351
|
Duistermars BJ, Care RA, Frye MA. Binocular interactions underlying the classic optomotor responses of flying flies. Front Behav Neurosci 2012; 6:6. [PMID: 22375108 PMCID: PMC3284692 DOI: 10.3389/fnbeh.2012.00006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 02/08/2012] [Indexed: 11/25/2022] Open
Abstract
In response to imposed course deviations, the optomotor reactions of animals reduce motion blur and facilitate the maintenance of stable body posture. In flies, many anatomical and electrophysiological studies suggest that disparate motion cues stimulating the left and right eyes are not processed in isolation but rather are integrated in the brain to produce a cohesive panoramic percept. To investigate the strength of such inter-ocular interactions and their role in compensatory sensory–motor transformations, we utilize a virtual reality flight simulator to record wing and head optomotor reactions by tethered flying flies in response to imposed binocular rotation and monocular front-to-back and back-to-front motion. Within a narrow range of stimulus parameters that generates large contrast insensitive optomotor responses to binocular rotation, we find that responses to monocular front-to-back motion are larger than those to panoramic rotation, but are contrast sensitive. Conversely, responses to monocular back-to-front motion are slower than those to rotation and peak at the lowest tested contrast. Together our results suggest that optomotor responses to binocular rotation result from the influence of non-additive contralateral inhibitory as well as excitatory circuit interactions that serve to confer contrast insensitivity to flight behaviors influenced by rotatory optic flow.
Collapse
Affiliation(s)
- Brian J Duistermars
- Department of Physiological Science, Howard Hughes Medical Institute, University of California Los Angeles Los Angeles, CA, USA
| | | | | |
Collapse
|
352
|
Saleem AB, Longden KD, Schwyn DA, Krapp HG, Schultz SR. Bimodal optomotor response to plaids in blowflies: mechanisms of component selectivity and evidence for pattern selectivity. J Neurosci 2012; 32:1634-42. [PMID: 22302805 PMCID: PMC6703340 DOI: 10.1523/jneurosci.4940-11.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/30/2011] [Accepted: 12/06/2011] [Indexed: 11/21/2022] Open
Abstract
Many animals estimate their self-motion and the movement of external objects by exploiting panoramic patterns of visual motion. To probe how visual systems process compound motion patterns, superimposed visual gratings moving in different directions, plaid stimuli, have been successfully used in vertebrates. Surprisingly, nothing is known about how visually guided insects process plaids. Here, we explored in the blowfly how the well characterized yaw optomotor reflex and the activity of identified visual interneurons depend on plaid stimuli. We show that contrary to previous expectations, the yaw optomotor reflex shows a bimodal directional tuning for certain plaid stimuli. To understand the neural correlates of this behavior, we recorded the responses of a visual interneuron supporting the reflex, the H1 cell, which was also bimodally tuned to the plaid direction. Using a computational model, we identified the essential neural processing steps required to capture the observed response properties. These processing steps have functional parallels with mechanisms found in the primate visual system, despite different biophysical implementations. By characterizing other visual neurons supporting visually guided behaviors, we found responses that ranged from being bimodally tuned to the stimulus direction (component-selective), to responses that appear to be tuned to the direction of the global pattern (pattern-selective). Our results extend the current understanding of neural mechanisms of motion processing in insects, and indicate that the fly employs a wider range of behavioral responses to multiple motion cues than previously reported.
Collapse
Affiliation(s)
- Aman B. Saleem
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom, and
- Institute of Ophthalmology, University College London, London, EC1V 9EL, United Kingdom
| | - Kit D. Longden
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom, and
| | - Daniel A. Schwyn
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom, and
| | - Holger G. Krapp
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom, and
| | - Simon R. Schultz
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom, and
| |
Collapse
|
353
|
Siegert S, Cabuy E, Scherf BG, Kohler H, Panda S, Le YZ, Fehling HJ, Gaidatzis D, Stadler MB, Roska B. Transcriptional code and disease map for adult retinal cell types. Nat Neurosci 2012; 15:487-95, S1-2. [PMID: 22267162 DOI: 10.1038/nn.3032] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 12/20/2011] [Indexed: 12/17/2022]
Abstract
Brain circuits are assembled from a large variety of morphologically and functionally diverse cell types. It is not known how the intermingled cell types of an individual adult brain region differ in their expressed genomes. Here we describe an atlas of cell type transcriptomes in one brain region, the mouse retina. We found that each adult cell type expressed a specific set of genes, including a unique set of transcription factors, forming a 'barcode' for cell identity. Cell type transcriptomes carried enough information to categorize cells into morphological classes and types. Several genes that were specifically expressed in particular retinal circuit elements, such as inhibitory neuron types, are associated with eye diseases. The resource described here allows gene expression to be compared across adult retinal cell types, experimenting with specific transcription factors to differentiate stem or somatic cells to retinal cell types, and predicting cellular targets of newly discovered disease-associated genes.
Collapse
Affiliation(s)
- Sandra Siegert
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
354
|
Abstract
Development of sensory neural circuits requires concurrent specification of neuron modality, position, and topographic projections. However, little is understood about how controls over these distinct parameters can unify in a single developmental sequence. To address this question, we have used the nociceptive class IV dendritic arborization neurons in the Drosophila larval body wall as an excellent model that allows precise spatiotemporal dissection of developmental-genetic control over sensory neuron positioning and wiring, and subsequent analysis of its functional significance for sensorimotor behavior. The class IV neurogenetic program is intrinsic to the anterior domain of the embryonic parasegment epithelium. Along the ventrolateral axis of this domain, nociceptive neuron induction requirements depend upon location. Near the ventral midline, both Hedgehog and Epithelial growth factor receptor signaling are required for class IV neurogenesis. In addition, close to the ventral midline, class IV neurogenesis is preceded by expression of the Iroquois factor Mirror that promotes local nociceptive neuron differentiation. Remarkably, Mirror is also required for the proper routing of class IV topographic axonal projections across the midline of the CNS. Manipulation of Mirror activity in class IV neurons retargeted axonal projections and caused concordant changes in larval nociceptive escape behavior. These findings indicate that convergent sensory neuron specification, local differentiation, and topographic wiring are mediated by Mirror, and they suggest an integrated paradigm for position-sensitive neural development.
Collapse
|
355
|
Fuerst PG, Bruce F, Rounds RP, Erskine L, Burgess RW. Cell autonomy of DSCAM function in retinal development. Dev Biol 2012; 361:326-37. [PMID: 22063212 PMCID: PMC3246579 DOI: 10.1016/j.ydbio.2011.10.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 10/19/2011] [Accepted: 10/21/2011] [Indexed: 01/19/2023]
Abstract
Cell adhesion molecules (CAMs) provide identifying cues by which neural architecture is sculpted. The Down Syndrome Cell Adhesion Molecule (DSCAM) is required for many neurodevelopmental processes in different species and also has several potential mechanisms of activity, including homophilic adhesion, homophilic repulsion and heterophilic interactions. In the mouse retina, Dscam is expressed in many, but not all neuronal subtypes. Mutations in Dscam cause the fasciculation of dendrites of neighboring homotypic neurons, indicating a role in self-avoidance among cells of a given type, a disruption of the non-random patterning of their cell bodies, and a decrease in developmental cell death in affected cell populations. In order to address how DSCAM facilitates retinal pattering, we developed a conditional allele of Dscam to use alongside existing Dscam mutant mouse strains. Conditional deletion of Dscam reproduces cell spacing, cell number and dendrite arborization defects. Inducible deletion of Dscam and retinal ganglion cell depletion in Brn3b mutant retinas both indicate that these DSCAM-mediated phenotypes can occur independently. In chimeric retinas, in which wild type and Dscam mutant cells are comingled, Dscam mutant cells entangle adjacent wild type cells of the same type, as if both cells were lacking Dscam, consistent with DSCAM-dependent cell spacing and neurite arborization being mediated through homophilic binding cell-to-cell. Deletion of Dscam in specific cell types causes cell-type-autonomous cell body spacing defects, indicating that DSCAM mediates arborization and spacing by acting within given cell types. We also examine the cell autonomy of DSCAM in laminar stratification and find that laminar disorganization can be caused in a non-cell autonomous fashion. Finally, we find Dscam dosage-dependent defects in developmental cell death and amacrine cell spacing, relevant to the increased cell death and other disorders observed in Down syndrome mouse models and human patients, in which Dscam is present in three copies.
