351
|
Chen X, Shao T, Long X. Evaluation of the effects of different stocking densities on the sediment microbial community of juvenile hybrid grouper (♀Epinephelus fuscoguttatus × ♂ Epinephelus lanceolatus) in recirculating aquaculture systems. PLoS One 2018; 13:e0208544. [PMID: 30571690 PMCID: PMC6301666 DOI: 10.1371/journal.pone.0208544] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/19/2018] [Indexed: 11/19/2022] Open
Abstract
Aquatic microorganisms are an important part of aquatic ecosystems because they are involved in nutrient cycling and water quality, eventually influencing fish productivity. However, at present, reports on the effect of stocking density on microorganisms in sediment samples in recirculating aquaculture systems (RAS) are relatively rare. In this study, the changes in the microbial community in an RAS were investigated under different stocking densities of juvenile hybrid grouper (♀Epinephelus fuscoguttatus × ♂Epinephelus lanceolatus). Total DNA was extracted from the sediment samples, the 16S rDNA gene was amplified, and the bacterial community was analysed by Illumina high-throughput sequencing. We identified 741 OTUs from a total of 409,031 reads. Based on the analysis of bacterial composition, richness, diversity, bacterial 16S and rDNA gene abundance; sediment sample comparisons; and the existence of specific bacterial taxa within four densities, we concluded that the dominant phyla in all samples were similar and included: Proteobacteria, Bacteroidetes, Nitrospirae, Planctomycetes, Verrucomicrobia, and Chloroflexi. However, their relative distributions differed at different fish densities. Linear discriminant analysis further indicated that the stocking treatment influenced the sediment bacterial community. This study indicates that under RAS aquaculture, mode density is a factor regulating the microbial community, which provides insights into microbe management in RAS culture.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, P.R. China
| | - Tianyun Shao
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, P.R. China
| | - Xiaohua Long
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, P.R. China
- * E-mail:
| |
Collapse
|
352
|
Serebryakova A, Aires T, Viard F, Serrão EA, Engelen AH. Summer shifts of bacterial communities associated with the invasive brown seaweed Sargassum muticum are location and tissue dependent. PLoS One 2018; 13:e0206734. [PMID: 30517113 PMCID: PMC6281184 DOI: 10.1371/journal.pone.0206734] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 10/18/2018] [Indexed: 02/05/2023] Open
Abstract
Seaweed-associated microbiota experience spatial and temporal shifts in response to changing environmental conditions and seaweed physiology. These shifts may result in structural, functional and behavioral changes in the host with potential consequences for its fitness. They, thus, may help the host to adapt to changing environmental conditions. The current knowledge of seasonal variation of seaweed-associated microbiota is however still limited. In this study, we explored temporal and spatial variation of microbial communities associated with the invasive brown seaweed S. muticum. We sampled in northern and southern Portugal, in September, March and July-August (summer). In addition, as (pseudo-)perennial seaweeds display seasonal reproductive phenology, we sampled various parts of the individuals to disentangle the effect of temporal changes from those due to structural development variations. The diversity and structure of associated microbial communities were determined using next generation sequencing of the variable regions V5-7 of the 16S rDNA. We expected to find differentiation in associated microbial communities between regions and sampling months, but with differences depending on the seaweed structure examined. As expected, the study revealed substantial temporal shifts in S. muticum microbiome, for instance with large abundance of Rhodobacteraceae and Loktanella in September-March but prevalence of Pirellulales during the summer months. Variations between regions and tissues were also observed: in northern Portugal and on basal structures, bacterial diversity was higher as compared to the South and apical parts. All examined seaweed structures showed temporal differences in associated microbial community structure over time, except for holdfasts between September and March. Bacteria contributing to these changes varied spatially. Conversely to all other structures, the holdfast also did not show differences in associated community structure between southern and northern regions. Our study highlights the importance of structural microscale differentiations within seaweeds hosts with regard to their associated microbial communities and their importance across temporal and spatial dimensions.
