351
|
Krishnamoorthy T, Chen X, Govin J, Cheung WL, Dorsey J, Schindler K, Winter E, Allis CD, Guacci V, Khochbin S, Fuller MT, Berger SL. Phosphorylation of histone H4 Ser1 regulates sporulation in yeast and is conserved in fly and mouse spermatogenesis. Genes Dev 2006; 20:2580-92. [PMID: 16980586 PMCID: PMC1578680 DOI: 10.1101/gad.1457006] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sporulation in Saccharomyces cerevisiae is a highly regulated process wherein a diploid cell gives rise to four haploid gametes. In this study we show that histone H4 Ser1 is phosphorylated (H4 S1ph) during sporulation, starting from mid-sporulation and persisting to germination, and is temporally distinct from earlier meiosis-linked H3 S10ph involved in chromosome condensation. A histone H4 S1A substitution mutant forms aberrant spores and has reduced sporulation efficiency. Deletion of sporulation-specific yeast Sps1, a member of the Ste20 family of kinases, nearly abolishes the sporulation-associated H4 S1ph modification. H4 S1ph may promote chromatin compaction, since deletion of SPS1 increases accessibility to antibody immunoprecipitation; furthermore, either deletion of Sps1 or an H4 S1A substitution results in increased DNA volume in nuclei within spores. We find H4 S1ph present during Drosophila melanogaster and mouse spermatogenesis, and similar to yeast, this modification extends late into sperm differentiation relative to H3 S10ph. Thus, H4 S1ph may be an evolutionarily ancient histone modification to mark the genome for gamete-associated packaging.
Collapse
Affiliation(s)
- Thanuja Krishnamoorthy
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
352
|
Arya G, Schlick T. Role of histone tails in chromatin folding revealed by a mesoscopic oligonucleosome model. Proc Natl Acad Sci U S A 2006; 103:16236-41. [PMID: 17060627 PMCID: PMC1637566 DOI: 10.1073/pnas.0604817103] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The role of each histone tail in regulating chromatin structure is elucidated by using a coarse-grained model of an oligonucleosome incorporating flexible histone tails that reproduces the conformational and dynamical properties of chromatin. Specifically, a tailored configurational-bias Monte Carlo method that efficiently samples the possible conformational states of oligonucleosomes yields positional distributions of histone tails around nucleosomes and illuminates the nature of tail/core/DNA interactions at various salt milieus. Analyses indicate that the H4 histone tails are most important in terms of mediating internucleosomal interactions, especially in highly compact chromatin with linker histones, followed by H3, H2A, and H2B tails in decreasing order of importance. In addition to mediating internucleosomal interactions, the H3 histone tails crucially screen the electrostatic repulsion between the entering/exiting DNA linkers. The H2A and H2B tails distribute themselves along the periphery of chromatin fibers and are important for mediating fiber/fiber interactions. A delicate balance between tail-mediated internucleosomal attraction and repulsion among linker DNAs allows the entering/exiting linker DNAs to align perpendicular to each other in linker-histone deficient chromatin, leading to the formation of an irregular zigzag-folded fiber with dominant pair-wise interactions between nucleosomes i and i +/- 4.
Collapse
Affiliation(s)
- Gaurav Arya
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012
| | - Tamar Schlick
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
353
|
Roopa T, Shivashankar GV. Direct measurement of local chromatin fluidity using optical trap modulation force spectroscopy. Biophys J 2006; 91:4632-7. [PMID: 17012315 PMCID: PMC1779931 DOI: 10.1529/biophysj.106.086827] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chromatin assembly is condensed by histone tail-tail interactions and other nuclear proteins into a highly compact structure. Using an optical trap modulation force spectroscopy, we probe the effect of tail interactions on local chromatin fluidity. Chromatin fibers, purified from mammalian cells, are tethered between a microscope coverslip and a glass micropipette. Mechanical unzipping of tail interactions, using the micropipette, lead to the enhancement of local fluidity. This is measured using an intensity-modulated optically trapped bead positioned as a force sensor on the chromatin fiber. Enzymatic digestion of the histone tail interactions of tethered chromatin fiber also leads to a similar increase in fluidity. Our experiments show that an initial increase in the local fluidity precedes chromatin decompaction, suggesting possible mechanisms by which chromatin-remodeling machines access regulatory sites.
Collapse
Affiliation(s)
- T Roopa
- Raman Research Institute, Bangalore, India
| | | |
Collapse
|
354
|
Abstract
Post-translational histone modifications and histone variants generate complexity in chromatin to enable the many functions of the chromosome. Recent studies have mapped histone modifications across the Saccharomyces cerevisiae genome. These experiments describe how combinations of modified and unmodified states relate to each other and particularly to chromosomal landmarks that include heterochromatin, subtelomeric chromatin, centromeres, origins of replication, promoters and coding regions. Such patterns might be important for the regulation of heterochromatin-mediated silencing, chromosome segregation, DNA replication and gene expression.
Collapse
Affiliation(s)
- Catherine B Millar
- Department of Biological Chemistry, Geffen School of Medicine and the Molecular Biology Institute, University of California, Los Angeles, California 90095, USA.
| | | |
Collapse
|
355
|
Myers FA, Lefevre P, Mantouvalou E, Bruce K, Lacroix C, Bonifer C, Thorne AW, Crane-Robinson C. Developmental activation of the lysozyme gene in chicken macrophage cells is linked to core histone acetylation at its enhancer elements. Nucleic Acids Res 2006; 34:4025-35. [PMID: 16914441 PMCID: PMC1557816 DOI: 10.1093/nar/gkl543] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Native chromatin IP assays were used to define changes in core histone acetylation at the lysozyme locus during developmental maturation of chicken macrophages and stimulation to high-level expression by lipo-polysaccharide. In pluripotent precursors the lysozyme gene (Lys) is inactive and there is no acetylation of core histones at the gene, its promoter or at the upstream cis-control elements. In myeloblasts, where there is a very low level of Lys expression, H4 acetylation appears at the cis-control elements but not at the Lys gene or its promoter: neither H3 nor H2B become significantly acetylated in myeloblasts. In mature macrophages, Lys expression increases 5-fold: H4, H2B and H2A.Z are all acetylated at the cis-control elements but H3 remains unacetylated except at the −2.4 S silencer. Stimulation with LPS increases Lys expression a further 10-fold: this is accompanied by a rise in H3 acetylation throughout the cis-control elements; H4 and H2B acetylation remain substantial but acetylation at the Lys gene and its promoter remains low. Acetylation is thus concentrated at the cis-control elements, not at the Lys gene or its immediate promoter. H4 acetylation precedes H3 acetylation during development and H3 acetylation is most directly linked to high-level Lys expression.
Collapse
Affiliation(s)
| | - Pascal Lefevre
- Molecular Medicine Unit, St James's University Hospital, University of LeedsLeeds LS9 7TF, UK
| | | | | | - Claire Lacroix
- Molecular Medicine Unit, St James's University Hospital, University of LeedsLeeds LS9 7TF, UK
| | - Constanze Bonifer
- Molecular Medicine Unit, St James's University Hospital, University of LeedsLeeds LS9 7TF, UK
| | | | - Colyn Crane-Robinson
- To whom correspondence should be addressed. Tel: +44 23 92842055; Fax: +44 23 92842053;
| |
Collapse
|
356
|
Gheldof N, Tabuchi TM, Dekker J. The active FMR1 promoter is associated with a large domain of altered chromatin conformation with embedded local histone modifications. Proc Natl Acad Sci U S A 2006; 103:12463-8. [PMID: 16891414 PMCID: PMC1567902 DOI: 10.1073/pnas.0605343103] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have analyzed the effects of gene activation on chromatin conformation throughout an approximately 170-kb region comprising the human fragile X locus, which includes a single expressed gene, FMR1 (fragile X mental retardation 1). We have applied three approaches: (i) chromosome conformation capture, which assesses relative interaction frequencies of chromatin segments; (ii) an extension of this approach that identifies domains whose conformation differs from the average, which we developed and named chromosome conformation profiling; and (iii) ChIP analysis of histone modifications. We find that, in normal cells where FMR1 is active, the FMR1 promoter is at the center of a large ( approximately 50 kb) domain of reduced intersegment interactions. In contrast, in fragile X cells where FMR1 is inactive, chromatin conformation is uniform across the entire region. We also find that histone modifications that are characteristic of active genes occur tightly localized around the FMR1 promoter in normal cells and are absent in fragile X cells. Therefore, the expression-correlated change in conformation affects a significantly larger domain than that marked by histone modifications. Domain-wide changes in interaction probability could reflect increased chromatin expansion and may also be related to an altered spatial disposition that results in increased intermingling with unrelated loci. The described approaches are widely applicable to the study of conformational changes of any locus of interest.
