351
|
Zhu H, Xia R, Zhao B, An YQ, Dardick CD, Callahan AM, Liu Z. Unique expression, processing regulation, and regulatory network of peach (Prunus persica) miRNAs. BMC PLANT BIOLOGY 2012; 12:149. [PMID: 22909020 PMCID: PMC3542160 DOI: 10.1186/1471-2229-12-149] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 08/13/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) have recently emerged as important gene regulators in plants. MiRNAs and their targets have been extensively studied in Arabidopsis and rice. However, relatively little is known about the characterization of miRNAs and their target genes in peach (Prunus persica), which is a complex crop with unique developmental programs. RESULTS We performed small RNA deep sequencing and identified 47 peach-specific and 47 known miRNAs or families with distinct expression patterns. Together, the identified miRNAs targeted 80 genes, many of which have not been reported previously. Like the model plant systems, peach has two of the three conserved trans-acting siRNA biogenesis pathways with similar mechanistic features and target specificity. Unique to peach, three of the miRNAs collectively target 49 MYBs, 19 of which are known to regulate phenylpropanoid metabolism, a key pathway associated with stone hardening and fruit color development, highlighting a critical role of miRNAs in the regulation of peach fruit development and ripening. We also found that the majority of the miRNAs were differentially regulated in different tissues, in part due to differential processing of miRNA precursors. Up to 16% of the peach-specific miRNAs were differentially processed from their precursors in a tissue specific fashion, which has been rarely observed in plant cells. The miRNA precursor processing activity appeared not to be coupled with its transcriptional activity but rather acted independently in peach. CONCLUSIONS Collectively, the data characterizes the unique expression pattern and processing regulation of peach miRNAs and demonstrates the presence of a complex, multi-level miRNA regulatory network capable of targeting a wide variety of biological functions, including phenylpropanoid pathways which play a multifaceted spatial-temporal role in peach fruit development.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Appalachian Fruit Research Station, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, 25430, USA
| | - Rui Xia
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Alson H. Smith Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University, Winchester, VA, 22602, USA
- Appalachian Fruit Research Station, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, 25430, USA
| | - Bingyu Zhao
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Yong-qiang An
- USDA-ARS, Plant Genetic Research, Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO, 63132, USA
| | - Chris D Dardick
- Appalachian Fruit Research Station, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, 25430, USA
| | - Ann M Callahan
- Appalachian Fruit Research Station, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, 25430, USA
| | - Zongrang Liu
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Appalachian Fruit Research Station, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, 25430, USA
| |
Collapse
|
352
|
Small RNA profiling of virus-infected grapevines: evidences for virus infection-associated and variety-specific miRNAs. Funct Integr Genomics 2012; 12:659-69. [DOI: 10.1007/s10142-012-0292-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 12/11/2022]
|
353
|
Barrera-Figueroa BE, Gao L, Wu Z, Zhou X, Zhu J, Jin H, Liu R, Zhu JK. High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice. BMC PLANT BIOLOGY 2012; 12:132. [PMID: 22862743 PMCID: PMC3431262 DOI: 10.1186/1471-2229-12-132] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/24/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are small RNA molecules that play important regulatory roles in plant development and stress responses. Identification of stress-regulated miRNAs is crucial for understanding how plants respond to environmental stimuli. Abiotic stresses are one of the major factors that limit crop growth and yield. Whereas abiotic stress-regulated miRNAs have been identified in vegetative tissues in several plants, they are not well studied in reproductive tissues such as inflorescences. RESULTS We used Illumina deep sequencing technology to sequence four small RNA libraries that were constructed from the inflorescences of rice plants that were grown under control condition and drought, cold, or salt stress. We identified 227 miRNAs that belong to 127 families, including 70 miRNAs that are not present in the miRBase. We validated 62 miRNAs (including 10 novel miRNAs) using published small RNA expression data in DCL1, DCL3, and RDR2 RNAi lines and confirmed 210 targets from 86 miRNAs using published degradome data. By comparing the expression levels of miRNAs, we identified 18, 15, and 10 miRNAs that were regulated by drought, cold and salt stress conditions, respectively. In addition, we identified 80 candidate miRNAs that originated from transposable elements or repeats, especially miniature inverted-repeat elements (MITEs). CONCLUSION We discovered novel miRNAs and stress-regulated miRNAs that may play critical roles in stress response in rice inflorescences. Transposable elements or repeats, especially MITEs, are rich sources for miRNA origination.
Collapse
Affiliation(s)
- Blanca E Barrera-Figueroa
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
- Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec, Oaxaca, 38601, Mexico
| | - Lei Gao
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Zhigang Wu
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Xuefeng Zhou
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Jianhua Zhu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Hailing Jin
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Renyi Liu
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
354
|
Characterization of microRNAs expression during maize seed development. BMC Genomics 2012; 13:360. [PMID: 22853295 PMCID: PMC3468377 DOI: 10.1186/1471-2164-13-360] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 07/09/2012] [Indexed: 12/21/2022] Open
Abstract
Background MicroRNAs (miRNAs) are approximately 20-22 nt non-coding RNAs that play key roles in many biological processes in both animals and plants. Although a number of miRNAs were identified in maize, the function of miRNA in seed development was merely discussed. Results In this study, two small RNA libraries were sequenced, and a total reads of 9,705,761 and 9,005,563 were generated from developing seeds and growing leaves, respectively. Further analysis identified 125 known miRNAs in seeds and 127 known miRNAs in leaves. 54 novel miRNAs were identified and they were not reported in other plants. Additionally, some miRNA*s of these novel miRNAs were detected. Potential targets of all novel miRNAs were predicted based on our strict criteria. In addition to deep-sequencing, miRNA microarray study confirmed the higher expression of several miRNAs in seeds. In summary, our results indicated the distinct expression of miRNAs during seed development. Conclusions We had identified 125 and 127 known miRNAs from seeds and leaves in maize, and a total of 54 novel miRNAs were discovered. The different miRNA expression profile in developing seeds were revealed by both sequencing and microarray studies.
Collapse
|
355
|
Lertpanyasampatha M, Gao L, Kongsawadworakul P, Viboonjun U, Chrestin H, Liu R, Chen X, Narangajavana J. Genome-wide analysis of microRNAs in rubber tree (Hevea brasiliensis L.) using high-throughput sequencing. PLANTA 2012; 236:437-45. [PMID: 22407387 PMCID: PMC3405184 DOI: 10.1007/s00425-012-1622-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/26/2012] [Indexed: 05/09/2023]
Abstract
MicroRNAs (miRNAs) are short RNAs with essential roles in gene regulation in various organisms including higher plants. In contrast to the vast information on miRNAs from many economically important plants, almost nothing has been reported on the identification or analysis of miRNAs from rubber tree (Hevea brasiliensis L.), the most important natural rubber-producing crop. To identify miRNAs and their target genes in rubber tree, high-throughput sequencing combined with a computational approach was performed. Four small RNA libraries were constructed for deep sequencing from mature and young leaves of two rubber tree clones, PB 260 and PB 217, which provide high and low latex yield, respectively. 115 miRNAs belonging to 56 known miRNA families were identified, and northern hybridization validated miRNA expression and revealed developmental stage-dependent and clone-specific expression for some miRNAs. We took advantage of the newly released rubber tree genome assembly and predicted 20 novel miRNAs. Further, computational analysis uncovered potential targets of the known and novel miRNAs. Predicted target genes included not only transcription factors but also genes involved in various biological processes including stress responses, primary and secondary metabolism, and signal transduction. In particular, genes with roles in rubber biosynthesis are predicted targets of miRNAs. This study provides a basic catalog of miRNAs and their targets in rubber tree to facilitate future improvement and exploitation of rubber tree.
Collapse
Affiliation(s)
- Manassawe Lertpanyasampatha
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Rd., Rajthewee, Bangkok 10400, Thailand
| | - Lei Gao
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | | | - Unchera Viboonjun
- Department of Plant Science, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Hervé Chrestin
- Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Renyi Liu
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Jarunya Narangajavana
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Rd., Rajthewee, Bangkok 10400, Thailand
| |
Collapse
|
356
|
Jagadeeswaran G, Nimmakayala P, Zheng Y, Gowdu K, Reddy UK, Sunkar R. Characterization of the small RNA component of leaves and fruits from four different cucurbit species. BMC Genomics 2012; 13:329. [PMID: 22823569 PMCID: PMC3431224 DOI: 10.1186/1471-2164-13-329] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 06/29/2012] [Indexed: 12/31/2022] Open
Abstract
Background MicroRNAs (miRNAs) are a class of non-coding small RNAs involved in post-transcriptional regulation of gene expression critical for plant growth and development, stress responses and other diverse biological processes in plants. The Cucurbitaceae or cucurbit family represents some of economically important species, particularly those with edible and medicinal fruits. Genomic tools for the molecular analysis of members of this family are just emerging. Partial draft genome sequence became available recently for cucumber and watermelon facilitating investigation of the small RNA component of the transcriptomes in cucurbits. Results We generated four small RNA libraries from bottle gourd (Lagenaria siceraria), Cucurbita moschata, Cucurbita pepo, and, watermelon (Citrullus lanatus var. lanatus) in order to identify conserved and novel lineage specific miRNAs in these cucurbits. Deep sequencing of small RNA libraries from these species resulted in 1,597,263, 532,948, 601,388, and 493,384 unique sRNA reads from bottle gourd, moschata, pepo and watermelon, respectively. Sequence analysis of these four libraries resulted in identification of 21 miRNA families that are highly conserved and 8 miRNA families that are moderately conserved in diverse dicots. We also identified 4 putative novel miRNAs in these plant species. Furthermore, the tasiRNAs were identified and their biogenesis was determined in these cucurbits. Small RNA blot analysis or q-PCR analyses of leaf and fruit tissues of these cucurbits showed differential expression of several conserved miRNAs. Interestingly, the abundance of several miRNAs in leaves and fruits of closely related C. moschata and C. pepo was also distinctly different. Target genes for the most conserved miRNAs are also predicted. Conclusion High-throughput sequencing of small RNA libraries from four cucurbit species has provided a glimpse of small RNA component in their transcriptomes. The analysis also showed considerable variation within four cucurbit species with regards to expression of individual miRNAs.