Collapse
Affiliation(s)
- Alexandra Serebryakova
- Center for Marine Sciences (CCMAR), F.C.T. University of Algarve, Faro, Portugal
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, UPMC Univ Paris, Roscoff, France
| | - Tania Aires
- Center for Marine Sciences (CCMAR), F.C.T. University of Algarve, Faro, Portugal
| | - Frédérique Viard
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, UPMC Univ Paris, Roscoff, France
| | - Ester A. Serrão
- Center for Marine Sciences (CCMAR), F.C.T. University of Algarve, Faro, Portugal
| | - Aschwin H. Engelen
- Center for Marine Sciences (CCMAR), F.C.T. University of Algarve, Faro, Portugal
| |
Collapse
|
353
|
Tangherlini M, Miralto M, Colantuono C, Sangiovanni M, Dell’ Anno A, Corinaldesi C, Danovaro R, Chiusano ML. GLOSSary: the GLobal Ocean 16S subunit web accessible resource. BMC Bioinformatics 2018; 19:443. [PMID: 30497362 PMCID: PMC6266928 DOI: 10.1186/s12859-018-2423-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Environmental metagenomics is a challenging approach that is exponentially spreading in the scientific community to investigate taxonomic diversity and possible functions of the biological components. The massive amount of sequence data produced, often endowed with rich environmental metadata, needs suitable computational tools to fully explore the embedded information. Bioinformatics plays a key role in providing methodologies to manage, process and mine molecular data, integrated with environmental metagenomics collections. One such relevant example is represented by the Tara Ocean Project. RESULTS We considered the Tara 16S miTAGs released by the consortium, representing raw sequences from a shotgun metagenomics approach with similarities to 16S rRNA genes. We generated assembled 16S rDNA sequences, which were classified according to their lengths, the possible presence of chimeric reads, the putative taxonomic affiliation. The dataset was included in GLOSSary (the GLobal Ocean 16S Subunit web accessible resource), a bioinformatics platform to organize environmental metagenomics data. The aims of this work were: i) to present alternative computational approaches to manage challenging metagenomics data; ii) to set up user friendly web-based platforms to allow the integration of environmental metagenomics sequences and of the associated metadata; iii) to implement an appropriate bioinformatics platform supporting the analysis of 16S rDNA sequences exploiting reference datasets, such as the SILVA database. We organized the data in a next-generation NoSQL "schema-less" database, allowing flexible organization of large amounts of data and supporting native geospatial queries. A web interface was developed to permit an interactive exploration and a visual geographical localization of the data, either raw miTAG reads or 16S contigs, from our processing pipeline. Information on unassembled sequences is also available. The taxonomic affiliations of contigs and miTAGs, and the spatial distribution of the sampling sites and their associated sequence libraries, as they are contained in the Tara metadata, can be explored by a query interface, which allows both textual and visual investigations. In addition, all the sequence data were made available for a dedicated BLAST-based web application alongside the SILVA collection. CONCLUSIONS GLOSSary provides an expandable bioinformatics environment, able to support the scientific community in current and forthcoming environmental metagenomics analyses.
Collapse
Affiliation(s)
- M. Tangherlini
- Stazione Zoologica “Anton Dohrn”, Villa Comunale, 80121 Naples, Italy
| | - M. Miralto
- Stazione Zoologica “Anton Dohrn”, Villa Comunale, 80121 Naples, Italy
| | - C. Colantuono
- Stazione Zoologica “Anton Dohrn”, Villa Comunale, 80121 Naples, Italy
| | - M. Sangiovanni
- Stazione Zoologica “Anton Dohrn”, Villa Comunale, 80121 Naples, Italy
| | - A. Dell’ Anno
- Dipartimento di Scienze della Vita e dell’Ambiente, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - C. Corinaldesi
- Dipartimento di Scienze e Ingegneria della Materia, dell’Ambiente ed Urbanistica, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - R. Danovaro
- Stazione Zoologica “Anton Dohrn”, Villa Comunale, 80121 Naples, Italy
- Dipartimento di Scienze della Vita e dell’Ambiente, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - M. L. Chiusano
- Stazione Zoologica “Anton Dohrn”, Villa Comunale, 80121 Naples, Italy
- Dipartimento di Agraria, University of Naples “Federico II”, via Università 100, 80055 Portici, Italy
| |
Collapse
|
354
|
Monteverde DR, Sylvan JB, Suffridge C, Baronas JJ, Fichot E, Fuhrman J, Berelson W, Sañudo-Wilhelmy SA. Distribution of Extracellular Flavins in a Coastal Marine Basin and Their Relationship to Redox Gradients and Microbial Community Members. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12265-12274. [PMID: 30257556 DOI: 10.1021/acs.est.8b02822] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The flavins (including flavin mononucleotide (FMN) and riboflavin (RF)) are a class of organic compounds synthesized by organisms to assist in critical redox reactions. While known to be secreted extracellularly by some species in laboratory-based cultures, flavin concentrations are largely unreported in the natural environment. Here, we present pore water and water column profiles of extracellular flavins (FMN and RF) and two degradation products (lumiflavin and lumichrome) from a coastal marine basin in the Southern California Bight alongside ancillary geochemical and 16S rRNA microbial community data. Flavins were detectable at picomolar concentrations in the water column (93-300 pM FMN, 14-40 pM RF) and low nanomolar concentrations in pore waters (250-2070 pM FMN, 11-210 pM RF). Elevated pore water flavin concentrations displayed an increasing trend with sediment depth and were significantly correlated with the total dissolved Fe (negative) and Mn (positive) concentrations. Network analysis revealed a positive relationship between flavins and the relative abundance of Dehalococcoidia and the MSBL9 clade of Planctomycetes, indicating possible secretion by members of these lineages. These results suggest that flavins are a common component of the so-called shared extracellular metabolite pool, especially in anoxic marine sediments where they exist at physiologically relevant concentrations for metal oxide reduction.
Collapse
Affiliation(s)
- Danielle R Monteverde
- Department of Earth Sciences , University of Southern California , Los Angeles , California United States
| | - Jason B Sylvan
- Department of Oceanography , Texas A&M University , College Station , Texas United States
| | - Christopher Suffridge
- Department of Biological Sciences , University of Southern California , Los Angeles , California United States
| | - J Jotautas Baronas
- Department of Earth Sciences , University of Southern California , Los Angeles , California United States
| | - Erin Fichot
- Department of Biological Sciences , University of Southern California , Los Angeles , California United States
| | - Jed Fuhrman
- Department of Biological Sciences , University of Southern California , Los Angeles , California United States
| | - William Berelson
- