351
|
Steffensen L, Stubbe J, Overgaard M, Larsen J. Tamoxifen-independent Cre-activity in SMMHC-CreER T2 mice. ATHEROSCLEROSIS PLUS 2022; 48:8-11. [PMID: 36644559 PMCID: PMC9833216 DOI: 10.1016/j.athplu.2022.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/03/2022] [Accepted: 01/24/2022] [Indexed: 01/18/2023]
Abstract
Background and aims Recent technological advances have established vascular smooth muscle cells (SMCs) as central players in atherosclerosis. Increasingly complex genetic mouse models have unveiled that 30-70% of cells in experimentally induced atherosclerotic lesions derive from a handful of medial SMCs, and that these can adopt a broad range of plaque cell phenotypes. Most of these models are based on the SMMHC-CreER T2 mouse line as Cre-driver. Importantly, Cre-activation can be controlled in time (by administration of tamoxifen, TAM), which is critical to avoid unwanted effects of premature recombination events. The aim of this study was to scrutinize an unexpected observation of TAM-independent Cre-activity in this mouse line. Methods Cre-activity was assessed by PCR in tissues from SMMHC-CreER T2 mice crossed with mice homozygous for loxP-flanked (floxed) exon 4 of Ccn2 (our gene-of-interest), and Ccn2 protein was measured in aortas by targeted mass spectrometry. Results We observed spontaneous near-complete excision of floxed Ccn2 in aortas from adult mice that were not treated with TAM. As a result, Ccn2 protein was significantly reduced in aortas from these mice, but not to the same extent as TAM-treated littermates. Remarkably, most of the excision was completed in 4-week-old mice. Excision was Cre-dependent, as knockout bands were negligible in heart and liver (dominated by non-SMCs) of these mice, and undetectable in the aorta in the absence of Cre. Conclusion Our observations warrant caution, and we advocate inclusion of appropriate controls (i.e., TAM-untreated mice) in future studies.
Collapse
Affiliation(s)
- L.B. Steffensen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark,Corresponding author. J. B. Winsløws Vej 21, 3-22A, 5000, Odense C, Denmark.
| | - J. Stubbe
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - M. Overgaard
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - J.H. Larsen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
352
|
Abdominal Aortic Aneurysm Formation with a Focus on Vascular Smooth Muscle Cells. Life (Basel) 2022; 12:life12020191. [PMID: 35207478 PMCID: PMC8880357 DOI: 10.3390/life12020191] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/29/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a lethal degenerative vascular disease that affects, mostly, the elder population, with a high mortality rate (>80%) upon rupture. It features a dilation of the aortic diameter to larger than 30 mm or more than 50%. Diverse pathological processes are involved in the development of AAA, including aortic wall inflammation, elastin breakdown, oxidative stress, smooth muscle cell (SMC) phenotypic switching and dysfunction, and extracellular matrix degradation. With open surgery being the only therapeutic option up to date, the lack of pharmaceutical treatment approach calls for identifying novel and effective targets and further understanding the pathological process of AAA. Both lifestyle and genetic predisposition have an important role in increasing the risk of AAA. Several cell types are closely related to the pathogenesis of AAA. Among them, vascular SMCs (VSMCs) are gaining much attention as a critical contributor for AAA initiation and/or progression. In this review, we summarize what is known about AAA, including the risk factors, the pathophysiology, and the established animal models of AAA. In particular, we focus on the VSMC phenotypic switching and dysfunction in AAA formation. Further understanding the regulation of VSMC phenotypic changes may provide novel therapeutic targets for the treatment or prevention of AAA.
Collapse
|
353
|
Microskeletal stiffness promotes aortic aneurysm by sustaining pathological vascular smooth muscle cell mechanosensation via Piezo1. Nat Commun 2022; 13:512. [PMID: 35082286 PMCID: PMC8791986 DOI: 10.1038/s41467-021-27874-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/15/2021] [Indexed: 12/27/2022] Open
Abstract
Mechanical overload of the vascular wall is a pathological hallmark of life-threatening abdominal aortic aneurysms (AAA). However, how this mechanical stress resonates at the unicellular level of vascular smooth muscle cells (VSMC) is undefined. Here we show defective mechano-phenotype signatures of VSMC in AAA measured with ultrasound tweezers-based micromechanical system and single-cell RNA sequencing technique. Theoretical modelling predicts that cytoskeleton alterations fuel cell membrane tension of VSMC, thereby modulating their mechanoallostatic responses which are validated by live micromechanical measurements. Mechanistically, VSMC gradually adopt a mechanically solid-like state by upregulating cytoskeleton crosslinker, α-actinin2, in the presence of AAA-promoting signal, Netrin-1, thereby directly powering the activity of mechanosensory ion channel Piezo1. Inhibition of Piezo1 prevents mice from developing AAA by alleviating pathological vascular remodeling. Our findings demonstrate that deviations of mechanosensation behaviors of VSMC is detrimental for AAA and identifies Piezo1 as a novel culprit of mechanically fatigued aorta in AAA.
Collapse
|
354
|
Meng L, Li J, Xu H, Wu D, Shan M, Chen Y, Xu J, Liu L, Chen Z, Li Y, Gong T, Liu D. A potential biomarker for clinical atherosclerosis: A novel insight derived from myosin heavy chain 10 promoting transformation of vascular smooth muscle cells. Clin Transl Med 2022; 12:e672. [PMID: 35075787 PMCID: PMC8787098 DOI: 10.1002/ctm2.672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/26/2021] [Accepted: 11/19/2021] [Indexed: 11/07/2022] Open
Affiliation(s)
- Ling‐bing Meng
- Department of Cardiology Beijing Hospital National Center of Gerontology Chinese Academy of Medical Sciences Institute of Geriatric Medicine Beijing China
- Graduate School Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
| | - Jian‐yi Li
- Department of Cardiology Beijing Hospital National Center of Gerontology Chinese Academy of Medical Sciences Institute of Geriatric Medicine Beijing China
- Graduate School Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
| | - Hong‐xuan Xu
- Department of Cardiology Beijing Hospital National Center of Gerontology Chinese Academy of Medical Sciences Institute of Geriatric Medicine Beijing China
| | - Di‐shan Wu
- Department of Cardiology Beijing Hospital National Center of Gerontology Chinese Academy of Medical Sciences Institute of Geriatric Medicine Beijing China
- Graduate School Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
| | - Meng‐jie Shan
- Graduate School Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
- Department of Plastic Surgery Peking Union Medical College Hospital Beijing China
| | - Yu‐hui Chen
- Department of Neurology Beijing Hospital National Center of Gerontology Institute of Geriatric Medicine Chinese Academy of Medical Sciences Beijing China
| | - Jia‐pei Xu
- Department of Cardiology Beijing Hospital National Center of Gerontology Chinese Academy of Medical Sciences Institute of Geriatric Medicine Beijing China
| | - Long‐teng Liu
- Department of Pathology Beijing Hospital National Center of Gerontology Institute of Geriatric Medicine Chinese Academy of Medical Sciences Beijing China
| | - Zuoguan Chen
- Department of Vascular Surgery Beijing Hospital National Center of Gerontology Institute of Geriatric Medicine Chinese Academy of Medical Sciences Beijing China
| | - Yong‐jun Li
- Department of Vascular Surgery Beijing Hospital National Center of Gerontology Institute of Geriatric Medicine Chinese Academy of Medical Sciences Beijing China
| | - Tao Gong
- Department of Neurology Beijing Hospital National Center of Gerontology Institute of Geriatric Medicine Chinese Academy of Medical Sciences Beijing China
| | - De‐ping Liu
- Department of Cardiology Beijing Hospital National Center of Gerontology Chinese Academy of Medical Sciences Institute of Geriatric Medicine Beijing China
- Graduate School Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
| |
Collapse
|
355
|
Punch E, Klein J, Diaba-Nuhoho P, Morawietz H, Garelnabi M. Effects of PCSK9 Targeting: Alleviating Oxidation, Inflammation, and Atherosclerosis. J Am Heart Assoc 2022; 11:e023328. [PMID: 35048716 PMCID: PMC9238481 DOI: 10.1161/jaha.121.023328] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Characterized as a chronic inflammatory disease of the large arteries, atherosclerosis is the primary cause of cardiovascular disease, the leading contributor of morbidity and mortality worldwide. Elevated plasma cholesterol levels and chronic inflammation within the arterial plaque are major mediators of plaque initiation, progression, and instability. In 2003, the protein PCSK9 (proprotein convertase subtilisin/kexin 9) was discovered to play a critical role in cholesterol regulation, thus becoming a key player in the mechanisms behind atherosclerotic plaque development. Emerging evidence suggests that PCSK9 could potentially have effects on atherosclerosis that are independent of cholesterol levels. The objective of this review was to discuss the role on PCSK9 in oxidation, inflammation, and atherosclerosis. This function activates proinflammatory cytokine production and affects oxidative modifications within atherosclerotic lesions, revealing its more significant role in atherosclerosis. Although a variety of evidence demonstrates that PCSK9 plays a role in atherosclerotic inflammation, the direct mechanism of involvement is still unknown, driving a gap in knowledge to such a predominant player in cardiovascular disease. Investigation of proteins structurally related to PCSK9 may interestingly be the link in unveiling the mechanistic role of this protein’s involvement in oxidation and inflammation. Importantly, the unique structure of PCSK9 bears structural homology to a one‐of‐a‐kind domain found in the metabolic protein resistin, which is responsible for many of the same inflammatory outcomes as PCSK9. Closing this gap in knowledge of PCSK9`s role in atherosclerotic oxidation and inflammation will provide fundamental information for understanding, preventing, and treating cardiovascular disease.
Collapse
Affiliation(s)
- Emily Punch
- Department of Chemistry University of Massachusetts Lowell MA
| | - Justus Klein
- Division of Vascular Endothelium and Microcirculation Department of Medicine III University Hospital and Medical Faculty Carl Gustav CarusTechnische Universität Dresden Germany
| | - Patrick Diaba-Nuhoho
- Division of Vascular Endothelium and Microcirculation Department of Medicine III University Hospital and Medical Faculty Carl Gustav CarusTechnische Universität Dresden Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation Department of Medicine III University Hospital and Medical Faculty Carl Gustav CarusTechnische Universität Dresden Germany
| | - Mahdi Garelnabi
- Biomedical and Nutritional Sciences University of Massachusetts Lowell MA
| |
Collapse
|
356
|
Heo J, Kang H. Exosome-Based Treatment for Atherosclerosis. Int J Mol Sci 2022; 23:ijms23021002. [PMID: 35055187 PMCID: PMC8778342 DOI: 10.3390/ijms23021002] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis is an inflammatory disease in which lipids accumulate on the walls of blood vessels, thickening and clogging these vessels. It is well known that cell-to-cell communication is involved in the pathogenesis of atherosclerosis. Exosomes are extracellular vesicles that deliver various substances (e.g., RNA, DNA, and proteins) from the donor cell to the recipient cell and that play an important role in intercellular communication. Atherosclerosis can be either induced or inhibited through cell-to-cell communication using exosomes. An understanding of the function of exosomes as therapeutic tools and in the pathogenesis of atherosclerosis is necessary to develop new atherosclerosis therapies. In this review, we summarize the studies on the regulation of atherosclerosis through exosomes derived from multiple cells as well as research on exosome-based atherosclerosis treatment.
Collapse
Affiliation(s)
- Jeongyeon Heo
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Hara Kang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
- Institute for New Drug Development, Incheon National University, Incheon 22012, Korea
| |
Collapse
|
357
|
Singh S, Changkija S, Mudgal R, Ravichandiran V. Bioactive components to inhibit foam cell formation in atherosclerosis. Mol Biol Rep 2022; 49:2487-2501. [PMID: 35013861 DOI: 10.1007/s11033-021-07039-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/30/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND The production of lipid-laden cells in macrophages after significant ingestion of oxidized low-density lipoprotein is considered the most critical phase in the creation of atherosclerotic lesions, which is known as foam cell formation. Targeting foam cell development to find a potential therapeutic strategy for the management of atherosclerosis has yielded numerous promising outcomes. Multiple variables influence foam cell growth, including scavenger receptor expression, cholesterol transporter expression acyl CoA: cholesterol acyltransferase activity, and neutral cholesteryl ester hydrolase activity. Plants used during herbal therapy have been shown to assist with a variety of ailments. RESULT In this study, we found medicinal plants and their bioactive components suppress foam cell formation in a variety of ways; some inhibit cholesterol transporter and lectin-like oxidized low-density lipoprotein receptor-1 upregulation, while others inhibit the function of acyl CoA: cholesterol acyltransferase activity, and neutral cholesteryl ester hydrolase activity. CONCLUSION Recent study findings related to the synthesis of the new active component from plant sources by focusing on the typical process involved in the generation of foam cells. We're also looking at using a cellular target-based therapeutic approach to generate novel plant-based medications for the cure of atherosclerosis.