Collapse
Affiliation(s)
- Guru Jagadeeswaran
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | | | | | |
Collapse
|
357
|
Induction of cytoprotective pathways is central to the extension of lifespan conferred by multiple longevity pathways. PLoS Genet 2012; 8:e1002792. [PMID: 22829775 PMCID: PMC3400582 DOI: 10.1371/journal.pgen.1002792] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/11/2012] [Indexed: 11/19/2022] Open
Abstract
Many genetic and physiological treatments that extend lifespan also confer resistance to a variety of stressors, suggesting that cytoprotective mechanisms underpin the regulation of longevity. It has not been established, however, whether the induction of cytoprotective pathways is essential for lifespan extension or merely correlated. Using a panel of GFP-fused stress response genes, we identified the suites of cytoprotective pathways upregulated by 160 gene inactivations known to increase Caenorhabditis elegans longevity, including the mitochondrial UPR (hsp-6, hsp-60), the ER UPR (hsp-4), ROS response (sod-3, gst-4), and xenobiotic detoxification (gst-4). We then screened for other gene inactivations that disrupt the induction of these responses by xenobiotic or genetic triggers, identifying 29 gene inactivations required for cytoprotective gene expression. If cytoprotective responses contribute directly to lifespan extension, inactivation of these genes would be expected to compromise the extension of lifespan conferred by decreased insulin/IGF-1 signaling, caloric restriction, or the inhibition of mitochondrial function. We find that inactivation of 25 of 29 cytoprotection-regulatory genes shortens the extension of longevity normally induced by decreased insulin/IGF-1 signaling, disruption of mitochondrial function, or caloric restriction, without disrupting normal longevity nearly as dramatically. These data demonstrate that induction of cytoprotective pathways is central to longevity extension and identify a large set of new genetic components of the pathways that detect cellular damage and couple that detection to downstream cytoprotective effectors. Many mutations that increase animal lifespan also confer stress tolerance, suggesting that cytoprotective mechanisms underpin the regulation of longevity. It has not been established, however, whether the induction of individual cytoprotective pathways is essential for lifespan extension, or merely correlated. To establish whether the regulatory pathways for the induction of cytoprotective responses are key in the extension of lifespan, we performed an RNAi screen for gene inactivations that decouple the activation of cytoprotective pathways from xenobiotic stimuli that normally induce them. The screen identified 29 genes that constitute the regulatory cascades of the unfolded protein response, oxidative stress response, and detoxification. These upstream regulatory genes are critical to stress tolerance and the extension of lifespan conferred by decreased insulin/IGF-1 signaling, disruption of mitochondrial function, or caloric restriction, but have little effect on normal longevity.
Collapse
|
358
|
Mittal D, Madhyastha DA, Grover A. Genome-wide transcriptional profiles during temperature and oxidative stress reveal coordinated expression patterns and overlapping regulons in rice. PLoS One 2012; 7:e40899. [PMID: 22815860 PMCID: PMC3397947 DOI: 10.1371/journal.pone.0040899] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 06/14/2012] [Indexed: 11/19/2022] Open
Abstract
Genome wide transcriptional changes by cold stress, heat stress and oxidative stress in rice seedlings were analyzed. Heat stress resulted in predominant changes in transcripts of heat shock protein and heat shock transcription factor genes, as well as genes associated with synthesis of scavengers of reactive oxygen species and genes that control the level of sugars, metabolites and auxins. Cold stress treatment caused differential expression of transcripts of various transcription factors including desiccation response element binding proteins and different kinases. Transcripts of genes that are part of calcium signaling, reactive oxygen scavenging and diverse metabolic reactions were differentially expressed during cold stress. Oxidative stress induced by hydrogen peroxide treatment, resulted in significant up-regulation in transcript levels of genes related to redox homeostasis and down-regulation of transporter proteins. ROS homeostasis appeared to play central role in response to temperature extremes. The key transcription factors that may underlie the concerted transcriptional changes of specific components in various signal transduction networks involved are highlighted. Co-ordinated expression pattern and promoter architectures based analysis (promoter models and overrepresented transcription factor binding sites) suggested potential regulons involved in stress responses. A considerable overlap was noted at the level of transcription as well as in regulatory modules of differentially expressed genes.
Collapse
Affiliation(s)
- Dheeraj Mittal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | | | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
- * E-mail:
| |
Collapse
|
359
|
Yu LJ, Luo YF, Liao B, Xie LJ, Chen L, Xiao S, Li JT, Hu SN, Shu WS. Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa). THE NEW PHYTOLOGIST 2012; 195:97-112. [PMID: 22537016 DOI: 10.1111/j.1469-8137.2012.04154.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
• Arsenic (As) contamination of rice (Oryza sativa) is a worldwide concern and elucidating the molecular mechanisms of As accumulation in rice may provide promising solutions to the problem. Previous studies using microarray techniques to investigate transcriptional regulation of plant responses to As stress have identified numerous differentially expressed genes. However, little is known about the metabolic and regulatory network remodelings, or their interactions with microRNA (miRNA) in plants upon As(III) exposure. • We used Illumina sequencing to acquire global transcriptome alterations and miRNA regulation in rice under As(III) treatments of varying lengths of time and dosages. • We found that the response of roots was more distinct when the dosage was varied, whereas that of shoots was more distinct when the treatment time was varied. In particular, the genes involved in heavy metal transportation, jasmonate (JA) biosynthesis and signaling, and lipid metabolism were closely related to responses of rice under As(III) stress. Furthermore, we discovered 36 new As(III)-responsive miRNAs, 14 of which were likely involved in regulating gene expression in transportation, signaling, and metabolism. • Our findings highlight the significance of JA signaling and lipid metabolism in response to As(III) stress and their regulation by miRNA, which provides a foundation for subsequent functional research.
Collapse
Affiliation(s)
- Lu-jun Yu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | | | | | | | | | | | | | | | | |
Collapse
|
360
|
Trevisan S, Begheldo M, Nonis A, Quaggiotti S. The miRNA-mediated post-transcriptional regulation of maize response to nitrate. PLANT SIGNALING & BEHAVIOR 2012; 7:822-6. [PMID: 22751313 PMCID: PMC3583973 DOI: 10.4161/psb.20462] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Stress responses depend on the correct regulation of gene expression. The discovery that abiotic as well as biotic stresses can regulate miRNA levels, coupled with the identification and functional analyses of stress-associated genes as miRNA targets, provided clues about the vital role that several miRNAs may play in modulating plant resistance to stresses. Nitrogen availability seriously affects crops productivity and environment and the understanding of the miRNA-guided stress regulatory networks should provide new tools for the genetic improvement of nitrogen use efficiency of crops. A recent study revealed the potential role of a number of nitrate-responsive miRNAs in the maize adaptation to nitrate fluctuations. In particular, results obtained suggested that a nitrate depletion might regulate the expression of genes involved in the starvation adaptive response, by affecting the spatio-temporal expression patterns of specific miRNAs.
Collapse
Affiliation(s)
- Sara Trevisan
- DAFNAE Department; University of Padua, Agripolis; Viale dell’Università; Legnaro (Padova), Italy
| | - Maura Begheldo
- DAFNAE Department; University of Padua, Agripolis; Viale dell’Università; Legnaro (Padova), Italy
| | - Alberto Nonis
- DAFNAE Department; University of Padua, Agripolis; Viale dell’Università; Legnaro (Padova), Italy
| | - Silvia Quaggiotti
- DAFNAE Department; University of Padua, Agripolis; Viale dell’Università; Legnaro (Padova), Italy
| |
Collapse
|
361
|
Qiao M, Zhao Z, Song Y, Liu Z, Cao L, Yu Y, Li S, Xiang F. Proper regeneration from in vitro cultured Arabidopsis thaliana requires the microRNA-directed action of an auxin response factor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:14-22. [PMID: 22335436 DOI: 10.1111/j.1365-313x.2012.04944.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
MicroRNAs (miRNAs) are important for the regulation of gene expression, and are involved in many developmental processes. A set of miRNAs which were differentially expressed between cells of totipotent (C1) and non-totipotent (C2) Arabidopsis thaliana calli was identified, some of which were affected during callus formation or shoot regeneration. One of those down-regulated after 10 days' incubation in shoot induction medium (SIM) was MIR160a, for which transcript abundance was lower in C1 than in C2. Over-expression of MIR160 compromised shoot regeneration from in vitro cultured A. thaliana cells, while the transgenic expression of a miR160-resistant form of ARF10 was associated with a high level of shoot regeneration. The latter transgenic line also showed an elevated expression level of shoot meristem-specific genes CLAVATA3, CUP-SHAPEDCOTYLEDON1 and -2, and WUSCHEL. ARF10 expression was concentrated at the initiation sites of shoots or leaves, while during the early phase of shoot regeneration, the accumulation of the ARF10 mRNA was lower in the wild type than in the mARF10 transgenics, in contrast to the pattern of miR160 expression. Thus, miR160 and ARF10 both appear to be components of the regulation of shoot regeneration in vitro.
Collapse
Affiliation(s)
- Meng Qiao
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | | | | | | | | | | | | | | |
Collapse
|
362
|
Liu Z, Kumari S, Zhang L, Zheng Y, Ware D. Characterization of miRNAs in response to short-term waterlogging in three inbred lines of Zea mays. PLoS One 2012; 7:e39786. [PMID: 22768123 PMCID: PMC3387268 DOI: 10.1371/journal.pone.0039786] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 05/31/2012] [Indexed: 01/22/2023] Open
Abstract
Waterlogging of plants leads to low oxygen levels (hypoxia) in the roots and causes a metabolic switch from aerobic respiration to anaerobic fermentation that results in rapid changes in gene transcription and protein synthesis. Our research seeks to characterize the microRNA-mediated gene regulatory networks associated with short-term waterlogging. MicroRNAs (miRNAs) are small non-coding RNAs that regulate many genes involved in growth, development and various biotic and abiotic stress responses. To characterize the involvement of miRNAs and their targets in response to short-term hypoxia conditions, a quantitative real time PCR (qRT-PCR) assay was used to quantify the expression of the 24 candidate mature miRNA signatures (22 known and 2 novel mature miRNAs, representing 66 miRNA loci) and their 92 predicted targets in three inbred Zea mays lines (waterlogging tolerant Hz32, mid-tolerant B73, and sensitive Mo17). Based on our studies, miR159, miR164, miR167, miR393, miR408 and miR528, which are mainly involved in root development and stress responses, were found to be key regulators in the post-transcriptional regulatory mechanisms under short-term waterlogging conditions in three inbred lines. Further, computational approaches were used to predict the stress and development related cis-regulatory elements on the promoters of these miRNAs; and a probable miRNA-mediated gene regulatory network in response to short-term waterlogging stress was constructed. The differential expression patterns of miRNAs and their targets in these three inbred lines suggest that the miRNAs are active participants in the signal transduction at the early stage of hypoxia conditions via a gene regulatory network; and crosstalk occurs between different biochemical pathways.
