351
|
Zhang Z, Lin Z, Zhou Z, Shen HC, Yan SF, Mayweg AV, Xu Z, Qin N, Wong JC, Zhang Z, Rong Y, Fry DC, Hu T. Structure-Based Design and Synthesis of Potent Cyclic Peptides Inhibiting the YAP-TEAD Protein-Protein Interaction. ACS Med Chem Lett 2014; 5:993-8. [PMID: 25221655 DOI: 10.1021/ml500160m] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/13/2014] [Indexed: 12/18/2022] Open
Abstract
The YAP-TEAD protein-protein interaction (PPI) mediates the oncogenic function of YAP, and inhibitors of this PPI have potential usage in treatment of YAP-involved cancers. Here we report the design and synthesis of potent cyclic peptide inhibitors of the YAP-TEAD interaction. A truncation study of YAP interface 3 peptide identified YAP(84-100) as a weak peptide inhibitor (IC50 = 37 μM), and an alanine scan revealed a beneficial mutation, D94A. Subsequent replacement of a native cation-π interaction with an optimized disulfide bridge for conformational constraint and synergistic effect between macrocyclization and modification at positions 91 and 93 greatly boosted inhibitory activity. Peptide 17 was identified with an IC50 of 25 nM, and the binding affinity (K d = 15 nM) of this 17mer peptide to TEAD1 proved to be stronger than YAP(50-171) (K d = 40 nM).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - David C. Fry
- Roche Research
Center, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | | |
Collapse
|
352
|
Liu G, Yu FX, Kim YC, Meng Z, Naipauer J, Looney DJ, Liu X, Gutkind JS, Mesri EA, Guan KL. Kaposi sarcoma-associated herpesvirus promotes tumorigenesis by modulating the Hippo pathway. Oncogene 2014; 34:3536-46. [PMID: 25195862 DOI: 10.1038/onc.2014.281] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 07/18/2014] [Accepted: 07/23/2014] [Indexed: 12/23/2022]
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is an oncogenic virus and the culprit behind the human disease Kaposi sarcoma (KS), an AIDS-defining malignancy. KSHV encodes a viral G-protein-coupled receptor (vGPCR) critical for the initiation and progression of KS. In this study, we identified that YAP/TAZ, two homologous oncoproteins inhibited by the Hippo tumor suppressor pathway, are activated in KSHV-infected cells in vitro, KS-like mouse tumors and clinical human KS specimens. The KSHV-encoded vGPCR acts through Gq/11 and G12/13 to inhibit the Hippo pathway kinases Lats1/2, promoting the activation of YAP/TAZ. Furthermore, depletion of YAP/TAZ blocks vGPCR-induced cell proliferation and tumorigenesis in a xenograft mouse model. The vGPCR-transformed cells are sensitive to pharmacologic inhibition of YAP. Our study establishes a pivotal role of the Hippo pathway in mediating the oncogenic activity of KSHV and development of KS, and also suggests a potential of using YAP inhibitors for KS intervention.
Collapse
Affiliation(s)
- G Liu
- 1] School of Life Sciences, Shandong University, Jinan, China [2] Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - F-X Yu
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Y C Kim
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Z Meng
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - J Naipauer
- Department of Microbiology and Immunology and Viral Oncology Program, Miami Center for AIDS Research, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - D J Looney
- Department of Medicine, VA San Diego Healthcare System, The University of California, San Diego, La Jolla, CA, USA
| | - X Liu
- School of Life Sciences, Shandong University, Jinan, China
| | - J S Gutkind
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - E A Mesri
- Department of Microbiology and Immunology and Viral Oncology Program, Miami Center for AIDS Research, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - K-L Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
353
|
Chen Y, Wang Z, Wang P, Li D, Zhou J, Wu S. CYLD negatively regulates Hippo signaling by limiting Hpo phosphorylation in Drosophila. Biochem Biophys Res Commun 2014; 452:808-12. [PMID: 25201729 DOI: 10.1016/j.bbrc.2014.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/01/2014] [Indexed: 10/24/2022]
Abstract
Cylindromatosis (CYLD), a deubiquitinase and regulator of microtubule dynamics, has important roles in the regulation of inflammation, immune response, apoptosis, mitosis, cell migration and tumorigenesis. Although great progress has been made in the biochemical and cellular functions of CYLD, its role in animal development remains elusive. In this study, we identified Drosophila CYLD (dCYLD) as a negative regulator of the Hippo pathway in vivo. dCYLD associates and colocalizes with Hpo, a core component of the Hippo pathway, in the cytoplasm, and decreases Hpo activity through limiting its phosphorylation at T195. We also showed that dCYLD limits Hippo signal transduction as evidenced by decreasing phosphorylation and thereby increasing activity of Yki, the key downstream effector of the Hippo pathway. These findings uncover dCYLD as a negative regulator of the Hippo pathway and provide new insights into the physiological function of dCYLD in animal development.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Zaizhu Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Ping Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| | - Shian Wu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
354
|
Djiane A, Zaessinger S, Babaoğlan AB, Bray SJ. Notch inhibits Yorkie activity in Drosophila wing discs. PLoS One 2014; 9:e106211. [PMID: 25157415 PMCID: PMC4144958 DOI: 10.1371/journal.pone.0106211] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 08/04/2014] [Indexed: 01/03/2023] Open
Abstract
During development, tissues and organs must coordinate growth and patterning so they reach the right size and shape. During larval stages, a dramatic increase in size and cell number of Drosophila wing imaginal discs is controlled by the action of several signaling pathways. Complex cross-talk between these pathways also pattern these discs to specify different regions with different fates and growth potentials. We show that the Notch signaling pathway is both required and sufficient to inhibit the activity of Yorkie (Yki), the Salvador/Warts/Hippo (SWH) pathway terminal transcription activator, but only in the central regions of the wing disc, where the TEAD factor and Yki partner Scalloped (Sd) is expressed. We show that this cross-talk between the Notch and SWH pathways is mediated, at least in part, by the Notch target and Sd partner Vestigial (Vg). We propose that, by altering the ratios between Yki, Sd and Vg, Notch pathway activation restricts the effects of Yki mediated transcription, therefore contributing to define a zone of low proliferation in the central wing discs.
Collapse
Affiliation(s)
- Alexandre Djiane
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France; INSERM, U896, Montpellier, France; Université Montpellier1, Montpellier, France; Institut régional du Cancer Montpellier, Montpellier, France
- * E-mail:
| | - Sophie Zaessinger
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France; INSERM, U896, Montpellier, France; Université Montpellier1, Montpellier, France; Institut régional du Cancer Montpellier, Montpellier, France
| | - A. Burcu Babaoğlan
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Sarah J. Bray
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
355
|
The Hippo pathway controls border cell migration through distinct mechanisms in outer border cells and polar cells of the Drosophila ovary. Genetics 2014; 198:1087-99. [PMID: 25161211 DOI: 10.1534/genetics.114.167346] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Hippo pathway is a key signaling cascade in controlling organ size. The core components of this pathway are two kinases, Hippo (Hpo) and Warts (Wts), and a transcriptional coactivator, Yorkie (Yki). Yes-associated protein (YAP, a Yki homolog in mammals) promotes epithelial-mesenchymal transition and cell migration in vitro. Here, we use border cells in the Drosophila ovary as a model to study Hippo pathway functions in cell migration in vivo. During oogenesis, polar cells secrete Unpaired (Upd), which activates JAK/STAT signaling of neighboring cells and specifies them into outer border cells. The outer border cells form a cluster with polar cells and undergo migration. We find that hpo and wts are required for migration of the border cell cluster. In outer border cells, overexpression of hpo disrupts polarization of the actin cytoskeleton and attenuates migration. In polar cells, knockdown of hpo and wts or overexpression of yki impairs border cell induction and disrupts migration. These manipulations in polar cells reduce JAK/STAT activity in outer border cells. Expression of upd-lacZ is increased and decreased in yki and hpo mutant polar cells, respectively. Furthermore, forced expression of upd in polar cells rescues defects of border cell induction and migration caused by wts knockdown. These results suggest that Yki negatively regulates border cell induction by inhibiting JAK/STAT signaling. Together, our data elucidate two distinct mechanisms of the Hippo pathway in controlling border cell migration: (1) in outer border cells, it regulates polarized distribution of the actin cytoskeleton; (2) in polar cells, it regulates upd expression to control border cell induction and migration.
Collapse
|
356
|
Hippo pathway activity influences liver cell fate. Cell 2014; 157:1324-1338. [PMID: 24906150 DOI: 10.1016/j.cell.2014.03.060] [Citation(s) in RCA: 655] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 02/04/2014] [Accepted: 03/19/2014] [Indexed: 12/15/2022]
Abstract
The Hippo-signaling pathway is an important regulator of cellular proliferation and organ size. However, little is known about the role of this cascade in the control of cell fate. Employing a combination of lineage tracing, clonal analysis, and organoid culture approaches, we demonstrate that Hippo pathway activity is essential for the maintenance of the differentiated hepatocyte state. Remarkably, acute inactivation of Hippo pathway signaling in vivo is sufficient to dedifferentiate, at very high efficiencies, adult hepatocytes into cells bearing progenitor characteristics. These hepatocyte-derived progenitor cells demonstrate self-renewal and engraftment capacity at the single-cell level. We also identify the NOTCH-signaling pathway as a functional important effector downstream of the Hippo transducer YAP. Our findings uncover a potent role for Hippo/YAP signaling in controlling liver cell fate and reveal an unprecedented level of phenotypic plasticity in mature hepatocytes, which has implications for the understanding and manipulation of liver regeneration.