Collapse
Affiliation(s)
- Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area, Vaishali District, Hajipur, Bihar, 844102, India.
| | - Senti Changkija
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area, Vaishali District, Hajipur, Bihar, 844102, India
| | - Rajat Mudgal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area, Vaishali District, Hajipur, Bihar, 844102, India
| | - V Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area, Vaishali District, Hajipur, Bihar, 844102, India
| |
Collapse
|
358
|
Gerhardt T, Haghikia A, Stapmanns P, Leistner DM. Immune Mechanisms of Plaque Instability. Front Cardiovasc Med 2022; 8:797046. [PMID: 35087883 PMCID: PMC8787133 DOI: 10.3389/fcvm.2021.797046] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 01/08/2023] Open
Abstract
Inflammation crucially drives atherosclerosis from disease initiation to the emergence of clinical complications. Targeting pivotal inflammatory pathways without compromising the host defense could compliment therapy with lipid-lowering agents, anti-hypertensive treatment, and lifestyle interventions to address the substantial residual cardiovascular risk that remains beyond classical risk factor control. Detailed understanding of the intricate immune mechanisms that propel plaque instability and disruption is indispensable for the development of novel therapeutic concepts. In this review, we provide an overview on the role of key immune cells in plaque inception and progression, and discuss recently identified maladaptive immune phenomena that contribute to plaque destabilization, including epigenetically programmed trained immunity in myeloid cells, pathogenic conversion of autoreactive regulatory T-cells and expansion of altered leukocytes due to clonal hematopoiesis. From a more global perspective, the article discusses how systemic crises such as acute mental stress or infection abruptly raise plaque vulnerability and summarizes recent advances in understanding the increased cardiovascular risk associated with COVID-19 disease. Stepping outside the box, we highlight the role of gut dysbiosis in atherosclerosis progression and plaque vulnerability. The emerging differential role of the immune system in plaque rupture and plaque erosion as well as the limitations of animal models in studying plaque disruption are reviewed.
Collapse
Affiliation(s)
- Teresa Gerhardt
- Charité – Universitätsmedizin Berlin, Department of Cardiology, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Arash Haghikia
- Charité – Universitätsmedizin Berlin, Department of Cardiology, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Philip Stapmanns
- Charité – Universitätsmedizin Berlin, Department of Cardiology, Berlin, Germany
| | - David Manuel Leistner
- Charité – Universitätsmedizin Berlin, Department of Cardiology, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- *Correspondence: David Manuel Leistner
| |
Collapse
|
359
|
Sakic A, Chaabane C, Ambartsumian N, Klingelhöfer J, Lemeille S, Kwak BR, Grigorian M, Bochaton-Piallat ML. Neutralization of S100A4 induces stabilization of atherosclerotic plaques: role of smooth muscle cells. Cardiovasc Res 2022; 118:141-155. [PMID: 33135065 PMCID: PMC8752361 DOI: 10.1093/cvr/cvaa311] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/20/2020] [Indexed: 01/20/2023] Open
Abstract
AIMS During atherosclerosis, smooth muscle cells (SMCs) accumulate in the intima where they switch from a contractile to a synthetic phenotype. From porcine coronary artery, we isolated spindle-shaped (S) SMCs exhibiting features of the contractile phenotype and rhomboid (R) SMCs typical of the synthetic phenotype. S100A4 was identified as a marker of R-SMCs in vitro and intimal SMCs, in pig and man. S100A4 exhibits intra- and extracellular functions. In this study, we investigated the role of extracellular S100A4 in SMC phenotypic transition. METHODS AND RESULTS S-SMCs were treated with oligomeric recombinant S100A4 (oS100A4), which induced nuclear factor (NF)-κB activation. Treatment of S-SMCs with oS100A4 in combination with platelet-derived growth factor (PDGF)-BB induced a complete SMC transition towards a pro-inflammatory R-phenotype associated with NF-κB activation, through toll-like receptor-4. RNA sequencing of cells treated with oS100A4/PDGF-BB revealed a strong up-regulation of pro-inflammatory genes and enrichment of transcription factor binding sites essential for SMC phenotypic transition. In a mouse model of established atherosclerosis, neutralization of extracellular S100A4 decreased area of atherosclerotic lesions, necrotic core, and CD68 expression and increased α-smooth muscle actin and smooth muscle myosin heavy chain expression. CONCLUSION We suggest that the neutralization of extracellular S100A4 promotes the stabilization of atherosclerotic plaques. Extracellular S100A4 could be a new target to influence the evolution of atherosclerotic plaques.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Antibodies, Neutralizing/pharmacology
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Aorta/drug effects
- Aorta/metabolism
- Aorta/pathology
- Aortic Diseases/drug therapy
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Atherosclerosis/drug therapy
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Becaplermin/pharmacology
- Cells, Cultured
- Disease Models, Animal
- Humans
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myosin Heavy Chains/metabolism
- Phenotype
- Plaque, Atherosclerotic
- S100 Calcium-Binding Protein A4/antagonists & inhibitors
- S100 Calcium-Binding Protein A4/metabolism
- S100 Calcium-Binding Protein A4/pharmacology
- Signal Transduction
- Smooth Muscle Myosins/metabolism
- Sus scrofa
- Toll-Like Receptor 4/metabolism
- Mice
Collapse
Affiliation(s)
- Antonija Sakic
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Chiraz Chaabane
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Noona Ambartsumian
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jörg Klingelhöfer
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Sylvain Lemeille
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Brenda R Kwak
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mariam Grigorian
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | | |
Collapse
|
360
|
Vascular Pathobiology: Atherosclerosis and Large Vessel Disease. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
361
|
Razeghian-Jahromi I, Karimi Akhormeh A, Razmkhah M, Zibaeenezhad MJ. Immune system and atherosclerosis: Hostile or friendly relationship. Int J Immunopathol Pharmacol 2022; 36:3946320221092188. [PMID: 35410514 PMCID: PMC9009140 DOI: 10.1177/03946320221092188] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/16/2022] [Indexed: 11/21/2022] Open
Abstract
Coronary artery disease has remained a major health challenge despite enormous progress in prevention, diagnosis, and treatment strategies. Formation of atherosclerotic plaque is a chronic process that is developmentally influenced by intrinsic and extrinsic determinants. Inflammation triggers atherosclerosis, and the fundamental element of inflammation is the immune system. The immune system involves in the atherosclerosis process by a variety of immune cells and a cocktail of mediators. It is believed that almost all main components of this system possess a profound contribution to the atherosclerosis. However, they play contradictory roles, either protective or progressive, in different stages of atherosclerosis progression. It is evident that monocytes are the first immune cells appeared in the atherosclerotic lesion. With the plaque growth, other types of the immune cells such as mast cells, and T lymphocytes are gradually involved. Each cell releases several cytokines which cause the recruitment of other immune cells to the lesion site. This is followed by affecting the expression of other cytokines as well as altering certain signaling pathways. All in all, a mix of intertwined interactions determine the final outcome in terms of mild or severe manifestations, either clinical or subclinical. Therefore, it is of utmost importance to precisely understand the kind and degree of contribution which is made by each immune component in order to stop the growing burden of cardiovascular morbidity and mortality. In this review, we present a comprehensive appraisal on the role of immune cells in the atherosclerosis initiation and development.
Collapse
Affiliation(s)
| | - Ali Karimi Akhormeh
- Cardiovascular Research Center, Shiraz University of Medical
Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- Shiraz Institute for Cancer
Research, Shiraz University of Medical
Sciences, Shiraz, Iran
| | | |
Collapse
|
362
|
Neumann DP, Goodall GJ, Gregory PA. The Quaking RNA-binding proteins as regulators of cell differentiation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1724. [PMID: 35298877 PMCID: PMC9786888 DOI: 10.1002/wrna.1724] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/30/2022]
Abstract
The RNA-binding protein Quaking (QKI) has emerged as a potent regulator of cellular differentiation in developmental and pathological processes. The QKI gene is itself alternatively spliced to produce three major isoforms, QKI-5, QKI-6, and QKI-7, that possess very distinct functions. Here, we highlight roles of the different QKI isoforms in neuronal, vascular, muscle, and monocyte cell differentiation, and during epithelial-mesenchymal transition in cancer progression. QKI isoforms control cell differentiation through regulating alternative splicing, mRNA stability and translation, with activities in gene transcription now also becoming evident. These diverse functions of the QKI isoforms contribute to their broad influences on RNA metabolism and cellular differentiation. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Daniel P. Neumann
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSouth Australia
| | - Gregory J. Goodall
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSouth Australia,Faculty of Health and Medical SciencesThe University of AdelaideAdelaideSouth Australia
| | - Philip A. Gregory
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSouth Australia,Faculty of Health and Medical SciencesThe University of AdelaideAdelaideSouth Australia
| |
Collapse
|
363
|
Mylonas KS, Kapelouzou A, Spartalis M, Mastrogeorgiou M, Spartalis E, Bakoyiannis C, Liakakos T, Schizas D, Iliopoulos D, Nikiteas N. KLF4 Upregulation in Atherosclerotic Thoracic Aortas: Exploring the Protective Effect of Colchicine-based Regimens in a Hyperlipidemic Rabbit Model. Ann Vasc Surg 2022; 78:328-335. [PMID: 34182114 DOI: 10.1016/j.avsg.2021.04.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Inflammatory dysregulation of KLF4 is related to atheromatosis. In the present study, we explored the impact of colchicine-based regimens on the development of thoracic aortic atheromatosis and KLF4 expression. METHODS Twenty-eight New Zealand White rabbits were divided to 4 groups. The control group (n = 6) was fed standard chow, group A (n = 6) was fed chow enriched with 1% w/w cholesterol, group B (n = 8) was fed the same cholesterol-enriched diet plus 2 mg/kg body weight/day colchicine and 250 mg/kg body weight/day fenofibrate, while group C (n = 8) was also fed the same diet plus 2 mg/kg body weight/day colchicine and 15 mg/kg body weight/day N-acetylcysteine. After 7 weeks, all animals were euthanized, and their thoracic aortas were isolated. Atherosclerotic plaque area was estimated with morphometric analysis. KLF4 expression was quantified with quantitative RT-PCR. RESULTS Group A developed significantly more atherosclerosis compared to group B (MD: 13.67, 95% CI: 7.49-19.84) and C (MD: 20.29, 95% CI: 14.12-26.47). Colchicine with N-acetylcysteine resulted in more pronounced reduction in the extent of atherosclerotic plaques compared to colchicine/fibrate (MD: 6.62, 95% CI: 0.90-12.34). Group A exhibited significantly greater KLF4 expression compared to group B (MD: 4.94, 95% CI: 1.11-8.77) and C (MD: 9.94, 95% CI: 6.11-13.77). Combining colchicine with N-acetylcysteine instead of fenofibrate (MD: 5.00, 95% CI: 1.45-8.54) led to a more robust reduction in KLF4 expression. CONCLUSIONS In the present hyperlipidemic animal model, colchicine-based regimens curtailed de novo atherogenesis and KLF4 overexpression in thoracic aortas.
Collapse
Affiliation(s)
- Konstantinos S Mylonas
- First Department of Surgery, Laiko General Hospital, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas", National and Kapodistrian University of Athens, Athens, Greece.
| | - Alkistis Kapelouzou
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Michael Spartalis
- Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas", National and Kapodistrian University of Athens, Athens, Greece; Department of Cardiology, Onassis Cardiac Surgery Center, Athens, Greece
| | - Michael Mastrogeorgiou
- Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas", National and Kapodistrian University of Athens, Athens, Greece
| | - Eletherios Spartalis
- Second Propaedeutic Department of Surgery, Laiko General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Bakoyiannis
- Division of Vascular Surgery, First Department of Surgery, Laiko General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Liakakos
- First Department of Surgery, Laiko General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Schizas
- First Department of Surgery, Laiko General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Iliopoulos
- Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas", National and Kapodistrian University of Athens, Athens, Greece; Fourth Department of Cardiac Surgery, HYGEIA Hospital, Athens, Greece
| | - Nikolaos Nikiteas
- Second Propaedeutic Department of Surgery, Laiko General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
364
|
Abstract
Inflammation is intimately involved at all stages of atherosclerosis and remains a substantial residual cardiovascular risk factor in optimally treated patients. The proof of concept that targeting inflammation reduces cardiovascular events in patients with a history of myocardial infarction has highlighted the urgent need to identify new immunotherapies to treat patients with atherosclerotic cardiovascular disease. Importantly, emerging data from new clinical trials show that successful immunotherapies for atherosclerosis need to be tailored to the specific immune alterations in distinct groups of patients. In this Review, we discuss how single-cell technologies - such as single-cell mass cytometry, single-cell RNA sequencing and cellular indexing of transcriptomes and epitopes by sequencing - are ideal for mapping the cellular and molecular composition of human atherosclerotic plaques and how these data can aid in the discovery of new precise immunotherapies. We also argue that single-cell data from studies in humans need to be rigorously validated in relevant experimental models, including rapidly emerging single-cell CRISPR screening technologies and mouse models of atherosclerosis. Finally, we discuss the importance of implementing single-cell immune monitoring tools in early phases of drug development to aid in the precise selection of the target patient population for data-driven translation into randomized clinical trials and the successful translation of new immunotherapies into the clinic.
