351
|
Wang N, Yu Y, Xu B, Zhang M, Li Q, Miao L. Pivotal prognostic and diagnostic role of the long non‑coding RNA colon cancer‑associated transcript 1 expression in human cancer (Review). Mol Med Rep 2018; 19:771-782. [PMID: 30535444 PMCID: PMC6323215 DOI: 10.3892/mmr.2018.9721] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/30/2018] [Indexed: 01/17/2023] Open
Abstract
Long non‑coding RNAs (lncRNAs) have been classically defined as regulatory RNA members >200 nucleotides in length, without detectable open‑reading frames to encode proteins. Previous studies have demonstrated that lncRNAs serve critical roles in multiple cancer types. Colon cancer‑associated transcript 1 (CCAT1), a novel cancer‑associated lncRNA, is significantly overexpressed in a number of malignancies. Functionally, as an oncogenic lncRNA, CCAT1 is involved in proliferation, migration, cell cycle progression, apoptosis, chemoresistance and other biological processes of cancer cells through complex regulation mechanisms in the cytoplasm or nucleus. In clinical applications, CCAT1 is additionally positively associated with histological differentiation, tumour node metastasis stage, vascular invasion, overall survival and recurrence‑free survival, which demonstrates its important role as a diagnostic and prognostic marker in cancer. The present review summarises the current research progress of the oncogenic potential and clinical uses of CCAT1 in various human cancer types.
Collapse
Affiliation(s)
- Ni Wang
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 21001, P.R. China
| | - Yang Yu
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 21001, P.R. China
| | - Boming Xu
- Department of Gastroenterology, The Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Mingjiong Zhang
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 21001, P.R. China
| | - Quanpeng Li
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 21001, P.R. China
| | - Lin Miao
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 21001, P.R. China
| |
Collapse
|
352
|
DeVaux RS, Herschkowitz JI. Beyond DNA: the Role of Epigenetics in the Premalignant Progression of Breast Cancer. J Mammary Gland Biol Neoplasia 2018; 23:223-235. [PMID: 30306389 PMCID: PMC6244889 DOI: 10.1007/s10911-018-9414-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/18/2018] [Indexed: 12/19/2022] Open
Abstract
Ductal Carcinoma in Situ (DCIS) is an early breast cancer lesion that is considered a nonobligate precursor to development of invasive ductal carcinoma (IDC). Although only a small subset of DCIS lesions are predicted to progress into a breast cancer, distinguishing innocuous from minacious DCIS lesions remains a clinical challenge. Thus, patients diagnosed with DCIS will undergo surgery with the potential for radiation and hormone therapy. This has led to a current state of overdiagnosis and overtreatment. Interrogating the transcriptome alone has yet to define clear functional determinants of progression from DCIS to IDC. Epigenetic changes, critical for imprinting and tissue specific development, in the incorrect context can lead to global signaling rewiring driving pathological phenotypes. Epigenetic signaling pathways, and the molecular players that interpret and sustain their signals, are critical to understanding the underlying pathology of breast cancer progression. The types of epigenetic changes, as well as the molecular players, are expanding. In addition to DNA methylation, histone modifications, and chromatin remodeling, we must also consider enhancers as well as the growing field of noncoding RNAs. Herein we will review the epigenetic interactions that have been uncovered in early stage lesions that impact breast cancer progression, and how these players may be utilized as biomarkers to mitigate overdiagnosis and overtreatment.
Collapse
Affiliation(s)
- Rebecca S DeVaux
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Jason I Herschkowitz
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, USA.
| |
Collapse
|
353
|
Liu SJ, Lim DA. Modulating the expression of long non-coding RNAs for functional studies. EMBO Rep 2018; 19:embr.201846955. [PMID: 30467236 DOI: 10.15252/embr.201846955] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 01/24/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as important regulators of cell biology. The mechanisms by which lncRNAs function are likely numerous, and most are poorly understood. Currently, the mechanisms of functional lncRNAs include those that directly involve the lncRNA transcript, the process of their own transcription and splicing, and even underlying transcriptional regulatory elements within the genomic DNA that encodes the lncRNA As our understanding of lncRNA biology evolves, so have the methods that are utilized to elucidate their functions. In this review, we survey a collection of different methods used to modulate lncRNA expression levels for the assessment of biological function. From RNA-targeted strategies, genetic deletions, to engineered gene regulatory systems, the advantages and caveats of each method will be discussed. Ultimately, the selection of tools will be guided by which potential lncRNA mechanisms are being investigated, and no single method alone will likely be sufficient to reveal the function of any particular lncRNA.
Collapse
Affiliation(s)
- S John Liu
- Department of Neurological Surgery, University of California, San Francisco, CA, USA .,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Daniel A Lim
- Department of Neurological Surgery, University of California, San Francisco, CA, USA .,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA.,San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| |
Collapse
|
354
|
Neve B, Jonckheere N, Vincent A, Van Seuningen I. Epigenetic Regulation by lncRNAs: An Overview Focused on UCA1 in Colorectal Cancer. Cancers (Basel) 2018; 10:E440. [PMID: 30441811 PMCID: PMC6266399 DOI: 10.3390/cancers10110440] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancers have become the second leading cause of cancer-related deaths. In particular, acquired chemoresistance and metastatic lesions occurring in colorectal cancer are a major challenge for chemotherapy treatment. Accumulating evidence shows that long non-coding (lncRNAs) are involved in the initiation, progression, and metastasis of cancer. We here discuss the epigenetic mechanisms through which lncRNAs regulate gene expression in cancer cells. In the second part of this review, we focus on the role of lncRNA Urothelial Cancer Associated 1 (UCA1) to integrate research in different types of cancer in order to decipher its putative function and mechanism of regulation in colorectal cancer cells. UCA1 is highly expressed in cancer cells and mediates transcriptional regulation on an epigenetic level through the interaction with chromatin modifiers, by direct regulation via chromatin looping and/or by sponging the action of a diversity of miRNAs. Furthermore, we discuss the role of UCA1 in the regulation of cell cycle progression and its relation to chemoresistance in colorectal cancer cells.
Collapse
Affiliation(s)
- Bernadette Neve
- Inserm UMR-S 1172, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer (JPArc), Team "Mucins, Epithelial Differentiation and Carcinogenesis"; University Lille; CHU Lille,59045, Lille CEDEX, France.
| | - Nicolas Jonckheere
- Inserm UMR-S 1172, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer (JPArc), Team "Mucins, Epithelial Differentiation and Carcinogenesis"; University Lille; CHU Lille,59045, Lille CEDEX, France.
| | - Audrey Vincent
- Inserm UMR-S 1172, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer (JPArc), Team "Mucins, Epithelial Differentiation and Carcinogenesis"; University Lille; CHU Lille,59045, Lille CEDEX, France.
| | - Isabelle Van Seuningen
- Inserm UMR-S 1172, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer (JPArc), Team "Mucins, Epithelial Differentiation and Carcinogenesis"; University Lille; CHU Lille,59045, Lille CEDEX, France.
| |
Collapse
|
355
|
CX-3543 Promotes Cell Apoptosis through Downregulation of CCAT1 in Colon Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9701957. [PMID: 30519593 PMCID: PMC6241339 DOI: 10.1155/2018/9701957] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/04/2018] [Accepted: 10/08/2018] [Indexed: 01/17/2023]
Abstract
Aim Colon cancer-associated transcript-1 (CCAT1), located in the vicinity of transcription factor c-Myc, was first identified in colon cancer. A small-molecule compound CX3543 (Quarfloxin) selectively targeting Myc G-quadruplexes has entered phase II clinical trials for neuroendocrine carcinomas. The aim of the study was to explore the relationship between CX3543, CCAT1, and cell apoptosis in colon cancer cells. Methods Semiquantitative PCR was used to detect the relative expression of CCAT1 in colon cancer (CC) tissues and HT29 cell lines. Real-time PCR (RT-PCR) was also used to investigate the expression of CCAT1 and c-Myc after HT29 cells being treated by CX3543 for 24 h. Cell apoptosis assay and cell proliferation assay were conducted in HT29 cells after being treated by CX3543. Results The results showed that the expression of CCAT1 was remarkably increased in CC tissues and HT29 cells compared to controls. CX3543 treatment reduced the expression of c-Myc and CCAT1 and promoted cell apoptosis and inhibited cell proliferation. After the expression of CCAT1 was inhibited by sh-CCAT1 transfection, the cell apoptosis rate was higher than that of control group. After the cells were treated by CCAT1 overexpression plasmid transfection and CX3543, the cell apoptosis rate was lower than that of control group. In vivo results showed that CX3543 inhibited the xenograft tumor growth of rats through downregulation of CCAT1. Conclusion Our study demonstrated that CX3543 could inhibit the progression of colon cancer by downregulating CCAT1 expression and might be a potential drug for the treatment of colon cancer.
Collapse
|
356
|
Zare K, Shademan M, Ghahramani Seno MM, Dehghani H. CRISPR/Cas9 Knockout Strategies to Ablate CCAT1 lncRNA Gene in Cancer Cells. Biol Proced Online 2018; 20:21. [PMID: 30410426 PMCID: PMC6211572 DOI: 10.1186/s12575-018-0086-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/11/2018] [Indexed: 02/01/2023] Open
Abstract
Background With the increasing discovery of long noncoding RNAs (lncRNAs), the application of functional techniques that could have very specific, efficient, and robust effects and readouts is necessary. Here, we have applied and analyzed three gene knockout (KO) strategies to ablate the CCAT1 gene in different colorectal adenocarcinoma cell lines. We refer to these strategies as “CRISPR excision”, “CRISPR HDR”, and “CRISPR du-HITI”. Results In order to obstruct the transcription of lncRNA or to alter its structure, in these strategies either a significant segment of the gene is removed, or a transcription termination signal is inserted in the target gene. We use RT-qPCR, RNA-seq, MTT, and colony formation assay to confirm the functional effects of CCAT1 gene ablation in knockout colorectal adenocarcinoma cell lines. We applied three different CRISPR/Cas9 mediated knockout strategies to abolish the transcription of CCAT1 lncRNA. CCAT1 knockout cells displayed dysregulation of genes involved in several biological processes, and a significant reduction for anchorage-independent growth. The du-HITI strategy introduced in this study removes a gene segment and inserts a reporter and a transcription termination signal in each of the two target alleles. The preparation of donor vector for this strategy is much easier than that in “CRISPR HDR”, and the selection of cells in this strategy is also much more practical than that in “CRISPR excision”. In addition, use of this technique in the first attempt of transfection, generates single cell knockouts for both alleles. Conclusions The strategies applied and introduced in this study can be used for the generation of CCAT1 knockout cell lines and in principle can be applied to the deletion of other lncRNAs for the study of their function. Electronic supplementary material The online version of this article (10.1186/s12575-018-0086-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Khadijeh Zare
- 1Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
| | - Milad Shademan
- 1Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
| | - Mohammad M Ghahramani Seno
- 1Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran.,2Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
| | - Hesam Dehghani
- 1Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran.,2Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran.,3Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
| |
Collapse
|
357
|
He Z, Dang J, Song A, Cui X, Ma Z, Zhang Z. Identification of
LINC01234
and
MIR210HG
as novel prognostic signature for colorectal adenocarcinoma. J Cell Physiol 2018; 234:6769-6777. [PMID: 30362555 DOI: 10.1002/jcp.27424] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 08/21/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Zhiyun He
- Colorectal Surgical Department, Lanzhou University Second Hospital Lanzhou China
| | - Jie Dang
- Children’s Physical Examination Center, Lanzhou University Second Hospital Lanzhou China
| | - Ailin Song
- General Surgery Department, Lanzhou University Second Hospital Lanzhou China
| | - Xiang Cui
- Colorectal Surgical Department, Lanzhou University Second Hospital Lanzhou China
| | - Zhijun Ma
- Colorectal Surgical Department, Lanzhou University Second Hospital Lanzhou China
| | - Zhongtao Zhang
- General Surgical Department, Beijing Friendship Hospital Beijing China
| |
Collapse
|
358
|
Regulation of Neuroregeneration by Long Noncoding RNAs. Mol Cell 2018; 72:553-567.e5. [PMID: 30401432 DOI: 10.1016/j.molcel.2018.09.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/27/2018] [Accepted: 09/14/2018] [Indexed: 12/24/2022]
Abstract
In mammals, neurons in the peripheral nervous system (PNS) have regenerative capacity following injury, but it is generally absent in the CNS. This difference is attributed, at least in part, to the intrinsic ability of PNS neurons to activate a unique regenerative transcriptional program following injury. Here, we profiled gene expression following sciatic nerve crush in mice and identified long noncoding RNAs (lncRNAs) that act in the regenerating neurons and which are typically not expressed in other contexts. We show that two of these lncRNAs regulate the extent of neuronal outgrowth. We then focus on one of these, Silc1, and show that it regulates neuroregeneration in cultured cells and in vivo, through cis-acting activation of the transcription factor Sox11.