Collapse
Affiliation(s)
- Zhijie Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Sunita Kumari
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Lifang Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Yonglian Zheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
- * E-mail: (YZ); (DW)
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- United States Department of Agriculture – Agriculture Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, United States of America
- * E-mail: (YZ); (DW)
| |
Collapse
|
363
|
Xia R, Zhu H, An YQ, Beers EP, Liu Z. Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biol 2012; 13:R47. [PMID: 22704043 PMCID: PMC3446319 DOI: 10.1186/gb-2012-13-6-r47] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/30/2012] [Accepted: 06/15/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) and their regulatory functions have been extensively characterized in model species but whether apple has evolved similar or unique regulatory features remains unknown. RESULTS We performed deep small RNA-seq and identified 23 conserved, 10 less-conserved and 42 apple-specific miRNAs or families with distinct expression patterns. The identified miRNAs target 118 genes representing a wide range of enzymatic and regulatory activities. Apple also conserves two TAS gene families with similar but unique trans-acting small interfering RNA (tasiRNA) biogenesis profiles and target specificities. Importantly, we found that miR159, miR828 and miR858 can collectively target up to 81 MYB genes potentially involved in diverse aspects of plant growth and development. These miRNA target sites are differentially conserved among MYBs, which is largely influenced by the location and conservation of the encoded amino acid residues in MYB factors. Finally, we found that 10 of the 19 miR828-targeted MYBs undergo small interfering RNA (siRNA) biogenesis at the 3' cleaved, highly divergent transcript regions, generating over 100 sequence-distinct siRNAs that potentially target over 70 diverse genes as confirmed by degradome analysis. CONCLUSIONS Our work identified and characterized apple miRNAs, their expression patterns, targets and regulatory functions. We also discovered that three miRNAs and the ensuing siRNAs exploit both conserved and divergent sequence features of MYB genes to initiate distinct regulatory networks targeting a multitude of genes inside and outside the MYB family.
Collapse
Affiliation(s)
- Rui Xia
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | | | | | |
Collapse
|
364
|
Trevisan S, Nonis A, Begheldo M, Manoli A, Palme K, Caporale G, Ruperti B, Quaggiotti S. Expression and tissue-specific localization of nitrate-responsive miRNAs in roots of maize seedlings. PLANT, CELL & ENVIRONMENT 2012; 35:1137-55. [PMID: 22211437 DOI: 10.1111/j.1365-3040.2011.02478.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nitrogen availability seriously affects crop productivity and environment. The knowledge of post-transcriptional regulation of plant response to nutrients is important to improve nitrogen use efficiency of crop. This research was aimed at understanding the role of miRNAs in the molecular control of plant response to nitrate. The expression profiles of six mature miRNAs were deeply studied by quantitative real time polymerase chain reaction and in situ hybridization (ISH). To this aim, a novel optimized protocol was set up for the use of digoxygenin-labelled Zip Nucleic Acid-modified oligonucleotides as probes for ISH. Significant differences in miRNAs' transcripts accumulation were evidenced between nitrate-supplied and nitrate-depleted roots. Real-time PCR analyses and in situ detection of miRNA confirmed the array data and allowed us to evidence distinct miRNAs spatio-temporal expression patterns in maize roots. Our results suggest that a prolonged nitrate depletion may induce post-transcriptionally the expression of target genes by repressing the transcription of specific miRNAs. In particular, the repression of the transcription of miR528a/b, miR528a*/b*, miR169i/j/k, miR169i*/j*/k*, miR166j/k/n and miR408/b upon nitrate shortage could represent a crucial step integrating nitrate signals into developmental changes in maize roots.
Collapse
Affiliation(s)
- Sara Trevisan
- Agricultural Biotechnology Department, University of Padua, 35020 Legnaro (PD), Italy
| | | | | | | | | | | | | | | |
Collapse
|
365
|
Tang Z, Zhang L, Xu C, Yuan S, Zhang F, Zheng Y, Zhao C. Uncovering small RNA-mediated responses to cold stress in a wheat thermosensitive genic male-sterile line by deep sequencing. PLANT PHYSIOLOGY 2012; 159:721-38. [PMID: 22508932 PMCID: PMC3375937 DOI: 10.1104/pp.112.196048] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/15/2012] [Indexed: 05/18/2023]
Abstract
The male sterility of thermosensitive genic male sterile (TGMS) lines of wheat (Triticum aestivum) is strictly controlled by temperature. The early phase of anther development is especially susceptible to cold stress. MicroRNAs (miRNAs) play an important role in plant development and in responses to environmental stress. In this study, deep sequencing of small RNA (smRNA) libraries obtained from spike tissues of the TGMS line under cold and control conditions identified a total of 78 unique miRNA sequences from 30 families and trans-acting small interfering RNAs (tasiRNAs) derived from two TAS3 genes. To identify smRNA targets in the wheat TGMS line, we applied the degradome sequencing method, which globally and directly identifies the remnants of smRNA-directed target cleavage. We identified 26 targets of 16 miRNA families and three targets of tasiRNAs. Comparing smRNA sequencing data sets and TaqMan quantitative polymerase chain reaction results, we identified six miRNAs and one tasiRNA (tasiRNA-ARF [for Auxin-Responsive Factor]) as cold stress-responsive smRNAs in spike tissues of the TGMS line. We also determined the expression profiles of target genes that encode transcription factors in response to cold stress. Interestingly, the expression of cold stress-responsive smRNAs integrated in the auxin-signaling pathway and their target genes was largely noncorrelated. We investigated the tissue-specific expression of smRNAs using a tissue microarray approach. Our data indicated that miR167 and tasiRNA-ARF play roles in regulating the auxin-signaling pathway and possibly in the developmental response to cold stress. These data provide evidence that smRNA regulatory pathways are linked with male sterility in the TGMS line during cold stress.
Collapse
MESH Headings
- Adaptation, Physiological
- Cold Temperature
- Computational Biology
- Flowers/genetics
- Flowers/physiology
- Gene Expression Profiling
- Gene Expression Regulation, Plant
- Genes, Plant
- Indoleacetic Acids/metabolism
- MicroRNAs/metabolism
- Plant Infertility
- Plant Proteins/genetics
- Plant Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Real-Time Polymerase Chain Reaction
- Sequence Analysis, RNA/methods
- Signal Transduction
- Stress, Physiological
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Triticum/genetics
- Triticum/physiology
Collapse
|
366
|
Atkinson NJ, Urwin PE. The interaction of plant biotic and abiotic stresses: from genes to the field. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3523-43. [PMID: 22467407 DOI: 10.1093/jxb/ers100] [Citation(s) in RCA: 766] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant responses to different stresses are highly complex and involve changes at the transcriptome, cellular, and physiological levels. Recent evidence shows that plants respond to multiple stresses differently from how they do to individual stresses, activating a specific programme of gene expression relating to the exact environmental conditions encountered. Rather than being additive, the presence of an abiotic stress can have the effect of reducing or enhancing susceptibility to a biotic pest or pathogen, and vice versa. This interaction between biotic and abiotic stresses is orchestrated by hormone signalling pathways that may induce or antagonize one another, in particular that of abscisic acid. Specificity in multiple stress responses is further controlled by a range of molecular mechanisms that act together in a complex regulatory network. Transcription factors, kinase cascades, and reactive oxygen species are key components of this cross-talk, as are heat shock factors and small RNAs. This review aims to characterize the interaction between biotic and abiotic stress responses at a molecular level, focusing on regulatory mechanisms important to both pathways. Identifying master regulators that connect both biotic and abiotic stress response pathways is fundamental in providing opportunities for developing broad-spectrum stress-tolerant crop plants.
Collapse
Affiliation(s)
- Nicky J Atkinson
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| | | |
Collapse
|
367
|
Zhang Z, Lin H, Shen Y, Gao J, Xiang K, Liu L, Ding H, Yuan G, Lan H, Zhou S, Zhao M, Gao S, Rong T, Pan G. Cloning and characterization of miRNAs from maize seedling roots under low phosphorus stress. Mol Biol Rep 2012; 39:8137-46. [PMID: 22562381 PMCID: PMC3383953 DOI: 10.1007/s11033-012-1661-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 04/16/2012] [Indexed: 01/22/2023]
Abstract
MicroRNAs (miRNAs) are a class of small, non-coding regulatory RNAs that regulate gene expression by guiding target mRNA cleavage or translational inhibition in plants and animals. In this study, a small RNA library was constructed to identify conserved miRNAs as well as novel miRNAs in maize seedling roots under low level phosphorus stress. Twelve miRNAs were identified by high throughput sequencing of the library and subsequent analysis, two belong to conserved miRNA families (miRNA399b and miRNA156), and the remaining ten are novel and one of latter is conserved in gramineous species. Based on sequence homology, we predicted 125 potential target genes of these miRNAs and then expression patterns of 7 miRNAs were validated by semi-RT-PCR analysis. MiRNA399b, Zma-miR3, and their target genes (Zmpt1 and Zmpt2) were analyzed by real-time PCR. It is shown that both miRNA399b and Zma-miR3 are induced by low phosphorus stress and regulated by their target genes (Zmpt1 and Zmpt2). Moreover, Zma-miR3, regulated by two maize inorganic phosphate transporters as a newly identified miRNAs, would likely be directly involved in phosphate homeostasis, so was miRNA399b in Arabidopsis and rice. These results indicate that both conserved and maize-specific miRNAs play important roles in stress responses and other physiological processes correlated with phosphate starvation, regulated by their target genes. Identification of these differentially expressed miRNAs will facilitate us to uncover the molecular mechanisms underlying the progression of maize seedling roots development under low level phosphorus stress.