Collapse
Affiliation(s)
- Dawn M Fernandez
- Department of Medicine, Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chiara Giannarelli
- Department of Medicine, Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- New York University Cardiovascular Research Center, New York University Langone Health, New York, NY, USA.
- Department of Pathology, New York University Grossman School of Medicine, New York University Langone Health, New York, NY, USA.
| |
Collapse
|
365
|
Mao L, Yin R, Yang L, Zhao D. Role of advanced glycation end products on vascular smooth muscle cells under diabetic atherosclerosis. Front Endocrinol (Lausanne) 2022; 13:983723. [PMID: 36120471 PMCID: PMC9470882 DOI: 10.3389/fendo.2022.983723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease and leading cause of cardiovascular diseases. The progression of AS is a multi-step process leading to high morbidity and mortality. Hyperglycemia, dyslipidemia, advanced glycation end products (AGEs), inflammation and insulin resistance which strictly involved in diabetes are closely related to the pathogenesis of AS. A growing number of studies have linked AGEs to AS. As one of the risk factors of cardiac metabolic diseases, dysfunction of VSMCs plays an important role in AS pathogenesis. AGEs are increased in diabetes, participate in the occurrence and progression of AS through multiple molecular mechanisms of vascular cell injury. As the main functional cells of vascular, vascular smooth muscle cells (VSMCs) play different roles in each stage of atherosclerotic lesions. The interaction between AGEs and receptor for AGEs (RAGE) accelerates AS by affecting the proliferation and migration of VSMCs. In addition, increasing researches have reported that AGEs promote osteogenic transformation and macrophage-like transformation of VSMCs, and affect the progression of AS through other aspects such as autophagy and cell cycle. In this review, we summarize the effect of AGEs on VSMCs in atherosclerotic plaque development and progression. We also discuss the AGEs that link AS and diabetes mellitus, including oxidative stress, inflammation, RAGE ligands, small noncoding RNAs.
Collapse
Affiliation(s)
| | | | | | - Dong Zhao
- *Correspondence: Longyan Yang, ; Dong Zhao,
| |
Collapse
|
366
|
Liang X, He W, Zhang H, Luo D, Zhang Z, Liu A, Wang J, Huang H. Inflammatory Cells Accelerated Carotid Artery Calcification via MMP9: Evidences From Single-Cell Analysis. Front Cardiovasc Med 2021; 8:766613. [PMID: 34938784 PMCID: PMC8685327 DOI: 10.3389/fcvm.2021.766613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Vascular calcification (VC) is an important predictor of prognosis in atherosclerosis, the phenotypic transformation of vascular smooth muscle cells (VSMCs) is thought to be a process of VC. However, the implications and potential mechanisms for VSMCs phenotypic transition remain unknown. Methods: To study the transformation of vascular smooth muscle cells (VSMCs) in the calcification early period, we analyzed single-cell sequencing data from carotid artery calcified core and paracellular tissue, based on the results of enrichment analysis and protein-protein interaction analysis. Upstream transcription factors were tracked and finally the results were validated using the MESA database. Results: We successfully identified a subpopulation of inflammatory macrophage-like VSMCs and determined that MMP9 is an important factor in the phenotypic transformation of VSMCs. We found that RELA regulates MMP9 expression and that knockdown of RELA attenuated MMP9 expression and reduced the expression of BMP2 and the macrophage marker LGALS3 in vascular smooth muscle in inflammatory states, while serum levels of MMP9 correlated significantly with the inflammatory response. Conclusion: This study reveals that the phenotypic transformation of VSMCs can be regulated by modulating MMP9, providing a new idea for the early treatment of VC.
Collapse
Affiliation(s)
- Xiaobing Liang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Wanbing He
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong, China
| | - Hua Zhang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Dongling Luo
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Zhengzhipeng Zhang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Aiting Liu
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Jinkai Wang
- Department of Medical Informatics, ZhongShan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Hui Huang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Guangdong, China.,Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong, China
| |
Collapse
|
367
|
Zhang F, Guo X, Xia Y, Mao L. An update on the phenotypic switching of vascular smooth muscle cells in the pathogenesis of atherosclerosis. Cell Mol Life Sci 2021; 79:6. [PMID: 34936041 PMCID: PMC11072026 DOI: 10.1007/s00018-021-04079-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/20/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022]
Abstract
Vascular smooth muscle cells (VSMCs) are involved in phenotypic switching in atherosclerosis. This switching is characterized by VSMC dedifferentiation, migration, and transdifferentiation into other cell types. VSMC phenotypic transitions have historically been considered bidirectional processes. Cells can adopt a physiological contraction phenotype or an alternative "synthetic" phenotype in response to injury. However, recent studies, including lineage tracing and single-cell sequencing studies, have shown that VSMCs downregulate contraction markers during atherosclerosis while adopting other phenotypes, including macrophage-like, foam cell, mesenchymal stem-like, myofibroblast-like, and osteochondral-like phenotypes. However, the molecular mechanism and processes regulating the switching of VSMCs at the onset of atherosclerosis are still unclear. This systematic review aims to review the critical outstanding challenges and issues that need further investigation and summarize the current knowledge in this field.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoqing Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuanpeng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
368
|
Lu H, Du W, Ren L, Hamblin MH, Becker RC, Chen YE, Fan Y. Vascular Smooth Muscle Cells in Aortic Aneurysm: From Genetics to Mechanisms. J Am Heart Assoc 2021; 10:e023601. [PMID: 34796717 PMCID: PMC9075263 DOI: 10.1161/jaha.121.023601] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aortic aneurysm, including thoracic aortic aneurysm and abdominal aortic aneurysm, is the second most prevalent aortic disease following atherosclerosis, representing the ninth-leading cause of death globally. Open surgery and endovascular procedures are the major treatments for aortic aneurysm. Typically, thoracic aortic aneurysm has a more robust genetic background than abdominal aortic aneurysm. Abdominal aortic aneurysm shares many features with thoracic aortic aneurysm, including loss of vascular smooth muscle cells (VSMCs), extracellular matrix degradation and inflammation. Although there are limitations to perfectly recapitulating all features of human aortic aneurysm, experimental models provide valuable tools to understand the molecular mechanisms and test novel therapies before human clinical trials. Among the cell types involved in aortic aneurysm development, VSMC dysfunction correlates with loss of aortic wall structural integrity. Here, we discuss the role of VSMCs in aortic aneurysm development. The loss of VSMCs, VSMC phenotypic switching, secretion of inflammatory cytokines, increased matrix metalloproteinase activity, elevated reactive oxygen species, defective autophagy, and increased senescence contribute to aortic aneurysm development. Further studies on aortic aneurysm pathogenesis and elucidation of the underlying signaling pathways are necessary to identify more novel targets for treating this prevalent and clinical impactful disease.
Collapse
Affiliation(s)
- Haocheng Lu
- Department of Internal MedicineCardiovascular CenterUniversity of Michigan Medical CenterAnn ArborMI
| | - Wa Du
- Department of Cancer BiologyUniversity of Cincinnati College of MedicineCincinnatiOH
| | - Lu Ren
- Department of Cancer BiologyUniversity of Cincinnati College of MedicineCincinnatiOH
| | - Milton H. Hamblin
- Department of PharmacologyTulane University School of MedicineNew OrleansLA
| | - Richard C. Becker
- Division of Cardiovascular Health and DiseaseDepartment of Internal MedicineUniversity of Cincinnati College of MedicineCincinnatiOH
| | - Y. Eugene Chen
- Department of Internal MedicineCardiovascular CenterUniversity of Michigan Medical CenterAnn ArborMI
| | - Yanbo Fan
- Department of Cancer BiologyUniversity of Cincinnati College of MedicineCincinnatiOH
- Division of Cardiovascular Health and DiseaseDepartment of Internal MedicineUniversity of Cincinnati College of MedicineCincinnatiOH
| |
Collapse
|
369
|
Cyclophilin A Impairs Efferocytosis and Accelerates Atherosclerosis by Overexpressing CD 47 and Down-Regulating Calreticulin. Cells 2021; 10:cells10123598. [PMID: 34944106 PMCID: PMC8700718 DOI: 10.3390/cells10123598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/27/2022] Open
Abstract
Impairment of efferocytosis in apoptotic macrophages is a known determinant of the severity of atherosclerosis and the vulnerability of plaques to rupture. The precise mechanisms involved in impaired efferocytosis are unclear. Given the well-recognized role of the inflammatory cytokine cyclophilin A (Cyp A) in modulating several atherogenic mechanisms in high-glucose primed monocytes, we investigated the role of Cyp A in macrophage efferocytosis. The efficiency of efferocytosis in RAW 264.7 macrophages grown in vitro and primed with cyclophilin A was assessed using flow cytometry and confocal assays. Cholesterol content in cells was measured using cell-based cholesterol efflux assay. Proteomic analysis and bioinformatics tools were employed to decipher the link between cyclophilin A and the known ligand receptors involved in efferocytosis. Cyclophilin A was found to impair efferocytosis in apoptotic macrophages by reducing ABCA1-mediated cholesterol efflux in foam cells derived from macrophages. Cyclophilin A-primed macrophages showed an increase in expression of the don’t-eat-me signal CD 47 and a decrease in the expression of the eat-me signal, calreticulin. Phagocytosis was restored upon silencing of cyclophilin A. New Zealand white rabbits were fed a high-fat diet, and lesions in their aortae were analyzed histologically for evidence of atherosclerosis and the expression of Cyp A, CD 47 and calreticulin, the ligand receptor involved in efferocytosis. Gene and protein expressions in aortae and macrophages were analyzed by real-time PCR and Western blotting. Cyclophilin A, via its effects on the expression of CD 47 and calreticulin, impairs efferocytosis in apoptotic macrophages. Together with its impact on cholesterol efflux from macrophages, these effects can amplify other mechanisms of Cyp A in accelerating the progression of atherosclerosis.
Collapse
|
370
|
Reinhardt JW, Breuer CK. Fibrocytes: A Critical Review and Practical Guide. Front Immunol 2021; 12:784401. [PMID: 34975874 PMCID: PMC8718395 DOI: 10.3389/fimmu.2021.784401] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/30/2021] [Indexed: 01/18/2023] Open
Abstract
Fibrocytes are hematopoietic-derived cells that directly contribute to tissue fibrosis by producing collagen following injury, during disease, and with aging. The lack of a fibrocyte-specific marker has led to the use of multiple strategies for identifying these cells in vivo. This review will detail how past studies were performed, report their findings, and discuss their strengths and limitations. The motivation is to identify opportunities for further investigation and promote the adoption of best practices during future study design.