Collapse
|
359
|
Fu Y, Tessneer KL, Li C, Gaffney PM. From association to mechanism in complex disease genetics: the role of the 3D genome. Arthritis Res Ther 2018; 20:216. [PMID: 30268153 PMCID: PMC6162955 DOI: 10.1186/s13075-018-1721-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Genome-wide association studies (GWAS) and fine mapping studies in autoimmune diseases have identified thousands of genetic variants, the majority of which are located in non-protein-coding enhancer regions. Enhancers function within the context of the three-dimensional (3D) genome to form long-range DNA looping events with target gene promoters that spatially and temporally regulate gene expression. Investigating the functional significance of GWAS variants in the context of the 3D genome is essential for mechanistic understanding of these variants and how they influence disease pathology by altering DNA looping between enhancers and the target gene promoters they regulate. In this review, we discuss the functional complexity of the 3D genome and the technological approaches used to characterize DNA looping events. We then highlight examples from the literature that illustrate how functional mapping of the 3D genome can assist in defining mechanisms that influence pathogenic gene expression. We conclude by highlighting future advances necessary to fully integrate 3D genome analyses into the functional workup of GWAS variants in the continuing effort to improve the health of patients with autoimmune diseases.
Collapse
Affiliation(s)
- Yao Fu
- Division of Genomics and Data Sciences, Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, 825 Northeast 13th Street, Oklahoma City, OK 73104 USA
| | - Kandice L Tessneer
- Division of Genomics and Data Sciences, Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, 825 Northeast 13th Street, Oklahoma City, OK 73104 USA
| | - Chuang Li
- School of Electrical and Computer Engineering, University of Oklahoma, Devan Energy Hall 150, 110 West Boyd Street, Norman, OK 73019 USA
| | - Patrick M Gaffney
- Division of Genomics and Data Sciences, Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, 825 Northeast 13th Street, Oklahoma City, OK 73104 USA
| |
Collapse
|
360
|
Abstract
SIGNIFICANCE The emerging connections between an increasing number of long noncoding RNAs (lncRNAs) and oncogenic hallmarks provide a new twist to tumor complexity. Recent Advances: In the present review, we highlight specific lncRNAs that have been studied in relation to tumorigenesis, either as participants in the neoplastic process or as markers of pathway activity or drug response. These transcripts are typically deregulated by oncogenic or tumor-suppressing signals or respond to microenvironmental conditions such as hypoxia. CRITICAL ISSUES Among these transcripts are lncRNAs sufficiently divergent between mouse and human genomes that may contribute to biological differences between species. FUTURE DIRECTIONS From a translational standpoint, knowledge about primate-specific lncRNAs may help explain the reason behind the failure to reproduce the results from mouse cancer models in human cell-based systems. Antioxid. Redox Signal. 29, 922-935.
Collapse
Affiliation(s)
- Xue Wu
- 1 Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana.,2 Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Oana M Tudoran
- 1 Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana.,3 Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. I. Chiricuta," Cluj-Napoca, Romania
| | - George A Calin
- 4 Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center , Houston, Texas.,5 Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center , Houston, Texas
| | - Mircea Ivan
- 1 Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana.,2 Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
361
|
Abstract
SIGNIFICANCE The concepts of junk DNA and transcriptional noise are long gone as the existence of noncoding RNAs (ncRNAs) has been tested extensively in recent years. Given that the epigenetic status of cells affects many biological processes, how ncRNAs mechanistically contribute to these processes is of great interest. Recent Advances: Recent studies show that various ncRNAs interact with epigenetic and/or transcription factors to modulate the epigenetic status of cells directly and/or indirectly. There exists growing interest in the field of cardiovascular research to understand the roles of ncRNAs. Due to the large number of ncRNAs in the mammalian genome, only a handful of ncRNAs have been functionally elucidated, which makes it difficult to understand how ncRNAs interact with protein-coding genes and their encoded proteins. CRITICAL ISSUES Although the canonical function of microRNAs (miRNAs) to inhibit the translation of protein-coding genes is well established, the number of functionally annotated long noncoding RNAs (lncRNAs) is still small, which is especially true in the heart. FUTURE DIRECTIONS Future studies must connect the epigenetic controls of various cellular phenomena by incorporating both miRNAs and lncRNAs. Antioxid. Redox Signal. 29, 832-845.
Collapse
Affiliation(s)
- Shizuka Uchida
- 1 Cardiovascular Innovation Institute, University of Louisville , Louisville, Kentucky
| | - Roberto Bolli
- 1 Cardiovascular Innovation Institute, University of Louisville , Louisville, Kentucky.,2 Institute of Molecular Cardiology, University of Louisville , Louisville, Kentucky
| |
Collapse
|
362
|
Fang H, Liu HM, Wu WH, Liu H, Pan Y, Li WJ. Upregulation of long noncoding RNA CCAT1-L promotes epithelial-mesenchymal transition in gastric adenocarcinoma. Onco Targets Ther 2018; 11:5647-5655. [PMID: 30254457 PMCID: PMC6141104 DOI: 10.2147/ott.s170553] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Objective In this study, we aimed to investigate the role of a long-chain noncoding RNA, colorectal cancer-associated transcript 1-long (CCAT1-L) in gastric adenocarcinoma. Patients and methods Expressions of CCAT1-L and c-MYC mRNA and MYC protein in gastric adenocarcinoma tissue and adjacent normal tissues of 60 patients were analyzed using quantitative real-time polymerase chain reaction and Western blot, respectively. The CCAT1-L levels in the normal gastric epithelial cell line, GES1, and human gastric adenocarcinoma cell lines, MGC803, MKN-28, SGC7901, and BGC823 were analyzed by quantitative real-time polymerase chain reaction. CCAT1-L knockdown in MGC803 and MKN28 cells was performed using RNA interference, followed by evaluating cell proliferation, invasion, and migration with soft agar colony formation assay, scratch wound assay, and transwell assay. Twenty BALB/C-nu-nu nude mice were inoculated with gastric tumor xenografts and treated with CCAT1-L small-interfering RNA (siRNA), followed by monitoring survival and tumor growth. Western blot was also used to analyze the expression of epithelial–mesenchymal transition-related proteins, including MYC, RAS, T-ERK, P-ERK, E-cadherin, and vimentin, in gastric adenocarcinoma MKN-28 cells. Results The expression of CCAT1-L and MYC in tumor tissue was significantly higher than that in adjacent normal tissues (P<0.001). There was a positive correlation between the expression level of CCAT1-L mRNA and c-MYC mRNA (r=0.863, P<0.001). CCAT1-L expression was also significantly higher in gastric adenocarcinoma cell lines than that in normal cell lines (P<0.01). Knockdown of CCAT1-L in MGC803 and MKN-28 cells markedly reduced the cell proliferation, migration, and invasion (P<0.001). CCAT1-L knockdown also evidently inhibited tumor growth and improved survival in nude mice (P<0.001). Expressions of MYC, RAS, and vimentin, and the phosphorylation of ERK protein were dramatically decreased, while the expression of E-cadherin protein was increased by CCAT1-L knockdown in MKN-28 cell. Conclusion CCAT1-L is a pro-oncogenic marker in gastric adenocarcinoma. CCAT1-L knockdown inhibits epithelial–mesenchymal transition of gastric adenocarcinoma cells and thus suppresses the gastric adenocarcinoma metastasis.
Collapse
Affiliation(s)
- Hua Fang
- Department of Oncology, Fuxing Hospital, Capital Medical University, Beijing 100038, China
| | - Hui-Min Liu
- Department of Gastroenterology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Wei-Hua Wu
- Department of Oncology, Beijing Chest Hospital, Capital Medical University, Beijing 100038, China
| | - Han Liu
- Department of Oncology, Fuxing Hospital, Capital Medical University, Beijing 100038, China
| | - Yong Pan
- Department of Oncology, Fuxing Hospital, Capital Medical University, Beijing 100038, China
| | - Wen-Jun Li
- Department of Thoracic Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China,
| |
Collapse
|
363
|
Jiang Y, Jiang YY, Xie JJ, Mayakonda A, Hazawa M, Chen L, Xiao JF, Li CQ, Huang ML, Ding LW, Sun QY, Xu L, Kanojia D, Jeitany M, Deng JW, Liao LD, Soukiasian HJ, Berman BP, Hao JJ, Xu LY, Li EM, Wang MR, Bi XG, Lin DC, Koeffler HP. Co-activation of super-enhancer-driven CCAT1 by TP63 and SOX2 promotes squamous cancer progression. Nat Commun 2018; 9:3619. [PMID: 30190462 PMCID: PMC6127298 DOI: 10.1038/s41467-018-06081-9] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 08/13/2018] [Indexed: 01/17/2023] Open
Abstract
Squamous cell carcinomas (SCCs) are aggressive malignancies. Previous report demonstrated that master transcription factors (TFs) TP63 and SOX2 exhibited overlapping genomic occupancy in SCCs. However, functional consequence of their frequent co-localization at super-enhancers remains incompletely understood. Here, epigenomic profilings of different types of SCCs reveal that TP63 and SOX2 cooperatively and lineage-specifically regulate long non-coding RNA (lncRNA) CCAT1 expression, through activation of its super-enhancers and promoter. Silencing of CCAT1 substantially reduces cellular growth both in vitro and in vivo, phenotyping the effect of inhibiting either TP63 or SOX2. ChIRP analysis shows that CCAT1 forms a complex with TP63 and SOX2, which regulates EGFR expression by binding to the super-enhancers of EGFR, thereby activating both MEK/ERK1/2 and PI3K/AKT signaling pathways. These results together identify a SCC-specific DNA/RNA/protein complex which activates TP63/SOX2-CCAT1-EGFR cascade and promotes SCC tumorigenesis, advancing our understanding of transcription dysregulation in cancer biology mediated by master TFs and super-enhancers.