Collapse
Affiliation(s)
- Nele Gheldof
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605
| | - Tomoko M. Tabuchi
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605
| | - Job Dekker
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
357
|
McManus KJ, Hendzel MJ. The relationship between histone H3 phosphorylation and acetylation throughout the mammalian cell cycleThis paper is one of a selection of papers published in this Special Issue, entitled 27th International West Coast Chromatin and Chromosome Conference, and has undergone the Journal's usual peer review process. Biochem Cell Biol 2006; 84:640-57. [PMID: 16936834 DOI: 10.1139/o06-086] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During interphase, histone amino-terminal tails play important roles in regulating the extent of DNA compaction. Post-translational modifications of the histone tails are intimately associated with regulating chromatin structure: phosphorylation of histone H3 is associated with proper chromosome condensation and dynamics during mitosis, while multiple H2B, H3, and H4 tail acetylations destabilize the chromatin fiber and are sufficient to decondense chromatin fibers in vitro. In this study, we investigate the spatio-temporal dynamics of specific histone H3 phosphorylations and acetylations to better understand the interplay of these post-translational modifications throughout the cell cycle. Using a panel of antibodies that individually, or in combination, recognize phosphorylated serines 10 and 28 and acetylated lysines 9 and 14, we define a series of changes associated with histone H3 that occur as cells progress through the cell cycle. Our results establish that mitosis appears to be a period of the cell cycle when many modifications are highly dynamic. Furthermore, they suggest that the upstream histone acetyltransferases/deacetylases and kinase/phosphatases are temporally regulated to alter their function globally during specific cell cycle time points.
Collapse
Affiliation(s)
- Kirk J McManus
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | | |
Collapse
|
358
|
Wang X, Hayes JJ. Physical methods used to study core histone tail structures and interactions in solutionThis paper is one of a selection of papers published in this Special Issue, entitled 27th International West Coast Chromatin and Chromosome Conference, and has undergone the Journal's usual peer review process. Biochem Cell Biol 2006; 84:578-88. [PMID: 16936830 DOI: 10.1139/o06-076] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The core histone tail domains are key regulatory elements in chromatin. The tails are essential for folding oligonucleosomal arrays into both secondary and tertiary structures, and post-translational modifications within these domains can directly alter DNA accessibility. Unfortunately, there is little understanding of the structures and interactions of the core histone tail domains or how post-translational modifications within the tails may alter these interactions. Here we review NMR, thermal denaturation, cross-linking, and other selected solution methods used to define the general structures and binding behavior of the tail domains in various chromatin environments. All of these methods indicate that the tail domains bind primarily electrostatically to sites within chromatin. The data also indicate that the tails adopt specific structures when bound to DNA and that tail structures and interactions are plastic, depending on the specific chromatin environment. In addition, post-translational modifications, such as acetylation, can directly alter histone tail structures and interactions.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Biochemistry and Biophysics, Box 712, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester NY, USA
| | | |
Collapse
|
359
|
Costelloe T, Fitzgerald J, Murphy NJ, Flaus A, Lowndes NF. Chromatin modulation and the DNA damage response. Exp Cell Res 2006; 312:2677-86. [PMID: 16893724 DOI: 10.1016/j.yexcr.2006.06.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 06/19/2006] [Indexed: 11/22/2022]
Abstract
The ability to sense and respond appropriately to genetic lesions is vitally important to maintain the integrity of the genome. Emerging evidence indicates that various modulations to chromatin structure are centrally important to many aspects of the DNA damage response (DDR). Here, we discuss recently described roles for specific post-translational covalent modifications to histone proteins, as well as ATP-dependent chromatin remodelling, in DNA damage signalling and repair of DNA double strand breaks.
Collapse
Affiliation(s)
- Thomas Costelloe
- Genome Stability Laboratory, Department of Biochemistry and National Centre for Biomedical Engineering Science, National University of Ireland, Galway
| | | | | | | | | |
Collapse
|
360
|
Robinson PJJ, Rhodes D. Structure of the '30 nm' chromatin fibre: a key role for the linker histone. Curr Opin Struct Biol 2006; 16:336-43. [PMID: 16714106 DOI: 10.1016/j.sbi.2006.05.007] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 04/12/2006] [Accepted: 05/03/2006] [Indexed: 01/19/2023]
Abstract
The structure of the '30 nm' chromatin fibre has eluded us for 30 years and remains a major unsolved problem in biology. Progress during the past year has led to the proposal of two significantly different models: one derived from the crystal structure of a four-nucleosome core array lacking the linker histone and the other, much more compact structure, derived from electron microscopy analysis of long nucleosome arrays containing the linker histone. The first model is of the two-start helix type, the second a one-start helix with interdigitated nucleosomes. These models provide new evidence that the topology and compactness of the '30 nm' chromatin fibre structure are regulated by the linker histone. The structural information also provides insights into the mechanisms by which the degree of chromatin compaction might be regulated by histone composition and post-transcriptional modifications.
Collapse
|
361
|
Abstract
The accessibility of eukaryotic DNA is dependent upon the hierarchical level of chromatin organization. These include (1) intra-nucleosome interactions, (2) inter-nucleosome interactions and (3) the influence of non-histone chromatin architectural proteins. There appears to be interplay between all these levels, in that one level can override another or that two or more can act in concert. In the first level, the stability of the nucleosome itself is dependent on the number and type of contacts between the core histones and the surrounding DNA, as well as protein-protein interactions within the core histone octamer. Core histone variants, post-translational modifications of the histones, and linker histones binding to the DNA all influence the organization and stability of the nucleosome. When nucleosomes are placed end-to-end in linear chromatin arrays, the second level of organization is revealed. The amino terminal tails of the histone proteins make contacts with adjacent and distant nucleosomes, both within the fiber and between different fibers. The third level of organization is imposed upon these 'intrinsic' constraints, and is due to the influence of chromatin binding proteins that alter the architecture of the underlying fiber. These chromatin architectural proteins can, in some cases, bypass intrinsic constraints and impart their own topological affects, resulting in truly unique, supra-molecular assemblages that undoubtedly influence the accessibility of the underlying DNA. In this review we will provide a brief summary of what has been learned about the intrinsic dynamics of chromatin fibers, and survey the biology and architectural affects of the handful of chromatin architectural proteins that have been identified and characterized. These proteins are likely only a small subset of the architectural proteins encoded within the eukaryotic genome. We hope that an increased understanding and appreciation of the contribution of these proteins to genome accessibility will hasten the identification and characterization of more of these important regulatory factors.
