351
|
Dadashpour M, Ganjibakhsh M, Mousazadeh H, Nejati K. Increased Pro-Apoptotic and Anti-Proliferative Activities of Simvastatin Encapsulated PCL-PEG Nanoparticles on Human Breast Cancer Adenocarcinoma Cells. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02217-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
352
|
Sodium Alginate as a Pharmaceutical Excipient: Novel Applications of a Well-known Polymer. J Pharm Sci 2022; 111:1250-1261. [PMID: 34986359 DOI: 10.1016/j.xphs.2021.12.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 12/30/2022]
Abstract
Alginates are naturally occurring polymers revealing low toxicity, good biocompatibility and biodegradability, excellent gelling and thickening properties, as well as low production cost and good availability. One of the most important features typical for alginates is the ability to undergo ionotropic gelation which is gel formation process occurring upon the contact with cations. Because of their advantageous properties, alginates have been extensively utilized in food and pharmaceutical industries. In this review the current knowledge regarding the most recent studies involving both popularly applied dosage forms, like tablets or hydrogels, and novel advanced drug delivery systems applied in targeted therapies are summarized and discussed. The presented studies indicate that although sodium alginate is a well-established polymer, it is still widely applied as pharmaceutical excipient and the presented research studies indicate that there are still research areas that can be explored and provide innovation in drug delivery systems.
Collapse
|
353
|
Judge N, Pavlovic D, Moldenhauer E, Clarke P, Brannigan R, Heise A. Influence of the block copolypeptide surfactant structure on the size of polypeptide nanoparticles obtained by mini emulsion polymerisation. Polym Chem 2022. [DOI: 10.1039/d2py00331g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polypetide nanoparticles obtained by miniemulsion polymerisation of amino acid N-carboxyanhydrides (NCA) are a novel class of tuneable bio-derived functional nano materials for potential applications in nutraceutics, agriculture, and medicine. This...
Collapse
|
354
|
Forouharshad M, Ajalloueian F. Tunable self‐assembled
stereocomplexed‐
polylactic acid nanoparticles as a drug carrier. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mahdi Forouharshad
- Nano‐Bioscience Research Group DTU‐Food, Technical University of Denmark Lyngby Denmark
| | - Fatemeh Ajalloueian
- Department of Health Technology Technical University of Denmark Lyngby Denmark
| |
Collapse
|
355
|
Baig MS, Haque MA, Konatham TKR, Mohammad BD, Yahya BA, Saffiruddin SS, Siddiqui FA, Khan SL. Recent Advancements in Hyperthermia-Driven Controlled Drug Delivery from Nanotherapeutics. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2022; 16:270-286. [PMID: 36056855 DOI: 10.2174/2667387816666220902091043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
Previous reviews of the works on magnetic nanoparticles for hyperthermia-induced treatment concentrated mostly on magnetic fluid hyperthermia (MFH) employing monometallic/metal oxide nanocomposites. In the literature, the word "hyperthermia" was also limited to the use of heat for medicinal purposes. A number of articles have recently been published demonstrating that magnetic nanoparticle-based hyperthermia may produce restricted high temperatures, resulting in the release of medicines that are either connected to the magnetic nanoparticles or encased in polymer matrices. In this debate, we propose broadening the concept of "hyperthermia" to encompass temperature-based treatment as well as magnetically controlled medication delivery. The review also addresses core-shell magnetic nanomaterials, particularly nanoshells made by stacked assembly, for the use of hyperthermia- based treatment and precise administration of drugs. The primary objective of this review article is to demonstrate how the combination of hyperthermia-induced therapy and on-demand' drug release models may lead to effective applications in personalized medicine.
Collapse
Affiliation(s)
- Mirza Shahed Baig
- Y.B. Chavan College of Pharmacy, Rauza Bagh, Aurangabad, Maharashtra, 431001, India
| | - Mohammad Akiful Haque
- Department of Pharmaceutical Analysis, School of Pharmacy, Anurag University, Ghatkesar, Hyderabad, 500088, India
| | - Teja Kumar Reddy Konatham
- Department of Pharmaceutical Analysis, School of Pharmacy, Anurag University, Ghatkesar, Hyderabad, 500088, India
| | - Badrud Duza Mohammad
- G.R.T. Institute of Pharmaceutical Education and Research, GRT Mahalakshmi Nagar, Tiruttani, Tamil Nadu, 631209, India
| | | | | | - Falak A Siddiqui
- MUP's College of Pharmacy (B Pharm), Degaon, Risod, Washim, Maharashtra, 444504, India
| | - Sharuk L Khan
- MUP's College of Pharmacy (B Pharm), Degaon, Risod, Washim, Maharashtra, 444504, India
| |
Collapse
|
356
|
Malaquias DP, Dourado LFN, Lana ÂMQ, Souza F, Vilela J, Andrade M, Roa JPB, Carvalho-Junior ÁDD, Leite EA. Development and optimization by factorial design of polymeric nanoparticles for simvastatin delivery. POLIMEROS 2022. [DOI: 10.1590/0104-1428.20220016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
357
|
Cabeza L, El-Hammadi MM, Ortiz R, Cayero-Otero MD, Jiménez-López J, Perazzoli G, Martin-Banderas L, Baeyens JM, Melguizo C, Prados J. Evaluation of poly (lactic-co-glycolic acid) nanoparticles to improve the therapeutic efficacy of paclitaxel in breast cancer. BIOIMPACTS : BI 2022; 12:515-531. [PMID: 36644541 PMCID: PMC9809141 DOI: 10.34172/bi.2022.23433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/10/2021] [Accepted: 02/20/2021] [Indexed: 01/18/2023]
Abstract
Introduction: Paclitaxel (PTX) is a cornerstone in the treatment of breast cancer, the most common type of cancer in women. However, this drug has serious limitations, including lack of tissue-specificity, poor water solubility, and the development of drug resistance. The transport of PTX in a polymeric nanoformulation could overcome these limitations. Methods: In this study, PLGA-PTX nanoparticles (NPs) were assayed in breast cancer cell lines, breast cancer stem cells (CSCs) and multicellular tumor spheroids (MTSs) analyzing cell cycle, cell uptake (Nile Red-NR-) and α-tubulin expression. In addition, PLGA-PTX NPs were tested in vivo using C57BL/6 mice, including a biodistribution assay. Results: PTX-PLGA NPs induced a significant decrease in the PTX IC50 of cancer cell lines (1.31 and 3.03-fold reduction in MDA-MB-231 and E0771 cells, respectively) and CSCs. In addition, MTSs treated with PTX-PLGA exhibited a more disorganized surface and significantly higher cell death rates compared to free PTX (27.9% and 16.3% less in MTSs from MCF-7 and E0771, respectively). PTX-PLGA nanoformulation preserved PTX's mechanism of action and increased its cell internalization. Interestingly, PTX-PLGA NPs not only reduced the tumor volume of treated mice but also increased the antineoplastic drug accumulation in their lungs, liver, and spleen. In addition, mice treated with PTX-loaded NPs showed blood parameters similar to the control mice, in contrast with free PTX. Conclusion: These results suggest that our PTX-PLGA NPs could be a suitable strategy for breast cancer therapy, improving antitumor drug efficiency and reducing systemic toxicity without altering its mechanism of action.
Collapse
Affiliation(s)
- Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Mazen M. El-Hammadi
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Maria D. Cayero-Otero
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| | - Julia Jiménez-López
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Lucia Martin-Banderas
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| | - Jose M. Baeyens
- Department of Pharmacology, Institute of Neuroscience, Biomedical Research Center (CIBM), University of Granada, 18100, Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
,Corresponding author: Consolación Melguizo,
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| |
Collapse
|
358
|
Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M. Drug release study of the chitosan-based nanoparticles. Heliyon 2022; 8:e08674. [PMID: 35028457 PMCID: PMC8741465 DOI: 10.1016/j.heliyon.2021.e08674] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/08/2021] [Accepted: 12/22/2021] [Indexed: 02/08/2023] Open
Abstract
Recently, multifunctional drug delivery systems (DDSs) have been designed to provide a comprehensive approach with multiple functionalities, including diagnostic imaging, targeted drug delivery, and controlled drug release. Chitosan-based drug nanoparticles (CSNPs) systems are employed as diagnostic imaging and delivering the drug to particular targeted sites in a regulated manner. Drug release is an important factor in ensuring high reproducibility, stability, quality control of CSNPs, and scientific-based for developing CSNPs. Several factors influence drug release from CSNPs, including composition, composition ratio, ingredient interactions, and preparation methods. Early, CSNPs were used for improving drug solubility, stability, pharmacokinetics, and pharmacotherapeutics properties. Chitosan has been developed toward a multifunctional drug delivery system by exploring positively charged properties and modifiable functional groups. Various modifications to the polymer backbone, charge, or functional groups will undoubtedly affect the drug release from CSNPs. The drug release from CSNPs has a significant influence on its therapeutic actions. Our review's objective was to summarize and discuss the relationship between the modification in CSNPs as multifunctional delivery systems and drug release properties and kinetics of the drug release model. Kinetic models help describe the release rate, leading to increased efficiency, accuracy, the safety of the dose, optimizing the drug delivery device's design, evaluating the drug release rate, and improvement of patient compatibility. In conclusion, almost all CSNPs showed bi-phasic release, initial burst release drug in a particular time followed controlled manner release in achieving the expected release, stimuli external can be applied. CSNPs are a promising technique for multifunctional drug delivery systems.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Indonesia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- USM-RIKEN Interdisciplinary Collaboration on Advanced Sciences (URICAS), 11800, USM, Penang, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Indonesia
| |
Collapse
|
359
|
Park H, Lee HR, Shin HJ, Park JA, Joo Y, Kim SM, Beom J, Kang SW, Kim DW, Kim J. p16INK4a-siRNA nanoparticles attenuate cartilage degeneration in osteoarthritis by inhibiting inflammation in fibroblast-like synoviocytes. Biomater Sci 2022; 10:3223-3235. [DOI: 10.1039/d1bm01941d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In osteoarthritis (OA), chondrocytes in cartilage undergo phenotypic changes and senescence, restricting cartilage regeneration and favoring disease progression. Although senescence biomarker p16INK4a expression is known to induce aging by halting...
