351
|
Tasoglu S, Demirci U. Bioprinting for stem cell research. Trends Biotechnol 2012; 31:10-9. [PMID: 23260439 DOI: 10.1016/j.tibtech.2012.10.005] [Citation(s) in RCA: 271] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/15/2012] [Accepted: 10/19/2012] [Indexed: 12/18/2022]
Abstract
Recently, there has been growing interest in applying bioprinting techniques to stem cell research. Several bioprinting methods have been developed utilizing acoustics, piezoelectricity, and lasers to deposit living cells onto receiving substrates. Using these technologies, spatially defined gradients of immobilized biomolecules can be engineered to direct stem cell differentiation into multiple subpopulations of different lineages. Stem cells can also be patterned in a high-throughput manner onto flexible implementation patches for tissue regeneration or onto substrates with the goal of accessing encapsulated stem cells of interest for genomic analysis. Here, we review recent achievements with bioprinting technologies in stem cell research, and identify future challenges and potential applications including tissue engineering and regenerative medicine, wound healing, and genomics.
Collapse
Affiliation(s)
- Savas Tasoglu
- Brigham and Women's Hospital, Bio-Acoustic MEMS in Medicine Lab, Division of Biomedical Engineering, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
352
|
Smith SJ, Wilson M, Ward JH, Rahman CV, Peet AC, Macarthur DC, Rose FRAJ, Grundy RG, Rahman R. Recapitulation of tumor heterogeneity and molecular signatures in a 3D brain cancer model with decreased sensitivity to histone deacetylase inhibition. PLoS One 2012; 7:e52335. [PMID: 23272238 PMCID: PMC3525561 DOI: 10.1371/journal.pone.0052335] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 11/16/2012] [Indexed: 12/24/2022] Open
Abstract
Introduction Physiologically relevant pre-clinical ex vivo models recapitulating CNS tumor micro-environmental complexity will aid development of biologically-targeted agents. We present comprehensive characterization of tumor aggregates generated using the 3D Rotary Cell Culture System (RCCS). Methods CNS cancer cell lines were grown in conventional 2D cultures and the RCCS and comparison with a cohort of 53 pediatric high grade gliomas conducted by genome wide gene expression and microRNA arrays, coupled with immunohistochemistry, ex vivo magnetic resonance spectroscopy and drug sensitivity evaluation using the histone deacetylase inhibitor, Vorinostat. Results Macroscopic RCCS aggregates recapitulated the heterogeneous morphology of brain tumors with a distinct proliferating rim, necrotic core and oxygen tension gradient. Gene expression and microRNA analyses revealed significant differences with 3D expression intermediate to 2D cultures and primary brain tumors. Metabolic profiling revealed differential profiles, with an increase in tumor specific metabolites in 3D. To evaluate the potential of the RCCS as a drug testing tool, we determined the efficacy of Vorinostat against aggregates of U87 and KNS42 glioblastoma cells. Both lines demonstrated markedly reduced sensitivity when assaying in 3D culture conditions compared to classical 2D drug screen approaches. Conclusions Our comprehensive characterization demonstrates that 3D RCCS culture of high grade brain tumor cells has profound effects on the genetic, epigenetic and metabolic profiles of cultured cells, with these cells residing as an intermediate phenotype between that of 2D cultures and primary tumors. There is a discrepancy between 2D culture and tumor molecular profiles, and RCCS partially re-capitulates tissue specific features, allowing drug testing in a more relevant ex vivo system.
Collapse
Affiliation(s)
- Stuart J. Smith
- Children’s Brain Tumour Research Centre, School of Clinical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Martin Wilson
- Division of Reproductive and Child Health, School of Medicine, University of Birmingham, Birmingham, United Kingdom
| | - Jennifer H. Ward
- Children’s Brain Tumour Research Centre, School of Clinical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Cheryl V. Rahman
- Division of Drug Delivery and Tissue Engineering, Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Andrew C. Peet
- Division of Reproductive and Child Health, School of Medicine, University of Birmingham, Birmingham, United Kingdom
| | - Donald C. Macarthur
- Department of Neurosurgery, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Felicity R. A. J. Rose
- Division of Drug Delivery and Tissue Engineering, Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Richard G. Grundy
- Children’s Brain Tumour Research Centre, School of Clinical Sciences, University of Nottingham, Nottingham, United Kingdom
- * E-mail: (RGG); (RR)
| | - Ruman Rahman
- Children’s Brain Tumour Research Centre, School of Clinical Sciences, University of Nottingham, Nottingham, United Kingdom
- * E-mail: (RGG); (RR)
| |
Collapse
|
353
|
Liu JS, Gartner ZJ. Directing the assembly of spatially organized multicomponent tissues from the bottom up. Trends Cell Biol 2012; 22:683-91. [PMID: 23067679 PMCID: PMC3505240 DOI: 10.1016/j.tcb.2012.09.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/02/2012] [Accepted: 09/10/2012] [Indexed: 12/21/2022]
Abstract
The complexity of the human body derives from numerous modular building blocks assembled hierarchically across multiple length scales. These building blocks, spanning sizes ranging from single cells to organs, interact to regulate development and normal organismal function but become disorganized during disease. Here, we review methods for the bottom-up and directed assembly of modular, multicellular, and tissue-like constructs in vitro. These engineered tissues will help refine our understanding of the relationship between form and function in the human body, provide new models for the breakdown in tissue architecture that accompanies disease, and serve as building blocks for the field of regenerative medicine.
Collapse
Affiliation(s)
- Jennifer S Liu
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 95108, USA
| | | |
Collapse
|
354
|
Williamson SC, Hepburn AC, Wilson L, Coffey K, Ryan-Munden CA, Pal D, Leung HY, Robson CN, Heer R. Human α(2)β(1)(HI) CD133(+VE) epithelial prostate stem cells express low levels of active androgen receptor. PLoS One 2012; 7:e48944. [PMID: 23145034 PMCID: PMC3492135 DOI: 10.1371/journal.pone.0048944] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 10/02/2012] [Indexed: 12/31/2022] Open
Abstract
Stem cells are thought to be the cell of origin in malignant transformation in many tissues, but their role in human prostate carcinogenesis continues to be debated. One of the conflicts with this model is that cancer stem cells have been described to lack androgen receptor (AR) expression, which is of established importance in prostate cancer initiation and progression. We re-examined the expression patterns of AR within adult prostate epithelial differentiation using an optimised sensitive and specific approach examining transcript, protein and AR regulated gene expression. Highly enriched populations were isolated consisting of stem (α2β1HI CD133+VE), transiently amplifying (α2β1HI CD133–VE) and terminally differentiated (α2β1LOW CD133–VE) cells. AR transcript and protein expression was confirmed in α2β1HI CD133+VE and CD133–VE progenitor cells. Flow cytometry confirmed that median (±SD) fraction of cells expressing AR were 77% (±6%) in α2β1HI CD133+VE stem cells and 68% (±12%) in α2β1HI CD133–VE transiently amplifying cells. However, 3-fold lower levels of total AR protein expression (peak and median immunofluorescence) were present in α2β1HI CD133+VE stem cells compared with differentiated cells. This finding was confirmed with dual immunostaining of prostate sections for AR and CD133, which again demonstrated low levels of AR within basal CD133+VE cells. Activity of the AR was confirmed in prostate progenitor cells by the expression of low levels of the AR regulated genes PSA, KLK2 and TMPRSS2. The confirmation of AR expression in prostate progenitor cells allows integration of the cancer stem cell theory with the established models of prostate cancer initiation based on a functional AR. Further study of specific AR functions in prostate stem and differentiated cells may highlight novel mechanisms of prostate homeostasis and insights into tumourigenesis.
Collapse
Affiliation(s)
- Stuart C. Williamson
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Anastasia C. Hepburn
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Laura Wilson
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Kelly Coffey
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Claudia A. Ryan-Munden
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Deepali Pal
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Hing Y. Leung
- The Beatson Institute for Cancer Research, Glasgow, East Dunbartonshire, United Kingdom
| | - Craig N. Robson
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Rakesh Heer
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
- * E-mail:
| |
Collapse
|
355
|
Mishra DK, Sakamoto JH, Thrall MJ, Baird BN, Blackmon SH, Ferrari M, Kurie JM, Kim MP. Human lung cancer cells grown in an ex vivo 3D lung model produce matrix metalloproteinases not produced in 2D culture. PLoS One 2012; 7:e45308. [PMID: 23028922 PMCID: PMC3444466 DOI: 10.1371/journal.pone.0045308] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/20/2012] [Indexed: 12/31/2022] Open
Abstract
We compared the growth of human lung cancer cells in an ex vivo three-dimensional (3D) lung model and 2D culture to determine which better mimics lung cancer growth in patients. A549 cells were grown in an ex vivo 3D lung model and in 2D culture for 15 days. We measured the size and formation of tumor nodules and counted the cells after 15 days. We also stained the tissue/cells for Ki-67, and Caspase-3. We measured matrix metalloproteinase (MMP) levels in the conditioned media and in blood plasma from patients with adenocarcinoma of the lung. Organized tumor nodules with intact vascular space formed in the ex vivo 3D lung model but not in 2D culture. Proliferation and apoptosis were greater in the ex vivo 3D lung model compared to the 2D culture. After 15 days, there were significantly more cells in the 2D culture than the 3D model. MMP-1, MMP-9, and MMP-10 production were significantly greater in the ex vivo 3D lung model. There was no production of MMP-9 in the 2D culture. The patient samples contained MMP-1, MMP-2, MMP-9, and MMP-10. The human lung cancer cells grown on ex vivo 3D model form perfusable nodules that grow over time. It also produced MMPs that were not produced in 2D culture but seen in human lung cancer patients. The ex vivo 3D lung model may more closely mimic the biology of human lung cancer development than the 2D culture.