Collapse
Affiliation(s)
- Peter G Fuerst
- Department of Biological Sciences and WWAMI Medical Education Program, University of Idaho, Moscow, ID 83844, USA.
| | | | | | | | | |
Collapse
|
356
|
Clendenon SG, Sarmah S, Shah B, Liu Q, Marrs JA. Zebrafish cadherin-11 participates in retinal differentiation and retinotectal axon projection during visual system development. Dev Dyn 2012; 241:442-54. [PMID: 22247003 DOI: 10.1002/dvdy.23729] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2011] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Cadherins orchestrate tissue morphogenesis by controlling cell adhesion, migration and differentiation. Various cadherin family members are expressed in the retina and other neural tissues during embryogenesis, regulating development of these tissues. Cadherin-11 (Cdh11) is expressed in mesenchymal, bone, epithelial, neural and other tissues, and this cadherin was shown to control cell migration and differentiation in neural crest, tumor and bone cells. Our previous studies characterized Cdh11 expression and function in zebrafish. RESULTS Here, we report effects of Cdh11 loss-of-function on visual system development using morpholino oligonucleotide knockdown methods. Cdh11 is expressed in the retina and lens during retinal differentiation. Cdh11 loss-of-function produced defects in retinal differentiation and lens development. Cdh11 loss-of-function also reduced retinotectal axon projection and organization, consistent with known Cdh11 function in cell migration. CONCLUSION Cdh11 expression in the developing visual system and Cdh11 loss-of-function phenotype illustrates the critical role for differential cadherin activity in visual system differentiation and organization.
Collapse
Affiliation(s)
- Sherry G Clendenon
- Department of Medicine, Indiana University Medical Center, Indianapolis, Indiana, USA
| | | | | | | | | |
Collapse
|
357
|
Mann K, Wang M, Luu SH, Ohler S, Hakeda-Suzuki S, Suzuki T. A putative tyrosine phosphorylation site of the cell surface receptor Golden goal is involved in synaptic layer selection in the visual system. Development 2012; 139:760-71. [PMID: 22241840 DOI: 10.1242/dev.074104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Golden goal (Gogo) is a cell surface protein that is crucial for proper synaptic layer targeting of photoreceptors (R cells) in the Drosophila visual system. In collaboration with the seven-transmembrane cadherin Flamingo (Fmi), Gogo mediates both temporary and final layer targeting of R-cell axons through its cytoplasmic activity. However, it is not known how Gogo activity is regulated. Here, we show that a conserved Tyr-Tyr-Asp (YYD) tripeptide motif in the Gogo cytoplasmic domain is required for photoreceptor axon targeting. Deleting the YYD motif is sufficient to abolish Gogo function. We demonstrate that the YYD motif is a phosphorylation site and that mutations in the YYD tripeptide impair synaptic layer targeting. Gogo phosphorylation results in axon stopping at the temporary targeting layer, and dephosphorylation is crucial for final layer targeting in collaboration with Fmi. Therefore, both temporary and final layer targeting strongly depend on the Gogo phosphorylation status. Drosophila Insulin-like receptor (DInR) has been reported to regulate the wiring of photoreceptors. We show that insulin signaling is a positive regulator, directly or indirectly, of YYD motif phosphorylation. Our findings indicate a novel mechanism for the regulation of Gogo activity by insulin signaling-mediated phosphorylation. We propose the model that a constant phosphorylation signal is antagonized by a presumably temporal dephosphorylation signal, which creates a permissive signal that controls developmental timing in axon targeting.
Collapse
Affiliation(s)
- Klaudiusz Mann
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
358
|
Singh R, Su J, Brooks J, Terauchi A, Umemori H, Fox MA. Fibroblast growth factor 22 contributes to the development of retinal nerve terminals in the dorsal lateral geniculate nucleus. Front Mol Neurosci 2012; 4:61. [PMID: 22363257 PMCID: PMC3306139 DOI: 10.3389/fnmol.2011.00061] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 12/23/2011] [Indexed: 11/28/2022] Open
Abstract
At least three forms of signaling between pre- and postsynaptic partners are necessary during synapse formation. First, “targeting” signals instruct presynaptic axons to recognize and adhere to the correct portion of a postsynaptic target cell. Second, trans-synaptic “organizing” signals induce differentiation in their synaptic partner so that each side of the synapse is specialized for synaptic transmission. Finally, in many regions of the nervous system an excess of synapses are initially formed, therefore “refinement” signals must either stabilize or destabilize the synapse to reinforce or eliminate connections, respectively. Because of both their importance in processing visual information and their accessibility, retinogeniculate synapses have served as a model for studying synaptic development. Molecular signals that drive retinogeniculate “targeting” and “refinement” have been identified, however, little is known about what “organizing” cues are necessary for the differentiation of retinal axons into presynaptic terminals. To identify such “organizing” cues, we used microarray analysis to assess whether any target-derived “synaptic organizers” were enriched in the mouse dorsal lateral geniculate nucleus (dLGN) during retinogeniculate synapse formation. One candidate “organizing” molecule enriched in perinatal dLGN was FGF22, a secreted cue that induces the formation of excitatory nerve terminals in muscle, hippocampus, and cerebellum. In FGF22 knockout mice, the development of retinal terminals in dLGN was impaired. Thus, FGF22 is an important “organizing” cue for the timely development of retinogeniculate synapses.
Collapse
Affiliation(s)
- Rishabh Singh
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center Richmond, VA, USA
| | | | | | | | | | | |
Collapse
|
359
|
Terrell D, Xie B, Workman M, Mahato S, Zelhof A, Gebelein B, Cook T. OTX2 and CRX rescue overlapping and photoreceptor-specific functions in the Drosophila eye. Dev Dyn 2012; 241:215-28. [PMID: 22113834 PMCID: PMC3444242 DOI: 10.1002/dvdy.22782] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2011] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Otd-related transcription factors are evolutionarily conserved to control anterior patterning and neurogenesis. In humans, two such factors, OTX2 and CRX, are expressed in all photoreceptors from early specification through adulthood and associate with several photoreceptor-specific retinopathies. It is not well understood how these factors function independently vs. redundantly, or how specific mutations lead to different disease outcomes. It is also unclear how OTX1 and OTX2 functionally overlap during other aspects of neurogenesis and ocular development. Drosophila encodes a single Otd factor that has multiple functions during eye development. Using the Drosophila eye as a model, we tested the ability of the human OTX1, OTX2, and CRX genes, as well as several disease-associated CRX alleles, to rescue the different functions of Otd. RESULTS Our results indicate the following: OTX2 and CRX display overlapping, yet distinct subfunctions of Otd during photoreceptor differentiation; CRX disease alleles can be functionally distinguished based on their rescue properties; and all three factors are able to rescue rhabdomeric photoreceptor morphogenesis. CONCLUSIONS Our findings have important implications for understanding how Otx proteins have subfunctionalized during evolution, and cement Drosophila as an effective tool to unravel the molecular bases of photoreceptor pathogenesis.
Collapse
Affiliation(s)
- David Terrell
- Division of Pediatric Ophthalmology, Cincinnati Children’s Hospital Medical Center, Cincinnati OH
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati OH
- Physician Scientists Training Program, University of Cincinnati, Cincinnati OH
| | - Baotong Xie
- Division of Pediatric Ophthalmology, Cincinnati Children’s Hospital Medical Center, Cincinnati OH
| | - Michael Workman
- Division of Pediatric Ophthalmology, Cincinnati Children’s Hospital Medical Center, Cincinnati OH
| | - Simpla Mahato
- Department of Biology, Indiana University, Bloomington, IN
| | - Andrew Zelhof
- Department of Biology, Indiana University, Bloomington, IN
| | - Brian Gebelein
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati OH
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati OH
| | - Tiffany Cook
- Division of Pediatric Ophthalmology, Cincinnati Children’s Hospital Medical Center, Cincinnati OH
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati OH
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati OH
| |
Collapse
|
360
|
Abstract
The behavioral consequences of age-related alterations in neural function are well documented, but less is known about their cellular bases. To characterize such changes, we analyzed 14 molecularly identified subsets of mouse retinal projection neurons (retinal ganglion cells or RGCs) and interneurons (amacrine, bipolar, and horizontal cells). The retina thinned but expanded with age, maintaining its volume. There was minimal decline in the number of RGCs, interneurons, or photoreceptors, but the diameter of RGC dendritic arbors decreased with age. Together, the increased retinal area and the decreased dendritic area may lead to gaps in RGC coverage of the visual field. Axonal arbors of RGCs in the superior colliculus also atrophied with age, suggesting that the relay of visual information to central targets may decline over time. On the other hand, the laminar restriction of RGC dendrites and the interneuronal processes that synapse on them were not detectably disturbed, and RGC subtypes exhibited distinct electrophysiological responses to complex visual stimuli. Other neuronal types aged in different ways: amacrine cell arbors did not remodel detectably, whereas horizontal cell processes sprouted into the photoreceptor layer. Bipolar cells showed arbor-specific alterations: their dendrites sprouted but their axons remained stable. In summary, retinal neurons exhibited numerous age-related quantitative alterations (decreased areas of dendritic and axonal arbors and decreased density of cells and synapses), whereas their qualitative features (molecular identity, laminar specificity, and feature detection) were largely preserved. Together, these data reveal selective age-related alterations in neural circuitry, some of which could underlie declines in visual acuity.