Collapse
|
360
|
Lim S, An SB, Jung M, Joshi HP, Kumar H, Kim C, Song SY, Lee J, Kang M, Han I, Kim B. Local Delivery of Senolytic Drug Inhibits Intervertebral Disc Degeneration and Restores Intervertebral Disc Structure. Adv Healthc Mater 2022; 11:e2101483. [PMID: 34699690 DOI: 10.1002/adhm.202101483] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/09/2021] [Indexed: 12/25/2022]
Abstract
Intervertebral disc (IVD) degeneration (IVDD) is a leading cause of chronic low back pain. There is a strong clinical demand for more effective treatments for IVDD as conventional treatments provide only symptomatic relief rather than arresting IVDD progression. This study shows that senolytic therapy with local drug delivery can inhibit IVDD and restore IVD integrity. ABT263, a senolytic drug, is loaded in poly(lactic-co-glycolic acid) nanoparticles (PLGA-ABT) and intradiscally administered into injury-induced IVDD rat models. The single intradiscal injection of PLGA-ABT may enable local delivery of the drug to avascular IVD, prevention of potential systemic toxicity caused by systemic administration of senolytic drug, and morbidity caused by repetitive injections of free drug into the IVD. The strategy results in the selective elimination of senescent cells from the degenerative IVD, reduces expressions of pro-inflammatory cytokines and matrix proteases in the IVD, inhibits progression of IVDD, and even restores the IVD structure. This study demonstrates for the first time that local delivery of senolytic drug can effectively treat senescence-associated IVDD. This approach can be extended to treat other types of senescence-associated degenerative diseases.
Collapse
Affiliation(s)
- Songhyun Lim
- School of Chemical and Biological Engineering Seoul National University Seoul 08826 Republic of Korea
| | - Seong Bae An
- Department of Neurosurgery CHA University School of Medicine CHA Bundang Medical Center, Seongnam‐si Gyeonggi‐do 13496 Republic of Korea
| | - Mungyo Jung
- School of Chemical and Biological Engineering Seoul National University Seoul 08826 Republic of Korea
| | - Hari Prasad Joshi
- Department of Neurosurgery CHA University School of Medicine CHA Bundang Medical Center, Seongnam‐si Gyeonggi‐do 13496 Republic of Korea
| | - Hemant Kumar
- Department of Pharmacology and Toxicology National Institute of Pharmaceutical Education and Research (NIPER)‐Ahmedabad Gandhinagar Gujarat 382355 India
| | - Cheesue Kim
- School of Chemical and Biological Engineering Seoul National University Seoul 08826 Republic of Korea
| | - Seuk Young Song
- School of Chemical and Biological Engineering Seoul National University Seoul 08826 Republic of Korea
| | - Ju‐Ro Lee
- School of Chemical and Biological Engineering Seoul National University Seoul 08826 Republic of Korea
| | - Mikyung Kang
- Interdisciplinary Program for Bioengineering Seoul National University Seoul 08826 Republic of Korea
| | - Inbo Han
- Department of Neurosurgery CHA University School of Medicine CHA Bundang Medical Center, Seongnam‐si Gyeonggi‐do 13496 Republic of Korea
| | - Byung‐Soo Kim
- School of Chemical and Biological Engineering Seoul National University Seoul 08826 Republic of Korea
- Interdisciplinary Program for Bioengineering Seoul National University Seoul 08826 Republic of Korea
- Institute of Chemical Processes Institute of Engineering Research BioMAX Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
361
|
Passeri G, Northcote-Smith J, Suntharalingam K. Delivery of an immunogenic cell death-inducing copper complex to cancer stem cells using polymeric nanoparticles. RSC Adv 2022; 12:5290-5299. [PMID: 35425564 PMCID: PMC8981415 DOI: 10.1039/d1ra08788f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/28/2022] [Indexed: 01/04/2023] Open
Abstract
The major cause for cancer related deaths worldwide is tumour relapse and metastasis, both of which have been heavily linked to the existence of cancer stem cells (CSCs). CSCs are able to escape current treatment regimens, reform tumours, and promote their spread to secondary sites. Recently, our research group reported the first metal-based agent 1 (a copper(ii) compound ligated by a bidentate 4,7-diphenyl-1,10-phenanthroline and a tridentate Schiff base ligand) to potently kill CSCs via cytotoxic and immunogenic mechanisms. Here we show that encapsulation of 1 by polymeric nanoparticles at the appropriate feed (10%, 1 NP10) enhances CSC uptake and improves potency towards bulk cancer cells and CSCs (grown in monolayer and three-dimensional cultures). The nanoparticle formulation triggers a similar cellular response to the payload, which bodes well for further translation. Specifically, the nanoparticle formulation elevates intracellular reactive oxygen species levels, induces ER stress, and evokes damage-associated molecular patterns consistent with immunogenic cell death. To the best of our knowledge, this is the first study to demonstrate that polymeric nanoparticles can be used to effectively deliver immunogenic metal complexes into CSCs. In this study we deliver an immunogenic cell death-inducing copper(ii) complex, comprising of 4,7-diphenyl-1,10-phenanthroline and a Schiff base ligand, to breast cancer stem cells.![]()
Collapse
Affiliation(s)
- Ginevra Passeri
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | | | | |
Collapse
|
362
|
Spanu C, Camorani S, Tortorella S, Agnello L, Maturi M, Comes Franchini M, Cerchia L, Locatelli E. Synthesis and functionalization of casein nanoparticles with aptamers for triple-negative breast cancer targeting. NEW J CHEM 2022. [DOI: 10.1039/d2nj03367d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This work shows the synthesis of a drug delivery system made of casein nanoparticles able to host hydrophobic molecules and be functionalized with aptamers targeting the epidermal growth factor receptor.
Collapse
Affiliation(s)
- Chiara Spanu
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Simona Camorani
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, CNR, Via S. Pansini 5, 80131 Naples, Italy
| | - Silvia Tortorella
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, CNR, Via S. Pansini 5, 80131 Naples, Italy
| | - Lisa Agnello
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, CNR, Via S. Pansini 5, 80131 Naples, Italy
| | - Mirko Maturi
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Mauro Comes Franchini
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, CNR, Via S. Pansini 5, 80131 Naples, Italy
| | - Erica Locatelli
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| |
Collapse
|
363
|
The Future of Nanomedicine. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_24-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
364
|
Pallavi P, Girigoswami A, Girigoswami K, Hansda S, Ghosh R. Photodynamic Therapy in Cancer. HANDBOOK OF OXIDATIVE STRESS IN CANCER: THERAPEUTIC ASPECTS 2022:1285-1308. [DOI: 10.1007/978-981-16-5422-0_232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
365
|
de Barros Fernandes H, Ciriaco SL, Filgueiras LA, Costa Barros I, Menezes Carvalho AL, Lins Rolim HM, Nele de Souza M, Costa da Silva Pinto JC, Mendes AN, de Cássia Meneses Oliveira R. Gastroprotective effect of α-terpineol-loaded polymethyl methacrylate particles on gastric injury model. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
366
|
Oliveira AI, Pinho C, Sarmento B, Dias ACP. Quercetin-biapigenin nanoparticles are effective to penetrate the blood-brain barrier. Drug Deliv Transl Res 2022; 12:267-281. [PMID: 33709285 DOI: 10.1007/s13346-021-00917-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 01/16/2023]
Abstract
Search for efficient therapeutic agents for central nervous system (CNS) disorders has been extensive. Nevertheless, blood-brain barrier (BBB) is an obstacle that prevents the majority of compounds to act in these diseases. It is, thus, of extreme relevance the BBB overcome, in order to deliver a drugs therapeutically active concentration to the action site, with the least losses and interaction with other organs, tissues, or cells. The present study aimed to investigate the potential protective effect of quercetin-biapigenin encapsulated into poly(Ɛ-polycaprolactone) (PCL) nanoparticles against t-BOOH-induced oxidative stress in several brain cell lines, as well as evaluate the permeability of those active molecules through an in vitro BBB model. The three cell lines under study (BV-2, hcmec/D3, and U87) presented different reactions to t-BOOH. In general, quercetin-biapigenin PCL-loaded nanoparticles were able to minimize compound toxicity they convey, regardless the cell line. Quercetin-biapigenin PCL-loaded nanoparticles (Papp of approximately 80 × 10-6 cm/s) revealed to be more permeable than free compounds (Papp of approximately 50 × 10-6 cm/s). As of our knowledge, this is the first report of quercetin-biapigenin PCL-loaded nanoparticle activity in brain cells. It is also the first determining its permeability through BBB, as an effective nanocarrier for brain delivery.
Collapse
Affiliation(s)
- Ana Isabel Oliveira
- Centro de Investigação Em Saúde E Ambiente (CISA), Escola Superior de Saúde -Politécnico do Porto (ESS-P.Porto), 4000-072, Porto, Portugal.
| | - Cláudia Pinho
- Centro de Investigação Em Saúde E Ambiente (CISA), Escola Superior de Saúde -Politécnico do Porto (ESS-P.Porto), 4000-072, Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação E Inovação Em Saúde, Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- CESPU, Instituto de Investigação E Formação Avançada Em Ciências E Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, 4585-116, Gandra, Portugal
| | - Alberto C P Dias
- Centre of Molecular and Environmental Biology (CBMA), Biology Department, Department of Biology, University of Minho, 4710-057, Braga, Portugal
| |
Collapse
|
367
|
Ebrahimian M, Mahvelati F, Malaekeh-Nikouei B, Hashemi E, Oroojalian F, Hashemi M. Bromelain Loaded Lipid-Polymer Hybrid Nanoparticles for Oral Delivery: Formulation and Characterization. Appl Biochem Biotechnol 2022; 194:3733-3748. [PMID: 35507250 PMCID: PMC9066387 DOI: 10.1007/s12010-022-03812-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2021] [Indexed: 11/30/2022]
Abstract
Bromelain (Br), a mixture of proteolytic enzymes from pineapple (Ananas comosus), has various therapeutic potentials; however, its low bioavailability has limited the clinical applications specifically in oral delivery as the most common convenient used route of administration. In the present study, a lipopolymeric nanoparticle (NP) containing Br was developed to enhance its stability and oral delivery efficiency. Firstly, Br was loaded into poly (D, L-lactide-co-glycolide acid) (PLGA) and PLGA-phosphatidylcholine (PLGA-PC) NPs using double emulsion solvent evaporation technique. Then, Br integrity and activity were investigated using SDS-PAGE and gelatin test. The stability and release profile of Br from synthetized NPs were evaluated at different pH values of the digestive system. Furthermore, cytotoxicity, cellular uptake, and the amount of Br passage from Caco-2 cells were explored. The results showed PLGA-PC-Br NPs had higher encapsulation efficiency (83%) compared to PLGA-Br NPs (50%). In addition, this NP showed more Br released in neutral (20.36%) and acidic (34%) environments compared to PLGA-Br NPs after 5 days. The delay in the release of Br from PLGA-PC-Br NPs versus the faster release of Br from PLGA-Br formulation could assure that an appropriate concentration of Br has reached the intestine. Intestinal absorption study demonstrated that lipid polymer NPs were able to pass through Caco-2 cells about 1.5 times more (98.4%) than polymeric NPs (70%). In conclusion, PLGA-PC NPs would be considered as a promising lipid-polymer nanocarrier for effective intestinal absorption of Br.