Collapse
|
357
|
Wackerhage H, Del Re DP, Judson RN, Sudol M, Sadoshima J. The Hippo signal transduction network in skeletal and cardiac muscle. Sci Signal 2014; 7:re4. [PMID: 25097035 DOI: 10.1126/scisignal.2005096] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery of the Hippo pathway can be traced back to two areas of research. Genetic screens in fruit flies led to the identification of the Hippo pathway kinases and scaffolding proteins that function together to suppress cell proliferation and tumor growth. Independent research, often in the context of muscle biology, described Tead (TEA domain) transcription factors, which bind CATTCC DNA motifs to regulate gene expression. These two research areas were joined by the finding that the Hippo pathway regulates the activity of Tead transcription factors mainly through phosphorylation of the transcriptional coactivators Yap and Taz, which bind to and activate Teads. Additionally, many other signal transduction proteins crosstalk to members of the Hippo pathway forming a Hippo signal transduction network. We discuss evidence that the Hippo signal transduction network plays important roles in myogenesis, regeneration, muscular dystrophy, and rhabdomyosarcoma in skeletal muscle, as well as in myogenesis, organ size control, and regeneration of the heart. Understanding the role of Hippo kinases in skeletal and heart muscle physiology could have important implications for translational research.
Collapse
Affiliation(s)
- Henning Wackerhage
- School of Medical Sciences, University of Aberdeen, Health Sciences Building, Foresterhill, AB25 2ZD Aberdeen, Scotland, UK.
| | - Dominic P Del Re
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Robert N Judson
- School of Medical Sciences, University of Aberdeen, Health Sciences Building, Foresterhill, AB25 2ZD Aberdeen, Scotland, UK. Biomedical Research Centre, University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Marius Sudol
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Republic of Singapore. Department of Medicine, Mount Sinai School of Medicine, One Gustave Levy Place, New York, NY 10029, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103, USA
| |
Collapse
|
358
|
Qing Y, Yin F, Wang W, Zheng Y, Guo P, Schozer F, Deng H, Pan D. The Hippo effector Yorkie activates transcription by interacting with a histone methyltransferase complex through Ncoa6. eLife 2014; 3:e02564. [PMID: 25027438 PMCID: PMC4118621 DOI: 10.7554/elife.02564] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 07/11/2014] [Indexed: 01/05/2023] Open
Abstract
The Hippo signaling pathway regulates tissue growth in Drosophila through the transcriptional coactivator Yorkie (Yki). How Yki activates target gene transcription is poorly understood. Here, we identify Nuclear receptor coactivator 6 (Ncoa6), a subunit of the Trithorax-related (Trr) histone H3 lysine 4 (H3K4) methyltransferase complex, as a Yki-binding protein. Like Yki, Ncoa6 and Trr are functionally required for Hippo-mediated growth control and target gene expression. Strikingly, artificial tethering of Ncoa6 to Sd is sufficient to promote tissue growth and Yki target expression even in the absence of Yki, underscoring the importance of Yki-mediated recruitment of Ncoa6 in transcriptional activation. Consistent with the established role for the Trr complex in histone methylation, we show that Yki, Ncoa6, and Trr are required for normal H3K4 methylation at Hippo target genes. These findings shed light on Yki-mediated transcriptional regulation and uncover a potential link between chromatin modification and tissue growth.
Collapse
Affiliation(s)
- Yun Qing
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
- BCMB Graduate Program, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Feng Yin
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Wei Wang
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Yonggang Zheng
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Pengfei Guo
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Frederick Schozer
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Hua Deng
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Duojia Pan
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
359
|
Multiple mechanisms modulate distinct cellular susceptibilities toward apoptosis in the developing Drosophila eye. Dev Cell 2014; 30:48-60. [PMID: 24981611 DOI: 10.1016/j.devcel.2014.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/09/2014] [Accepted: 05/10/2014] [Indexed: 02/06/2023]
Abstract
Although apoptosis is mechanistically well understood, a comprehensive understanding of how cells modulate their susceptibility toward apoptosis in a developing tissue is lacking. Here, we reveal striking dynamics in the apoptotic susceptibilities of different cell types in the Drosophila retina over a period of only 24 hr. Mitotic cells are extremely susceptible to apoptotic signals, while postmitotic cells have developed several strategies to promote survival. For example, photoreceptor neurons accumulate the inhibitor of apoptosis, Diap1. In unspecified cells, Cullin-3-mediated degradation keeps Diap1 levels low. These cells depend on EGFR signaling for survival. As development proceeds, developmentally older photoreceptors degrade Diap1, resulting in increased apoptosis susceptibility. Finally, R8 photoreceptors have very efficient survival mechanisms independent of EGFR or Diap1. These examples illustrate how complex cellular susceptibility toward apoptosis is regulated in a developing organ. Similar complexities may regulate apoptosis susceptibilities in mammalian development, and tumor cells may take advantage of it.
Collapse
|
360
|
Yu FX, Luo J, Mo JS, Liu G, Kim YC, Meng Z, Zhao L, Peyman G, Ouyang H, Jiang W, Zhao J, Chen X, Zhang L, Wang CY, Bastian BC, Zhang K, Guan KL. Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. Cancer Cell 2014; 25:822-30. [PMID: 24882516 PMCID: PMC4075337 DOI: 10.1016/j.ccr.2014.04.017] [Citation(s) in RCA: 358] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/09/2014] [Accepted: 04/24/2014] [Indexed: 02/05/2023]
Abstract
Uveal melanoma (UM) is the most common cancer in adult eyes. Approximately 80% of UMs harbor somatic activating mutations in GNAQ or GNA11 (encoding Gq or G11, respectively). Herein, we show in both cell culture and human tumors that cancer-associated Gq/11 mutants activate YAP, a major effector of the Hippo tumor suppressor pathway that is also regulated by G protein-coupled receptor signaling. YAP mediates the oncogenic activity of mutant Gq/11 in UM development, and the YAP inhibitor verteporfin blocks tumor growth of UM cells containing Gq/11 mutations. This study reveals an essential role of the Hippo-YAP pathway in Gq/11-induced tumorigenesis and suggests YAP as a potential drug target for UM patients carrying mutations in GNAQ or GNA11.
Collapse
Affiliation(s)
- Fa-Xing Yu
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jing Luo
- Department of Ophthalmology and Shiley Eye Center and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Ophthalmology of the Second Xiangya Hospital, International Academy of Translational Medicine, Central South University, Changsha 410011, China; Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jung-Soon Mo
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Guangbo Liu
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Young Chul Kim
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zhipeng Meng
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ling Zhao
- Department of Ophthalmology and Shiley Eye Center and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gholam Peyman
- Arizona Retinal Specialists, Sun City West, AZ 85375, USA
| | - Hong Ouyang
- Department of Ophthalmology and Shiley Eye Center and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wei Jiang
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiagang Zhao
- Department of Ophthalmology and Shiley Eye Center and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xu Chen
- Departments of Dermatology and Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Liangfang Zhang
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cun-Yu Wang
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, University of California, Los Angeles, School of Dentistry, Los Angeles, CA 90095, USA
| | - Boris C Bastian
- Departments of Dermatology and Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kang Zhang
- Department of Ophthalmology and Shiley Eye Center and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Ophthalmology of the Second Xiangya Hospital, International Academy of Translational Medicine, Central South University, Changsha 410011, China; Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Veterans Administration Healthcare System, San Diego, CA 92161, USA.
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
361
|
Varelas X. The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development 2014; 141:1614-26. [PMID: 24715453 DOI: 10.1242/dev.102376] [Citation(s) in RCA: 492] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Studies over the past 20 years have defined the Hippo signaling pathway as a major regulator of tissue growth and organ size. Diverse roles for the Hippo pathway have emerged, the majority of which in vertebrates are determined by the transcriptional regulators TAZ and YAP (TAZ/YAP). Key processes regulated by TAZ/YAP include the control of cell proliferation, apoptosis, movement and fate. Accurate control of the levels and localization of these factors is thus essential for early developmental events, as well as for tissue homeostasis, repair and regeneration. Recent studies have revealed that TAZ/YAP activity is regulated by mechanical and cytoskeletal cues as well as by various extracellular factors. Here, I provide an overview of these and other regulatory mechanisms and outline important developmental processes controlled by TAZ and YAP.
Collapse
Affiliation(s)
- Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, Room K-620, Boston, MA 02118, USA
| |
Collapse
|
362
|
Lin Z, Pu WT. Harnessing Hippo in the heart: Hippo/Yap signaling and applications to heart regeneration and rejuvenation. Stem Cell Res 2014; 13:571-81. [PMID: 24881775 DOI: 10.1016/j.scr.2014.04.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/15/2014] [Accepted: 04/19/2014] [Indexed: 11/19/2022] Open
Abstract
The adult mammalian heart exhibits limited regenerative capacity after myocardial injury, a shortcoming that is responsible for the current lack of definitive treatments for heart failure. A search for approaches that might enhance adult heart regeneration has led to interest in the Hippo/Yap signaling pathway, a recently discovered signaling pathway that regulates cell proliferation and organ growth. Here we provide a brief overview of the Hippo/Yap pathway and its known roles in the developing and adult heart. We discuss the implications of Hippo/Yap signaling for regulation of cardiomyocyte death and regeneration.
Collapse
Affiliation(s)
- Zhiqiang Lin
- Department of Cardiology, Children's Hospital Boston, USA
| | - William T Pu
- Department of Cardiology, Children's Hospital Boston, USA; Harvard Stem Cell Institute, Harvard University, USA.
| |
Collapse
|
363
|
Huang J, Kalderon D. Coupling of Hedgehog and Hippo pathways promotes stem cell maintenance by stimulating proliferation. ACTA ACUST UNITED AC 2014; 205:325-38. [PMID: 24798736 PMCID: PMC4018789 DOI: 10.1083/jcb.201309141] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It is essential to define the mechanisms by which external signals regulate adult stem cell numbers, stem cell maintenance, and stem cell proliferation to guide regenerative stem cell therapies and to understand better how cancers originate in stem cells. In this paper, we show that Hedgehog (Hh) signaling in Drosophila melanogaster ovarian follicle stem cells (FSCs) induces the activity of Yorkie (Yki), the transcriptional coactivator of the Hippo pathway, by inducing yki transcription. Moreover, both Hh signaling and Yki positively regulate the rate of FSC proliferation, both are essential for FSC maintenance, and both promote increased FSC longevity and FSC duplication when in excess. We also found that responses to activated Yki depend on Cyclin E induction while responses to excess Hh signaling depend on Yki induction, and excess Yki can compensate for defective Hh signaling. These causal connections provide the most rigorous evidence to date that a niche signal can promote stem cell maintenance principally by stimulating stem cell proliferation.
