351
|
Thorley M, Malatras A, Duddy W, Le Gall L, Mouly V, Butler Browne G, Duguez S. Changes in Communication between Muscle Stem Cells and their Environment with Aging. J Neuromuscul Dis 2015; 2:205-217. [PMID: 27858742 PMCID: PMC5240546 DOI: 10.3233/jnd-150097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aging is associated with both muscle weakness and a loss of muscle mass, contributing towards overall frailty in the elderly. Aging skeletal muscle is also characterised by a decreasing efficiency in repair and regeneration, together with a decline in the number of adult stem cells. Commensurate with this are general changes in whole body endocrine signalling, in local muscle secretory environment, as well as in intrinsic properties of the stem cells themselves. The present review discusses the various mechanisms that may be implicated in these age-associated changes, focusing on aspects of cell-cell communication and long-distance signalling factors, such as levels of circulating growth hormone, IL-6, IGF1, sex hormones, and inflammatory cytokines. Changes in the local environment are also discussed, implicating IL-6, IL-4, FGF-2, as well as other myokines, and processes that lead to thickening of the extra-cellular matrix. These factors, involved primarily in communication, can also modulate the intrinsic properties of muscle stem cells, including reduced DNA accessibility and repression of specific genes by methylation. Finally we discuss the decrease in the stem cell pool, particularly the failure of elderly myoblasts to re-quiesce after activation, and the consequences of all these changes on general muscle homeostasis.
Collapse
Affiliation(s)
- Matthew Thorley
- Sorbonne Universités, UPMC Univ Paris 06, Center of Research in Myology UMRS 974, F-75013, Paris, France.,INSERM UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,Institut de Myologie, F-75013, Paris, France
| | - Apostolos Malatras
- Sorbonne Universités, UPMC Univ Paris 06, Center of Research in Myology UMRS 974, F-75013, Paris, France.,INSERM UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,Institut de Myologie, F-75013, Paris, France
| | - William Duddy
- Sorbonne Universités, UPMC Univ Paris 06, Center of Research in Myology UMRS 974, F-75013, Paris, France.,INSERM UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,Institut de Myologie, F-75013, Paris, France
| | - Laura Le Gall
- Sorbonne Universités, UPMC Univ Paris 06, Center of Research in Myology UMRS 974, F-75013, Paris, France.,INSERM UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,Institut de Myologie, F-75013, Paris, France
| | - Vincent Mouly
- Sorbonne Universités, UPMC Univ Paris 06, Center of Research in Myology UMRS 974, F-75013, Paris, France.,INSERM UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,Institut de Myologie, F-75013, Paris, France
| | - Gillian Butler Browne
- Sorbonne Universités, UPMC Univ Paris 06, Center of Research in Myology UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,INSERM UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,Institut de Myologie, F-75013, Paris, France
| | - Stéphanie Duguez
- Sorbonne Universités, UPMC Univ Paris 06, Center of Research in Myology UMRS 974, F-75013, Paris, France.,INSERM UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,Institut de Myologie, F-75013, Paris, France
| |
Collapse
|
352
|
Knappe S, Zammit PS, Knight RD. A population of Pax7-expressing muscle progenitor cells show differential responses to muscle injury dependent on developmental stage and injury extent. Front Aging Neurosci 2015; 7:161. [PMID: 26379543 PMCID: PMC4548158 DOI: 10.3389/fnagi.2015.00161] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/06/2015] [Indexed: 02/03/2023] Open
Abstract
Skeletal muscle regeneration in vertebrates occurs by the activation of quiescent progenitor cells that express pax7 to repair and replace damaged myofibers. We have developed a mechanical injury paradigm in zebrafish to determine whether developmental stage and injury size affect the regeneration dynamics of skeletal muscle. We found that both small focal injuries, and large injuries affecting the entire myotome, lead to expression of myf5 and myogenin, which was prolonged in older larvae, indicating a slower process of regeneration. We characterized the endogenous behavior of a population of muscle-resident Pax7-expressing cells using a pax7a:eGFP transgenic line and found that GFP+ cell migration in the myotome dramatically declined between 5 and 7 days post-fertilization (dpf). Following a small single myotome injury, GFP+ cells responded by extending processes, before migrating to the injured myofibers. Furthermore, these cells responded more rapidly to injury in 4 dpf larvae compared to 7 dpf. Interestingly, we did not see GFP+ myofibers after repair of small injuries, indicating that pax7a-expressing cells did not contribute to myofiber formation in this injury context. On the contrary, numerous GFP+ myofibers could be observed after an extensive single myotome injury. Both injury models were accompanied by an increased number of proliferating GFP+ cells, which was more pronounced in larvae injured at 4 dpf than 7 dpf. This indicates intriguing developmental differences, at these early ages. Our data also suggests an interesting disparity in the role that pax7a-expressing muscle progenitor cells play during skeletal muscle regeneration, which may reflect the extent of muscle damage.
Collapse
Affiliation(s)
- Stefanie Knappe
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London London, UK
| | - Peter S Zammit
- Randall Division of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London London, UK
| | - Robert D Knight
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London London, UK
| |
Collapse
|
353
|
Gromova A, Tierney MT, Sacco A. FACS-based Satellite Cell Isolation From Mouse Hind Limb Muscles. Bio Protoc 2015; 5:e1558. [PMID: 27668269 PMCID: PMC5034768 DOI: 10.21769/bioprotoc.1558] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Fluorescence Activated Cell Sorting (FACS) is a sensitive and accurate method for purifying satellite cells, or muscle stem cells, from adult mouse skeletal muscle (Liu et al., 2013; Sacco et al., 2008; Tierney et al., 2014). Mechanical and enzymatic digestion of hind limb muscles releases mononuclear muscle cells into suspension. This protocol employs fractionation strategies to deplete cells expressing the cell surface markers CD45, CD31, CD11b and Ly-6A/E-Sca1, both by magnetic separation and FACS-based exclusion, and positively select for cells expressing a7-integrin and CD34. This enables the researcher to successfully enrich satellite cells that uniformly express the paired-box transcription factor Pax7 and are capable of long-term self-renewal, skeletal muscle repair and muscle stem cell pool repopulation.
Collapse
Affiliation(s)
- Anastasia Gromova
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, USA
| | - Matthew T Tierney
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, USA
- Graduate School of Biomedical Sciences, Sanford-Burnham Medical Research Institute, La Jolla, USA
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, USA
| |
Collapse
|
354
|
Chakroun I, Yang D, Girgis J, Gunasekharan A, Phenix H, Kærn M, Blais A. Genome-wide association between Six4, MyoD, and the histone demethylase Utx during myogenesis. FASEB J 2015; 29:4738-55. [PMID: 26229056 DOI: 10.1096/fj.15-277053] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/20/2015] [Indexed: 01/14/2023]
Abstract
Adult skeletal muscles can regenerate after injury, due to the presence of satellite cells, a quiescent population of myogenic progenitor cells. Once activated, satellite cells repair the muscle damage by undergoing myogenic differentiation. The myogenic regulatory factors (MRFs) coordinate the process of progenitor differentiation in cooperation with other families of transcription factors (TFs). The Six1 and Six4 homeodomain TFs are expressed in developing and adult muscle and Six1 is critical for embryonic and adult myogenesis. However, the lack of a muscle developmental phenotype in Six4-null mice, which has been attributed to compensation by other Six family members, has discouraged further assessment of the role of Six4 during adult muscle regeneration. By employing genome-wide approaches to address the function of Six4 during adult skeletal myogenesis, we have identified a core set of muscle genes coordinately regulated in adult muscle precursors by Six4 and the MRF MyoD. Throughout the genome of differentiating adult myoblasts, the cooperation between Six4 and MyoD is associated with chromatin repressive mark removal by Utx, a demethylase of histone H3 trimethylated at lysine 27. Among the genes coordinately regulated by Six4 and MyoD are several genes critical for proper in vivo muscle regeneration, implicating a role of Six4 in this process. Using in vivo RNA interference of Six4, we expose an uncompensated function of this TF during muscle regeneration. Together, our results reveal a role for Six4 during adult muscle regeneration and suggest a widespread mechanism of cooperation between Six4 and MyoD.
Collapse
Affiliation(s)
- Imane Chakroun
- *Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada; and Department of Biochemistry, Microbiology, and Immunology and Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Dabo Yang
- *Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada; and Department of Biochemistry, Microbiology, and Immunology and Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - John Girgis
- *Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada; and Department of Biochemistry, Microbiology, and Immunology and Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Atchayaa Gunasekharan
- *Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada; and Department of Biochemistry, Microbiology, and Immunology and Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Hilary Phenix
- *Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada; and Department of Biochemistry, Microbiology, and Immunology and Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mads Kærn
- *Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada; and Department of Biochemistry, Microbiology, and Immunology and Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Alexandre Blais
- *Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada; and Department of Biochemistry, Microbiology, and Immunology and Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
355
|
Moresi V, Marroncelli N, Adamo S. New insights into the epigenetic control of satellite cells. World J Stem Cells 2015; 7:945-955. [PMID: 26240681 PMCID: PMC4515437 DOI: 10.4252/wjsc.v7.i6.945] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/12/2015] [Accepted: 05/11/2015] [Indexed: 02/06/2023] Open
Abstract
Epigenetics finely tunes gene expression at a functional level without modifying the DNA sequence, thereby contributing to the complexity of genomic regulation. Satellite cells (SCs) are adult muscle stem cells that are important for skeletal post-natal muscle growth, homeostasis and repair. The understanding of the epigenome of SCs at different stages and of the multiple layers of the post-transcriptional regulation of gene expression is constantly expanding. Dynamic interactions between different epigenetic mechanisms regulate the appropriate timing of muscle-specific gene expression and influence the lineage fate of SCs. In this review, we report and discuss the recent literature about the epigenetic control of SCs during the myogenic process from activation to proliferation and from their commitment to a muscle cell fate to their differentiation and fusion to myotubes. We describe how the coordinated activities of the histone methyltransferase families Polycomb group (PcG), which represses the expression of developmentally regulated genes, and Trithorax group, which antagonizes the repressive activity of the PcG, regulate myogenesis by restricting gene expression in a time-dependent manner during each step of the process. We discuss how histone acetylation and deacetylation occurs in specific loci throughout SC differentiation to enable the time-dependent transcription of specific genes. Moreover, we describe the multiple roles of microRNA, an additional epigenetic mechanism, in regulating gene expression in SCs, by repressing or enhancing gene transcription or translation during each step of myogenesis. The importance of these epigenetic pathways in modulating SC activation and differentiation renders them as promising targets for disease interventions. Understanding the most recent findings regarding the epigenetic mechanisms that regulate SC behavior is useful from the perspective of pharmacological manipulation for improving muscle regeneration and for promoting muscle homeostasis under pathological conditions.