Collapse
Affiliation(s)
- Yuan Jiang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Yan-Yi Jiang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
| | - Jian-Jun Xie
- Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou, 515041, China
| | - Anand Mayakonda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Masaharu Hazawa
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, 920-1192, Ishikawa, Japan
| | - Li Chen
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, 90048, USA
| | - Jin-Fen Xiao
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Chun-Quan Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163319, China
| | - Mo-Li Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Ling-Wen Ding
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Qiao-Yang Sun
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Liang Xu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Deepika Kanojia
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Maya Jeitany
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Jian-Wen Deng
- Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou, 515041, China
| | - Lian-Di Liao
- Institute of Oncologic Pathology, Medical College of Shantou University, Shantou, 515041, China
| | - Harmik J Soukiasian
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA, USA
| | - Benjamin P Berman
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, 90048, CA, USA
| | - Jia-Jie Hao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Li-Yan Xu
- Institute of Oncologic Pathology, Medical College of Shantou University, Shantou, 515041, China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou, 515041, China
| | - Ming-Rong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xin-Gang Bi
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - De-Chen Lin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, 90048, USA.
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, 90048, USA
- National University Cancer Institute, National University Hospital, Singapore, 119074, Singapore
| |
Collapse
|
364
|
|
365
|
Fetal γ-globin genes are regulated by the BGLT3 long noncoding RNA locus. Blood 2018; 132:1963-1973. [PMID: 30150205 DOI: 10.1182/blood-2018-07-862003] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/22/2018] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are increasingly being appreciated as participants in regulation of important cellular processes, including transcription. Because lncRNAs are highly cell type specific, they have the potential to contribute to the unique transcriptional repertoire of diverse cells, but underlying mechanisms are unclear. We studied BGLT3, an erythroid lncRNA encoded downstream of Aγ-globin (HBG1). BGLT3 and γ-globin genes are dynamically cotranscribed in erythroid cells in vivo. Deletion of BGLT3 using CRISPR/Cas9 editing shows that it specifically contributes to regulation of γ-globin genes. We used reduction or overexpression of the RNA and inhibition of transcription through the locus by CRISPRi to distinguish functions of the transcript vs the underlying sequence. Transcription of the BGLT3 locus is critical for looping between the γ-globin genes and BGLT3 sequences. In contrast, the BGLT3 transcript is dispensable for γ-globin/BGLT3 looping but interacts with the mediator complex on chromatin. Manipulation of the BGLT3 locus does not compromise γ-globin gene long-range looping interactions with the β-globin locus control region (LCR). These data reveal that BGLT3 regulates γ-globin transcription in a developmental stage-specific fashion together with the LCR by serving as a separate means to increase RNA Pol II density at the γ-globin promoters.
Collapse
|
366
|
Liao S, Maertens O, Cichowski K, Elledge SJ. Genetic modifiers of the BRD4-NUT dependency of NUT midline carcinoma uncovers a synergism between BETis and CDK4/6is. Genes Dev 2018; 32:1188-1200. [PMID: 30135075 PMCID: PMC6120715 DOI: 10.1101/gad.315648.118] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022]
Abstract
Using CRISPR and ORF expression screens, Liao et al. systematically examined the ability of cancer drivers to mediate resistance of NUT midline carcinoma (NMC) to bromodomain and extraterminal domain inhibitors (BETis) and uncovered six general classes/pathways mediating resistance. Bromodomain and extraterminal (BET) domain inhibitors (BETis) show efficacy on NUT midline carcinoma (NMC). However, not all NMC patients respond, and responders eventually develop resistance and relapse. Using CRISPR and ORF expression screens, we systematically examined the ability of cancer drivers to mediate resistance of NMC to BETis and uncovered six general classes/pathways mediating resistance. Among these, we showed that RRAS2 attenuated the effect of JQ1 in part by sustaining ERK pathway function during BRD4 inhibition. Furthermore, overexpression of Kruppel-like factor 4 (KLF4), mediated BETi resistance in NMC cells through restoration of the E2F and MYC gene expression program. Finally, we found that expression of cyclin D1 or an oncogenic cyclin D3 mutant or RB1 loss protected NMC cells from BETi-induced cell cycle arrest. Consistent with these findings, cyclin-dependent kinase 4/6 (CDK4/6) inhibitors showed synergistic effects with BETis on NMC in vitro as well as in vivo, thereby establishing a potential two-drug therapy for NMC.
Collapse
Affiliation(s)
- Sida Liao
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Genetics, Program in Virology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ophélia Maertens
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA.,Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Karen Cichowski
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA.,Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Stephen J Elledge
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Genetics, Program in Virology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.,Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
367
|
Ge H, Yan Y, Wu D, Huang Y, Tian F. Potential role of LINC00996 in colorectal cancer: a study based on data mining and bioinformatics. Onco Targets Ther 2018; 11:4845-4855. [PMID: 30147336 PMCID: PMC6098418 DOI: 10.2147/ott.s173225] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background The clinical significance of LINC00996 in colorectal cancer (CRC) has not been verified. In the current study, the authors aimed to explore the expression of LINC00996 and its clinical significance in CRC based on the data mining of Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) datasets, as well as to elucidate the functions of its potential target genes. Materials and methods GEO and TCGA microarray datasets were used to evaluate the LINC00996 expression and its clinical significance in CRC. LINC00996 related genes were identified by Multi Experiment Matrix, RNA-Binding Protein DataBase, and The Atlas of Noncoding RNAs in Cancer. Subsequently, they were sent to gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analysis. Results LINC00996 is significantly decreased in CRC tissues compared with non-tumor tissues. Low level of LINC00996 is associated with remote metastasis and poor overall survival. However, LINC00996 has a minimal effect on gender, lymphatic invasion, tumor size, lymph node metastasis, and pathological stage. One hundred and forty-two LINC00996 related genes were identified; the results of functional analysis indicated that LINC00996 might repress tumorigenesis and metastasis via modulating the JAK-STAT, NF-κB, HIF-1, TLR, and PI3K-AKT signaling pathways. Conclusion Our study demonstrates that decreased LINC00996 expression may be involved in colorectal carcinogenesis and metastasis, and the depletion of LINC00996 is associated with a poor outcome in CRC patients. Moreover, the JAK-STAT, NF-κB, HIF-1, TLR, and PI3K-AKT pathways may be the key pathways regulated by LINC00996 in CRC.
Collapse
Affiliation(s)
- Hua Ge
- Department of Gastrointestinal Surgery, The First People's Hospital of Zunyi, Zunyi, Guizhou, People's Republic of China,
| | - Yan Yan
- Quality Control Department, The First People's Hospital of Zunyi, Zunyi, Guizhou, People's Republic of China
| | - Di Wu
- Department of Gastrointestinal Surgery, The First People's Hospital of Zunyi, Zunyi, Guizhou, People's Republic of China,
| | - Yongsheng Huang
- Department of Gastrointestinal Surgery, The First People's Hospital of Zunyi, Zunyi, Guizhou, People's Republic of China,
| | - Fei Tian
- Department of Gastrointestinal Surgery, The First People's Hospital of Zunyi, Zunyi, Guizhou, People's Republic of China,
| |
Collapse
|
368
|
Li X, Yang L, Chen LL. The Biogenesis, Functions, and Challenges of Circular RNAs. Mol Cell 2018; 71:428-442. [PMID: 30057200 DOI: 10.1016/j.molcel.2018.06.034] [Citation(s) in RCA: 1464] [Impact Index Per Article: 209.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/18/2018] [Accepted: 06/22/2018] [Indexed: 12/21/2022]
Abstract
Covalently closed circular RNAs (circRNAs) are produced by precursor mRNA back-splicing of exons of thousands of genes in eukaryotes. circRNAs are generally expressed at low levels and often exhibit cell-type-specific and tissue-specific patterns. Recent studies have shown that their biogenesis requires spliceosomal machinery and can be modulated by both cis complementary sequences and protein factors. The functions of most circRNAs remain largely unexplored, but known functions include sequestration of microRNAs or proteins, modulation of transcription and interference with splicing, and even translation to produce polypeptides. However, challenges exist at multiple levels to understanding of the regulation of circRNAs because of their circular conformation and sequence overlap with linear mRNA counterparts. In this review, we survey the recent progress on circRNA biogenesis and function and discuss technical obstacles in circRNA studies.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Li Yang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China.
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China.
| |
Collapse
|
369
|
Li Q, Liu R, Zhao H, Di R, Lu Z, Liu E, Wang Y, Chu M, Wei C. Identification and Characterization of Long Noncoding RNAs in Ovine Skeletal Muscle. Animals (Basel) 2018; 8:ani8070127. [PMID: 30041440 PMCID: PMC6071021 DOI: 10.3390/ani8070127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 01/06/2023] Open
Abstract
Simple Summary LncRNAs may play important role in many biological processes. The aims of this research were to identify potential lncRNAs active in skeletal muscle of the Texel and Ujumqin sheep and investigate their functions. Overall, 2002 lncRNA transcripts were found, some of which may be related to muscle development. The findings obtained here should promote understanding of the regulatory functions of lncRNAs in ovine muscle development and potentially also in other mammals. Abstract Long noncoding RNAs (lncRNAs) are increasingly being recognized as key regulators in many cellular processes. However, few reports of them in livestock have been published. Here, we describe the identification and characterization of lncRNAs in ovine skeletal muscle. Eight libraries were constructed from the gastrocnemius muscle of fetal (days 85 and 120), newborn and adult Texel and Ujumqin sheep. The 2002 identified transcripts shared some characteristics, such as their number of exons, length and distribution. We also identified some coding genes near these lncRNA transcripts, which are particularly associated with transcriptional regulation- and development-related processes, suggesting that the lncRNAs are associated with muscle development. In addition, in pairwise comparisons between the libraries of the same stage in different breeds, a total of 967 transcripts were differentially expressed but just 15 differentially expressed lncRNAs were common to all stages. Among them, we found that TCONS_00013201 exhibited higher expression in Ujumqin samples, while TCONS_00006187 and TCONS_00083104 were higher in Texel samples. Moreover, TCONS_00044801, TCONS_00008482 and TCONS_00102859 were almost completely absent from Ujumqin samples. Our results suggest that differences in the expression of these lncRNAs may be associated with the muscular differences observed between Texel and Ujumqin sheep breeds.
Collapse
Affiliation(s)
- Qing Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Ruizao Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Huijing Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Ran Di
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Zengkui Lu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- College of Animal Science and Technology, Gansu Agriculture University, Lanzhou 730070, China.
| | - Enmin Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yuqin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China.
| | - Mingxing Chu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Caihong Wei
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
370
|
The Nefarious Nexus of Noncoding RNAs in Cancer. Int J Mol Sci 2018; 19:ijms19072072. [PMID: 30018188 PMCID: PMC6073630 DOI: 10.3390/ijms19072072] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023] Open
Abstract
The past decade has witnessed enormous progress, and has seen the noncoding RNAs (ncRNAs) turn from the so-called dark matter RNA to critical functional molecules, influencing most physiological processes in development and disease contexts. Many ncRNAs interact with each other and are part of networks that influence the cell transcriptome and proteome and consequently the outcome of biological processes. The regulatory circuits controlled by ncRNAs have become increasingly more relevant in cancer. Further understanding of these complex network interactions and how ncRNAs are regulated, is paving the way for the identification of better therapeutic strategies in cancer.