Collapse
|
361
|
Sakagami K, Chen B, Nusinowitz S, Wu H, Yang XJ. PTEN regulates retinal interneuron morphogenesis and synaptic layer formation. Mol Cell Neurosci 2011; 49:171-83. [PMID: 22155156 DOI: 10.1016/j.mcn.2011.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 11/21/2011] [Accepted: 11/26/2011] [Indexed: 11/15/2022] Open
Abstract
The lipid phosphatase PTEN is a critical negative regulator of extracellular signal-induced PI3K activities, yet the roles of PTEN in the neural retina remain poorly understood. Here, we investigate the function of PTEN during retinal development. Deletion of Pten at the onset of neurogenesis in retinal progenitors results in the reduction of retinal ganglion cells and rod photoreceptors, but increased Müller glial genesis. In addition, PTEN deficiency leads to elevated phosphorylation of Akt, especially in the developing inner plexiform layer, where high levels of PTEN are normally expressed. In Pten mutant retinas, various subtypes of amacrine cells show severe dendritic overgrowth, causing specific expansion of the inner plexiform layer. However, the outer plexiform layer remains relatively undisturbed in the Pten deficient retina. Physiological analysis detects reduced rod function and augmented oscillatory potentials originating from amacrine cells in Pten mutants. Furthermore, deleting Pten or elevating Akt activity in individual amacrine cells is sufficient to disrupt dendritic arborization, indicating that Pten activity is required cell autonomously to control neuronal morphology. Moreover, inhibiting endogenous Akt activity attenuates inner plexiform layer formation in vitro. Together, these findings demonstrate that suppression of PI3K/Akt signaling by PTEN is crucial for proper neuronal differentiation and normal retinal network formation.
Collapse
Affiliation(s)
- Kiyo Sakagami
- Jules Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
362
|
Fox MA, Guido W. Shedding light on class-specific wiring: development of intrinsically photosensitive retinal ganglion cell circuitry. Mol Neurobiol 2011; 44:321-9. [PMID: 21861091 PMCID: PMC3230729 DOI: 10.1007/s12035-011-8199-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 08/09/2011] [Indexed: 10/17/2022]
Abstract
Neural circuits associated with retinal ganglion cells have long been used as models for investigating the mechanisms that govern circuit development and function. Similar to neurons in the brain, retinal ganglion cells are subdivided into distinct classes based upon their morphology, physiology, and patterns of connectivity. Newly developed transgenic tools in which individual classes of retinal ganglion cells are labeled with reporter proteins have recently provided a method to study the development of their class-specific circuitry. Here, we examine a single class of intrinsically photosensitive retinal ganglion cells and discuss their class-specific circuitry, as well as the cellular and molecular mechanisms that govern assembly of this circuitry.
Collapse
Affiliation(s)
- Michael A Fox
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | |
Collapse
|
363
|
Garrett AM, Burgess RW. Candidate molecular mechanisms for establishing cell identity in the developing retina. Dev Neurobiol 2011; 71:1258-72. [PMID: 21630473 PMCID: PMC3292780 DOI: 10.1002/dneu.20926] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the developing nervous system, individual neurons must occupy appropriate positions within circuits. This requires that these neurons recognize and form connections with specific pre- and postsynaptic partners. Cellular recognition is also required for the spacing of cell bodies and the arborization of dendrites, factors that determine the inputs onto a given neuron. These issues are particularly evident in the retina, where different types of neurons are evenly spaced relative to other cells of the same type. This establishes a reiterated columnar circuitry resembling the insect retina. Establishing these mosaic patterns requires that cells of a given type (homotypic cells) be able to sense their neighbors. Therefore, both synaptic specificity and mosaic spacing require cellular identifiers. In synaptic specificity, recognition often occurs between different types of cells in a pre- and postsynaptic pairing. In mosaic spacing, recognition is often occurring between different cells of the same type, orhomotypic self-recognition. Dendritic arborization can require recognition of different neurites of the same cell, or isoneuronal self-recognition. The retina is an extremely amenable system for studying the molecular identifiers that drive these various forms of recognition. The different neuronal types in the retina are well defined, and the genetic tools for marking cell types are increasingly available. In this review we will summarize retinal anatomy and describe cell types in the retina and how they are defined. We will then describe the requirements of a recognition code and discuss newly emerging candidate molecular mechanisms for recognition that may meet these requirements.
Collapse
|
364
|
Abstract
Color vision is found in many invertebrate and vertebrate species. It is the ability to discriminate objects based on the wavelength of emitted light independent of intensity. As it requires the comparison of at least two photoreceptor types with different spectral sensitivities, this process is often mediated by a mosaic made of several photoreceptor types. In this review, we summarize the current knowledge about the formation of retinal mosaics and the regulation of photopigment (opsin) expression in the fly, mouse, and human retina. Despite distinct evolutionary origins, as well as major differences in morphology and phototransduction machineries, there are significant similarities in the stepwise cell-fate decisions that lead from progenitor cells to terminally differentiated photoreceptors that express a particular opsin. Common themes include (i) the use of binary transcriptional switches that distinguish classes of photoreceptors, (ii) the use of gradients of signaling molecules for regional specializations, (iii) stochastic choices that pattern the retina, and (iv) the use of permissive factors with multiple roles in different photoreceptor types.
Collapse
Affiliation(s)
- Jens Rister
- Department of Biology, Center for Developmental Genetics, New York University, USA
| | | |
Collapse
|
365
|
The Drosophila SK channel (dSK) contributes to photoreceptor performance by mediating sensitivity control at the first visual network. J Neurosci 2011; 31:13897-910. [PMID: 21957252 DOI: 10.1523/jneurosci.3134-11.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The contribution of the SK (small-conductance calcium-activated potassium) channel to neuronal functions in complex circuits underlying sensory processing and behavior is largely unknown in the absence of suitable animal models. Here, we generated a Drosophila line that lacks the single highly conserved SK gene in its genome (dSK). In R1-R6 photoreceptors, dSK encodes a slow Ca²⁺-activated K(+) current similar to its mammalian counterparts. Compared with wild-type, dSK(-) photoreceptors and interneurons showed accelerated oscillatory responses and adaptation. These enhanced kinetics were accompanied with more depolarized dSK(-) photoreceptors axons, assigning a role for dSK in network gain control during light-to-dark transitions. However, compensatory network adaptation, through increasing activity between synaptic neighbors, overcame many detriments of missing dSK current enabling dSK(-) photoreceptors to maintain normal information transfer rates to naturalistic stimuli. While demonstrating important functional roles for dSK channel in the visual circuitry, these results also clarify how homeostatically balanced network functions can compensate missing or faulty ion channels.
Collapse
|
366
|
Li Y, Li C, Chen Z, He J, Tao Z, Yin ZQ. A microRNA, mir133b, suppresses melanopsin expression mediated by failure dopaminergic amacrine cells in RCS rats. Cell Signal 2011; 24:685-98. [PMID: 22101014 DOI: 10.1016/j.cellsig.2011.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 10/28/2011] [Indexed: 01/11/2023]
Abstract
The photopigment melanopsin and melanopsin-containing RGCs (mRGCs or ipRGCs) represent a brand-new and exciting direction in the field of visual field. Although the melanopsin is much less sensitive to light and has far less spatial resolution, mRGCs have the unique ability to project to brain areas by the retinohypothalamic tract (RHT) and communicate directly with the brain. Unfortunately, melanopsin presents lower expression levels in many acute and chronic retinal diseases. The molecular mechanisms underlying melanopsin expression are not yet really understood. MicroRNAs play important roles in the control of development. Most importantly, the link of microRNA biology to a diverse set of cellular processes, ranging from proliferation, apoptosis and malignant transformation to neuronal development and fate specification is emerging. We employed Royal College of Surgeon (RCS) rats as animal model to investigate the underlying molecular mechanism regulating melanopsin expression using a panel of miRNA by quantitative real-time reverse transcription polymerase chain reaction. We identified a microRNA, mir133b, that is specifically expressed in retinal dopaminergic amacrine cells as well as markedly increased expression at early stage during retinal degeneration in RCS rats. The overexpression of mir133b downregulates the important transcription factor Pitx3 expression in dopaminergic amacrine cells in RCS rats retinas and makes amacrine cells stratification deficit in IPL. Furthermore, deficient dopaminergic amacrine cells presented decreased TH expression and dopamine production, which lead to a failure to direct mRGCs dendrite to stratify and enter INL and lead to the reduced correct connections between amacrine cells and mRGCs. Our study suggested that overexpression of mir133b and downregulated Pitx3 suppress maturation and function of dopaminergic amacrine cells, and overexpression of mir133b decreased TH and D2 receptor expression as well as dopamine production, which finally resulted in reduced melanopsin expression.
Collapse
Affiliation(s)
- Yaochen Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chong Qing, China
| | | | | | | | | | | |
Collapse
|
367
|
Jukam D, Desplan C. Binary regulation of Hippo pathway by Merlin/NF2, Kibra, Lgl, and Melted specifies and maintains postmitotic neuronal fate. Dev Cell 2011; 21:874-87. [PMID: 22055343 DOI: 10.1016/j.devcel.2011.10.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 06/21/2011] [Accepted: 10/06/2011] [Indexed: 12/19/2022]
Abstract
Patterning the Drosophila retina for color vision relies on postmitotic specification of photoreceptor subtypes. R8 photoreceptors express one of two light-sensing Rhodopsins, Rh5 or Rh6. This fate decision involves a bistable feedback loop between Melted, a PH-domain protein, and Warts, a kinase in the Hippo growth pathway. Here, we show that a subset of the Hippo pathway-Merlin, Kibra, and Lethal(2)giant larvae (Lgl), but not Expanded or Fat-is required for Warts expression and activity in R8 to specify Rh6 fate. Melted represses warts transcription to disrupt Hippo pathway activity and specify Rh5 fate. Therefore, R8 Hippo signaling exhibits ON-or-OFF regulation, promoting mutually exclusive fates. Furthermore, Merlin and Lgl are continuously required to maintain R8 neuronal subtypes. These results reveal roles for Merlin, Kibra, and Lgl in neuronal specification and maintenance and show that the Hippo pathway is reimplemented for sensory neuron fate by combining canonical and noncanonical regulatory steps.
Collapse
Affiliation(s)
- David Jukam
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA
| | | |
Collapse
|
368
|
Singh A, Tare M, Puli OR, Kango-Singh M. A glimpse into dorso-ventral patterning of the Drosophila eye. Dev Dyn 2011; 241:69-84. [PMID: 22034010 DOI: 10.1002/dvdy.22764] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2011] [Indexed: 12/15/2022] Open
Abstract
During organogenesis in all multi-cellular organisms, axial patterning is required to transform a single layer organ primordium into a three-dimensional organ. The Drosophila eye model serves as an excellent model to study axial patterning. Dorso-ventral (DV) axis determination is the first lineage restriction event during axial patterning of the Drosophila eye. The early Drosophila eye primordium has a default ventral fate, and the dorsal eye fate is established by onset of dorsal selector gene pannier (pnr) expression in a group of cells on the dorsal eye margin. The boundary between dorsal and ventral compartments called the equator is the site for Notch (N) activation, which triggers cell proliferation and differentiation. This review will focus on (1) chronology of events during DV axis determination; (2) how early division of eye into dorsal and ventral compartments contributes towards the growth and patterning of the fly retina, and (3) functions of DV patterning genes.
Collapse
Affiliation(s)
- Amit Singh
- Department of Biology, University of Dayton, Dayton, Ohio 45469, USA.
| | | | | | | |
Collapse
|
369
|
Tong C, Ohyama T, Tien AC, Rajan A, Haueter CM, Bellen HJ. Rich regulates target specificity of photoreceptor cells and N-cadherin trafficking in the Drosophila visual system via Rab6. Neuron 2011; 71:447-59. [PMID: 21835342 DOI: 10.1016/j.neuron.2011.06.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2011] [Indexed: 12/25/2022]
Abstract
Neurons establish specific synaptic connections with their targets, a process that is highly regulated. Numerous cell adhesion molecules have been implicated in target recognition, but how these proteins are precisely trafficked and targeted is poorly understood. To identify components that affect synaptic specificity, we carried out a forward genetic screen in the Drosophila eye. We identified a gene, named ric1 homologue (rich), whose loss leads to synaptic specificity defects. Loss of rich leads to reduction of N-Cadherin in the photoreceptor cell synapses but not of other proteins implicated in target recognition, including Sec15, DLAR, Jelly belly, and PTP69D. The Rich protein binds to Rab6, and Rab6 mutants display very similar phenotypes as the rich mutants. The active form of Rab6 strongly suppresses the rich synaptic specificity defect, indicating that Rab6 is regulated by Rich. We propose that Rich activates Rab6 to regulate N-Cadherin trafficking and affects synaptic specificity.
Collapse
Affiliation(s)
- Chao Tong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
370
|
Gontang AC, Hwa JJ, Mast JD, Schwabe T, Clandinin TR. The cytoskeletal regulator Genghis khan is required for columnar target specificity in the Drosophila visual system. Development 2011; 138:4899-909. [PMID: 22007130 DOI: 10.1242/dev.069930] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A defining characteristic of neuronal cell type is the growth of axons and dendrites into specific layers and columns of the brain. Although differences in cell surface receptors and adhesion molecules are known to cause differences in synaptic specificity, differences in downstream signaling mechanisms that determine cell type-appropriate targeting patterns are unknown. Using a forward genetic screen in Drosophila, we identify the GTPase effector Genghis khan (Gek) as playing a crucial role in the ability of a subset of photoreceptor (R cell) axons to innervate appropriate target columns. In particular, single-cell mosaic analyses demonstrate that R cell growth cones lacking Gek function grow to the appropriate ganglion, but frequently fail to innervate the correct target column. Further studies reveal that R cell axons lacking the activity of the small GTPase Cdc42 display similar defects, providing evidence that these proteins regulate a common set of processes. Gek is expressed in all R cells, and a detailed structure-function analysis reveals a set of regulatory domains with activities that restrict Gek function to the growth cone. Although Gek does not normally regulate layer-specific targeting, ectopic expression of Gek is sufficient to alter the targeting choices made by another R cell type, the targeting of which is normally Gek independent. Thus, specific regulation of cytoskeletal responses to targeting cues is necessary for cell type-appropriate synaptic specificity.
Collapse
Affiliation(s)
- Allison C Gontang
- Department of Neurobiology, 299 W. Campus Drive, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
371
|
Development of cell type-specific connectivity patterns of converging excitatory axons in the retina. Neuron 2011; 71:1014-21. [PMID: 21943599 DOI: 10.1016/j.neuron.2011.08.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2011] [Indexed: 11/20/2022]
Abstract
To integrate information from different presynaptic cell types, dendrites receive distinct patterns of synapses from converging axons. How different afferents in vivo establish specific connectivity patterns with the same dendrite is poorly understood. Here, we examine the synaptic development of three glutamatergic bipolar cell types converging onto a common postsynaptic retinal ganglion cell. We find that after axons and dendrites target appropriate synaptic layers, patterns of connections among these neurons diverge through selective changes in the conversion of axo-dendritic appositions to synapses. This process is differentially regulated by neurotransmission, which is required for the shift from single to multisynaptic appositions of one bipolar cell type but not for maintenance and elimination, respectively, of connections from the other two types. Thus, synaptic specificity among converging excitatory inputs in the retina emerges via differential synaptic maturation of axo-dendritic appositions and is shaped by neurotransmission in a cell type-dependent manner.
Collapse
|
372
|
Matsuoka RL, Chivatakarn O, Badea TC, Samuels IS, Cahill H, Katayama KI, Kumer S, Suto F, Chédotal A, Peachey NS, Nathans J, Yoshida Y, Giger RJ, Kolodkin AL. Class 5 transmembrane semaphorins control selective Mammalian retinal lamination and function. Neuron 2011; 71:460-73. [PMID: 21835343 PMCID: PMC3164552 DOI: 10.1016/j.neuron.2011.06.009] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2011] [Indexed: 11/15/2022]
Abstract
In the vertebrate retina, neurites from distinct neuronal cell types are constrained within the plexiform layers, allowing for establishment of retinal lamination. However, the mechanisms by which retinal neurites are segregated within the inner or outer plexiform layers are not known. We find that the transmembrane semaphorins Sema5A and Sema5B constrain neurites from multiple retinal neuron subtypes within the inner plexiform layer (IPL). In Sema5A⁻/⁻; Sema5B⁻/⁻ mice, retinal ganglion cells (RGCs) and amacrine and bipolar cells exhibit severe defects leading to neurite mistargeting into the outer portions of the retina. These targeting abnormalities are more prominent in the outer (OFF) layers of the IPL and result in functional defects in select RGC response properties. Sema5A and Sema5B inhibit retinal neurite outgrowth through PlexinA1 and PlexinA3 receptors both in vitro and in vivo. These findings define a set of ligands and receptors required for the establishment of inner retinal lamination and function.
Collapse
Affiliation(s)
- Ryota L. Matsuoka
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Onanong Chivatakarn
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tudor C. Badea
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ivy S. Samuels
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Hugh Cahill
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kei-ichi Katayama
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | - Fumikazu Suto
- Departments of Ultrastructural Research, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Alain Chédotal
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S968, Institut de la Vision, F-75012 Paris, France
- Université Pierre et Marie Curie (UPMC) Paris VI, UMR S968, Institut de la Vision, F-75012 Paris, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7210, Institut de la Vision, F-75012 Paris, France
| | - Neal S. Peachey
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Research Service, Cleveland VA Medical Center, Cleveland, OH 44106, USA
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yutaka Yoshida
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Roman J. Giger
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alex L. Kolodkin
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
373
|
Friedrich M, Wood EJ, Wu M. Developmental evolution of the insect retina: insights from standardized numbering of homologous photoreceptors. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:484-99. [DOI: 10.1002/jez.b.21424] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 05/26/2011] [Indexed: 11/09/2022]
|
374
|
Sprecher SG, Cardona A, Hartenstein V. The Drosophila larval visual system: high-resolution analysis of a simple visual neuropil. Dev Biol 2011; 358:33-43. [PMID: 21781960 DOI: 10.1016/j.ydbio.2011.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 06/30/2011] [Accepted: 07/06/2011] [Indexed: 10/18/2022]
Abstract
The task of the visual system is to translate light into neuronal encoded information. This translation of photons into neuronal signals is achieved by photoreceptor neurons (PRs), specialized sensory neurons, located in the eye. Upon perception of light the PRs will send a signal to target neurons, which represent a first station of visual processing. Increasing complexity of visual processing stems from the number of distinct PR subtypes and their various types of target neurons that are contacted. The visual system of the fruit fly larva represents a simple visual system (larval optic neuropil, LON) that consists of 12 PRs falling into two classes: blue-senstive PRs expressing Rhodopsin 5 (Rh5) and green-sensitive PRs expressing Rhodopsin 6 (Rh6). These afferents contact a small number of target neurons, including optic lobe pioneers (OLPs) and lateral clock neurons (LNs). We combine the use of genetic markers to label both PR subtypes and the distinct, identifiable sets of target neurons with a serial EM reconstruction to generate a high-resolution map of the larval optic neuropil. We find that the larval optic neuropil shows a clear bipartite organization consisting of one domain innervated by PRs and one devoid of PR axons. The topology of PR projections, in particular the relationship between Rh5 and Rh6 afferents, is maintained from the nerve entering the brain to the axon terminals. The target neurons can be subdivided according to neurotransmitter or neuropeptide they use as well as the location within the brain. We further track the larval optic neuropil through development from first larval instar to its location in the adult brain as the accessory medulla.
Collapse
Affiliation(s)
- Simon G Sprecher
- Institute of Developmental and Cell Biology, Department of Biology, University of Fribourg, Chemin du Musee 10, 1700, Fribourg, Switzerland
| | | | | |
Collapse
|
375
|
de Wit J, Hong W, Luo L, Ghosh A. Role of leucine-rich repeat proteins in the development and function of neural circuits. Annu Rev Cell Dev Biol 2011; 27:697-729. [PMID: 21740233 DOI: 10.1146/annurev-cellbio-092910-154111] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The nervous system consists of an ensemble of billions of neurons interconnected in a highly specific pattern that allows proper propagation and integration of neural activities. The organization of these specific connections emerges from sequential developmental events including axon guidance, target selection, and synapse formation. These events critically rely on cell-cell recognition and communication mediated by cell-surface ligands and receptors. Recent studies have uncovered central roles for leucine-rich repeat (LRR) domain-containing proteins, not only in organizing neural connectivity from axon guidance to target selection to synapse formation, but also in various nervous system disorders. Their versatile LRR domains, in particular, serve as key sites for interactions with a wide diversity of binding partners. Here, we focus on a few exquisite examples of secreted or membrane-associated LRR proteins in Drosophila and mammals and review the mechanisms by which they regulate diverse aspects of nervous system development and function.
Collapse
Affiliation(s)
- Joris de Wit
- Neurobiology Section, Division of Biology, University of California, San Diego, La Jolla, California 92093-0366, USA
| | | | | | | |
Collapse
|
376
|
Bleckert A, Wong ROL. Identifying roles for neurotransmission in circuit assembly: insights gained from multiple model systems and experimental approaches. Bioessays 2011; 33:61-72. [PMID: 21110347 DOI: 10.1002/bies.201000095] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the adult nervous system, chemical neurotransmission between neurons is essential for information processing. However, neurotransmission is also important for patterning circuits during development, but its precise roles have yet to be identified, and some remain highly debated. Here, we highlight viewpoints that have come to be widely accepted or still challenged. We discuss how distinct techniques and model systems employed to probe the developmental role of neurotransmission may reconcile disparate ideas. We underscore how the effects of perturbing neurotransmission during development vary with model systems, the stage of development when transmission is altered, the nature of the perturbation, and how connectivity is assessed. Based on findings in circuits with connectivity arranged in layers, we raise the possibility that there exist constraints in neuronal network design that limit the role of neurotransmission. We propose that activity-dependent mechanisms are effective in refining connectivity patterns only when inputs from different cells are close enough, spatially, to influence each other's outcome.
Collapse
Affiliation(s)
- Adam Bleckert
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
377
|
Kay JN, De la Huerta I, Kim IJ, Zhang Y, Yamagata M, Chu MW, Meister M, Sanes JR. Retinal ganglion cells with distinct directional preferences differ in molecular identity, structure, and central projections. J Neurosci 2011; 31:7753-62. [PMID: 21613488 PMCID: PMC3108146 DOI: 10.1523/jneurosci.0907-11.2011] [Citation(s) in RCA: 260] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 03/25/2011] [Indexed: 01/12/2023] Open
Abstract
The retina contains ganglion cells (RGCs) that respond selectively to objects moving in particular directions. Individual members of a group of ON-OFF direction-selective RGCs (ooDSGCs) detect stimuli moving in one of four directions: ventral, dorsal, nasal, or temporal. Despite this physiological diversity, little is known about subtype-specific differences in structure, molecular identity, and projections. To seek such differences, we characterized mouse transgenic lines that selectively mark ooDSGCs preferring ventral or nasal motion as well as a line that marks both ventral- and dorsal-preferring subsets. We then used the lines to identify cell surface molecules, including Cadherin 6, CollagenXXVα1, and Matrix metalloprotease 17, that are selectively expressed by distinct subsets of ooDSGCs. We also identify a neuropeptide, CART (cocaine- and amphetamine-regulated transcript), that distinguishes all ooDSGCs from other RGCs. Together, this panel of endogenous and transgenic markers distinguishes the four ooDSGC subsets. Patterns of molecular diversification occur before eye opening and are therefore experience independent. They may help to explain how the four subsets obtain distinct inputs. We also demonstrate differences among subsets in their dendritic patterns within the retina and their axonal projections to the brain. Differences in projections indicate that information about motion in different directions is sent to different destinations.
Collapse
Affiliation(s)
- Jeremy N. Kay
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Irina De la Huerta
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - In-Jung Kim
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Yifeng Zhang
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Masahito Yamagata
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Monica W. Chu
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Markus Meister
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Joshua R. Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
378
|
Cherry TJ, Wang S, Bormuth I, Schwab M, Olson J, Cepko CL. NeuroD factors regulate cell fate and neurite stratification in the developing retina. J Neurosci 2011; 31:7365-79. [PMID: 21593321 PMCID: PMC3135085 DOI: 10.1523/jneurosci.2555-10.2011] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 02/14/2011] [Accepted: 03/07/2011] [Indexed: 01/10/2023] Open
Abstract
Members of the basic helix-loop-helix (bHLH) family of transcription factors have been shown to control critical aspects of development in many tissues. To identify bHLH genes that might regulate specific aspects of retinal cell development, we investigated the expression of bHLH genes in single, developing mouse retinal cells, with particular emphasis on the NeuroD family. Two of these factors, NeuroD2 and NeuroD6/NEX, had not been previously reported as expressed in the retina. A series of loss- and gain-of-function experiments was performed, which suggested that NeuroD genes have both similarities and differences in their activities. Notably, misexpression of NeuroD genes can direct amacrine cell processes to two to three specific sublaminae in the inner plexiform layer. This effect is specific to cell type and NeuroD gene, as the AII amacrine cell type is refractory to the effects of NeuroD1 and NeuroD6, but uniquely sensitive to the effect of NeuroD2 on neurite targeting. Additionally, NeuroD2 is endogenously expressed in AII amacrine cells, among others, and loss of NeuroD2 function results in a partial loss of AII amacrine cells. The effects of misexpressing NeuroD genes on retinal cell fate determination also suggested shared and divergent functions. Remarkably, NeuroD2 misexpression induced ganglion cell production even after the normal developmental window of ganglion cell genesis. Together, these data suggest that members of the NeuroD family are important for neuronal cell type identity and may be involved in several cell type-specific aspects of retinal development, including fate determination, differentiation, morphological development, and circuit formation.