Collapse
Affiliation(s)
- Zhiming Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu Campus, 211 Huimin Road, Wenjiang 611130, Sichuan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
368
|
van Zanten M, Tessadori F, Peeters AJM, Fransz P. Shedding light on large-scale chromatin reorganization in Arabidopsis thaliana. MOLECULAR PLANT 2012; 5:583-90. [PMID: 22528207 DOI: 10.1093/mp/sss030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plants need to respond quickly and appropriately to various types of light signals from the environment to optimize growth and development. The immediate response to shading, reduced photon flux (low light), and changes in spectral quality involves changes in gene regulation. In the case of more persistent shade, the plant shows a dramatic change in the organization of chromatin. Both plant responses are controlled via photoreceptor signaling proteins. Recently, several studies have revealed similar features of chromatin reorganization in response to various abiotic and biotic signals, while others have unveiled intricate molecular networks of light signaling towards gene regulation. This opinion paper briefly describes the chromatin (de)compaction response from a light-signaling perspective to provide a link between chromatin and the molecular network of photoreceptors and E3 ubiquitin ligase complexes.
Collapse
Affiliation(s)
- Martijn van Zanten
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | |
Collapse
|
369
|
Pezer Z, Ugarkovic D. Satellite DNA-associated siRNAs as mediators of heat shock response in insects. RNA Biol 2012; 9:587-95. [PMID: 22647527 DOI: 10.4161/rna.20019] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Conversion of environmental signals into epigenetic information is thought to occur widely but has been poorly studied as yet. It is proposed that changes in the expression of molecules involved in chromatin modifications might play a role in this process. Here we study the expression of abundant satellite DNA TCAST that makes up 35% of genome of the red flour beetle Tribolium castaneum and is located within the constitutive pericentromeric heterochromatin. RNA polymerase II promotes the transcription of TCAST satellite DNA from both strands, and long primary transcripts are rapidly processed into 21-30 nt siRNAs. Expression of TCAST satellite DNA-associated siRNAs is developmentally regulated, the most intense being at specific stages of embryogenesis. Moreover, the expression is strongly induced following heat shock and is accompanied by increase in repressive epigenetic modifications of histones at TCAST regions. Upon recovery from heat stress, the expression of satellite DNA-associated siRNAs as well as histone modifications is quickly restored. Our results indicate that satellite DNA-associated siRNAs, transiently activated after heat shock, affect epigenetic state of constitutive heterochromatin in Tribolium. It can be hypothesized that transient remodeling of heterochromatin is part of a physiological gene expression program activated under stress conditions in insects.
Collapse
Affiliation(s)
- Zeljka Pezer
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička, Zagreb, Croatia
| | | |
Collapse
|
370
|
Yin Z, Li Y, Han X, Shen F. Genome-wide profiling of miRNAs and other small non-coding RNAs in the Verticillium dahliae-inoculated cotton roots. PLoS One 2012; 7:e35765. [PMID: 22558219 PMCID: PMC3338460 DOI: 10.1371/journal.pone.0035765] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 03/26/2012] [Indexed: 11/23/2022] Open
Abstract
MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) are short (19–25 nucleotides) non-coding RNA molecules that have large-scale regulatory effects on development and stress responses in plants. Verticillium wilt is a vascular disease in plants caused by the fungal pathogen Verticillium dahliae. The objective of this study is to investigate the transcriptional profile of miRNAs and other small non-coding RNAs in Verticillium–inoculated cotton roots. Four small RNA libraries were constructed from mocked and infected roots of two cotton cultured species which are with different Verticillium wilt tolerance (‘Hai-7124’, Gossypium barbadense L., a Verticillium-tolerant cultivar, and ‘Yi-11’, Gossypium hirsutum L. a Verticillium-sensitive cultivar). The length distribution of obtained small RNAs was significantly different between libraries. There were a total of 215 miRNA families identified in the two cotton species. Of them 14 were novel miRNAs. There were >65 families with different expression between libraries. We also identified two trans-acting siRNAs and thousands of endogenous siRNA candidates, and hundred of them exhibited altered expression after inoculation of Verticillium. Interesting, many siRNAs were found with a perfect match with retrotransposon sequences, suggested that retrotransposons maybe one of sources for the generation of plant endogenous siRNAs. The profiling of these miRNAs and other small non-coding RNAs lay the foundation for further understanding of small RNAs function in the regulation of Verticillium defence responses in cotton roots.
Collapse
Affiliation(s)
- Zujun Yin
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, China
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Yan Li
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Xiulan Han
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, China
| | - Fafu Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, China
- * E-mail:
| |
Collapse
|
371
|
Iyer NJ, Jia X, Sunkar R, Tang G, Mahalingam R. microRNAs responsive to ozone-induced oxidative stress in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2012; 7:484-91. [PMID: 22499183 PMCID: PMC3419038 DOI: 10.4161/psb.19337] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Ozone is a model abiotic elicitor of reactive oxygen species (ROS). ROS are important oxidative signaling molecules coordinating plant development and responses to biotic and abiotic stresses. Recently, microRNAs have been described as important players in regulating stress responses in plants. In this research we examined the miRNAs that are differentially expressed early in response to ozone in the Arabidopsis thaliana ecotype Col-0 that is tolerant to this oxidant. We used a plant miRNA array to identify 22 miRNA families that are differentially expressed within one hour of ozone fumigation. Majority of these miRNAs were also reported in response to UV-B stress. Analysis of the miRNA target genes showed a strong negative correlation to the miRNA expression. In silico promoter analysis of miRNA genes identified several stress responsive cis-elements that were enriched in the promoters of ozone responsive genes. Majority of the target genes of ozone responsive miRNAs were associated with developmental processes. Based on these results we suggest that post-transcriptional gene regulation via miRNAs may aid in resource allocation by downregulating developmental processes to cater to the oxidative stress demands on plants.
Collapse
Affiliation(s)
- Niranjani J. Iyer
- Department of Biochemistry and Molecular Biology; Oklahoma State University; Stillwater, OK USA
- Current address: Monsanto; Chesterfield, MO USA
| | - Xiaoyun Jia
- Gene Suppression Laboratory; Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center; University of Kentucky; Lexington, KY USA
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology; Oklahoma State University; Stillwater, OK USA
| | - Guiliang Tang
- Gene Suppression Laboratory; Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center; University of Kentucky; Lexington, KY USA
| | - Ramamurthy Mahalingam
- Department of Biochemistry and Molecular Biology; Oklahoma State University; Stillwater, OK USA
| |
Collapse
|
372
|
Mao W, Li Z, Xia X, Li Y, Yu J. A combined approach of high-throughput sequencing and degradome analysis reveals tissue specific expression of microRNAs and their targets in cucumber. PLoS One 2012; 7:e33040. [PMID: 22479356 PMCID: PMC3316546 DOI: 10.1371/journal.pone.0033040] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 02/08/2012] [Indexed: 11/30/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous small RNAs playing an important regulatory function in plant development and stress responses. Among them, some are evolutionally conserved in plant and others are only expressed in certain species, tissue or developmental stages. Cucumber is among the most important greenhouse species in the world, but only a limited number of miRNAs from cucumber have been identified and the experimental validation of the related miRNA targets is still lacking. In this study, two independent small RNA libraries from cucumber leaves and roots were constructed, respectively, and sequenced with the high-throughput Illumina Solexa system. Based on sequence similarity and hairpin structure prediction, a total of 29 known miRNA families and 2 novel miRNA families containing a total of 64 miRNA were identified. QRT-PCR analysis revealed that some of the cucumber miRNAs were preferentially expressed in certain tissues. With the recently developed 'high throughput degradome sequencing' approach, 21 target mRNAs of known miRNAs were identified for the first time in cucumber. These targets were associated with development, reactive oxygen species scavenging, signaling transduction and transcriptional regulation. Our study provides an overview of miRNA expression profile and interaction between miRNA and target, which will help further understanding of the important roles of miRNAs in cucumber plants.
Collapse
Affiliation(s)
- Weihua Mao
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Center of Analysis and Measurement, Zhejiang University, Hangzhou, China
| | - Zeyun Li
- Center of Analysis and Measurement, Zhejiang University, Hangzhou, China
| | - Xiaojian Xia
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Yadan Li
- Hunan Agricultural Bioengineering Research Institute, Hunan Agricultural University, Changsha, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou, China
| |
Collapse
|
373
|
Sun G, Stewart CN, Xiao P, Zhang B. MicroRNA expression analysis in the cellulosic biofuel crop switchgrass (Panicum virgatum) under abiotic stress. PLoS One 2012; 7:e32017. [PMID: 22470418 PMCID: PMC3314629 DOI: 10.1371/journal.pone.0032017] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 01/17/2012] [Indexed: 01/22/2023] Open
Abstract
Switchgrass has increasingly been recognized as a dedicated biofuel crop for its broad adaptation to marginal lands and high biomass. However, little is known about the basic biology and the regulatory mechanisms of gene expression in switchgrass, particularly under stress conditions. In this study, we investigated the effect of salt and drought stress on switchgrass germination, growth and the expression of small regulatory RNAs. The results indicate that salt stress had a gradual but significant negative effect on switchgrass growth and development. The germination rate was significantly decreased from 82% for control to 36% under 1% NaCl treatment. However, drought stress had little effect on the germination rate but had a significant effect on the growth of switchgrass under the severest salinity stress. Both salt and drought stresses altered the expression pattern of miRNAs in a dose-dependent manner. However, each miRNA responded to drought stress in a different pattern. Salt and drought stress changed the expression level of miRNAs mainly from 0.9-fold up-regulation to 0.7-fold down-regulation. miRNAs were less sensitive to drought treatment than salinity treatment, as evidenced by the narrow fold change in expression levels. Although the range of change in expression level of miRNAs was similar under salt and drought stress, no miRNAs displayed significant change in expression level under all tested salt conditions. Two miRNAs, miR156 and miR162, showed significantly change in expression level under high drought stress. This suggests that miR156 and miR162 may attribute to the adaption of switchgrass to drought stress and are good candidates for improving switchgrass as a biofuel crop by transgenic technology.