Collapse
|
371
|
Li Y, Zeng C, Hu J, Pan Y, Shan Y, Liu B, Jia L. Long non-coding RNA-SNHG7 acts as a target of miR-34a to increase GALNT7 level and regulate PI3K/Akt/mTOR pathway in colorectal cancer progression. J Hematol Oncol 2018; 11:89. [PMID: 29970122 PMCID: PMC6029165 DOI: 10.1186/s13045-018-0632-2] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022] Open
Abstract
Background Colorectal cancer (CRC) arises in a multistep molecular network process, which is from either discrete genetic perturbation or epigenetic dysregulation. The long non-coding RNAs (lncRNAs), emerging as key molecules in human malignancy, has become one of the hot topics in RNA biology. Aberrant O-glycosylation is a well-described hallmark of many cancers. GALNT7 acts as a glycosyltransferase in protein O-glycosylation, involving in the occurrence and development of CRC. Methods The microarrays were used to survey the lncRNA and mRNA expression profiles of primary CRC cell line SW480 and metastatic CRC cell line SW620. Cell proliferation, migration, invasion, and apoptosis were assayed. Xenograft mouse models were used to determine the role of lncRNA-SNHG7 in CRC in vivo. In addition, CNC analysis and competing endogenous analysis were used to detect differential SNHG7 and relational miRNAs expression in CRC cell lines. Results SNHG7 expression showed a high fold (SW620/SW480) in CRC microarrays. The CRC patients with high expression of SNHG7 had a significantly poor prognosis. Furthermore, SNHG7 promoted CRC cell proliferation, metastasis, mediated cell cycle, and inhibited apoptosis. SNHG7 and GALNT7 were observed for co-expression by CNC analysis, and a negative correlation of SNHG7 and miR-34a were found by competing endogenous RNA (ceRNA) analysis. Further results indicated that SNHG7 facilitated the proliferation and metastasis as a competing endogenous RNA to regulate GALNT7 expression by sponging miR-34a in CRC cell lines. SNHG7 also played the oncogenic role in regulating PI3K/Akt/mTOR pathway by competing endogenous miR-34a and GALNT7. Conclusion The CRC-related SNHG7 and miR-34a might be implicated in CRC progression via GALNT7, suggesting the potential usage of SNHG7/miR-34a/GALNT7 axis in CRC treatment. Electronic supplementary material The online version of this article (10.1186/s13045-018-0632-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Li
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Changqian Zeng
- Medical College, Dalian University, Dalian, 116622, Liaoning Province, China
| | - Jialei Hu
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Yue Pan
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Yujia Shan
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Bing Liu
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China.
| |
Collapse
|
372
|
lncRNA TNXA-PS1 Modulates Schwann Cells by Functioning As a Competing Endogenous RNA Following Nerve Injury. J Neurosci 2018; 38:6574-6585. [PMID: 29915133 DOI: 10.1523/jneurosci.3790-16.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 06/09/2018] [Accepted: 06/11/2018] [Indexed: 11/21/2022] Open
Abstract
As the major glia in PNS, Schwann cells play a critical role in peripheral nerve injury repair. Finding an efficient approach to promote Schwann cell activation might facilitate peripheral nerve repair. Long noncoding RNAs (lncRNAs) have been shown to regulate gene expression and take part in many biological processes. However, the role of lncRNAs in peripheral nerve regeneration is not fully understood. In this study, we obtained a global lncRNA portrayal following sciatic nerve injury in male rats using microarray and further investigated one of these dys-regulated lncRNAs, TNXA-PS1, confirming its vital role in regulating Schwann cells. Silencing TNAX-PS1 could promote Schwann cell migration and mechanism analyses showed that TNXA-PS1 might exert its regulatory role by sponging miR-24-3p/miR-152-3p and affecting dual specificity phosphatase 1 (Dusp1) expression. Systematic lncRNA expression profiling of sciatic nerve segments following nerve injury in rats suggested lncRNA TNXA-PS1 as a key regulator of Schwann cell migration, providing a potential therapeutic target for nerve injury repair.SIGNIFICANCE STATEMENT The PNS has an intrinsic regeneration capacity after injury in which Schwann cells play a crucial role. Therefore, further exploration of functional molecules in the Schwann cell phenotype modulation is of great importance. We have identified a set of dys-regulated long noncoding RNAs (lncRNAs) in rats following sciatic nerve injury and found that the expression of TNXA-PS1 was significantly downregulated. Mechanically analyses showed that TNXA-PS1 might act as a competing endogenous RNA to affect dual specificity phosphatase 1 (Dusp1) expression, regulating migration of Schwann cells. This study provides for the first time a global landscape of lncRNAs following sciatic nerve injury in rats and broadens the known functions of lncRNA during nerve injury. The investigation of TNXA-PS1 might facilitate the development of novel targets for nerve injury therapy.
Collapse
|
373
|
James de Bony E, Bizet M, Van Grembergen O, Hassabi B, Calonne E, Putmans P, Bontempi G, Fuks F. Comprehensive identification of long noncoding RNAs in colorectal cancer. Oncotarget 2018; 9:27605-27629. [PMID: 29963224 PMCID: PMC6021240 DOI: 10.18632/oncotarget.25218] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 04/06/2018] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers in humans and a leading cause of cancer-related deaths worldwide. As in the case of other cancers, CRC heterogeneity leads to a wide range of clinical outcomes and complicates therapy. Over the years, multiple factors have emerged as markers of CRC heterogeneity, improving tumor classification and selection of therapeutic strategies. Understanding the molecular mechanisms underlying this heterogeneity remains a major challenge. A considerable research effort is therefore devoted to identifying additional features of colorectal tumors, in order to better understand CRC etiology and to multiply therapeutic avenues. Recently, long noncoding RNAs (lncRNAs) have emerged as important players in physiological and pathological processes, including CRC. Here we looked for lncRNAs that might contribute to the various colorectal tumor phenotypes. We thus monitored the expression of 4898 lncRNA genes across 566 CRC samples and identified 282 lncRNAs reflecting CRC heterogeneity. We then inferred potential functions of these lncRNAs. Our results highlight lncRNAs that may participate in the major processes altered in distinct CRC cases, such as WNT/β-catenin and TGF-β signaling, immunity, the epithelial-to-mesenchymal transition (EMT), and angiogenesis. For several candidates, we provide experimental evidence supporting our functional predictions that they may be involved in the cell cycle or the EMT. Overall, our work identifies lncRNAs associated with key CRC characteristics and provides insights into their respective functions. Our findings constitute a further step towards understanding the contribution of lncRNAs to CRC heterogeneity. They may open new therapeutic opportunities.
Collapse
Affiliation(s)
- Eric James de Bony
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Martin Bizet
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Machine Learning Group, Computer Science Department, Université Libre de Bruxelles, 1050 Brussels, Belgium
- Inter-University Institute of Bioinformatics, Brussels, Université Libre de Bruxelles–Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Olivier Van Grembergen
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Bouchra Hassabi
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Emilie Calonne
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Pascale Putmans
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Gianluca Bontempi
- Machine Learning Group, Computer Science Department, Université Libre de Bruxelles, 1050 Brussels, Belgium
- Inter-University Institute of Bioinformatics, Brussels, Université Libre de Bruxelles–Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - François Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| |
Collapse
|
374
|
Wang X, Liu F, Liu X, Wang F, Liao X, Chen Y, Mao Y, Hua D, Ge X. Long non-coding RNA expression profiles reveals AK098783 is a biomarker to predict poor prognosis in patients with colorectal cancer. Jpn J Clin Oncol 2018; 48:480-484. [PMID: 29590393 DOI: 10.1093/jjco/hyy037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/10/2018] [Indexed: 01/27/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have essential regulatory function, yet their roles in colorectal cancer (CRC) are not well understood. Materials and methods Microarray was applied to detect lncRNAs expression profiles in tumor tissues, liver metastasis and paired adjacent normal tissues of CRC. And using RT-PCR to verify chip results. Results A total of 10 680 lncRNAs demonstrated differential expressions (fold change ≥2) between tumor tissues and adjacent normal tissues; furthermore there were 2970 lncRNAs, which showed different expression level between CRC tissues with liver metastasis and adjacent normal tissues. Especially, lncRNA-AK098783 expression level was frequently higher in cancerous tissues than corresponding noncancerous tissue. Higher AK098783 expression was significantly correlated with shortened overall survival (P < 0.001) and distant metastasis (P < 0.001). Conclusions Our results suggest that AK098783 is involved in distant metastasis and dramatically associated with poor prognosis in patients with CRC.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Oncology, The Affiliated Hospital of Jiangnan University, Jiangsu
| | - Fen Liu
- Department of Oncology, The Affiliated Hospital of Jiangnan University, Jiangsu
| | - Xiaoyuan Liu
- Department of Oncology, The Affiliated Hospital of Jiangnan University, Jiangsu
| | - Fang Wang
- Department of Oncology, The Affiliated Hospital of Jiangnan University, Jiangsu
| | - Xiaoyu Liao
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing
| | - Yuanbin Chen
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yong Mao
- Department of Oncology, The Affiliated Hospital of Jiangnan University, Jiangsu
| | - Dong Hua
- Department of Oncology, The Affiliated Hospital of Jiangnan University, Jiangsu
| | - Xiaosong Ge
- Department of Oncology, The Affiliated Hospital of Jiangnan University, Jiangsu
| |
Collapse
|
375
|
Barbagallo C, Brex D, Caponnetto A, Cirnigliaro M, Scalia M, Magnano A, Caltabiano R, Barbagallo D, Biondi A, Cappellani A, Basile F, Di Pietro C, Purrello M, Ragusa M. LncRNA UCA1, Upregulated in CRC Biopsies and Downregulated in Serum Exosomes, Controls mRNA Expression by RNA-RNA Interactions. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 12:229-241. [PMID: 30195762 PMCID: PMC6023947 DOI: 10.1016/j.omtn.2018.05.009] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 02/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) contribute to the onset of many neoplasias through RNA-RNA competitive interactions; in addition, they could be secreted by cancer cells into biological fluids, suggesting their potential diagnostic application. By analyzing the expression of 17 lncRNAs and 31 circRNAs in biopsies and serum exosomes from colorectal cancer (CRC) patients through qRT-PCR, we detected CCAT1, CCAT2, HOTAIR, and UCA1 upregulation and CDR1AS, MALAT1, and TUG1 downregulation in biopsies. In serum exosomes, UCA1 was downregulated, while circHIPK3 and TUG1 were upregulated. Combined receiver operating characteristic (ROC) curves of TUG1:UCA1 and circHIPK3:UCA1 showed high values of sensitivity and specificity. Through in vitro (i.e., RNA silencing and mitogen-activated protein kinase [MAPK] inhibition) and in silico analyses (i.e., expression correlation and RNA-RNA-binding prediction), we found that UCA1 could (1) be controlled by MAPKs through CEBPB; (2) sequester miR-135a, miR-143, miR-214, and miR-1271, protecting ANLN, BIRC5, IPO7, KIF2A, and KIF23 from microRNA (miRNA)-induced degradation; and (3) interact with mRNA 3'-UTRs, preventing miRNA binding. UCA1 and its co-regulated antisense LINC01764 could interact and reciprocally mask their own miRNA-binding sites. Functional enrichment analysis of the RNA-RNA network controlled by UCA1 suggested its potential involvement in cellular migration. The UCA1 regulatory axis would represent a promising target to develop innovative RNA-based therapeutics against CRC.