Collapse
Affiliation(s)
- James W. Reinhardt
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Christopher K. Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Surgery, Nationwide Children’s Hospital, Columbus, OH, United States
| |
Collapse
|
371
|
Yin T, Du R, Wang Y, Huang J, Ge S, Huang Y, Tan Y, Liu Q, Chen Z, Feng H, Du J, Wang Y, Wang G. Two-stage degradation and novel functional endothelium characteristics of a 3-D printed bioresorbable scaffold. Bioact Mater 2021; 10:378-396. [PMID: 34901554 PMCID: PMC8636822 DOI: 10.1016/j.bioactmat.2021.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Bioresorbable scaffolds have emerged as a new generation of vascular implants for the treatment of atherosclerosis, and designed to provide a temporary scaffold that is subsequently absorbed by blood vessels over time. Presently, there is insufficient data on the biological and mechanical responses of blood vessels accompanied by bioresorbable scaffolds (BRS) degradation. Therefore, it is necessary to investigate the inflexion point of degradation, the response of blood vessels, and the pathophysiological process of vascular, as results of such studies will be of great value for the design of next generation of BRS. In this study, abdominal aortas of SD rats were received 3-D printed poly-l-actide vascular scaffolds (PLS) for various durations up to 12 months. The response of PLS implanted aorta went through two distinct processes: (1) the neointima with desirable barrier function was obtained in 1 month, accompanied with slow degradation, inflammation, and intimal hyperplasia; (2) significant degradation occurred from 6 months, accompanied with decreasing inflammation and intimal hyperplasia, while the extracellular matrix recovered to normal vessels which indicate the positive remodeling. These in vivo results indicate that 6 months is a key turning point. This “two-stage degradation and vascular characteristics” is proposed to elucidate the long-term effects of PLS on vascular repair and demonstrated the potential of PLS in promoting endothelium function and positive remodeling, which highlights the benefits of PLS and shed some light in the future researches, such as drug combination coatings design. Proposed two-stage degradation of a PLLA BRS to reveal distinct neointimal recovery and vascular responsive processes. Revealed novel benefits of BRS, including fine endothelium function, anti-thrombosis, and anti-inflammatory. Drug combination coatings should be designed concerning special degradation of BRS and the key turning point, 6 months.
Collapse
Affiliation(s)
- Tieying Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Ruolin Du
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yang Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Junyang Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Shuang Ge
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yuhua Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Youhua Tan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qing Liu
- Beijing Advanced Medical Technologies Inc., Beijing, 102609, China
| | - Zhong Chen
- Beijing Anzhen Hospital of Capital Medical University, Beijing, 100029, China
| | - Hanqing Feng
- Beijing Advanced Medical Technologies Inc., Beijing, 102609, China
| | - Jie Du
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Ave, Beijing, 10029, China
| | - Yazhou Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.,School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| |
Collapse
|
372
|
Single-cell analysis of salt-induced hypertensive mouse aortae reveals cellular heterogeneity and state changes. Exp Mol Med 2021; 53:1866-1876. [PMID: 34862465 PMCID: PMC8741768 DOI: 10.1038/s12276-021-00704-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/26/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Elevated blood pressure caused by excessive salt intake is common and associated with cardiovascular diseases in most countries. However, the composition and responses of vascular cells in the progression of hypertension have not been systematically described. We performed single-cell RNA sequencing on the aortic arch from C57BL/6J mice fed a chow/high-salt diet. We identified 19 distinct cell populations representing 12 lineages, including smooth muscle cells (SMCs), fibroblasts, endothelial cells (ECs), B cells, and T cells. During the progression of hypertension, the proportion of three SMC subpopulations, two EC subpopulations, and T cells increased. In two EC clusters, the expression of reactive oxygen species-related enzymes, collagen and contractility genes was upregulated. Gene set enrichment analysis showed that three SMC subsets underwent endothelial-to-mesenchymal transition. We also constructed intercellular networks and found more frequent cell communication among aortic cells in hypertension and that some signaling pathways were activated during hypertension. Finally, joint public genome-wide association study data and our single-cell RNA-sequencing data showed the expression of hypertension susceptibility genes in ECs, SMCs, and fibroblasts and revealed 21 genes involved in the initiation and development of high-salt-induced hypertension. In conclusion, our data illustrate the transcriptional landscape of vascular cells in the aorta associated with hypertension and reveal dramatic changes in cell composition and intercellular communication during the progression of hypertension.
Collapse
|
373
|
Qiu Z, He J, Chai T, Zhang Y, Zhou H, Zheng H, Chen X, Zhang L, Li Y, Chen L. miR-145 attenuates phenotypic transformation of aortic vascular smooth muscle cells to prevent aortic dissection. J Clin Lab Anal 2021; 35:e23773. [PMID: 34767671 PMCID: PMC8649326 DOI: 10.1002/jcla.23773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/24/2020] [Accepted: 03/20/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND miR-145 is closely related to vascular smooth muscle cells (VSMC) phenotype transformation; however, the regulatory mechanisms through which miR-145 regulates the VSMC phenotype transformation under mechanical stretching are unclear. In this study, we evaluated the roles of miR-145 in VSMCs subjected to mechanical stretching in aortic dissection (AD). METHODS The expression of miR-145 in the aortic vessel wall of model animals and patients with AD was analyzed by quantitative polymerase chain reaction. miR-145-related protein-protein interaction networks and Wikipathways were used to analyze VSMC phenotypic transformation pathways regulated by miR-145. We used gain- and loss-of-function studies to evaluate the effects of miR-145 on VSMC differentiation under mechanical stretch induction and assessed whether Krüppel-like factor 4 (KLF4) was regulated by miR-145 in the aorta under mechanical stretch conditions. RESULTS miR-145 was abundantly expressed in the walls of the normal human aorta, but was significantly downregulated in animal models and the walls of patients with dissection. We found that contractile phenotype-related proteins were downregulated in VSMCs subjected to mechanical stretching, whereas the expression of secreted phenotype-related proteins increased. miR-145 overexpression also downregulated contractile phenotype-related proteins in VSMCs and suppressed upregulation of phenotype-related proteins. Finally, under mechanical stretching, KLF4 expression was significantly increased in VSMCs, and overexpression of miR-145 blocked this effect. CONCLUSION Our results confirmed that mechanical stretch-induced phenotypic transformation of VSMCs to promote AD via upregulation of KLF4; this mechanism was regulated by miR-145, which directly modulated KLF4 expression and VSMC differentiation.
Collapse
Affiliation(s)
- Zhi‐Huang Qiu
- Department of Cardiac SurgeryUnion HospitalFujian Medical UniversityFuzhouChina
| | - Jian He
- Department of Cardiac SurgeryUnion HospitalFujian Medical UniversityFuzhouChina
| | - Tian‐ci Chai
- Department of Cardiac SurgeryUnion HospitalFujian Medical UniversityFuzhouChina
| | - Yu‐ling Zhang
- Department of Cardiac SurgeryUnion HospitalFujian Medical UniversityFuzhouChina
| | - Hao Zhou
- Department of Cardiac SurgeryUnion HospitalFujian Medical UniversityFuzhouChina
| | - Hui Zheng
- Department of Cardiac SurgeryUnion HospitalFujian Medical UniversityFuzhouChina
| | - Xiao‐song Chen
- Department of Plastic SurgeryUnion HospitalFujian Medical UniversityFuzhouChina
| | - Li Zhang
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesFujian Medical UniversityFuzhouChina
| | - Yu‐mei Li
- Department of ToxicologyFujian Center for Evaluation of New DrugFujian Medical UniversityFuzhouChina
| | - Liang‐wan Chen
- Department of Cardiac SurgeryUnion HospitalFujian Medical UniversityFuzhouChina
| |
Collapse
|
374
|
Zhao L, Wang B, Sun L, Sun B, Li Y. Association of miR-192-5p with Atherosclerosis and its Effect on Proliferation and Migration of Vascular Smooth Muscle Cells. Mol Biotechnol 2021; 63:1244-1251. [PMID: 34357569 DOI: 10.1007/s12033-021-00376-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
To evaluate the diagnostic significance of serum miR-192-5p for atherosclerosis (AS) and explore the effect of miR-192-5p on cell proliferation and migration of vascular smooth muscle cells (VSMCs). The expression level of serum miR-192-5p was measured by qRT-PCR. Correlations of miR-192-5p with CRP and CIMT were evaluated by Pearson correlation coefficient. The diagnostic significance of miR-192-5p was assessed using an ROC curve. CCK-8 assay and Transwell assay were used to analyze the effect of miR-192-5p on cell proliferation and migration. Luciferase reporter gene assay was used to evaluate the effect of miR-192-5p with ATG7. The expression level of serum miR-192-5p in AS patients was significantly high compared with healthy controls. miR-192-5p was positively correlated with CRP and CIMT, and it has diagnostic value for AS. In vitro cell experiments confirmed that overexpression of miR-192-5p could promote cell proliferation and migration of VSMCs. miR-192-5p directly targets ATG7 in VSMCs. Down-regulation of miR-192-5p level increased ATG7 expression and inhibited cell proliferation and migration. miR-192-5p may be a new biomarker for the diagnosis of AS and may provide new idea for the treatment of AS.
Collapse
Affiliation(s)
- Lixiang Zhao
- Department of Cardiology, Weifang People's Hospital, Weifang, 261041, Shandong, China
| | - Baizhi Wang
- Department of Emergency Internal Medicine, Weifang People's Hospital, 151 Guangwen Street, Kuiwen District, Weifang, 261041, Shandong, China
| | - Lu Sun
- Department of Emergency, Yidu Central Hospital of Weifang, Weifang, 262500, Shandong, China
| | - Bin Sun
- Department of Emergency, Yidu Central Hospital of Weifang, Weifang, 262500, Shandong, China
| | - Yongguang Li
- Department of Emergency Internal Medicine, Weifang People's Hospital, 151 Guangwen Street, Kuiwen District, Weifang, 261041, Shandong, China.
| |
Collapse
|
375
|
Li Y, Zhu H, Zhang Q, Han X, Zhang Z, Shen L, Wang L, Lui KO, He B, Zhou B. Smooth muscle-derived macrophage-like cells contribute to multiple cell lineages in the atherosclerotic plaque. Cell Discov 2021; 7:111. [PMID: 34811358 PMCID: PMC8608914 DOI: 10.1038/s41421-021-00328-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/19/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yi Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China.,State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Huan Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qianyu Zhang
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, China
| | - Ximeng Han
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhenqian Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Linghong Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Lixin Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kathy O Lui
- Department of Chemical Pathology; and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China.
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, China. .,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| |
Collapse
|
376
|
Pober JS, Chih S, Kobashigawa J, Madsen JC, Tellides G. Cardiac allograft vasculopathy: current review and future research directions. Cardiovasc Res 2021; 117:2624-2638. [PMID: 34343276 PMCID: PMC8783389 DOI: 10.1093/cvr/cvab259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/02/2021] [Accepted: 07/29/2021] [Indexed: 12/25/2022] Open
Abstract
Cardiac allograft vasculopathy (CAV) is a pathologic immune-mediated remodelling of the vasculature in transplanted hearts and, by impairing perfusion, is the major cause of late graft loss. Although best understood following cardiac transplantation, similar forms of allograft vasculopathy occur in other vascularized organ grafts and some features of CAV may be shared with other immune-mediated vasculopathies. Here, we describe the incidence and diagnosis, the nature of the vascular remodelling, immune and non-immune contributions to pathogenesis, current therapies, and future areas of research in CAV.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- Coronary Artery Disease/epidemiology
- Coronary Artery Disease/immunology
- Coronary Artery Disease/metabolism
- Coronary Artery Disease/pathology
- Coronary Vessels/immunology
- Coronary Vessels/metabolism
- Coronary Vessels/pathology
- Endothelial Cells/immunology
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Graft Rejection/epidemiology
- Graft Rejection/immunology
- Graft Rejection/metabolism
- Graft Rejection/pathology
- Graft Survival
- Heart Transplantation/adverse effects
- Humans
- Immunity, Innate
- Muscle, Smooth, Vascular/immunology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/immunology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Risk Factors
- Signal Transduction
- Treatment Outcome
- Vascular Remodeling
Collapse
Affiliation(s)
- Jordan S Pober
- Department of Immunobiology, Pathology and Dermatology, Yale School of Medicine, 10 Amistad Street, New Haven CT 06520-8089, USA
| | - Sharon Chih
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Jon Kobashigawa
- Department of Medicine, Cedars-Sinai Smidt Heart Institute, Los Angeles, CA, USA
| | - Joren C Madsen
- Division of Cardiac Surgery and Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - George Tellides
- Department of Surgery (Cardiac Surgery), Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
377
|
Yang T, Minami M, Yoshida K, Nagata M, Yamamoto Y, Takayama N, Suzuki K, Miyata T, Okawa M, Miyamoto S. Niclosamide downregulates LOX-1 expression in mouse vascular smooth muscle cells and changes the composition of atherosclerotic plaques in ApoE -/- mice. Heart Vessels 2021; 37:517-527. [PMID: 34807278 DOI: 10.1007/s00380-021-01983-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/05/2021] [Indexed: 11/28/2022]
Abstract
Genetic lineage tracing studies have shown that phenotypic switching of vascular smooth muscle cells (VSMCs) results in less-differentiated cells, including macrophage-like cells that lack traditional VSMC markers. This switching contributes to the formation of necrotic core in plaques and promotes atherosclerosis, which is important for plaque stability. Niclosamide, a commonly used anti-helminthic drug, has recently attracted attention as an anti-cancer drug that inhibits multiple signaling pathways. The expression of the S100A4 protein is upregulated in synthetic VSMCs and inhibited by niclosamide on metastatic progression in colon cancer. We aimed to test the effect of niclosamide on VSMC phenotype switching and plaque stability. To examine murine atherosclerosis, we induced experimental lesions by blood flow cessation in apolipoprotein E knockout mice fed a high-fat diet. Oral administration of niclosamide changed 4-week-old plaques to collagen-rich and less-necrotic core phenotypes and downregulated the expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in vivo. In vitro analysis indicated that niclosamide reduced LOX-1 expression in VSMCs in a concentration-dependent and S100A4-independent manner. The inhibitory effect of niclosamide on LOX-1 and collagen type I was associated with the inactivation of the nuclear factor-κB signaling pathway. We demonstrated that the administration of niclosamide reduced LOX-1 expression and altered the composition of murine carotid plaques. Our results highlight the potential of niclosamide as an atheroprotective agent that enhances atherosclerotic plaque stability.