Collapse
Affiliation(s)
- Guiling Sun
- Department of Biology, East Carolina University, Greenville, North Carolina, United States of America
| | | | | | | |
Collapse
|
374
|
Shu L, Hu Z. Characterization and differential expression of microRNAs elicited by sulfur deprivation in Chlamydomonas reinhardtii. BMC Genomics 2012; 13:108. [PMID: 22439676 PMCID: PMC3441669 DOI: 10.1186/1471-2164-13-108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 03/22/2012] [Indexed: 11/20/2022] Open
Abstract
Background microRNAs (miRNAs) have been found to play an essential role in the modulation of numerous biological processes in eukaryotes. Chlamydomonas reinhardtii is an ideal model organism for the study of many metabolic processes including responses to sulfur-deprivation. We used a deep sequencing platform to extensively profile and identify changes in the miRNAs expression that occurred under sulfur-replete and sulfur-deprived conditions. The aim of our research was to characterize the differential expression of Chlamydomonas miRNAs under sulfur-deprived conditions, and subsequently, the target genes of miRNA involved in sulfur-deprivation were further predicted and analyzed. Results By using high-throughput sequencing, we characterized the microRNA transcriptomes under sulphur-replete and sulfur-deprived conditions in Chlamydomonas reinhardtii. We predicted a total of 310 miRNAs which included 85 known miRNAs and 225 novel miRNAs. 13 miRNAs were the specific to the sulfur-deprived conditions. 47 miRNAs showed significantly differential expressions responding to sulfur-deprivation, and most were up-regulated in the small RNA libraries with sulfur-deprivation. Using a web-based integrated system (Web MicroRNAs Designer 3) and combing the former information from a transcriptome of Chlamydomonas reinhardtii, 22 miRNAs and their targets involved in metabolism regulation with sulfur-deprivation were verified. Conclusions Our results indicate that sulfur-deprivation may have a significant influence on small RNA expression patterns, and the differential expressions of miRNAs and interactions between miRNA and its targets might further reveal the molecular mechanism responding to sulfur-deprivation in Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- Longfei Shu
- Department of Aquatic Ecology, Eawag, Switzerland
| | | |
Collapse
|
375
|
Wei KF, Chen J, Chen YF, Wu LJ, Jia WS. [Molecular mechanism for dynamic regulation of endogenous ABA signal level]. YI CHUAN = HEREDITAS 2012; 34:296-306. [PMID: 22425948 DOI: 10.3724/sp.j.1005.2012.00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The process from stress signal perception and the trigger of ABA biosynthesis to dynamic regulation of ABA level is an important stress signaling pathway in cells. Compared to the downstream events in ABA signal transduction, the researches in this field are relatively lagged. Expression of synthase genes, such as ZEP in roots and rate-limiting enzyme genes NCED, AtRGS1 and ABA2, can be activated in response to stresses. However, the expression of genes encoding degradative enzymes, including 7'-, 8'-, 9'-hydroxylase and glucosyltransferase, negatively regulates ABA accumulation. Meanwhile, the expressions of the synthases, such as ZEP and NCED3, are induced by increasing endogenous ABA contents. Additionally, the analyses of gene expression and source-sink dynamics indicates that sustained supply from root-sourced ABA is required for the maintenance of leaf ABA dynamic pool. It is notable that miRNAs should be involved in ABA signal origin and ABA level dynamic adjustment. Further dynamic analysis of ABA metabolism revealed that endogenous ABA signal levels are synergistically controlled by the expressions of synthases and degradative enzymes.
Collapse
Affiliation(s)
- Kai-Fa Wei
- Department of Biological Sciences and Biotechnology, Zhangzhou Normal University, China.
| | | | | | | | | |
Collapse
|
376
|
Jung JH, Seo PJ, Ahn JH, Park CM. Arabidopsis RNA-binding protein FCA regulates microRNA172 processing in thermosensory flowering. J Biol Chem 2012; 287:16007-16. [PMID: 22431732 DOI: 10.1074/jbc.m111.337485] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ambient temperature fluctuates diurnally and seasonally. It profoundly influences the timing of flowering in plants. The floral integrator FLOWERING LOCUS T (FT) mediates ambient temperature signals via the thermosensory pathway in Arabidopsis flowering. microRNA172 (miR172), which promotes flowering by inducing FT, also responds to changes in ambient temperature. However, it is largely unknown how miR172 integrates ambient temperature signals into the flowering genetic network. Here, we show that Arabidopsis RNA-binding protein FCA promotes the processing of primary microRNA172 transcripts (pri-miR172) in response to changes in ambient temperature. Ambient temperature regulates miR172 biogenesis primarily at the pri-miR172 processing step. miR172 abundance is elevated at 23 °C but not at 16 °C. miR172 accumulation at 23 °C requires functional FCA. FCA binds to the flanking sequences of the stem-loop within the pri-miR172 transcripts via the RNA recognition motif. FCA also binds to the primary transcripts of other temperature-responsive miRNAs, such as miR398 and miR399. Notably, levels of FCA mRNAs and proteins increase at 23 °C but remain low at 16 °C, supporting the role of FCA in temperature perception. Our data show that FCA regulation of miR172 processing is an early event in the thermosensory flowering pathway. We propose that the FCA-miR172 regulon provides an adaptive strategy that fine tunes the onset of flowering under fluctuating ambient temperature conditions.
Collapse
Affiliation(s)
- Jae-Hoon Jung
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
377
|
Ren Y, Chen L, Zhang Y, Kang X, Zhang Z, Wang Y. Identification of novel and conserved Populus tomentosa microRNA as components of a response to water stress. Funct Integr Genomics 2012; 12:327-39. [PMID: 22415631 DOI: 10.1007/s10142-012-0271-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 02/14/2012] [Accepted: 02/21/2012] [Indexed: 12/31/2022]
Abstract
MicroRNAs (miRNAs) are a class of small, non-coding RNAs that play important downregulation roles in plants growth, development, and stress responses. To better identify Populus tomentosa miRNAs and understand the functions of miRNAs in response to water stress (drought and flooding), 152 conserved miRNAs belonging to 36 miRNA families, 8 known but non-conserved miRNAs and 64 candidate novel miRNAs belonging to 54 miRNA families were identified and analyzed from three small RNA (sRNA) libraries (drought treatment, flooding treatment, and control) by high-throughput sequencing combined with qRT-PCR. Significant changes in the expression of 17 conserved miRNA families and nine novel miRNAs were observed in response to drought stress, and in seven conserved miRNA families and five novel miRNAs in response to flooding stress. Both miRNA and miRNA*s were involved in the regulation of plant stress responses. The annotation of the potential targets of miRNAs with differential expression indicate that many types of genes encoding transcription factors, enzymes, and signal transduction components are implicated in the abiotic stress response..
Collapse
Affiliation(s)
- Yuanyuan Ren
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083 Beijing, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
378
|
Wang F, Yang CL, Wang LL, Zhong NQ, Wu XM, Han LB, Xia GX. Heterologous expression of a chloroplast outer envelope protein from Suaeda salsa confers oxidative stress tolerance and induces chloroplast aggregation in transgenic Arabidopsis plants. PLANT, CELL & ENVIRONMENT 2012; 35:588-600. [PMID: 21988377 DOI: 10.1111/j.1365-3040.2011.02438.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Suaeda salsa is a euhalophytic plant that is tolerant to coastal seawater salinity. In this study, we cloned a cDNA encoding an 8.4 kDa chloroplast outer envelope protein (designated as SsOEP8) from S. salsa and characterized its cellular function. Steady-state transcript levels of SsOEP8 in S. salsa were up-regulated in response to oxidative stress. Consistently, ectopic expression of SsOEP8 conferred enhanced oxidative stress tolerance in transgenic Bright Yellow 2 (BY-2) cells and Arabidopsis, in which H(2) O(2) content was reduced significantly in leaf cells. Further studies revealed that chloroplasts aggregated to the sides of mesophyll cells in transgenic Arabidopsis leaves, and this event was accompanied by inhibited expression of genes encoding proteins for chloroplast movements such as AtCHUP1, a protein involved in actin-based chloroplast positioning and movement. Moreover, organization of actin cytoskeleton was found to be altered in transgenic BY-2 cells. Together, these results suggest that SsOEP8 may play a critical role in oxidative stress tolerance by changing actin cytoskeleton-dependent chloroplast distribution, which may consequently lead to the suppressed production of reactive oxygen species (ROS) in chloroplasts. One significantly novel aspect of this study is the finding that the small chloroplast envelope protein is involved in oxidative stress tolerance.
Collapse
Affiliation(s)
- Fang Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | | | | | | | | | | | | |
Collapse
|
379
|
Jogaiah S, Govind SR, Tran LSP. Systems biology-based approaches toward understanding drought tolerance in food crops. Crit Rev Biotechnol 2012; 33:23-39. [PMID: 22364373 DOI: 10.3109/07388551.2012.659174] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Economically important crops, such as maize, wheat, rice, barley, and other food crops are affected by even small changes in water potential at important growth stages. Developing a comprehensive understanding of host response to drought requires a global view of the complex mechanisms involved. Research on drought tolerance has generally been conducted using discipline-specific approaches. However, plant stress response is complex and interlinked to a point where discipline-specific approaches do not give a complete global analysis of all the interlinked mechanisms. Systems biology perspective is needed to understand genome-scale networks required for building long-lasting drought resistance. Network maps have been constructed by integrating multiple functional genomics data with both model plants, such as Arabidopsis thaliana, Lotus japonicus, and Medicago truncatula, and various food crops, such as rice and soybean. Useful functional genomics data have been obtained from genome-wide comparative transcriptome and proteome analyses of drought responses from different crops. This integrative approach used by many groups has led to identification of commonly regulated signaling pathways and genes following exposure to drought. Combination of functional genomics and systems biology is very useful for comparative analysis of other food crops and has the ability to develop stable food systems worldwide. In addition, studying desiccation tolerance in resurrection plants will unravel how combination of molecular genetic and metabolic processes interacts to produce a resurrection phenotype. Systems biology-based approaches have helped in understanding how these individual factors and mechanisms (biochemical, molecular, and metabolic) "interact" spatially and temporally. Signaling network maps of such interactions are needed that can be used to design better engineering strategies for improving drought tolerance of important crop species.