Collapse
|
356
|
Consalvi S, Saccone V, Mozzetta C. Histone deacetylase inhibitors: a potential epigenetic treatment for Duchenne muscular dystrophy. Epigenomics 2015; 6:547-60. [PMID: 25431946 DOI: 10.2217/epi.14.36] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a life-threatening genetic disease that currently has no available cure. A number of pharmacological strategies that aim to target events downstream of the genetic defect are currently under clinical investigation, and some of these are outlined in this report. In particular, we focus on the ability of histone deacetylase inhibitors to promote muscle regeneration and prevent the fibro-adipogenic degeneration of dystrophic mice. We describe the rationale behind the translation of histone deacetylase inhibitors into a clinical approach, which inspired the first clinical trial with an epigenetic drug as a potential therapeutic option for DMD patients.
Collapse
Affiliation(s)
- Silvia Consalvi
- IRCCS Santa Lucia Foundation, Via Del Fosso di Fiorano 64, 00143 Rome, Italy
| | | | | |
Collapse
|
357
|
Mateos-Aierdi AJ, Goicoechea M, Aiastui A, Fernández-Torrón R, Garcia-Puga M, Matheu A, López de Munain A. Muscle wasting in myotonic dystrophies: a model of premature aging. Front Aging Neurosci 2015. [PMID: 26217220 PMCID: PMC4496580 DOI: 10.3389/fnagi.2015.00125] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1 or Steinert’s disease) and type 2 (DM2) are multisystem disorders of genetic origin. Progressive muscular weakness, atrophy and myotonia are the most prominent neuromuscular features of these diseases, while other clinical manifestations such as cardiomyopathy, insulin resistance and cataracts are also common. From a clinical perspective, most DM symptoms are interpreted as a result of an accelerated aging (cataracts, muscular weakness and atrophy, cognitive decline, metabolic dysfunction, etc.), including an increased risk of developing tumors. From this point of view, DM1 could be described as a progeroid syndrome since a notable age-dependent dysfunction of all systems occurs. The underlying molecular disorder in DM1 consists of the existence of a pathological (CTG) triplet expansion in the 3′ untranslated region (UTR) of the Dystrophia Myotonica Protein Kinase (DMPK) gene, whereas (CCTG)n repeats in the first intron of the Cellular Nucleic acid Binding Protein/Zinc Finger Protein 9(CNBP/ZNF9) gene cause DM2. The expansions are transcribed into (CUG)n and (CCUG)n-containing RNA, respectively, which form secondary structures and sequester RNA-binding proteins, such as the splicing factor muscleblind-like protein (MBNL), forming nuclear aggregates known as foci. Other splicing factors, such as CUGBP, are also disrupted, leading to a spliceopathy of a large number of downstream genes linked to the clinical features of these diseases. Skeletal muscle regeneration relies on muscle progenitor cells, known as satellite cells, which are activated after muscle damage, and which proliferate and differentiate to muscle cells, thus regenerating the damaged tissue. Satellite cell dysfunction seems to be a common feature of both age-dependent muscle degeneration (sarcopenia) and muscle wasting in DM and other muscle degenerative diseases. This review aims to describe the cellular, molecular and macrostructural processes involved in the muscular degeneration seen in DM patients, highlighting the similarities found with muscle aging.
Collapse
Affiliation(s)
- Alba Judith Mateos-Aierdi
- Neuroscience Area, Biodonostia Health Research Institute San Sebastián, Spain ; CIBERNED, Instituto Carlos III, Ministerio de Economía y Competitividad Madrid, Spain
| | - Maria Goicoechea
- Neuroscience Area, Biodonostia Health Research Institute San Sebastián, Spain ; CIBERNED, Instituto Carlos III, Ministerio de Economía y Competitividad Madrid, Spain
| | - Ana Aiastui
- CIBERNED, Instituto Carlos III, Ministerio de Economía y Competitividad Madrid, Spain ; Cell Culture Platform, Biodonostia Health Research Institute, San Sebastián Spain
| | - Roberto Fernández-Torrón
- Neuroscience Area, Biodonostia Health Research Institute San Sebastián, Spain ; CIBERNED, Instituto Carlos III, Ministerio de Economía y Competitividad Madrid, Spain ; Department of Neurology, Hospital Universitario Donostia, San Sebastián Spain
| | - Mikel Garcia-Puga
- Oncology Area, Biodonostia Health Research Institute San Sebastián, Spain
| | - Ander Matheu
- Oncology Area, Biodonostia Health Research Institute San Sebastián, Spain
| | - Adolfo López de Munain
- Neuroscience Area, Biodonostia Health Research Institute San Sebastián, Spain ; CIBERNED, Instituto Carlos III, Ministerio de Economía y Competitividad Madrid, Spain ; Department of Neurology, Hospital Universitario Donostia, San Sebastián Spain ; Department of Neuroscience, Universidad del País Vasco UPV-EHU San Sebastián, Spain
| |
Collapse
|
358
|
Dumont NA, Wang YX, Rudnicki MA. Intrinsic and extrinsic mechanisms regulating satellite cell function. Development 2015; 142:1572-81. [PMID: 25922523 PMCID: PMC4419274 DOI: 10.1242/dev.114223] [Citation(s) in RCA: 340] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Muscle stem cells, termed satellite cells, are crucial for skeletal muscle growth and regeneration. In healthy adult muscle, satellite cells are quiescent but poised for activation. During muscle regeneration, activated satellite cells transiently re-enter the cell cycle to proliferate and subsequently exit the cell cycle to differentiate or self-renew. Recent studies have demonstrated that satellite cells are heterogeneous and that subpopulations of satellite stem cells are able to perform asymmetric divisions to generate myogenic progenitors or symmetric divisions to expand the satellite cell pool. Thus, a complex balance between extrinsic cues and intrinsic regulatory mechanisms is needed to tightly control satellite cell cycle progression and cell fate determination. Defects in satellite cell regulation or in their niche, as observed in degenerative conditions such as aging, can impair muscle regeneration. Here, we review recent discoveries of the intrinsic and extrinsic factors that regulate satellite cell behaviour in regenerating and degenerating muscles. Summary: This Review discusses how satellite stem cell behaviour is regulated during regeneration and degeneration by a complex balance between extrinsic cues and intrinsic regulatory mechanisms.
Collapse
Affiliation(s)
- Nicolas A Dumont
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6
| | - Yu Xin Wang
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6 Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Michael A Rudnicki
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6 Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| |
Collapse
|
359
|
Abstract
Aging is characterized by a decrease in genome integrity, impaired organ maintenance, and an increased risk of cancer, which coincide with clonal dominance of expanded mutant stem and progenitor cell populations in aging tissues, such as the intestinal epithelium, the hematopoietic system, and the male germline. Here we discuss possible explanations for age-associated increases in the initiation and/or progression of mutant stem/progenitor clones and highlight the roles of stem cell quiescence, replication-associated DNA damage, telomere shortening, epigenetic alterations, and metabolic challenges as determinants of stem cell mutations and clonal dominance in aging.
Collapse
Affiliation(s)
- Peter D Adams
- University of Glasgow and Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Heinrich Jasper
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - K Lenhard Rudolph
- Leibniz Institute for Age Research - Fritz Lipmann Institute e.V. (FLI), Beutenbergstr. 11, 07745 Jena, Germany.
| |
Collapse
|
360
|
Abstract
Stem cell decline is an important cellular driver of aging-associated pathophysiology in multiple tissues. Epigenetic regulation is central to establishing and maintaining stem cell function, and emerging evidence indicates that epigenetic dysregulation contributes to the altered potential of stem cells during aging. Unlike terminally differentiated cells, the impact of epigenetic dysregulation in stem cells is propagated beyond self; alterations can be heritably transmitted to differentiated progeny, in addition to being perpetuated and amplified within the stem cell pool through self-renewal divisions. This Review focuses on recent studies examining epigenetic regulation of tissue-specific stem cells in homeostasis, aging, and aging-related disease.