Collapse
Affiliation(s)
- Steven J McBryant
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, 80523-1870, USA
| | | | | |
Collapse
|
362
|
Grigoryev SA, Bulynko YA, Popova EY. The end adjusts the means: heterochromatin remodelling during terminal cell differentiation. Chromosome Res 2006; 14:53-69. [PMID: 16506096 DOI: 10.1007/s10577-005-1021-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
All cells that constitute mature tissues in an eukaryotic organism undergo a multistep process of cell differentiation. At the terminal stage of this process, cells either cease to proliferate forever or rest for a very long period of time. During terminal differentiation, most of the genes that are required for cell 'housekeeping' functions, such as proto-oncogenes and other cell-cycle and cell proliferation genes, become stably repressed. At the same time, nuclear chromatin undergoes dramatic morphological and structural changes at the higher-order levels of chromatin organization. These changes involve both constitutively inactive chromosomal regions (constitutive heterochromatin) and the formerly active genes that become silenced and structurally modified to form facultative heterochromatin. Here we approach terminal cell differentiation as a unique system that allows us to combine biochemical, ultrastructural and molecular genetic techniques to study the relationship between the hierarchy of chromatin higher-order structures in the nucleus and its function(s) in dynamic packing of genetic material in a form that remains amenable to regulation of gene activity and other DNA-dependent cellular processes.
Collapse
Affiliation(s)
- Sergei A Grigoryev
- Department of Biochemistry and Molecular Biology, H171, Penn State University College of Medicine, Milton S Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA.
| | | | | |
Collapse
|
363
|
Abstract
It is now widely recognized that the packaging of genomic DNA together with core histones, linker histones, and other functional proteins into chromatin profoundly influences nuclear processes such as transcription, replication, repair and recombination. How chromatin structure modulates the expression and maintenance of knowledge encoded in eukaryotic genomes, and how these processes take place within the context of a highly complex and compacted genomic chromatin environment remains a major unresolved question in biology. Here we review recent advances in our understanding of how nucleosome and chromatin structure may have to adapt to promote these vital functions.
Collapse
Affiliation(s)
- Karolin Luger
- Howard Hughes Medical Institute and Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, 80523-1870, USA.
| |
Collapse
|
364
|
Abstract
The acetylation of histone H4 on lysine 16 is a crucial event in switching chromatin from a repressive to a transcriptionally active state. Acetylation at histone H4 lysine 16 is involved in many cellular processes in organisms as diverse as yeast and humans. A recent biochemical study pinpoints this particular acetylation mark as a switch for changing chromatin from a repressive to a transcriptionally active state.
Collapse
Affiliation(s)
- Wei-Jong Shia
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Samantha G Pattenden
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| |
Collapse
|
365
|
Robinson PJJ, Fairall L, Huynh VAT, Rhodes D. EM measurements define the dimensions of the "30-nm" chromatin fiber: evidence for a compact, interdigitated structure. Proc Natl Acad Sci U S A 2006; 103:6506-11. [PMID: 16617109 PMCID: PMC1436021 DOI: 10.1073/pnas.0601212103] [Citation(s) in RCA: 355] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Indexed: 11/18/2022] Open
Abstract
Chromatin structure plays a fundamental role in the regulation of nuclear processes such as DNA transcription, replication, recombination, and repair. Despite considerable efforts during three decades, the structure of the 30-nm chromatin fiber remains controversial. To define fiber dimensions accurately, we have produced very long and regularly folded 30-nm fibers from in vitro reconstituted nucleosome arrays containing the linker histone and with increasing nucleosome repeat lengths (10 to 70 bp of linker DNA). EM measurements show that the dimensions of these fully folded fibers do not increase linearly with increasing linker length, a finding that is inconsistent with two-start helix models. Instead, we find that there are two distinct classes of fiber structure, both with unexpectedly high nucleosome density: arrays with 10 to 40 bp of linker DNA all produce fibers with a diameter of 33 nm and 11 nucleosomes per 11 nm, whereas arrays with 50 to 70 bp of linker DNA all produce 44-nm-wide fibers with 15 nucleosomes per 11 nm. Using the physical constraints imposed by these measurements, we have built a model in which tight nucleosome packing is achieved through the interdigitation of nucleosomes from adjacent helical gyres. Importantly, the model closely matches raw image projections of folded chromatin arrays recorded in the solution state by using electron cryo-microscopy.
Collapse
Affiliation(s)
- Philip J. J. Robinson
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Louise Fairall
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Van A. T. Huynh
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Daniela Rhodes
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| |
Collapse
|
366
|
Boulard M, Gautier T, Mbele GO, Gerson V, Hamiche A, Angelov D, Bouvet P, Dimitrov S. The NH2 tail of the novel histone variant H2BFWT exhibits properties distinct from conventional H2B with respect to the assembly of mitotic chromosomes. Mol Cell Biol 2006; 26:1518-26. [PMID: 16449661 PMCID: PMC1367197 DOI: 10.1128/mcb.26.4.1518-1526.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have studied the functional and structural properties of nucleosomes reconstituted with H2BFWT, a recently identified putative histone variant of the H2B family with totally unknown function. We show that H2BFWT can replace the conventional histone H2B in the nucleosome. The presence of H2BFWT did not affect the overall structure of the nucleosome, and the H2BFWT nucleosomes exhibited the same stability as conventional nucleosomes. SWI/SNF was able to efficiently remodel and mobilize the H2BFWT nucleosomes. Importantly, H2BFWT, in contrast to conventional H2B, was unable to recruit chromosome condensation factors and to participate in the assembly of mitotic chromosomes. This was determined by the highly divergent (compared to conventional H2B) NH2 tail of H2BFWT. These data, in combination with the observations that H2BFWT was found by others in the sperm nuclei and appeared to be associated with the telomeric chromatin, suggest that H2BFWT could act as a specific epigenetic marker.
Collapse
Affiliation(s)
- Mathieu Boulard
- Institut Albert Bonniot, INSERM U309, 38706 La Tronche Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
367
|
Wurtele H, Verreault A. Histone post-translational modifications and the response to DNA double-strand breaks. Curr Opin Cell Biol 2006; 18:137-44. [PMID: 16487697 DOI: 10.1016/j.ceb.2006.02.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 02/09/2006] [Indexed: 01/26/2023]
Abstract
The packaging of DNA into chromatin creates a number of significant barriers to the detection of DNA lesions and their timely and accurate repair. Eukaryotic cells have evolved a number of enzymes that modulate chromatin structure and facilitate DNA repair. Recent research illustrates how nucleosome remodelling enzymes cooperate with both DNA-damage-inducible and constitutive histone modifications to promote many facets of the cellular response to DNA damage.
Collapse
Affiliation(s)
- Hugo Wurtele
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Pavillon Marcelle-Coutu, 2950 Chemin Polytechnique, Montreal H3T 1J4, Canada
| | | |
Collapse
|
368
|
Varga-Weisz PD, Becker PB. Regulation of higher-order chromatin structures by nucleosome-remodelling factors. Curr Opin Genet Dev 2006; 16:151-6. [PMID: 16503135 DOI: 10.1016/j.gde.2006.02.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 02/13/2006] [Indexed: 02/06/2023]
Abstract
Nucleosome-remodelling factors are key facilitators of chromatin dynamics. At the level of single nucleosomes, they are involved in nucleosome-repositioning, altering histone-DNA interactions, disassembly of nucleosomes, and the exchange of histones with variants of different properties. The fundamental nature of chromatin dictates that nucleosome-remodelling affects all aspects of eukaryotic DNA metabolism, but much less is known about the functional interactions of nucleosome-remodelling factors with folded chromatin fibres. Because remodelling machines are abundant constituents of eukaryotic nuclei and, therefore, have ample potential to interact with chromatin, they might also affect higher-order chromatin architecture. Recent observations support roles for nucleosome-remodelling factors at the supra-nucleosomal level.