Collapse
Affiliation(s)
- Tao Yang
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogun, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogun, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Manabu Minami
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogun, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogun, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Manabu Nagata
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogun, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogun, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yu Yamamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogun, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogun, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Naoki Takayama
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogun, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Keita Suzuki
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogun, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takeshi Miyata
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogun, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogun, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masakazu Okawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogun, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogun, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
378
|
Tomas L, Prica F, Schulz C. Trafficking of Mononuclear Phagocytes in Healthy Arteries and Atherosclerosis. Front Immunol 2021; 12:718432. [PMID: 34759917 PMCID: PMC8573388 DOI: 10.3389/fimmu.2021.718432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
Monocytes and macrophages play essential roles in all stages of atherosclerosis – from early precursor lesions to advanced stages of the disease. Intima-resident macrophages are among the first cells to be confronted with the influx and retention of apolipoprotein B-containing lipoproteins at the onset of hypercholesterolemia and atherosclerosis development. In this review, we outline the trafficking of monocytes and macrophages in and out of the healthy aorta, as well as the adaptation of their migratory behaviour during hypercholesterolemia. Furthermore, we discuss the functional and ontogenetic composition of the aortic pool of mononuclear phagocytes and its link to the atherosclerotic disease process. The development of mouse models of atherosclerosis regression in recent years, has enabled scientists to investigate the behaviour of monocytes and macrophages during the resolution of atherosclerosis. Herein, we describe the dynamics of these mononuclear phagocytes upon cessation of hypercholesterolemia and how they contribute to the restoration of tissue homeostasis. The aim of this review is to provide an insight into the trafficking, fate and disease-relevant dynamics of monocytes and macrophages during atherosclerosis, and to highlight remaining questions. We focus on the results of rodent studies, as analysis of cellular fates requires experimental manipulations that cannot be performed in humans but point out findings that could be replicated in human tissues. Understanding of the biology of macrophages in atherosclerosis provides an important basis for the development of therapeutic strategies to limit lesion formation and promote plaque regression.
Collapse
Affiliation(s)
- Lukas Tomas
- Department of Medicine I, University Hospital, Ludwig Maximilian University, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Filip Prica
- Department of Medicine I, University Hospital, Ludwig Maximilian University, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Schulz
- Department of Medicine I, University Hospital, Ludwig Maximilian University, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
379
|
Hartmann F, Gorski DJ, Newman AAC, Homann S, Petz A, Owsiany KM, Serbulea V, Zhou YQ, Deaton RA, Bendeck M, Owens GK, Fischer JW. SMC-Derived Hyaluronan Modulates Vascular SMC Phenotype in Murine Atherosclerosis. Circ Res 2021; 129:992-1005. [PMID: 34615369 DOI: 10.1161/circresaha.120.318479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Felicia Hartmann
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany (F.H., D.J.G., S.H., A.P., J.W.F.)
| | - Daniel J Gorski
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany (F.H., D.J.G., S.H., A.P., J.W.F.)
| | - Alexandra A C Newman
- Robert M. Berne Cardiovascular Research Center (A.A.C.N., K.M.O., V.S., R.A.D., G.K.O), University of Virginia-School of Medicine, Charlottesville.,Department of Biochemistry and Molecular Genetics (A.A.C.N., K.M.O.), University of Virginia-School of Medicine, Charlottesville.,Cardiovascular Research Center in the Department of Medicine, New York University (A.A.C.N.)
| | - Susanne Homann
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany (F.H., D.J.G., S.H., A.P., J.W.F.)
| | - Anne Petz
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany (F.H., D.J.G., S.H., A.P., J.W.F.)
| | - Katherine M Owsiany
- Robert M. Berne Cardiovascular Research Center (A.A.C.N., K.M.O., V.S., R.A.D., G.K.O), University of Virginia-School of Medicine, Charlottesville.,Department of Biochemistry and Molecular Genetics (A.A.C.N., K.M.O.), University of Virginia-School of Medicine, Charlottesville
| | - Vlad Serbulea
- Robert M. Berne Cardiovascular Research Center (A.A.C.N., K.M.O., V.S., R.A.D., G.K.O), University of Virginia-School of Medicine, Charlottesville
| | - Yu-Qing Zhou
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (Y.Q.-Z., M.B.)
| | - Rebecca A Deaton
- Robert M. Berne Cardiovascular Research Center (A.A.C.N., K.M.O., V.S., R.A.D., G.K.O), University of Virginia-School of Medicine, Charlottesville
| | - Michelle Bendeck
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (Y.Q.-Z., M.B.)
| | - Gary K Owens
- Robert M. Berne Cardiovascular Research Center (A.A.C.N., K.M.O., V.S., R.A.D., G.K.O), University of Virginia-School of Medicine, Charlottesville
| | - Jens W Fischer
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany (F.H., D.J.G., S.H., A.P., J.W.F.)
| |
Collapse
|
380
|
Fasolo F, Jin H, Winski G, Chernogubova E, Pauli J, Winter H, Li DY, Glukha N, Bauer S, Metschl S, Wu Z, Koschinsky ML, Reilly M, Pelisek J, Kempf W, Eckstein HH, Soehnlein O, Matic L, Hedin U, Bäcklund A, Bergmark C, Paloschi V, Maegdefessel L. Long Noncoding RNA MIAT Controls Advanced Atherosclerotic Lesion Formation and Plaque Destabilization. Circulation 2021; 144:1567-1583. [PMID: 34647815 PMCID: PMC8570347 DOI: 10.1161/circulationaha.120.052023] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Supplemental Digital Content is available in the text. Long noncoding RNAs (lncRNAs) are important regulators of biological processes involved in vascular tissue homeostasis and disease development. The present study assessed the functional contribution of the lncRNA myocardial infarction-associated transcript (MIAT) to atherosclerosis and carotid artery disease.
Collapse
Affiliation(s)
- Francesca Fasolo
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Hong Jin
- Department of Medicine (H.J., G.W., E.C., A.B.), Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery (H.J., L. Matic, U.H., C.B., L. Maegdefessel), Karolinska Institutet, Stockholm, Sweden
| | - Greg Winski
- Department of Medicine (H.J., G.W., E.C., A.B.), Karolinska Institutet, Stockholm, Sweden
| | - Ekaterina Chernogubova
- Department of Medicine (H.J., G.W., E.C., A.B.), Karolinska Institutet, Stockholm, Sweden
| | - Jessica Pauli
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Hanna Winter
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Daniel Y Li
- Department of Cardiology, Columbia University Medical Center, New York, NY (D.Y.L., M.R.)
| | - Nadiya Glukha
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Sabine Bauer
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Susanne Metschl
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Zhiyuan Wu
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | | | - Muredach Reilly
- Department of Cardiology, Columbia University Medical Center, New York, NY (D.Y.L., M.R.)
| | - Jaroslav Pelisek
- Department of Vascular Surgery, University Hospital Zurich, Switzerland (J. Pelisek)
| | - Wolfgang Kempf
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Oliver Soehnlein
- Department of Experimental Pathology, Westphalian Wilhelms University, Munster, Germany (O.S.).,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (O.S.).,Institute for Cardiovascular Prevention, Ludwig Maximilian University of Munich, Germany (O.S.)
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery (H.J., L. Matic, U.H., C.B., L. Maegdefessel), Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery (H.J., L. Matic, U.H., C.B., L. Maegdefessel), Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Bäcklund
- Department of Medicine (H.J., G.W., E.C., A.B.), Karolinska Institutet, Stockholm, Sweden
| | - Claes Bergmark
- Department of Molecular Medicine and Surgery (H.J., L. Matic, U.H., C.B., L. Maegdefessel), Karolinska Institutet, Stockholm, Sweden
| | - Valentina Paloschi
- German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,Department of Molecular Medicine and Surgery (H.J., L. Matic, U.H., C.B., L. Maegdefessel), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
381
|
Single-Cell RNA Sequencing Reveals Heterogeneity and Functional Diversity of Lymphatic Endothelial Cells. Int J Mol Sci 2021; 22:ijms222111976. [PMID: 34769408 PMCID: PMC8584409 DOI: 10.3390/ijms222111976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023] Open
Abstract
Lymphatic endothelial cells (LECs) line the lymphatic vasculature and play a central role in the immune response. LECs have abilities to regulate immune transport, to promote immune cell survival, and to cross present antigens to dendritic cells. Single-cell RNA sequencing (scRNA) technology has accelerated new discoveries in the field of lymphatic vascular biology. This review will summarize these new findings in regard to embryonic development, LEC heterogeneity with associated functional diversity, and interactions with other cells. Depending on the organ, location in the lymphatic vascular tree, and micro-environmental conditions, LECs feature unique properties and tasks. Furthermore, adjacent stromal cells need the support of LECs for fulfilling their tasks in the immune response, such as immune cell transport and antigen presentation. Although aberrant lymphatic vasculature has been observed in a number of chronic inflammatory diseases, the knowledge on LEC heterogeneity and functional diversity in these diseases is limited. Combining scRNA sequencing data with imaging and more in-depth functional experiments will advance our knowledge of LECs in health and disease. Building the case, the LEC could be put forward as a new therapeutic target in chronic inflammatory diseases, counterweighting the current immune-cell focused therapies.
Collapse
|
382
|
Yap C, Mieremet A, de Vries CJ, Micha D, de Waard V. Six Shades of Vascular Smooth Muscle Cells Illuminated by KLF4 (Krüppel-Like Factor 4). Arterioscler Thromb Vasc Biol 2021; 41:2693-2707. [PMID: 34470477 PMCID: PMC8545254 DOI: 10.1161/atvbaha.121.316600] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/20/2021] [Indexed: 12/23/2022]
Abstract
Multiple layers of vascular smooth muscle cells (vSMCs) are present in blood vessels forming the media of the vessel wall. vSMCs provide a vessel wall structure, enabling it to contract and relax, thus modulating blood flow. They also play a crucial role in the development of vascular diseases, such as atherosclerosis and aortic aneurysm formation. vSMCs display a remarkable high degree of plasticity. At present, the number of different vSMC phenotypes has only partially been characterized. By mapping vSMC phenotypes in detail and identifying triggers for phenotype switching, the relevance of the different phenotypes in vascular disease may be identified. Up until recently, vSMCs were classified as either contractile or dedifferentiated (ie, synthetic). However, single-cell RNA sequencing studies revealed such dedifferentiated arterial vSMCs to be highly diverse. Currently, no consensus exist about the number of vSMC phenotypes. Therefore, we reviewed the data from relevant single-cell RNA sequencing studies, and classified a total of 6 vSMC phenotypes. The central dedifferentiated vSMC type that we classified is the mesenchymal-like phenotype. Mesenchymal-like vSMCs subsequently seem to differentiate into fibroblast-like, macrophage-like, osteogenic-like, and adipocyte-like vSMCs, which contribute differentially to vascular disease. This phenotype switching between vSMCs requires the transcription factor KLF4 (Kruppel-like factor 4). Here, we performed an integrated analysis of the data about the recently identified vSMC phenotypes, their associated gene expression profiles, and previous vSMC knowledge to better understand the role of vSMC phenotype transitions in vascular pathology.