Collapse
Affiliation(s)
- Isabel Beerman
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02116, USA
| | - Derrick J Rossi
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02116, USA.
| |
Collapse
|
361
|
Cheedipudi S, Puri D, Saleh A, Gala HP, Rumman M, Pillai MS, Sreenivas P, Arora R, Sellathurai J, Schrøder HD, Mishra RK, Dhawan J. A fine balance: epigenetic control of cellular quiescence by the tumor suppressor PRDM2/RIZ at a bivalent domain in the cyclin a gene. Nucleic Acids Res 2015; 43:6236-56. [PMID: 26040698 PMCID: PMC4513853 DOI: 10.1093/nar/gkv567] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 05/19/2015] [Indexed: 12/20/2022] Open
Abstract
Adult stem cell quiescence is critical to ensure regeneration while minimizing tumorigenesis. Epigenetic regulation contributes to cell cycle control and differentiation, but few regulators of the chromatin state in quiescent cells are known. Here we report that the tumor suppressor PRDM2/RIZ, an H3K9 methyltransferase, is enriched in quiescent muscle stem cells invivo and controls reversible quiescence in cultured myoblasts. We find that PRDM2 associates with >4400 promoters in G0 myoblasts, 55% of which are also marked with H3K9me2 and enriched for myogenic, cell cycle and developmental regulators. Knockdown of PRDM2 alters histone methylation at key promoters such as Myogenin and CyclinA2 (CCNA2), and subverts the quiescence program via global de-repression of myogenesis, and hyper-repression of the cell cycle. Further, PRDM2 acts upstream of the repressive PRC2 complex in G0. We identify a novel G0-specific bivalent chromatin domain in the CCNA2 locus. PRDM2 protein interacts with the PRC2 protein EZH2 and regulates its association with the bivalent domain in the CCNA2 gene. Our results suggest that induction of PRDM2 in G0 ensures that two antagonistic programs—myogenesis and the cell cycle—while stalled, are poised for reactivation. Together, these results indicate that epigenetic regulation by PRDM2 preserves key functions of the quiescent state, with implications for stem cell self-renewal.
Collapse
Affiliation(s)
- Sirisha Cheedipudi
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad 500 007, India Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Deepika Puri
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India Max Planck Institute of Immunobiology and Epigenetics, Freiburg D-79108, Germany
| | - Amena Saleh
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India Manipal University, Manipal 576104 India
| | - Hardik P Gala
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - Mohammed Rumman
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India Manipal University, Manipal 576104 India
| | - Malini S Pillai
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India
| | - Prethish Sreenivas
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - Reety Arora
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India
| | - Jeeva Sellathurai
- Institute of Clinical Research, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense 5000 C, Denmark
| | - Henrik Daa Schrøder
- Institute of Clinical Research, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense 5000 C, Denmark
| | - Rakesh K Mishra
- Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - Jyotsna Dhawan
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| |
Collapse
|
362
|
Sousa-Victor P, García-Prat L, Serrano AL, Perdiguero E, Muñoz-Cánoves P. Muscle stem cell aging: regulation and rejuvenation. Trends Endocrinol Metab 2015; 26:287-96. [PMID: 25869211 DOI: 10.1016/j.tem.2015.03.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/18/2015] [Accepted: 03/18/2015] [Indexed: 01/17/2023]
Abstract
Aging is characterized by a progressive decline of physiological integrity leading to the loss of tissue function and vulnerability to disease, but its causes remain poorly understood. Skeletal muscle has an outstanding regenerative capacity that relies on its resident stem cells (satellite cells). This capacity declines with aging, and recent discoveries have redefined our view of why this occurs. Here, we discuss how an interconnection of extrinsic changes in the systemic and local environment and cell-intrinsic mechanisms might provoke failure of normal muscle stem cell functions with aging. We focus particularly on the emergent biology of rejuvenation of old satellite cells, including cells of geriatric age, by restoring traits of youthfulness, with the final goal of improving human health during aging.
Collapse
Affiliation(s)
- Pedro Sousa-Victor
- Buck Institute for Research on Aging, Novato, CA, USA; Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain
| | - Laura García-Prat
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain
| | - Antonio L Serrano
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain
| | - Eusebio Perdiguero
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
363
|
Blais A. Myogenesis in the Genomics Era. J Mol Biol 2015; 427:2023-38. [DOI: 10.1016/j.jmb.2015.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 01/06/2023]
|
364
|
Lynch PJ, Thompson EE, McGinnis K, Rovira Gonzalez YI, Lo Surdo J, Bauer SR, Hursh DA. Chromatin Changes at thePPAR-γ2Promoter During Bone Marrow-Derived Multipotent Stromal Cell Culture Correlate With Loss of Gene Activation Potential. Stem Cells 2015; 33:2169-81. [DOI: 10.1002/stem.1967] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 01/06/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Patrick J. Lynch
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration; Bethesda Maryland USA
| | - Elaine E. Thompson
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration; Bethesda Maryland USA
| | - Kathleen McGinnis
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration; Bethesda Maryland USA
| | - Yazmin I. Rovira Gonzalez
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration; Bethesda Maryland USA
| | - Jessica Lo Surdo
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration; Bethesda Maryland USA
| | - Steven R. Bauer
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration; Bethesda Maryland USA
| | - Deborah A. Hursh
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration; Bethesda Maryland USA
| |
Collapse
|
365
|
Seripa D, Panza F, Daragjati J, Paroni G, Pilotto A. Measuring pharmacogenetics in special groups: geriatrics. Expert Opin Drug Metab Toxicol 2015; 11:1073-88. [PMID: 25990744 DOI: 10.1517/17425255.2015.1041919] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The cytochrome P450 (CYP) enzymes oxidize about 80% of the most commonly used drugs. Older patients form a very interesting clinical group in which an increased prevalence of adverse drug reactions (ADRs) and therapeutic failures (TFs) is observed. Might CYP drug metabolism change with age, and justify the differences in drug response observed in a geriatric setting? AREAS COVERED A complete overview of the CYP pharmacogenetics with a focus on the epigenetic CYP gene regulation by DNA methylation in the context of advancing age, in which DNA methylation might change. EXPERT OPINION Responder phenotypes consist of a continuum spanning from ADRs to TFs, with the best responders at the midpoint. CYP genetics is the basis of this continuum on which environmental and physiological factors act, modeling the phenotype observed in clinical practice. Physiological age-related changes in DNA methylation, the main epigenetic mechanisms regulating gene expression in humans, results in a physiological decrease in CYP gene expression with advancing age. This may be one of the physiological changes that, together with increased drug use, contributed to the higher prevalence of ADRs and TFs observed in the geriatric setting, thus, making geriatrics a special group for pharmacogenetics.
Collapse
Affiliation(s)
- Davide Seripa
- IRCCS Casa Sollievo della Sofferenza, Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences , San Giovanni Rotondo, Foggia , Italy
| | | | | | | | | |
Collapse
|
366
|
Jung M, Jin SG, Zhang X, Xiong W, Gogoshin G, Rodin AS, Pfeifer GP. Longitudinal epigenetic and gene expression profiles analyzed by three-component analysis reveal down-regulation of genes involved in protein translation in human aging. Nucleic Acids Res 2015; 43:e100. [PMID: 25977295 PMCID: PMC4551908 DOI: 10.1093/nar/gkv473] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/29/2015] [Indexed: 12/28/2022] Open
Abstract
Data on biological mechanisms of aging are mostly obtained from cross-sectional study designs. An inherent disadvantage of this design is that inter-individual differences can mask small but biologically significant age-dependent changes. A serially sampled design (same individual at different time points) would overcome this problem but is often limited by the relatively small numbers of available paired samples and the statistics being used. To overcome these limitations, we have developed a new vector-based approach, termed three-component analysis, which incorporates temporal distance, signal intensity and variance into one single score for gene ranking and is combined with gene set enrichment analysis. We tested our method on a unique age-based sample set of human skin fibroblasts and combined genome-wide transcription, DNA methylation and histone methylation (H3K4me3 and H3K27me3) data. Importantly, our method can now for the first time demonstrate a clear age-dependent decrease in expression of genes coding for proteins involved in translation and ribosome function. Using analogies with data from lower organisms, we propose a model where age-dependent down-regulation of protein translation-related components contributes to extend human lifespan.
Collapse
Affiliation(s)
- Marc Jung
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Seung-Gi Jin
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Xiaoying Zhang
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Wenying Xiong
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Grigoriy Gogoshin
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Andrei S Rodin
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Gerd P Pfeifer
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
367
|
Wabik A, Jones PH. Switching roles: the functional plasticity of adult tissue stem cells. EMBO J 2015; 34:1164-79. [PMID: 25812989 PMCID: PMC4426478 DOI: 10.15252/embj.201490386] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/09/2015] [Accepted: 02/11/2015] [Indexed: 12/15/2022] Open
Abstract
Adult organisms have to adapt to survive, and the same is true for their tissues. Rates and types of cell production must be rapidly and reversibly adjusted to meet tissue demands in response to both local and systemic challenges. Recent work reveals how stem cell (SC) populations meet these requirements by switching between functional states tuned to homoeostasis or regeneration. This plasticity extends to differentiating cells, which are capable of reverting to SCs after injury. The concept of the niche, the micro-environment that sustains and regulates stem cells, is broadening, with a new appreciation of the role of physical factors and hormonal signals. Here, we review different functions of SCs, the cellular mechanisms that underlie them and the signals that bias the fate of SCs as they switch between roles.
Collapse
Affiliation(s)
- Agnieszka Wabik
- MRC Cancer Unit, University of Cambridge Hutchison/MRC Research Centre Cambridge Biomedical Campus, Cambridge, UK
| | - Philip H Jones
- MRC Cancer Unit, University of Cambridge Hutchison/MRC Research Centre Cambridge Biomedical Campus, Cambridge, UK Wellcome Trust Sanger Institute, Hinxton, UK
| |
Collapse
|
368
|
Mohrin M, Shin J, Liu Y, Brown K, Luo H, Xi Y, Haynes CM, Chen D. Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science 2015; 347:1374-7. [PMID: 25792330 DOI: 10.1126/science.aaa2361] [Citation(s) in RCA: 390] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Deterioration of adult stem cells accounts for much of aging-associated compromised tissue maintenance. How stem cells maintain metabolic homeostasis remains elusive. Here, we identified a regulatory branch of the mitochondrial unfolded protein response (UPR(mt)), which is mediated by the interplay of SIRT7 and NRF1 and is coupled to cellular energy metabolism and proliferation. SIRT7 inactivation caused reduced quiescence, increased mitochondrial protein folding stress (PFS(mt)), and compromised regenerative capacity of hematopoietic stem cells (HSCs). SIRT7 expression was reduced in aged HSCs, and SIRT7 up-regulation improved the regenerative capacity of aged HSCs. These findings define the deregulation of a UPR(mt)-mediated metabolic checkpoint as a reversible contributing factor for HSC aging.