Collapse
Affiliation(s)
- Dhruva K. Mishra
- Department of Surgery, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Jason H. Sakamoto
- Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Michael J. Thrall
- Department of Pathology and Genomic Medicine, The Methodist Hospital, Houston, Texas, United States of America
| | - Brandi N. Baird
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Shanda H. Blackmon
- Department of Surgery, The Methodist Hospital Research Institute, Houston, Texas, United States of America
- Department of Surgery, Weill Cornell Medical College, The Methodist Hospital, Houston, Texas, United States of America
| | - Mauro Ferrari
- Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Jonathan M. Kurie
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Min P. Kim
- Department of Surgery, The Methodist Hospital Research Institute, Houston, Texas, United States of America
- Department of Surgery, Weill Cornell Medical College, The Methodist Hospital, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
356
|
Imoukhuede PI, Popel AS. Expression of VEGF receptors on endothelial cells in mouse skeletal muscle. PLoS One 2012; 7:e44791. [PMID: 22984559 PMCID: PMC3440347 DOI: 10.1371/journal.pone.0044791] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 08/13/2012] [Indexed: 01/01/2023] Open
Abstract
VEGFR surface localization plays a critical role in converting extracellular VEGF signaling towards angiogenic outcomes, and the quantitative characterization of these parameters is critical for advancing computational models; however the levels of these receptors on blood vessels is currently unknown. Therefore our aim is to quantitatively determine the VEGFR localization on endothelial cells from mouse hindlimb skeletal muscles. We contextualize this VEGFR quantification through comparison to VEGFR-levels on cells in vitro. Using quantitative fluorescence we measure and compare the levels of VEGFR1 and VEGFR2 on endothelial cells isolated from C57BL/6 and BALB/c gastrocnemius and tibialis anterior hindlimb muscles. Fluorescence measurements are calibrated using beads with known numbers of phycoerythrin molecules. The data show a 2-fold higher VEGFR1 surface localization relative to VEGFR2 with 2,000-3,700 VEGFR1/endothelial cell and 1,300-2,000 VEGFR2/endothelial cell. We determine that endothelial cells from the highly glycolytic muscle, tibialis anterior, contain 30% higher number of VEGFR1 surface receptors than gastrocnemius; BALB/c mice display ~17% higher number of VEGFR1 than C57BL/6. When we compare these results to mouse fibroblasts in vitro, we observe high levels of VEGFR1 (35,800/cell) and very low levels of VEGFR2 (700/cell), while in human endothelial cells in vitro, we observe that the balance of VEGFRs is inverted, with higher levels VEGFR2 (5,800/cell) and lower levels of VEGFR1 (1,800/cell). Our studies also reveal significant cell-to-cell heterogeneity in receptor expression, and the quantification of these dissimilarities ex vivo for the first time provides insight into the balance of anti-angiogenic or modulatory (VEGFR1) and pro-angiogenic (VEGFR2) signaling.
Collapse
Affiliation(s)
- Princess I. Imoukhuede
- Department of Bioengineering, University of Illinois Urbana Champaign, Urbana, Illinois, United States of America
| | - Aleksander S. Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
357
|
Arya N, Sardana V, Saxena M, Rangarajan A, Katti DS. Recapitulating tumour microenvironment in chitosan-gelatin three-dimensional scaffolds: an improved in vitro tumour model. J R Soc Interface 2012; 9:3288-302. [PMID: 22977099 DOI: 10.1098/rsif.2012.0564] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Owing to the reduced co-relationship between conventional flat Petri dish culture (two-dimensional) and the tumour microenvironment, there has been a shift towards three-dimensional culture systems that show an improved analogy to the same. In this work, an extracellular matrix (ECM)-mimicking three-dimensional scaffold based on chitosan and gelatin was fabricated and explored for its potential as a tumour model for lung cancer. It was demonstrated that the chitosan-gelatin (CG) scaffolds supported the formation of tumoroids that were similar to tumours grown in vivo for factors involved in tumour-cell-ECM interaction, invasion and metastasis, and response to anti-cancer drugs. On the other hand, the two-dimensional Petri dish surfaces did not demonstrate gene-expression profiles similar to tumours grown in vivo. Further, the three-dimensional CG scaffolds supported the formation of tumoroids, using other types of cancer cells such as breast, cervix and bone, indicating a possible wider potential for in vitro tumoroid generation. Overall, the results demonstrated that CG scaffolds can be an improved in vitro tool to study cancer progression and drug screening for solid tumours.
Collapse
Affiliation(s)
- Neha Arya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | | | | | | | | |
Collapse
|
358
|
Vu TTT, Lim C, Lim M. Characterization of leukemic cell behaviors in a soft marrow mimetic alginate hydrogel. J Biomed Mater Res B Appl Biomater 2012; 100:1980-8. [PMID: 22888018 DOI: 10.1002/jbm.b.32765] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 05/11/2012] [Accepted: 06/07/2012] [Indexed: 11/11/2022]
Abstract
Alginate hydrogels possess tunable mechanical properties that can mimic soft marrow tissue and present three-dimensional (3D) cues. This study evaluates its utility for supporting leukemic cell growth in vitro and its impact on cell survival, growth, and differentiation. Our results showed that the standard viscosity alginates had compromised leukemia cell viability but lower viscosity alginates recovered cell viability and improved 3D cell proliferation (27 fold) compared to 2D cultures (18 fold). Conjugation with RGD peptides promoted further cell growth (43 folds). In general, 3D hydrogels supported high-density cultures better than 2D cultures. Leukemic cells formed densely packed cell clusters in alginate hydrogels and spontaneously differentiated into a more diverse myeloid population. The cell cycle data suggested that more cells go into active cycling with a G2/M arrest in alginate hydrogels and the presence of multiploidy confirmed maturation toward megakaryocytes. In summary, superior culture of leukemia cells in 3D hydrogels is demonstrated in this study accompanied by a potential role of physical cues influencing cell fate decision. Manipulation of biophysical and biochemical properties of alginate hydrogels permits the study of specific interactions and serves to provide a robust 3D platform for studying extrinsic contributions inside the bone marrow.
Collapse
Affiliation(s)
- Thao Thi Thu Vu
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | | | | |
Collapse
|
359
|
Issues to be considered when studying cancer in vitro. Crit Rev Oncol Hematol 2012; 85:95-111. [PMID: 22823950 DOI: 10.1016/j.critrevonc.2012.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 05/31/2012] [Accepted: 06/27/2012] [Indexed: 01/17/2023] Open
Abstract
Various cancer treatment approaches have shown promising results when tested preclinically. The results of clinical trials, however, are often disappointing. While searching for the reasons responsible for their failures, the relevance of experimental and preclinical models has to be taken into account. Possible factors that should be considered, including cell modifications during in vitro cultivation, lack of both the relevant interactions and the structural context in vitro have been summarized in the present review.
Collapse
|
360
|
Achilli TM, Meyer J, Morgan JR. Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin Biol Ther 2012; 12:1347-60. [PMID: 22784238 DOI: 10.1517/14712598.2012.707181] [Citation(s) in RCA: 370] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Developing in vitro models for studying cell biology and cell physiology is of great importance to the fields of biotechnology, cancer research, drug discovery, toxicity testing, as well as the emerging fields of tissue engineering and regenerative medicine. Traditional two-dimensional (2D) methods of mammalian cell culture have several limitations and it is increasingly recognized that cells grown in a three-dimensional (3D) environment more closely represent normal cellular function due to the increased cell-to-cell interactions, and by mimicking the in vivo architecture of natural organs and tissues. AREAS COVERED In this review, we discuss the methods to form 3D multi-cellular spheroids, the advantages and limitations of these methods, and assays used to characterize the function of spheroids. The use of spheroids has led to many advances in basic cell sciences, including understanding cancer cell interactions, creating models for drug discovery and cancer metastasis, and they are being investigated as basic units for engineering tissue constructs. As so, this review will focus on contributions made to each of these fields using spheroid models. EXPERT OPINION Multi-cellular spheroids are rich in biological content and mimic better the in vivo environment than 2D cell culture. New technologies to form and analyze spheroids are rapidly increasing their adoption and expanding their applications.
Collapse
Affiliation(s)
- Toni-Marie Achilli
- Brown University, Department of Molecular Pharmacology, Physiology and Biotechnology, Providence, RI 02912, USA
| | | | | |
Collapse
|
361
|
West EL, Gonzalez-Cordero A, Hippert C, Osakada F, Martinez-Barbera JP, Pearson RA, Sowden JC, Takahashi M, Ali RR. Defining the integration capacity of embryonic stem cell-derived photoreceptor precursors. Stem Cells 2012; 30:1424-35. [PMID: 22570183 PMCID: PMC3580313 DOI: 10.1002/stem.1123] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Retinal degeneration is a leading cause of irreversible blindness in the developed world. Differentiation of retinal cells, including photoreceptors, from both mouse and human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), potentially provide a renewable source of cells for retinal transplantation. Previously, we have shown both the functional integration of transplanted rod photoreceptor precursors, isolated from the postnatal retina, in the adult murine retina, and photoreceptor cell generation by stepwise treatment of ESCs with defined factors. In this study, we assessed the extent to which this protocol recapitulates retinal development and also evaluated differentiation and integration of ESC-derived retinal cells following transplantation using our established procedures. Optimized retinal differentiation via isolation of Rax.GFP retinal progenitors recreated a retinal niche and increased the yield of Crx(+) and Rhodopsin(+) photoreceptors. Rod birth peaked at day 20 of culture and expression of the early photoreceptor markers Crx and Nrl increased until day 28. Nrl levels were low in ESC-derived populations compared with developing retinae. Transplantation of early stage retinal cultures produced large tumors, which were avoided by prolonged retinal differentiation (up to day 28) prior to transplantation. Integrated mature photoreceptors were not observed in the adult retina, even when more than 60% of transplanted ESC-derived cells expressed Crx. We conclude that exclusion of proliferative cells from ESC-derived cultures is essential for effective transplantation. Despite showing expression profiles characteristic of immature photoreceptors, the ESC-derived precursors generated using this protocol did not display transplantation competence equivalent to precursors from the postnatal retina.