Collapse
Affiliation(s)
- Sudisha Jogaiah
- Downy Mildew Research Laboratory, Department of Studies in Biotechnology, University of Mysore, Mysore, Karnataka, India
| | | | | |
Collapse
|
380
|
Abstract
Small RNAs have crucial roles in numerous aspects of plant biology. Despite our current understanding of their biogenesis and mechanisms of action, the biological function of small RNAs, particularly miRNAs, remains largely unknown. To decipher small RNA function, knowledge about their spatiotemporal patterns of expression is essential. Here we report an in situ hybridization method for the precise localization of small RNAs in plants by using locked nucleic acid (LNA) oligonucleotide probes. This method has been adapted from protocols used to detect messenger RNAs in formaldehyde-fixed and paraffin-embedded tissue sections, but it includes essential optimizations in key prehybridization, hybridization and posthybridization steps. Most importantly, optimization of probe concentration and hybridization temperature is required for each unique LNA probe. We present the detailed protocol starting from sectioned tissues, and we include troubleshooting tips and recommended controls. This method has been used successfully in several plant species and can be completed within 2-6 d.
Collapse
|
381
|
Gébelin V, Argout X, Engchuan W, Pitollat B, Duan C, Montoro P, Leclercq J. Identification of novel microRNAs in Hevea brasiliensis and computational prediction of their targets. BMC PLANT BIOLOGY 2012; 12:18. [PMID: 22330773 PMCID: PMC3368772 DOI: 10.1186/1471-2229-12-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 02/13/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND Plants respond to external stimuli through fine regulation of gene expression partially ensured by small RNAs. Of these, microRNAs (miRNAs) play a crucial role. They negatively regulate gene expression by targeting the cleavage or translational inhibition of target messenger RNAs (mRNAs). In Hevea brasiliensis, environmental and harvesting stresses are known to affect natural rubber production. This study set out to identify abiotic stress-related miRNAs in Hevea using next-generation sequencing and bioinformatic analysis. RESULTS Deep sequencing of small RNAs was carried out on plantlets subjected to severe abiotic stress using the Solexa technique. By combining the LeARN pipeline, data from the Plant microRNA database (PMRD) and Hevea EST sequences, we identified 48 conserved miRNA families already characterized in other plant species, and 10 putatively novel miRNA families. The results showed the most abundant size for miRNAs to be 24 nucleotides, except for seven families. Several MIR genes produced both 20-22 nucleotides and 23-27 nucleotides. The two miRNA class sizes were detected for both conserved and putative novel miRNA families, suggesting their functional duality. The EST databases were scanned with conserved and novel miRNA sequences. MiRNA targets were computationally predicted and analysed. The predicted targets involved in "responses to stimuli" and to "antioxidant" and "transcription activities" are presented. CONCLUSIONS Deep sequencing of small RNAs combined with transcriptomic data is a powerful tool for identifying conserved and novel miRNAs when the complete genome is not yet available. Our study provided additional information for evolutionary studies and revealed potentially specific regulation of the control of redox status in Hevea.
Collapse
Affiliation(s)
| | | | - Worrawat Engchuan
- CIRAD, UMR AGAP, F-34398 Montpellier, France
- King Mongkut's University of Technology, Thonburi, Thailand
| | | | - Cuifang Duan
- CIRAD, UMR AGAP, F-34398 Montpellier, France
- CATAS, RRI, Danzhou, 571737 Hainan, China
| | | | | |
Collapse
|
382
|
Chen L, Wang T, Zhao M, Tian Q, Zhang WH. Identification of aluminum-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. PLANTA 2012; 235:375-86. [PMID: 21909758 DOI: 10.1007/s00425-011-1514-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 08/26/2011] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs) play important roles in response of plants to biotic and abiotic stresses. Aluminum (Al) toxicity is a major factor limiting plant growth in acidic soils. However, there has been limited report on the involvement of miRNAs in response of plants to toxic Al(3+). To identify Al(3+)-responsive miRNAs at whole-genome level, high-throughput sequencing technology was used to sequence libraries constructed from root apices of the model legume plant Medicago truncatula treated with and without Al(3+). High-throughput sequencing of the control and two Al(3+)-treated libraries led to generation of 17.1, 14.1 and 17.4 M primary reads, respectively. We identified 326 known miRNAs and 21 new miRNAs. Among the miRNAs, expression of 23 miRNAs was responsive to Al(3+), and the majority of Al(3+)-responsive mRNAs was down-regulated. We further classified the Al(3+)-responsive miRNAs into three groups based on their expression patterns: rapid-responsive, late-responsive and sustained-responsive miRNAs. The majority of Al(3+)-responsive miRNAs belonged to the 'rapid-responsive' category, i.e. they were responsive to short-term, but not long-term Al(3+) treatment. The Al(3+)-responsive miRNAs were also verified by quantitative real-time PCR. The potential targets of the 21 new miRNAs were predicted to be involved in diverse cellular processes in plants, and their potential roles in Al(3+)-induced inhibition of root growth were discussed. These findings provide valuable information for functional characterization of miRNAs in Al(3+) toxicity and tolerance.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | | | | | | | | |
Collapse
|
383
|
Zhao YT, Wang M, Fu SX, Yang WC, Qi CK, Wang XJ. Small RNA profiling in two Brassica napus cultivars identifies microRNAs with oil production- and development-correlated expression and new small RNA classes. PLANT PHYSIOLOGY 2012; 158:813-23. [PMID: 22138974 PMCID: PMC3271769 DOI: 10.1104/pp.111.187666] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 11/26/2011] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) and small interfering RNAs are important regulators of plant development and seed formation, yet their population and abundance in the oil crop Brassica napus are still not well understood, especially at different developmental stages and among cultivars with varied seed oil contents. Here, we systematically analyzed the small RNA expression profiles of Brassica napus seeds at early embryonic developmental stages in high-oil-content and low-oil-content B. napus cultivars, both cultured in two environments. A total of 50 conserved miRNAs and 9 new miRNAs were identified, together with some new miRNA targets. Expression analysis revealed some miRNAs with varied expression levels in different seed oil content cultivars or at different embryonic developmental stages. A large number of 23-nucleotide small RNAs with specific nucleotide composition preferences were also identified, which may present new classes of functional small RNAs.
Collapse
|
384
|
Katiyar A, Smita S, Chinnusamy V, Pandey DM, Bansal K. Identification of miRNAs in sorghum by using bioinformatics approach. PLANT SIGNALING & BEHAVIOR 2012; 7:246-59. [PMID: 22415044 PMCID: PMC3405690 DOI: 10.4161/psb.18914] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
MicroRNAs (miRNAs) regulate gene expression mainly by post-transcriptional gene silencing (PTGS) and in some cases by transcriptional genes silencing (TGS). miRNAs play critical roles in developmental processes, nutrient homeostasis, abiotic stress and pathogen responses of plants. In contrast to the large number of miRNAs predicted in cereal model plant rice, only 148 miRNAs were predicted in sorghum till date (miRBase release 17). This suggested that miRNAs identified in sorghum is far from saturation. Hence, we developed a bioinformatics pipeline using an in-house PERL script and publicly available structure prediction tools to identify miRNAs and their target genes from publically available Expressed Sequence Tags (EST) and Genomic Survey Sequence (GSS). About 1379 known and unique plant miRNAs from 33 different crops were used to predict new miRNAs in sorghum. We identified 31 new miRNAs belonging to 10 different miRNA families. We predicted 72 potential target genes for 31 miRNAs, and most of these target genes are predicted to be involved in plant growth and development.These newly identified miRNAs add to the growing database of miRNA and lay the foundation for further understanding of miRNA function in sorghum plant development.
Collapse
Affiliation(s)
- Amit Katiyar
- National Research Centre on Plant Biotechnology; Indian Agricultural Research Institute Campus; New Delhi, India
| | - Shuchi Smita
- National Research Centre on Plant Biotechnology; Indian Agricultural Research Institute Campus; New Delhi, India
| | | | - Dev Mani Pandey
- Department of Biotechnology; Birla Institute of Technology; Mesra; Ranchi; Jharkhand, India
| | - Kailash Bansal
- National Research Centre on Plant Biotechnology; Indian Agricultural Research Institute Campus; New Delhi, India
- Correspondence to: Kailash Bansal,
| |
Collapse
|
385
|
Guerra D, Mastrangelo AM, Lopez-Torrejon G, Marzin S, Schweizer P, Stanca AM, del Pozo JC, Cattivelli L, Mazzucotelli E. Identification of a protein network interacting with TdRF1, a wheat RING ubiquitin ligase with a protective role against cellular dehydration. PLANT PHYSIOLOGY 2012; 158:777-89. [PMID: 22167118 PMCID: PMC3271766 DOI: 10.1104/pp.111.183988] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plants exploit ubiquitination to modulate the proteome with the final aim to ensure environmental adaptation and developmental plasticity. Ubiquitination targets are specifically driven to degradation through the action of E3 ubiquitin ligases. Genetic analyses have indicated wide functions of ubiquitination in plant life; nevertheless, despite the large number of predicted E3s, only a few of them have been characterized so far, and only a few ubiquitination targets are known. In this work, we characterized durum wheat (Triticum durum) RING Finger1 (TdRF1) as a durum wheat nuclear ubiquitin ligase. Moreover, its barley (Hordeum vulgare) homolog was shown to protect cells from dehydration stress. A protein network interacting with TdRF1 has been defined. The transcription factor WHEAT BEL1-TYPE HOMEODOMAIN1 (WBLH1) was degraded in a TdRF1-dependent manner through the 26S proteasome in vivo, the mitogen-activated protein kinase TdWNK5 [for Triticum durum WITH NO LYSINE (K)5] was able to phosphorylate TdRF1 in vitro, and the RING-finger protein WHEAT VIVIPAROUS-INTERACTING PROTEIN2 (WVIP2) was shown to have a strong E3 ligase activity. The genes coding for the TdRF1 interactors were all responsive to cold and/or dehydration stress, and a negative regulative function in dehydration tolerance was observed for the barley homolog of WVIP2. A role in the control of plant development was previously known, or predictable based on homology, for wheat BEL1-type homeodomain1(WBLH1). Thus, TdRF1 E3 ligase might act regulating the response to abiotic stress and remodeling plant development in response to environmental constraints.