Collapse
Affiliation(s)
- Mary Mohrin
- Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | - Jiyung Shin
- Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | - Yufei Liu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Katharine Brown
- Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | - Hanzhi Luo
- Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | - Yannan Xi
- Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | - Cole M Haynes
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Biochemistry, Cell and Molecular Biology Allied Program, Weill Cornell Medical College, 1300 York Avenue, New York, NY, USA
| | - Danica Chen
- Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
369
|
Brancaccio A, Palacios D. Chromatin signaling in muscle stem cells: interpreting the regenerative microenvironment. Front Aging Neurosci 2015; 7:36. [PMID: 25904863 PMCID: PMC4387924 DOI: 10.3389/fnagi.2015.00036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/04/2015] [Indexed: 12/12/2022] Open
Abstract
Muscle regeneration in the adult occurs in response to damage at expenses of a population of adult stem cells, the satellite cells. Upon injury, either physical or genetic, signals released within the satellite cell niche lead to the commitment, expansion and differentiation of the pool of muscle progenitors to repair damaged muscle. To achieve this goal satellite cells undergo a dramatic transcriptional reprogramming to coordinately activate and repress specific subset of genes. Although the epigenetics of muscle regeneration has been extensively discussed, less emphasis has been put on how extra-cellular cues are translated into the specific chromatin reorganization necessary for progression through the myogenic program. In this review we will focus on how satellite cells sense the regenerative microenvironment in physiological and pathological circumstances, paying particular attention to the mechanism through which the external stimuli are transduced to the nucleus to modulate chromatin structure and gene expression. We will discuss the pathways involved and how alterations in this chromatin signaling may contribute to satellite cells dysfunction during aging and disease.
Collapse
Affiliation(s)
- Arianna Brancaccio
- Laboratory of Epigenetics and Signaling, IRCCS Fondazione Santa Lucia Rome, Italy
| | - Daniela Palacios
- Laboratory of Epigenetics and Signaling, IRCCS Fondazione Santa Lucia Rome, Italy
| |
Collapse
|
370
|
Hausburg MA, Doles JD, Clement SL, Cadwallader AB, Hall MN, Blackshear PJ, Lykke-Andersen J, Olwin BB. Post-transcriptional regulation of satellite cell quiescence by TTP-mediated mRNA decay. eLife 2015; 4:e03390. [PMID: 25815583 PMCID: PMC4415119 DOI: 10.7554/elife.03390] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 03/26/2015] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle satellite cells in their niche are quiescent and upon muscle injury, exit quiescence, proliferate to repair muscle tissue, and self-renew to replenish the satellite cell population. To understand the mechanisms involved in maintaining satellite cell quiescence, we identified gene transcripts that were differentially expressed during satellite cell activation following muscle injury. Transcripts encoding RNA binding proteins were among the most significantly changed and included the mRNA decay factor Tristetraprolin. Tristetraprolin promotes the decay of MyoD mRNA, which encodes a transcriptional regulator of myogenic commitment, via binding to the MyoD mRNA 3′ untranslated region. Upon satellite cell activation, p38α/β MAPK phosphorylates MAPKAP2 and inactivates Tristetraprolin, stabilizing MyoD mRNA. Satellite cell specific knockdown of Tristetraprolin precociously activates satellite cells in vivo, enabling MyoD accumulation, differentiation and cell fusion into myofibers. Regulation of mRNAs by Tristetraprolin appears to function as one of several critical post-transcriptional regulatory mechanisms controlling satellite cell homeostasis. DOI:http://dx.doi.org/10.7554/eLife.03390.001 When muscles are damaged, they can repair themselves to some extent by making new muscle cells. These develop from groups of cells called satellite cells, which are found near the surface of muscle fibers. Once the muscle is injured, the satellite cells are activated and can divide to form two cells with different properties. One remains a satellite cell, while the other forms a ‘myoblast’ that eventually fuses into a mature muscle fiber. Under normal conditions the satellite cells remain in a dormant state and do not divide, but it is not clear how they maintain this dormant state. To create a protein, the gene that encodes it is first ‘transcribed’ to produce a molecule called mRNA, which is then used as a template to build the protein. A protein called Tristetraprolin (TTP) can bind to mRNA molecules and cause them to break down or decay, and so TTP can prevent the mRNA from being used to make a protein. Hausburg, Doles et al. analyzed satellite cells from uninjured muscle and compared them with those from injured tissue. This revealed that when injured, the satellite cells reduced the abundance of several mRNAs, including TTP. Further investigation found that in satellite cells from uninjured tissue, TTP causes the decay of mRNA molecules that are used to produce a protein called MyoD. As MyoD helps the satellite cells to specialize, this decay therefore prevents the formation of myoblasts and keeps the satellite cells in a dormant state. In contrast, damage to the muscle tissue activates a signaling pathway that ultimately inactivates TTP. This enables more of the MyoD protein to be made and the myoblast population to expand. When Hausburg, Doles et al. experimentally reduced the levels of TTP inside satellite cells, the cells developed into myoblasts even when the tissue was uninjured. Thus, TTP is an important regulator that allows satellite cells to remain in a dormant state. In dormant adult stem cells, regulation of protein availability by RNA binding proteins, such as TTP, may co-ordinate rapid changes in metabolic state to promptly repair injured tissue. A major challenge will be to identify the group of proteins involved and determine the precise mechanisms involved in regulating their availability. DOI:http://dx.doi.org/10.7554/eLife.03390.002
Collapse
Affiliation(s)
- Melissa A Hausburg
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Jason D Doles
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Sandra L Clement
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Adam B Cadwallader
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Monica N Hall
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Perry J Blackshear
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Jens Lykke-Andersen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Bradley B Olwin
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| |
Collapse
|
371
|
Huang B, Li G, Jiang XH. Fate determination in mesenchymal stem cells: a perspective from histone-modifying enzymes. Stem Cell Res Ther 2015; 6:35. [PMID: 25890062 PMCID: PMC4365520 DOI: 10.1186/s13287-015-0018-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) hold great promise for therapeutic use in regenerative medicine and tissue engineering. A detailed understanding of the molecular processes governing MSC fate determination will be instrumental in the application of MSCs. Much progress has been made in recent years in defining the epigenetic events that control the differentiation of MSCs into different lineages. A complex network of transcription factors and histone modifiers, in concert with specific transcriptional co-activators and co-repressors, activates or represses MSC differentiation. In this review, we summarize recent progress in determining the effects of histone-modifying enzymes on the multilineage differentiation of MSCs. In addition, we propose that the manipulation of histone signatures associated with lineage-specific differentiation by small molecules has immense potential for the advancement of MSC-based regenerative medicine.
Collapse
Affiliation(s)
- Biao Huang
- Key Laboratory for Regenerative Medicine, Ministry of Education, Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Lo Kwee-Seong Integrated Biomedical Sciences Building, Shatin, New Territories, Hong Kong, PR China.
| | - Gang Li
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Science, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, New Territories, Hong Kong, PR China. .,Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China. .,School of Biomedical Sciences Core Laboratory, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| | - Xiao Hua Jiang
- Key Laboratory for Regenerative Medicine, Ministry of Education, Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Lo Kwee-Seong Integrated Biomedical Sciences Building, Shatin, New Territories, Hong Kong, PR China. .,Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China. .,School of Biomedical Sciences Core Laboratory, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
372
|
Regulation of skeletal muscle development and homeostasis by gene imprinting, histone acetylation and microRNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:309-16. [DOI: 10.1016/j.bbagrm.2015.01.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/17/2014] [Accepted: 01/10/2015] [Indexed: 12/13/2022]
|
373
|
Parker MH. The altered fate of aging satellite cells is determined by signaling and epigenetic changes. Front Genet 2015; 6:59. [PMID: 25750654 PMCID: PMC4335604 DOI: 10.3389/fgene.2015.00059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/07/2015] [Indexed: 01/11/2023] Open
Abstract
Skeletal muscle is a striated tissue composed of multinucleated fibers that contract under the control of the somatic nervous system to direct movement. The stem cells of skeletal muscle, known as satellite cells, are responsible for muscle fiber growth, turnover, and regeneration. Satellite cells are activated and proliferate in response to stimuli, and simplistically, have two main fates—to repopulate the satellite cell niche, or differentiate to regenerate or repair muscle fibers. However, the ability to regenerate muscle and replace lost myofibers declines with age. This loss of function may be a result of extrinsic changes in the niche, such as alterations in signaling or modifications to the extracellular matrix. However, intrinsic epigenetic changes within satellite cells may also affect cell fate and cause a decline in regenerative capacity. This review will describe the mechanisms that regulate cell fate decisions in adult skeletal muscle, and how changes during aging affect muscle fiber turnover and regeneration.