Collapse
|
369
|
Woodcock CL. Chromatin architecture. Curr Opin Struct Biol 2006; 16:213-20. [PMID: 16540311 DOI: 10.1016/j.sbi.2006.02.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 02/24/2006] [Accepted: 02/28/2006] [Indexed: 01/21/2023]
Abstract
A complete understanding of the structure-function relationships of chromatin requires extending primarily one dimensional information, obtained from molecular genetic techniques and based on the underlying linear DNA sequence, to the three dimensional conformation. Recent progress in this endeavor has included the examination of fully defined nucleosomes and nucleosomal arrays assembled in vitro using X-ray diffraction, NMR spectroscopy, electron microscopy and atomic force microscopy. These studies have provided valuable insights into the structural roles of histone variants, the impact of histone mutations and the compaction of nucleosomal arrays. In addition, the diverse structural consequences of the binding of specific chromatin 'architectural' proteins are becoming apparent. These approaches provide an essential basis for understanding the conformation of the 'epigenome'.
Collapse
Affiliation(s)
- Christopher L Woodcock
- Department of Biology and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
370
|
Korolev N, Lyubartsev AP, Nordenskiöld L. Computer modeling demonstrates that electrostatic attraction of nucleosomal DNA is mediated by histone tails. Biophys J 2006; 90:4305-16. [PMID: 16565063 PMCID: PMC1471847 DOI: 10.1529/biophysj.105.080226] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We conducted molecular dynamics computer simulations of charged histone tail-DNA interactions in systems mimicking nucleosome core particles (NCP) . In a coarse-grained model, the NCP is modeled as a negatively charged spherical particle with flexible polycationic histone tails attached to it in a dielectric continuum with explicit mobile counterions and added salt. The size, charge, and distribution of the tails relative to the core were built to mimick real NCP. In this way, we incorporate attractive ion-ion correlation effects due to fluctuations in the ion cloud and the attractive entropic and energetic tail-bridging effects. In agreement with experimental data, increase of monovalent salt content from salt-free to physiological concentration leads to the formation of NCP aggregates; likewise, in the presence of MgCl2, the NCPs form condensed systems via histone-tail bridging and accumulation of counterions. More detailed mechanisms of the histone tail-DNA interactions and dynamics have been obtained from all-atom molecular dynamics simulations (including water), comprising three DNA 22-mers and 14 short fragments of the H4 histone tail (amino acids 5-12) carrying three positive charges on lysine+ interacting with DNA. We found correlation of the DNA-DNA distance with the presence and association of the histone tail between the DNA molecules.
Collapse
Affiliation(s)
- Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, Nanyang, Singapore
| | | | | |
Collapse
|
371
|
Schäfer G, Smith EM, Patterton HG. The Saccharomyces cerevisiae linker histone Hho1p, with two globular domains, can simultaneously bind to two four-way junction DNA molecules. Biochemistry 2006; 44:16766-75. [PMID: 16342967 DOI: 10.1021/bi0511787] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Saccharomyces cerevisiae encodes a single linker histone, Hho1p, with two globular domains. This raised the possibility that Hho1p could bind to two nucleosome cores simultaneously. To evaluate this idea, we studied the ability of a four-way junction, immobilized on the surface of a magnetic bead, to pull down a radiolabeled four-way junction in the presence of different Hho1 proteins. Four-way junctions are known to bind to H1, presumably due to structure similarities to the DNA at the nucleosomal entry/exit point. We found a significant increase in the ability of full-length Hho1p to pull down radiolabeled four-way junction DNA under ionic conditions where both globular domains could bind. The binding was structure specific, since the use of double-stranded DNA, or a mutant Hho1p in which the second DNA binding site of globular domain 1 was abolished, resulted in a significant decrease in bridged binding. Additionally, bridged binding required a covalent attachment between the two globular domains, since factor Xa protease treatment of the complex formed by a modified Hho1p that contained a factor Xa cleavage site between the two globular domains resulted in a significant release of radiolabeled four-way junction. These findings demonstrated that the two globular domains independently associated with two different four-way junction molecules in a manner that required amino acid residues implicated in structure-specific binding in the nucleosome. We discuss the implication of these findings on the chromatin structure of yeast and propose a model where a single Hho1 protein binds to two serially adjacent nucleosomes.
Collapse
Affiliation(s)
- Georgia Schäfer
- Department of Biotechnology, University of the Free State, P.O. Box 339, Bloemfontein, 9300 South Africa
| | | | | |
Collapse
|
372
|
Abstract
A recent publication shows that a simple chemical event, acetylation of lysine 16 on the histone H4 N-terminal tail domain (NTD), completely abolishes the ability of the H4 NTD to mediate the nucleosome-nucleosome interactions involved in chromatin condensation. This result provides novel insight into the molecular mechanism of histone acetylation and also implicates H4 K16acet-dependent changes in chromatin fiber architecture as a central mechanism for generating transcriptionally active genomic domains.
Collapse
Affiliation(s)
- Jeffrey C Hansen
- Department of Biochemistry and Molecular Biology, 1870 Campus Delivery, Colorado State University, Fort Collins, Colorado 80523, USA.
| |
Collapse
|
373
|
Fan Y, Nikitina T, Zhao J, Fleury TJ, Bhattacharyya R, Bouhassira EE, Stein A, Woodcock CL, Skoultchi AI. Histone H1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation. Cell 2006; 123:1199-212. [PMID: 16377562 DOI: 10.1016/j.cell.2005.10.028] [Citation(s) in RCA: 435] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 08/05/2005] [Accepted: 10/06/2005] [Indexed: 01/05/2023]
Abstract
Linker histone H1 plays an important role in chromatin folding in vitro. To study the role of H1 in vivo, mouse embryonic stem cells null for three H1 genes were derived and were found to have 50% of the normal level of H1. H1 depletion caused dramatic chromatin structure changes, including decreased global nucleosome spacing, reduced local chromatin compaction, and decreases in certain core histone modifications. Surprisingly, however, microarray analysis revealed that expression of only a small number of genes is affected. Many of the affected genes are imprinted or are on the X chromosome and are therefore normally regulated by DNA methylation. Although global DNA methylation is not changed, methylation of specific CpGs within the regulatory regions of some of the H1 regulated genes is reduced. These results indicate that linker histones can participate in epigenetic regulation of gene expression by contributing to the maintenance or establishment of specific DNA methylation patterns.
Collapse
Affiliation(s)
- Yuhong Fan
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
374
|
McDonald OG, Wamhoff BR, Hoofnagle MH, Owens GK. Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo. J Clin Invest 2006; 116:36-48. [PMID: 16395403 PMCID: PMC1323266 DOI: 10.1172/jci26505] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 10/25/2005] [Indexed: 01/21/2023] Open
Abstract
Precise control of SMC transcription plays a major role in vascular development and pathophysiology. Serum response factor (SRF) controls SMC gene transcription via binding to CArG box DNA sequences found within genes that exhibit SMC-restricted expression. However, the mechanisms that regulate SRF association with CArG box DNA within native chromatin of these genes are unknown. Here we report that SMC-restricted binding of SRF to murine SMC gene CArG box chromatin is associated with patterns of posttranslational histone modifications within this chromatin that are specific to the SMC lineage in culture and in vivo, including methylation and acetylation to histone H3 and H4 residues. We found that the promyogenic SRF coactivator myocardin increased SRF association with methylated histones and CArG box chromatin during activation of SMC gene expression. In contrast, the myogenic repressor Kruppel-like factor 4 recruited histone H4 deacetylase activity to SMC genes and blocked SRF association with methylated histones and CArG box chromatin during repression of SMC gene expression. Finally, we observed deacetylation of histone H4 coupled with loss of SRF binding during suppression of SMC differentiation in response to vascular injury. Taken together, these findings provide novel evidence that SMC-selective epigenetic control of SRF binding to chromatin plays a key role in regulation of SMC gene expression in response to pathophysiological stimuli in vivo.