Collapse
Affiliation(s)
- Carmen Yap
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Location Academic Medical Center, The Netherlands (C.Y., A.M., C.J.M.d.V., V.d.W.)
| | - Arnout Mieremet
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Location Academic Medical Center, The Netherlands (C.Y., A.M., C.J.M.d.V., V.d.W.)
| | - Carlie J.M. de Vries
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Location Academic Medical Center, The Netherlands (C.Y., A.M., C.J.M.d.V., V.d.W.)
| | - Dimitra Micha
- Department of Clinical Genetics, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam UMC, Location VU University Medical Center, Amsterdam, The Netherlands (D.M.)
| | - Vivian de Waard
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Location Academic Medical Center, The Netherlands (C.Y., A.M., C.J.M.d.V., V.d.W.)
| |
Collapse
|
383
|
Worssam MD, Jørgensen HF. Mechanisms of vascular smooth muscle cell investment and phenotypic diversification in vascular diseases. Biochem Soc Trans 2021; 49:2101-2111. [PMID: 34495326 PMCID: PMC8589433 DOI: 10.1042/bst20210138] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/31/2022]
Abstract
In contrast with the heart, the adult mammalian vasculature retains significant remodelling capacity, dysregulation of which is implicated in disease development. In particular, vascular smooth muscle cells (VSMCs) play major roles in the pathological vascular remodelling characteristic of atherosclerosis, restenosis, aneurysm and pulmonary arterial hypertension. Clonal lineage tracing revealed that the VSMC-contribution to disease results from the hyperproliferation of few pre-existing medial cells and suggested that VSMC-derived cells from the same clone can adopt diverse phenotypes. Studies harnessing the powerful combination of lineage tracing and single-cell transcriptomics have delineated the substantial diversity of VSMC-derived cells in vascular lesions, which are proposed to have both beneficial and detrimental effects on disease severity. Computational analyses further suggest that the pathway from contractile VSMCs in healthy arteries to phenotypically distinct lesional cells consists of multiple, potentially regulatable, steps. A better understanding of how individual steps are controlled could reveal effective therapeutic strategies to minimise VSMC functions that drive pathology whilst maintaining or enhancing their beneficial roles. Here we review current knowledge of VSMC plasticity and highlight important questions that should be addressed to understand how specific stages of VSMC investment and phenotypic diversification are controlled. Implications for developing therapeutic strategies in pathological vascular remodelling are discussed and we explore how cutting-edge approaches could be used to elucidate the molecular mechanisms underlying VSMC regulation.
Collapse
Affiliation(s)
- Matthew D. Worssam
- Cardiovascular Medicine Division, University of Cambridge, Cambridge, U.K
| | - Helle F. Jørgensen
- Cardiovascular Medicine Division, University of Cambridge, Cambridge, U.K
| |
Collapse
|
384
|
Cai D, Sun C, Zhang G, Que X, Fujise K, Weintraub NL, Chen SY. A Novel Mechanism Underlying Inflammatory Smooth Muscle Phenotype in Abdominal Aortic Aneurysm. Circ Res 2021; 129:e202-e214. [PMID: 34551587 PMCID: PMC8575453 DOI: 10.1161/circresaha.121.319374] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Dunpeng Cai
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
- Department of Medical Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, MO
| | - Chenming Sun
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA
| | - Gui Zhang
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA
| | - Xingyi Que
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
| | - Ken Fujise
- Harborview Medical Center, Department of Medicine, University of Washington, Seattle, WA
| | - Neal L Weintraub
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA
| | - Shi-You Chen
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
- Department of Medical Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, MO
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA
| |
Collapse
|
385
|
Jeong K, Murphy JM, Kim JH, Campbell PM, Park H, Rodriguez Y, Choi C, Kim JS, Park S, Kim HJ, Scammell JG, Weber DS, Honkanen RE, Schlaepfer DD, Ahn EYE, Lim STS. FAK Activation Promotes SMC Dedifferentiation via Increased DNA Methylation in Contractile Genes. Circ Res 2021; 129:e215-e233. [PMID: 34702049 DOI: 10.1161/circresaha.121.319066] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rationale: Vascular smooth muscle cells (SMCs) exhibit remarkable plasticity and can undergo dedifferentiation upon pathological stimuli associated with disease and interventions. Objective: Although epigenetic changes are critical in SMC phenotype switching, a fundamental regulator that governs the epigenetic machineries regulating the fate of SMC phenotype has not been elucidated. Methods and Results: Using SMCs, mouse models, and human atherosclerosis specimens, we found that focal adhesion kinase (FAK) activation elicits SMC dedifferentiation by stabilizing DNA methyltransferase 3A (DNMT3A). FAK in SMCs is activated in the cytoplasm upon serum stimulation in vitro or vessel injury and active FAK prevents DNMT3A from nuclear FAK-mediated degradation. However, pharmacological or genetic FAK catalytic inhibition forced FAK nuclear localization, which reduced DNMT3A protein via enhanced ubiquitination and proteasomal degradation. Reduced DNMT3A protein led to DNA hypomethylation in contractile gene promoters, which increased SMC contractile protein expression. RNA sequencing identified SMC contractile genes as a foremost upregulated group by FAK inhibition from injured femoral artery samples compared to vehicle group. DNMT3A knockdown in injured arteries reduced DNA methylation and enhanced contractile gene expression supports the notion that nuclear FAK-mediated DNMT3A degradation via E3 ligase TRAF6 drives differentiation of SMCs. Furthermore, we observed that SMCs of human atherosclerotic lesions exhibited decreased nuclear FAK, which was associated with increased DNMT3A levels and decreased contractile gene expression. Conclusions: This study reveals that nuclear FAK induced by FAK catalytic inhibition specifically suppresses DNMT3A expression in injured vessels resulting in maintaining SMC differentiation by promoting the contractile gene expression. Thus, FAK inhibitors may provide a new treatment option to block SMC phenotypic switching during vascular remodeling and atherosclerosis.
Collapse
Affiliation(s)
- Kyuho Jeong
- Biochemistry and Molecular Biology, University of South Alabama College of Medicine, UNITED STATES
| | - James M Murphy
- Biochemistry and Molecular Biology, University of South Alabama College of Medicine, UNITED STATES
| | - Jung-Hyun Kim
- Biochemistry and Molecular Biology, University of South Alabama College of Medicine, UNITED STATES
| | | | - Hyeonsoo Park
- Biochemistry and Molecular Biology, University of South Alabama College of Medicine, KOREA, REPUBLIC OF
| | - Yelitza Rodriguez
- Biochemistry and Molecular Biology, University of South Alabama College of Medicine, UNITED STATES
| | - Chungsik Choi
- Physiology, University of South Alabama College of Medicine, UNITED STATES
| | - Jun-Sub Kim
- Biotechnology, Korea National University of Transportation, KOREA, REPUBLIC OF
| | - Sangwon Park
- Pharmacology, Gyeongsang National University, KOREA, REPUBLIC OF
| | - Hyun Joon Kim
- Anatomy and Convergence Medical Sciences, Gyeongsang National University
| | - Jonathan G Scammell
- Comparative Medicine, University of South Alabama College of Medicine, UNITED STATES
| | - David S Weber
- Physiology and Cell Biology, University of South Alabama College of Medicine, UNITED STATES
| | - Richard E Honkanen
- Biochemistry and Molecualr Biology, University of South Alabama College of Medicine, UNITED STATES
| | - David D Schlaepfer
- Obstetrics, Gynecology, and Reproductive Medicine, University of California, San Diego Moores Cancer Center, UNITED STATES
| | | | - Ssang-Taek Steve Lim
- Biochemistry and Molecular Biology, University of South Alabama College of Medicine, UNITED STATES
| |
Collapse
|
386
|
Herrero-Cervera A, Espinós-Estévez C, Martín-Vañó S, Taberner-Cortés A, Aguilar-Ballester M, Vinué Á, Piqueras L, Martínez-Hervás S, González-Navarro H. Dissecting Abdominal Aortic Aneurysm Is Aggravated by Genetic Inactivation of LIGHT (TNFSF14). Biomedicines 2021; 9:biomedicines9111518. [PMID: 34829747 PMCID: PMC8615201 DOI: 10.3390/biomedicines9111518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
Abdominal aortic aneurysm (AAA), is a complex disorder characterized by vascular vessel wall remodeling. LIGHT (TNFSF14) is a proinflammatory cytokine associated with vascular disease. In the present study, the impact of genetic inactivation of Light was investigated in dissecting AAA induced by angiotensin II (AngII) in the Apolipoprotein E-deficient (Apoe−/−) mice. Studies in aortic human (ah) vascular smooth muscle cells (VSMC) to study potential translation to human pathology were also performed. AngII-treated Apoe−/−Light−/− mice displayed increased abdominal aorta maximum diameter and AAA severity compared with Apoe−/− mice. Notably, reduced smooth muscle α-actin+ area and Acta2 and Col1a1 gene expression were observed in AAA from Apoe−/−Light−/− mice, suggesting a loss of VSMC contractile phenotype compared with controls. Decreased Opn and augmented Sox9 expression, which are associated with detrimental and non-contractile osteochondrogenic VSMC phenotypes, were also seen in AngII-treated Apoe−/−Light−/− mouse AAA. Consistent with a role of LIGHT preserving VSMC contractile characteristics, LIGHT-treatment of ahVSMCs diminished the expression of SOX9 and of the pluripotency marker CKIT. These effects were partly mediated through lymphotoxin β receptor (LTβR) as the silencing of its gene ablated LIGHT effects on ahVSMCs. These studies suggest a protective role of LIGHT through mechanisms that prevent VSMC trans-differentiation in an LTβR-dependent manner.
Collapse
Affiliation(s)
- Andrea Herrero-Cervera
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (A.H.-C.); (S.M.-V.); (A.T.-C.); (M.A.-B.); (Á.V.); (L.P.); (S.M.-H.)
| | | | - Susana Martín-Vañó
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (A.H.-C.); (S.M.-V.); (A.T.-C.); (M.A.-B.); (Á.V.); (L.P.); (S.M.-H.)
| | - Alida Taberner-Cortés
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (A.H.-C.); (S.M.-V.); (A.T.-C.); (M.A.-B.); (Á.V.); (L.P.); (S.M.-H.)
| | - María Aguilar-Ballester
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (A.H.-C.); (S.M.-V.); (A.T.-C.); (M.A.-B.); (Á.V.); (L.P.); (S.M.-H.)
| | - Ángela Vinué
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (A.H.-C.); (S.M.-V.); (A.T.-C.); (M.A.-B.); (Á.V.); (L.P.); (S.M.-H.)
| | - Laura Piqueras
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (A.H.-C.); (S.M.-V.); (A.T.-C.); (M.A.-B.); (Á.V.); (L.P.); (S.M.-H.)
- Department of Pharmacology, University of Valencia, 46010 Valencia, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Sergio Martínez-Hervás
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (A.H.-C.); (S.M.-V.); (A.T.-C.); (M.A.-B.); (Á.V.); (L.P.); (S.M.-H.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Endocrinology and Nutrition Service, Clinic Hospital of Valencia, 46010 Valencia, Spain
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Herminia González-Navarro
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (A.H.-C.); (S.M.-V.); (A.T.-C.); (M.A.-B.); (Á.V.); (L.P.); (S.M.-H.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Biochemistry and Molecular Biology Department, University of Valencia, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-96-386-44-03; Fax: +34-96-398-78-60
| |
Collapse
|
387
|
Smooth muscle 22 alpha protein inhibits VSMC foam cell formation by supporting normal LXRα signaling, ameliorating atherosclerosis. Cell Death Dis 2021; 12:982. [PMID: 34686657 PMCID: PMC8536684 DOI: 10.1038/s41419-021-04239-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/11/2021] [Accepted: 09/29/2021] [Indexed: 12/31/2022]
Abstract
Vascular smooth muscle cells (VSMCs) are indispensable components in foam cell formation in atherosclerosis. However, the mechanism behind foam cell formation of VSMCs has not been addressed. We found a potential association between deletion of smooth muscle (SM) 22α and deregulated nuclear receptors liver X receptors (LXRs)/retinoid X receptor (RXR) signaling in mice. Here, we investigated the roles of SM22α in LXRα-modulated cholesterol homeostasis, and explore possible mechanisms underlying this process. We identified that the depletion of SM22α was a primary event driving VSMC cholesterol accumulation and the development of atherosclerosis in mice. Proteomic and lipidomic analysis validated that downregulation of SM22α was correlated with reduced expression of LXRα and ATP-binding cassette transporter (ABCA) 1 and increased cholesteryl ester in phenotypically modulated VSMCs induced by platelets-derived growth factor (PDGF)-BB. Notably, LXRα was mainly distributed in the cytoplasm rather than the nucleus in the neointimal and Sm22α-/- VSMCs. Loss of SM22α inhibited the nuclear import of LXRα and reduced ABCA1-mediated cholesterol efflux via promoting depolymerization of actin stress fibers. Affinity purification and mass spectrometry (AP-MS) analysis, co-immunoprecipitation and GST pull-down assays, confocal microscopy, and stochastic optical reconstruction microscopy (STORM) revealed that globular-actin (G-actin), monomeric actin, interacted with and retained LXRα in the cytoplasm in PDGF-BB-treated and Sm22α-/- VSMCs. This interaction blocked LXRα binding to Importin α, a karyopherin that mediates the trafficking of macromolecules across the nuclear envelope, and the resulting reduction of LXRα transcriptional activity. Increasing SM22α expression restored nuclear localization of LXRα and removed cholesterol accumulation via inducing actin polymerization, ameliorating atherosclerosis. Our findings highlight that LXRα is a mechanosensitive nuclear receptor and that the nuclear import of LXRα maintained by the SM22α-actin axis is a potential target for blockade of VSMC foam cell formation and development of anti-atherosclerosis.