Collapse
Affiliation(s)
- Mahboubeh Ebrahimian
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mahvelati
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bizhan Malaekeh-Nikouei
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ezzat Hashemi
- Department of Neurology and Neurological Science, Stanford University, Stanford, CA USA
| | - Fatemeh Oroojalian
- Department of Advanced Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran. .,Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Maryam Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
368
|
Jiang Y, Jiang Z, Wang M, Ma L. Current understandings and clinical translation of nanomedicines for breast cancer therapy. Adv Drug Deliv Rev 2022; 180:114034. [PMID: 34736986 DOI: 10.1016/j.addr.2021.114034] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer is one of the most frequently diagnosed cancers that is threatening women's life. Current clinical treatment regimens for breast cancer often involve neoadjuvant and adjuvant systemic therapies, which somewhat are associated with unfavorable features. Also, the heterogeneous nature of breast cancers requires precision medicine that cannot be fulfilled by a single type of systemically administered drug. Taking advantage of the nanocarriers, nanomedicines emerge as promising therapeutic agents for breast cancer that could resolve the defects of drugs and achieve precise drug delivery to almost all sites of primary and metastatic breast tumors (e.g. tumor vasculature, tumor stroma components, breast cancer cells, and some immune cells). Seven nanomedicines as represented by Doxil® have been approved for breast cancer clinical treatment so far. More nanomedicines including both non-targeting and active targeting nanomedicines are being evaluated in the clinical trials. However, we have to realize that the translation of nanomedicines, particularly the active targeting nanomedicines is not as successful as people have expected. This review provides a comprehensive landscape of the nanomedicines for breast cancer treatment, from laboratory investigations to clinical applications. We also highlight the key advances in the understanding of the biological fate and the targeting strategies of breast cancer nanomedicine and the implications to clinical translation.
Collapse
|
369
|
Hady MA, Darwish AB, Abdel-Aziz MS, Sayed OM. Design of transfersomal nanocarriers of nystatin for combating vulvovaginal candidiasis; A different prospective. Colloids Surf B Biointerfaces 2021; 211:112304. [PMID: 34959094 DOI: 10.1016/j.colsurfb.2021.112304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/26/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022]
Abstract
The objective of this study was to prepare and evaluate Nystatin (NYS) loaded transfersomes to achieve better treatment of vulvovaginal candidiasis. Nystatin transferosomes were formulated utilizing thin film hydration method. A 32 full factorial design was employed to evaluate the effect of different formulation variables. Two independent variables were chosen; the ratio between lecithin surfactant (X1) was set at three levels (10-40), and the type of surfactants (X2) was set at three levels (Span 60, Span 85 and Pluronic F-127). The dependent responses were; entrapment efficiency (Y1: EE %), vesicles size (Y2: VS) and release rate (Y3: RR). Design Expert® software was utilized to statistically optimize formulation variables. The vesicles revealed high NYS encapsulation efficiency ranging from 97.35 ± 0.03 to 98.01 ± 0.20% whereas vesicle size ranged from 194.8 ± 20.42 to 400.8 ± 42.09 nm. High negative zeta potential values indicated good stability of the prepared formulations. NYS release from transfersomes was biphasic and the release pattern followed Higuchi's model. The optimized formulation (F7) exhibited spherical morphology under transmission electron microscopy (TEM). In-vitro and in-vivo antifungal efficiency studies revealed that the optimized formula F7 exhibited significant eradication of candida infestation in comparison to free NYS. The results revealed that the developed NYS transfersomes could be a promising drug delivery system to enhance antifungal efficacy of NYS.
Collapse
Affiliation(s)
- Mayssa Abdel Hady
- Department of Pharmaceutical Technology, National Research Centre, El Bohouth Street, Cairo12622, Egypt
| | - Asmaa B Darwish
- Department of Pharmaceutical Technology, National Research Centre, El Bohouth Street, Cairo12622, Egypt.
| | - Mohamed S Abdel-Aziz
- Microbial Chemistry Department, Genetic Engineering and Biotechnology Division, National Research Centre, El Bohouth Street, Cairo 12622, Egypt
| | - Ossama M Sayed
- Department of Pharmaceutics Industrial Pharmacy, Faculty of Pharmacy, Sinai University - Kantara Branch, Egypt.
| |
Collapse
|
370
|
Andrews J, Blaisten-Barojas E. Distinctive Formation of PEG-Lipid Nanopatches onto Solid Polymer Surfaces Interfacing Solvents from Atomistic Simulation. J Phys Chem B 2021; 126:1598-1608. [PMID: 34933557 DOI: 10.1021/acs.jpcb.1c07490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The interface between solid poly(lactic acid-co-glycolic acid), PLGA, and solvents is described by large-scale atomistic simulations for water, ethyl acetate, and the mixture of them at ambient conditions. Interactions at the interface are dominated by Coulomb forces for water and become overwhelmingly dispersive for the other two solvents. This effect drives a neat liquid-phase separation of the mixed solvent, with ethyl acetate covering the PLGA surface and water being segregated away from it. We explore with all-atom Molecular Dynamics the formation of macromolecular assemblies on the surface of the PLGA-solvent interface when DSPE-PEG, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(polyethylene glycol)n amine, is added to the solvent. By following in time the deposition of the DSPE-PEG macromolecules onto the PLGA surface, the mechanism of how nanopatches remain adsorbed to the surface despite the presence of the solvent is probed. These patches have a droplet-like aspect when formed at the PLGA-water interface that flatten in the PLGA-ethyl acetate interface case. Dispersive forces are dominant for the nanopatch adhesion to the surface, while electrostatic forces are dominant for keeping the solvent around the new formations. Considering the droplet-like patches as wetting the PLGA surface, we predict an effective wetting behavior at the water interface that fades significantly at the ethyl acetate interface. The predicted mechanism of PEG-lipid nanopatch formation may be generally applicable for tailoring the synthesis of asymmetric PLGA nanoparticles for specific drug delivery conditions.
Collapse
Affiliation(s)
- James Andrews
- Center for Simulation and Modeling (formerly, Computational Materials Science Center) and Department of Computational and Data Sciences, George Mason University, Fairfax, Virginia 22030, United States
| | - Estela Blaisten-Barojas
- Center for Simulation and Modeling (formerly, Computational Materials Science Center) and Department of Computational and Data Sciences, George Mason University, Fairfax, Virginia 22030, United States
| |
Collapse
|
371
|
Wlodarczyk J, Stojko M, Musial-Kulik M, Karpeta-Jarzabek P, Pastusiak M, Janeczek H, Dobrzynski P, Sobota M, Kasperczyk J. Dual-jet electrospun PDLGA/PCU nonwovens and their mechanical and hydrolytic degradation properties. J Mech Behav Biomed Mater 2021; 126:105050. [PMID: 34959096 DOI: 10.1016/j.jmbbm.2021.105050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022]
Abstract
A dual-jet electrospinning was used to mix a different hydrophilicity poly(carbonate urethanes) (PCUs) nanofibers with a biodegradable poly(D,L-lactide-co-glycolide) (PDLGA) copolyester microfibers. As a result, PDLGA/PCU partially degradable nonwovens consisting of an interlaced of both components fibers were obtained. In order to examine the hydrolytic degradation process of polyester fraction, as well as changes that occurred in the mechanical properties of the whole nonwovens, gel permeation chromatography, proton nuclear magnetic resonance spectroscopy, differential scanning calorimetry and scanning electron microscopy as well as static tensile test were performed. Obtained results showed that for the introduction of more hydrophobic PCU nanofibers (ChronoSil), the process of copolyester chain scission slowed down and the erosion mechanism proceeded in bulk. Unexpectedly, even greater deceleration of PDLGA fibers degradation was observed in case of more hydrophilic PCU (HydroThane), and erosion mechanism changed to surface. Enhancement the affinity of the whole nonwoven to the water, manifested by strong water uptake, facilitated the diffusion processes of both: water and acid degradation by-products, which limited autocatalysis reactions of the hydrolysis of ester bonds. On the other hand, strength tests showed the synergy in the mechanical characteristics of both components. Presented method allows influencing the mechanism and rate of polyester degradation without changing its chemical composition and physical properties, affecting only the physical interactions between the nonwoven and the degradation environment, and thus, on diffusion processes. Obtained partially degradable materials possessed also time prolonged functional properties, compared to the copolyester-only nonwoven itself, thus could be considered as promising for biomedical applications e.g. in drug release systems, implants or surgical meshes for supporting soft tissues.
