.neuropharm.2015.07.028] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A single, low dose of ketamine evokes antidepressant actions in depressed patients and in patients with treatment-resistant depression (TRD). Unlike classic antidepressants, which regulate monoamine neurotransmitter systems, ketamine is an antagonist of the N-methyl-D-aspartate (NMDA) family of glutamate receptors. The effectiveness of NMDAR antagonists in TRD unveils a new set of targets for therapeutic intervention in major depressive disorder (MDD) and TRD. However, a better understanding of the cellular mechanisms underlying these effects is required for guiding future therapeutic strategies, in order to minimize side effects and prolong duration of efficacy. Here we review the evidence for and against two hypotheses that have been proposed to explain how NMDAR antagonism initiates protein synthesis and increases excitatory synaptic drive in corticolimbic brain regions, either through selective antagonism of inhibitory interneurons and cortical disinhibition, or by direct inhibition of cortical pyramidal neurons. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'.
Collapse
Affiliation(s)
- Oliver H Miller
- Neuroscience Program, Tulane University, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA.
| | - Jacqueline T Moran
- Neuroscience Program, Tulane University, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA.
| | - Benjamin J Hall
- Neuroscience Program, Tulane University, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA.
| |
Collapse
|