Collapse
|
386
|
Ambrosone A, Costa A, Leone A, Grillo S. Beyond transcription: RNA-binding proteins as emerging regulators of plant response to environmental constraints. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 182:12-8. [PMID: 22118611 DOI: 10.1016/j.plantsci.2011.02.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 02/04/2011] [Accepted: 02/08/2011] [Indexed: 05/20/2023]
Abstract
RNA-binding proteins (RBPs) govern many aspects of RNA metabolism, including pre-mRNA processing, transport, stability/decay and translation. Although relatively few plant RNA-binding proteins have been characterized genetically and biochemically, more than 200 RBP genes have been predicted in Arabidopsis and rice genomes, suggesting that they might serve specific plant functions. Besides their role in normal cellular functions, RBPs are emerging also as an interesting class of proteins involved in a wide range of post-transcriptional regulatory events that are important in providing plants with the ability to respond rapidly to changes in environmental conditions. Here, we review the most recent results and evidence on the functional role of RBPs in plant adaptation to various unfavourable environmental conditions and their contribution to enhance plant tolerance to abiotic stresses, with special emphasis on osmotic and temperature stress.
Collapse
Affiliation(s)
- Alfredo Ambrosone
- National Research Council of Italy-Institute of Plant Genetics (CNR-IGV), Via Università 133, 80055 Portici, Naples, Italy
| | | | | | | |
Collapse
|
387
|
Friedel S, Usadel B, von Wirén N, Sreenivasulu N. Reverse engineering: a key component of systems biology to unravel global abiotic stress cross-talk. FRONTIERS IN PLANT SCIENCE 2012; 3:294. [PMID: 23293646 PMCID: PMC3533172 DOI: 10.3389/fpls.2012.00294] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/10/2012] [Indexed: 05/18/2023]
Abstract
Understanding the global abiotic stress response is an important stepping stone for the development of universal stress tolerance in plants in the era of climate change. Although co-occurrence of several stress factors (abiotic and biotic) in nature is found to be frequent, current attempts are poor to understand the complex physiological processes impacting plant growth under combinatory factors. In this review article, we discuss the recent advances of reverse engineering approaches that led to seminal discoveries of key candidate regulatory genes involved in cross-talk of abiotic stress responses and summarized the available tools of reverse engineering and its relevant application. Among the universally induced regulators involved in various abiotic stress responses, we highlight the importance of (i) abscisic acid (ABA) and jasmonic acid (JA) hormonal cross-talks and (ii) the central role of WRKY transcription factors (TF), potentially mediating both abiotic and biotic stress responses. Such interactome networks help not only to derive hypotheses but also play a vital role in identifying key regulatory targets and interconnected hormonal responses. To explore the full potential of gene network inference in the area of abiotic stress tolerance, we need to validate hypotheses by implementing time-dependent gene expression data from genetically engineered plants with modulated expression of target genes. We further propose to combine information on gene-by-gene interactions with data from physical interaction platforms such as protein-protein or TF-gene networks.
Collapse
Affiliation(s)
- Swetlana Friedel
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Björn Usadel
- RWTH Aachen UniversityAachen, Germany
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum JülichJülich, Germany
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Nese Sreenivasulu
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
- *Correspondence: Nese Sreenivasulu, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany. e-mail:
| |
Collapse
|
388
|
Dinakar C, Djilianov D, Bartels D. Photosynthesis in desiccation tolerant plants: energy metabolism and antioxidative stress defense. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 182:29-41. [PMID: 22118613 DOI: 10.1016/j.plantsci.2011.01.018] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/10/2011] [Accepted: 01/27/2011] [Indexed: 05/07/2023]
Abstract
Resurrection plants are regarded as excellent models to study the mechanisms associated with desiccation tolerance. During the past years tremendous progress has been made in understanding the phenomenon of desiccation tolerance in resurrection plants, but many questions are open concerning the mechanisms enabling these plants to survive desiccation. The photosynthetic apparatus is very sensitive to reactive oxygen species mediated injury during desiccation and must be maintained or quickly repaired upon rehydration. The photosynthetic apparatus is a primary source of generating reactive oxygen species. The unique ability of plants to withstand the oxidative stress imposed by reactive oxygen species during desiccation depends on the production of antioxidants. The present review considers the overall strategies and the mechanisms involved in the desiccation tolerance in the first part and will focus on the effects on photosynthesis, energy metabolism and antioxidative stress defenses in the second part.
Collapse
Affiliation(s)
- Challabathula Dinakar
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | | | | |
Collapse
|
389
|
Saini A, Li Y, Jagadeeswaran G, Sunkar R. Role of microRNAs in Plant Adaptation to Environmental Stresses. MICRORNAS IN PLANT DEVELOPMENT AND STRESS RESPONSES 2012. [DOI: 10.1007/978-3-642-27384-1_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
390
|
Studholme DJ. Deep sequencing of small RNAs in plants: applied bioinformatics. Brief Funct Genomics 2011; 11:71-85. [PMID: 22184332 DOI: 10.1093/bfgp/elr039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Small RNAs, including microRNA and short-interfering RNAs, play important roles in plants. In recent years, developments in sequencing technology have enabled the large-scale discovery of sRNAs in various cells, tissues and developmental stages and in response to various stresses. This review describes the bioinformatics challenges to analysing these large datasets of short-RNA sequences and some of the solutions to those challenges.
Collapse
|
391
|
Yin Z, Li Y, Yu J, Liu Y, Li C, Han X, Shen F. Difference in miRNA expression profiles between two cotton cultivars with distinct salt sensitivity. Mol Biol Rep 2011; 39:4961-70. [PMID: 22160515 DOI: 10.1007/s11033-011-1292-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 11/30/2011] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are a class of endogenous, non-coding small RNAs that play important roles in many developmental processes and stress responses in plants and animals. Cotton (Gossypium hirsutum L.) is considered a relatively salt-tolerant non-halophytic plant species. To study the role of miRNAs in salt adaptation, a salt-tolerant cotton cultivar SN-011 and a salt-sensitive cultivar LM-6 were used to detect differentially expressed miRNAs. Using miRNA microarray analysis and a computational approach, 17 cotton miRNAs belonging to eight families were identified. Although they are conserved, 12 of them showed a genotype-specific expression model in both the cultivars. Under salt stress treatment, miR156a/d/e, miR169, miR535a/b and miR827b were dramatically down-regulated in SN-011, while miR167a, miR397a/b and miR399a were up-regulated. Only miR159 was found to be down-regulated in LM-6 under salt stress. To gain insight into their functional significance, 26 target genes were predicted and their functional similarity was further analyzed. Quantitative real-time PCR showed that the expression of seven target genes showed a significant inverse correlation with corresponding miRNAs. These differentially expressed miRNAs can help in further study into the role of transcriptome homeostasis in the adaptation responses of cotton to salt.
Collapse
Affiliation(s)
- Zujun Yin
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
392
|
Jeong DH, Park S, Zhai J, Gurazada SGR, De Paoli E, Meyers BC, Green PJ. Massive analysis of rice small RNAs: mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage. THE PLANT CELL 2011; 23:4185-207. [PMID: 22158467 PMCID: PMC3269859 DOI: 10.1105/tpc.111.089045] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Small RNAs have a variety of important roles in plant development, stress responses, and other processes. They exert their influence by guiding mRNA cleavage, translational repression, and chromatin modification. To identify previously unknown rice (Oryza sativa) microRNAs (miRNAs) and those regulated by environmental stress, 62 small RNA libraries were constructed from rice plants and used for deep sequencing with Illumina technology. The libraries represent several tissues from control plants and plants subjected to different environmental stress treatments. More than 94 million genome-matched reads were obtained, resulting in more than 16 million distinct small RNA sequences. This allowed an evaluation of ~400 annotated miRNAs with current criteria and the finding that among these, ~150 had small interfering RNA-like characteristics. Seventy-six new miRNAs were found, and miRNAs regulated in response to water stress, nutrient stress, or temperature stress were identified. Among the new examples of miRNA regulation were members of the same miRNA family that were differentially regulated in different organs and had distinct sequences Some of these distinct family members result in differential target cleavage and provide new insight about how an agriculturally important rice phenotype could be regulated in the panicle. This high-resolution analysis of rice miRNAs should be relevant to plant miRNAs in general, particularly in the Poaceae.
Collapse
|
393
|
Guleria P, Mahajan M, Bhardwaj J, Yadav SK. Plant small RNAs: biogenesis, mode of action and their roles in abiotic stresses. GENOMICS, PROTEOMICS & BIOINFORMATICS 2011; 9:183-99. [PMID: 22289475 PMCID: PMC5054152 DOI: 10.1016/s1672-0229(11)60022-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 10/21/2011] [Indexed: 01/01/2023]
Abstract
Small RNAs (sRNAs) are 18-30 nt non-coding regulatory elements found in diverse organisms, which were initially identified as small double-stranded RNAs in Caenorhabditis elegans. With the development of new and improved technologies, sRNAs have also been identified and characterized in plant systems. Among them, micro RNAs (miRNAs) and small interfering RNAs (siRNAs) are found to be very important riboregulators in plants. Various types of sRNAs differ in their mode of biogenesis and in their function of gene regulation. sRNAs are involved in gene regulation at both transcriptional and post-transcriptional levels. They are known to regulate growth and development of plants. Furthermore, sRNAs especially plant miRNAs have been found to be involved in various stress responses, such as oxidative, mineral nutrient deficiency, dehydration, and even mechanical stimulus. Therefore, in the present review, we focus on the current understanding of biogenesis and regulatory mechanisms of plant sRNAs and their responses to various abiotic stresses.