Collapse
Affiliation(s)
- Timothy J. Cherry
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Sui Wang
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
- Howard Hughes Medical Institute
| | - Ingo Bormuth
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, D-37075 Goettingen, Germany
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Campus Mitte, D-10098 Berlin, Germany
| | - Markus Schwab
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, D-37075 Goettingen, Germany
| | - James Olson
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, and
| | - Constance L. Cepko
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
- Howard Hughes Medical Institute
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
379
|
Abstract
When the contrast of an image flickers as it moves, humans perceive an illusory reversal in the direction of motion. This classic illusion, called reverse-phi motion, has been well-characterized using psychophysics, and several models have been proposed to account for its effects. Here, we show that Drosophila melanogaster also respond behaviorally to the reverse-phi illusion and that the illusion is present in dendritic calcium signals of motion-sensitive neurons in the fly lobula plate. These results closely match the predictions of the predominant model of fly motion detection. However, high flicker rates cause an inversion of the reverse-phi behavioral response that is also present in calcium signals of lobula plate tangential cell dendrites but not predicted by the model. The fly's behavioral and neural responses to the reverse-phi illusion reveal unexpected interactions between motion and flicker signals in the fly visual system and suggest that a similar correlation-based mechanism underlies visual motion detection across the animal kingdom.
Collapse
|
380
|
Robo-3--mediated repulsive interactions guide R8 axons during Drosophila visual system development. Proc Natl Acad Sci U S A 2011; 108:7571-6. [PMID: 21490297 DOI: 10.1073/pnas.1103419108] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The formation of neuronal connections requires the precise guidance of developing axons toward their targets. In the Drosophila visual system, photoreceptor neurons (R cells) project from the eye into the brain. These cells are grouped into some 750 clusters comprised of eight photoreceptors or R cells each. R cells fall into three classes: R1 to R6, R7, and R8. Posterior R8 cells are the first to project axons into the brain. How these axons select a specific pathway is not known. Here, we used a microarray-based approach to identify genes expressed in R8 neurons as they extend into the brain. We found that Roundabout-3 (Robo3), an axon-guidance receptor, is expressed specifically and transiently in R8 growth cones. In wild-type animals, posterior-most R8 axons extend along a border of glial cells demarcated by the expression of Slit, the secreted ligand of Robo3. In contrast, robo3 mutant R8 axons extend across this border and fasciculate inappropriately with other axon tracts. We demonstrate that either Robo1 or Robo2 rescues the robo3 mutant phenotype when each is knocked into the endogenous robo3 locus separately, indicating that R8 does not require a function unique to the Robo3 paralog. However, persistent expression of Robo3 in R8 disrupts the layer-specific targeting of R8 growth cones. Thus, the transient cell-specific expression of Robo3 plays a crucial role in establishing neural circuits in the Drosophila visual system by selectively regulating pathway choice for posterior-most R8 growth cones.
Collapse
|
381
|
Hasegawa E, Kitada Y, Kaido M, Takayama R, Awasaki T, Tabata T, Sato M. Concentric zones, cell migration and neuronal circuits in the Drosophila visual center. Development 2011; 138:983-93. [DOI: 10.1242/dev.058370] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila optic lobe comprises a wide variety of neurons, which form laminar neuropiles with columnar units and topographic projections from the retina. The Drosophila optic lobe shares many structural characteristics with mammalian visual systems. However, little is known about the developmental mechanisms that produce neuronal diversity and organize the circuits in the primary region of the optic lobe, the medulla. Here, we describe the key features of the developing medulla and report novel phenomena that could accelerate our understanding of the Drosophila visual system. The identities of medulla neurons are pre-determined in the larval medulla primordium, which is subdivided into concentric zones characterized by the expression of four transcription factors: Drifter, Runt, Homothorax and Brain-specific homeobox (Bsh). The expression pattern of these factors correlates with the order of neuron production. Once the concentric zones are specified, the distribution of medulla neurons changes rapidly. Each type of medulla neuron exhibits an extensive but defined pattern of migration during pupal development. The results of clonal analysis suggest homothorax is required to specify the neuronal type by regulating various targets including Bsh and cell-adhesion molecules such as N-cadherin, while drifter regulates a subset of morphological features of Drifter-positive neurons. Thus, genes that show the concentric zones may form a genetic hierarchy to establish neuronal circuits in the medulla.
Collapse
Affiliation(s)
- Eri Hasegawa
- Frontier Science Organization, Kanazawa University, 13-1 Takaramachi Kanazawa-shi, Ishikawa 920-8641, Japan
| | - Yusuke Kitada
- Frontier Science Organization, Kanazawa University, 13-1 Takaramachi Kanazawa-shi, Ishikawa 920-8641, Japan
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masako Kaido
- Frontier Science Organization, Kanazawa University, 13-1 Takaramachi Kanazawa-shi, Ishikawa 920-8641, Japan
| | - Rie Takayama
- Frontier Science Organization, Kanazawa University, 13-1 Takaramachi Kanazawa-shi, Ishikawa 920-8641, Japan
| | - Takeshi Awasaki
- University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Tetsuya Tabata
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Makoto Sato
- Frontier Science Organization, Kanazawa University, 13-1 Takaramachi Kanazawa-shi, Ishikawa 920-8641, Japan
- PRESTO, JST, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
382
|
Golden Goal collaborates with Flamingo in conferring synaptic-layer specificity in the visual system. Nat Neurosci 2011; 14:314-23. [PMID: 21317905 DOI: 10.1038/nn.2756] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 01/14/2011] [Indexed: 01/06/2023]
Abstract
Neuronal connections are often organized in layers that contain synapses between neurons that have similar functions. In Drosophila, R7 and R8 photoreceptors, which detect different wavelengths, form synapses in distinct medulla layers. The mechanisms underlying the specificity of synaptic-layer selection remain unclear. We found that Golden Goal (Gogo) and Flamingo (Fmi), two cell-surface proteins involved in photoreceptor targeting, functionally interact in R8 photoreceptor axons. Our results indicate that Gogo promotes R8 photoreceptor axon adhesion to the temporary layer M1, whereas Gogo and Fmi collaborate to mediate axon targeting to the final layer M3. Structure-function analysis suggested that Gogo and Fmi interact with intracellular components through the Gogo cytoplasmic domain. Moreover, Fmi was also required in target cells for R8 photoreceptor axon targeting. We propose that Gogo acts as a functional partner of Fmi for R8 photoreceptor axon targeting and that the dynamic regulation of their interaction specifies synaptic-layer selection of photoreceptors.
Collapse
|
383
|
Matsuoka RL, Nguyen-Ba-Charvet KT, Parray A, Badea TC, Chédotal A, Kolodkin AL. Transmembrane semaphorin signalling controls laminar stratification in the mammalian retina. Nature 2011; 470:259-63. [PMID: 21270798 PMCID: PMC3063100 DOI: 10.1038/nature09675] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 02/10/2011] [Accepted: 11/17/2010] [Indexed: 11/09/2022]
Abstract
In the vertebrate retina, establishment of precise synaptic connections among distinct retinal neuron cell types is critical for processing visual information and for accurate visual perception. Retinal ganglion cells (RGCs), amacrine cells and bipolar cells establish stereotypic neurite arborization patterns to form functional neural circuits in the inner plexiform layer (IPL), a laminar region that is conventionally divided into five major parallel sublaminae. However, the molecular mechanisms governing distinct retinal subtype targeting to specific sublaminae within the IPL remain to be elucidated. Here we show that the transmembrane semaphorin Sema6A signals through its receptor PlexinA4 (PlexA4) to control lamina-specific neuronal stratification in the mouse retina. Expression analyses demonstrate that Sema6A and PlexA4 proteins are expressed in a complementary fashion in the developing retina: Sema6A in most ON sublaminae and PlexA4 in OFF sublaminae of the IPL. Mice with null mutations in PlexA4 or Sema6A exhibit severe defects in stereotypic lamina-specific neurite arborization of tyrosine hydroxylase (TH)-expressing dopaminergic amacrine cells, intrinsically photosensitive RGCs (ipRGCs) and calbindin-positive cells in the IPL. Sema6A and PlexA4 genetically interact in vivo for the regulation of dopaminergic amacrine cell laminar targeting. Therefore, neuronal targeting to subdivisions of the IPL in the mammalian retina is directed by repulsive transmembrane guidance cues present on neuronal processes.