Collapse
Affiliation(s)
- Oliver G McDonald
- Department of Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
375
|
Patrone E, Coradeghini R, Barboro P, D'Arrigo C, Mormino M, Parodi S, Balbi C. SCN- binding to the charged lysines of histones end domains mimics acetylation and shows the major histone-DNA interactions involved in eu and heterochromatin stabilization. J Cell Biochem 2006; 97:869-81. [PMID: 16250000 DOI: 10.1002/jcb.20689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SCN- binds to the charged amino group of lysines, inducing local changes in the electrostatic free energy of histones. We exploited this property to selectively perturb the histone-DNA interactions involved in the stabilization of eu and heterochromatin. Differential scanning calorimetry (DSC) was used as leading technique in combination with trypsin digestion that selectively cleaves the histone end domains. Euchromatin undergoes progressive destabilization with increasing KSCN concentration from 0 to 0.3 M. Trypsin digestion in the presence of 0.2 M KSCN show that the stability of the linker decreases as a consequence of the competitive binding of SCN- to the amino groups located in the C and N-terminal domain of H1 and H3, respectively; likewise, the release of the N-terminal domain of H4 induces an appreciable depression in both the temperature and enthalpy of melting of core particle DNA. Unfolding of heterochromatin requires, in addition to further cleavage of H4, extensive digestion of H2A and H2B, strongly suggesting that these histones stabilize the higher order structure by forming a protein network which extends throughout the heterochromatin domain.
Collapse
Affiliation(s)
- Eligio Patrone
- C.N.R., Istituto per lo Studio delle Macromolecole, Sezione di Genova, Via De Marini 6, 16149 Genova, Italy
| | | | | | | | | | | | | |
Collapse
|
376
|
Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 2006; 311:844-7. [PMID: 16469925 DOI: 10.1126/science.1124000] [Citation(s) in RCA: 1394] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acetylation of histone H4 on lysine 16 (H4-K16Ac) is a prevalent and reversible posttranslational chromatin modification in eukaryotes. To characterize the structural and functional role of this mark, we used a native chemical ligation strategy to generate histone H4 that was homogeneously acetylated at K16. The incorporation of this modified histone into nucleosomal arrays inhibits the formation of compact 30-nanometer-like fibers and impedes the ability of chromatin to form cross-fiber interactions. H4-K16Ac also inhibits the ability of the adenosine triphosphate-utilizing chromatin assembly and remodeling enzyme ACF to mobilize a mononucleosome, indicating that this single histone modification modulates both higher order chromatin structure and functional interactions between a nonhistone protein and the chromatin fiber.
Collapse
Affiliation(s)
- Michael Shogren-Knaak
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | |
Collapse
|
377
|
Barbera AJ, Chodaparambil JV, Kelley-Clarke B, Joukov V, Walter JC, Luger K, Kaye KM. The nucleosomal surface as a docking station for Kaposi's sarcoma herpesvirus LANA. Science 2006; 311:856-61. [PMID: 16469929 DOI: 10.1126/science.1120541] [Citation(s) in RCA: 427] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA) mediates viral genome attachment to mitotic chromosomes. We find that N-terminal LANA docks onto chromosomes by binding nucleosomes through the folded region of histones H2A-H2B. The same LANA residues were required for both H2A-H2B binding and chromosome association. Further, LANA did not bind Xenopus sperm chromatin, which is deficient in H2A-H2B; chromatin binding was rescued after assembly of nucleosomes containing H2A-H2B. We also describe the 2.9-angstrom crystal structure of a nucleosome complexed with the first 23 LANA amino acids. The LANA peptide forms a hairpin that interacts exclusively with an acidic H2A-H2B region that is implicated in the formation of higher order chromatin structure. Our findings present a paradigm for how nucleosomes may serve as binding platforms for viral and cellular proteins and reveal a previously unknown mechanism for KSHV latency.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Antigens, Viral/chemistry
- Antigens, Viral/metabolism
- Cell Line, Tumor
- Chromatin/metabolism
- Chromosomes/metabolism
- Chromosomes, Human/metabolism
- Chromosomes, Mammalian/metabolism
- Crystallography, X-Ray
- Dimerization
- Herpesvirus 8, Human/chemistry
- Herpesvirus 8, Human/metabolism
- Histones/chemistry
- Histones/metabolism
- Humans
- Models, Molecular
- Mutation
- Nuclear Proteins/chemistry
- Nuclear Proteins/metabolism
- Nucleosomes/chemistry
- Nucleosomes/metabolism
- Protein Binding
- Protein Conformation
- Protein Folding
- Protein Structure, Tertiary
- Recombinant Fusion Proteins/metabolism
- Xenopus laevis
Collapse
Affiliation(s)
- Andrew J Barbera
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
378
|
Carroll CW, Straight AF. Centromere formation: from epigenetics to self-assembly. Trends Cell Biol 2006; 16:70-8. [PMID: 16412639 DOI: 10.1016/j.tcb.2005.12.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 12/05/2005] [Accepted: 12/21/2005] [Indexed: 12/31/2022]
Abstract
This review is part of the Chromosome segregation and Aneuploidy series that focuses on the importance of chromosome segregation mechanisms in maintaining genome stability. Centromeres are specialized chromosomal domains that serve as the foundation for the mitotic kinetochore, the interaction site between the chromosome and the mitotic spindle. The chromatin of centromeres is distinguished from other chromosomal loci by the unique incorporation of the centromeric histone H3 variant, centromere protein A. Here, we review the genetic and epigenetic factors that control the formation and maintenance of centromeric chromatin and propose a chromatin self-assembly model for organizing the higher-order structure of the centromere.
Collapse
Affiliation(s)
- Christopher W Carroll
- Department of Biochemistry, Stanford University, Beckman Building, Rm. 409, 279 Campus Drive, Stanford, CA 94305-5307, USA
| | | |
Collapse
|
379
|
Chodaparambil JV, Edayathumangalam RS, Bao Y, Park YJ, Luger K. Nucleosome structure and function. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2006:29-46. [PMID: 16568947 DOI: 10.1007/3-540-37633-x_2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
It is now widely recognized that the packaging of genomic DNA, together with core histones, linker histones, and other functional proteins into chromatin profoundly influences nuclear processes such as transcription, replication, DNA repair, and recombination. How chromatin structure modulates the expression of knowledge encoded in eukaryotic genomes, and how these processes take place within the context of a highly complex and compacted genomic chromatin environment remains a major unresolved question in biology. Here we review recent advances in nucleosome structure and dynamics.
Collapse
Affiliation(s)
- J V Chodaparambil
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins 80523-1870, USA
| | | | | | | | | |
Collapse
|
380
|
Horowitz-Scherer RA, Woodcock CL. Organization of interphase chromatin. Chromosoma 2005; 115:1-14. [PMID: 16362820 DOI: 10.1007/s00412-005-0035-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 11/01/2005] [Accepted: 11/03/2005] [Indexed: 11/25/2022]
Abstract
The organization of interphase chromatin spans many topics, ranging in scale from the molecular level to the whole nucleus, and its study requires a concomitant range of experimental approaches. In this review, we examine these approaches, the results they have generated, and the interfaces between them. The greatest challenge appears to be the integration of information on whole nuclei obtained by light microscopy with data on nucleosome-nucleosome interactions and chromatin higher-order structures, obtained in vitro using biophysical characterization, atomic force microscopy, and electron microscopy. We consider strategies that may assist in the integration process, and we review emerging technologies that promise to reduce the "resolution gap."