Collapse
Affiliation(s)
- Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy
| | - Duilia Brex
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy
| | - Angela Caponnetto
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy
| | - Matilde Cirnigliaro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy
| | - Marina Scalia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy
| | - Antonio Magnano
- Digestive Endoscopy Service, Vittorio Emanuele Hospital, Catania 95124, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, Catania 95123, Italy
| | - Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy
| | - Antonio Biondi
- Department of Surgery, Vittorio Emanuele Hospital, University of Catania, Catania 95124, Italy
| | - Alessandro Cappellani
- Department of Surgery, Vittorio Emanuele Hospital, University of Catania, Catania 95124, Italy
| | - Francesco Basile
- Department of Surgery, Vittorio Emanuele Hospital, University of Catania, Catania 95124, Italy
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina (EN) 94018, Italy.
| |
Collapse
|
376
|
Cho SW, Xu J, Sun R, Mumbach MR, Carter AC, Chen YG, Yost KE, Kim J, He J, Nevins SA, Chin SF, Caldas C, Liu SJ, Horlbeck MA, Lim DA, Weissman JS, Curtis C, Chang HY. Promoter of lncRNA Gene PVT1 Is a Tumor-Suppressor DNA Boundary Element. Cell 2018; 173:1398-1412.e22. [PMID: 29731168 PMCID: PMC5984165 DOI: 10.1016/j.cell.2018.03.068] [Citation(s) in RCA: 347] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/08/2018] [Accepted: 03/26/2018] [Indexed: 12/31/2022]
Abstract
Noncoding mutations in cancer genomes are frequent but challenging to interpret. PVT1 encodes an oncogenic lncRNA, but recurrent translocations and deletions in human cancers suggest alternative mechanisms. Here, we show that the PVT1 promoter has a tumor-suppressor function that is independent of PVT1 lncRNA. CRISPR interference of PVT1 promoter enhances breast cancer cell competition and growth in vivo. The promoters of the PVT1 and the MYC oncogenes, located 55 kb apart on chromosome 8q24, compete for engagement with four intragenic enhancers in the PVT1 locus, thereby allowing the PVT1 promoter to regulate pause release of MYC transcription. PVT1 undergoes developmentally regulated monoallelic expression, and the PVT1 promoter inhibits MYC expression only from the same chromosome via promoter competition. Cancer genome sequencing identifies recurrent mutations encompassing the human PVT1 promoter, and genome editing verified that PVT1 promoter mutation promotes cancer cell growth. These results highlight regulatory sequences of lncRNA genes as potential disease-associated DNA elements.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- CRISPR-Cas Systems
- Carcinogenesis/genetics
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic
- Chromatin
- DNA, Neoplasm/genetics
- Enhancer Elements, Genetic
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Genes, myc
- Humans
- Mice
- Mice, Inbred NOD
- Mutation
- Neoplasm Transplantation
- Promoter Regions, Genetic
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Seung Woo Cho
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Jin Xu
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Ruping Sun
- Departments of Medicine and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford, CA 94305, USA
| | - Maxwell R Mumbach
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Ava C Carter
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Y Grace Chen
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Kathryn E Yost
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Jeewon Kim
- Stanford Cancer Institute, Stanford, CA 94305, USA
| | - Jing He
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Stephanie A Nevins
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Suet-Feung Chin
- Department of Oncology and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Carlos Caldas
- Department of Oncology and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK; Breast Cancer Program, CRUK Cambridge Cancer Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 2QQ, UK
| | - S John Liu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Max A Horlbeck
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Daniel A Lim
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; San Francisco Veterans Affairs Medical Center, San Francisco, San Francisco, CA 94121, USA
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christina Curtis
- Departments of Medicine and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford, CA 94305, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
377
|
Abstract
Transcriptional enhancers constitute a subclass of regulatory elements that facilitate transcription. Such regions are generally organized by short stretches of DNA enriched in transcription factor-binding sites but also can include very large regions containing clusters of enhancers, termed super-enhancers. These regions increase the probability or the rate (or both) of transcription generally in
cis and sometimes over very long distances by altering chromatin states and the activity of Pol II machinery at promoters. Although enhancers were discovered almost four decades ago, their inner workings remain enigmatic. One important opening into the underlying principle has been provided by observations that enhancers make physical contacts with their target promoters to facilitate the loading of the RNA polymerase complex. However, very little is known about how such chromatin loops are regulated and how they govern transcription in the three-dimensional context of the nuclear architecture. Here, we present current themes of how enhancers may boost gene expression in three dimensions and we identify currently unresolved key questions.
Collapse
Affiliation(s)
- Anita Göndör
- Department of Oncology and Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Rolf Ohlsson
- Department of Oncology and Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
378
|
Lin H, Cheng W, Yan H, Zhang X. Overexpression of the long noncoding RNA CCAT1 promotes metastasis via epithelial-to-mesenchymal transition in lung adenocarcinoma. Oncol Lett 2018; 16:1809-1814. [PMID: 30008869 DOI: 10.3892/ol.2018.8813] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/12/2018] [Indexed: 01/17/2023] Open
Abstract
The long noncoding RNA (lncRNA) colon cancer-associated transcript 1 (CCAT1) has been identified as an oncogene in multiple types of human malignancy, and the aberrant expression of CCAT1 has been associated with the tumorigenesis and progression of cancer. However, the underlying mechanism of how CCAT1 affects malignant behaviors in lung adenocarcinoma cells remains unknown. In the current study, the expression of CCAT1 was identified to be increased in lung adenocarcinoma tissues (n=96) by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and its expression level was associated with epidermal growth factor receptor (EGFR) expression (P=0.011), lymphatic metastasis (P=0.003) and tumor node metastasis (TNM) stage (P=0.003). In vitro, by using Transwell assays, the overexpression of CCAT1 was demonstrated to promote the migration and invasion of H358 lung adenocarcinoma cells; while downregulation of CCAT1 expression inhibited H1650 cell migration and invasion. Furthermore, western blot analysis indicated that aberrant CCAT1 expression may induce epithelial-to-mesenchymal transition (EMT) by regulating the expression levels of EMT markers (E-cadherin, N-cadherin and vimentin). In conclusion, these results indicate that CCAT1 is able to promote the metastasis of lung adenocarcinoma cells by inducing EMT.
Collapse
Affiliation(s)
- Heping Lin
- Department of Respiratory Medicine, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, Wenzhou, Zhejiang 325200, P.R. China
| | - Wei Cheng
- Department of Respiratory Medicine, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, Wenzhou, Zhejiang 325200, P.R. China
| | - Hanhan Yan
- Department of Respiratory Medicine, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, Wenzhou, Zhejiang 325200, P.R. China
| | - Xiaodiao Zhang
- Department of Respiratory Medicine, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, Wenzhou, Zhejiang 325200, P.R. China
| |
Collapse
|
379
|
Current Advances on the Important Roles of Enhancer RNAs in Gene Regulation and Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2405351. [PMID: 29951530 PMCID: PMC5987348 DOI: 10.1155/2018/2405351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/05/2018] [Accepted: 04/19/2018] [Indexed: 12/27/2022]
Abstract
Revealing the gene regulation networks governing cancer initiation and development is necessary while it remains uncompleted. In recent years, enhancers have been reported to be widely transcribed, resulting in the generation of enhancer RNAs (eRNAs). Previous studies have reported that eRNAs are a subclass of long noncoding RNAs (lncRNAs), which play a critical role in gene regulation and cancer development. These eRNAs can promote enhancer-promoter (E-P) looping formation by binding to other protein factors or propel expression of downstream protein-coding gene. In this review, we have focused on the characteristics of eRNAs and illustrated the biological function and potential mechanism of eRNAs in regulating gene expression and cancer development.
Collapse
|
380
|
Colon Cancer-Upregulated Long Non-Coding RNA lincDUSP Regulates Cell Cycle Genes and Potentiates Resistance to Apoptosis. Sci Rep 2018; 8:7324. [PMID: 29743621 PMCID: PMC5943353 DOI: 10.1038/s41598-018-25530-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/24/2018] [Indexed: 12/05/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are frequently dysregulated in many human cancers. We sought to identify candidate oncogenic lncRNAs in human colon tumors by utilizing RNA sequencing data from 22 colon tumors and 22 adjacent normal colon samples from The Cancer Genome Atlas (TCGA). The analysis led to the identification of ~200 differentially expressed lncRNAs. Validation in an independent cohort of normal colon and patient-derived colon cancer cell lines identified a novel lncRNA, lincDUSP, as a potential candidate oncogene. Knockdown of lincDUSP in patient-derived colon tumor cell lines resulted in significantly decreased cell proliferation and clonogenic potential, and increased susceptibility to apoptosis. The knockdown of lincDUSP affects the expression of ~800 genes, and NCI pathway analysis showed enrichment of DNA damage response and cell cycle control pathways. Further, identification of lincDUSP chromatin occupancy sites by ChIRP-Seq demonstrated association with genes involved in the replication-associated DNA damage response and cell cycle control. Consistent with these findings, lincDUSP knockdown in colon tumor cell lines increased both the accumulation of cells in early S-phase and γH2AX foci formation, indicating increased DNA damage response induction. Taken together, these results demonstrate a key role of lincDUSP in the regulation of important pathways in colon cancer.
Collapse
|
381
|
Ozawa T, Matsuyama T, Toiyama Y, Takahashi N, Ishikawa T, Uetake H, Yamada Y, Kusunoki M, Calin G, Goel A. CCAT1 and CCAT2 long noncoding RNAs, located within the 8q.24.21 'gene desert', serve as important prognostic biomarkers in colorectal cancer. Ann Oncol 2018; 28:1882-1888. [PMID: 28838211 DOI: 10.1093/annonc/mdx248] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background 8q24.21 is a frequently amplified genomic region in colorectal cancer (CRC). This region is often referred to as a 'gene desert' due to lack of any important protein-coding genes, highlighting the potential role of noncoding RNAs, including long noncoding RNAs (lncRNAs) located around the proto-oncogene MYC. In this study, we have firstly evaluated the clinical significance of altered expression of lncRNAs mapped to this genomic locus in CRC. Patients and methods A total of 300 tissues, including 280 CRC and 20 adjacent normal mucosa specimens were evaluated for the expression of 12 lncRNAs using qRT-PCR assays. We analyzed the associations between lncRNA expression and various clinicopathological features, as well as with recurrence free survival (RFS) and overall survival (OS) in two independent cohorts. Results The expression of CCAT1, CCAT1-L, CCAT2, PVT1, and CASC19 were elevated in cancer tissues (P = 0.039, <0.001, 0.018, <0.001, 0.002, respectively). Among these, high expression of CCAT1 and CCAT2 was significantly associated with poor RFS (P = 0.049 and 0.022, respectively) and OS (P = 0.028 and 0.015, respectively). These results were validated in an independent patient cohort, in which combined expression of CCAT1 and CCAT2 expression was significantly associated with a poor RFS (HR:2.60, 95% confidence interval [CI]: 1.04-6.06, P = 0.042) and a poor OS (HR:8.38, 95%CI: 2.68-37.0, P < 0.001). We established a RFS prediction model which revealed that combined expression of CCAT1, CCAT2, and carcinoembryonic antigen was a significant determinant for efficiently predicting RFS in stage II (P = 0.034) and stage III (P = 0.001) CRC patients. Conclusions Several lncRNAs located in 8q24.21 locus are highly over-expressed in CRC. High expression of CCAT1 and CCAT2 significantly associates with poor RFS and OS. The expression of these two lncRNAs independently, or in combination, serves as important prognostic biomarkers in CRC.