Collapse
Affiliation(s)
- Maura H Parker
- Clinical Research Division, Fred Hutchinson Cancer Research Center , Seattle, WA, USA
| |
Collapse
|
374
|
Ryall JG, Dell'Orso S, Derfoul A, Juan A, Zare H, Feng X, Clermont D, Koulnis M, Gutierrez-Cruz G, Fulco M, Sartorelli V. The NAD(+)-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell 2015; 16:171-83. [PMID: 25600643 DOI: 10.1016/j.stem.2014.12.004] [Citation(s) in RCA: 420] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 08/27/2014] [Accepted: 12/16/2014] [Indexed: 01/30/2023]
Abstract
Stem cells undergo a shift in metabolic substrate utilization during specification and/or differentiation, a process that has been termed metabolic reprogramming. Here, we report that during the transition from quiescence to proliferation, skeletal muscle stem cells experience a metabolic switch from fatty acid oxidation to glycolysis. This reprogramming of cellular metabolism decreases intracellular NAD(+) levels and the activity of the histone deacetylase SIRT1, leading to elevated H4K16 acetylation and activation of muscle gene transcription. Selective genetic ablation of the SIRT1 deacetylase domain in skeletal muscle results in increased H4K16 acetylation and deregulated activation of the myogenic program in SCs. Moreover, mice with muscle-specific inactivation of the SIRT1 deacetylase domain display reduced myofiber size, impaired muscle regeneration, and derepression of muscle developmental genes. Overall, these findings reveal how metabolic cues can be mechanistically translated into epigenetic modifications that regulate skeletal muscle stem cell biology.
Collapse
Affiliation(s)
- James G Ryall
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20829, USA
| | - Stefania Dell'Orso
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20829, USA
| | - Assia Derfoul
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20829, USA
| | - Aster Juan
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20829, USA
| | - Hossein Zare
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20829, USA
| | - Xuesong Feng
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20829, USA
| | - Daphney Clermont
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20829, USA
| | - Miroslav Koulnis
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20829, USA
| | - Gustavo Gutierrez-Cruz
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20829, USA
| | - Marcella Fulco
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20829, USA
| | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20829, USA.
| |
Collapse
|
375
|
Sohi G, Dilworth FJ. Noncoding RNAs as epigenetic mediators of skeletal muscle regeneration. FEBS J 2015; 282:1630-46. [PMID: 25483175 DOI: 10.1111/febs.13170] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 12/16/2022]
Abstract
Skeletal muscle regeneration is a well-characterized biological process in which resident adult stem cells must undertake a series of cell-fate decisions to ensure efficient repair of the damaged muscle fibers while also maintaining the stem cell niche. Satellite cells, the main stem cell contributing to the repaired muscle fiber, are maintained in a quiescent state in healthy muscle. Upon injury, the satellite cells become activated, and proliferate to expand the muscle progenitor cell population before returning to the quiescent state or differentiating to become myofibers. Importantly, the determination of cell fate is controlled at the epigenetic level in response to environmental cues. In this review, we discuss our current understanding of the role played by noncoding RNAs (both miRNAs and long-noncoding RNAs) in the epigenetic control of muscle regeneration.
Collapse
Affiliation(s)
- Gurjeev Sohi
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Canada
| | | |
Collapse
|
376
|
Zhao H, Bauzon F, Bi E, Yu JJ, Fu H, Lu Z, Cui J, Jeon H, Zang X, Ye BH, Zhu L. Substituting threonine 187 with alanine in p27Kip1 prevents pituitary tumorigenesis by two-hit loss of Rb1 and enhances humoral immunity in old age. J Biol Chem 2015; 290:5797-809. [PMID: 25583987 DOI: 10.1074/jbc.m114.625350] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
p27Kip1 (p27) is an inhibitor of cyclin-dependent kinases. Inhibiting p27 protein degradation is an actively developing cancer therapy strategy. One focus has been to identify small molecule inhibitors to block recruitment of Thr-187-phosphorylated p27 (p27T187p) to SCF(Skp2/Cks1) ubiquitin ligase. Since phosphorylation of Thr-187 is required for this recruitment, p27T187A knockin (KI) mice were generated to determine the effects of systemically blocking interaction between p27 and Skp2/Cks1 on tumor susceptibility and other proliferation related mouse physiology. Rb1(+/-) mice develop pituitary tumors with full penetrance and the tumors are invariably Rb1(-/-), modeling tumorigenesis by two-hit loss of RB1 in humans. Immunization induced humoral immunity depends on rapid B cell proliferation and clonal selection in germinal centers (GCs) and declines with age in mice and humans. Here, we show that p27T187A KI prevented pituitary tumorigenesis in Rb1(+/-) mice and corrected decline in humoral immunity in older mice following immunization with sheep red blood cells (SRBC). These findings reveal physiological contexts that depend on p27 ubiquitination by SCF(Skp2-Cks1) ubiquitin ligase and therefore help forecast clinical potentials of Skp2/Cks1-p27T187p interaction inhibitors. We further show that GC B cells and T cells use different mechanisms to regulate their p27 protein levels, and propose a T helper cell exhaustion model resembling that of stem cell exhaustion to understand decline in T cell-dependent humoral immunity in older age.
Collapse
Affiliation(s)
- Hongling Zhao
- From the Department of Developmental and Molecular Biology, and Medicine, and
| | - Frederick Bauzon
- From the Department of Developmental and Molecular Biology, and Medicine, and
| | | | | | - Hao Fu
- From the Department of Developmental and Molecular Biology, and Medicine, and
| | - Zhonglei Lu
- From the Department of Developmental and Molecular Biology, and Medicine, and
| | - Jinhua Cui
- From the Department of Developmental and Molecular Biology, and Medicine, and
| | - Hyungjun Jeon
- Microbiology and Immunology, The Albert Einstein Comprehensive Cancer Center and Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Xingxing Zang
- Microbiology and Immunology, The Albert Einstein Comprehensive Cancer Center and Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | - Liang Zhu
- From the Department of Developmental and Molecular Biology, and Medicine, and
| |
Collapse
|
377
|
Fu X, Wang H, Hu P. Stem cell activation in skeletal muscle regeneration. Cell Mol Life Sci 2015; 72:1663-77. [PMID: 25572293 PMCID: PMC4412728 DOI: 10.1007/s00018-014-1819-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/21/2014] [Accepted: 12/22/2014] [Indexed: 12/31/2022]
Abstract
Muscle stem cell (satellite cell) activation post muscle injury is a transient and critical step in muscle regeneration. It is regulated by physiological cues, signaling molecules, and epigenetic regulatory factors. The mechanisms that coherently turn on the complex activation process shortly after trauma are just beginning to be illuminated. In this review, we will discuss the current knowledge of satellite cell activation regulation.
Collapse
Affiliation(s)
- Xin Fu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | | | | |
Collapse
|
378
|
Abstract
Adult tissue homoeostasis requires continual replacement of cells that are lost due to normal turnover, injury and disease. However, aging is associated with an overall decline in tissue function and homoeostasis, suggesting that the normal regulatory processes that govern self-renewal and regeneration may become impaired with age. Tissue-specific SCs (stem cells) lie at the apex of organismal conservation and regeneration, ultimately being responsible for continued tissue maintenance. In many tissues, there are changes in SC numbers, or alteration of their growth properties during aging, often involving imbalances in tumour-suppressor- and oncogene-mediated pathways. Uncovering the molecular mechanisms leading to changes in SC function during aging will provide an essential tool to address tissue-specific age-related pathologies. In the present review, we summarize the age-related alterations found in different tissue SC populations, highlighting recently identified changes in aged HFSCs (hair-follicle SCs) in the skin.
Collapse
|
379
|
Puri D, Gala H, Mishra R, Dhawan J. High-wire act: the poised genome and cellular memory. FEBS J 2014; 282:1675-91. [PMID: 25440020 DOI: 10.1111/febs.13165] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/22/2014] [Accepted: 11/27/2014] [Indexed: 12/12/2022]
Abstract
Emerging evidence aided by genome-wide analysis of chromatin and transcriptional states has shed light on the mechanisms by which stem cells achieve cellular memory. The epigenetic and transcriptional plasticity governing stem cell behavior is highlighted by the identification of 'poised' genes, which permit cells to maintain readiness to undertake alternate developmental fates. This review focuses on two crucial mechanisms of gene poising: bivalent chromatin marks and RNA polymerase II stalling. We provide the context for these mechanisms by exploring the current consensus on the regulation of chromatin states, especially in quiescent adult stem cells, where poised genes are critical for recapitulating developmental choices, leading to regenerative function.
Collapse
Affiliation(s)
- Deepika Puri
- Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | | |
Collapse
|
380
|
Sun D, Luo M, Jeong M, Rodriguez B, Xia Z, Hannah R, Wang H, Le T, Faull KF, Chen R, Gu H, Bock C, Meissner A, Göttgens B, Darlington GJ, Li W, Goodell MA. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 2014; 14:673-88. [PMID: 24792119 DOI: 10.1016/j.stem.2014.03.002] [Citation(s) in RCA: 489] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 12/16/2013] [Accepted: 03/05/2014] [Indexed: 12/15/2022]
Abstract
To investigate the cell-intrinsic aging mechanisms that erode the function of somatic stem cells during aging, we have conducted a comprehensive integrated genomic analysis of young and aged cells. We profiled the transcriptome, DNA methylome, and histone modifications of young and old murine hematopoietic stem cells (HSCs). Transcriptome analysis indicated reduced TGF-β signaling and perturbation of genes involved in HSC proliferation and differentiation. Aged HSCs exhibited broader H3K4me3 peaks across HSC identity and self-renewal genes and showed increased DNA methylation at transcription factor binding sites associated with differentiation-promoting genes combined with a reduction at genes associated with HSC maintenance. Altogether, these changes reinforce HSC self-renewal and diminish differentiation, paralleling phenotypic HSC aging behavior. Ribosomal biogenesis emerged as a particular target of aging with increased transcription of ribosomal protein and RNA genes and hypomethylation of rRNA genes. This data set will serve as a reference for future epigenomic analysis of stem cell aging.