Collapse
Affiliation(s)
- Jianhua Huang
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | | |
Collapse
|
364
|
Farrell J, Kelly C, Rauch J, Kida K, García-Muñoz A, Monsefi N, Turriziani B, Doherty C, Mehta JP, Matallanas D, Simpson JC, Kolch W, von Kriegsheim A. HGF induces epithelial-to-mesenchymal transition by modulating the mammalian hippo/MST2 and ISG15 pathways. J Proteome Res 2014; 13:2874-86. [PMID: 24766643 DOI: 10.1021/pr5000285] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is a fundamental cell differentiation/dedifferentiation process which is associated with dramatic morphological changes. Formerly polarized and immobile epithelial cells which form cell junctions and cobblestone-like cell sheets undergo a transition into highly motile, elongated, mesenchymal cells lacking cell-to-cell adhesions. To explore how the proteome is affected during EMT we profiled protein expression and tracked cell biological markers in Madin-Darby kidney epithelial cells undergoing hepatocyte growth factor (HGF) induced EMT. We were able to identify and quantify over 4000 proteins by mass spectrometry. Enrichment analysis of this revealed that expression of proteins associated with the ubiquitination machinery was induced, whereas expression of proteins regulating apoptotic pathways was suppressed. We show that both the mammalian Hippo/MST2 and the ISG15 pathways are regulated at the protein level by ubiquitin ligases. Inhibition of the Hippo pathway by overexpression of either ITCH or A-Raf promotes HGF-induced EMT. Conversely, ISG15 overexpression is sufficient to induce cell scattering and an elongated morphology without external stimuli. Thus, we demonstrate for the first time that the Hippo/MST2 and ISG15 pathways are regulated during growth-factor induced EMT.
Collapse
Affiliation(s)
- Jennifer Farrell
- Systems Biology Ireland, University College Dublin , Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
365
|
lgl Regulates the Hippo Pathway Independently of Fat/Dachs, Kibra/Expanded/Merlin and dRASSF/dSTRIPAK. Cancers (Basel) 2014; 6:879-96. [PMID: 24743776 PMCID: PMC4074808 DOI: 10.3390/cancers6020879] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 03/12/2014] [Accepted: 03/25/2014] [Indexed: 01/15/2023] Open
Abstract
In both Drosophila and mammalian systems, the Hippo (Hpo) signalling pathway controls tissue growth by inhibiting cell proliferation and promoting apoptosis. The core pathway consists of a protein kinase Hpo (MST1/2 in mammals) that is regulated by a number of upstream inputs including Drosophila Ras Association Factor, dRASSF. We have previously shown in the developing Drosophila eye epithelium that loss of the apico-basal cell polarity regulator lethal-(2)-giant-larvae (lgl), and the concomitant increase in aPKC activity, results in ectopic proliferation and suppression of developmental cell death by blocking Hpo pathway signalling. Here, we further explore how Lgl/aPKC interacts with the Hpo pathway. Deregulation of the Hpo pathway by Lgl depletion is associated with the mislocalization of Hpo and dRASSF. We demonstrate that Lgl/aPKC regulate the Hpo pathway independently of upstream inputs from Fat/Dachs and the Kibra/Expanded/Merlin complex. We show depletion of Lgl also results in accumulation and mislocalization of components of the dSTRIPAK complex, a major phosphatase complex that directly binds to dRASSF and represses Hpo activity. However, depleting dSTRIPAK components, or removal of dRASSF did not rescue the lgl−/− or aPKC overexpression phenotypes. Thus, Lgl/aPKC regulate Hpo activity by a novel mechanism, independently of dRASSF and dSTRIPAK. Surprisingly, removal of dRASSF in tissue with increased aPKC activity results in mild tissue overgrowth, indicating that in this context dRASSF acts as a tumor suppressor. This effect was independent of the Hpo and Ras Mitogen Activated Protein Kinase (MAPK) pathways, suggesting that dRASSF regulates a novel pathway to control tissue growth.
Collapse
|
366
|
Machado-Neto JA, Lazarini M, Favaro P, Franchi GC, Nowill AE, Saad STO, Traina F. ANKHD1, a novel component of the Hippo signaling pathway, promotes YAP1 activation and cell cycle progression in prostate cancer cells. Exp Cell Res 2014; 324:137-45. [PMID: 24726915 DOI: 10.1016/j.yexcr.2014.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 03/31/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
Abstract
ANKHD1 is a multiple ankyrin repeat containing protein, recently identified as a novel member of the Hippo signaling pathway. The present study aimed to investigate the role of ANKHD1 in DU145 and LNCaP prostate cancer cells. ANKHD1 and YAP1 were found to be highly expressed in prostate cancer cells, and ANKHD1 silencing decreased cell growth, delayed cell cycle progression at the S phase, and reduced tumor xenograft growth. Moreover, ANKHD1 knockdown downregulated YAP1 expression and activation, and reduced the expression of CCNA2, a YAP1 target gene. These findings indicate that ANKHD1 is a positive regulator of YAP1 and promotes cell growth and cell cycle progression through Cyclin A upregulation.
Collapse
Affiliation(s)
- João Agostinho Machado-Neto
- Hematology and Hemotherapy Center, University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Mariana Lazarini
- Hematology and Hemotherapy Center, University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Patricia Favaro
- Hematology and Hemotherapy Center, University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil; Department of Biological Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | - Gilberto Carlos Franchi
- Integrated Center for Childhood Onco-Hematological Investigation, University of Campinas, Campinas, São Paulo, Brazil
| | - Alexandre Eduardo Nowill
- Integrated Center for Childhood Onco-Hematological Investigation, University of Campinas, Campinas, São Paulo, Brazil
| | - Sara Teresinha Olalla Saad
- Hematology and Hemotherapy Center, University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Fabiola Traina
- Hematology and Hemotherapy Center, University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil; Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
367
|
Hu X, Xin Y, Xiao Y, Zhao J. Overexpression of YAP1 is correlated with progression, metastasis and poor prognosis in patients with gastric carcinoma. Pathol Oncol Res 2014; 20:805-11. [PMID: 24643316 DOI: 10.1007/s12253-014-9757-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 02/25/2014] [Indexed: 12/30/2022]
Abstract
YAP1 is overexpressed in numerous cancers, but its molecular mechanism in the carcinogenesis and clinic significance in tumor diagnosis and prognosis remains to be determined. We attempted to analyze the clinicopathologic significance of YAP1 expression and the correlation of the YAP1 levels with the progression, metastasis and prognosis of patients with gastric carcinoma. By immunohistochemistry, we determined YAP1 expression in 214 of primary gastric carcinoma (GC), 167 of matched normal gastric mucosa, 40 of chronic atrophic gastritis, 11 of dysplasia and 73 of intestinal metaplasia. The positive rate of YAP1 in gastric carcinoma was significantly higher than that in normal gastric mucosa, chronic atrophic gastritis and intestinal metaplasia. In the gastric cancers with lymph node metastasis, the positive rate of YAP1 was much higher than that in the group without lymph node metastasis. Moreover, gastric cancer patients with YAP1 overexpression demonstrated poorer prognosis than those with YAP1 negative staining. Finally, multivariate analysis of 191 patients with gastric carcinoma indicated that YAP1 overexpression, the invasion depth and lymph node metastasis were high hazard factors for gastric carcinoma. Our results demonstrated that YAP1 overexpression is correlated to the progression, lymph node metastasis and poor prognosis of gastric carcinoma, suggesting that overexpression of YAP1 might be an adjuvant factor for predicting lymph node metastasis, and a useful biomarker for the diagnosis and prediction of prognosis in patients with gastric cancers.
Collapse
Affiliation(s)
- Xiaobin Hu
- Gastrointestinal Tumor Pathology Laboratory of Cancer Institute and Department of Pediatrics, No. 1 Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning Province, China,
| | | | | | | |
Collapse
|
368
|
Lehn S, Tobin NP, Sims AH, Stål O, Jirström K, Axelson H, Landberg G. Decreased expression of Yes-associated protein is associated with outcome in the luminal A breast cancer subgroup and with an impaired tamoxifen response. BMC Cancer 2014; 14:119. [PMID: 24559095 PMCID: PMC3937431 DOI: 10.1186/1471-2407-14-119] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 02/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Yes-associated protein (YAP1) is frequently reported to function as an oncogene in many types of cancer, but in breast cancer results remain controversial. We set out to clarify the role of YAP1 in breast cancer by examining gene and protein expression in subgroups of patient material and by downregulating YAP1 in vitro and studying its role in response to the widely used anti-estrogen tamoxifen. METHODS YAP1 protein intensity was scored as absent, weak, intermediate or strong in two primary breast cancer cohorts (n = 144 and n = 564) and mRNA expression of YAP1 was evaluated in a gene expression dataset (n = 1107). Recurrence-free survival was analysed using the log-rank test and Cox multivariate analysis was used to test for independence. WST-1 assay was employed to measure cell viability and a luciferase ERE (estrogen responsive element) construct was used to study the effect of tamoxifen, following downregulation of YAP1 using siRNAs. RESULTS In the ER+ (Estrogen Receptor α positive) subgroup of the randomised cohort, YAP1 expression was inversely correlated to histological grade and proliferation (p = 0.001 and p = 0.016, respectively) whereas in the ER- (Estrogen Receptor α negative) subgroup YAP1 expression correlated positively to proliferation (p = 0.005). Notably, low YAP1 mRNA was independently associated with decreased recurrence-free survival in the gene expression dataset, specifically for the luminal A subgroup (p < 0.001) which includes low proliferating tumours of lower grade, usually associated with a good prognosis. This subgroup specificity led us to hypothesize that YAP1 may be important for response to endocrine therapies, such as tamoxifen, extensively used for luminal A breast cancers. In a tamoxifen randomised patient material, absent YAP1 protein expression was associated with impaired tamoxifen response which was significant upon interaction analysis (p = 0.042). YAP1 downregulation resulted in increased progesterone receptor (PgR) expression and a delayed and weaker tamoxifen in support of the clinical data. CONCLUSIONS Decreased YAP1 expression is an independent prognostic factor for recurrence in the less aggressive luminal A breast cancer subgroup, likely due to the decreased tamoxifen sensitivity conferred by YAP1 downregulation.