Collapse
Affiliation(s)
- Rachel A Horowitz-Scherer
- Biology Department and Molecular and Cellular Biology Program, University of Massachusetts at Amherst, 01003, USA
| | | |
Collapse
|
381
|
Hyland EM, Cosgrove MS, Molina H, Wang D, Pandey A, Cottee RJ, Boeke JD. Insights into the role of histone H3 and histone H4 core modifiable residues in Saccharomyces cerevisiae. Mol Cell Biol 2005; 25:10060-70. [PMID: 16260619 PMCID: PMC1280264 DOI: 10.1128/mcb.25.22.10060-10070.2005] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biological significance of recently described modifiable residues in the globular core of the bovine nucleosome remains elusive. We have mapped these modification sites onto the Saccharomyces cerevisiae histones and used a genetic approach to probe their potential roles both in heterochromatic regions of the genome and in the DNA repair response. By mutating these residues to mimic their modified and unmodified states, we have generated a total of 39 alleles affecting 14 residues in histones H3 and H4. Remarkably, despite the apparent evolutionary pressure to conserve these near-invariant histone amino acid sequences, the vast majority of mutant alleles are viable. However, a subset of these variant proteins elicit an effect on transcriptional silencing both at the ribosomal DNA locus and at telomeres, suggesting that posttranslational modification(s) at these sites regulates formation and/or maintenance of heterochromatin. Furthermore, we provide direct mass spectrometry evidence for the existence of histone H3 K56 acetylation in yeast. We also show that substitutions at histone H4 K91, K59, S47, and R92 and histone H3 K56 and K115 lead to hypersensitivity to DNA-damaging agents, linking the significance of the chemical identity of these modifiable residues to DNA metabolism. Finally, we allude to the possible molecular mechanisms underlying the effects of these modifications.
Collapse
Affiliation(s)
- Edel M Hyland
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
382
|
Hansen JC, Lu X, Ross ED, Woody RW. Intrinsic protein disorder, amino acid composition, and histone terminal domains. J Biol Chem 2005; 281:1853-6. [PMID: 16301309 DOI: 10.1074/jbc.r500022200] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Core and linker histones are the most abundant protein components of chromatin. Even though they lack intrinsic structure, the N-terminal "tail" domains (NTDs) of the core histones and the C-terminal tail domain (CTD) of linker histones bind to many different macromolecular partners while functioning in chromatin. Here we discuss the underlying physicochemical basis for how the histone terminal domains can be disordered and yet specifically recognize and interact with different macromolecules. The relationship between intrinsic disorder and amino acid composition is emphasized. We also discuss the potential structural consequences of acetylation and methylation of lysine residues embedded in intrinsically disordered histone tail domains.
Collapse
Affiliation(s)
- Jeffrey C Hansen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | |
Collapse
|
383
|
Abstract
Patterns of histone post-translational modifications correlate with distinct chromosomal states that regulate access to DNA, leading to the histone-code hypothesis. However, it is not clear how modification of flexible histone tails leads to changes in nucleosome dynamics and, thus, chromatin structure. The recent discovery that, like the flexible histone tails, the structured globular domain of the nucleosome core particle is also extensively modified adds a new and exciting dimension to the histone-code hypothesis, and calls for the re-examination of current models for the epigenetic regulation of chromatin structure. Here, we review these findings and other recent studies that suggest the structured globular domain of the nucleosome core particle plays a key role regulating chromatin dynamics.
Collapse
|
384
|
Smith ER, Cayrou C, Huang R, Lane WS, Côté J, Lucchesi JC. A human protein complex homologous to the Drosophila MSL complex is responsible for the majority of histone H4 acetylation at lysine 16. Mol Cell Biol 2005; 25:9175-88. [PMID: 16227571 PMCID: PMC1265810 DOI: 10.1128/mcb.25.21.9175-9188.2005] [Citation(s) in RCA: 267] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2005] [Revised: 05/20/2005] [Accepted: 07/26/2005] [Indexed: 02/06/2023] Open
Abstract
We describe a stable, multisubunit human histone acetyltransferase complex (hMSL) that contains homologs of the Drosophila dosage compensation proteins MOF, MSL1, MSL2, and MSL3. This complex shows strong specificity for histone H4 lysine 16 in chromatin in vitro, and RNA interference-mediated knockdown experiments reveal that it is responsible for the majority of H4 acetylation at lysine 16 in the cell. We also find that hMOF is a component of additional complexes, forming associations with host cell factor 1 and a protein distantly related to MSL1 (hMSL1v1). We find two versions of hMSL3 in the hMSL complex that differ by the presence of the chromodomain. Lastly, we find that reduction in the levels of hMSLs and acetylation of H4 at lysine 16 are correlated with reduced transcription of some genes and with a G(2)/M cell cycle arrest. This is of particular interest given the recent correlation of global loss of acetylation of lysine 16 in histone H4 with tumorigenesis.
Collapse
Affiliation(s)
- Edwin R Smith
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
385
|
Fry CJ, Shogren-Knaak MA, Peterson CL. Histone H3 amino-terminal tail phosphorylation and acetylation: synergistic or independent transcriptional regulatory marks? COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2005; 69:219-26. [PMID: 16117652 DOI: 10.1101/sqb.2004.69.219] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- C J Fry
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
386
|
Espino PS, Drobic B, Dunn KL, Davie JR. Histone modifications as a platform for cancer therapy. J Cell Biochem 2005; 94:1088-102. [PMID: 15723344 DOI: 10.1002/jcb.20387] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Tumorigenesis and metastasis are a progression of events resulting from alterations in the processing of the genetic information. These alterations result from stable genetic changes (mutations) involving tumor suppressor genes and oncogenes (e.g., ras, BRAF) and potentially reversible epigenetic changes, which are modifications in gene function without a change in the DNA sequence. Mutations of genes coding for proteins that directly or indirectly influence epigenetic processes will alter the cell's gene expression program. Epigenetic mechanisms often altered in cancer cells are DNA methylation and histone modifications (acetylation, methylation, phosphorylation). This article will review the potential of these reversible epigenetic processes as targets for cancer therapies.
Collapse
Affiliation(s)
- Paula S Espino
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, R3E 0V9, Canada
| | | | | | | |
Collapse
|
387
|
Kepert JF, Mazurkiewicz J, Heuvelman GL, Tóth KF, Rippe K. NAP1 Modulates Binding of Linker Histone H1 to Chromatin and Induces an Extended Chromatin Fiber Conformation. J Biol Chem 2005; 280:34063-72. [PMID: 16105835 DOI: 10.1074/jbc.m507322200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NAP1 (nucleosome assembly protein 1) is a histone chaperone that has been described to bind predominantly to the histone H2A.H2B dimer in the cell during shuttling of histones into the nucleus, nucleosome assembly/remodeling, and transcription. Here it was examined how NAP1 interacts with chromatin fibers isolated from HeLa cells. NAP1 induced a reversible change toward an extended fiber conformation as demonstrated by sedimentation velocity ultracentrifugation experiments. This transition was due to the removal of the linker histone H1. The H2A.H2B dimer remained stably bound to the native fiber fragments and to fibers devoid of linker histone H1. This was in contrast to mononucleosome substrates, which displayed a NAP1-induced removal of a single H2A.H2B dimer from the core particle. The effect of NAP1 on the chromatin fiber structure was examined by scanning/atomic force microscopy. A quantitative image analysis of approximately 36,000 nucleosomes revealed an increase of the average internucleosomal distance from 22.3 +/- 0.4 to 27.6 +/- 0.6 nm, whereas the overall fiber structure was preserved. This change reflects the disintegration of the chromatosome due to binding of H1 to NAP1 as chromatin fibers stripped from H1 showed an average nucleosome distance of 27.4 +/- 0.8 nm. The findings suggest a possible role of NAP1 in chromatin remodeling processes involved in transcription and replication by modulating the local linker histone content.
Collapse
Affiliation(s)
- J Felix Kepert
- Kirchhoff-Institut für Physik, Molecular Biophysics Group, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 227, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
388
|
Abstract
Histone proteins play essential structural and functional roles in the transition between active and inactive chromatin states. Although histones have a high degree of conservation due to constraints to maintain the overall structure of the nucleosomal octameric core, variants have evolved to assume diverse roles in gene regulation and epigenetic silencing. Histone variants, post-translational modifications and interactions with chromatin remodeling complexes influence DNA replication, transcription, repair and recombination. The authors review recent findings on the structure of chromatin that confirm previous interparticle interactions observed in crystal structures.