Collapse
Affiliation(s)
- T Ozawa
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute, Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, USA
| | - T Matsuyama
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute, Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, USA
| | - Y Toiyama
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie Japan
| | - N Takahashi
- Gastrointestinal Medical Oncology Division, National Cancer Center Hospital, Tokyo Japan
| | - T Ishikawa
- Department of Specialized Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - H Uetake
- Department of Specialized Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Y Yamada
- Gastrointestinal Medical Oncology Division, National Cancer Center Hospital, Tokyo Japan
| | - M Kusunoki
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie Japan
| | - G Calin
- Division of Cancer Medicine, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - A Goel
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute, Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, USA
| |
Collapse
|
382
|
Zhang S, Li Z, Zhang L, Xu Z. MEF2‑activated long non‑coding RNA PCGEM1 promotes cell proliferation in hormone‑refractory prostate cancer through downregulation of miR‑148a. Mol Med Rep 2018; 18:202-208. [PMID: 29749452 PMCID: PMC6059670 DOI: 10.3892/mmr.2018.8977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 01/26/2017] [Indexed: 01/04/2023] Open
Abstract
Prostate cancer gene expression marker 1 (PCGEM1) is a prostate-specific gene overexpressed in prostate cancer cells that promotes cell proliferation. To study the molecular mechanism of PCGEM1 function in hormone-refractory prostate cancer, the interaction between myocyte enhancer factor 2 (MEF2) and PCGEM1 was assessed by a luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay. In addition, the underlying mechanism of PCGEM1 regulating expression of microRNA (miR)-148a in PC3 prostate cancer cells was evaluated. Relative expression levels were measured by reverse transcription-quantitative polymerase chain reaction, and early apoptosis was measured by flow cytometry. PCGEM1 was demonstrated to be overexpressed in prostate cancer tissues compared with noncancerous tissues. Expression levels of PCGEM1 in PC3 cancer cells were demonstrated to be regulated by MEF2, as PCGME1 mRNA was increased by MEF2 overexpression but decreased by MEF2 silencing. MEF2 was also demonstrated to enhance the activity of PCGEM1 promoter and thus promote PCGEM1 transcription. In addition, downregulation of PCGEM1 expression in PC3 cells increased expression of miR-148a. By contrast, overexpression of PCGEM1 decreased miR-148a expression. Finally, PCGME1 silencing by small interfering RNA significantly induced early cell apoptosis but this effect was reduced by a miR-148a inhibitor. In conclusion, the present study demonstrated a positive regulatory association between MEF2 and PCGEM1, and a reciprocal negative regulatory association between PCGEM1 and miR-148a that controls cell apoptosis. The present study, therefore, provides new insights into the mechanism of PCGEM1 function in prostate cancer development.
Collapse
Affiliation(s)
- Shibao Zhang
- Department of Urology, Ji'nan Central Hospital Affiliated to Shandong University, Ji'nan, Shandong 250013, P.R. China
| | - Zongwu Li
- Department of Urology, Ji'nan Central Hospital Affiliated to Shandong University, Ji'nan, Shandong 250013, P.R. China
| | - Longyang Zhang
- Department of Urology, Ji'nan Central Hospital Affiliated to Shandong University, Ji'nan, Shandong 250013, P.R. China
| | - Zhonghua Xu
- Department of Urology, Qilu Hospital of Shandong University, Ji'nan, Shandong 250012, P.R. China
| |
Collapse
|
383
|
Zhang Z, Xie H, Liang D, Huang L, Liang F, Qi Q, Yang X. Long non-coding RNA CCAT1 as a diagnostic and prognostic molecular marker in various cancers: a meta-analysis. Oncotarget 2018; 9:23695-23703. [PMID: 29805767 PMCID: PMC5955114 DOI: 10.18632/oncotarget.24923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/20/2017] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Long non-coding RNA colon cancer-associated transcript-1 (CCAT1) is newly found to be related with diagnoses and prognosis of cancer. This meta-analysis was performed to investigate the relationship between CCAT1 expression and clinical parameters, including survival condition, lymph node metastasis and tumor node metastasis grade. MATERIALS AND METHODS The primary literatures were collected through initial search criteria from electronic databases, including PubMed, OVID Evidence-based medicine Reviews and others (up to May 12, 2017). Eligible studies were identified and selected by the inclusion and exclusion criteria. Data was extracted and computed into Hazard ratio (HR) for the assessment of overall survival, subgroup analyses were prespecified based on the digestive tract cancer or others. Analysis of different CCAT1 expression related with lymph node metastasis or tumor node metastasis grade was conducted. Risk of bias was assessed by the Newcastle-Ottawa Scale. RESULTS 9 studies were included. This meta-analysis showed that high CCAT1 expression level was related to poor overall survival, the pooled HR was 2.42 (95% confidence interval, CI: 1.86-3.16; P < 0.001; fix- effects model), similarly in the cancer type subgroups: digestive tract cancer (HR, 2.42; 95% CI, 1.79-3.29; P < 0.001; fix- effects model) and others (HR, 2.42; 95% CI, 1.42-4.13; P = 0.001; fix- effects model). The analysis showed that high CCAT1 was strongly related to positive lymph node metastasis (Odds ratio, OR: 3.24; 95% CI, 2.04-5.16; P < 0.001; fix- effects model), high tumor node metastasis stage (OR, 3.87; 95% CI, 2.53-5.92; P < 0.001; fix- effects model). CONCLUSIONS In conclusion, this meta-analysis revealed that CCAT1 had potential as a diagnostic and prognostic biomarker in various cancers.
Collapse
Affiliation(s)
- Zhihui Zhang
- Department of Spine Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China
- Shantou University Medical College, Shantou 515041, China
| | - Haibiao Xie
- Shantou University Medical College, Shantou 515041, China
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China
| | - Daqiang Liang
- Shantou University Medical College, Shantou 515041, China
| | - Lanbing Huang
- Department of Spine Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China
| | - Feiguo Liang
- Shantou University Medical College, Shantou 515041, China
| | - Qiang Qi
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100083, China
| | - Xinjian Yang
- Department of Spine Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China
| |
Collapse
|
384
|
Chen XF, Zhu DL, Yang M, Hu WX, Duan YY, Lu BJ, Rong Y, Dong SS, Hao RH, Chen JB, Chen YX, Yao S, Thynn HN, Guo Y, Yang TL. An Osteoporosis Risk SNP at 1p36.12 Acts as an Allele-Specific Enhancer to Modulate LINC00339 Expression via Long-Range Loop Formation. Am J Hum Genet 2018; 102:776-793. [PMID: 29706346 PMCID: PMC5986728 DOI: 10.1016/j.ajhg.2018.03.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/28/2018] [Indexed: 01/10/2023] Open
Abstract
Genome-wide association studies (GWASs) have reproducibly associated variants within intergenic regions of 1p36.12 locus with osteoporosis, but the functional roles underlying these noncoding variants are unknown. Through an integrative functional genomic and epigenomic analyses, we prioritized rs6426749 as a potential causal SNP for osteoporosis at 1p36.12. Dual-luciferase assay and CRISPR/Cas9 experiments demonstrate that rs6426749 acts as a distal allele-specific enhancer regulating expression of a lncRNA (LINC00339) (∼360 kb) via long-range chromatin loop formation and that this loop is mediated by CTCF occupied near rs6426749 and LINC00339 promoter region. Specifically, rs6426749-G allele can bind transcription factor TFAP2A, which efficiently elevates the enhancer activity and increases LINC00339 expression. Downregulation of LINC00339 significantly increases the expression of CDC42 in osteoblast cells, which is a pivotal regulator involved in bone metabolism. Our study provides mechanistic insight into how a noncoding SNP affects osteoporosis by long-range interaction, a finding that could indicate promising therapeutic targets for osteoporosis.
Collapse
Affiliation(s)
- Xiao-Feng Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Dong-Li Zhu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Man Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Wei-Xin Hu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuan-Yuan Duan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Bing-Jie Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yu Rong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Ruo-Han Hao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jia-Bin Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yi-Xiao Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Shi Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Hlaing Nwe Thynn
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| |
Collapse
|
385
|
Li XX, Liang XJ, Zhou LY, Liu RJ, Bi W, Zhang S, Li SS, Yang WH, Chen ZC, Yang XM, Zhang PF. Analysis of Differential Expressions of Long Non-coding RNAs in Nasopharyngeal Carcinoma Using Next-generation Deep Sequencing. J Cancer 2018; 9:1943-1950. [PMID: 29896278 PMCID: PMC5995947 DOI: 10.7150/jca.23481] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/13/2018] [Indexed: 12/14/2022] Open
Abstract
Background: Little knowledge about long non-coding RNAs(lncRNAs) in nasopharyngeal carcinoma (NPC) has been acquired. Methods: Next-generation sequencing was applied in 7 cases of NPC tissues and 7 cases of normal tissues in nasopharynx. PLEX, CNCI and CPAT soft-wares were used to predict novel lncRNAs. Real-time Quantitative PCR (qPCR) further validated the data in 20 cases of NPC tissues and 14 cases of normal tissues. Then the cis-regulators and trans-regulators and potential biological functions together with pathways were predicted by Bioinformatics. Results: Totally, 4248 novel lncRNAs were found to be expressed in our samples. And 2192 lncRNAs and 23342 mRNAs were considered to be differentially expressed in NPC. Among the results, 306 lncRNAs and 4599 mRNAs were significantly up-regulated, whereas 204 lncRNAs and 2059 mRNAs were significantly down-regulated, respectively. Moreover, 62 lncRNAs trans-regulated genes were involved in Epstein-Barr virus (EBV) infection pathway in our study. Jun proto-oncogene (JUN), which was related to a cis-regulator lncRNA RP4-794H19.1, was enriched in cancers and involved in Tumor Necrosis Factor (TNF) signaling pathway, might play a key role in NPC. Conclusion: These findings broadened the lncRNAs landscape of NPC tissues and shed light on the roles of these lncRNAs, which might be conducive to the comprehensive management of NPC.
Collapse
Affiliation(s)
- Xiao-Xiao Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Xu-Jun Liang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Liu-Ying Zhou
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Rui-Jie Liu
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Wu Bi
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Sai Zhang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Shi-Sheng Li
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan,410011, P.R. China
| | - Wen-Hui Yang
- International College, Guangdong University of Foreign Studies, Guangzhou, Guangdong, 510420, P.R. China
| | - Zhu-Chu Chen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Xin-Ming Yang
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan,410011, P.R. China
| | - Peng-Fei Zhang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| |
Collapse
|
386
|
Chen L, Zhang W, Li DY, Wang X, Tao Y, Zhang Y, Dong C, Zhao J, Zhang L, Zhang X, Guo J, Zhang X, Liao Q. Regulatory network analysis of LINC00472, a long noncoding RNA downregulated by DNA hypermethylation in colorectal cancer. Clin Genet 2018; 93:1189-1198. [PMID: 29488624 DOI: 10.1111/cge.13245] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 02/21/2018] [Accepted: 02/25/2018] [Indexed: 12/30/2022]
Abstract
Colorectal cancer (CRC), one of the common malignant cancers in the world, is caused by accumulated alterations of genetic and epigenetic factors over a long period of time. Along with that protein-coding genes being identified as oncogenes or tumor suppressors in CRC, a number of lncRNAs have also been found to be associated with CRC. Considering the important regulatory role of lncRNAs, the first goal of this study was to identify CRC-associated lncRNAs from a public database. One such lncRNA, LINC00472, was verified to be downregulated in CRC cell lines and cancer tissues compared with adjacent tissues. In addition, the down-regulation of LINC00472 seemed to be caused by DNA hypermethylation at its promoter region. Furthermore, the expression of LINC00472 and DNA methylation of promoter were significantly correlated with clinicopathological features. And DNA hypermethylation of LINC00472 may serve as a better diagnostic biomarker than its expression for CRC. Finally, we predicted the functions of LINC00472 and constructed a regulatory network and found LINC00472 may be involved in cell cycle and cell proliferation processes. Our results may provide a clue to further research into the function and regulatory mechanism of LINC00472 in CRC.