Collapse
Affiliation(s)
- Emma L West
- Department of Genetics, UCL Institute of Ophthalmology, University College London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
362
|
Zschenker O, Streichert T, Hehlgans S, Cordes N. Genome-wide gene expression analysis in cancer cells reveals 3D growth to affect ECM and processes associated with cell adhesion but not DNA repair. PLoS One 2012; 7:e34279. [PMID: 22509286 PMCID: PMC3324525 DOI: 10.1371/journal.pone.0034279] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 02/27/2012] [Indexed: 01/22/2023] Open
Abstract
Cell morphology determines cell behavior, signal transduction, protein-protein interaction, and responsiveness to external stimuli. In cancer, these functions profoundly contribute to resistance mechanisms to radio- and chemotherapy. With regard to this aspect, this study compared the genome wide gene expression in exponentially growing cell lines from different tumor entities, lung carcinoma and squamous cell carcinoma, under more physiological three-dimensional (3D) versus monolayer cell culture conditions. Whole genome cDNA microarray analysis was accomplished using the Affymetrix HG U133 Plus 2.0 gene chip. Significance analysis of microarray (SAM) and t-test analysis revealed significant changes in gene expression profiles of 3D relative to 2D cell culture conditions. These changes affected the extracellular matrix and were mainly associated with biological processes like tissue development, cell adhesion, immune system and defense response in contrast to terms related to DNA repair, which lacked significant alterations. Selected genes were verified by semi-quantitative RT-PCR and Western blotting. Additionally, we show that 3D growth mediates a significant increase in tumor cell radio- and chemoresistance relative to 2D. Our findings show significant gene expression differences between 3D and 2D cell culture systems and indicate that cellular responsiveness to external stress such as ionizing radiation and chemotherapeutics is essentially influenced by differential expression of genes involved in the regulation of integrin signaling, cell shape and cell-cell contact.
Collapse
Affiliation(s)
- Oliver Zschenker
- OncoRay – National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Thomas Streichert
- Department of Clinical Chemistry/Central Laboratories, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie Hehlgans
- OncoRay – National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Nils Cordes
- OncoRay – National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Department of Radiation Oncology, University Hospital and Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- * E-mail:
| |
Collapse
|
363
|
Khan SZ, Kokubu E, Matsuzaka K, Inoue T. Behaviour of rat-cultured dental pulp cells in three-dimensional collagen type-1 gel in vitro and in vivo. AUST ENDOD J 2012; 39:137-45. [PMID: 24279661 DOI: 10.1111/j.1747-4477.2012.00351.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The purpose of this study was to investigate the growth and differentiation potential of dental pulp cells (DPCs) in three-dimensional (3-D) collagen type-1 scaffold in vitro and in vivo. Third passage DPCs were cultured in a 3-D collagen and expression of both bone- or dentin-related mRNA (alkaline phosphatase (ALP), bone sialoprotein (BSP) and osteopontin (OPN)) and morphological changes evaluated in vitro. In the in vivo study, two types of grafts were transplanted into the rectus abdominus muscles of rats and harvested after 7 days: DPCs in α-minimal essential medium and DPCs mixed with a collagen gel. ALP, BSP and OPN were used as primary antibodies for immunohistochemical study. Histological and immunohistochemical results showed that DPCs in collagen gel were spindle shaped and showed significantly greater expression of ALP, BSP and OPN in vitro than the controls. Transplanted DPCs in collagen type-1 gel showed greater positive immunoreactivity for ALP, BSP and OPN than the controls. It was concluded that the collagen gel scaffold encouraged the differentiation of DPCs into osteoblastic cells.
Collapse
Affiliation(s)
- Sultan Zeb Khan
- Department of Clinical Pathophysiology, Tokyo Dental College, Chiba, Japan HRC-7, Tokyo Dental College, Chiba, Japan Department of Microbiology, Tokyo Dental College, Chiba, Japan
| | | | | | | |
Collapse
|
364
|
Gurkan UA, Tasoglu S, Kavaz D, Demirel MC, Demirci U. Emerging technologies for assembly of microscale hydrogels. Adv Healthc Mater 2012; 1:149-158. [PMID: 23184717 PMCID: PMC3774531 DOI: 10.1002/adhm.201200011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 02/08/2012] [Indexed: 01/30/2023]
Abstract
Assembly of cell encapsulating building blocks (i.e., microscale hydrogels) has significant applications in areas including regenerative medicine, tissue engineering, and cell-based in vitro assays for pharmaceutical research and drug discovery. Inspired by the repeating functional units observed in native tissues and biological systems (e.g., the lobule in liver, the nephron in kidney), assembly technologies aim to generate complex tissue structures by organizing microscale building blocks. Novel assembly technologies enable fabrication of engineered tissue constructs with controlled properties including tunable microarchitectural and predefined compositional features. Recent advances in micro- and nano-scale technologies have enabled engineering of microgel based three dimensional (3D) constructs. There is a need for high-throughput and scalable methods to assemble microscale units with a complex 3D micro-architecture. Emerging assembly methods include novel technologies based on microfluidics, acoustic and magnetic fields, nanotextured surfaces, and surface tension. In this review, we survey emerging microscale hydrogel assembly methods offering rapid, scalable microgel assembly in 3D, and provide future perspectives and discuss potential applications.
Collapse
Affiliation(s)
- Umut Atakan Gurkan
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory Center for Bioengineering Brigham and Women's Hospital Harvard Medical School Boston, MA 02115, USA
| | - Savas Tasoglu
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory Center for Bioengineering Brigham and Women's Hospital Harvard Medical School Boston, MA 02115, USA
| | - Doga Kavaz
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory Center for Bioengineering Brigham and Women's Hospital Harvard Medical School Boston, MA 02115, USA
| | - Melik C Demirel
- Materials Research Institute Pennsylvania State University University Park, PA 16802, USA
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory Center for Bioengineering Brigham and Women's Hospital Harvard Medical School Boston, MA 02115, USA
| |
Collapse
|
365
|
Gonçalves FDC, Paz AHDR, Lora PS, Passos EP, Cirne-Lima EO. Dynamic culture improves MSC adhesion on freeze-dried bone as a scaffold for bone engineering. World J Stem Cells 2012; 4:9-16. [PMID: 22468180 PMCID: PMC3312925 DOI: 10.4252/wjsc.v4.i2.9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 12/21/2011] [Accepted: 12/28/2011] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the interaction between mesenchymal stem cells (MSCs) and bone grafts using two different cultivation methods: static and dynamic. METHODS MSCs were isolated from rat bone marrow. MSC culture was analyzed according to the morphology, cell differentiation potential, and surface molecular markers. Before cell culture, freeze-dried bone (FDB) was maintained in culture for 3 d in order to verify culture medium pH. MSCs were co-cultured with FDB using two different cultivation methods: static co-culture (two-dimensional) and dynamic co-culture (three-dimensional). After 24 h of cultivation by dynamic or static methods, histological analysis of Cell adhesion on FDB was performed. Cell viability was assessed by the Trypan Blue exclusion method on days 0, 3 and 6 after dynamic or static culture. Adherent cells were detached from FDB surface, stained with Trypan Blue, and quantified to determine whether the cells remained on the graft surface in prolonged non-dynamic culture. Statistical analyses were performed with SPSS and a P < 0.05 was considered significant. RESULTS The results showed a clear potential for adipogenic and osteogenic differentiation of MSC cultures. Rat MSCs were positive for CD44, CD90 and CD29 and negative for CD34, CD45 and CD11bc. FDBs were maintained in culture for 3 d and the results showed there was no significant variation in the culture medium pH with FDB compared to pure medium pH (P > 0.05). In histological analysis, there was a significant difference in the amount of adhered cells on FDB between the two cultivation methods (P < 0.05). The MSCs in the dynamic co-culture method demonstrated greater adhesion on the bone surface than in static co-culture method. On day 0, the cell viability in the dynamic system was significantly higher than in the static system (P < 0.05). There was a statistical difference in cell viability between days 0, 3 and 6 after dynamic culture (P < 0.05). In static culture, cell viability on day 6 was significantly lower than on day 3 and 0 (P < 0.05). CONCLUSION An alternative cultivation method was developed to improve the MSCs adhesion on FDB, demonstrating that dynamic co-culture provides a superior environment over static conditions.