Collapse
Affiliation(s)
- Sophie Lehn
- Center for Molecular Pathology, Department of Laboratory Medicine, Lund University, Skåne University Hospital, 205 02 Malmö, Sweden.
| | | | | | | | | | | | | |
Collapse
|
369
|
Lin AYT, Pearson BJ. Planarian yorkie/YAP functions to integrate adult stem cell proliferation, organ homeostasis and maintenance of axial patterning. Development 2014; 141:1197-208. [PMID: 24523458 DOI: 10.1242/dev.101915] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
During adult homeostasis and regeneration, the freshwater planarian must accomplish a constant balance between cell proliferation and cell death, while also maintaining proper tissue and organ size and patterning. How these ordered processes are precisely modulated remains relatively unknown. Here we show that planarians use the downstream effector of the Hippo signaling cascade, yorkie (yki; YAP in vertebrates) to control a diverse set of pleiotropic processes in organ homeostasis, stem cell regulation, regeneration and axial patterning. We show that yki functions to maintain the homeostasis of the planarian excretory (protonephridial) system and to limit stem cell proliferation, but does not affect the differentiation process or cell death. Finally, we show that Yki acts synergistically with WNT/β-catenin signaling to repress head determination by limiting the expression domains of posterior WNT genes and that of the WNT-inhibitor notum. Together, our data show that yki is a key gene in planarians that integrates stem cell proliferation control, organ homeostasis, and the spatial patterning of tissues.
Collapse
Affiliation(s)
- Alexander Y T Lin
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 1X8, Canada
| | | |
Collapse
|
370
|
Jiao S, Wang H, Shi Z, Dong A, Zhang W, Song X, He F, Wang Y, Zhang Z, Wang W, Wang X, Guo T, Li P, Zhao Y, Ji H, Zhang L, Zhou Z. A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell 2014; 25:166-80. [PMID: 24525233 DOI: 10.1016/j.ccr.2014.01.010] [Citation(s) in RCA: 481] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 12/05/2013] [Accepted: 01/16/2014] [Indexed: 12/31/2022]
Abstract
The Hippo pathway has been implicated in suppressing tissue overgrowth and tumor formation by restricting the oncogenic activity of YAP. However, transcriptional regulators that inhibit YAP activity have not been well studied. Here, we uncover clinical importance for VGLL4 in gastric cancer suppression and find that VGLL4 directly competes with YAP for binding TEADs. Importantly, VGLL4's tandem Tondu domains are not only essential but also sufficient for its inhibitory activity toward YAP. A peptide mimicking this function of VGLL4 potently suppressed tumor growth in vitro and in vivo. These findings suggest that disruption of YAP-TEADs interaction by a VGLL4-mimicking peptide may be a promising therapeutic strategy against YAP-driven human cancers.
Collapse
Affiliation(s)
- Shi Jiao
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Huizhen Wang
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Zhubing Shi
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Aimei Dong
- Department of Gastroenterology and Internal Medicine, Nanjing Xiaguan Hospital, Nanjing, Jiangsu 210085, China
| | - Wenjing Zhang
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Xiaomin Song
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Feng He
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Yicui Wang
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Zhenzhen Zhang
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Wenjia Wang
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Xin Wang
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Tong Guo
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Peixue Li
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Yun Zhao
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Hongbin Ji
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China.
| | - Lei Zhang
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China.
| | - Zhaocai Zhou
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China.
| |
Collapse
|
371
|
Ikmi A, Gaertner B, Seidel C, Srivastava M, Zeitlinger J, Gibson MC. Molecular evolution of the Yap/Yorkie proto-oncogene and elucidation of its core transcriptional program. Mol Biol Evol 2014; 31:1375-90. [PMID: 24509725 PMCID: PMC4032125 DOI: 10.1093/molbev/msu071] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Throughout Metazoa, developmental processes are controlled by a surprisingly limited number of conserved signaling pathways. Precisely how these signaling cassettes were assembled in early animal evolution remains poorly understood, as do the molecular transitions that potentiated the acquisition of their myriad developmental functions. Here we analyze the molecular evolution of the proto-oncogene yes-associated protein (Yap)/Yorkie, a key effector of the Hippo signaling pathway that controls organ size in both Drosophila and mammals. Based on heterologous functional analysis of evolutionarily distant Yap/Yorkie orthologs, we demonstrate that a structurally distinct interaction interface between Yap/Yorkie and its partner TEAD/Scalloped became fixed in the eumetazoan common ancestor. We then combine transcriptional profiling of tissues expressing phylogenetically diverse forms of Yap/Yorkie with ChIP-seq validation to identify a common downstream gene expression program underlying the control of tissue growth in Drosophila. Intriguingly, a subset of the newly identified Yorkie target genes are also induced by Yap in mammalian tissues, thus revealing a conserved Yap-dependent gene expression signature likely to mediate organ size control throughout bilaterian animals. Combined, these experiments provide new mechanistic insights while revealing the ancient evolutionary history of Hippo signaling.
Collapse
Affiliation(s)
- Aissam Ikmi
- Stowers Institute for Medical Research, Kansas City, MO
| | | | | | | | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MODepartment of Pathology and Laboratory Medicine, University of Kansas School of Medicine, Kansas City, KS
| | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MODepartment of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS
| |
Collapse
|
372
|
Causes and consequences of genetic background effects illuminated by integrative genomic analysis. Genetics 2014; 196:1321-36. [PMID: 24504186 DOI: 10.1534/genetics.113.159426] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The phenotypic consequences of individual mutations are modulated by the wild-type genetic background in which they occur. Although such background dependence is widely observed, we do not know whether general patterns across species and traits exist or about the mechanisms underlying it. We also lack knowledge on how mutations interact with genetic background to influence gene expression and how this in turn mediates mutant phenotypes. Furthermore, how genetic background influences patterns of epistasis remains unclear. To investigate the genetic basis and genomic consequences of genetic background dependence of the scalloped(E3) allele on the Drosophila melanogaster wing, we generated multiple novel genome-level datasets from a mapping-by-introgression experiment and a tagged RNA gene expression dataset. In addition we used whole genome resequencing of the parental lines-two commonly used laboratory strains-to predict polymorphic transcription factor binding sites for SD. We integrated these data with previously published genomic datasets from expression microarrays and a modifier mutation screen. By searching for genes showing a congruent signal across multiple datasets, we were able to identify a robust set of candidate loci contributing to the background-dependent effects of mutations in sd. We also show that the majority of background-dependent modifiers previously reported are caused by higher-order epistasis, not quantitative noncomplementation. These findings provide a useful foundation for more detailed investigations of genetic background dependence in this system, and this approach is likely to prove useful in exploring the genetic basis of other traits as well.
Collapse
|
373
|
Hao J, Zhang Y, Jing D, Li Y, Li J, Zhao Z. Role of Hippo signaling in cancer stem cells. J Cell Physiol 2014; 229:266-70. [PMID: 24037831 DOI: 10.1002/jcp.24455] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/15/2013] [Indexed: 02/05/2023]
Abstract
Cancer stem cells (CSCs) have been proposed and evidenced as the initiator of tumor formation and the seeds of metastases. Thereby, the molecular mechanisms regarding modulation of CSCs have been widely explored, aimed to improve treatment for cancer patients. Recent progress has highlighted the effects of Hippo signaling in tumorigenesis and cancer development, including its crucial role in CSC regulation. Although the kernel Hippo signaling cascade has been well studied, its upstream inputs and downstream transcriptional regulation still remain elusive. In this review, we summarize the current understanding of the mechanism and regulatory function of Hippo signaling in CSCs, with emphasis on its possible roles in regulation of CSC self-renewal, differentiation and tumorigenesis.
Collapse
Affiliation(s)
- Jin Hao
- Department of Orthodontics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
| | | | | | | | | | | |
Collapse
|
374
|
Ferguson GB, Martinez-Agosto JA. Kicking it up a Notch for the best in show: Scalloped leads Yorkie into the haematopoietic arena. Fly (Austin) 2014; 8:206-17. [PMID: 26151599 PMCID: PMC4594362 DOI: 10.1080/19336934.2015.1055427] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/15/2015] [Accepted: 05/20/2015] [Indexed: 12/12/2022] Open
Abstract
Maintenance and differentiation of progenitor cells is essential for proper organ development and adaptation to environmental stress and injury. In Drosophila melanogaster, the haematopietic system serves as an ideal model for interrogating the function of signaling pathways required for progenitor maintenance and cell fate determination. Here we focus on the role of the Hippo pathway effectors Yorkie and Scalloped in mediating and facilitating Notch signaling-mediated lineage specification in the lymph gland, the primary center for haematopoiesis within the developing larva. We discuss the regulatory mechanisms which promote Notch activity during normal haematopoiesis and its modulation during immune challenge conditions. We provide additional evidence establishing the hierarchy of signaling events during crystal cell formation, highlighting the relationship between Yorkie, Scalloped and Lozenge, while expanding on the role of Yorkie in promoting hemocyte survival and the developmental regulation of Notch and its ligand, Serrate, within the lymph gland. Finally, we propose additional areas of exploration that may provide mechanistic insight into the environmental and non-cell autonomous regulation of cell fate in the blood system.