Collapse
Affiliation(s)
- Leonardo Mariño-Ramírez
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | | | |
Collapse
|
389
|
Morales V, Regnard C, Izzo A, Vetter I, Becker PB. The MRG domain mediates the functional integration of MSL3 into the dosage compensation complex. Mol Cell Biol 2005; 25:5947-54. [PMID: 15988010 PMCID: PMC1168827 DOI: 10.1128/mcb.25.14.5947-5954.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The male-specific-lethal (MSL) proteins in Drosophila melanogaster serve to adjust gene expression levels in male flies containing a single X chromosome to equal those in females with a double dose of X-linked genes. Together with noncoding roX RNA, MSL proteins form the "dosage compensation complex" (DCC), which interacts selectively with the X chromosome to restrict the transcription-activating histone H4 acetyltransferase MOF (males-absent-on-the-first) to that chromosome. We showed previously that MSL3 is essential for the activation of MOF's nucleosomal histone acetyltransferase activity within an MSL1-MOF complex. By characterizing the MSL3 domain structure and its associated functions, we now found that the nucleic acid binding determinants reside in the N terminus of MSL3, well separable from the C-terminal MRG signatures that form an integrated domain required for MSL1 interaction. Interaction with MSL1 mediates the activation of MOF in vitro and the targeting of MSL3 to the X-chromosomal territory in vivo. An N-terminal truncation that lacks the chromo-related domain and all nucleic acid binding activity is able to trigger de novo assembly of the DCC and establishment of an acetylated X-chromosome territory.
Collapse
Affiliation(s)
- Violette Morales
- Adolf-Butenandt-Institut, Molekularbiologie, Schillerstr. 44, 80336 München, Germany
| | | | | | | | | |
Collapse
|
390
|
Wagner G, Bancaud A, Quivy JP, Clapier C, Almouzni G, Viovy JL. Compaction kinetics on single DNAs: purified nucleosome reconstitution systems versus crude extract. Biophys J 2005; 89:3647-59. [PMID: 16100259 PMCID: PMC1366857 DOI: 10.1529/biophysj.105.062786] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kinetics of compaction on single DNA molecules are studied by fluorescence videomicroscopy in the presence of 1), Xenopus egg extracts and 2), purified nucleosome reconstitution systems using a combination of histones with either the histone chaperone Nucleosome Assembly Protein (NAP-1) or negatively charged macromolecules such as polyglutamic acid and RNA. The comparison shows that the compaction rates can differ by a factor of up to 1000 for the same amount of histones, depending on the system used and on the presence of histone tails, which can be subjected to post-translational modifications. Reactions with purified reconstitution systems follow a slow and sequential mechanism, compatible with the deposition of one (H3-H4)(2) tetramer followed by two (H2A-H2B) dimers. Addition of the histone chaperone NAP-1 increases both the rate of the reaction and the packing ratio of the final product. These stimulatory effects cannot be obtained with polyglutamic acid or RNA, suggesting that yNAP-1 impact on the reaction cannot simply be explained in terms of charge screening. Faster compaction kinetics and higher packing ratios are reproducibly reached with extracts, indicating a role of additional components present in this system. Data are discussed and models proposed to account for the kinetics obtained in our single-molecule assay.
Collapse
Affiliation(s)
- Gaudeline Wagner
- Laboratoire PhysicoChimie Curie, Institut Curie, CNRS UMR 168, 75248 Paris, France
| | | | | | | | | | | |
Collapse
|
391
|
Zheng C, Lu X, Hansen JC, Hayes JJ. Salt-dependent intra- and internucleosomal interactions of the H3 tail domain in a model oligonucleosomal array. J Biol Chem 2005; 280:33552-7. [PMID: 16079127 DOI: 10.1074/jbc.m507241200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The core histone tail domains are known to be key regulators of chromatin structure and function. The tails are required for condensation of nucleosome arrays into secondary and tertiary chromatin structures, yet little is known regarding tail structures or sites of tail interactions in chromatin. We have developed a system to test the hypothesis that the tails participate in internucleosomal interactions during salt-dependent chromatin condensation, and here we used it to examine interactions of the H3 tail domain. We found that the H3 tail participates primarily in intranucleosome interactions when the nucleosome array exists in an extended "beads-on-a-string" conformation and that tail interactions reorganize to engage in primarily internucleosome interactions as the array successively undergoes salt-dependent folding and oligomerization. These results indicated that the location and interactions of the H3 tail domain are dependent upon the degree of condensation of the nucleosomal array, suggesting a mechanism by which alterations in tail interactions may elaborate different structural and functional states of chromatin.
Collapse
Affiliation(s)
- Chunyang Zheng
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
392
|
Gordon F, Luger K, Hansen JC. The core histone N-terminal tail domains function independently and additively during salt-dependent oligomerization of nucleosomal arrays. J Biol Chem 2005; 280:33701-6. [PMID: 16033758 DOI: 10.1074/jbc.m507048200] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Salt-dependent oligomerization of nucleosomal arrays is related to fiber-fiber interactions and global chromosome structure. Previous studies have shown that the H2A/H2B and H3/H4 N-terminal domain (NTD) pairs are able to mediate array oligomerization. However, because of technical barriers, the function(s) of the individual core histone NTDs have not been investigated. To address this question, all possible combinations of "tailless" nucleosomal arrays were assembled from native and NTD-deleted recombinant Xenopus core histones and tandemly repeated 5 S rDNA. The recombinant arrays were characterized by differential centrifugation over the range of 0-50 mm MgCl2 to determine how each NTD affects salt-dependent oligomerization. Results indicate that all core histone NTDs participate in the oligomerization process and that the NTDs function additively and independently. These observations provide direct biochemical evidence linking all four core histone NTDs to the assembly and maintenance of global chromatin structures.
Collapse
Affiliation(s)
- Faye Gordon
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA
| | | | | |
Collapse
|
393
|
Schalch T, Duda S, Sargent DF, Richmond TJ. X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 2005; 436:138-41. [PMID: 16001076 DOI: 10.1038/nature03686] [Citation(s) in RCA: 584] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Accepted: 04/22/2005] [Indexed: 11/09/2022]
Abstract
DNA in eukaryotic chromosomes is organized in arrays of nucleosomes compacted into chromatin fibres. This higher-order structure of nucleosomes is the substrate for DNA replication, recombination, transcription and repair. Although the structure of the nucleosome core is known at near-atomic resolution, even the most fundamental information about the organization of nucleosomes in the fibre is controversial. Here we report the crystal structure of an oligonucleosome (a compact tetranucleosome) at 9 A resolution, solved by molecular replacement using the nucleosome core structure. The structure shows that linker DNA zigzags back and forth between two stacks of nucleosome cores, which form a truncated two-start helix, and does not follow a path compatible with a one-start solenoidal helix. The length of linker DNA is most probably buffered by stretching of the DNA contained in the nucleosome cores. We have built continuous fibre models by successively stacking tetranucleosomes one on another. The resulting models are nearly fully compacted and most closely resemble the previously described crossed-linker model. They suggest that the interfaces between nucleosomes along a single helix start are polymorphic.
Collapse
Affiliation(s)
- Thomas Schalch
- ETH Zürich, Institute for Molecular Biology and Biophysics, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
394
|
Chromatin Remodeling by RNA Polymerase II. Mol Biol 2005. [DOI: 10.1007/s11008-005-0071-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
395
|
Xu F, Zhang K, Grunstein M. Acetylation in Histone H3 Globular Domain Regulates Gene Expression in Yeast. Cell 2005; 121:375-85. [PMID: 15882620 DOI: 10.1016/j.cell.2005.03.011] [Citation(s) in RCA: 314] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 02/28/2005] [Accepted: 03/09/2005] [Indexed: 11/18/2022]
Abstract
In Saccharomyces cerevisiae, known histone acetylation sites regulating gene activity are located in the N-terminal tails protruding from the nucleosome core. We report lysine 56 in histone H3 as a novel acetylation site that is located in the globular domain, where it extends toward the DNA major groove at the entry-exit points of the DNA superhelix as it wraps around the nucleosome. We show that K56 acetylation is enriched preferentially at certain active genes, such as those coding for histones. SPT10, a putative acetyltransferase, is required for cell cycle-specific K56 acetylation at histone genes. This allows recruitment of the nucleosome remodeling factor Snf5 and subsequent transcription. These findings indicate that histone H3 K56 acetylation at the entry-exit gate enables recruitment of the SWI/SNF nucleosome remodeling complex and so regulates gene activity.