Collapse
Affiliation(s)
- Ryota L. Matsuoka
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Kim T. Nguyen-Ba-Charvet
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S968, Institut de la Vision, F-75012 Paris, France
- Université Pierre et Marie Curie (UPMC) Paris VI, UMR S968, Institut de la Vision, F-75012 Paris, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7210, Institut de la Vision, F-75012 Paris, France
| | - Aijaz Parray
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S968, Institut de la Vision, F-75012 Paris, France
- Université Pierre et Marie Curie (UPMC) Paris VI, UMR S968, Institut de la Vision, F-75012 Paris, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7210, Institut de la Vision, F-75012 Paris, France
| | - Tudor C. Badea
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Alain Chédotal
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S968, Institut de la Vision, F-75012 Paris, France
- Université Pierre et Marie Curie (UPMC) Paris VI, UMR S968, Institut de la Vision, F-75012 Paris, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7210, Institut de la Vision, F-75012 Paris, France
| | - Alex L. Kolodkin
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
384
|
Hadjieconomou D, Timofeev K, Salecker I. A step-by-step guide to visual circuit assembly in Drosophila. Curr Opin Neurobiol 2011; 21:76-84. [PMID: 20800474 DOI: 10.1016/j.conb.2010.07.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 07/27/2010] [Indexed: 01/03/2023]
Abstract
The ability of vertebrates and insects to perceive and process information about the visual world is mediated by neural circuits, which share a strikingly conserved architecture of reiterated columnar and layered synaptic units. Recent genetic approaches conferring single-cell resolution have enabled major advances in our understanding of the cellular and molecular strategies that orchestrate visual circuit assembly in Drosophila. Photoreceptor axon targeting relies on a sequence of interdependent developmental steps to achieve temporal coordination with the formation and maturation of partner neurons. Distinct targeting events depend on anterograde and autocrine signaling, neuron-glia interactions, axon tiling and the timely expression of homophilic cell surface molecules. These mediate local adhesive or repulsive interactions of photoreceptor axons with each other and with target neurons.
Collapse
Affiliation(s)
- Dafni Hadjieconomou
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, The Ridgeway, NW7 1AA London, United Kingdom
| | | | | |
Collapse
|
385
|
Su J, Haner CV, Imbery TE, Brooks JM, Morhardt DR, Gorse K, Guido W, Fox MA. Reelin is required for class-specific retinogeniculate targeting. J Neurosci 2011; 31:575-86. [PMID: 21228166 PMCID: PMC3257181 DOI: 10.1523/jneurosci.4227-10.2011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 10/07/2010] [Accepted: 11/01/2010] [Indexed: 02/02/2023] Open
Abstract
Development of visual system circuitry requires the formation of precise synaptic connections between neurons in the retina and brain. For example, axons from retinal ganglion cells (RGCs) form synapses onto neurons within subnuclei of the lateral geniculate nucleus (LGN) [i.e., the dorsal LGN (dLGN), ventral LGN (vLGN), and intergeniculate leaflet (IGL)]. Distinct classes of RGCs project to these subnuclei: the dLGN is innervated by image-forming RGCs, whereas the vLGN and IGL are innervated by non-image-forming RGCs. To explore potential mechanisms regulating class-specific LGN targeting, we sought to identify differentially expressed targeting molecules in these LGN subnuclei. One candidate targeting molecule enriched in the vLGN and IGL during retinogeniculate circuit formation was the extracellular matrix molecule reelin. Anterograde labeling of RGC axons in mutant mice lacking functional reelin (reln(rl/rl)) revealed reduced patterns of vLGN and IGL innervation and misrouted RGC axons in adjacent non-retino-recipient thalamic nuclei. Using genetic reporter mice, we further demonstrated that mistargeted axons were from non-image-forming, intrinsically photosensitive RGCs (ipRGCs). In contrast to mistargeted ipRGC axons, axons arising from image-forming RGCs and layer VI cortical neurons correctly targeted the dLGN in reln(rl/rl) mutants. Together, these data reveal that reelin is essential for the targeting of LGN subnuclei by functionally distinct classes of RGCs.
Collapse
Affiliation(s)
- Jianmin Su
- Departments of Anatomy and Neurobiology and
| | | | | | | | - Duncan R. Morhardt
- Biochemistry and Molecular Biology, Virginia Commonwealth University Medical Center, Richmond, Virginia 23298-0709
| | | | | | | |
Collapse
|
386
|
Cook T, Zelhof A, Mishra M, Nie J. 800 facets of retinal degeneration. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:331-68. [PMID: 21377630 DOI: 10.1016/b978-0-12-384878-9.00008-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In today's world of genomics and large computational analyses, rapid progress has been made in identifying genes associated with human retinal diseases. Nevertheless, before significant advances toward effective therapeutic intervention is made, a clearer understanding of the molecular and cellular role of these gene products in normal and diseased photoreceptor cell biology is required. Given the complexity of the vertebrate retina, these advancements are unlikely to be revealed in isolated human cell lines, but instead, will require the use of numerous model systems. Here, we describe several parallels between vertebrate and invertebrate photoreceptor cell biology that are beginning to emerge and advocate the use of Drosophila melanogaster as a powerful genetic model system for uncovering molecular mechanisms of human retinal pathologies, in particular photoreceptor neurodegeneration.
Collapse
Affiliation(s)
- T Cook
- Department of Pediatric Ophthalmology, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | | | | |
Collapse
|
387
|
Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr Biol 2010; 21:1-11. [PMID: 21129968 DOI: 10.1016/j.cub.2010.11.056] [Citation(s) in RCA: 387] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 11/05/2010] [Accepted: 11/22/2010] [Indexed: 12/27/2022]
Abstract
BACKGROUND Animal behavior is governed by the activity of interconnected brain circuits. Comprehensive brain wiring maps are thus needed in order to formulate hypotheses about information flow and also to guide genetic manipulations aimed at understanding how genes and circuits orchestrate complex behaviors. RESULTS To assemble this map, we deconstructed the adult Drosophila brain into approximately 16,000 single neurons and reconstructed them into a common standardized framework to produce a virtual fly brain. We have constructed a mesoscopic map and found that it consists of 41 local processing units (LPUs), six hubs, and 58 tracts covering the whole Drosophila brain. Despite individual local variation, the architecture of the Drosophila brain shows invariance for both the aggregation of local neurons (LNs) within specific LPUs and for the connectivity of projection neurons (PNs) between the same set of LPUs. An open-access image database, named FlyCircuit, has been constructed for online data archiving, mining, analysis, and three-dimensional visualization of all single neurons, brain-wide LPUs, their wiring diagrams, and neural tracts. CONCLUSION We found that the Drosophila brain is assembled from families of multiple LPUs and their interconnections. This provides an essential first step in the analysis of information processing within and between neurons in a complete brain.
Collapse
|
388
|
Oland LA, Tolbert LP. Roles of glial cells in neural circuit formation: insights from research in insects. Glia 2010; 59:1273-95. [PMID: 21732424 DOI: 10.1002/glia.21096] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 09/22/2010] [Indexed: 11/09/2022]
Abstract
Investigators over the years have noted many striking similarities in the structural organization and function of neural circuits in higher invertebrates and vertebrates. In more recent years, the discovery of similarities in the cellular and molecular mechanisms that guide development of these circuits has driven a revolution in our understanding of neural development. Cellular mechanisms discovered to underlie axon pathfinding in grasshoppers have guided productive studies in mammals. Genes discovered to play key roles in the patterning of the fruitfly's central nervous system have subsequently been found to play key roles in mice. The diversity of invertebrate species offers to investigators numerous opportunities to conduct experiments that are harder or impossible to do in vertebrate species, but that are likely to shed light on mechanisms at play in developing vertebrate nervous systems. These experiments elucidate the broad suite of cellular and molecular interactions that have the potential to influence neural circuit formation across species. Here we focus on what is known about roles for glial cells in some of the important steps in neural circuit formation in experimentally advantageous insect species. These steps include axon pathfinding and matching to targets, dendritic patterning, and the sculpting of synaptic neuropils. A consistent theme is that glial cells interact with neurons in two-way, reciprocal interactions. We emphasize the impact of studies performed in insects and explore how insect nervous systems might best be exploited next as scientists seek to understand in yet deeper detail the full repertory of functions of glia in development.
Collapse
Affiliation(s)
- Lynne A Oland
- Department of Neuroscience, University of Arizona, Tucson, Arizona 85721-0077, USA.
| | | |
Collapse
|
389
|
Zipursky SL, Sanes JR. Chemoaffinity revisited: dscams, protocadherins, and neural circuit assembly. Cell 2010; 143:343-53. [PMID: 21029858 DOI: 10.1016/j.cell.2010.10.009] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 09/24/2010] [Accepted: 10/06/2010] [Indexed: 12/11/2022]
Abstract
The chemoaffinity hypothesis for neural circuit assembly posits that axons and their targets bear matching molecular labels that endow neurons with unique identities and specify synapses between appropriate partners. Here, we focus on two intriguing candidates for fulfilling this role, Drosophila Dscams and vertebrate clustered protocadherins (Pcdhs). In each, a complex genomic locus encodes large numbers of neuronal transmembrane proteins with homophilic binding specificity, individual members of which are expressed combinatorially. Although these properties suggest that Dscams and Pcdhs could act as specificity molecules, they may do so in ways that challenge traditional views of how neural circuits assemble.