Collapse
Affiliation(s)
- Gabriel B Ferguson
- Department of Human Genetics; David Geffen School of Medicine; University of California Los Angeles; Los Angeles, CA USA
| | - Julian A Martinez-Agosto
- Department of Human Genetics; David Geffen School of Medicine; University of California Los Angeles; Los Angeles, CA USA
- Molecular Biology Institute; Jonsson Comprehensive Cancer Center; UCLA Broad Stem Cell Center; Mattel Children's Hospital UCLA; David Geffen School of Medicine; University of California Los Angeles; Los Angeles, CA USA
| |
Collapse
|
375
|
Hauri S, Wepf A, van Drogen A, Varjosalo M, Tapon N, Aebersold R, Gstaiger M. Interaction proteome of human Hippo signaling: modular control of the co-activator YAP1. Mol Syst Biol 2013; 9:713. [PMID: 24366813 PMCID: PMC4019981 DOI: 10.1002/msb.201304750] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/13/2013] [Accepted: 11/20/2013] [Indexed: 12/11/2022] Open
Abstract
Tissue homeostasis is controlled by signaling systems that coordinate cell proliferation, cell growth and cell shape upon changes in the cellular environment. Deregulation of these processes is associated with human cancer and can occur at multiple levels of the underlying signaling systems. To gain an integrated view on signaling modules controlling tissue growth, we analyzed the interaction proteome of the human Hippo pathway, an established growth regulatory signaling system. The resulting high-resolution network model of 480 protein-protein interactions among 270 network components suggests participation of Hippo pathway components in three distinct modules that all converge on the transcriptional co-activator YAP1. One of the modules corresponds to the canonical Hippo kinase cassette whereas the other two both contain Hippo components in complexes with cell polarity proteins. Quantitative proteomic data suggests that complex formation with cell polarity proteins is dynamic and depends on the integrity of cell-cell contacts. Collectively, our systematic analysis greatly enhances our insights into the biochemical landscape underlying human Hippo signaling and emphasizes multifaceted roles of cell polarity complexes in Hippo-mediated tissue growth control.
Collapse
Affiliation(s)
- Simon Hauri
- Institute of Molecular Systems BiologyETH ZürichZürichSwitzerland
- Competence Center for Systems Physiology and Metabolic DiseasesETH ZürichZürichSwitzerland
| | | | | | - Markku Varjosalo
- Institute of Molecular Systems BiologyETH ZürichZürichSwitzerland
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| | - Nic Tapon
- Cancer Research UKLondon Research InstituteLondonUK
| | - Ruedi Aebersold
- Institute of Molecular Systems BiologyETH ZürichZürichSwitzerland
- Competence Center for Systems Physiology and Metabolic DiseasesETH ZürichZürichSwitzerland
- Faculty of ScienceUniversity of ZürichZürichSwitzerland
| | - Matthias Gstaiger
- Institute of Molecular Systems BiologyETH ZürichZürichSwitzerland
- Competence Center for Systems Physiology and Metabolic DiseasesETH ZürichZürichSwitzerland
| |
Collapse
|
376
|
|
377
|
Johnson R, Halder G. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov 2013; 13:63-79. [PMID: 24336504 DOI: 10.1038/nrd4161] [Citation(s) in RCA: 729] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Hippo signalling pathway is an emerging growth control and tumour suppressor pathway that regulates cell proliferation and stem cell functions. Defects in Hippo signalling and hyperactivation of its downstream effectors Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) contribute to the development of cancer, which suggests that pharmacological inhibition of YAP and TAZ activity may be an effective anticancer strategy. Conversely, YAP and TAZ can also have beneficial roles in stimulating tissue repair and regeneration following injury, so their activation may be therapeutically useful in these contexts. A complex network of intracellular and extracellular signalling pathways that modulate YAP and TAZ activities have recently been identified. Here, we review the regulation of the Hippo signalling pathway, its functions in normal homeostasis and disease, and recent progress in the identification of small-molecule pathway modulators.
Collapse
Affiliation(s)
- Randy Johnson
- 1] Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. [2] Genes and Development Program, and Cancer Biology Program, Graduate School for Biological Sciences, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. [3] Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Georg Halder
- VIB Center for the Biology of Disease, KU Leuven Center for Human Genetics, University of Leuven 3000, Belgium
| |
Collapse
|
378
|
Bantam is essential for Drosophila intestinal stem cell proliferation in response to Hippo signaling. Dev Biol 2013; 385:211-9. [PMID: 24262985 DOI: 10.1016/j.ydbio.2013.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/08/2013] [Indexed: 12/18/2022]
Abstract
The Drosophila midgut has emerged as an attractive model system to study stem cell biology. Extensive studies have been carried out to investigate the mechanisms of how the signaling pathways integrate to regulate intestinal stem cells (ISCs), yet, whether the microRNAs are involved in ISC self-renewal and maintenance is unknown. Here we demonstrate that the bantam microRNA is expressed specifically at high levels in Drosophila midgut precursor cells (including ISCs and enteroblasts) and secretory enteroendocrine cells while at extremely low levels in enterocytes. Furthermore, overexpression of bantam microRNA results in increase of the division of the midgut precursor cells, whereas loss of bantam microRNA decreases their proliferation. The mechanical studies show that bantam microRNA is essential for the Hpo pathway induced cell-autonomous ISC self-renewal, while it is disposable for EGFR and Notch pathways mediated ISC proliferation. More interestingly, we find that bantam microRNA is not required for the Hpo pathway mediated non-cell-autonomous ISC proliferation, revealing a novel mechanism by which the Hpo signaling pathway specifies its transcriptional targets in specific tissue to exhibit its biological functions.
Collapse
|
379
|
Hao J, Zhang Y, Wang Y, Ye R, Qiu J, Zhao Z, Li J. Role of extracellular matrix and YAP/TAZ in cell fate determination. Cell Signal 2013; 26:186-91. [PMID: 24216612 DOI: 10.1016/j.cellsig.2013.11.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/01/2013] [Indexed: 02/05/2023]
Abstract
The mechanical signals transduced from cellular microenvironment can regulate cell shape and affect cell fate determination. However, how these mechanical signals are transduced to regulate biological processes of cells has remained elusive. Recent studies had elucidated a novel mechanism through which the interactions between mechanical signals from extracellular matrix and cell behavior regulation converged on the function of core components in Hippo signaling pathway, including YAP and TAZ in mammals. Moreover, several very recent studies have found a new crosstalk between Wnt and Hippo signaling in the regulation of cell fate determination. Such mechanism may explain how mechanical signals from microenvironment can regulate cell behavior and determine cell fate.
Collapse
Affiliation(s)
- Jin Hao
- Department of Orthodontics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yueling Zhang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yating Wang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Rui Ye
- Department of Orthodontics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingyi Qiu
- Department of Orthodontics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhihe Zhao
- Department of Orthodontics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Juan Li
- Department of Orthodontics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
380
|
Jin Y, Xu J, Yin MX, Lu Y, Hu L, Li P, Zhang P, Yuan Z, Ho MS, Ji H, Zhao Y, Zhang L. Brahma is essential for Drosophila intestinal stem cell proliferation and regulated by Hippo signaling. eLife 2013; 2:e00999. [PMID: 24137538 PMCID: PMC3796317 DOI: 10.7554/elife.00999] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/08/2013] [Indexed: 11/13/2022] Open
Abstract
Chromatin remodeling processes are among the most important regulatory mechanisms in controlling cell proliferation and regeneration. Drosophila intestinal stem cells (ISCs) exhibit self-renewal potentials, maintain tissue homeostasis, and serve as an excellent model for studying cell growth and regeneration. In this study, we show that Brahma (Brm) chromatin-remodeling complex is required for ISC proliferation and damage-induced midgut regeneration in a lineage-specific manner. ISCs and enteroblasts exhibit high levels of Brm proteins; and without Brm, ISC proliferation and differentiation are impaired. Importantly, the Brm complex participates in ISC proliferation induced by the Scalloped-Yorkie transcriptional complex and that the Hippo (Hpo) signaling pathway directly restricted ISC proliferation by regulating Brm protein levels by inducing caspase-dependent cleavage of Brm. The cleavage resistant form of Brm protein promoted ISC proliferation. Our findings highlighted the importance of Hpo signaling in regulating epigenetic components such as Brm to control downstream transcription and hence ISC proliferation. DOI:http://dx.doi.org/10.7554/eLife.00999.001.
Collapse
Affiliation(s)
- Yunyun Jin
- State Key Laboratory of Cell Biology , Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai , China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
381
|
Wang W, Li X, Huang J, Feng L, Dolinta KG, Chen J. Defining the protein-protein interaction network of the human hippo pathway. Mol Cell Proteomics 2013; 13:119-31. [PMID: 24126142 DOI: 10.1074/mcp.m113.030049] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Hippo pathway, which is conserved from Drosophila to mammals, has been recognized as a tumor suppressor signaling pathway governing cell proliferation and apoptosis, two key events involved in organ size control and tumorigenesis. Although several upstream regulators, the conserved kinase cascade and key downstream effectors including nuclear transcriptional factors have been defined, the global organization of this signaling pathway is not been fully understood. Thus, we conducted a proteomic analysis of human Hippo pathway, which revealed the involvement of an extensive protein-protein interaction network in this pathway. The mass spectrometry data were deposited to ProteomeXchange with identifier PXD000415. Our data suggest that 550 interactions within 343 unique protein components constitute the central protein-protein interaction landscape of human Hippo pathway. Our study provides a glimpse into the global organization of Hippo pathway, reveals previously unknown interactions within this pathway, and uncovers new potential components involved in the regulation of this pathway. Understanding these interactions will help us further dissect the Hippo signaling-pathway and extend our knowledge of organ size control.