Collapse
Affiliation(s)
- Fabiany da Costa Gonçalves
- Fabiany da Costa Gonçalves, Ana Helena da Rosa Paz, Priscila Schmidt Lora, Eduardo Pandolfi Passos, Elizabeth Obino Cirne-Lima, Embryology and Cell Differentiation Laboratory, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, RS, 90035-903, Brazil
| | | | | | | | | |
Collapse
|
366
|
Correa de Sampaio P, Auslaender D, Krubasik D, Failla AV, Skepper JN, Murphy G, English WR. A heterogeneous in vitro three dimensional model of tumour-stroma interactions regulating sprouting angiogenesis. PLoS One 2012; 7:e30753. [PMID: 22363483 PMCID: PMC3282728 DOI: 10.1371/journal.pone.0030753] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 12/27/2011] [Indexed: 01/18/2023] Open
Abstract
Angiogenesis, the formation of new blood vessels, is an essential process for tumour progression and is an area of significant therapeutic interest. Different in vitro systems and more complex in vivo systems have been described for the study of tumour angiogenesis. However, there are few human 3D in vitro systems described to date which mimic the cellular heterogeneity and complexity of angiogenesis within the tumour microenvironment. In this study we describe the Minitumour model--a 3 dimensional human spheroid-based system consisting of endothelial cells and fibroblasts in co-culture with the breast cancer cell line MDA-MB-231, for the study of tumour angiogenesis in vitro. After implantation in collagen-I gels, Minitumour spheroids form quantifiable endothelial capillary-like structures. The endothelial cell pre-capillary sprouts are supported by the fibroblasts, which act as mural cells, and their growth is increased by the presence of cancer cells. Characterisation of the Minitumour model using small molecule inhibitors and inhibitory antibodies show that endothelial sprout formation is dependent on growth factors and cytokines known to be important for tumour angiogenesis. The model also shows a response to anti-angiogenic agents similar to previously described in vivo data. We demonstrate that independent manipulation of the different cell types is possible, using common molecular techniques, before incorporation into the model. This aspect of Minitumour spheroid analysis makes this model ideal for high content studies of gene function in individual cell types, allowing for the dissection of their roles in cell-cell interactions. Finally, using this technique, we were able to show the requirement of the metalloproteinase MT1-MMP in endothelial cells and fibroblasts, but not cancer cells, for sprouting angiogenesis.
Collapse
Affiliation(s)
- Pedro Correa de Sampaio
- University of Cambridge, Department of Oncology, Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - David Auslaender
- University of Cambridge, Department of Oncology, Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Davia Krubasik
- University of Cambridge, Department of Oncology, Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Antonio Virgilio Failla
- Microscopy Unit, Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Jeremy N. Skepper
- University of Cambridge Multi-Imaging Centre, Department of Physiology, Development and Neuroscience, Downing Site, Cambridge, United Kingdom
| | - Gillian Murphy
- University of Cambridge, Department of Oncology, Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - William R. English
- University of Cambridge, Department of Oncology, Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
367
|
Ryan DM, Nilsson BL. Self-assembled amino acids and dipeptides as noncovalent hydrogels for tissue engineering. Polym Chem 2012. [DOI: 10.1039/c1py00335f] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review critically assesses progress in the use of self-assembling dipeptides and amino acids as hydrogel materials for tissue engineering.
Collapse
Affiliation(s)
- Derek M. Ryan
- University of Rochester
- Department of Chemistry
- Rochester
- USA
| | | |
Collapse
|
368
|
Turunen S, Haaparanta AM, Äänismaa R, Kellomäki M. Chemical and topographical patterning of hydrogels for neural cell guidancein vitro. J Tissue Eng Regen Med 2011; 7:253-70. [DOI: 10.1002/term.520] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 06/02/2011] [Accepted: 09/22/2011] [Indexed: 02/05/2023]
Affiliation(s)
- Sanna Turunen
- Department of Biomedical Engineering; Tampere University of Technology; Finland
| | | | - Riikka Äänismaa
- NeuroGroup, Institute for Biomedical Technology; University of Tampere; Finland
| | - Minna Kellomäki
- Department of Biomedical Engineering; Tampere University of Technology; Finland
| |
Collapse
|
369
|
Alexander JC, Pandit A, Bao G, Connolly D, Rochev Y. Monitoring mRNA in living cells in a 3D in vitro model using TAT-peptide linked molecular beacons. LAB ON A CHIP 2011; 11:3908-3914. [PMID: 21952477 DOI: 10.1039/c1lc20447e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
There is a growing need for the development of in vitro 3D cell culture models for assessing newer therapeutics for clinical applications and mechanisms of human pathology. Molecular beacons have been successfully delivered in two-dimensional (2D) systems to monitor, detect, and localize specific mRNA expression in living cells at the single cell level. However, to date the use of molecular beacons in three-dimensional (3D) systems has not been reported. To translate this technology into specific clinical targeted applications, it is critical to develop and demonstrate efficacy in a 3D system. For the first time the use of TAT-peptide conjugated molecular beacons to monitor mRNA in a 3D in vitro system has been reported.
Collapse
Affiliation(s)
- Jennifer Claire Alexander
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway, Ireland
| | | | | | | | | |
Collapse
|
370
|
Curtin P, Youm H, Salih E. Three-dimensional cancer-bone metastasis model using ex-vivo co-cultures of live calvarial bones and cancer cells. Biomaterials 2011; 33:1065-78. [PMID: 22071100 DOI: 10.1016/j.biomaterials.2011.10.046] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/17/2011] [Indexed: 11/19/2022]
Abstract
One of the major limitations of studying cancer-bone metastasis has been the lack of an appropriate ex-vivo model which can be used under defined conditions that simulates closely the in vivo live bone microenvironment in response to cancer-bone interactions. We have developed and utilized a three-dimensional (3D) cancer-bone metastasis model using free-floating live mouse calvarial bone organs in the presence of cancer cells in a roller tube system. In such co-cultures under hypoxia and a specifically defined bone remodeling stage, viz., resorption system, cancer cells showed a remarkable affinity and specificity for the "endosteal side" of the bone where they colonize and proliferate. This was concurrent with differentiation of resident stem/progenitor cells to osteoclasts and bone resorption. In contrast, under bone formation conditions this model revealed different pathophysiology where the breast cancer cells continued to induce osteoclastic bone resorption whereas prostate cancer cells led to osteoblastic bone formation. The current 3D model was used to demonstrate its application to studies involving chemical and biochemical perturbations in the absence and presence of cancer cells and cellular responses. We describe proof-of-principle with examples of the broad versatility and multi-faceted application of this model that adds another dimension to the ongoing studies in the cancer-bone metastasis arena.
Collapse
Affiliation(s)
- Paul Curtin
- Laboratory for the Study of Skeletal Disorders and Rehabilitation, Department of Orthopaedic Surgery, Harvard Medical School and Children's Hospital, Boston, MA 02115, USA
| | | | | |
Collapse
|
371
|
Lai Y, Asthana A, Cheng K, Kisaalita WS. Neural cell 3D microtissue formation is marked by cytokines' up-regulation. PLoS One 2011; 6:e26821. [PMID: 22046371 PMCID: PMC3203927 DOI: 10.1371/journal.pone.0026821] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 10/05/2011] [Indexed: 01/04/2023] Open
Abstract
Cells cultured in three dimensional (3D) scaffolds as opposed to traditional two-dimensional (2D) substrates have been considered more physiologically relevant based on their superior ability to emulate the in vivo environment. Combined with stem cell technology, 3D cell cultures can provide a promising alternative for use in cell-based assays or biosensors in non-clinical drug discovery studies. To advance 3D culture technology, a case has been made for identifying and validating three-dimensionality biomarkers. With this goal in mind, we conducted a transcriptomic expression comparison among neural progenitor cells cultured on 2D substrates, 3D porous polystyrene scaffolds, and as 3D neurospheres (in vivo surrogate). Up-regulation of cytokines as a group in 3D and neurospheres was observed. A group of 13 cytokines were commonly up-regulated in cells cultured in polystyrene scaffolds and neurospheres, suggesting potential for any or a combination from this list to serve as three-dimensionality biomarkers. These results are supportive of further cytokine identification and validation studies with cells from non-neural tissue.
Collapse
Affiliation(s)
- Yinzhi Lai
- Cellular Bioengineering Laboratory, Department of Biological and Agricultural Engineering, Faculty of Engineering, Driftmier Engineering Center, University of Georgia, Athens, Georgia, United States of America
| | - Amish Asthana
- Cellular Bioengineering Laboratory, Department of Biological and Agricultural Engineering, Faculty of Engineering, Driftmier Engineering Center, University of Georgia, Athens, Georgia, United States of America
| | - Ke Cheng
- Cellular Bioengineering Laboratory, Department of Biological and Agricultural Engineering, Faculty of Engineering, Driftmier Engineering Center, University of Georgia, Athens, Georgia, United States of America
| | - William S. Kisaalita
- Cellular Bioengineering Laboratory, Department of Biological and Agricultural Engineering, Faculty of Engineering, Driftmier Engineering Center, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
372
|
Li H, Hummon AB. Imaging Mass Spectrometry of Three-Dimensional Cell Culture Systems. Anal Chem 2011; 83:8794-801. [DOI: 10.1021/ac202356g] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Haohang Li
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Amanda B. Hummon
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
373
|
Koufaki N, Ranella A, Aifantis KE, Barberoglou M, Psycharakis S, Fotakis C, Stratakis E. Controlling cell adhesion via replication of laser micro/nano-textured surfaces on polymers. Biofabrication 2011; 3:045004. [DOI: 10.1088/1758-5082/3/4/045004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
374
|
The effects of covalently immobilized hyaluronic acid substrates on the adhesion, expansion, and differentiation of embryonic stem cells for in vitro tissue engineering. Biomaterials 2011; 32:8404-15. [PMID: 21871660 DOI: 10.1016/j.biomaterials.2011.07.083] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 07/22/2011] [Indexed: 12/21/2022]
Abstract
We investigated the in vitro effects of the molecular weight (MW) of hyaluronic acid (HA) on the maintenance of the pluripotency and proliferation of murine embryonic stem (ES) cells. High (1000 kDa) or low (4-8 kDa) MW HA was derivatized using an ultraviolet-reactive compound, 4-azidoaniline, and the derivative was immobilized onto cell culture cover slips. Murine ES cells were cultured on these HA surfaces for 5 days. High-MW HA interacted with murine ES cells via CD44, whereas low-MW HA interacted with these cells mostly via CD168. ES cells grown on both high- and low-MW HA appeared undifferentiated after 3 days. However, more cells adhered, proliferated, and exhibited greater amounts of phospho-p42/44 mitogen-activated-protein-kinase on low- compared with high-MW HA. Expression of Oct-3/4 and phosphorylation of STAT3 were enhanced by ES cells on low-MW HA, not on high-MW HA. After release from HA, cells cultured on low-MW HA in the presence of differentiating medium showed enhanced expression of α-SMA or CD31 compared with cells cultured on high-MW HA. It was concluded that low-MW HA substrates were effective in maintaining murine ES cells in a viable and undifferentiated state, which favors their use in the propagation of ES cells for tissue engineering.