Collapse
Affiliation(s)
- Jakub Wlodarczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819, Zabrze, Poland.
| | - Mateusz Stojko
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819, Zabrze, Poland; Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 8 Jednosci St., 41-200, Sosnowiec, Poland
| | - Monika Musial-Kulik
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819, Zabrze, Poland
| | - Paulina Karpeta-Jarzabek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819, Zabrze, Poland
| | - Malgorzata Pastusiak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819, Zabrze, Poland
| | - Henryk Janeczek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819, Zabrze, Poland
| | - Piotr Dobrzynski
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819, Zabrze, Poland
| | - Michal Sobota
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819, Zabrze, Poland.
| | - Janusz Kasperczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819, Zabrze, Poland; Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 8 Jednosci St., 41-200, Sosnowiec, Poland
| |
Collapse
|
372
|
Microfluidics Technology for the Design and Formulation of Nanomedicines. NANOMATERIALS 2021; 11:nano11123440. [PMID: 34947789 PMCID: PMC8707902 DOI: 10.3390/nano11123440] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022]
Abstract
In conventional drug administration, drug molecules cross multiple biological barriers, distribute randomly in the tissues, and can release insufficient concentrations at the desired pathological site. Controlling the delivery of the molecules can increase the concentration of the drug in the desired location, leading to improved efficacy, and reducing the unwanted effects of the molecules under investigation. Nanoparticles (NPs), have shown a distinctive potential in targeting drugs due to their unique properties, such as large surface area and quantum properties. A variety of NPs have been used over the years for the encapsulation of different drugs and biologics, acting as drug carriers, including lipid-based and polymeric NPs. Applying NP platforms in medicines significantly improves the disease diagnosis and therapy. Several conventional methods have been used for the manufacturing of drug loaded NPs, with conventional manufacturing methods having several limitations, leading to multiple drawbacks, including NPs with large particle size and broad size distribution (high polydispersity index), besides the unreproducible formulation and high batch-to-batch variability. Therefore, new methods such as microfluidics (MFs) need to be investigated more thoroughly. MFs, is a novel manufacturing method that uses microchannels to produce a size-controlled and monodispersed NP formulation. In this review, different formulation methods of polymeric and lipid-based NPs will be discussed, emphasizing the different manufacturing methods and their advantages and limitations and how microfluidics has the capacity to overcome these limitations and improve the role of NPs as an effective drug delivery system.
Collapse
|
373
|
Khalin I, Severi C, Heimburger D, Wehn A, Hellal F, Reisch A, Klymchenko AS, Plesnila N. Dynamic tracing using ultra-bright labeling and multi-photon microscopy identifies endothelial uptake of poloxamer 188 coated poly(lactic-co-glycolic acid) nano-carriers in vivo. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 40:102511. [PMID: 34915181 DOI: 10.1016/j.nano.2021.102511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/18/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023]
Abstract
The potential of poly(lactic-co-glycolic acid) (PLGA) to design nanoparticles (NPs) and target the central nervous system remains to be exploited. In the current study we designed fluorescent 70-nm PLGA NPs, loaded with bulky fluorophores, thereby making them significantly brighter than quantum dots in single-particle fluorescence measurements. The high brightness of NPs enabled their visualization by intravital real-time 2-photon microscopy. Subsequently, we found that PLGA NPs coated with pluronic F-68 circulated in the blood substantially longer than uncoated NPs and were taken up by cerebro-vascular endothelial cells. Additionally, confocal microscopy revealed that coated PLGA NPs were present in late endothelial endosomes of cerebral vessels within 1 h after systemic injection and were more readily taken up by endothelial cells in peripheral organs. The combination of ultra-bright NPs and in vivo imaging may thus represent a promising approach to reduce the gap between development and clinical application of nanoparticle-based drug carriers.
Collapse
Affiliation(s)
- Igor Khalin
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Munich, Germany; Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Caterina Severi
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Doriane Heimburger
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Antonia Wehn
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Munich, Germany; Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Farida Hellal
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Munich, Germany; Cluster for Systems Neurology (SyNergy), Munich, Germany; Institute of Tissue Engineering and Regenerative Medicine (iTERM), Helmholz Zentrum Munich, Neuherberg, Germany
| | - Andreas Reisch
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Munich, Germany; Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
374
|
Backes EH, Harb SV, Beatrice CAG, Shimomura KMB, Passador FR, Costa LC, Pessan LA. Polycaprolactone usage in additive manufacturing strategies for tissue engineering applications: A review. J Biomed Mater Res B Appl Biomater 2021; 110:1479-1503. [PMID: 34918463 DOI: 10.1002/jbm.b.34997] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 08/02/2021] [Accepted: 11/27/2021] [Indexed: 12/11/2022]
Abstract
Polycaprolactone (PCL) has been extensively applied on tissue engineering because of its low-melting temperature, good processability, biodegradability, biocompatibility, mechanical resistance, and relatively low cost. The advance of additive manufacturing (AM) technologies in the past decade have boosted the fabrication of customized PCL products, with shorter processing time and absence of material waste. In this context, this review focuses on the use of AM techniques to produce PCL scaffolds for various tissue engineering applications, including bone, muscle, cartilage, skin, and cardiovascular tissue regeneration. The search for optimized geometry, porosity, interconnectivity, controlled degradation rate, and tailored mechanical properties are explored as a tool for enhancing PCL biocompatibility and bioactivity. In addition, rheological and thermal behavior is discussed in terms of filament and scaffold production. Finally, a roadmap for future research is outlined, including the combination of PCL struts with cell-laden hydrogels and 4D printing.
Collapse
Affiliation(s)
- Eduardo Henrique Backes
- Materials Engineering Department, Graduate Program in Materials Science and Engineering, Federal University of São Carlos, São Carlos, Brazil
| | - Samarah Vargas Harb
- Materials Engineering Department, Graduate Program in Materials Science and Engineering, Federal University of São Carlos, São Carlos, Brazil
| | - Cesar Augusto Gonçalves Beatrice
- Materials Engineering Department, Graduate Program in Materials Science and Engineering, Federal University of São Carlos, São Carlos, Brazil
| | - Kawany Munique Boriolo Shimomura
- Materials Engineering Department, Graduate Program in Materials Science and Engineering, Federal University of São Carlos, São Carlos, Brazil
| | | | - Lidiane Cristina Costa
- Materials Engineering Department, Graduate Program in Materials Science and Engineering, Federal University of São Carlos, São Carlos, Brazil
| | - Luiz Antonio Pessan
- Materials Engineering Department, Graduate Program in Materials Science and Engineering, Federal University of São Carlos, São Carlos, Brazil
| |
Collapse
|
375
|
Jug-PLGA-NPs, a New Form of Juglone with Enhanced Efficiency and Reduced Toxicity on Melanoma. Chin J Integr Med 2021; 28:909-917. [PMID: 34913148 DOI: 10.1007/s11655-021-3461-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To verrify the anti-tumor efficacy and toxicity between juglone (Jug) and Jug-loaded PLGA nanoparticles (Jug-PLGA-NPs). METHODS Jug-PLGA-NPs were prepared by ultrasonic emulsification. The anti-tumor activity of Jug (2, 3, 4 µg/mL) and Jug-PLGA-NPs (Jug: 2, 3, 4 µg/mL) in vitro was measured by MTT assay and cell apoptosis analysis. The distribution, anti-tumor effect and biological safety in vivo was evaluated on A375 nude mice. RESULTS With the advantage of good penetration and targeting properties, Jug-PLGA-NPs significantly inhibited proliferation and migration of melanoma cells both in vitro and in vivo (P<0.05 or P<0.01) with acceptable biocompatibility. CONCLUSIONS Jug can inhibit the growth of melanoma but is highly toxic. With the advantage of sustained release, tumor targeting, anti-tumor activity and acceptable biological safety, Jug-PLGA-NPs provide a new pharmaceutical form for future application of Jug.
Collapse
|
376
|
Costa C, Cavaco-Paulo A, Matamá T. Mapping hair follicle-targeted delivery by particle systems: What has science accomplished so far? Int J Pharm 2021; 610:121273. [PMID: 34763036 DOI: 10.1016/j.ijpharm.2021.121273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022]
Abstract
The importance of the hair follicle in the process of cutaneous drug penetration has been established since this skin appendage was recognized as an entry point for topically applied substances. A comprehensive review on the hair follicle as a target per se is here provided, exploring the current knowledge on both targeted regions and delivery systems that take advantage of this permeation route. The follicular penetration is a complex process, whose effectiveness and efficiency strongly depends on a diversity of different factors including follicular density and size, activity status of hair follicles and physicochemical properties of the topically applied substances. Nanocarriers represent a heterogeneous assembly of molecules organized into particles and they have revolutionized drug delivery in several areas of medicine, pharmacology and cosmetics. As they possess an inherent ability to use the follicular route, they are reviewed here having in perspective the hair follicle zones that they are able to reach as reported. In this way, a follicular road map for the different delivery systems was compiled to assist as a guiding tool for those that have interest in the development and/or application of such delivery systems for hair and skin treatment or care.
Collapse
Affiliation(s)
- Cristiana Costa
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - Teresa Matamá
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
377
|
Ogunjimi AT, Chahud F, Lopez RFV. Isotretinoin-Delonix polymeric nanoparticles: Potentials for skin follicular targeting in acne treatment. Int J Pharm 2021; 610:121217. [PMID: 34688848 DOI: 10.1016/j.ijpharm.2021.121217] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/29/2021] [Accepted: 10/16/2021] [Indexed: 11/25/2022]
Abstract
In acne management, oral isotretinoin (IST) is associated with various untoward systemic effects, while its topical formulation has irritation side effects. Delonix (DLX) is a natural galactomannan derived from Delonix regia seed that can fabricate nanoparticles for topical skin delivery. This study aims to develop IST-DLX nanoparticles and assess their prospects for acne treatment. Fluorescent-DLX nanoparticles (made with a lipophilic BODIPY dye) or IST-DLX nanoparticles were prepared and characterized. BODIPY-DLX nanoparticles' skin distribution and IST-DLX nanoparticles' in-vitro targeting were assessed in pig ear skin, inflammatory modulation was assessed in AMJ-2 macrophage cells, while skin penetration and irritation were assessed in Wistar rats. IST-DLX nanoparticles had ≈230 nm, negative zeta potential, and ≈30% encapsulation efficiency. Confocal showed BODIPY in DLX nanoparticles accumulated in hair follicles as compared to BODIPY solution. IST-DLX nanoparticles released ≈37% IST over 48 h and increased IST 3-fold in hair follicles compared to IST solution. IST-DLX nanoparticles suppressed IL-6 expression in cells and reduced photo-irritation in Wistar rats compared to IST solution. In conclusion, IST-DLX nanoparticles may target and deliver adequate IST to skin layers associated with acne, avoid systemic penetration, modulate inflammatory pathogenic acne stage and prevent IST topical photo-irritation.