Collapse
Affiliation(s)
- L Chen
- Department of Biochemistry and Molecular Biology, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - W Zhang
- Department of Medical Image, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - D Y Li
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York
| | - X Wang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Y Tao
- Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Department of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Y Zhang
- Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Department of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - C Dong
- Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Department of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - J Zhao
- Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Department of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - L Zhang
- Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Department of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - X Zhang
- Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Department of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - J Guo
- Department of Biochemistry and Molecular Biology, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - X Zhang
- Department of Gastroenterology, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo, China
| | - Q Liao
- Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Department of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
387
|
Zarkou V, Galaras A, Giakountis A, Hatzis P. Crosstalk mechanisms between the WNT signaling pathway and long non-coding RNAs. Noncoding RNA Res 2018; 3:42-53. [PMID: 30159439 PMCID: PMC6096407 DOI: 10.1016/j.ncrna.2018.04.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 12/15/2022] Open
Abstract
The WNT/β-catenin signaling pathway controls a plethora of biological processes throughout animal development and adult life. Because of its fundamental role during animal lifespan, the WNT pathway is subject to strict positive and negative multi-layered regulation, while its aberrant activity causes a wide range of pathologies, including cancer. At present, despite the inroads into the molecules involved in WNT-mediated transcriptional responses, the fine-tuning of WNT pathway activity and the totality of its target genes have not been fully elucidated. Over the past few years, long non-coding RNAs (lncRNAs), RNA transcripts longer that 200nt that do not code for proteins, have emerged as significant transcriptional regulators. Recent studies show that lncRNAs can modulate WNT pathway outcome by affecting gene expression through diversified mechanisms, from the transcriptional to post-translational level. In this review, we selectively discuss those lncRNA-mediated mechanisms we believe the most important to WNT pathway modulation.
Collapse
Affiliation(s)
- Vasiliki Zarkou
- Biomedical Sciences Research Center ‘Alexander Fleming’, 16672 Vari, Greece
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Alexandros Galaras
- Biomedical Sciences Research Center ‘Alexander Fleming’, 16672 Vari, Greece
- Department of Medicine, National and Kapodistrian University of Athens, 11527 Goudi, Greece
| | - Antonis Giakountis
- Biomedical Sciences Research Center ‘Alexander Fleming’, 16672 Vari, Greece
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Pantelis Hatzis
- Biomedical Sciences Research Center ‘Alexander Fleming’, 16672 Vari, Greece
- Corresponding author.
| |
Collapse
|
388
|
Feeley KP, Edmonds MD. Hiding in Plain Sight: Rediscovering the Importance of Noncoding RNA in Human Malignancy. Cancer Res 2018; 78:2149-2158. [PMID: 29632135 DOI: 10.1158/0008-5472.can-17-2675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/12/2018] [Accepted: 02/21/2018] [Indexed: 12/22/2022]
Abstract
At the time of its construction in the 1950s, the central dogma of molecular biology was a useful model that represented the current state of knowledge for the flow of genetic information after a period of prolific scientific discovery. Unknowingly, it also biased many of our assumptions going forward. Whether intentional or not, genomic elements not fitting into this paradigm were deemed unimportant and emphasis on the study of protein-coding genes prevailed for decades. The phrase "Junk DNA," first popularized in the 1960s, is still used with alarming frequency to describe the entirety of noncoding DNA. It has since become apparent that RNA molecules not coding for protein are vitally important in both normal development and human malignancy. Cancer researchers have been pioneers in determining noncoding RNA function and developing new technologies to study these molecules. In this review, we will discuss well known and newly emerging species of noncoding RNAs, their functions in cancer, and new technologies being utilized to understand their mechanisms of action in cancer. Cancer Res; 78(9); 2149-58. ©2018 AACR.
Collapse
Affiliation(s)
- Kyle P Feeley
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mick D Edmonds
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
389
|
Wang Z, Yang B, Zhang M, Guo W, Wu Z, Wang Y, Jia L, Li S, Xie W, Yang D. lncRNA Epigenetic Landscape Analysis Identifies EPIC1 as an Oncogenic lncRNA that Interacts with MYC and Promotes Cell-Cycle Progression in Cancer. Cancer Cell 2018; 33:706-720.e9. [PMID: 29622465 PMCID: PMC6143179 DOI: 10.1016/j.ccell.2018.03.006] [Citation(s) in RCA: 362] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 02/13/2018] [Accepted: 03/05/2018] [Indexed: 02/07/2023]
Abstract
We characterized the epigenetic landscape of genes encoding long noncoding RNAs (lncRNAs) across 6,475 tumors and 455 cancer cell lines. In stark contrast to the CpG island hypermethylation phenotype in cancer, we observed a recurrent hypomethylation of 1,006 lncRNA genes in cancer, including EPIC1 (epigenetically-induced lncRNA1). Overexpression of EPIC1 is associated with poor prognosis in luminal B breast cancer patients and enhances tumor growth in vitro and in vivo. Mechanistically, EPIC1 promotes cell-cycle progression by interacting with MYC through EPIC1's 129-283 nt region. EPIC1 knockdown reduces the occupancy of MYC to its target genes (e.g., CDKN1A, CCNA2, CDC20, and CDC45). MYC depletion abolishes EPIC1's regulation of MYC target and luminal breast cancer tumorigenesis in vitro and in vivo.
Collapse
Affiliation(s)
- Zehua Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Bo Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Min Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Weiwei Guo
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Zhiyuan Wu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yue Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lin Jia
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wen Xie
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Da Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
390
|
Rezanejad Bardaji H, Asadi MH, Yaghoobi MM. Long noncoding RNA VIM-AS1 promotes colorectal cancer progression and metastasis by inducing EMT. Eur J Cell Biol 2018; 97:279-288. [PMID: 29656793 DOI: 10.1016/j.ejcb.2018.04.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 01/11/2023] Open
Abstract
Emerging evidence indicates that lncRNAs play crucial roles in the initiation and progression of various malignant tumors. VIM-AS1 RNA is an lncRNA that transcribes from a shared bidirectional promoter with vimentin mRNA and its function in cancer cells is largely unknown. This study assessed the clinical significance of VIM-AS1 expression in colorectal cancer (CRC). We found that the VIM-AS1 transcript was significantly upregulated in high-grade, lymph node metastasis and vascular invasion tumors. Loss-of-function experiments revealed that the downregulation of VIM-AS1 could inhibit tumor cell proliferation by inducing apoptosis, cellular senescence and arresting the cell cycle. Moreover, the obtained data demonstrated that VIM-AS1 might play a crucial role in cell migration as well as the epithelial to mesenchymal transition (EMT) of CRC cells. Collectively, for the first time, our data provide novel evidence for the biological and clinical significance of VIM-AS1 expression in CRC. Further, the findings of this study suggest that VIM-AS1 promotes tumor growth and metastasis by inducing EMT in CRC cells and could be considered as a novel tumor marker with probable value in diagnosis and CRC treatment.
Collapse
Affiliation(s)
- Hajar Rezanejad Bardaji
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Malek Hossein Asadi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Mohammad Mehdi Yaghoobi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
391
|
Razin SV, Gavrilov AA. Structural–Functional Domains of the Eukaryotic Genome. BIOCHEMISTRY (MOSCOW) 2018; 83:302-312. [DOI: 10.1134/s0006297918040028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/27/2017] [Indexed: 08/30/2023]
|
392
|
Alvarez-Dominguez JR, Knoll M, Gromatzky AA, Lodish HF. The Super-Enhancer-Derived alncRNA-EC7/Bloodlinc Potentiates Red Blood Cell Development in trans. Cell Rep 2018. [PMID: 28636939 DOI: 10.1016/j.celrep.2017.05.082] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Enhancer-derived RNAs are thought to act locally by contributing to their parent enhancer function. Whether large domains of clustered enhancers (super-enhancers) also produce cis-acting RNAs, however, remains unclear. Unlike typical enhancers, super-enhancers form large spans of robustly transcribed chromatin, amassing capped and polyadenylated RNAs that are sufficiently abundant to sustain trans functions. Here, we show that one such RNA, alncRNA-EC7/Bloodlinc, is transcribed from a super-enhancer of the erythroid membrane transporter SLC4A1/BAND3 but diffuses beyond this site. Bloodlinc localizes to trans-chromosomal loci encoding critical regulators and effectors of terminal erythropoiesis and directly binds chromatin-organizing and transcription factors, including the chromatin attachment factor HNRNPU. Inhibiting Bloodlinc or Hnrnpu compromises the terminal erythropoiesis gene program, blocking red cell production, whereas expressing Bloodlinc ectopically stimulates this program and can promote erythroblast proliferation and enucleation in the absence of differentiation stimuli. Thus, Bloodlinc is a trans-acting super-enhancer RNA that potentiates red blood cell development.
Collapse
Affiliation(s)
- Juan R Alvarez-Dominguez
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - Marko Knoll
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Austin A Gromatzky
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Harvey F Lodish
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
393
|
Chen J, Zhang K, Song H, Wang R, Chu X, Chen L. Long noncoding RNA CCAT1 acts as an oncogene and promotes chemoresistance in docetaxel-resistant lung adenocarcinoma cells. Oncotarget 2018; 7:62474-62489. [PMID: 27566568 PMCID: PMC5308740 DOI: 10.18632/oncotarget.11518] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 08/11/2016] [Indexed: 01/17/2023] Open
Abstract
Chemoresistance remains one of the major obstacles in clinical treatment of lung adenocarcinoma (LAD). Indeed, docetaxel-resistant LAD cells present chemoresistance and epithelial-to-mesenchymal transition phenotypes. Long non-coding RNAs (lncRNAs) are known to promote tumorigenesis in many cancer types. Here, we showed that the lncRNA colon cancer-associated transcript-1 (CCAT1) was upregulated in docetaxel-resistant LAD cells. Furthermore, downregulation of CCAT1 decreased chemoresistance, inhibited proliferation, enhanced apoptosis and reversed the epithelial-to-mesenchymal transition phenotype of docetaxel-resistant LAD cells. We also found that the oncogenic function of CCAT1 in docetaxel-resistant LAD cells depended on the sponging of let-7c. In turn, the sponging of let-7c by CCAT1 released Bcl-xl (a let-7c target), thereby promoting the acquisition of chemoresistance and epithelial-to-mesenchymal transition phenotypes in docetaxel-resistant LAD cells. Our data reveal a novel pathway underlying chemoresistance and the epithelial-to-mesenchymal transition in docetaxel-resistant LAD cells.
Collapse
Affiliation(s)
- Jing Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Kai Zhang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Haizhu Song
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Longbang Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
394
|
Zhang MW, Fujiwara K, Che X, Zheng S, Zheng L. DNA methylation in the tumor microenvironment. J Zhejiang Univ Sci B 2018; 18:365-372. [PMID: 28471108 DOI: 10.1631/jzus.b1600579] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The tumor microenvironment (TME) plays an important role in supporting cancer progression. The TME is composed of tumor cells, the surrounding tumor-associated stromal cells, and the extracellular matrix (ECM). Crosstalk between the TME components contributes to tumorigenesis. Recently, one of our studies showed that pancreatic ductal adenocarcinoma (PDAC) cells can induce DNA methylation in cancer-associated fibroblasts (CAFs), thereby modifying tumor-stromal interactions in the TME, and subsequently creating a TME that supports tumor growth. Here we summarize recent studies about how DNA methylation affects tumorigenesis through regulating tumor-associated stromal components including fibroblasts and immune cells. We also discuss the potential for targeting DNA methylation for the treatment of cancers.