Collapse
Affiliation(s)
- Deqiang Sun
- Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Min Luo
- Stem Cells and Regenerative Medicine Center, Department of Pediatrics and Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Mira Jeong
- Stem Cells and Regenerative Medicine Center, Department of Pediatrics and Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Benjamin Rodriguez
- Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zheng Xia
- Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rebecca Hannah
- Department of Hematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge University, Hills Road, CB2 0XY Cambridge, UK
| | - Hui Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thuc Le
- Pasarow Mass Spectrometry Laboratory, Department of Psychiatry and Biobehavioral Sciences and the Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory, Department of Psychiatry and Biobehavioral Sciences and the Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hongcang Gu
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Christoph Bock
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02142, USA
| | | | - Berthold Göttgens
- Department of Hematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge University, Hills Road, CB2 0XY Cambridge, UK
| | | | - Wei Li
- Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Margaret A Goodell
- Stem Cells and Regenerative Medicine Center, Department of Pediatrics and Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
381
|
Abstract
Aging is associated with impairments in hematopoietic stem cell (HSC) function and an increased risk of leukemogenesis. In this issue of Cell Stem Cell, Sun et al. (2014) use highly purified HSCs along with an integrated genomic approach to evaluate aging-associated alterations in the epigenome and transcriptome of HSCs.
Collapse
Affiliation(s)
- Stefan Tümpel
- Leibniz Institute for Age Research, Fritz Lipmann Institute, D-07745 Jena, Germany
| | - K Lenhard Rudolph
- Leibniz Institute for Age Research, Fritz Lipmann Institute, D-07745 Jena, Germany.
| |
Collapse
|
382
|
Bochkis IM, Przybylski D, Chen J, Regev A. Changes in nucleosome occupancy associated with metabolic alterations in aged mammalian liver. Cell Rep 2014; 9:996-1006. [PMID: 25437555 PMCID: PMC4250828 DOI: 10.1016/j.celrep.2014.09.048] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/15/2014] [Accepted: 09/24/2014] [Indexed: 12/27/2022] Open
Abstract
Aging is accompanied by physiological impairments, which, in insulin-responsive tissues, including the liver, predispose individuals to metabolic disease. However, the molecular mechanisms underlying these changes remain largely unknown. Here, we analyze genome-wide profiles of RNA and chromatin organization in the liver of young (3 months) and old (21 months) mice. Transcriptional changes suggest that derepression of the nuclear receptors PPARα, PPARγ, and LXRα in aged mouse liver leads to activation of targets regulating lipid synthesis and storage, whereas age-dependent changes in nucleosome occupancy are associated with binding sites for both known regulators (forkhead factors and nuclear receptors) and candidates associated with nuclear lamina (Hdac3 and Srf) implicated to govern metabolic function of aging liver. Winged-helix transcription factor Foxa2 and nuclear receptor corepressor Hdac3 exhibit a reciprocal binding pattern at PPARα targets contributing to gene expression changes that lead to steatosis in aged liver.
Collapse
Affiliation(s)
- Irina M Bochkis
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | | | - Jenny Chen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
383
|
Segalés J, Perdiguero E, Muñoz-Cánoves P. Epigenetic control of adult skeletal muscle stem cell functions. FEBS J 2014; 282:1571-88. [PMID: 25251895 DOI: 10.1111/febs.13065] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 12/12/2022]
Abstract
Skeletal muscle regeneration in the adult (de novo myogenesis) depends on a resident population of muscle stem cells (satellite cells) that are normally quiescent. In response to injury or stress, satellite cells are activated and expand as myoblast cells that differentiate and fuse to form new muscle fibers or return to quiescence to maintain the stem cell pool (self-renewal). Satellite cell-dependent myogenesis is a well-characterized multi-step process orchestrated by muscle-specific transcription factors, such as Pax3/Pax7 and members of the MyoD family of muscle regulatory factors, and epigenetically controlled by mechanisms such as DNA methylation, covalent modification of histones and non-coding RNAs. Recent results from next-generation genome-wide sequencing have increased our understanding about the highly intricate layers of epigenetic regulation involved in satellite cell maintenance, activation, differentiation and self-renewal, and their cross-talk with the muscle-specific transcriptional machinery.
Collapse
Affiliation(s)
- Jessica Segalés
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University, Center for Networked Biomedical Research on Neurodegenerative Diseases, Barcelona, Spain
| | | | | |
Collapse
|
384
|
Tang AH, Rando TA. Induction of autophagy supports the bioenergetic demands of quiescent muscle stem cell activation. EMBO J 2014; 33:2782-97. [PMID: 25316028 DOI: 10.15252/embj.201488278] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The exit of a stem cell out of quiescence into an activated state is characterized by major metabolic changes associated with increased biosynthesis of proteins and macromolecules. The regulation of this transition is poorly understood. Using muscle stem cells, or satellite cells (SCs), we found that autophagy, which catabolizes intracellular contents to maintain proteostasis and to produce energy during nutrient deprivation, was induced during SC activation. Inhibition of autophagy suppressed the increase in ATP levels and delayed SC activation, both of which could be partially rescued by exogenous pyruvate as an energy source, suggesting that autophagy may provide nutrients necessary to meet bioenergetic demands during this critical transition from quiescence to activation. We found that SIRT1, a known nutrient sensor, regulates autophagic flux in SC progeny. A deficiency of SIRT1 led to a delay in SC activation that could also be partially rescued by exogenous pyruvate. These studies suggest that autophagy, regulated by SIRT1, may play an important role during SC activation to meet the high bioenergetic demands of the activation process.
Collapse
Affiliation(s)
- Ann H Tang
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas A Rando
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA Neurology Service and Rehabilitation Research and Developmental Center of Excellence, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
385
|
Armstrong L, Al-Aama J, Stojkovic M, Lako M. Concise Review: The Epigenetic Contribution to Stem Cell Ageing: Can We Rejuvenate Our Older Cells? Stem Cells 2014; 32:2291-8. [DOI: 10.1002/stem.1720] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 03/11/2014] [Accepted: 03/20/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Lyle Armstrong
- Institute of Genetic Medicine, Newcastle University, The International Centre for Life; Central Parkway Newcastle upon Tyne United Kingdom
| | - Jumana Al-Aama
- Princess Al Jawhara Center of Excellence in Research; King Abdulaziz University; Jeddah Saudi Arabia
| | - Miodrag Stojkovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences; University of Kragujevac; Kragujevac Serbia
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, The International Centre for Life; Central Parkway Newcastle upon Tyne United Kingdom
| |
Collapse
|
386
|
Epigenetics of hematopoietic stem cell aging and disease. Int J Hematol 2014; 100:326-34. [DOI: 10.1007/s12185-014-1647-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 02/07/2023]
|
387
|
Salminen A, Kauppinen A, Hiltunen M, Kaarniranta K. Krebs cycle intermediates regulate DNA and histone methylation: epigenetic impact on the aging process. Ageing Res Rev 2014; 16:45-65. [PMID: 24910305 DOI: 10.1016/j.arr.2014.05.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 05/20/2014] [Accepted: 05/29/2014] [Indexed: 02/01/2023]
Abstract
Many aging theories have proposed that mitochondria and energy metabolism have a major role in the aging process. There are recent studies indicating that Krebs cycle intermediates can shape the epigenetic landscape of chromatin by regulating DNA and histone methylation. A growing evidence indicates that epigenetics plays an important role in the regulation of healthspan but also is involved in the aging process. 2-Oxoglutarate (α-ketoglutarate) is a key metabolite in the Krebs cycle but it is also an obligatory substrate for 2-oxoglutarate-dependent dioxygenases (2-OGDO). The 2-OGDO enzyme family includes the major enzymes of DNA and histone demethylation, i.e. Ten-Eleven Translocation (TETs) and Jumonji C domain containing (JmjC) demethylases. In addition, 2-OGDO members can regulate collagen synthesis and hypoxic responses in a non-epigenetical manner. Interestingly, succinate and fumarate, also Krebs cycle intermediates, are potent inhibitors of 2-OGDO enzymes, i.e. the balance of Krebs cycle reactions can affect the level of DNA and histone methylation and thus control gene expression. We will review the epigenetic mechanisms through which Krebs cycle intermediates control the DNA and histone methylation. We propose that age-related disturbances in the Krebs cycle function induce stochastic epigenetic changes in chromatin structures which in turn promote the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 1777, FIN-70211 Kuopio, Finland.
| | - Anu Kauppinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 1777, FIN-70211 Kuopio, Finland
| | - Mikko Hiltunen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 1777, FIN-70211 Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 1777, FIN-70211 Kuopio, Finland
| |
Collapse
|
388
|
Abstract
Faralli and Dillworth discuss the study by Saccone et al. (in this issue of Genes & Development) on the role of muscle-specific microRNAs (myomiRs) as HDAC-repressed regulators of chromatin remodeling and skeletal myogenesis in a mouse model of Duchenne muscular dystrophy. Fibro-adipogenic progenitors (FAPs) reside in the muscle, where they facilitate myofiber regeneration. Under normal conditions, FAPs lack myogenic potential and thus do not directly contribute to regenerated myofibers. Surprisingly, Saccone and colleagues (pp. 841–857) demonstrated that the dystrophic muscle environment causes FAPs to adopt a chromatin state that imparts these cells with myogenic potential. In this context, treatment of muscle with deacetylase inhibitors activates a BAF60c–myomiR transcriptional network in FAPs, blocking adipogenesis and driving muscle differentiation.