Collapse
Affiliation(s)
- Abayomi Tolulope Ogunjimi
- University of São Paulo, School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Fernando Chahud
- University of São Paulo, Ribeirão Preto Medical School, Ribeirão Preto, SP, Brazil
| | - Renata F V Lopez
- University of São Paulo, School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
378
|
Kim AV, Shelepova EA, Evseenko VI, Dushkin AV, Medvedev NN, Polyakov NE. Mechanism of the enhancing effect of glycyrrhizin on nifedipine penetration through a lipid membrane. J Mol Liq 2021; 344:117759. [PMID: 34658466 PMCID: PMC8500845 DOI: 10.1016/j.molliq.2021.117759] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/02/2021] [Indexed: 01/04/2023]
Abstract
The saponin glycyrrhizin from liquorice root shows the ability to enhance the therapeutic activity of other drugs when used as a drug delivery system. Due to its amphiphilic properties, glycyrrhizin can form self-associates (dimers, micelles) and supramolecular complexes with a wide range of hydrophobic drugs, which leads to an increase in their solubility, stability and bioavailability. That is why the mechanism of the biological activity of glycyrrhizin is of considerable interest and has been the subject of intensive physical and chemical research in the last decade. Two mechanisms have been proposed to explain the effect of glycyrrhizin on drug bioavailability, namely, the increase in drug solubility in water and enhancement of the membrane permeability. Interest in the membrane-modifying ability of glycyrrhizic acid (GA) is also growing at present due to its recently discovered antiviral activity against SARS-CoV-2 Bailly and Vergoten (2020) [1]. In the present study, the passive permeability of the DOPC lipid membrane for the calcium channel blocker nifedipine was elucidated by parallel artificial membrane permeability assay (PAMPA) and full atomistic molecular dynamics (MD) simulation with free energy calculations. PAMPA experiments show a remarkable increase in the amount of nifedipine (NF) permeated with glycyrrhizin compared to free NF. In previous studies, we have shown using MD techniques that glycyrrhizin molecules can integrate into the lipid bilayer. In this study, MD simulation demonstrates a significant decrease in the energy barrier of NF penetration through the lipid bilayer in the presence of glycyrrhizin both in the pure DOPC membrane and in the membrane with cholesterol. This effect can be explained by the formation of hydrogen bonds between NF and GA in the middle of the bilayer.
Collapse
Key Words
- CLR, cholesterol
- DDS, drug delivery system
- DOPC
- DOPC, dioleoylphosphatidylcholine
- Drug delivery
- GA, glycyrrhizic acid
- Glycyrrhizin
- Lipid bilayer
- MD, molecular dynamics
- Membrane penetration
- Molecular dynamics
- NF, nifedipine
- NMR
- NMR, nuclear magnetic resonance
- Nifedipine
- PAMPA
- PAMPA, parallel artificial membrane permeability assay
- PMF, potential of mean force
- TBK, tebuconazole
- VDW, Van der Waals
Collapse
Affiliation(s)
- A V Kim
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - E A Shelepova
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia
| | - V I Evseenko
- Institute of Solid State Chemistry and Mechanochemistry, Novosibirsk, Russia
| | - A V Dushkin
- Institute of Solid State Chemistry and Mechanochemistry, Novosibirsk, Russia
| | - N N Medvedev
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - N E Polyakov
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia.,Institute of Solid State Chemistry and Mechanochemistry, Novosibirsk, Russia
| |
Collapse
|
379
|
Allen ME, Golding A, Rus V, Karabin NB, Li S, Lescott CJ, Bobbala S, Scott EA, Szeto GL. Targeted Delivery of Chloroquine to Antigen-Presenting Cells Enhances Inhibition of the Type I Interferon Response. ACS Biomater Sci Eng 2021; 7:5666-5677. [PMID: 34813288 DOI: 10.1021/acsbiomaterials.1c01047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Systemic lupus erythematosus (SLE) causes damaging inflammation in multiple organs via the accumulation of immune complexes. These complexes activate plasmacytoid dendritic cells (pDCs) via toll-like receptors (TLRs), contributing to disease pathogenesis by driving the secretion of inflammatory type I interferons (IFNs). Antimalarial drugs, such as chloroquine (CQ), are TLR antagonists used to alleviate inflammation in SLE. However, they require ∼3 months of continuous use before achieving therapeutic efficacy and can accumulate in the retinal pigment epithelium with chronic use, resulting in retinopathy. We hypothesized that poly(ethylene glycol)-b-poly(propylene sulfide) filamentous nanocarriers, filomicelles (FMs), could directly deliver CQ to pDCs via passive, morphology-based targeting to concentrate drug delivery to specific immune cells, improve drug activity by increased inhibition of type I IFN, and enhance efficacy per dose. Healthy human peripheral blood mononuclear cells were treated with soluble CQ or CQ-loaded FMs, stimulated with TLR agonists or SLE patient sera, and type I IFN secretion was quantified via multi-subtype IFN-α ELISA and MX1 gene expression using real-time reverse transcription-quantitative polymerase chain reaction. Our results showed that 50 μg CQ/mg FM decreased MX1 expression and IFN-α production after TLR activation with either synthetic nucleic acid agonists or immune complex-rich sera from SLE patients. Cellular uptake and biodistribution studies showed that FMs preferentially accumulate in human pDCs and monocytes in vitro and in tissues frequently damaged in SLE patients (i.e., kidneys), while sparing the eye in vivo. These results showed that nanocarrier morphology enables drug delivery, and CQ-FMs may be equally effective and more targeted than soluble CQ at inhibiting SLE-relevant pathways.
Collapse
Affiliation(s)
- Marilyn E Allen
- Department of Chemical, Biochemical & Environmental Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Amit Golding
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, Maryland 21201, United States
| | - Violeta Rus
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, Maryland 21201, United States
| | - Nicholas B Karabin
- Department of Biomedical Engineering, Northwestern University, 633 Clark Street, Evanston, Illinois 60208, United States
| | - Sophia Li
- Department of Biomedical Engineering, Northwestern University, 633 Clark Street, Evanston, Illinois 60208, United States
| | - Chamille J Lescott
- Department of Biomedical Engineering, Northwestern University, 633 Clark Street, Evanston, Illinois 60208, United States
| | - Sharan Bobbala
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 1 Medical Center Drive, Morgantown, West Virginia 26506, United States
| | - Evan A Scott
- Department of Biomedical Engineering, Northwestern University, 633 Clark Street, Evanston, Illinois 60208, United States
| | - Gregory L Szeto
- Allen Institute for Immunology, 615 Westlake Avenue North, Seattle, Washington 98109, United States
| |
Collapse
|
380
|
Singh D, Kaur P, Attri S, Singh S, Sharma P, Mohana P, Kaur K, Kaur H, Singh G, Rashid F, Singh D, Kumar A, Rajput A, Bedi N, Singh B, Buttar HS, Arora S. Recent Advances in the Local Drug Delivery Systems for Improvement of Anticancer Therapy. Curr Drug Deliv 2021; 19:560 - 586. [PMID: 34906056 DOI: 10.2174/1567201818666211214112710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 11/22/2022]
Abstract
The conventional anticancer chemotherapies not only cause serious toxic effects, but also produce resistance in tumor cells exposed to long-term therapy. Usually, the killing of metastasized cancer cells requires long-term therapy with higher drug doses, because the cancer cells develop resistance due to the induction of poly-glycoproteins (P-gps) that act as a transmembrane efflux pump to transport drugs out of the cells. During the last few decades, scientists have been exploring new anticancer drug delivery systems such as microencapsulation, hydrogels, and nanotubes to improve bioavailability, reduce drug-dose requirement, decrease multiple drug resistance, and to save normal cells as non-specific targets. Hopefully, the development of novel drug delivery vehicles (nanotubes, liposomes, supramolecules, hydrogels, and micelles) will assist to deliver drug molecules at the specific target site and reduce the undesirable side effects of anticancer therapies in humans. Nanoparticles and lipid formulations are also designed to deliver small drug payload at the desired tumor cell sites for their anticancer actions. This review will focus on the recent advances in the drug delivery systems, and their application in treating different cancer types in humans.
Collapse
Affiliation(s)
- Davinder Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Prabhjot Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Shivani Attri
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Sharabjit Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Palvi Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Pallavi Mohana
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Harneetpal Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Gurdeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Farhana Rashid
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga. India
| | - Avinash Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. 0
| | - Ankita Rajput
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. 0
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. 0
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. 0
| | - Harpal Singh Buttar
- Department of Pathology and Laboratory Medicine, University of Ottawa, Faculty of Medicine, Ottawa, Ontario. Canada
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| |
Collapse
|
381
|
Chavan YR, Tambe SM, Jain DD, Khairnar SV, Amin PD. Redefining the importance of polylactide-co-glycolide acid (PLGA) in drug delivery. ANNALES PHARMACEUTIQUES FRANÇAISES 2021; 80:603-616. [PMID: 34896382 DOI: 10.1016/j.pharma.2021.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/31/2021] [Accepted: 11/29/2021] [Indexed: 11/19/2022]
Abstract
The limitations of non-biodegradable polymers have paved the way for biodegradable polymers in the pharmaceutical and biomedical sciences over the years. Poly (lactic-co-glycolic acid) (PLGA), also known as 'Smart polymer', is one of the most successfully developed biodegradable polymers due to its favorable properties, such as biodegradability, biocompatibility, controllable drug release profile, and ability to alter surface with targeting agents for diagnosis and treatment. The release behavior of drugs from PLGA delivery devices is influenced by the physicochemical properties of PLGA. In this review, the current state of the art of PLGA, its synthesis, physicochemical properties, and degradation are discussed to enunciate the boundaries of future research in terms of its applicability with the optimized design in today's modern age. The fundamental objective of this review is to highlight the significance of PLGA as a polymer in the field of cancer, cardiovascular diseases, neurological disorders, dentistry, orthopedics, vaccine therapy, theranostics and lastly emerging epidemic diseases like COVID-19. Furthermore, the coverage of recent PLGA-based drug delivery systems including nanosystems, microsystems, scaffolds, hydrogels, etc. has been summarized. Overall, this review aims to disseminate the PLGA-driven revolution of the drug delivery arena in the pharmaceutical and biomedical industry and bridge the lacunae between material research, preclinical experimentation, and clinical reality.