Collapse
Affiliation(s)
- Meng-Wen Zhang
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou 310009, China.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore 21231, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore 21231, USA
| | - Kenji Fujiwara
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore 21231, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore 21231, USA
| | - Xu Che
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore 21231, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore 21231, USA
| | - Shu Zheng
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou 310009, China
| | - Lei Zheng
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore 21231, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore 21231, USA
| |
Collapse
|
395
|
Li Y, Jing F, Ding Y, He Q, Zhong Y, Fan C. Long noncoding RNA CCAT1 polymorphisms are associated with the risk of colorectal cancer. Cancer Genet 2018; 222-223:13-19. [PMID: 29666003 DOI: 10.1016/j.cancergen.2018.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/18/2018] [Accepted: 02/13/2018] [Indexed: 12/27/2022]
Abstract
Colorectal cancer associated transcript 1 (CCAT1) is a novel long noncoding RNA, whose overexpression is evident in both early phase of tumorigenesis and later disease stages in colorectal cancer (CRC). No study has explored the relationship between CCAT1 polymorphisms and CRC risk. In the present study, a case-control study was conducted to investigate the association between CCAT1 polymorphisms and CRC risk in Chinese population. We identified that CCAT1 rs67085638 polymorphism was associated with an increased risk of CRC (OR = 1.72, 95%CI = 1.14-2.58, P = 0.009 in heterozygote codominant model; OR = 1.67, 95%CI = 1.13-2.47, P = 0.010 in dominant model). Moreover, CCAT1 rs7013433 polymorphism was associated with late clinical stage (OR = 1.82, 95%CI = 1.16-2.86, P = 0.009 in heterozygote codominant model; OR = 1.72, 95%CI = 1.13-2.63, P = 0.012 in dominant model). Our finding proposed a link between CCAT1 polymorphisms with CRC risk as well as different clinical stages.
Collapse
Affiliation(s)
- Yingjun Li
- Department of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fangyuan Jing
- Department of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ye Ding
- Department of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qingfang He
- Department of Chronic Non-Communicable Diseases Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Yaohong Zhong
- Department of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chunhong Fan
- Department of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
396
|
Moretto F, Wood NE, Kelly G, Doncic A, van Werven FJ. A regulatory circuit of two lncRNAs and a master regulator directs cell fate in yeast. Nat Commun 2018; 9:780. [PMID: 29472539 PMCID: PMC5823921 DOI: 10.1038/s41467-018-03213-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/24/2018] [Indexed: 12/27/2022] Open
Abstract
Transcription of long noncoding RNAs (lncRNAs) regulates local gene expression in eukaryotes. Many examples of how a single lncRNA controls the expression of an adjacent or nearby protein-coding gene have been described. Here we examine the regulation of a locus consisting of two contiguous lncRNAs and the master regulator for entry into yeast meiosis, IME1. We find that the cluster of two lncRNAs together with several transcription factors form a regulatory circuit by which IME1 controls its own promoter and thereby promotes its own expression. Inhibition or stimulation of this unusual feedback circuit affects timing and rate of IME1 accumulation, and hence the ability for cells to enter meiosis. Our data demonstrate that orchestrated transcription through two contiguous lncRNAs promotes local gene expression and determines a critical cell fate decision.
Collapse
Affiliation(s)
- Fabien Moretto
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - N Ezgi Wood
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Gavin Kelly
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Andreas Doncic
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA
- Green Center for Systems Biology, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA
| | | |
Collapse
|
397
|
O'Brien EM, Selfe JL, Martins AS, Walters ZS, Shipley JM. The long non-coding RNA MYCNOS-01 regulates MYCN protein levels and affects growth of MYCN-amplified rhabdomyosarcoma and neuroblastoma cells. BMC Cancer 2018; 18:217. [PMID: 29466962 PMCID: PMC5822637 DOI: 10.1186/s12885-018-4129-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 02/13/2018] [Indexed: 12/02/2022] Open
Abstract
Background MYCN is amplified in small cell lung cancers and several pediatric tumors, including alveolar rhabdomyosarcomas and neuroblastomas. MYCN protein is known to play a key oncogenic role in both alveolar rhabdomyosarcomas and neuroblastomas. MYCN opposite strand (MYCNOS) is a gene located on the antisense strand to MYCN that encodes alternatively spliced transcripts, two of which (MYCNOS-01 and MYCNOS-02) are known to be expressed in neuroblastoma and small cell lung cancer with reciprocal regulation between MYCNOS-02 and MYCN reported for neuroblastomas. We sought to determine a functional role for MYCNOS-01 in alveolar rhabdomyosarcoma and neuroblastoma cells and identify any associated regulatory effects between MYCN and MYCNOS-01. Methods MYCNOS-01, MYCNOS-02 and MYCN expression levels were assessed in alveolar rhabdomyosarcoma and neuroblastoma cell lines and tumor samples from patients using Affymetrix microarray data and quantitative RT-PCR. Following MYCNOS-01 or MYCN siRNA knockdown and MYCNOS-01 overexpression, transcript levels were assayed by quantitative RT-PCR and MYCN protein expression assessed by Western blot and immunofluorescence. Additionally, effects on cell growth, apoptosis and cell cycle profiles were determined by a metabolic assay, caspase activity and flow cytometry, respectively. Results MYCNOS-01 transcript levels were generally higher in NB and RMS tumor samples and cell lines with MYCN genomic amplification. RNA interference of MYCNOS-01 expression did not alter MYCN transcript levels but decreased MYCN protein levels. Conversely, MYCN reduction increased MYCNOS-01 transcript levels, creating a negative feedback loop on MYCN protein levels. Reduction of MYCNOS-01 or MYCN expression decreased cell growth in MYCN-amplified alveolar rhabdomyosarcoma and neuroblastoma cell lines. This is consistent with MYCNOS-01-mediated regulation of MYCN contributing to the phenotype observed. Conclusions An alternative transcript of MYCNOS, MYCNOS-01, post-transcriptionally regulates MYCN levels and affects growth in MYCN-amplified rhabdomyosarcoma and neuroblastoma cells. Electronic supplementary material The online version of this article (10.1186/s12885-018-4129-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eleanor M O'Brien
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, Surrey, Sutton, SM2 5NG, UK
| | - Joanna L Selfe
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, Surrey, Sutton, SM2 5NG, UK
| | - Ana Sofia Martins
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, Surrey, Sutton, SM2 5NG, UK
| | - Zoë S Walters
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, Surrey, Sutton, SM2 5NG, UK
| | - Janet M Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, Surrey, Sutton, SM2 5NG, UK.
| |
Collapse
|
398
|
Shen Z, Hao W, Zhou C, Deng H, Ye D, Li Q, Lin L, Cao B, Guo J. Long non-coding RNA AC026166.2-001 inhibits cell proliferation and migration in laryngeal squamous cell carcinoma by regulating the miR-24-3p/p27 axis. Sci Rep 2018; 8:3375. [PMID: 29463827 PMCID: PMC5820272 DOI: 10.1038/s41598-018-21659-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/06/2018] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNA (lncRNA) AC026166.2-001 was found to be down-regulated in laryngeal squamous cell carcinoma (LSCC) tissues and metastatic neck lymph nodes. Decreased AC026166.2-001 was associated with poorer prognosis and may act as a novel biomarker for LSCC patients. In this study, AC026166.2–001 was overexpressed by a lentivirus vector and down-regulated by a small interfering RNA (siRNA). The results of real-time cell analysis (RTCA) and a plate colony formation assay showed that AC026166.2–001 inhibited LSCC cell proliferation and the clone-forming capacity. Cell cycle distribution and related protein changes were measured by flow cytometry. AC026166.2–001 arrested the cell cycle at the G1 phase and induced apoptosis. In addition, AC026166.2–001 decreased cell migration as measured by wound healing assays and transwell migration assays. Moreover, luciferase reporter assay and Western blotting results suggested that AC026166.2–001 acts as a sponge of miR-24-3p and regulates the expression of p27 and cyclin D1. The in vivo results showed that AC026166.2–001 significantly suppressed the growth of LSCC xenografts and promoted apoptosis. We validated the molecular mechanisms underlying AC026166.2–001 in LSCC. This is the first report of AC026166.2–001 acting as a tumor suppressor in LSCC by regulating the miR-24-3p/p27 axis.
Collapse
Affiliation(s)
- Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, the Affiliated Lihuili Hospital, Medical School of Ningbo University, Ningbo, 315040, China.
| | - Wenjuan Hao
- Department of Otorhinolaryngology and Head and Neck Surgery, the Affiliated Lihuili Hospital, Medical School of Ningbo University, Ningbo, 315040, China
| | - Chongchang Zhou
- Department of Otorhinolaryngology and Head and Neck Surgery, the Affiliated Lihuili Hospital, Medical School of Ningbo University, Ningbo, 315040, China
| | - Hongxia Deng
- Department of Otorhinolaryngology and Head and Neck Surgery, the Affiliated Lihuili Hospital, Medical School of Ningbo University, Ningbo, 315040, China
| | - Dong Ye
- Department of Otorhinolaryngology and Head and Neck Surgery, the Affiliated Lihuili Hospital, Medical School of Ningbo University, Ningbo, 315040, China
| | - Qun Li
- Department of Otorhinolaryngology and Head and Neck Surgery, the Affiliated Lihuili Hospital, Medical School of Ningbo University, Ningbo, 315040, China
| | - Lexi Lin
- Department of Otorhinolaryngology and Head and Neck Surgery, the Affiliated Lihuili Hospital, Medical School of Ningbo University, Ningbo, 315040, China
| | - Bing Cao
- Department of Otorhinolaryngology and Head and Neck Surgery, the Affiliated Lihuili Hospital, Medical School of Ningbo University, Ningbo, 315040, China
| | - Junming Guo
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
399
|
Long noncoding RNA GAS5 promotes bladder cancer cells apoptosis through inhibiting EZH2 transcription. Cell Death Dis 2018; 9:238. [PMID: 29445179 PMCID: PMC5833416 DOI: 10.1038/s41419-018-0264-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 12/16/2017] [Accepted: 12/22/2017] [Indexed: 12/24/2022]
Abstract
Aberrant expression of long noncoding RNA GAS5 in bladder cancer (BC) cells was identified in recent studies. However, the regulatory functions and underlying molecular mechanisms of GAS5 in BC development remain unclear. Here, we confirmed that there was a negative correlation between GAS5 level and bladder tumor clinical stage. Functionally, overexpression of GAS5 reduced cell viability and induced cell apoptosis in T24 and EJ bladder cancer cells. Mechanistically, GAS5 effectively repressed EZH2 transcription by directly interacting with E2F4 and recruiting E2F4 to EZH2 promoter. We previously reported that miR-101 induced the apoptosis of BC cells by inhibiting the expression of EZH2. Interestingly, the present study showed that downregulation of EZH2 by GAS5 resulted in overexpression of miR-101 in T24 and EJ cells. Furthermore, the level of GAS5 was increased under the treatment of Gambogic acid (GA), a promising natural anti-cancer compound, whereas knockdown of GAS5 suppressed the inhibitory effect of GA on cell viability and abolished GA-induced apoptosis in T24 and EJ cells. Taken together, our findings demonstrated a tumor-suppressor role of GAS5 by inhibiting EZH2 on transcriptional level, and additionally provided a novel therapeutic strategy for treating human bladder cancer.
Collapse
|
400
|
Alteration of Epigenetic Regulation by Long Noncoding RNAs in Cancer. Int J Mol Sci 2018; 19:ijms19020570. [PMID: 29443889 PMCID: PMC5855792 DOI: 10.3390/ijms19020570] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are important regulators of the epigenetic status of the human genome. Besides their participation to normal physiology, lncRNA expression and function have been already associated to many diseases, including cancer. By interacting with epigenetic regulators and by controlling chromatin topology, their misregulation may result in an aberrant regulation of gene expression that may contribute to tumorigenesis. Here, we review the functional role and mechanisms of action of lncRNAs implicated in the aberrant epigenetic regulation that has characterized cancer development and progression.
Collapse
|