Collapse
Affiliation(s)
- S Lawrence Zipursky
- Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, 90095, USA.
| | | |
Collapse
|
390
|
ON and OFF pathways in Drosophila motion vision. Nature 2010; 468:300-4. [PMID: 21068841 DOI: 10.1038/nature09545] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 10/01/2010] [Indexed: 01/17/2023]
|
391
|
Song Y, Slaughter MM. GABA(B) receptor feedback regulation of bipolar cell transmitter release. J Physiol 2010; 588:4937-49. [PMID: 20974680 DOI: 10.1113/jphysiol.2010.194233] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
GABAergic amacrine cell feedback to bipolar cells in retina has been described, activating both GABA(A) and GABA(C) receptors. We explored whether metabotropic GABA(B) receptors also participate in this feedback pathway. CGP55845, a potent GABA(B) receptor antagonist, was employed to determine the endogenous role of these receptors. Ganglion cell EPSCs and IPSCs were monitored to measure the output of bipolar and amacrine cells. Using the tiger salamander slice preparation, we found that GABA(B) receptor pathways regulate bipolar cell release directly and indirectly. In the direct pathway, the GABA(B) receptor antagonist reduces EPSC amplitude, indicating that GABA(B) receptors cause enhanced glutamate release from bipolar cells to one set of ganglion cells. In the indirect pathway, the GABA(B) receptor antagonist reduces EPSC amplitude in another set of ganglion cells. The indirect pathway is only evident when GABA(A) receptors are inhibited, and is blocked by a glycine receptor antagonist. Thus, this second feedback pathway involves direct glycine feedback to the bipolar cell and this glycinergic amacrine cell is suppressed by GABAergic amacrine cells, through both GABA(A) and GABA(B) but not GABA(C) receptors. Overall, GABA(B) receptors do contribute to feedback regulation of bipolar cell transmitter release. However, unlike the ionotropic GABA receptor pathways, the metabotropic GABA receptor pathways act to enhance bipolar cell transmitter release. Furthermore, there are three discrete subsets of bipolar cell output regulated by GABA(B) receptor feedback (direct, indirect and null), implying three distinct, non-overlapping bipolar cell to ganglion cell circuits.
Collapse
Affiliation(s)
- Yunbo Song
- Department of Physiology & Biophysics, Center for Neuroscience, 124 Sherman Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | | |
Collapse
|
392
|
Oros SM, Tare M, Kango-Singh M, Singh A. Dorsal eye selector pannier (pnr) suppresses the eye fate to define dorsal margin of the Drosophila eye. Dev Biol 2010; 346:258-71. [PMID: 20691679 PMCID: PMC2945442 DOI: 10.1016/j.ydbio.2010.07.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Revised: 07/26/2010] [Accepted: 07/27/2010] [Indexed: 12/28/2022]
Abstract
Axial patterning is crucial for organogenesis. During Drosophila eye development, dorso-ventral (DV) axis determination is the first lineage restriction event. The eye primordium begins with a default ventral fate, on which the dorsal eye fate is established by expression of the GATA-1 transcription factor pannier (pnr). Earlier, it was suggested that loss of pnr function induces enlargement in the dorsal eye due to ectopic equator formation. Interestingly, we found that in addition to regulating DV patterning, pnr suppresses the eye fate by downregulating the core retinal determination genes eyes absent (eya), sine oculis (so) and dacshund (dac) to define the dorsal eye margin. We found that pnr acts downstream of Ey and affects the retinal determination pathway by suppressing eya. Further analysis of the "eye suppression" function of pnr revealed that this function is likely mediated through suppression of the homeotic gene teashirt (tsh) and is independent of homothorax (hth), a negative regulator of eye. Pnr expression is restricted to the peripodial membrane on the dorsal eye margin, which gives rise to head structures around the eye, and pnr is not expressed in the eye disc proper that forms the retina. Thus, pnr has dual function, during early developmental stages pnr is involved in axial patterning whereas later it promotes the head specific fate. These studies will help in understanding the developmental regulation of boundary formation of the eye field on the dorsal eye margin.
Collapse
Affiliation(s)
- Sarah M. Oros
- Premedical Programs, University of Dayton, Dayton, OH 45469
- Department of Biology, University of Dayton, Dayton, OH 45469
| | - Meghana Tare
- Department of Biology, University of Dayton, Dayton, OH 45469
| | - Madhuri Kango-Singh
- Premedical Programs, University of Dayton, Dayton, OH 45469
- Department of Biology, University of Dayton, Dayton, OH 45469
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH 45469
| | - Amit Singh
- Premedical Programs, University of Dayton, Dayton, OH 45469
- Department of Biology, University of Dayton, Dayton, OH 45469
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH 45469
| |
Collapse
|
393
|
Cameron S, Rao Y. Molecular mechanisms of tiling and self-avoidance in neural development. Mol Brain 2010; 3:28. [PMID: 20937126 PMCID: PMC2959082 DOI: 10.1186/1756-6606-3-28] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 10/11/2010] [Indexed: 11/10/2022] Open
Abstract
Recent studies have begun to unravel the molecular basis of tiling and self-avoidance, two important cellular mechanisms that shape neuronal circuitry during development in both invertebrates and vertebrates. Dscams and Turtle (Tutl), two Ig superfamily proteins, have been shown to mediate contact-dependent homotypic interactions in tiling and self-avoidance. By contrast, the Activin pathway regulates axonal tiling in a contact-independent manner. These cell surface signals may directly or indirectly regulate the activity of the Tricornered kinase pathway and/or other intracellular signaling pathways to prevent the overlap between same-type neuronal arbors in the sensory or synaptic input field.
Collapse
Affiliation(s)
- Scott Cameron
- McGill Centre for Research in Neuroscience, McGill University Health Centre, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4, Canada
| | | |
Collapse
|
394
|
Williams ME, de Wit J, Ghosh A. Molecular mechanisms of synaptic specificity in developing neural circuits. Neuron 2010; 68:9-18. [PMID: 20920787 PMCID: PMC3327884 DOI: 10.1016/j.neuron.2010.09.007] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2010] [Indexed: 10/19/2022]
Abstract
The function of the brain depends on highly specific patterns of connections between populations of neurons. The establishment of these connections requires the targeting of axons and dendrites to defined zones or laminae, the recognition of individual target cells, the formation of synapses on particular regions of the dendritic tree, and the differentiation of pre- and postsynaptic specializations. Recent studies provide compelling evidence that transmembrane adhesion proteins of the immunoglobulin, cadherin, and leucine-rich repeat protein families, as well as secreted proteins such as semaphorins and FGFs, regulate distinct aspects of neuronal connectivity. These observations suggest that the coordinated actions of a number of molecular signals contribute to the specification and differentiation of synaptic connections in the developing brain.
Collapse
Affiliation(s)
- Megan E. Williams
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0366
| | - Joris de Wit
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0366
| | - Anirvan Ghosh
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0366
| |
Collapse
|
395
|
Charlton-Perkins M, Cook TA. Building a fly eye: terminal differentiation events of the retina, corneal lens, and pigmented epithelia. Curr Top Dev Biol 2010; 93:129-73. [PMID: 20959165 DOI: 10.1016/b978-0-12-385044-7.00005-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the past, vast differences in ocular structure, development, and physiology throughout the animal kingdom led to the widely accepted notion that eyes are polyphyletic, that is, they have independently arisen multiple times during evolution. Despite the dissimilarity between vertebrate and invertebrate eyes, it is becoming increasingly evident that the development of the eye in both groups shares more similarity at the genetic level than was previously assumed, forcing a reexamination of eye evolution. Understanding the molecular underpinnings of cell type specification during Drosophila eye development has been a focus of research for many labs over the past 25 years, and many of these findings are nicely reviewed in Chapters 1 and 4. A somewhat less explored area of research, however, considers how these cells, once specified, develop into functional ocular structures. This review aims to summarize the current knowledge related to the terminal differentiation events of the retina, corneal lens, and pigmented epithelia in the fly eye. In addition, we discuss emerging evidence that the different functional components of the fly eye share developmental pathways and functions with the vertebrate eye.
Collapse
Affiliation(s)
- Mark Charlton-Perkins
- Department of Pediatric Ophthalmology, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | | |
Collapse
|