Collapse
Affiliation(s)
- Y R Chavan
- Institute of Chemical Technology, Department of Pharmaceutical Science and Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - S M Tambe
- Institute of Chemical Technology, Department of Pharmaceutical Science and Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - D D Jain
- Institute of Chemical Technology, Department of Pharmaceutical Science and Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - S V Khairnar
- Institute of Chemical Technology, Department of Pharmaceutical Science and Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - P D Amin
- Institute of Chemical Technology, Department of Pharmaceutical Science and Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India.
| |
Collapse
|
382
|
Bonilla L, Esteruelas G, Ettcheto M, Espina M, García ML, Camins A, Souto EB, Cano A, Sánchez-López E. Biodegradable nanoparticles for the treatment of epilepsy: From current advances to future challenges. Epilepsia Open 2021; 7 Suppl 1:S121-S132. [PMID: 34862851 PMCID: PMC9340299 DOI: 10.1002/epi4.12567] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/04/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Epilepsy is the second most prevalent neurological disease worldwide. It is mainly characterized by an electrical abnormal activity in different brain regions. The massive entrance of Ca2+ into neurons is the main neurotoxic process that lead to cell death and finally to neurodegeneration. Although there are a huge number of antiseizure medications, there are many patients who do not respond to the treatments and present refractory epilepsy. In this context, nanomedicine constitutes a promising alternative to enhance the central nervous system bioavailability of antiseizure medications. The encapsulation of different chemical compounds at once in a variety of controlled drug delivery systems gives rise to an enhanced drug effectiveness mainly due to their targeting and penetration into the deepest brain region and the protection of the drug chemical structure. Thus, in this review we will explore the recent advances in the development of drugs associated with polymeric and lipid-based nanocarriers as novel tools for the management of epilepsy disorders.
Collapse
Affiliation(s)
- Lorena Bonilla
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Gerard Esteruelas
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Miren Ettcheto
- Centre for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED), Carlos III Health Institute, Madrid, Spain.,Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - María Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain.,Centre for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED), Carlos III Health Institute, Madrid, Spain
| | - Antoni Camins
- Centre for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED), Carlos III Health Institute, Madrid, Spain.,Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain.,Centre for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED), Carlos III Health Institute, Madrid, Spain.,Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain.,Centre for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED), Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
383
|
Fraser B, Peters AE, Sutherland JM, Liang M, Rebourcet D, Nixon B, Aitken RJ. Biocompatible Nanomaterials as an Emerging Technology in Reproductive Health; a Focus on the Male. Front Physiol 2021; 12:753686. [PMID: 34858208 PMCID: PMC8632065 DOI: 10.3389/fphys.2021.753686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022] Open
Abstract
A growing body of research has confirmed that nanoparticle (NP) systems can enhance delivery of therapeutic and imaging agents as well as prevent potentially damaging systemic exposure to these agents by modifying the kinetics of their release. With a wide choice of NP materials possessing different properties and surface modification options with unique targeting agents, bespoke nanosystems have been developed for applications varying from cancer therapeutics and genetic modification to cell imaging. Although there remain many challenges for the clinical application of nanoparticles, including toxicity within the reproductive system, some of these may be overcome with the recent development of biodegradable nanoparticles that offer increased biocompatibility. In recognition of this potential, this review seeks to present recent NP research with a focus on the exciting possibilities posed by the application of biocompatible nanomaterials within the fields of male reproductive medicine, health, and research.
Collapse
Affiliation(s)
- Barbara Fraser
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Alexandra E Peters
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Priority Research Centre for Reproductive Science, School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Jessie M Sutherland
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Priority Research Centre for Reproductive Science, School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Mingtao Liang
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Priority Research Centre for Reproductive Science, School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Diane Rebourcet
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Robert J Aitken
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
384
|
Rana R, Rani S, Kumar V, Nakhate KT, Ajazuddin, Gupta U. Sialic Acid Conjugated Chitosan Nanoparticles: Modulation to Target Tumour Cells and Therapeutic Opportunities. AAPS PharmSciTech 2021; 23:10. [PMID: 34862568 DOI: 10.1208/s12249-021-02170-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022] Open
Abstract
Targeted delivery of therapeutics forestalls the dreadful delocalized effects, drug toxicities and needless immunosuppression. Cancer cells are bounteous with sialic acid and the differential expression of glycosyl transferase, glycosidase and monosaccharide transporter compared to healthy tissues. The current study entails the development and characterisation of sialic acid (SA)-labelled chitosan nanoparticles encapsulating gemcitabine (GEM). Chitosan (CS) was conjugated with SA using coupling reaction and characterised spectroscopically. Furthermore, different concentrations of chitosan and tripolyphosphate (TPP) were optimised to fabricate surface modified chitosan nanoparticles. SA conjugated chitosan nanoparticles encapsulating GEM (SA-CS_GEM NPs) of 232 ± 9.69 nm with narrow distribution (PDI < 0.5) and zeta potential of - 19 ± 0.97 mV was fabricated. GEM was successfully loaded in the SA-CS NPs, depicting prolonged and biphasic drug release pattern more elated at low pH. Pronounced cellular uptake (FITC tagged) and cytotoxicity (IC50 487.4 nM) was observed in SA-CS_GEM NPs against A549 cells. IC50 for SA-CS_GEM NPs plunged with an increase in the time points from 24 to 72 h. Concentration-dependent haemolytic study confirmed significant haemocompatibility of SA-CS_GEM NPs. Pharmacokinetic study was performed on Sprague-Dawley rats and the kinetic parameters were calculated using PKSolver 2.0. Results demonstrated a consequential refinement of 2.98 times in modified SA-CS_GEM NPs with a significant increase in retention time, bioavailability and elimination half-life, and decrease in elimination rate constant and volume of distribution in comparison to CS_GEM NPs. Therefore, SA-CS shell core nanoparticles could be a beneficial approach to target and treat NSCLC (non-small cell lung cancer) and direct for research possibilities to target the other tumour cells.
Collapse
|
385
|
Correlative Image-Based Release Prediction and 3D Microstructure Characterization for a Long Acting Parenteral Implant. Pharm Res 2021; 38:1915-1929. [PMID: 34851498 DOI: 10.1007/s11095-021-03145-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/18/2021] [Indexed: 10/19/2022]
Abstract
Imaging-based characterization of polymeric drug-eluting implants can be challenging due to the microstructural complexity and scale of dispersed drug domains and polymer matrix. The typical evaluation via real-time (and accelerated in vitro experiments not only can be very labor intensive since implants are designed to last for 3 months or longer, but also fails to elucidate the impact of the internal microstructure on the implant release rate. A novel characterization technique, combining multi-scale high resolution three-dimensional imaging, was developed for a mechanistic understanding of the impact of formulation and manufacturing process on the implant microstructure. Artificial intelligence-based image segmentation and imaging analytics convert "visualized" structural properties into numerical models, which can be used to calculate key parameters governing drug transport in the polymer matrix, such as effective permeability. Simulations of drug transport in structures constructed on the basis of image analytics can be used to predict the release rates for the drug-eluting implant without running lengthy experiments. Multi-scale imaging approach and image-based characterization generate a large amount of quantitative structural information that are difficult to obtain experimentally. The direct-imaging based analytics and simulation is a powerful tool and has potential to advance fundamental understanding of drug release mechanism and the development of robust drug-eluting implants.
Collapse
|
386
|
Abdel-Moneim A, Ramadan H. Novel strategies to oral delivery of insulin: Current progress of nanocarriers for diabetes management. Drug Dev Res 2021; 83:301-316. [PMID: 34859477 DOI: 10.1002/ddr.21903] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/30/2021] [Accepted: 11/25/2021] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus is one of the most serious public health problems in the world. Repeated daily injections of subcutaneous insulin is the standard treatment for patients with type 1 diabetes mellitus; however, subcutaneous insulin injections can potentially cause local discomfort, patient noncompliance, hypoglycemia, failure to regulate glucose homeostasis, infections, and fat deposits at the injection sites. In recent years, numerous attempts have been made to produce safe and efficient nanoparticles for oral insulin delivery. Oral administration is considered the most effective alternative route to insulin injection, but it is accompanied by several challenges related to enzymatic proteolysis, digestive breakdown, and absorption barriers. A number of natural and synthetic polymeric, lipid-based, and inorganic nanoparticles have been investigated for use. Although improvements have recently been made in potential oral insulin delivery systems, these require further investigation before clinical trials are conducted. In this review, new approaches to oral insulin delivery for diabetes treatment are discussed, including polymeric, lipid-based, and inorganic nanoparticles, as well as the clinical trials performed for this purpose.
Collapse
Affiliation(s)
- Adel Abdel-Moneim
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Hanaa Ramadan
- Histology and Molecular Cytology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
387
|
Chen G, Svirskis D, Lu W, Ying M, Li H, Liu M, Wen J. N-trimethyl chitosan coated nano-complexes enhance the oral bioavailability and chemotherapeutic effects of gemcitabine. Carbohydr Polym 2021; 273:118592. [PMID: 34560993 DOI: 10.1016/j.carbpol.2021.118592] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022]
Abstract
N-trimethyl chitosan (TMC) is a multifunctional polymer that can be used in various nanoparticle forms in the pharmaceutical, nutraceutical and biomedical fields. In this study, TMC was used as a mucoadhesive adjuvant to enhance the oral bioavailability and hence antitumour effects of gemcitabine formulated into nanocomplexes composed of poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) conjugated with d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS). A central composite design was applied to achieve the optimal formulation. Cellular uptake and drug transportation studies revealed the nanocomplexes permeate over the intestinal cells via adsorptive-mediated and caveolae-mediated endocytosis. Pharmacokinetic studies demonstrated the oral drug bioavailability of the nanocomplexes was increased 5.1-fold compared with drug solution. In pharmacodynamic studies, the formulation reduced tumour size 3.1-fold compared with the drug solution. The data demonstrates that TMC modified nanocomplexes can enhance gemcitabine oral bioavailability and promote the anticancer efficacy.