Collapse
Affiliation(s)
- Wenqi Wang
- Department of Experimental Radiation Oncology, Unit 66, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030
| | | | | | | | | | | |
Collapse
|
382
|
Slattery M, Voutev R, Ma L, Nègre N, White KP, Mann RS. Divergent transcriptional regulatory logic at the intersection of tissue growth and developmental patterning. PLoS Genet 2013; 9:e1003753. [PMID: 24039600 PMCID: PMC3764184 DOI: 10.1371/journal.pgen.1003753] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/10/2013] [Indexed: 12/19/2022] Open
Abstract
The Yorkie/Yap transcriptional coactivator is a well-known regulator of cellular proliferation in both invertebrates and mammals. As a coactivator, Yorkie (Yki) lacks a DNA binding domain and must partner with sequence-specific DNA binding proteins in the nucleus to regulate gene expression; in Drosophila, the developmental regulators Scalloped (Sd) and Homothorax (Hth) are two such partners. To determine the range of target genes regulated by these three transcription factors, we performed genome-wide chromatin immunoprecipitation experiments for each factor in both the wing and eye-antenna imaginal discs. Strong, tissue-specific binding patterns are observed for Sd and Hth, while Yki binding is remarkably similar across both tissues. Binding events common to the eye and wing are also present for Sd and Hth; these are associated with genes regulating cell proliferation and “housekeeping” functions, and account for the majority of Yki binding. In contrast, tissue-specific binding events for Sd and Hth significantly overlap enhancers that are active in the given tissue, are enriched in Sd and Hth DNA binding sites, respectively, and are associated with genes that are consistent with each factor's previously established tissue-specific functions. Tissue-specific binding events are also significantly associated with Polycomb targeted chromatin domains. To provide mechanistic insights into tissue-specific regulation, we identify and characterize eye and wing enhancers of the Yki-targeted bantam microRNA gene and demonstrate that they are dependent on direct binding by Hth and Sd, respectively. Overall these results suggest that both Sd and Hth use distinct strategies – one shared between tissues and associated with Yki, the other tissue-specific, generally Yki-independent and associated with developmental patterning – to regulate distinct gene sets during development. The Hippo tumor suppressor pathway controls proliferation in a tissue-nonspecific fashion in Drosophila epithelial progenitor tissues via the transcriptional coactivator Yorkie (Yki). However, despite the tissue-nonspecific role that Yki plays in tissue growth, the transcription factors that recruit Yki to DNA, most notably Scalloped (Sd) and Homothorax (Hth), are important regulators of developmental patterning with many tissue-specific functions. Thus, these three transcriptional regulators – Yki, Sd, and Hth – provide a model for exploring the properties of protein-DNA interactions that regulate both tissue-shared and tissue-specific functions. With this goal in mind, we identified the positions in the fly genome that are bound by Yki, Sd, and Hth in the progenitors of the wing and eye-antenna structures of the fly. These data not only provide a global view of the Yki gene regulatory network, they reveal an unusual amount of tissue specificity in the genomic regions targeted by Sd and Hth, but not Yki. The data also reveal that tissue-specific binding is very likely to overlap tissue-specific enhancer regions, provide important clues for how tissue-specific Sd and Hth binding occurs, and support the idea that gene regulatory networks are plastic, with spatial differences in binding significantly impacting network structures.
Collapse
Affiliation(s)
- Matthew Slattery
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
- Institute for Genomics and Systems Biology and Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Roumen Voutev
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - Lijia Ma
- Institute for Genomics and Systems Biology and Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Nicolas Nègre
- Institute for Genomics and Systems Biology and Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Université de Montpellier 2 and INRA, UMR1333 DGIMI, Montpellier, France
| | - Kevin P. White
- Institute for Genomics and Systems Biology and Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Richard S. Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
383
|
A novel partner of Scalloped regulates Hippo signaling via antagonizing Scalloped-Yorkie activity. Cell Res 2013; 23:1201-14. [PMID: 23999857 DOI: 10.1038/cr.2013.120] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/29/2013] [Accepted: 07/29/2013] [Indexed: 01/01/2023] Open
Abstract
The Hippo (Hpo) pathway controls tissue growth and organ size by regulating the activity of transcriptional co-activator Yorkie (Yki), which associates with transcription factor Scalloped (Sd) in the nucleus to promote downstream target gene expression. Here we identify a novel protein Sd-Binding-Protein (SdBP)/Tgi, which directly competes with Yki for binding to Sd through its TDU domains and inhibits the Sd-Yki transcriptional activity. We also find that SdBP retains Yki in the nucleus through the association with Yki WW domains via its PPXY motifs. Collectively, we identify SdBP as a novel component of the Hpo pathway, negatively regulating the transcriptional activity of Sd-Yki to restrict tissue growth.
Collapse
|
384
|
Jukam D, Xie B, Rister J, Terrell D, Charlton-Perkins M, Pistillo D, Gebelein B, Desplan C, Cook T. Opposite feedbacks in the Hippo pathway for growth control and neural fate. Science 2013; 342:1238016. [PMID: 23989952 DOI: 10.1126/science.1238016] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Signaling pathways are reused for multiple purposes in plant and animal development. The Hippo pathway in mammals and Drosophila coordinates proliferation and apoptosis via the coactivator and oncoprotein YAP/Yorkie (Yki), which is homeostatically regulated through negative feedback. In the Drosophila eye, cross-repression between the Hippo pathway kinase LATS/Warts (Wts) and growth regulator Melted generates mutually exclusive photoreceptor subtypes. Here, we show that this all-or-nothing neuronal differentiation results from Hippo pathway positive feedback: Yki both represses its negative regulator, warts, and promotes its positive regulator, melted. This postmitotic Hippo network behavior relies on a tissue-restricted transcription factor network-including a conserved Otx/Orthodenticle-Nrl/Traffic Jam feedforward module-that allows Warts-Yki-Melted to operate as a bistable switch. Altering feedback architecture provides an efficient mechanism to co-opt conserved signaling networks for diverse purposes in development and evolution.
Collapse
Affiliation(s)
- David Jukam
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
385
|
Yu FX, Zhang Y, Park HW, Jewell JL, Chen Q, Deng Y, Pan D, Taylor SS, Lai ZC, Guan KL. Protein kinase A activates the Hippo pathway to modulate cell proliferation and differentiation. Genes Dev 2013; 27:1223-32. [PMID: 23752589 DOI: 10.1101/gad.219402.113] [Citation(s) in RCA: 268] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Hippo tumor suppressor pathway plays an important role in tissue homeostasis that ensures development of functional organs at proper size. The YAP transcription coactivator is a major effector of the Hippo pathway and is phosphorylated and inactivated by the Hippo pathway kinases Lats1/2. It has recently been shown that YAP activity is regulated by G-protein-coupled receptor signaling. Here we demonstrate that cyclic adenosine monophosphate (cAMP), a second messenger downstream from Gαs-coupled receptors, acts through protein kinase A (PKA) and Rho GTPases to stimulate Lats kinases and YAP phosphorylation. We also show that inactivation of YAP is crucial for PKA-induced adipogenesis. In addition, PKA activation in Drosophila inhibits the expression of Yorki (Yki, a YAP ortholog) target genes involved in cell proliferation and death. Taken together, our study demonstrates that Hippo-YAP is a key signaling branch of cAMP and PKA and reveals new insight into mechanisms of PKA in regulating a broad range of cellular functions.
Collapse
Affiliation(s)
- Fa-Xing Yu
- Department of Pharmacology, University of California at San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
386
|
Par-1 regulates tissue growth by influencing hippo phosphorylation status and hippo-salvador association. PLoS Biol 2013; 11:e1001620. [PMID: 23940457 PMCID: PMC3735459 DOI: 10.1371/journal.pbio.1001620] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/19/2013] [Indexed: 01/07/2023] Open
Abstract
The evolutionarily conserved Hippo (Hpo) signaling pathway plays a pivotal role in organ size control by balancing cell proliferation and cell death. Here, we reported the identification of Par-1 as a regulator of the Hpo signaling pathway using a gain-of-function EP screen in Drosophila melanogaster. Overexpression of Par-1 elevated Yorkie activity, resulting in increased Hpo target gene expression and tissue overgrowth, while loss of Par-1 diminished Hpo target gene expression and reduced organ size. We demonstrated that par-1 functioned downstream of fat and expanded and upstream of hpo and salvador (sav). In addition, we also found that Par-1 physically interacted with Hpo and Sav and regulated the phosphorylation of Hpo at Ser30 to restrict its activity. Par-1 also inhibited the association of Hpo and Sav, resulting in Sav dephosphorylation and destabilization. Furthermore, we provided evidence that Par-1-induced Hpo regulation is conserved in mammalian cells. Taken together, our findings identified Par-1 as a novel component of the Hpo signaling network.
Collapse
|
387
|
Abstract
The adult mammalian heart has limited potential for regeneration. Thus, after injury, cardiomyocytes are permanently lost, and contractility is diminished. In contrast, the neonatal heart can regenerate owing to sustained cardiomyocyte proliferation. Identification of critical regulators of cardiomyocyte proliferation and quiescence represents an important step toward potential regenerative therapies. Yes-associated protein (Yap), a transcriptional cofactor in the Hippo signaling pathway, promotes proliferation of embryonic cardiomyocytes by activating the insulin-like growth factor and Wnt signaling pathways. Here we report that mice bearing mutant alleles of Yap and its paralog WW domain containing transcription regulator 1 (Taz) exhibit gene dosage-dependent cardiac phenotypes, suggesting redundant roles of these Hippo pathway effectors in establishing proper myocyte number and maintaining cardiac function. Cardiac-specific deletion of Yap impedes neonatal heart regeneration, resulting in a default fibrotic response. Conversely, forced expression of a constitutively active form of Yap in the adult heart stimulates cardiac regeneration and improves contractility after myocardial infarction. The regenerative activity of Yap is correlated with its activation of embryonic and proliferative gene programs in cardiomyocytes. These findings identify Yap as an important regulator of cardiac regeneration and provide an experimental entry point to enhance this process.