Collapse
|
388
|
Beck-Joseph J, Tabrizian M, Lehoux S. Molecular Interactions Between Vascular Smooth Muscle Cells and Macrophages in Atherosclerosis. Front Cardiovasc Med 2021; 8:737934. [PMID: 34722670 PMCID: PMC8554018 DOI: 10.3389/fcvm.2021.737934] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/16/2021] [Indexed: 01/10/2023] Open
Abstract
Atherosclerosis is the largest contributor toward life-threatening cardiovascular events. Cellular activity and cholesterol accumulation lead to vascular remodeling and the formation of fatty plaques. Complications arise from blood clots, forming at sites of plaque development, which may detach and result in thrombotic occlusions. Vascular smooth muscle cells and macrophages play dominant roles in atherosclerosis. A firm understanding of how these cells influence and modulate each other is pivotal for a better understanding of the disease and the development of novel therapeutics. Recent studies have investigated molecular interactions between both cell types and their impact on disease progression. Here we aim to review the current knowledge. Intercellular communications through soluble factors, physical contact, and extracellular vesicles are discussed. We also present relevant background on scientific methods used to study the disease, the general pathophysiology and intracellular factors involved in phenotypic modulation of vascular smooth muscle cells. We conclude this review with a discussion of the current state, shortcomings and potential future directions of the field.
Collapse
Affiliation(s)
- Jahnic Beck-Joseph
- Biomat'X Research Laboratories, Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Maryam Tabrizian
- Biomat'X Research Laboratories, Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Stephanie Lehoux
- Department of Medicine, Lady Davis Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
389
|
Harnessing orthogonal recombinases to decipher cell fate with enhanced precision. Trends Cell Biol 2021; 32:324-337. [PMID: 34657762 DOI: 10.1016/j.tcb.2021.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022]
Abstract
Precisely deciphering the cellular plasticity in vivo is essential in understanding many key biological processes. Site-specific recombinases are genetic tools used for in vivo lineage tracing and gene manipulation. Conventional Cre-loxP, Dre-rox, and Flp-frt technologies form the orthogonal recombination systems that can also be used in combination to increase the precision. As such, more than one marker gene can be targeted for lineage tracing, studying cellular heterogeneity, recording cellular activities, or even genome editing. Their combinatory use has recently resolved some controversies in defining cellular fate plasticity. Focusing on cell fate studies, we introduce the design principles of orthogonal recombinases-based strategies, describe some working examples in resolving cell fate-related controversies, and discuss some of their technical strengths and limits.
Collapse
|
390
|
H3K4 di-methylation governs smooth muscle lineage identity and promotes vascular homeostasis by restraining plasticity. Dev Cell 2021; 56:2765-2782.e10. [PMID: 34582749 PMCID: PMC8567421 DOI: 10.1016/j.devcel.2021.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 07/09/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022]
Abstract
Epigenetic mechanisms contribute to the regulation of cell differentiation and function. Vascular smooth muscle cells (SMCs) are specialized contractile cells that retain phenotypic plasticity even after differentiation. Here, by performing selective demethylation of histone H3 lysine 4 di-methylation (H3K4me2) at SMC-specific genes, we uncovered that H3K4me2 governs SMC lineage identity. Removal of H3K4me2 via selective editing in cultured vascular SMCs and in murine arterial vasculature led to loss of differentiation and reduced contractility due to impaired recruitment of the DNA methylcytosine dioxygenase TET2. H3K4me2 editing altered SMC adaptative capacities during vascular remodeling due to loss of miR-145 expression. Finally, H3K4me2 editing induced a profound alteration of SMC lineage identity by redistributing H3K4me2 toward genes associated with stemness and developmental programs, thus exacerbating plasticity. Our studies identify the H3K4me2-TET2-miR145 axis as a central epigenetic memory mechanism controlling cell identity and function, whose alteration could contribute to various pathophysiological processes.
Collapse
|
391
|
Park SH. Regulation of Macrophage Activation and Differentiation in Atherosclerosis. J Lipid Atheroscler 2021; 10:251-267. [PMID: 34621697 PMCID: PMC8473962 DOI: 10.12997/jla.2021.10.3.251] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 12/29/2022] Open
Abstract
Chronic inflammation is a hallmark of atherosclerosis and macrophages play a central role in controlling inflammation at all stages of atherosclerosis. In atherosclerosis, macrophages and monocyte-derived macrophages are continuously exposed to cholesterol, oxidized lipids, cell debris, cytokines, and chemokines. Not only do these stimuli induce a specific macrophage phenotype, but they also interact extensively, leading to macrophage heterogeneity in atherosclerotic plaques. Herein, we review the diverse phenotypes of macrophages, the mechanisms underlying macrophage activation, and the contributions of macrophages to atherosclerosis in this context. We also summarize recent studies on foamy macrophages and monocyte-derived macrophages in plaque during disease progression. We provide a comprehensive overview of transcriptional, epigenetic, and metabolic reprogramming of macrophages and discuss the emerging concepts of targeting cytokines and macrophages to modulate atherosclerosis.
Collapse
Affiliation(s)
- Sung Ho Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea
| |
Collapse
|
392
|
Chakraborty R, Chatterjee P, Dave JM, Ostriker AC, Greif DM, Rzucidlo EM, Martin KA. Targeting smooth muscle cell phenotypic switching in vascular disease. JVS Vasc Sci 2021; 2:79-94. [PMID: 34617061 PMCID: PMC8489222 DOI: 10.1016/j.jvssci.2021.04.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/01/2021] [Indexed: 12/26/2022] Open
Abstract
Objective The phenotypic plasticity of vascular smooth muscle cells (VSMCs) is central to vessel growth and remodeling, but also contributes to cardiovascular pathologies. New technologies including fate mapping, single cell transcriptomics, and genetic and pharmacologic inhibitors have provided fundamental new insights into the biology of VSMC. The goal of this review is to summarize the mechanisms underlying VSMC phenotypic modulation and how these might be targeted for therapeutic benefit. Methods We summarize findings from extensive literature searches to highlight recent discoveries in the mechanisms underlying VSMC phenotypic switching with particular relevance to intimal hyperplasia. PubMed was searched for publications between January 2001 and December 2020. Search terms included VSMCs, restenosis, intimal hyperplasia, phenotypic switching or modulation, and drug-eluting stents. We sought to highlight druggable pathways as well as recent landmark studies in phenotypic modulation. Results Lineage tracing methods have determined that a small number of mature VSMCs dedifferentiate to give rise to oligoclonal lesions in intimal hyperplasia and atherosclerosis. In atherosclerosis and aneurysm, single cell transcriptomics reveal a striking diversity of phenotypes that can arise from these VSMCs. Mechanistic studies continue to identify new pathways that influence VSMC phenotypic plasticity. We review the mechanisms by which the current drug-eluting stent agents prevent restenosis and note remaining challenges in peripheral and diabetic revascularization for which new approaches would be beneficial. We summarize findings on new epigenetic (DNA methylation/TET methylcytosine dioxygenase 2, histone deacetylation, bromodomain proteins), transcriptional (Hippo/Yes-associated protein, peroxisome proliferator-activity receptor-gamma, Notch), and β3-integrin-mediated mechanisms that influence VSMC phenotypic modulation. Pharmacologic and genetic targeting of these pathways with agents including ascorbic acid, histone deacetylase or bromodomain inhibitors, thiazolidinediones, and integrin inhibitors suggests potential therapeutic value in the setting of intimal hyperplasia. Conclusions Understanding the molecular mechanisms that underlie the remarkable plasticity of VSMCs may lead to novel approaches to treat and prevent cardiovascular disease and restenosis.
Collapse
Affiliation(s)
- Raja Chakraborty
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Pharmacology, Yale University School of Medicine, New Haven, Conn
| | - Payel Chatterjee
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Pharmacology, Yale University School of Medicine, New Haven, Conn
| | - Jui M Dave
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Genetics, Yale University School of Medicine, New Haven, Conn
| | - Allison C Ostriker
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Pharmacology, Yale University School of Medicine, New Haven, Conn
| | - Daniel M Greif
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Genetics, Yale University School of Medicine, New Haven, Conn
| | - Eva M Rzucidlo
- Department Surgery, Section of Vascular Surgery, McLeod Regional Medical Center, Florence, SC
| | - Kathleen A Martin
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Pharmacology, Yale University School of Medicine, New Haven, Conn
| |
Collapse
|
393
|
Buono MF, Slenders L, Wesseling M, Hartman RJG, Monaco C, den Ruijter HM, Pasterkamp G, Mokry M. The changing landscape of the vulnerable plaque: a call for fine-tuning of preclinical models. Vascul Pharmacol 2021; 141:106924. [PMID: 34607015 DOI: 10.1016/j.vph.2021.106924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/08/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022]
Abstract
For decades, the pathological definition of the vulnerable plaque led to invaluable insights into the mechanisms that underlie myocardial infarction and stroke. Beyond plaque rupture, other mechanisms, such as erosion, may elicit thrombotic events underlining the complexity and diversity of the atherosclerotic disease. Novel insights, based on single-cell transcriptomics and other "omics" methods, provide tremendous opportunities in the ongoing search for cell-specific determinants that will fine-tune the description of the thrombosis prone lesion. It coincides with an increasing awareness that knowledge on lesion characteristics, cell plasticity and clinical presentation of ischemic cardiovascular events have shifted over the past decades. This shift correlates with an observed changes of cell composition towards phenotypical stabilizing of human plaques. These stabilization features and mechanisms are directly mediated by the cells present in plaques and can be mimicked in vitro via primary plaque cells derived from human atherosclerotic tissues. In addition, the rapidly evolving of sequencing technologies identify many candidate genes and molecular mechanisms that may influence the risk of developing an atherosclerotic thrombotic event - which bring the next challenge in sharp focus: how to translate these cell-specific insights into tangible functional and translational discoveries?
Collapse
Affiliation(s)
- Michele F Buono
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, the Netherlands
| | - Lotte Slenders
- Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marian Wesseling
- Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Robin J G Hartman
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, the Netherlands
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, the Netherlands
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Michal Mokry
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, the Netherlands; Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
394
|
Rezuș E, Macovei LA, Burlui AM, Cardoneanu A, Rezuș C. Ischemic Heart Disease and Rheumatoid Arthritis-Two Conditions, the Same Background. Life (Basel) 2021; 11:1042. [PMID: 34685413 PMCID: PMC8537055 DOI: 10.3390/life11101042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/20/2022] Open
Abstract
Rheumatoid arthritis (RA) is one of the most frequent inflammatory rheumatic diseases, having a considerably increased prevalence of mortality and morbidity due to cardiovascular disease (CVD). RA patients have an augmented risk for ischemic and non-ischemic heart disease. Increased cardiovascular (CV) risk is related to disease activity and chronic inflammation. Traditional risk factors and RA-related characteristics participate in vascular involvement, inducing subclinical changes in coronary microcirculation. RA is considered an independent risk factor for coronary artery disease (CAD). Endothelial dysfunction is a precocious marker of atherosclerosis (ATS). Pro-inflammatory cytokines (such as TNFα, IL-1, and IL-6) play an important role in synovial inflammation and ATS progression. Therefore, targeting inflammation is essential to controlling RA and preventing CVD. Present guidelines emphasize the importance of disease control, but studies show that RA- treatment has a different influence on CV risk. Based on the excessive risk for CV events in RA, permanent evaluation of CVD in these patients is critical. CVD risk calculators, designed for the general population, do not use RA-related predictive determinants; also, new scores that take into account RA-derived factors have restricted validity, with none of them encompassing imaging modalities or specific biomarkers involved in RA activity.