Collapse
|
375
|
Holliday DL, Speirs V. Choosing the right cell line for breast cancer research. Breast Cancer Res 2011; 13:215. [PMID: 21884641 DOI: 10.1186/bcr2889] [Citation(s) in RCA: 1072] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is a complex and heterogeneous disease. Gene expression profiling has contributed significantly to our understanding of this heterogeneity at a molecular level, refining taxonomy based on simple measures such as histological type, tumour grade, lymph node status and the presence of predictive markers like oestrogen receptor and human epidermal growth factor receptor 2 (HER2) to a more sophisticated classification comprising luminal A, luminal B, basal-like, HER2-positive and normal subgroups. In the laboratory, breast cancer is often modelled using established cell lines. In the present review we discuss some of the issues surrounding the use of breast cancer cell lines as experimental models, in light of these revised clinical classifications, and put forward suggestions for improving their use in translational breast cancer research.
Collapse
Affiliation(s)
- Deborah L Holliday
- Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK
| | | |
Collapse
|
376
|
Biggs T, Foreman J, Sundstrom L, Regenass U, Lehembre F. Antitumor compound testing in glioblastoma organotypic brain cultures. ACTA ACUST UNITED AC 2011; 16:805-17. [PMID: 21807962 DOI: 10.1177/1087057111414895] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and most aggressive type of primary brain tumor. Identification of new therapeutic regimens is urgently needed. A major challenge remains the development of a relevant in vitro model system with the necessary capacity and flexibility to profile compounds. The authors have developed and characterized a 3D culture system of brain cells (brain Hi-Spot) where GBM-derived cells can be incorporated (GBM/brain Hi-Spot). Immuno-fluorescence and electrophysiological recordings demonstrate that brain Hi-Spots recapitulate many features of brain tissue. Within this tissue, GBM-derived cell growth is monitored using a fluorescence assay. GBM-derived cells growing in Hi-Spots form tumor nodules that display properties of GBM such as 5-Ala positive staining, an acidic environment, and tumor-surrounding astrocyte activation. Temozolomide inhibits GBM growth in brain Hi-Spots, but it is not effective in 2D cultures. Other chemotherapeutics that have proven to be inefficient in GBM treatment display low activity against GBM-derived cells growing in brain Hi-Spots in comparison to their activity against GBM 2D cultures. These findings suggest that GBM/brain Hi-Spots represent a simple system to culture cells derived from brain tumors in an orthotopic environment in vitro and that the system is reliable to test GBM targeting compounds.
Collapse
|
377
|
Xu F, Wu J, Wang S, Durmus NG, Gurkan UA, Demirci U. Microengineering methods for cell-based microarrays and high-throughput drug-screening applications. Biofabrication 2011; 3:034101. [PMID: 21725152 DOI: 10.1088/1758-5082/3/3/034101] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Screening for effective therapeutic agents from millions of drug candidates is costly, time consuming, and often faces concerns due to the extensive use of animals. To improve cost effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer cell microarrays with multiwell plate assays have been developed. Integration of cell microarrays with microfluidic systems has facilitated automated and controlled component loading, significantly reducing the consumption of the candidate compounds and the target cells. Even though these methods significantly increased the throughput compared to conventional in vitro testing systems and in vivo animal models, the cost associated with these platforms remains prohibitively high. Besides, there is a need for three-dimensional (3D) cell-based drug-screening models which can mimic the in vivo microenvironment and the functionality of the native tissues. Here, we present the state-of-the-art microengineering approaches that can be used to develop 3D cell-based drug-screening assays. We highlight the 3D in vitro cell culture systems with live cell-based arrays, microfluidic cell culture systems, and their application to high-throughput drug screening. We conclude that among the emerging microengineering approaches, bioprinting holds great potential to provide repeatable 3D cell-based constructs with high temporal, spatial control and versatility.
Collapse
Affiliation(s)
- Feng Xu
- Department of Medicine, Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
378
|
Yoo SJ, Kim J, Lee CS, Nam Y. Simple and novel three dimensional neuronal cell culture using a micro mesh scaffold. Exp Neurobiol 2011; 20:110-5. [PMID: 22110368 PMCID: PMC3213700 DOI: 10.5607/en.2011.20.2.110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 02/18/2011] [Indexed: 01/18/2023] Open
Abstract
Conventional method of cell culture studies has been performed on two-dimensional substrates. Recently, three-dimensional (3D) cell culture platforms have been a subject of interest as cells in 3D has significant differences in cell differentiation and behavior. Here we report a novel approach of 3D cell culture using a nylon micro mesh (NMM) as a cell culture scaffold. NMM is commonly used in cell culture laboratory, which eliminates the requirement of special technicality for biological laboratories. Furthermore, it is made of a micro-meter thick nylon fibers, which was adequate to engineer in cellular scales. We demonstrate the feasibility of the NMM as a 3D scaffold using E18 rat hippocampal neurons. NMM could be coated with cell adhesive coatings (polylysine or polyelectrolyte) and neurons showed good viability. Cells were also encapsulated in an agarose hydrogel and cultured in 3D using NMM. In addition, the 3D pattern of NMM could be used as a guidance cue for neurite outgrowth. The flexible and elastic properties of NMMs made it easier to handle the scaffold and also readily applicable for large-scale tissue engineering applications.
Collapse
Affiliation(s)
- Sang Jin Yoo
- Department of Bio and Brain Engineering, KAIST, Daejeon 305-701, Korea
| | | | | | | |
Collapse
|
379
|
CD133/prominin1 is prognostic for GBM patient's survival, but inversely correlated with cysteine cathepsins' expression in glioblastoma derived spheroids. Radiol Oncol 2011; 45:102-15. [PMID: 22933943 PMCID: PMC3423731 DOI: 10.2478/v10019-011-0015-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Accepted: 04/11/2011] [Indexed: 01/10/2023] Open
Abstract
Introduction CD133 is a marker for a population of glioblastoma (GBM) and normal neural stem cells (NNSC). We aimed to reveal whether the migratory potential and differentiation of these stem cells is associated with CD133 expression and with cathepsin proteases (Cats). Materials and methods. The invasiveness of normal NNSC, GBM/CD133+ cell lines and GBM spheroids was evaluated in 3D collagen, as well as of U87-MG and normal astrocytes (NHA) grown in monolayers in 2D Matrigel. Expression of Cats B, L and S was measured at mRNA and activity levels and their relation to invasiveness, to CD133 mRNA in 26 gliomas, and to the survival of these patients. Results The average yield of CD133+ cells from GBM samples was 9.6 %. Survival of patients with higher CD133 mRNA expression was significantly shorter (p< 0.005). Invasion, associated with proteolytic degradation of matrix, was higher in normal stem cells and GBM spheroids and cells than in isolated GBM CD133+ cells. In glioma samples, there was no correlation between CD133 mRNA expression and Cat mRNAs, but there was an inverse correlation with Cat activities. Conclusions The study confirms CD133 as a prognostic marker for the survival of GBM patients. We demonstrated that NNSC have higher invasion potential and invade the collagen matrix in a mode different from that of GBM, initiating stem cell spheres. This result could have implications for the design of new therapeutics, including protease inhibitors that specifically target invasive tumour stem cells. Increased activity of cathepsins in CD133– cells suggests their role in the invasive behaviour of GBM.
Collapse
|
380
|
Montanez-Sauri SI, Sung KE, Puccinelli JP, Pehlke C, Beebe DJ. Automation of three-dimensional cell culture in arrayed microfluidic devices. JOURNAL OF LABORATORY AUTOMATION 2011; 16:171-85. [PMID: 21609700 PMCID: PMC3104941 DOI: 10.1016/j.jala.2011.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Indexed: 12/22/2022]
Abstract
The increasing interest in studying the interactions between cells and the extracellular matrix (ECM) has created a need for high throughput low-cost three-dimensional (3D) culture systems. The recent development of tubeless microfluidics via passive pumping provides a high throughput microchannel culture platform compatible with existing high throughput infrastructures (e.g., automated liquid handlers). Here, we build on a previously reported high throughput two-dimensional system to create a robust automated system for 3D culture. Operational controls including temperature and sample handling have been characterized and automated. Human mammary fibroblasts (HMFs) suspended in type I collagen are loaded and cultured in microchannel arrays and used to optimize the system operational parameters. A Peltier cooler maintains the collagen as a liquid at 4 °C during cell seeding, followed by polymerization at 37 °C. Optimization of this platform is discussed (e.g., controlling collagen contraction, increasing cell viability, preventing the removal of microchannel contents), and 3D distribution of HMFs is examined by fluorescent microscopy. Finally, we validate the platform by automating a previously developed 3D breast carcinoma coculture assay. The platform allows more efficient 3D culture experiments and lays the foundation for high throughput studies of cell-ECM interactions.