Collapse
Affiliation(s)
- Praveen Guleria
- Plant Metabolic Engineering, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, CSIR, Palampur 176061 (HP), India
| | | | | | | |
Collapse
|
394
|
Xu Z, Zhong S, Li X, Li W, Rothstein SJ, Zhang S, Bi Y, Xie C. Genome-wide identification of microRNAs in response to low nitrate availability in maize leaves and roots. PLoS One 2011; 6:e28009. [PMID: 22132192 PMCID: PMC3223196 DOI: 10.1371/journal.pone.0028009] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 10/29/2011] [Indexed: 01/21/2023] Open
Abstract
Background Nitrate is the major source of nitrogen available for many crop plants and is often the limiting factor for plant growth and agricultural productivity especially for maize. Many studies have been done identifying the transcriptome changes under low nitrate conditions. However, the microRNAs (miRNAs) varied under nitrate limiting conditions in maize has not been reported. MiRNAs play important roles in abiotic stress responses and nutrient deprivation. Methodology/Principal Findings In this study, we used the SmartArray™ and GeneChip® microarray systems to perform a genome-wide search to detect miRNAs responding to the chronic and transient nitrate limiting conditions in maize. Nine miRNA families (miR164, miR169, miR172, miR397, miR398, miR399, miR408, miR528, and miR827) were identified in leaves, and nine miRNA families (miR160, miR167, miR168, miR169, miR319, miR395, miR399, miR408, and miR528) identified in roots. They were verified by real time stem loop RT-PCR, and some with additional time points of nitrate limitation. The miRNAs identified showed overlapping or unique responses to chronic and transient nitrate limitation, as well as tissue specificity. The potential target genes of these miRNAs in maize were identified. The expression of some of these was examined by qRT-PCR. The potential function of these miRNAs in responding to nitrate limitation is described. Conclusions/Significance Genome-wide miRNAs responding to nitrate limiting conditions in maize leaves and roots were identified. This provides an insight into the timing and tissue specificity of the transcriptional regulation to low nitrate availability in maize. The knowledge gained will help understand the important roles miRNAs play in maize responding to a nitrogen limiting environment and eventually develop strategies for the improvement of maize genetics.
Collapse
Affiliation(s)
- Zhenhua Xu
- Institute of Crop Science, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Sihui Zhong
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Xinhai Li
- Institute of Crop Science, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Wenxue Li
- Institute of Crop Science, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Steven J. Rothstein
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Shihuang Zhang
- Institute of Crop Science, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yongmei Bi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Chuanxiao Xie
- Institute of Crop Science, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
395
|
Boyko A, Kovalchuk I. Genetic and epigenetic effects of plant-pathogen interactions: an evolutionary perspective. MOLECULAR PLANT 2011; 4:1014-23. [PMID: 21459830 DOI: 10.1093/mp/ssr022] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Recent reports suggest that exposure to stress is capable of influencing the frequency and pattern of inherited changes in various parts of the genome. In this review, we will discuss the influence of viral pathogens on somatic and meiotic genome stability of Nicotiana tabacum and Arabidopsis thaliana. Plants infected with a compatible pathogen generate a systemic recombination signal that precedes the spread of pathogens and results in changes in the somatic and meiotic recombination frequency. The progeny of infected plants exhibit changes in global and locus-specific DNA methylation patterns, genomic rearrangements at transgenic reporter loci and resistance gene-like-loci, and even tolerance to pathogen infection and abiotic stress. Here, we will discuss the contribution of environmental stresses to genome evolution and will focus on the role of heritable epigenetic changes in response to pathogen infection.
Collapse
Affiliation(s)
- Alex Boyko
- Institute of Plant Biology, Zurich, Switzerland
| | | |
Collapse
|
396
|
Qin Y, Duan Z, Xia X, Yin W. Expression profiles of precursor and mature microRNAs under dehydration and high salinity shock in Populus euphratica. PLANT CELL REPORTS 2011; 30:1893-1907. [PMID: 21706230 DOI: 10.1007/s00299-011-1096-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 05/18/2011] [Accepted: 05/22/2011] [Indexed: 05/31/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play vital roles in plant abiotic stress responses via cleavage or translational inhibition of their target mRNAs. Populus euphratica is a typical stress-resistant sessile organism that grows in desert areas. Here, we identified sequences of 12 miRNA precursors from 11 families and 13 mature miRNAs from 12 families by PCR amplification in P. euphratica. To detect expression differences in mature miRNAs and their precursors under dehydration and high salinity shock in P. euphratica, we examined 14 miRNA precursors from 13 miRNA families and 17 mature miRNAs from 17 miRNA families using the SYBR Green RT-PCR assay. This is the first report of expression profiles for both precursor and mature miRNAs in P. euphratica. By profiling both the mature miRNAs and the precursors under abiotic stress shock, it was possible to identify miRNA whose processing is regulated during stress shock environments. A majority of the genes predicted to be targets for plant miRNAs are involved in development, stress resistance and metabolic processes. We have cloned and experimentally identified in vivo five of the predicted target genes and quantified the five target mRNAs from the same RNA sample simultaneously. Based on this study, we propose some regulatory pathways that illustrate the important role that miRNAs play in response to abiotic stress shock in P. euphratica.
Collapse
Affiliation(s)
- Yurong Qin
- National Engineering Laboratory of Forest Genetics and Tree Breeding, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | | | | | | |
Collapse
|
397
|
Barrera-Figueroa BE, Gao L, Diop NN, Wu Z, Ehlers JD, Roberts PA, Close TJ, Zhu JK, Liu R. Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes. BMC PLANT BIOLOGY 2011; 11:127. [PMID: 21923928 PMCID: PMC3182138 DOI: 10.1186/1471-2229-11-127] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 09/17/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND Cowpea (Vigna unguiculata) is an important crop in arid and semi-arid regions and is a good model for studying drought tolerance. MicroRNAs (miRNAs) are known to play critical roles in plant stress responses, but drought-associated miRNAs have not been identified in cowpea. In addition, it is not understood how miRNAs might contribute to different capacities of drought tolerance in different cowpea genotypes. RESULTS We generated deep sequencing small RNA reads from two cowpea genotypes (CB46, drought-sensitive, and IT93K503-1, drought-tolerant) that grew under well-watered and drought stress conditions. We mapped small RNA reads to cowpea genomic sequences and identified 157 miRNA genes that belong to 89 families. Among 44 drought-associated miRNAs, 30 were upregulated in drought condition and 14 were downregulated. Although miRNA expression was in general consistent in two genotypes, we found that nine miRNAs were predominantly or exclusively expressed in one of the two genotypes and that 11 miRNAs were drought-regulated in only one genotype, but not the other. CONCLUSIONS These results suggest that miRNAs may play important roles in drought tolerance in cowpea and may be a key factor in determining the level of drought tolerance in different cowpea genotypes.
Collapse
Affiliation(s)
- Blanca E Barrera-Figueroa
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Departamento de Biotecnologia, Universidad del Papaloapan, Tuxtepec Oaxaca 68301, Mexico
| | - Lei Gao
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Ndeye N Diop
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Zhigang Wu
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Jeffrey D Ehlers
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Philip A Roberts
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Timothy J Close
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Jian-Kang Zhu
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Renyi Liu
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
398
|
Grativol C, Hemerly AS, Ferreira PCG. Genetic and epigenetic regulation of stress responses in natural plant populations. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:176-85. [PMID: 21914492 DOI: 10.1016/j.bbagrm.2011.08.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 11/30/2022]
Abstract
Plants have developed intricate mechanisms involving gene regulatory systems to adjust to stresses. Phenotypic variation in plants under stress is classically attributed to DNA sequence variants. More recently, it was found that epigenetic modifications - DNA methylation-, chromatin- and small RNA-based mechanisms - can contribute separately or together to phenotypes by regulating gene expression in response to the stress effect. These epigenetic modifications constitute an additional layer of complexity to heritable phenotypic variation and the evolutionary potential of natural plant populations because they can affect fitness. Natural populations can show differences in performance when they are exposed to changes in environmental conditions, partly because of their genetic variation but also because of their epigenetic variation. The line between these two components is blurred because little is known about the contribution of genotypes and epigenotypes to stress tolerance in natural populations. Recent insights in this field have just begun to shed light on the behavior of genetic and epigenetic variation in natural plant populations under biotic and abiotic stresses. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.
Collapse
Affiliation(s)
- Clícia Grativol
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
399
|
Qin F, Shinozaki K, Yamaguchi-Shinozaki K. Achievements and challenges in understanding plant abiotic stress responses and tolerance. PLANT & CELL PHYSIOLOGY 2011; 52:1569-82. [PMID: 21828105 DOI: 10.1093/pcp/pcr106] [Citation(s) in RCA: 254] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Intensive research over the last decade has gradually unraveled the mechanisms that underlie how plants react to environmental adversity. Genes involved in many of the essential steps of the stress response have been identified and characterized. In particular, the recent discovery of ABA receptors, progress in understanding the transcriptional and post-transcriptional regulation of stress-responsive gene expression, and studies on hormone interactions under stress have facilitated addressing the molecular basis of how plant cells respond to abiotic stress. Here, we summarize recent research progress on these issues, especially focusing on progress related to the essential and classically important signaling pathways and genes. Despite this wealth of achievements, many challenges remain not only for the further elucidation of stress response mechanisms but also for evaluation of the natural genetic variations and associating them with specific gene functions. Finally, the proper application of this knowledge to benefit humans and agriculture is another important issue that lies ahead. Collaborative wisdom and efforts are needed to confront these challenges.
Collapse
Affiliation(s)
- Feng Qin
- Key Laboratory for Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, PR China
| | | | | |
Collapse
|
400
|
Zhang L, Zheng Y, Jagadeeswaran G, Li Y, Gowdu K, Sunkar R. Identification and temporal expression analysis of conserved and novel microRNAs in Sorghum. Genomics 2011; 98:460-8. [PMID: 21907786 DOI: 10.1016/j.ygeno.2011.08.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 07/12/2011] [Accepted: 08/17/2011] [Indexed: 11/26/2022]
Abstract
Sweet Sorghum is largely grown for grain production but also recently emerged as one of the model feedstock plants for biofuel production. In plants, microRNA (miRNA)-guided gene regulation plays a key role in diverse biological processes, thus, their identification in different plant species is essential to understand post-transcriptional gene regulation. To identify miRNAs in Sorghum, we sequenced a small RNA library. Sequence analysis revealed the identity of 29 conserved miRNA families. Importantly, 13 novel miRNAs are identified, seven of which are conserved in closely related monocots. Temporal expression analysis of conserved and novel miRNAs indicated differential expression of several miRNAs. Approximately 125 genes that play diverse roles have been predicted as targets and a few targets were experimentally validated. These results provided insights into miRNA-controlled processes in Sorghum and also laid the foundation for manipulating miRNAs or their targets for improving biomass production and stress tolerance in Sorghum.
Collapse
Affiliation(s)
- Li Zhang
- Department of Biochemistry and Molecular Biology Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | | | | | |
Collapse
|