Collapse
Affiliation(s)
- Elena Rezuș
- Department of Rheumatology and Rehabilitation, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania; (E.R.); (A.M.B.); (A.C.)
| | - Luana Andreea Macovei
- Department of Rheumatology and Rehabilitation, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania; (E.R.); (A.M.B.); (A.C.)
| | - Alexandra Maria Burlui
- Department of Rheumatology and Rehabilitation, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania; (E.R.); (A.M.B.); (A.C.)
| | - Anca Cardoneanu
- Department of Rheumatology and Rehabilitation, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania; (E.R.); (A.M.B.); (A.C.)
| | - Ciprian Rezuș
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania;
| |
Collapse
|
395
|
Xie X, Shirasu T, Guo LW, Kent KC. Smad2 inhibition of MET transcription potentiates human vascular smooth muscle cell apoptosis. ATHEROSCLEROSIS PLUS 2021; 44:31-42. [PMID: 35445204 PMCID: PMC9017589 DOI: 10.1016/j.athplu.2021.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Background: Vascular smooth muscle cell (SMC) apoptosis is involved in major cardiovascular diseases. Smad2 is a transcription factor implicated in aortic aneurysm. The molecular mediators of Smad2-driven SMC apoptosis are not well defined. Here we have identified a Smad2-directed mechanism involving MET and FAS, both encoding cell membrane signaling receptors. Methods and results: Guided by microarray analysis in human primary aortic SMCs, loss/gain-of-function (siRNA/overexpression) indicated that Smad2 negatively and positively regulated, respectively, the gene expression of Met which was identified herein as anti-apoptotic and that of Fas, a known pro-apoptotic factor. While co-immunoprecipitation suggested a physical association of Smad2 with p53, chromatin immunoprecipitation followed by quantitative PCR revealed their co-occupancy in the same region of the MET promoter. Activating p53 with nutlin3a further potentiated the suppression of MET promoter-dependent luciferase activity and the exacerbation of SMC apoptosis that were caused by Smad2 overexpression. These results indicated that Smad2 in SMCs repressed the transcription of MET by cooperating with p53, and that Smad2 also activated FAS, a target gene of its transcription factor activity. Conclusions: Our study suggests a pro-apoptotic mechanism in human SMCs, whereby Smad2 negatively and positively regulates MET and FAS, genes encoding anti-apoptotic and pro-apoptotic factors, respectively.
Collapse
Affiliation(s)
- Xiujie Xie
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Takuro Shirasu
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA.,Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, 22908, USA
| | - K Craig Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| |
Collapse
|
396
|
Grootaert MOJ, Bennett MR. Vascular smooth muscle cells in atherosclerosis: time for a re-assessment. Cardiovasc Res 2021; 117:2326-2339. [PMID: 33576407 PMCID: PMC8479803 DOI: 10.1093/cvr/cvab046] [Citation(s) in RCA: 235] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) are key participants in both early and late-stage atherosclerosis. VSMCs invade the early atherosclerotic lesion from the media, expanding lesions, but also forming a protective fibrous cap rich in extracellular matrix to cover the 'necrotic' core. Hence, VSMCs have been viewed as plaque-stabilizing, and decreased VSMC plaque content-often measured by expression of contractile markers-associated with increased plaque vulnerability. However, the emergence of lineage-tracing and transcriptomic studies has demonstrated that VSMCs comprise a much larger proportion of atherosclerotic plaques than originally thought, demonstrate multiple different phenotypes in vivo, and have roles that might be detrimental. VSMCs down-regulate contractile markers during atherosclerosis whilst adopting alternative phenotypes, including macrophage-like, foam cell-like, osteochondrogenic-like, myofibroblast-like, and mesenchymal stem cell-like. VSMC phenotypic switching can be studied in tissue culture, but also now in the media, fibrous cap and deep-core region, and markedly affects plaque formation and markers of stability. In this review, we describe the different VSMC plaque phenotypes and their presumed cellular and paracrine functions, the regulatory mechanisms that control VSMC plasticity, and their impact on atherogenesis and plaque stability.
Collapse
Affiliation(s)
- Mandy O J Grootaert
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrookes Hospital, CB2 0QQ Cambridge, UK
| | - Martin R Bennett
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrookes Hospital, CB2 0QQ Cambridge, UK
| |
Collapse
|
397
|
Aortic Root Dilatation Is Attenuated with Diabetes but Is Not Associated with Renal Progression in Chronic Kidney Disease. J Pers Med 2021; 11:jpm11100972. [PMID: 34683112 PMCID: PMC8537293 DOI: 10.3390/jpm11100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/23/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Patients with chronic kidney disease (CKD) often have cardiac functional and structural abnormalities which can lead to adverse cardiovascular outcomes. In this study, we investigated associations between diabetes mellitus (DM) and cardiac functional and structural parameters in patients with CKD focusing on aortic root diameter (ARD). We also investigated associations of renal outcomes with DM and cardiac functional and structural characteristics. We enrolled 419 patients with CKD stage 3–5 were enrolled. ARD was normalized to body surface area (BSA) (ARD/BSA), and the rate of decline in renal function was assessed by the estimated glomerular filtration rate (eGFR) slope (mL/min/1.73 m2/year). ARD/BSA ≥2.1 cm/m2 in men or ≥2.2 cm/m2 in women was defined as indicating aortic root dilatation. The patients with DM had lower ARD/BSA, higher left atrial dimension (LAD), lower left ventricular ejection fraction, lower ratio of peak early transmitral filling wave velocity to peak late transmitral filling wave velocity, and higher left ventricular relative wall thickness, than those without DM. After multivariable analysis, DM (vs. non-DM; coefficient β, −0.060; p = 0.018) was significantly associated with low ARD/BSA. Significantly fewer patients with DM had aortic root dilatation compared to those without DM (14.3% vs. 23.1%, p = 0.022). In the patients with DM, there were significant associations between a high left ventricular mass index (LVMI) (per 1 g/m2, β, −0.016; p = 0.040) and high LAD (per 1 cm; β, −1.965; p < 0.001) with a low eGFR slope. However, other parameters, including ARD/BSA, were not associated with eGFR slope. Furthermore, there were no associations between eGFR slope and any of the echocardiographic parameters in the patients without DM. Aortic root dilatation was attenuated in the patients with DM, but it was not associated with a decline in renal function. However, high LAD and LVMI were associated with rapid renal function decline in the CKD patients with DM.
Collapse
|
398
|
Intermittent High Glucose Elevates Nuclear Localization of EZH2 to Cause H3K27me3-Dependent Repression of KLF2 Leading to Endothelial Inflammation. Cells 2021; 10:cells10102548. [PMID: 34685528 PMCID: PMC8534226 DOI: 10.3390/cells10102548] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/16/2021] [Accepted: 09/25/2021] [Indexed: 02/03/2023] Open
Abstract
Epigenetic mechanisms have emerged as one of the key pathways promoting diabetes-associated complications. Herein, we explored the role of enhancer of zeste homolog 2 (EZH2) and its product histone 3 lysine 27 trimethylation (H3K27me3) in high glucose-mediated endothelial inflammation. To examine this, we treated cultured primary endothelial cells (EC) with different treatment conditions-namely, constant or intermittent or transient high glucose. Intermittent high glucose maximally induced endothelial inflammation by upregulating transcript and/or protein-level expression of ICAM1 and P-selectin and downregulating eNOS, KLF2, and KLF4 protein levels. We next investigated the underlining epigenetic mechanisms responsible for intermittent hyperglycemia-dependent endothelial inflammation. Compared with other high glucose treatment groups, intermittent high glucose-exposed EC exhibited an increased level of H3K27me3 caused by reduction in EZH2 threonine 367 phosphorylation and nuclear retention of EZH2. Intermittent high glucose also promoted polycomb repressive complex-2 (PRC2) assembly and EZH2's recruitment to histone H3. Abrupt enrichment of H3K27me3 on KLF2 and KLF4 gene promoters caused repression of these genes, further supporting endothelial inflammation. In contrast, reducing H3K27me3 through small molecule and/or siRNA-mediated inhibition of EZH2 rescued KLF2 level and inhibited endothelial inflammation in intermittent high glucose-challenged cultured EC and isolated rat aorta. These findings indicate that abrupt chromatin modifications cause high glucose-dependent inflammatory switch of EC.
Collapse
|
399
|
Li X, Yang Y, Wang Z, Jiang S, Meng Y, Song X, Zhao L, Zou L, Li M, Yu T. Targeting non-coding RNAs in unstable atherosclerotic plaques: Mechanism, regulation, possibilities, and limitations. Int J Biol Sci 2021; 17:3413-3427. [PMID: 34512156 PMCID: PMC8416736 DOI: 10.7150/ijbs.62506] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) caused by arteriosclerosis are the leading cause of death and disability worldwide. In the late stages of atherosclerosis, the atherosclerotic plaque gradually expands in the blood vessels, resulting in vascular stenosis. When the unstable plaque ruptures and falls off, it blocks the vessel causing vascular thrombosis, leading to strokes, myocardial infarctions, and a series of other serious diseases that endanger people's lives. Therefore, regulating plaque stability is the main means used to address the high mortality associated with CVDs. The progression of the atherosclerotic plaque is a complex integration of vascular cell apoptosis, lipid metabolism disorders, inflammatory cell infiltration, vascular smooth muscle cell migration, and neovascular infiltration. More recently, emerging evidence has demonstrated that non-coding RNAs (ncRNAs) play a significant role in regulating the pathophysiological process of atherosclerotic plaque formation by affecting the biological functions of the vasculature and its associated cells. The purpose of this paper is to comprehensively review the regulatory mechanisms involved in the susceptibility of atherosclerotic plaque rupture, discuss the limitations of current approaches to treat plaque instability, and highlight the potential clinical value of ncRNAs as novel diagnostic biomarkers and potential therapeutic strategies to improve plaque stability and reduce the risk of major cardiovascular events.
Collapse
Affiliation(s)
- Xiaoxin Li
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Yanyan Yang
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Shaoyan Jiang
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, No. 5 Zhiquan Road, Qingdao 266000, China
| | - Yuanyuan Meng
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xiaoxia Song
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Liang Zhao
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Lu Zou
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Min Li
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Tao Yu
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China.,Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
400
|
Checkouri E, Blanchard V, Meilhac O. Macrophages in Atherosclerosis, First or Second Row Players? Biomedicines 2021; 9:biomedicines9091214. [PMID: 34572399 PMCID: PMC8465019 DOI: 10.3390/biomedicines9091214] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 12/24/2022] Open
Abstract
Macrophages represent a cell type that has been widely described in the context of atherosclerosis since the earliest studies in the 17th century. Their role has long been considered to be preponderant in the onset and aggravation of atherosclerosis, in particular by participating in the establishment of a chronic inflammatory state by the release of pro-inflammatory cytokines and by uncontrolled engorgement of lipids resulting in the formation of foam cells and later of the necrotic core. However, recent evidence from mouse models using an elegant technique of tracing vascular smooth muscle cells (VSMCs) during plaque development revealed that resident VSMCs display impressive plastic properties in response to an arterial injury, allowing them to switch into different cell types within the plaque, including mesenchymal-like cells, macrophage-like cells and osteochondrogenic-like cells. In this review, we oppose the arguments in favor or against the influence of macrophages versus VSMCs in all stages of atherosclerosis including pre-atherosclerosis, formation of lipid-rich foam cells, development of the necrotic core and the fibrous cap as well as calcification and rupture of the plaque. We also analyze the relevance of animal models for the investigation of the pathophysiological mechanisms of atherosclerosis in humans, and discuss potential therapeutic strategies targeting either VSMCs or macrophage to prevent the development of cardiovascular events. Overall, although major findings have been made from animal models, efforts are still needed to better understand and therefore prevent the development of atherosclerotic plaques in humans.
Collapse
Affiliation(s)
- Eloïse Checkouri
- INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Sainte-Clotilde, France; (E.C.); (V.B.)
- Habemus Papam, Food Industry, 97470 Saint-Benoit, France
| | - Valentin Blanchard
- INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Sainte-Clotilde, France; (E.C.); (V.B.)
- Departments of Medicine, Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St Paul’s Hospital, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Olivier Meilhac
- INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Sainte-Clotilde, France; (E.C.); (V.B.)
- CHU de La Réunion, INSERM, CIC1410, 97500 Saint-Pierre, France
- Correspondence: ; Tel.: +33-262-93-8811
| |
Collapse
|