Collapse
Affiliation(s)
| | - Kyung Eun Sung
- Department of Biomedical Engineering and Wisconsin Institutes for Medical Research, University of Wisconsin-Madison
| | - John P. Puccinelli
- Department of Biomedical Engineering and Wisconsin Institutes for Medical Research, University of Wisconsin-Madison
| | - Carolyn Pehlke
- Department of Biomedical Engineering and Wisconsin Institutes for Medical Research, University of Wisconsin-Madison
| | - David J. Beebe
- Department of Biomedical Engineering and Wisconsin Institutes for Medical Research, University of Wisconsin-Madison
| |
Collapse
|
381
|
Sieh S, Lubik AA, Clements JA, Nelson CC, Hutmacher DW. Interactions between human osteoblasts and prostate cancer cells in a novel 3D in vitro model. Organogenesis 2011; 6:181-8. [PMID: 21197221 DOI: 10.4161/org.6.3.12041] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 04/12/2010] [Indexed: 01/04/2023] Open
Abstract
Cell-cell and cell-matrix interactions play a major role in tumor morphogenesis and cancer metastasis. Therefore, it is crucial to create a model with a biomimetic microenvironment that allows such interactions to fully represent the pathophysiology of a disease for an in vitro study. This is achievable by using three-dimensional (3D) models instead of conventional two-dimensional (2D) cultures with the aid of tissue engineering technology. We are now able to better address the complex intercellular interactions underlying prostate cancer (CaP) bone metastasis through such models. In this study, we assessed the interaction of CaP cells and human osteoblasts (hOBs) within a tissue engineered bone (TEB) construct. Consistent with other in vivo studies, our findings show that intercellular and CaP cell-bone matrix interactions lead to elevated levels of matrix metalloproteinases, steroidogenic enzymes and the CaP biomarker, prostate specific antigen (PSA); all associated with CaP metastasis. Hence, it highlights the physiological relevance of this model. We believe that this model will provide new insights for understanding of the previously poorly understood molecular mechanisms of bone metastasis, which will foster further translational studies, and ultimately offer a potential tool for drug screening.
Collapse
Affiliation(s)
- Shirly Sieh
- Institute of Health and Biomedical Innovation, Queensland University of Technology, QLD, Australia
| | | | | | | | | |
Collapse
|
382
|
Gurkan UA, Kishore V, Condon KW, Bellido TM, Akkus O. A scaffold-free multicellular three-dimensional in vitro model of osteogenesis. Calcif Tissue Int 2011; 88:388-401. [PMID: 21318400 PMCID: PMC10132772 DOI: 10.1007/s00223-011-9467-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 01/21/2011] [Indexed: 01/28/2023]
Abstract
In vitro models of osteogenesis are essential for investigating bone biology and the effects of pharmaceutical, chemical, and physical cues on bone formation. Osteogenesis takes place in a complex three-dimensional (3D) environment with cells from both mesenchymal and hematopoietic origins. Existing in vitro models of osteogenesis include two-dimensional (2D) single type cell monolayers and 3D cultures. However, an in vitro scaffold-free multicellular 3D model of osteogenesis is missing. We hypothesized that the self-inductive ossification capacity of bone marrow tissue can be harnessed in vitro and employed as a scaffold-free multicellular 3D model of osteogenesis. Therefore, rat bone marrow tissue was cultured for 28 days in three settings: 2D monolayer, 3D homogenized pellet, and 3D organotypic explant. The ossification potential of marrow in each condition was quantified by micro-computed tomography. The 3D organotypic marrow explant culture resulted in the greatest level of ossification with plate-like bone formations (up to 5 mm in diameter and 0.24 mm in thickness). To evaluate the mimicry of the organotypic marrow explants to newly forming native bone tissue, detailed compositional and morphological analyses were performed, including characterization of the ossified matrix by histochemistry, immunohistochemistry, Raman microspectroscopy, energy dispersive X-ray spectroscopy, backscattered electron microscopy, and micromechanical tests. The results indicated that the 3D organotypic marrow explant culture model mimics newly forming native bone tissue in terms of the characteristics studied. Therefore, this platform holds significant potential to be used as a model of osteogenesis, offering an alternative to in vitro monolayer cultures and in vivo animal models.
Collapse
Affiliation(s)
- Umut A Gurkan
- Center for Biomedical Engineering at Brigham and Women's Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | | | | | | | | |
Collapse
|
383
|
Hyaluronic acid: evaluation as a potential delivery vehicle for vitronectin:growth factor complexes in wound healing applications. J Control Release 2011; 153:225-32. [PMID: 21457738 DOI: 10.1016/j.jconrel.2011.03.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 03/11/2011] [Accepted: 03/20/2011] [Indexed: 12/14/2022]
Abstract
We have previously reported that novel vitronectin:growth factor (VN:GF) complexes significantly increase re-epithelialization in a porcine deep dermal partial-thickness burn model. However, the potential exists to further enhance the healing response through combination with an appropriate delivery vehicle which facilitates sustained local release and reduced doses of VN:GF complexes. Hyaluronic acid (HA), an abundant constituent of the interstitium, is known to function as a reservoir for growth factors and other bioactive species. The physicochemical properties of HA confer it with an ability to sustain elevated pericellular concentrations of these species. This has been proposed to arise via HA prolonging interactions of the bioactive species with cell surface receptors and/or protecting them from degradation. In view of this, the potential of HA to facilitate the topical delivery of VN:GF complexes was evaluated. Two-dimensional (2D) monolayer cell cultures and 3D de-epidermised dermis (DED) human skin equivalent (HSE) models were used to test skin cell responses to HA and VN:GF complexes. Our 2D studies revealed that VN:GF complexes and HA stimulate the proliferation of human fibroblasts but not keratinocytes. Experiments in our 3D DED-HSE models showed that VN:GF complexes, both alone and in conjunction with HA, led to enhanced development of both the proliferative and differentiating layers in the DED-HSE models. However, there was no significant difference between the thicknesses of the epidermis treated with VN:GF complexes alone and VN:GF complexes together with HA. While the addition of HA did not enhance all the cellular responses to VN:GF complexes examined, it was not inhibitory, and may confer other advantages related to enhanced absorption and transport that could be beneficial in delivery of the VN:GF complexes to wounds.
Collapse
|
384
|
Retaining cell-cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer. Proc Natl Acad Sci U S A 2011; 108:6235-40. [PMID: 21444794 DOI: 10.1073/pnas.1015938108] [Citation(s) in RCA: 255] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Primary culture of the cancer cells from patients' tumors can provide crucial information of individual tumors, yet the technology has not been optimized until now. We developed an innovative culture method for primary colorectal cancer cells, based on the principle that cell-cell contact of cancer cells was maintained throughout the process. When tumor tissue was dissociated into cell clusters, in which cell-cell contact was retained, they rapidly formed spheroids that we termed cancer tissue-originated spheroids (CTOSs). CTOSs of colorectal cancer consisted of highly purified and viable cancer cells, and they were prepared with high efficiency. In immunodeficient mice, CTOSs formed xenograft tumors that retained the features of the parental tumors. Moreover, CTOSs were able to be cultured and expanded in vitro using a 3D culture system and stem cell culture medium. This method allowed evaluation of chemosensitivity and signal pathway activation in cancer cells from individual patients. Easy preparation and culture of pure primary cancer cells provides an innovative platform for studying cancer biology and developing personalized medicine.
Collapse
|
385
|
Xie Y, Rizzi SC, Dawson R, Lynam E, Richards S, Leavesley DI, Upton Z. Development of a three-dimensional human skin equivalent wound model for investigating novel wound healing therapies. Tissue Eng Part C Methods 2011; 16:1111-23. [PMID: 20109066 DOI: 10.1089/ten.tec.2009.0725] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Numerous difficulties are associated with the conduct of preclinical studies related to skin and wound repair. Use of small animal models such as rodents is not optimal because of their physiological differences to human skin and mode of wound healing. Although pigs have previously been used because of their human-like mode of healing, the expense and logistics related to their use also renders them suboptimal. In view of this, alternatives are urgently required to advance the field. The experiments reported herein were aimed at developing and validating a simple, reproducible, three-dimensional ex vivo de-epidermised dermis human skin equivalent wound model for the preclinical evaluation of novel wound therapies. Having established that the human skin equivalent wound model does in fact “heal," we tested the effect of two novel wound healing therapies. We also examined the utility of the model for studies exploring the mechanisms underpinning these therapies. Taken together the data demonstrate that these new models will have wide-spread application for the generation of fundamental new information on wound healing processes and also hold potential in facilitating preclinical optimization of dosage, duration of therapies, and treatment strategies prior to clinical trials.
Collapse
Affiliation(s)
- Yan Xie
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | |
Collapse
|
386
|
Gurkan UA, Krueger A, Akkus O. Ossifying Bone Marrow Explant Culture as a Three-Dimensional MechanoresponsiveIn VitroModel of Osteogenesis. Tissue Eng Part A 2011; 17:417-28. [PMID: 20807016 DOI: 10.1089/ten.tea.2010.0193] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Umut Atakan Gurkan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Adam Krueger
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Ozan Akkus
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| |
Collapse
|
387
|
Berchtold D, Fesser S, Bachmann G, Kaiser A, Eilert JC, Frohns F, Sadoni N, Muck J, Kremmer E, Eick D, Layer PG, Zink D. Nuclei of chicken neurons in tissues and three-dimensional cell cultures are organized into distinct radial zones. Chromosome Res 2011; 19:165-82. [PMID: 21249442 DOI: 10.1007/s10577-010-9182-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/22/2010] [Accepted: 12/22/2010] [Indexed: 12/15/2022]
Abstract
We used chicken retinospheroids (RS) to study the nuclear architecture of vertebrate cells in a three-dimensional (3D) cell culture system. The results showed that the different neuronal cell types of RS displayed an extreme form of radial nuclear organization. Chromatin was arranged into distinct radial zones which became already visible after DAPI staining. The distinct zones were enriched in different chromatin modifications and in different types of chromosomes. Active isoforms of RNA polymerase II were depleted in the outermost zone. Also chromocenters and nucleoli were radially aligned in the nuclear interior. The splicing factor SC35 was enriched at the central zone and did not show the typical speckled pattern of distribution. Evaluation of neuronal and non-neuronal chicken tissues showed that the highly ordered form of radial nuclear organization was also present in neuronal chicken tissues. Furthermore, the data revealed that the neuron-specific nuclear organization was remodeled when cells spread on a flat substrate. Monolayer cultures of a chicken cell line did not show this extreme form of radial organization. Rather, such monolayer cultures displayed features of nuclear organization which have been described before for many different types of monolayer cells. The finding that an extreme form radial nuclear organization, which has not been described before, is present in RS and tissues, but not in cells spread on a flat substrate, suggests that it would be important to complement studies on nuclear architecture performed with monolayer cells by studies on 3D cell culture systems and tissues.