Collapse
Affiliation(s)
- Guanyu Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China; School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Man Ying
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Hongyu Li
- Department of Pharmaceutical Science, University of Arkansas for Medical Sciences, AR, USA
| | - Min Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
388
|
Zhang ZQ, Yang YX, Li JA, Zeng RC, Guan SK. Advances in coatings on magnesium alloys for cardiovascular stents - A review. Bioact Mater 2021; 6:4729-4757. [PMID: 34136723 PMCID: PMC8166647 DOI: 10.1016/j.bioactmat.2021.04.044] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
Magnesium (Mg) and its alloys, as potential biodegradable materials, have drawn wide attention in the cardiovascular stent field because of their appropriate mechanical properties and biocompatibility. Nevertheless, the occurrence of thrombosis, inflammation, and restenosis of implanted Mg alloy stents caused by their poor corrosion resistance and insufficient endothelialization restrains their anticipated clinical applications. Numerous surface treatment tactics have mainly striven to modify the Mg alloy for inhibiting its degradation rate and enduing it with biological functionality. This review focuses on highlighting and summarizing the latest research progress in functionalized coatings on Mg alloys for cardiovascular stents over the last decade, regarding preparation strategies for metal oxide, metal hydroxide, inorganic nonmetallic, polymer, and their composite coatings; and the performance of these strategies in regulating degradation behavior and biofunction. Potential research direction is also concisely discussed to help guide biological functionalized strategies and inspire further innovations. It is hoped that this review can give assistance to the surface modification of cardiovascular Mg-based stents and promote future advancements in this emerging research field.
Collapse
Affiliation(s)
- Zhao-Qi Zhang
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Yong-Xin Yang
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Jing-An Li
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Rong-Chang Zeng
- Corrosion Laboratory for Light Metals, College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Shao-Kang Guan
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| |
Collapse
|
389
|
Rational design of nanocarriers based on gellan gum/retrograded starch exploiting polyelectrolyte complexation and ionic cross-linking processes: A potential technological platform for oral delivery of bevacizumab. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
390
|
Yu Y, Wang Z, Yang Q, Ding Q, Wang R, Li Z, Fang Y, Liao J, Qi W, Chen K, Li M, Zhu YZ. A novel dendritic mesoporous silica based sustained hydrogen sulfide donor for the alleviation of adjuvant-induced inflammation in rats. Drug Deliv 2021; 28:1031-1042. [PMID: 34060389 PMCID: PMC8172227 DOI: 10.1080/10717544.2021.1921075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/29/2022] Open
Abstract
PURPOSE S-propargyl-cysteine (SPRC), an excellent endogenous hydrogen sulfide (H2S) donor, could elevate H2S levels via the cystathionine γ-lyase (CSE)/H2S pathway both in vitro and in vivo. However, the immediate release of H2S in vivo and daily administration of SPRC potentially limited its clinical use. METHODS To solve the fore-mentioned problem, in this study, the dendritic mesoporous silica nanoparticles (DMSN) was firstly prepared, and a sustained H2S delivery system consisted of SPRC and DMSN (SPRC@DMSN) was then constructed. Their release profiles, both in vitro and in vivo, were investigated, and their therapeutical effect toward adjuvant-induced arthritis (AIA) rats was also studied. RESULTS The spherical morphology of DMSN could be observed under scanning Electron Microscope (SEM), and the transmission electron microscope (TEM) images showed a central-radiational pore channel structure of DMSN. DMSN showed excellent SPRC loading capacity and attaining a sustained releasing ability than SPRC both in vitro and in vivo, and the prolonged SPRC releasing could further promote the release of H2S in a sustained manner through CSE/H2S pathway both in vitro and in vivo. Importantly, the SPRC@DMSN showed promising anti-inflammation effect against AIA in rats was also observed. CONCLUSIONS A sustained H2S releasing donor consisting of SPRC and DMSN was constructed in this study, and this sustained H2S releasing donor might be of good use for the treatment of AIA.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Zhou Wang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Qinyan Yang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Ran Wang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Zhaoyi Li
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Yudong Fang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Junyi Liao
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Wei Qi
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Keyuan Chen
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Meng Li
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
- Shanghai Key Laboratory of Bioactive Small Molecules & School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
391
|
Ebrahimi M, Montazeri M, Ahmadi A, Nami S, Hamishehkar H, Shahrivar F, Bakhtiar NM, Nissapatorn V, Spotin A, Ahmadpour E. Nanoliposomes increases Anti-Trichomonas vaginalis and apoptotic activities of metronidazole. Acta Trop 2021; 224:106156. [PMID: 34599888 DOI: 10.1016/j.actatropica.2021.106156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022]
Abstract
Trichomoniasis, caused by Trichomonas vaginalis (T. vaginalis), is the most common non-viral sexually transmitted disease worldwide. As current trichomoniasis chemotherapies have many side effects, we examined the Anti-Trichomonas effects of nano-liposomal metronidazole (NLMTZ) compared to metronidazole (MTZ) in vitro. Liposomes were produced using the thin film hydration-sonication technique with a slight modification coated with MTZ. The average hydrodynamic diameter of monodispersed NLMTZ was evaluated by DLS and the morphological measurements were performed by scanning electron microscopy (SEM). The effects of NLMTZ and MTZ (5, 10, 20 and 40 µg/mL) on T. vaginalis trophozoites (105 cells/mL) in trypticase-yeast extract-maltose (TYM) medium were evaluated in different exposure times. Then, cell viability, IC50, SEM analysis and the expression of the metacaspase gene were assessed by qRT-PCR. Growth inhibition of MTZ in a concentration of 40 μg/mL was 39.34% after 3 h, whereas NLMTZ caused 51% growth inhibition after 3 h and lysed Trichomonas completely after 12 h. The IC50 values were estimated at 31.51 and 15.90 μg/mL after a 6 h exposure for MTZ and NLMTZ, respectively. Moreover, both T. vaginalis treated with MTZ and NLMTZ had high levels of metacaspase mRNA expression relative to the control groups (P< 0.05). A significant difference was observed between the apoptotic intensities of T. vaginalis treated with MTZ and NLMTZ (P< 0.05). This study showed that nano-liposomal MTZ is a potentially excellent approach for the treatment of trichomoniasis in vitro, although further studies are needed before consideration of clinical trials.
Collapse
|
392
|
Wang L, Li D, Shen Y, Liu F, Zhou Y, Wu H, Liu Q, Deng B. Preparation of Centella asiatica loaded gelatin/chitosan/nonwoven fabric composite hydrogel wound dressing with antibacterial property. Int J Biol Macromol 2021; 192:350-359. [PMID: 34592227 DOI: 10.1016/j.ijbiomac.2021.09.145] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/15/2023]
Abstract
Antibiotics abuse and the emergence of massive drug-resistant bacteria have become the major obstacles in the medical system. Thus, designing an antibiotic-free wound dressing with antibacterial activity and decent biocompatibility is urgently desired. Herein, the sandwich-like composite hydrogel wound dressings were developed by intercalating nonwoven fabrics (NF) as the middle layer, gelatin and chitosan (Gel-CS) hydrogel loaded with Centella asiatica (CA) as the base materials. In addition, soaking strategy was employed to improve the mechanical properties of hydrogels. The hydrogels exhibited uniform microporous structure, stable mechanical property, high water absorbency, as well as water vapor transmission rate. After loading with CA, the composite wound dressing showed the sustained drug release properties in vitro and excellent antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The cytotoxicity results demonstrated that the composite hydrogels had good biocompatibility. This work indicates that the nonwoven composite hydrogels have broad application prospects in the field of medical care in the future.
Collapse
Affiliation(s)
- Lanlan Wang
- Laboratory for Advanced Nonwoven Technology, Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Dawei Li
- Laboratory for Advanced Nonwoven Technology, Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China.
| | - Ying Shen
- Laboratory for Advanced Nonwoven Technology, Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Feng Liu
- Laboratory for Advanced Nonwoven Technology, Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Yuqi Zhou
- Laboratory for Advanced Nonwoven Technology, Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Huiping Wu
- Laboratory for Advanced Nonwoven Technology, Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Qingsheng Liu
- Laboratory for Advanced Nonwoven Technology, Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Bingyao Deng
- Laboratory for Advanced Nonwoven Technology, Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China.
| |
Collapse
|
393
|
Guo K, Xiao N, Liu Y, Wang Z, Tóth J, Gyenis J, Thakur VK, Oyane A, Shubhra QT. Engineering polymer nanoparticles using cell membrane coating technology and their application in cancer treatments: Opportunities and challenges. NANO MATERIALS SCIENCE 2021. [DOI: 10.1016/j.nanoms.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
394
|
Moon H, Lertpatipanpong P, Hong Y, Kim CT, Baek SJ. Nano-encapsulated quercetin by soluble soybean polysaccharide/chitosan enhances anti-cancer, anti-inflammation, and anti-oxidant activities. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
395
|
Khorsandi Z, Borjian-Boroujeni M, Yekani R, Varma RS. Carbon nanomaterials with chitosan: A winning combination for drug delivery systems. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
396
|
Creemers JHA, Pawlitzky I, Grosios K, Gileadi U, Middleton MR, Gerritsen WR, Mehra N, Rivoltini L, Walters I, Figdor CG, Ottevanger PB, de Vries IJM. Assessing the safety, tolerability and efficacy of PLGA-based immunomodulatory nanoparticles in patients with advanced NY-ESO-1-positive cancers: a first-in-human phase I open-label dose-escalation study protocol. BMJ Open 2021; 11:e050725. [PMID: 34848513 PMCID: PMC8634237 DOI: 10.1136/bmjopen-2021-050725] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION The undiminished need for more effective cancer treatments stimulates the development of novel cancer immunotherapy candidates. The archetypical cancer immunotherapy would induce robust, targeted and long-lasting immune responses while simultaneously circumventing immunosuppression in the tumour microenvironment. For this purpose, we developed a novel immunomodulatory nanomedicine: PRECIOUS-01. As a PLGA-based nanocarrier, PRECIOUS-01 encapsulates a tumour antigen (NY-ESO-1) and an invariant natural killer T cell activator to target and augment specific antitumour immune responses in patients with NY-ESO-1-expressing advanced cancers. METHODS AND ANALYSIS This open-label, first-in-human, phase I dose-escalation trial investigates the safety, tolerability and immune-modulatory activity of increasing doses of PRECIOUS-01 administered intravenously in subjects with advanced NY-ESO-1-expressing solid tumours. A total of 15 subjects will receive three intravenous infusions of PRECIOUS-01 at a 3-weekly interval in three dose-finding cohorts. The trial follows a 3+3 design for the dose-escalation steps to establish a maximum tolerated dose (MTD) and/or recommended phase II dose (RP2D). Depending on the toxicity, the two highest dosing cohorts will be extended to delineate the immune-related parameters as a readout for pharmacodynamics. Subjects will be monitored for safety and the occurrence of dose-limiting toxicities. If the MTD is not reached in the planned dose-escalation cohorts, the RP2D will be based on the observed safety and immune-modulatory activity as a pharmacodynamic parameter supporting the RP2D. The preliminary efficacy will be evaluated as an exploratory endpoint using the best overall response rate, according to Response Evaluation Criteria in Solid Tumors V.1.1. ETHICS AND DISSEMINATION The Dutch competent authority (CCMO) reviewed the trial application and the medical research ethics committee (CMO Arnhem-Nijmegen) approved the trial under registration number NL72876.000.20. The results will be disseminated via (inter)national conferences and submitted for publication to a peer-reviewed journal. TRIAL REGISTRATION NUMBER NCT04751786.