Collapse
Affiliation(s)
- Herve Faralli
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | | |
Collapse
|
389
|
Rodgers JT, King KY, Brett JO, Cromie MJ, Charville GW, Maguire KK, Brunson C, Mastey N, Liu L, Tsai CR, Goodell MA, Rando TA. mTORC1 controls the adaptive transition of quiescent stem cells from G0 to G(Alert). Nature 2014; 510:393-6. [PMID: 24870234 PMCID: PMC4065227 DOI: 10.1038/nature13255] [Citation(s) in RCA: 545] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/13/2014] [Indexed: 12/18/2022]
Abstract
A unique property of many adult stem cells is their ability to exist in a non-cycling, quiescent state1. Although quiescence serves an essential role in preserving stem cell function until the stem cell is needed in tissue homeostasis or repair, defects in quiescence can lead to an impairment in tissue function2, the extent to which stem cells can regulate quiescence is unknown. Here, we show that the stem cell quiescent state is composed of two distinct functional phases: G0 and an “alert” phase we term GAlert, and that stem cells actively and reversibly transition between these phases in response to injury-induced, systemic signals. Using genetic models specific to muscle stem cells (or satellite cells (SCs)), we show that mTORC1 activity is necessary and sufficient for the transition of SCs from G0 into GAlert and that signaling through the HGF receptor, cMet is also necessary. We also identify G0-to-GAlert transitions in several populations of quiescent stem cells. Quiescent stem cells that transition into GAlert possess enhanced tissue regenerative function. We propose that the transition of quiescent stem cells into GAlert functions as an ‘alerting’ mechanism, an adaptive response that positions stem cells to respond rapidly under conditions of injury and stress without requiring cell cycle entry or a cell fate commitment.
Collapse
Affiliation(s)
- Joseph T Rodgers
- 1] Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, California 94305, USA [2] Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Katherine Y King
- Department of Pediatrics and Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jamie O Brett
- 1] Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, California 94305, USA [2] Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Melinda J Cromie
- 1] Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, California 94305, USA [2] Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Gregory W Charville
- 1] Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, California 94305, USA [2] Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Katie K Maguire
- 1] Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, California 94305, USA [2] Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Christopher Brunson
- 1] Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, California 94305, USA [2] Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Namrata Mastey
- 1] Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, California 94305, USA [2] Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Ling Liu
- 1] Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, California 94305, USA [2] Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Chang-Ru Tsai
- Department of Pediatrics and Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Margaret A Goodell
- Department of Pediatrics and Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Thomas A Rando
- 1] Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, California 94305, USA [2] Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA [3] Neurology Service and Rehabilitation Research and Development Center of Excellence, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, USA
| |
Collapse
|
390
|
McCauley BS, Dang W. Histone methylation and aging: lessons learned from model systems. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1454-62. [PMID: 24859460 DOI: 10.1016/j.bbagrm.2014.05.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 03/16/2014] [Accepted: 05/13/2014] [Indexed: 01/06/2023]
Abstract
Aging induces myriad cellular and, ultimately, physiological changes that cause a decline in an organism's functional capabilities. Although the aging process and the pathways that regulate it have been extensively studied, only in the last decade have we begun to appreciate that dynamic histone methylation may contribute to this process. In this review, we discuss recent work implicating histone methylation in aging. Loss of certain histone methyltransferases and demethylases changes lifespan in invertebrates, and alterations in histone methylation in aged organisms regulate lifespan and aging phenotypes, including oxidative stress-induced hormesis in yeast, insulin signaling in Caenorhabiditis elegans and mammals, and the senescence-associated secretory phenotype in mammals. In all cases where histone methylation has been shown to impact aging and aging phenotypes, it does so by regulating transcription, suggesting that this is a major mechanism of its action in this context. Histone methylation additionally regulates or is regulated by other cellular pathways that contribute to or combat aging. Given the numerous processes that regulate aging and histone methylation, and are in turn regulated by them, the role of histone methylation in aging is almost certainly underappreciated.
Collapse
Affiliation(s)
- Brenna S McCauley
- Huffington Center on Aging, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.
| | - Weiwei Dang
- Huffington Center on Aging, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
391
|
Bergougnoux A, Rivals I, Liquori A, Raynal C, Varilh J, Magalhães M, Perez MJ, Bigi N, Des Georges M, Chiron R, Squalli-Houssaini AS, Claustres M, De Sario A. A balance between activating and repressive histone modifications regulates cystic fibrosis transmembrane conductance regulator (CFTR) expression in vivo. Epigenetics 2014; 9:1007-17. [PMID: 24782114 DOI: 10.4161/epi.28967] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The genetic mechanisms that regulate CFTR, the gene responsible for cystic fibrosis, have been widely investigated in cultured cells. However, mechanisms responsible for tissue-specific and time-specific expression are not completely elucidated in vivo. Through the survey of public databases, we found that the promoter of CFTR was associated with bivalent chromatin in human embryonic stem (ES) cells. In this work, we analyzed fetal (at different stages of pregnancy) and adult tissues and showed that, in digestive and lung tissues, which expressed CFTR, H3K4me3 was maintained in the promoter. Histone acetylation was high in the promoter and in two intronic enhancers, especially in fetal tissues. In contrast, in blood cells, which did not express CFTR, the bivalent chromatin was resolved (the promoter was labeled by the silencing mark H3K27me3). Cis-regulatory sequences were associated with lowly acetylated histones. We also provide evidence that the tissue-specific expression of CFTR is not regulated by dynamic changes of DNA methylation in the promoter. Overall, this work shows that a balance between activating and repressive histone modifications in the promoter and intronic enhancers results in the fine regulation of CFTR expression during development, thereby ensuring tissue specificity.
Collapse
Affiliation(s)
- Anne Bergougnoux
- INSERM U827; Montpellier, France; Université Montpellier 1; Montpellier, France; CHU Montpellier; Montpellier, France
| | - Isabelle Rivals
- Equipe de Statistique Appliquée; ESPCI ParisTech; Paris, France
| | - Alessandro Liquori
- INSERM U827; Montpellier, France; Université Montpellier 1; Montpellier, France
| | - Caroline Raynal
- INSERM U827; Montpellier, France; Université Montpellier 1; Montpellier, France; CHU Montpellier; Montpellier, France
| | - Jessica Varilh
- INSERM U827; Montpellier, France; Université Montpellier 1; Montpellier, France; CHU Montpellier; Montpellier, France
| | - Milena Magalhães
- INSERM U827; Montpellier, France; Université Montpellier 1; Montpellier, France
| | | | | | - Marie Des Georges
- INSERM U827; Montpellier, France; Université Montpellier 1; Montpellier, France; CHU Montpellier; Montpellier, France
| | | | | | - Mireille Claustres
- INSERM U827; Montpellier, France; Université Montpellier 1; Montpellier, France; CHU Montpellier; Montpellier, France
| | - Albertina De Sario
- INSERM U827; Montpellier, France; Université Montpellier 1; Montpellier, France
| |
Collapse
|
392
|
Bareja A, Holt JA, Luo G, Chang C, Lin J, Hinken AC, Freudenberg JM, Kraus WE, Evans WJ, Billin AN. Human and mouse skeletal muscle stem cells: convergent and divergent mechanisms of myogenesis. PLoS One 2014; 9:e90398. [PMID: 24587351 PMCID: PMC3938718 DOI: 10.1371/journal.pone.0090398] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/29/2014] [Indexed: 12/22/2022] Open
Abstract
Satellite cells are the chief contributor to skeletal muscle growth and regeneration. The study of mouse satellite cells has accelerated in recent years due to technical advancements in the isolation of these cells. The study of human satellite cells has lagged and thus little is known about how the biology of mouse and human satellite cells compare. We developed a flow cytometry-based method to prospectively isolate human skeletal muscle progenitors from the satellite cell pool using positive and negative selection markers. Results show that this pool is enriched in PAX7 expressing cells that possess robust myogenic potential including the ability to give rise to de novo muscle in vivo. We compared mouse and human satellite cells in culture and identify differences in the elaboration of the myogenic genetic program and in the sensitivity of the cells to cytokine stimulation. These results indicate that not all mechanisms regulating mouse satellite cell activation are conserved in human satellite cells and that such differences may impact the clinical translation of therapeutics validated in mouse models. Thus, the findings of this study are relevant to developing therapies to combat muscle disease.
Collapse
Affiliation(s)
- Akshay Bareja
- Department of Medicine, Duke University, Durham, North Carolina, United States of America
- Muscle Metabolism Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapeutic Area, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
| | - Jason A. Holt
- Muscle Metabolism Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapeutic Area, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
| | - Guizhen Luo
- Muscle Metabolism Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapeutic Area, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
| | - Calvin Chang
- Five Prime Therapeutics, Inc., South San Francisco, California, United States of America
| | - Junyu Lin
- Five Prime Therapeutics, Inc., South San Francisco, California, United States of America
| | - Aaron C. Hinken
- Five Prime Therapeutics, Inc., South San Francisco, California, United States of America
| | - Johannes M. Freudenberg
- Quantitative Sciences, Computational Biology, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
| | - William E. Kraus
- Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - William J. Evans
- Muscle Metabolism Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapeutic Area, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
| | - Andrew N. Billin
- Muscle Metabolism Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapeutic Area, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
393
|
Sousa-Victor P, Gutarra S, García-Prat L, Rodriguez-Ubreva J, Ortet L, Ruiz-Bonilla V, Jardí M, Ballestar E, González S, Serrano AL, Perdiguero E, Muñoz-Cánoves P. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 2014; 506:316-21. [PMID: 24522534 DOI: 10.1038/nature13013] [Citation(s) in RCA: 706] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 01/10/2014] [Indexed: 02/06/2023]
Abstract
Regeneration of skeletal muscle depends on a population of adult stem cells (satellite cells) that remain quiescent throughout life. Satellite cell regenerative functions decline with ageing. Here we report that geriatric satellite cells are incapable of maintaining their normal quiescent state in muscle homeostatic conditions, and that this irreversibly affects their intrinsic regenerative and self-renewal capacities. In geriatric mice, resting satellite cells lose reversible quiescence by switching to an irreversible pre-senescence state, caused by derepression of p16(INK4a) (also called Cdkn2a). On injury, these cells fail to activate and expand, undergoing accelerated entry into a full senescence state (geroconversion), even in a youthful environment. p16(INK4a) silencing in geriatric satellite cells restores quiescence and muscle regenerative functions. Our results demonstrate that maintenance of quiescence in adult life depends on the active repression of senescence pathways. As p16(INK4a) is dysregulated in human geriatric satellite cells, these findings provide the basis for stem-cell rejuvenation in sarcopenic muscles.