Collapse
Affiliation(s)
- Doris Berchtold
- Department Biologie II, Ludwig-Maximilians-Universität (LMU) München, Biozentrum, Grosshadernerstr. 2, 82152, Planegg-Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
388
|
|
389
|
Wen Y, Zhang X, Yang ST. Microplate-reader compatible perfusion microbioreactor array for modular tissue culture and cytotoxicity assays. Biotechnol Prog 2010; 26:1135-44. [PMID: 20730768 DOI: 10.1002/btpr.423] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
One important application of tissue engineering is to provide novel in vitro models for cell-based assays. Perfusion microbioreactor array provides a useful tool for microscale tissue culture in parallel. However, high-throughput data generation has been a challenge. In this study, a 4 x 4 array of perfusion microbioreactors was developed for plate-reader compatible, time-series quantification of cell proliferation, and cytotoxicity assays. The device was built through multilayer soft lithography. Low-cost nonwoven polyethylene terephthalate fibrous matrices were integrated as modular tissue culture scaffolds. Human colon cancer HT-29 cells with stable expression of enhanced green fluorescent protein were cultured in the device with continuous perfusion and reached a cell density over 5 x 10(7) cells/mL. The microbioreactor array was used to test a chemotherapeutic drug 5-FU for its effect on HT-29 cells in continuous perfusion 3D culture. Compared with conventional 2D cytotoxicity assay, significant drug resistance was observed in the 3D perfusion culture.
Collapse
Affiliation(s)
- Yuan Wen
- William G. Lowrie Dept. of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
390
|
Studies on neuronal differentiation and signalling processes with a novel impedimetric biosensor. Biosens Bioelectron 2010; 26:1407-13. [DOI: 10.1016/j.bios.2010.07.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 07/08/2010] [Accepted: 07/17/2010] [Indexed: 11/22/2022]
|
391
|
Pampaloni F, Stelzer EHK, Leicht S, Marcello M. Madin-Darby canine kidney cells are increased in aerobic glycolysis when cultured on flat and stiff collagen-coated surfaces rather than in physiological 3-D cultures. Proteomics 2010; 10:3394-413. [DOI: 10.1002/pmic.201000236] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
392
|
Three-dimensionally specific inhibition of DNA repair-related genes by activated KRAS in colon crypt model. Neoplasia 2010; 12:397-404. [PMID: 20454511 DOI: 10.1593/neo.10170] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Revised: 02/15/2010] [Accepted: 02/16/2010] [Indexed: 01/19/2023] Open
Abstract
Growth and differentiation of colonic epithelium are regulated in the three-dimensional (3D) physiological architecture, colonic crypt, and deregulation of 3D interactions is involved in tumorigenesis. Cell-based 3D culture systems provide a suitable approach bridging the gap between two-dimensional (2D) culture and animal models. KRAS mutations are found at high frequencies in human colorectal cancer (CRC); however, KRAS-targeted cancer therapy has not been developed. Here, we have established a 3D cell culture model resembling the colonic crypt by use of HKe3 cells, human CRC HCT116 cells disrupted at activated KRAS. In this 3D colonic crypt model, HKe3 cells showed the features of time course-dependent transit-amplifying and terminal-differentiated stages, which are characteristic of normal colonic crypt. On the basis of the features of HCT116 cells, activated KRAS inhibited normal cell polarity and apoptosis in 3D culture. The expression of DNA repair-related tumor suppressor genes including TP53, BRCA1, BRCA2, and EXO-1 was markedly suppressed by activated KRAS in 3D culture but not in 2D culture. These results together suggest that activated KRAS plays critical roles in the accumulation of genetic alterations through inhibition of DNA repair genes and apoptosis and that this 3D culture model will provide a useful tool for investigating the molecular mechanisms of CRC development.
Collapse
|
393
|
Raghavan S, Shen CJ, Desai RA, Sniadecki NJ, Nelson CM, Chen CS. Decoupling diffusional from dimensional control of signaling in 3D culture reveals a role for myosin in tubulogenesis. J Cell Sci 2010; 123:2877-83. [PMID: 20682635 DOI: 10.1242/jcs.055079] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We present a novel microfabricated platform to culture cells within arrays of micrometer-scale three-dimensional (3D) extracellular matrix scaffolds (microgels). These microscale cultures eliminate diffusion barriers that are intrinsic to traditional 3D culture systems (macrogels) and enable uniform cytokine stimulation of the entire culture population, as well as allow immunolabeling, imaging and population-based biochemical assays across the relatively coplanar microgels. Examining early signaling associated with hepatocyte growth factor (HGF)-mediated scattering and tubulogenesis of MDCK cells revealed that 3D culture modulates cellular responses both through dimensionality and altered stimulation rates. Comparing responses in 2D culture, microgels and macrogels demonstrated that HGF-induced ERK signaling was driven by the dynamics of stimulation and not by whether cells were in a 2D or 3D environment, and that this ERK signaling was equally important for HGF-induced cell scattering on 2D substrates and tubulogenesis in 3D. By contrast, we discovered a specific HGF-induced increase in myosin expression leading to sustained downregulation of myosin activity that occurred only within 3D contexts and was required for 3D tubulogenesis but not 2D scattering. Interestingly, although absent in cells on collagen-coated plates, downregulation of myosin activity also occurred for cells on collagen gels, but was transient and mediated by a combination of myosin dephosphorylation and enhanced myosin expression. Furthermore, upregulating myosin activity via siRNA targeted to a myosin phosphatase did not attenuate scattering in 2D but did inhibit tubulogenesis in 3D. Together, these results demonstrate that cellular responses to soluble cues in 3D culture are regulated by both rates of stimulation and by matrix dimensionality, and highlight the importance of decoupling these effects to identify early signals relevant to cellular function in 3D environments.
Collapse
Affiliation(s)
- Srivatsan Raghavan
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
394
|
Pham EA, Ho WJ, Kamei DT, Wu BM. Modification of the diphenylamine assay for cell quantification in three-dimensional biodegradable polymeric scaffolds. J Biomed Mater Res B Appl Biomater 2010; 92:499-507. [PMID: 19957351 DOI: 10.1002/jbm.b.31543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As three-dimensional (3D) cell culture systems gain popularity in biomedical research, reliable assays for cell proliferation within 3D matrices become more important. Although many cell quantification techniques have been established for cells cultured on nondegradable plastic culture dishes and cells suspended in media, it is becoming increasingly clear that cell quantification after prolonged culture in 3D polymeric scaffolds imposes unique challenges because the added presence of polymeric materials may contribute to background signal via various mechanisms including autofluorescence, diffusion gradients, and sequestering effects. Thus, additional steps are required to ensure complete isolation of cells from the 3D scaffold. The diphenylamine assay isolates cellular DNA, degrades the polymeric matrix materials, and reacts with the DNA to yield a colorimetric response. Thus, we report here a practical modification of the diphenylamine assay and show that the assay quantifies cells in 3D polyester scaffolds reliably and reproducibly as long as the necessary amount of the acidic working reagent is present. Our study also demonstrates that the sensitivity of the assay can be optimized by controlling the dimensions of the sampling volume. Overall, the DPA assay offers an attractive solution for challenges associated with 3D cell quantification.
Collapse
Affiliation(s)
- Edward A Pham
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
395
|
de Barros APDN, Takiya CM, Garzoni LR, Leal-Ferreira ML, Dutra HS, Chiarini LB, Meirelles MN, Borojevic R, Rossi MID. Osteoblasts and bone marrow mesenchymal stromal cells control hematopoietic stem cell migration and proliferation in 3D in vitro model. PLoS One 2010; 5:e9093. [PMID: 20161704 PMCID: PMC2816998 DOI: 10.1371/journal.pone.0009093] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 01/12/2010] [Indexed: 01/02/2023] Open
Abstract
Background Migration, proliferation, and differentiation of hematopoietic stem cells (HSCs) are dependent upon a complex three-dimensional (3D) bone marrow microenvironment. Although osteoblasts control the HSC pool, the subendosteal niche is complex and its cellular composition and the role of each cell population in HSC fate have not been established. In vivo models are complex and involve subtle species-specific differences, while bidimensional cultures do not reflect the 3D tissue organization. The aim of this study was to investigate in vitro the role of human bone marrow–derived mesenchymal stromal cells (BMSC) and active osteoblasts in control of migration, lodgment, and proliferation of HSCs. Methodology/Principal Findings A complex mixed multicellular spheroid in vitro model was developed with human BMSC, undifferentiated or induced for one week into osteoblasts. A clear limit between the two stromal cells was established, and deposition of extracellular matrix proteins fibronectin, collagens I and IV, laminin, and osteopontin was similar to the observed in vivo. Noninduced BMSC cultured as spheroid expressed higher levels of mRNA for the chemokine CXCL12, and the growth factors Wnt5a and Kit ligand. Cord blood and bone marrow CD34+ cells moved in and out the spheroids, and some lodged at the interface of the two stromal cells. Myeloid colony-forming cells were maintained after seven days of coculture with mixed spheroids, and the frequency of cycling CD34+ cells was decreased. Conclusions/Significance Undifferentiated and one-week osteo-induced BMSC self-assembled in a 3D spheroid and formed a microenvironment that is informative for hematopoietic progenitor cells, allowing their lodgment and controlling their proliferation.