Collapse
|
388
|
Kaneko KJ, DePamphilis ML. TEAD4 establishes the energy homeostasis essential for blastocoel formation. Development 2013; 140:3680-90. [PMID: 23903192 DOI: 10.1242/dev.093799] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It has been suggested that during mouse preimplantation development, the zygotically expressed transcription factor TEAD4 is essential for specification of the trophectoderm lineage required for producing a blastocyst. Here we show that blastocysts can form without TEAD4 but that TEAD4 is required to prevent oxidative stress when blastocoel formation is accompanied by increased oxidative phosphorylation that leads to the production of reactive oxygen species (ROS). Both two-cell and eight-cell Tead4(-/-) embryos developed into blastocysts when cultured under conditions that alleviate oxidative stress, and Tead4(-/-) blastocysts that formed under these conditions expressed trophectoderm-associated genes. Therefore, TEAD4 is not required for specification of the trophectoderm lineage. Once the trophectoderm was specified, Tead4 was not essential for either proliferation or differentiation of trophoblast cells in culture. However, ablation of Tead4 in trophoblast cells resulted in reduced mitochondrial membrane potential. Moreover, Tead4 suppressed ROS in embryos and embryonic fibroblasts. Finally, ectopically expressed TEAD4 protein could localize to the mitochondria as well as to the nucleus, a property not shared by other members of the TEAD family. These results reveal that TEAD4 plays a crucial role in maintaining energy homeostasis during preimplantation development.
Collapse
Affiliation(s)
- Kotaro J Kaneko
- National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892-2753, USA.
| | | |
Collapse
|
389
|
Liu JY, Li YH, Lin HX, Liao YJ, Mai SJ, Liu ZW, Zhang ZL, Jiang LJ, Zhang JX, Kung HF, Zeng YX, Zhou FJ, Xie D. Overexpression of YAP 1 contributes to progressive features and poor prognosis of human urothelial carcinoma of the bladder. BMC Cancer 2013; 13:349. [PMID: 23870412 PMCID: PMC3750259 DOI: 10.1186/1471-2407-13-349] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 07/16/2013] [Indexed: 01/29/2023] Open
Abstract
Background Yes-associated protein 1 (YAP 1), the nuclear effector of the Hippo pathway, is a key regulator of organ size and a candidate human oncogene in multiple tumors. However, the expression dynamics of YAP 1 in urothelial carcinoma of the bladder (UCB) and its clinical/prognostic significance are unclear. Methods In this study, the methods of quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting and immunohistochemistry (IHC) were utilized to investigate mRNA/ protein expression of YAP 1 in UCBs. Spearman’s rank correlation, Kaplan-Meier plots and Cox proportional hazards regression model were used to analyze the data. Results Up-regulated expression of YAP 1 mRNA and protein was observed in the majority of UCBs by qRT-PCR and Western blotting, when compared with their paired normal bladder tissues. By IHC, positive expression of YAP 1 was examined in 113/213 (53.1%) of UCBs and in 6/86 (7.0%) of normal bladder specimens tissues. Positive expression of YAP 1 was correlated with poorer differentiation, higher T classification and higher N classification (P < 0.05). In univariate survival analysis, a significant association between positive expression of YAP 1 and shortened patients’ survival was found (P < 0.001). In different subsets of UCB patients, YAP 1 expression was also a prognostic indicator in patients with grade 2 (P = 0.005) or grade 3 (P = 0.046) UCB, and in patients in pT1 (P = 0.013), pT2-4 (P = 0.002), pN- (P < 0.001) or pT2-4/pN- (P = 0.004) stage. Importantly, YAP 1 expression (P = 0.003) together with pT and pN status (P< 0.05) provided significant independent prognostic parameters in multivariate analysis. Conclusions Our findings provide evidences that positive expression of YAP 1 in UCB may be important in the acquisition of an aggressive phenotype, and it is an independent biomarker for poor prognosis of patients with UCB.
Collapse
Affiliation(s)
- Jian-Ye Liu
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, No 651, Dongfeng Road East, Guangzhou 510060, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
390
|
The Hippo pathway kinase Lats2 prevents DNA damage-induced apoptosis through inhibition of the tyrosine kinase c-Abl. Cell Death Differ 2013; 20:1330-40. [PMID: 23852372 DOI: 10.1038/cdd.2013.83] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/13/2013] [Accepted: 05/27/2013] [Indexed: 12/19/2022] Open
Abstract
The Hippo pathway is an evolutionarily conserved pathway that controls cell proliferation, organ size, tissue regeneration and stem cell self-renewal. Here we show that it also regulates the DNA damage response. At high cell density, when the Hippo pathway is active, DNA damage-induced apoptosis and the activation of the tyrosine kinase c-Abl were suppressed. At low cell density, overexpression of the Hippo pathway kinase large tumor suppressor 2 (Lats2) inhibited c-Abl activity. This led to reduced phosphorylation of downstream c-Abl substrates, the transcription coactivator Yes-associated protein (Yap) and the tumor suppressor p73. Inhibition of c-Abl by Lats2 was mediated through Lats2 interaction with and phosphorylation of c-Abl. Lats2 knockdown, or expression of c-Abl mutants that escape inhibition by Lats2, enabled DNA damage-induced apoptosis of densely plated cells, while Lats2 overexpression inhibited apoptosis in sparse cells. These findings explain a long-standing enigma of why densely plated cells are radioresistant. Furthermore, they demonstrate that the Hippo pathway regulates cell fate decisions in response to DNA damage.
Collapse
|
391
|
Perea D, Molohon K, Edwards K, Díaz-Benjumea FJ. Multiple roles of the gene zinc finger homeodomain-2 in the development of the Drosophila wing. Mech Dev 2013; 130:467-81. [PMID: 23811114 DOI: 10.1016/j.mod.2013.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/05/2013] [Accepted: 06/11/2013] [Indexed: 10/26/2022]
Abstract
The gene zfh2 and its human homolog Atbf1 encode huge molecules with several homeo- and zinc finger domains. It has been reported that they play important roles in neural differentiation and promotion of apoptosis in several tissues of both humans and flies. In the Drosophila wing imaginal disc, Zfh2 is expressed in a dynamic pattern and previous results suggest that it is involved is proximal-distal patterning. In this report we go further in the analysis of the function of this gene in wing development, performing ectopic expression experiments and studying its effects in genes involved in wing development. Our results suggest that Zfh2 plays an important role controlling the expression of several wing genes and in the specification of those cellular properties that define the differences in cell proliferation between proximal and distal domains of the wing disc.
Collapse
Affiliation(s)
- Daniel Perea
- Centro de Biología Molecular-Severo Ochoa, Universidad Autónoma-Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
392
|
Morgan JT, Murphy CJ, Russell P. What do mechanotransduction, Hippo, Wnt, and TGFβ have in common? YAP and TAZ as key orchestrating molecules in ocular health and disease. Exp Eye Res 2013; 115:1-12. [PMID: 23792172 DOI: 10.1016/j.exer.2013.06.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/03/2013] [Accepted: 06/10/2013] [Indexed: 01/09/2023]
Abstract
Cells in vivo are exposed to a complex signaling environment. Biochemical signaling modalities, such as secreted proteins, specific extracellular matrix domains and ion fluxes certainly compose an important set of regulatory signals to cells. However, these signals are not exerted in isolation, but rather in concert with biophysical cues of the surrounding tissue, such as stiffness and topography. In this review, we attempt to highlight the biophysical attributes of ocular tissues and their influence on cellular behavior. Additionally, we introduce the proteins YAP and TAZ as targets of biophysical and biochemical signaling and important agonists and antagonists of numerous signaling pathways, including TGFβ and Wnt. We frame the discussion around this extensive signaling crosstalk, which allows YAP and TAZ to act as orchestrating molecules, capable of integrating biophysical and biochemical cues into a broad cellular response. Finally, while we draw on research from various fields to provide a full picture of YAP and TAZ, we attempt to highlight the intersections with vision science and the exciting work that has already been performed.
Collapse
Affiliation(s)
- Joshua T Morgan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | | | | |
Collapse
|
393
|
Overexpression of YAP and TAZ is an independent predictor of prognosis in colorectal cancer and related to the proliferation and metastasis of colon cancer cells. PLoS One 2013; 8:e65539. [PMID: 23762387 PMCID: PMC3677905 DOI: 10.1371/journal.pone.0065539] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/25/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) are nuclear effectors of the Hippo pathway. Although they are abundantly expressed in the cytoplasm and nuclei of human colorectal cancer (CRC), and related to tumor proliferation status, there have been few studies on the predictive role of YAP and TAZ expression on the overall survival of patients with CRC. This study investigated YAP and TAZ expression in both CRC patients and colon cancer cell lines, and assessed their prognostic value. METHODS Paraffin-embedded specimens from 168 eligible patients were used to investigate YAP and TAZ expression by immunohistochemistry, and compared with experimental results in colon cancer HCT116 cell line to explore their clinical significance in CRC. RESULTS Statistically significant positive correlations were found between protein expression of YAP and TAZ in CRC tissues. Patients with higher YAP or TAZ expression showed a trend of shorter survival times; more importantly, our cohort study indicated that patients with both YAP and TAZ overexpression presented the worst outcomes. This was supported by multivariate analysis. In HCT116 colon cancer cells, the capacity for proliferation, metastasis, and invasion was dramatically reduced by knockdown of YAP and TAZ expressions by siRNA. CONCLUSIONS Co-overexpression of YAP and TAZ is an independent predictor of prognosis for patients with CRC, and may account for the higher proliferation, metastasis, and poor survival outcome of these patients.
Collapse
|
394
|
Yu FX, Zhang Y, Park HW, Jewell JL, Chen Q, Deng Y, Pan D, Taylor SS, Lai ZC, Guan KL. Protein kinase A activates the Hippo pathway to modulate cell proliferation and differentiation. Genes Dev 2013. [PMID: 23752589 DOI: 10.1101/gad.219402.113.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Hippo tumor suppressor pathway plays an important role in tissue homeostasis that ensures development of functional organs at proper size. The YAP transcription coactivator is a major effector of the Hippo pathway and is phosphorylated and inactivated by the Hippo pathway kinases Lats1/2. It has recently been shown that YAP activity is regulated by G-protein-coupled receptor signaling. Here we demonstrate that cyclic adenosine monophosphate (cAMP), a second messenger downstream from Gαs-coupled receptors, acts through protein kinase A (PKA) and Rho GTPases to stimulate Lats kinases and YAP phosphorylation. We also show that inactivation of YAP is crucial for PKA-induced adipogenesis. In addition, PKA activation in Drosophila inhibits the expression of Yorki (Yki, a YAP ortholog) target genes involved in cell proliferation and death. Taken together, our study demonstrates that Hippo-YAP is a key signaling branch of cAMP and PKA and reveals new insight into mechanisms of PKA in regulating a broad range of cellular functions.