Collapse
Affiliation(s)
- Feng Xu
- Department of Biological Chemistry, Geffen School of Medicine at UCLA, and the Molecular Biology Institute, University of California-Los Angeles, Boyer Hall, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
396
|
Sanders SL, Portoso M, Mata J, Bähler J, Allshire RC, Kouzarides T. Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell 2005; 119:603-14. [PMID: 15550243 DOI: 10.1016/j.cell.2004.11.009] [Citation(s) in RCA: 428] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Revised: 10/16/2004] [Accepted: 11/02/2004] [Indexed: 01/01/2023]
Abstract
Histone lysine methylation is a key regulator of gene expression and heterochromatin function, but little is known as to how this modification impinges on other chromatin activities. Here we demonstrate that a previously uncharacterized SET domain protein, Set9, is responsible for H4-K20 methylation in the fission yeast Schizosaccharomyces pombe. Surprisingly, H4-K20 methylation does not have any apparent role in the regulation of gene expression or heterochromatin function. Rather, we find the modification has a role in DNA damage response. Loss of Set9 activity or mutation of H4-K20 markedly impairs cell survival after genotoxic challenge and compromises the ability of cells to maintain checkpoint mediated cell cycle arrest. Genetic experiments link Set9 to Crb2, a homolog of the mammalian checkpoint protein 53BP1, and the enzyme is required for Crb2 localization to sites of DNA damage. These results argue that H4-K20 methylation functions as a "histone mark" required for the recruitment of the checkpoint protein Crb2.
Collapse
Affiliation(s)
- Steven L Sanders
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | | | | | | | | | | |
Collapse
|
397
|
Yang Z, Zheng C, Thiriet C, Hayes JJ. The core histone N-terminal tail domains negatively regulate binding of transcription factor IIIA to a nucleosome containing a 5S RNA gene via a novel mechanism. Mol Cell Biol 2005; 25:241-9. [PMID: 15601846 PMCID: PMC538782 DOI: 10.1128/mcb.25.1.241-249.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Reconstitution of a DNA fragment containing a 5S RNA gene from Xenopus borealis into a nucleosome greatly restricts binding of the primary 5S transcription factor, TFIIIA. Consistent with transcription experiments using reconstituted templates, removal of the histone tail domains stimulates TFIIIA binding to the 5S nucleosome greater than 100-fold. However, we show that tail removal increases the probability of 5S DNA unwrapping from the core histone surface by only approximately fivefold. Moreover, using site-specific histone-to-DNA cross-linking, we show that TFIIIA binding neither induces nor requires nucleosome movement. Binding studies with COOH-terminal deletion mutants of TFIIIA and 5S nucleosomes reconstituted with native and tailless core histones indicate that the core histone tail domains play a direct role in restricting the binding of TFIIIA. Deletion of only the COOH-terminal transcription activation domain dramatically stimulates TFIIIA binding to the native nucleosome, while further C-terminal deletions or removal of the tail domains does not lead to further increases in TFIIIA binding. We conclude that the unmodified core histone tail domains directly negatively influence TFIIIA binding to the nucleosome in a manner that requires the C-terminal transcription activation domain of TFIIIA. Our data suggest an additional mechanism by which the core histone tail domains regulate the binding of trans-acting factors in chromatin.
Collapse
Affiliation(s)
- Zungyoon Yang
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Box 712, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
398
|
Fan JY, Rangasamy D, Luger K, Tremethick DJ. H2A.Z alters the nucleosome surface to promote HP1alpha-mediated chromatin fiber folding. Mol Cell 2005; 16:655-61. [PMID: 15546624 DOI: 10.1016/j.molcel.2004.10.023] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 08/29/2004] [Accepted: 09/07/2004] [Indexed: 11/25/2022]
Abstract
Controlling the degree of higher order chromatin folding is a key element in partitioning the metazoan genome into functionally distinct chromosomal domains. However, the mechanism of this fundamental process is poorly understood. Our recent studies suggested that the essential histone variant H2A.Z and the silencing protein HP1alpha may function together to establish a specialized conformation at constitutive heterochromatic domains. We demonstrate here that HP1alpha is a unique chromatin binding protein. It prefers to bind to condensed higher order chromatin structures and alters the chromatin-folding pathway in a novel way to locally compact individual chromatin fibers without crosslinking them. Strikingly, both of these features are enhanced by an altered nucleosomal surface created by H2A.Z (the acidic patch). This shows that the surface of the nucleosome can regulate the formation of distinct higher order chromatin structures mediated by an architectural chromatin binding protein.
Collapse
Affiliation(s)
- Jun Y Fan
- The John Curtin School of Medical Research, The Australian National University, P.O. Box 334, Canberra, Australian Capital Territory 2601, Australia
| | | | | | | |
Collapse
|
399
|
Ahn SH, Cheung WL, Hsu JY, Diaz RL, Smith MM, Allis CD. Sterile 20 Kinase Phosphorylates Histone H2B at Serine 10 during Hydrogen Peroxide-Induced Apoptosis in S. cerevisiae. Cell 2005; 120:25-36. [PMID: 15652479 DOI: 10.1016/j.cell.2004.11.016] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 09/29/2004] [Accepted: 11/08/2004] [Indexed: 12/26/2022]
Abstract
Apoptosis is a highly coordinated cell suicide mechanism in vertebrates. Phosphorylation of serine 14 of histone H2B, catalyzed by Mst1 kinase, has been linked to chromatin compaction during apoptosis. We extend these results to unicellular eukaryotes by demonstrating that H2B is specifically phosphorylated at serine 10 (S10) in a hydrogen peroxide-induced cell death pathway in S. cerevisiae. H2B S10A mutants are resistant to cell death elicited by H(2)O(2) while H2B S10E phospho-site mimics promote cell death and induce the "constitutive" formation of condensed chromatin. Ste20 kinase, a yeast homolog of mammalian Mst1 kinase, translocates into the nucleus in a caspase-independent fashion and directly phosphorylates H2B at S10. Conservation of targeted H2B phosphorylation and the enzyme system responsible for the process point to an ancient mechanism of chromatin remodeling that likely plays an important role in governing cellular homeostasis in a wide range of organisms.
Collapse
Affiliation(s)
- Sung-Hee Ahn
- Laboratory of Chromatin Biology, The Rockefeller University, Box 78, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
400
|
Dorigo B, Schalch T, Kulangara A, Duda S, Schroeder RR, Richmond TJ. Nucleosome arrays reveal the two-start organization of the chromatin fiber. Science 2004; 306:1571-3. [PMID: 15567867 DOI: 10.1126/science.1103124] [Citation(s) in RCA: 404] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Chromatin folding determines the accessibility of DNA constituting eukaryotic genomes and consequently is profoundly important in the mechanisms of nuclear processes such as gene regulation. Nucleosome arrays compact to form a 30-nanometer chromatin fiber of hitherto disputed structure. Two competing classes of models have been proposed in which nucleosomes are either arranged linearly in a one-start higher order helix or zigzag back and forth in a two-start helix. We analyzed compacted nucleosome arrays stabilized by introduction of disulfide cross-links and show that the chromatin fiber comprises two stacks of nucleosomes in accord with the two-start model.
Collapse
Affiliation(s)
- Benedetta Dorigo
- Eidgenössische Technische Hochschule (ETH) Zürich, Institute for Molecular Biology and Biophysics, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|