Collapse
Affiliation(s)
- Ana Paula D. N. de Barros
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christina M. Takiya
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana R. Garzoni
- Departamento de Ultrastructura e Biologia Celular, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Hélio S. Dutra
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana B. Chiarini
- Instituto de Biofísica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Nazareth Meirelles
- Departamento de Ultrastructura e Biologia Celular, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Radovan Borojevic
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Isabel D. Rossi
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
396
|
Kim S, Kim HJ, Jeon NL. Biological applications of microfluidic gradient devices. Integr Biol (Camb) 2010; 2:584-603. [DOI: 10.1039/c0ib00055h] [Citation(s) in RCA: 277] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
397
|
Tibbitt MW, Kloxin AM, Dyamenahalli KU, Anseth KS. Controlled two-photon photodegradation of PEG hydrogels to study and manipulate subcellular interactions on soft materials. SOFT MATTER 2010; 6:5100-5108. [PMID: 21984881 PMCID: PMC3188553 DOI: 10.1039/c0sm00174k] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cell adhesion and detachment to and from the extracellular matrix (ECM) are critical regulators of cell function and fate due to the exchange of mechanical signals between the cell and its microenvironment. To study this cell mechanobiology, researchers have developed several innovative methods to investigate cell adhesion in vitro; however, most of these culture platforms are unnaturally stiff or static. To better capture the soft, dynamic nature of the ECM, we present a PEG-based hydrogel in which the context and geometry of the extracellular space can be precisely controlled in situ via two-photon induced erosion. Here, we characterize the two-photon erosion process, demonstrate its efficacy in the presence of cells, and subsequently exploit it to induce subcellular detachment from soft hydrogels. A working space was established for a range of laser powers required to induce complete erosion of the gel, and these data are plotted with model predictions. From this working space, two-photon irradiation parameters were selected for complete erosion in the presence of cells. Micron-scale features were eroded on and within a gel to demonstrate the resolution of patterning with these irradiation conditions. Lastly, two-photon irradiation was used to erode the material at the cell-gel interface to remove cell adhesion sites selectively, and cell retraction was monitored to quantify the mesenchymal stem cell (MSC) response to subcellular detachment from soft materials.
Collapse
Affiliation(s)
- Mark W. Tibbitt
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO
| | - April M. Kloxin
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO
| | | | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO
| |
Collapse
|
398
|
Wang Y, Zhao Z, Li Y, Li Y, Wu J, Fan X, Yang P. Up-regulated alpha-actin expression is associated with cell adhesion ability in 3-D cultured myocytes subjected to mechanical stimulation. Mol Cell Biochem 2009; 338:175-81. [PMID: 20024607 DOI: 10.1007/s11010-009-0351-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 12/03/2009] [Indexed: 12/15/2022]
Abstract
This study was aimed to investigate the alteration of alpha-actin in three-dimensionally (3-D) cultured myocytes under cyclic tensile stress loading. Myocytes were collected from neonatal SD rat's lateral pterygoid muscle for primary cell culture. The third-passage cells were implanted and 3-D cultured in poly lactic-co-glycolic acid (PLGA) scaffold, and then subjected to cyclic tensile stress (0.5 Hz, 2,000 microstrain) for 0, 2, 4, 8, 12, and 24 h through a four-point bending strain system. The alpha-actin mRNA was investigated by semi-quantitative RT-PCR. The alpha-actin protein expression was examined by immunofluorescent cytochemistry, laser confocal scanning microscopy (LCSM), and image analysis technology. The dynamic adhesion of myocytes to PLGA scaffolds was investigated by fluorescence microscope and the viability of the myocytes was measured by MTT assay. After mechanical loading, the alpha-actin mRNA increased at 2 h and then declined. The alpha-actin protein expression kept increased until peaked at 12 h, but declined at 24 h. The time course changing of alpha-actin protein expression parallelled with that of cell adhesion ability. It is concluded that alpha-actin expression is probably associated with cell adhesion ability in myocytes subjected to mechanical stimulation.
Collapse
Affiliation(s)
- Yu Wang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, West China Stomatology Hospital Sichuan University, Chengdu, Sichuan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
399
|
Duggal S, Frønsdal KB, Szöke K, Shahdadfar A, Melvik JE, Brinchmann JE. Phenotype and gene expression of human mesenchymal stem cells in alginate scaffolds. Tissue Eng Part A 2009; 15:1763-73. [PMID: 19115828 DOI: 10.1089/ten.tea.2008.0306] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human mesenchymal stem cells (MSC) are popular candidates for tissue engineering. MSC are defined by their properties in two-dimensional (2D) culture systems. Cells in 2D are known to differ from their in vivo counterparts in cell shape, proliferation, and gene expression. Little is so far known about the phenotype and gene expression of cells in three-dimensional (3D) culture systems. To begin to unravel the impact of 3D versus 2D culture conditions on MSC, we have established MSC from adipose tissue and bone marrow in 3D cultures in alginate beads covalently modified with the tripeptide arginine-glycine-aspartic acid (RGD), the integrin-binding motif found in several molecules within the extracellular matrix. The MSC changed from their fibroblastoid shape (2D) to a small, compact shape when embedded in RGD alginate (3D). High viability was maintained throughout the experiment. The MSC retained expression of integrins known to bind RGD, and practically ceased to proliferate. Microarray analysis revealed that the gene expression in cells in RGD alginate was different both from the cells cultured in 2D and from prospectively isolated, uncultured MSC, but more similar to 2D cells. As alginate may be entirely dissolved, leaving the cells as single cell suspensions for various analyses, this represents a useful model for the study of cells in 3D cultures.
Collapse
Affiliation(s)
- Shivali Duggal
- Institute of Immunology, Rikshospitalet University Hospital, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
400
|
Hou L, Liu T, Tan J, Meng W, Deng L, Yu H, Zou X, Wang Y. Long-term culture of leukemic bone marrow primary cells in biomimetic osteoblast niche. Int J Hematol 2009; 90:281-291. [PMID: 19669860 DOI: 10.1007/s12185-009-0392-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 07/16/2009] [Accepted: 07/17/2009] [Indexed: 02/05/2023]
Abstract
We constructed a "biomimetic osteoblast niche" with bio-derived bone as a scaffold, on which we seeded marrow mesenchymal stem cells (MSCs) from CML patients, and induced the MSCs to differentiate into osteoblasts. Bone marrow mononuclear cells from CML patients were cultured in the biomimetic niche (3D culture system) or a 2D culture system with the induced MSCs/osteoblasts as a feeder cell layer for 2 and 5 weeks without adding exogenous cytokines. Cultured cells were analyzed regarding their phenotypes and functions using flow cytometry, colony-forming unit (CFU) assay and long-term culture-initiating cells (LTC-IC) assay. All cultured and colony cells in the LTC-IC assay were collected and analyzed by fluorescent in situ hybridization to identify Ph (bcr/abl)-positive cells. Our results showed that all parameters were higher in the 3D than in the 2D system, either at 2 or 5 weeks, i.e., regarding the number of CD34(+) cells (8,277.00 vs. 4,490.75 or 2,276.75 vs. 786.00 per well on average, respectively), number of CD34(+)/CD38(-) cells (1,207.50 vs. 474.25 or 497.25 vs. 114.25 per well on average, respectively), numbers of CFUs (103.33 vs. 79 or 47.0 vs. 21.67/10(5) MNCs; 189.33 vs. 131.00 or 10.33 vs. 3.67 per well on average, respectively), frequency of LTC-ICs (2.23 x 10(-5) vs. 1.40 x 10(-5) or 1.86 x 10(-5) vs. 0.64 x 10(-5), respectively) and number of remaining LTC-ICs (2.80 vs. 2.03 or 0.46 vs. 0.07 per well on average, respectively). The Ph (bcr/abl)-positive cell fraction was reduced in both systems during culture, but in the 3D system, it was not as rapid as in the 2D system and showed a leukemic predominance. In conclusion, our "biomimetic osteoblast niche" might provide a more adaptive microenvironment for leukemic stem/progenitor cell growth. The biological characteristics of leukemic stem/progenitor cells were partially maintained. It was suggested that the 3D biomimetic niche might be a new tool for studying the behaviors of leukemic hematopoietic stem cells/hematopoietic progenitor cells in vitro.
Collapse
Affiliation(s)
- Li Hou
- Department of Hematology, Hematology Research Laboratory, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, People's Republic of China
| | - Ting Liu
- Department of Hematology, Hematology Research Laboratory, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, People's Republic of China.
| | - Jing Tan
- Department of Hematology, Hematology Research Laboratory, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, People's Republic of China
| | - Wentong Meng
- Department of Hematology, Hematology Research Laboratory, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, People's Republic of China
| | - Li Deng
- Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, People's Republic of China
| | - Hongtao Yu
- Department of Hematology, Hematology Research Laboratory, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, People's Republic of China
| | - Xingli Zou
- Department of Hematology, Hematology Research Laboratory, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, People's Republic of China
| | - Yuchun Wang
- Department of Hematology, Hematology Research Laboratory, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|