Collapse
Affiliation(s)
- Pedro Sousa-Victor
- 1] Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University, CIBER on Neurodegenerative diseases, E-08003 Barcelona, Spain [2] Buck Institute for Research on Aging, Novato, California 94945, USA
| | - Susana Gutarra
- 1] Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University, CIBER on Neurodegenerative diseases, E-08003 Barcelona, Spain [2]
| | - Laura García-Prat
- 1] Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University, CIBER on Neurodegenerative diseases, E-08003 Barcelona, Spain [2]
| | - Javier Rodriguez-Ubreva
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, E-08907 Barcelona, Spain
| | - Laura Ortet
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University, CIBER on Neurodegenerative diseases, E-08003 Barcelona, Spain
| | - Vanessa Ruiz-Bonilla
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University, CIBER on Neurodegenerative diseases, E-08003 Barcelona, Spain
| | - Mercè Jardí
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University, CIBER on Neurodegenerative diseases, E-08003 Barcelona, Spain
| | - Esteban Ballestar
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, E-08907 Barcelona, Spain
| | - Susana González
- Stem Cell Aging Group, Centro Nacional de Investigaciones Cardiovasculares, E-28029 Madrid, Spain
| | - Antonio L Serrano
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University, CIBER on Neurodegenerative diseases, E-08003 Barcelona, Spain
| | - Eusebio Perdiguero
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University, CIBER on Neurodegenerative diseases, E-08003 Barcelona, Spain
| | - Pura Muñoz-Cánoves
- 1] Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University, CIBER on Neurodegenerative diseases, E-08003 Barcelona, Spain [2] Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain
| |
Collapse
|
394
|
|
395
|
Koopman R, Ly CH, Ryall JG. A metabolic link to skeletal muscle wasting and regeneration. Front Physiol 2014; 5:32. [PMID: 24567722 PMCID: PMC3909830 DOI: 10.3389/fphys.2014.00032] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/15/2014] [Indexed: 12/25/2022] Open
Abstract
Due to its essential role in movement, insulating the internal organs, generating heat to maintain core body temperature, and acting as a major energy storage depot, any impairment to skeletal muscle structure and function may lead to an increase in both morbidity and mortality. In the context of skeletal muscle, altered metabolism is directly associated with numerous pathologies and disorders, including diabetes, and obesity, while many skeletal muscle pathologies have secondary changes in metabolism, including cancer cachexia, sarcopenia and the muscular dystrophies. Furthermore, the importance of cellular metabolism in the regulation of skeletal muscle stem cells is beginning to receive significant attention. Thus, it is clear that skeletal muscle metabolism is intricately linked to the regulation of skeletal muscle mass and regeneration. The aim of this review is to discuss some of the recent findings linking a change in metabolism to changes in skeletal muscle mass, as well as describing some of the recent studies in developmental, cancer and stem-cell biology that have identified a role for cellular metabolism in the regulation of stem cell function, a process termed “metabolic reprogramming.”
Collapse
Affiliation(s)
- René Koopman
- Clinical Nutrition and Muscle and Exercise Metabolism Group, The University of Melbourne Melbourne, VIC, Australia
| | - C Hai Ly
- Stem Cell Metabolism and Regenerative Medicine Group, Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne Melbourne, VIC, Australia
| | - James G Ryall
- Stem Cell Metabolism and Regenerative Medicine Group, Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne Melbourne, VIC, Australia
| |
Collapse
|
396
|
Mourikis P, Tajbakhsh S. Distinct contextual roles for Notch signalling in skeletal muscle stem cells. BMC DEVELOPMENTAL BIOLOGY 2014; 14:2. [PMID: 24472470 PMCID: PMC3903015 DOI: 10.1186/1471-213x-14-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/13/2014] [Indexed: 11/17/2022]
Abstract
Notch signalling acts in virtually every tissue during the lifetime of metazoans. Recent studies have pointed to multiple roles for Notch in stem cells during quiescence, proliferation, temporal specification, and maintenance of the niche architecture. Skeletal muscle has served as an excellent paradigm to examine these diverse roles as embryonic, foetal, and adult skeletal muscle stem cells have different molecular signatures and functional properties, reflecting their developmental specification during ontology. Notably, Notch signalling has emerged as a major regulator of all muscle stem cells. This review will provide an overview of Notch signalling during myogenic development and postnatally, and underscore the seemingly opposing contextual activities of Notch that have lead to a reassessment of its role in myogenesis.
Collapse
Affiliation(s)
| | - Shahragim Tajbakhsh
- Stem Cells and Development, CNRS URA 2578, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 rue du Dr, Roux, 75015 Paris, France.
| |
Collapse
|
397
|
Abstract
Adult skeletal muscle possesses remarkable regenerative capacity. Muscle regeneration is mediated by a rare population of muscle stem cells that reside between the basal lamina and sarcolemma of muscle fibers. Due to their anatomical location, muscle stem cells have been coined satellite cells. Here, we describe a method that we routinely use to isolate large and pure populations of satellite cells from skeletal muscles enabling studies on autonomous properties of satellite cells to unravel the role of muscle stem cells in tissue regeneration.
Collapse
Affiliation(s)
- Johnny Kim
- Department of Cardiac Development and Remodelling, Max-Planck-Institute for Heart and Lung Research, Ludwigstraße 43, 61231, Bad Nauheim, Germany
| | | |
Collapse
|
398
|
Abstract
The term epigenetics refers to stable patterns of gene expression that are seen during differentiation or X chromosome inactivation and are not dependent on dynamic changes in coding DNA. These gene expression states are encoded in the epigenome - a collection of marks on DNA or on histone tails that are established during embryogenesis. Genome-wide studies in aging cells and tissues have uncovered stochastic DNA methylation drift (gradual increases or decreases at specific loci) that reflects imperfect maintenance of epigenetic marks. Drift creates epigenetic mosaicism in aging stem cells that could potentially restrict their plasticity and worsen phenotypes such as stem cell exhaustion and focal proliferative defects that can lead to cancer.
Collapse
|
399
|
Fukada SI, Ma Y, Ohtani T, Watanabe Y, Murakami S, Yamaguchi M. Isolation, characterization, and molecular regulation of muscle stem cells. Front Physiol 2013; 4:317. [PMID: 24273513 PMCID: PMC3824104 DOI: 10.3389/fphys.2013.00317] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/14/2013] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle has great regenerative capacity which is dependent on muscle stem cells, also known as satellite cells. A loss of satellite cells and/or their function impairs skeletal muscle regeneration and leads to a loss of skeletal muscle power; therefore, the molecular mechanisms for maintaining satellite cells in a quiescent and undifferentiated state are of great interest in skeletal muscle biology. Many studies have demonstrated proteins expressed by satellite cells, including Pax7, M-cadherin, Cxcr4, syndecan3/4, and c-met. To further characterize satellite cells, we established a method to directly isolate satellite cells using a monoclonal antibody, SM/C-2.6. Using SM/C-2.6 and microarrays, we measured the genes expressed in quiescent satellite cells and demonstrated that Hesr3 may complement Hesr1 in generating quiescent satellite cells. Although Hesr1- or Hesr3-single knockout mice show a normal skeletal muscle phenotype, including satellite cells, Hesr1/Hesr3-double knockout mice show a gradual decrease in the number of satellite cells and increase in regenerative defects dependent on satellite cell numbers. We also observed that a mouse's genetic background affects the regenerative capacity of its skeletal muscle and have established a line of DBA/2-background mdx mice that has a much more severe phenotype than the frequently used C57BL/10-mdx mice. The phenotype of DBA/2-mdx mice also seems to depend on the function of satellite cells. In this review, we summarize the methodology of direct isolation, characterization, and molecular regulation of satellite cells based on our results. The relationship between the regenerative capacity of satellite cells and progression of muscular disorders is also summarized. In the last part, we discuss application of the accumulating scientific information on satellite cells to treatment of patients with muscular disorders.
Collapse
Affiliation(s)
- So-Ichiro Fukada
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University Osaka, Japan
| | | | | | | | | | | |
Collapse
|
400
|
Cattenoz PB, Giangrande A. Lineage specification in the fly nervous system and evolutionary implications. Cell Cycle 2013; 12:2753-9. [PMID: 23966161 DOI: 10.4161/cc.25918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Over the last decades, it has become clear that glia are multifunctional and plastic cells endowed with key regulatory roles. They control the response to developmental and/or pathological signals, thereby affecting neural proliferation, remodeling, survival, and regeneration. It is, therefore, important to understand the biology of these cells and the molecular mechanisms controlling their development/activity. The fly community has made major breakthroughs by characterizing the bases of gliogenesis and function. Here we describe the regulation and the role of the fly glial determinant. Then, we discuss the impact of the determinant in cell plasticity and differentiation. Finally, we address the conservation of this pathway across evolution.
Collapse
Affiliation(s)
- Pierre B Cattenoz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire; IGBMC/CNRS/INSERM/UDS; Strasbourg, France
| | | |
Collapse
|