Collapse
Affiliation(s)
- Jeroen H A Creemers
- Department of Tumor Immunology, Radboudumc, Nijmegen, The Netherlands
- Oncode Institute, Nijmegen, The Netherlands
| | | | | | - Uzi Gileadi
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | - Mark R Middleton
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | | | - Niven Mehra
- Department of Medical Oncology, Radboudumc, Nijmegen, The Netherlands
| | - Licia Rivoltini
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Lombardia, Italy
| | | | - Carl G Figdor
- Department of Tumor Immunology, Radboudumc, Nijmegen, The Netherlands
- Oncode Institute, Nijmegen, The Netherlands
| | | | | |
Collapse
|
397
|
Al-Nemrawi N, Nimrawi S. A novel formulation of chitosan nanoparticles functionalized with titanium dioxide nanoparticles. J Adv Pharm Technol Res 2021; 12:402-407. [PMID: 34820317 PMCID: PMC8588920 DOI: 10.4103/japtr.japtr_22_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/19/2021] [Accepted: 08/28/2021] [Indexed: 12/15/2022] Open
Abstract
Herein, chitosan nanoparticles (CS-NPs) were prepared and functionalized chemically with titanium dioxide nanoparticles (TiO2-NPs) to allow on-demand degradation of CS-NPs, using ultraviolet (UV) irradiation as a trigger. This is expected to allow drug release depending on patients' needs or physiological circumstances. Eleven formulations were arranged and their particle size, charge, and polydispersity were determined. The effect of CS-NPs size and the amount of TiO2-NPs, on the system collapse, was studied accordingly. Moreover, the collapse of these systems was examined using a fluorescence microscope after loading CS-NPs with Rhodamine. The formulations showed high monodispersity and had sizes ranged between 170 and 440 nm and charges ranged between +5 and +34 mV. Scanning electron microscope, Fourier-transform infrared spectroscopy, and X-ray diffraction proved the chemical deposition of TiO2-NPs on CS-NPs. The dye test showed that there are two factors that oppose each other and affected the deposition of TiO2-NPs on CS-NPs, the size of CS-NPs, and the amount of TiO2-NPs used. In addition, the dye test showed that the deposition of TiO2-NPs is a saturated process that relies on the amount of TiO2-NPs used initially. Finally, the intensity of Rhodamine released from these systems after illumination with UV light was related to the amount of TiO2-NPs deposited on CS-NPs. In conclusion, functionalization of CS-NPs with TiO2-NPs can be controlled and used to rupture CS-NPs on demand by illumination with UV light.
Collapse
Affiliation(s)
- Nusaiba Al-Nemrawi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Science and Technology, Irbid, Jordan
| | | |
Collapse
|
398
|
Singh A, Dar MY, Nagar DP, Tomar RS, Shrivastava S, Shukla S. Biomimetic synthesis of silver nanoparticles for treatment of N-Nitrosodiethylamine-induced hepatotoxicity. J Biochem Mol Toxicol 2021; 36:e22968. [PMID: 34820934 DOI: 10.1002/jbt.22968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 06/22/2021] [Accepted: 10/18/2021] [Indexed: 12/31/2022]
Abstract
The development of bioengineered nanoparticles has attracted considerable universal attention in the field of medical science and disease treatment. Current studies were executed to evaluate the hepatoprotective activity of biosynthesized silver nanoparticles (AgNPs). Their characterization was performed by UV-Visible analysis, fourier transform infrared spectroscopy, transmission electron microscopy (TEM), scanning electron microscope (SEM), and Zeta analyses. In in vivo studies, albino rats (180 ± 10 g) were persuaded with model hepatic toxicant N-nitrosodiethylamine (NDEA) and subsequently cotreated with Morus multicaulis at 100 mg/kg and AgNPs at 100 µg/kg dose. NDEA administration elevates the levels of liver function test biomarkers, which were reinstated to normal by cotreatment of test drugs. The oxidative stress and concentration of drug-metabolizing enzyme increase after induction of toxicant (NDEA), these markers are restored toward normal after cotreatment of nano-drug. Treatments of M. multicaulis extract did not show such significant protection. The NDEA-treated groups showed a significant rise in the level of cytokines (interleukin [IL-6] and IL-10) and reached normal with subsequent treatment with AgNPs. Histopathological studies also exhibited the curative effect of AgNPs in the same manner. Thus current results strongly suggest that biomimetic AgNPs could be used as an effective drug against hepatic alteration.
Collapse
Affiliation(s)
- Asha Singh
- Reproductive Biology and Toxicology Laboratory, UNESCO-Trace Element Satellite Centre, School of Studies in Zoology, Jiwaji University, Gwalior, Madhya Pradesh, India.,Amity Institute of Biotechnology, Amity University, Gwalior, Madhya Pradesh, India
| | - Mohd Yaqoob Dar
- Reproductive Biology and Toxicology Laboratory, UNESCO-Trace Element Satellite Centre, School of Studies in Zoology, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Durga P Nagar
- Division of Toxicology, Defence Research & Development Establishment, Gwalior, Madhya Pradesh, India
| | - Rajesh S Tomar
- Amity Institute of Biotechnology, Amity University, Gwalior, Madhya Pradesh, India
| | - Sadhana Shrivastava
- Reproductive Biology and Toxicology Laboratory, UNESCO-Trace Element Satellite Centre, School of Studies in Zoology, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Sangeeta Shukla
- Reproductive Biology and Toxicology Laboratory, UNESCO-Trace Element Satellite Centre, School of Studies in Zoology, Jiwaji University, Gwalior, Madhya Pradesh, India
| |
Collapse
|
399
|
Biocompatible and Biomaterials Application in Drug Delivery System in Oral Cavity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9011226. [PMID: 34812267 PMCID: PMC8605911 DOI: 10.1155/2021/9011226] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/27/2021] [Indexed: 02/03/2023]
Abstract
Biomaterials applications have rapidly expanded into different fields of sciences. One of the important fields of using biomaterials is dentistry, which can facilitate implantation, surgery, and treatment of oral diseases such as peri-implantitis, periodontitis, and other dental problems. Drug delivery systems based on biocompatible materials play a vital role in the release of drugs into aim tissues of the oral cavity with minimum side effects. Therefore, scientists have studied various delivery systems to improve the efficacy and acceptability of therapeutic approaches in dental problems and oral diseases. Also, biomaterials could be utilized as carriers in biocompatible drug delivery systems. For instance, natural polymeric substances, such as gelatin, chitosan, calcium phosphate, alginate, and xanthan gum are used to prepare different forms of delivery systems. In addition, some alloys are conducted in drug complexes for the better in transportation. Delivery systems based on biomaterials are provided with different strategies, although individual biomaterial has advantages and disadvantages which have a significant influence on transportation of complex such as solubility in physiological environments or distribution in tissues. Biomaterials have antibacterial and anti-inflammatory effects and prolonged time contact and even enhance antibiotic activities in oral infections. Moreover, these biomaterials are commonly prepared in some forms such as particulate complex, fibers, microspheres, gels, hydrogels, and injectable systems. In this review, we examined the application of biocompatible materials in drug delivery systems of oral and dental diseases or problems.
Collapse
|
400
|
Tang R, Li R, Li H, Ma XL, Du P, Yu XY, Ren L, Wang LL, Zheng WS. Design of Hepatic Targeted Drug Delivery Systems for Natural Products: Insights into Nomenclature Revision of Nonalcoholic Fatty Liver Disease. ACS NANO 2021; 15:17016-17046. [PMID: 34705426 DOI: 10.1021/acsnano.1c02158] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), recently renamed metabolic-dysfunction-associated fatty liver disease (MAFLD), affects a quarter of the worldwide population. Natural products have been extensively utilized in treating NAFLD because of their distinctive advantages over chemotherapeutic drugs, despite the fact that there are no approved drugs for therapy. Notably, the limitations of many natural products, such as poor water solubility, low bioavailability in vivo, low hepatic distribution, and lack of targeted effects, have severely restricted their clinical application. These issues could be resolved via hepatic targeted drug delivery systems (HTDDS) that boost clinical efficacy in treating NAFLD and decrease the adverse effects on other organs. Herein an overview of natural products comprising formulas, single medicinal plants, and their crude extracts has been presented to treat NAFLD. Also, the clinical efficacy and molecular mechanism of active monomer compounds against NAFLD are systematically discussed. The targeted delivery of natural products via HTDDS has been explored to provide a different nanotechnology-based NAFLD treatment strategy and to make suggestions for natural-product-based targeted nanocarrier design. Finally, the challenges and opportunities put forth by the nomenclature update of NAFLD are outlined along with insights into how to improve the NAFLD therapy and how to design more rigorous nanocarriers for the HTDDS. In brief, we summarize the up-to-date developments of the NAFLD-HTDDS based on natural products and provide viewpoints for the establishment of more stringent anti-NAFLD natural-product-targeted nanoformulations.
Collapse
Affiliation(s)
- Rou Tang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Rui Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - He Li
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiao-Lei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Peng Du
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiao-You Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ling Ren
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lu-Lu Wang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wen-Sheng Zheng
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|