Collapse
Affiliation(s)
- Fa-Xing Yu
- Department of Pharmacology, University of California at San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
395
|
Koontz LM, Liu-Chittenden Y, Yin F, Zheng Y, Yu J, Huang B, Chen Q, Wu S, Pan D. The Hippo effector Yorkie controls normal tissue growth by antagonizing scalloped-mediated default repression. Dev Cell 2013; 25:388-401. [PMID: 23725764 PMCID: PMC3705890 DOI: 10.1016/j.devcel.2013.04.021] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 04/28/2013] [Accepted: 04/30/2013] [Indexed: 12/01/2022]
Abstract
The Hippo tumor suppressor pathway restricts tissue growth by inactivating the transcriptional coactivator Yki. Although Sd has been implicated as a DNA-binding transcription factor partner for Yki and can genetically account for gain-of-function Yki phenotypes, how Yki regulates normal tissue growth remains a long-standing puzzle because Sd, unlike Yki, is dispensable for normal growth in most Drosophila tissues. Here we show that the yki mutant phenotypes in multiple developmental contexts are rescued by inactivation of Sd, suggesting that Sd functions as a default repressor and that Yki promotes normal tissue growth by relieving Sd-mediated default repression. We further identify Tgi as a cofactor involved in Sd's default repressor function and demonstrate that the mammalian ortholog of Tgi potently suppresses the YAP oncoprotein in transgenic mice. These findings fill a major gap in Hippo-mediated transcriptional regulation and open up possibilities for modulating the YAP oncoprotein in cancer and regenerative medicine.
Collapse
Affiliation(s)
- Laura M. Koontz
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yi Liu-Chittenden
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Feng Yin
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yonggang Zheng
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jianzhong Yu
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bo Huang
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Qian Chen
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shian Wu
- School of Life Sciences, Nankai University, Tianjin 300071, China
| | - Duojia Pan
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
396
|
Epithelial neoplasia in Drosophila entails switch to primitive cell states. Proc Natl Acad Sci U S A 2013; 110:E2163-72. [PMID: 23708122 DOI: 10.1073/pnas.1212513110] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Only select cell types in an organ display neoplasia when targeted oncogenically. How developmental lineage hierarchies of these cells prefigure their neoplastic propensities is not yet well-understood. Here we show that neoplastic Drosophila epithelial cells reverse their developmental commitments and switch to primitive cell states. In a context of alleviated tissue surveillance, for example, loss of Lethal giant larvae (Lgl) tumor suppressor in the wing primordium induced epithelial neoplasia in its Homothorax (Hth)-expressing proximal domain. Transcriptional profile of proximally transformed mosaic wing epithelium and functional tests revealed tumor cooperation by multiple signaling pathways. In contrast, lgl(-) clones in the Vestigial (Vg)-expressing distal wing epithelium were eliminated by cell death. Distal lgl(-) clones, however, could transform when both tissue surveillance and cell death were compromised genetically and, alternatively, when the transcription cofactor of Hippo signaling pathway, Yorkie (Yki), was activated, or when Ras/EGFR signaling was up-regulated. Furthermore, transforming distal lgl(-) clones displayed loss of Vg, suggesting reversal of their terminal cell fate commitment. In contrast, reinforcing a distal (wing) cell fate commitment in lgl(-) clones by gaining Vg arrested their neoplasia and induced cell death. We also show that neoplasia in both distal and proximal lgl(-) clones could progress in the absence of Hth, revealing Hth-independent wing epithelial neoplasia. Likewise, neoplasia in the eye primordium resulted in loss of Elav, a retinal cell marker; these, however, switched to an Hth-dependent primitive cell state. These results suggest a general characteristic of "cells-of-origin" in epithelial cancers, namely their propensity for switch to primitive cell states.
Collapse
|
397
|
Demircan T, Berezikov E. The Hippo pathway regulates stem cells during homeostasis and regeneration of the flatworm Macrostomum lignano. Stem Cells Dev 2013; 22:2174-85. [PMID: 23495768 DOI: 10.1089/scd.2013.0006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The Hippo pathway orchestrates activity of stem cells during development and tissue regeneration and is crucial for controlling organ size. However, roles of the Hippo pathway in highly regenerative organisms, such as flatworms, are unknown. Here we show that knockdown of the Hippo pathway core genes in the flatworm Macrostomum lignano affects tissue homeostasis and causes formation of outgrowths through hyperproliferation of stem cells (neoblasts), and leads to disruption of allometric scaling during regeneration and increased size of regenerated parts. We further show that Yap, the downstream effector of the Hippo pathway, is a potential neoblast marker gene, as it is expressed in dividing cells in M. lignano and is essential for neoblast self-renewal. The phenotypes we observe in M. lignano upon knockdown of the Hippo pathway core genes and Yap are consistent with the known functions of the pathway in other model organisms and demonstrate that the Hippo pathway is functionally conserved between flatworms and mammals. This work establishes M. lignano as a productive model for investigation of the Hippo pathway.
Collapse
Affiliation(s)
- Turan Demircan
- Hubrecht Institute for Developmental Biology and Stem Cell Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
398
|
Huang H, Wu W, Zhang L, Liu XY. Drosophila ste-20 family protein kinase, hippo, modulates fat cell proliferation. PLoS One 2013; 8:e61740. [PMID: 23637896 PMCID: PMC3630116 DOI: 10.1371/journal.pone.0061740] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 03/15/2013] [Indexed: 01/10/2023] Open
Abstract
Background Evolutionarily conserved Hippo (Hpo) pathway plays a pivotal role in the control of organ size. Although the Hpo pathway regulates proliferation of a variety of epidermal cells, its function in non-ectoderm-derived cells is largely unknown. Methodology/Principal Findings Through methods including fat quantification assays, starvation assays, in vivo labeling assays, we show that overexpression of Hpo in Drosophila melanogaster fat body restricts Drosophila body growth and reduces fat storage through regulation of adipocyte proliferation rather than through influencing the size of fat cells and lipid metabolism, whereas compromising Hpo activity results in weight gain and greater fat storage. Furthermore, we provide evidence that Yorkie (Yki, a transcriptional coactivator that functions in the Hpo pathway) antagonizes Hpo to modulate fat storage in Drosophila. Conclusions/Significance Our findings specify a role of Hpo in controlling mesoderm-derived cell proliferation. The observed anti-obesity effects of Hpo may indicate great potential for its utilization in anti-obesity therapeutics.
Collapse
Affiliation(s)
- Hongling Huang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Wenqing Wu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
- * E-mail: (LZ); (XL)
| | - Xin-Yuan Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
- Xinyuan Institute of Medicine and Biotechnology, College of Biological Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- * E-mail: (LZ); (XL)
| |
Collapse
|
399
|
Cagliero J, Forget A, Daldello E, Silber J, Zider A. The Hippo kinase promotes Scalloped cytoplasmic localization independently of Warts in a CRM1/Exportin1-dependent manner in Drosophila. FASEB J 2013; 27:1330-41. [PMID: 23271049 DOI: 10.1096/fj.12-216424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Scalloped (SD) is a transcription factor characterized by a TEA/ATTS DNA binding domain. To activate transcription, SD must interact with its coactivators, including Yorkie (YKI) or Vestigial (VG). YKI is the downstream effector of the Hippo signaling pathway that plays a key role in the control of tissue growth. The core components of this pathway are two kinases, Hippo (HPO) and Warts (WTS), which negatively regulate the activity of the SD/YKI complex, retaining YKI in the cytoplasm. We previously showed that HPO kinase can also reduce SD/VG transcriptional activity in Drosophila S2 cells. We further investigated the relationship between the SD/VG complex and the Hippo pathway. We show here that HPO overexpression suppresses overgrowth induced by SD/VG in vivo during Drosophila development. Using S2 cells, we show that HPO promotes the translocation of SD to the cytoplasm in a CRM1-dependent manner, thereby inhibiting the induction of SD/VG target genes. Using RNAi-mediated depletion of yki and a mutant SD protein unable to interact with YKI, we demonstrate that HPO regulates SD localization independently of YKI. This function requires HPO kinase activity, yet surprisingly, not its downstream effector kinase WTS. Taken together, these observations reveal a new and unexpected role of HPO kinase in the regulation of a transcription factor independently of YKI.
Collapse
Affiliation(s)
- Julie Cagliero
- Université Paris Diderot, Sorbonne Paris Cité, Molecular Oncology Team, Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de Recherche Scientifique (CNRS), Paris, France
| | | | | | | | | |
Collapse
|
400
|
A conserved serine residue regulates the stability of Drosophila Salvador and human WW domain-containing adaptor 45 through proteasomal degradation. Biochem Biophys Res Commun 2013; 433:538-41. [PMID: 23524264 DOI: 10.1016/j.bbrc.2013.03.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 03/08/2013] [Indexed: 01/10/2023]
Abstract
The Hippo (Hpo) pathway is a conserved tumor suppressor pathway that controls organ size through the coordinated regulation of apoptosis and proliferation. Drosophila Salvador (Sav), which limits organ size, is a core component of the Hpo pathway. In this study, Ser-17 was shown to be important for the stability of Sav. Alanine mutation of Ser-17 promoted the proteasomal degradation of Sav. Destabilization and stabilization of the Sav protein mediated by alanine mutation of Ser-17 and by Hpo, respectively, were independent of each other. This implies that the stability of Sav is controlled by two mechanisms, one that is Ser-17-dependent and Hpo-independent, and another that is Ser-17-independent and Hpo-dependent. These dual mechanisms also regulated the human counterpart of Drosophila Sav, WW domain-containing adaptor 45 (WW45). The conservation of this regulation adds to its significance in normal physiology and tumorigenesis.
Collapse
|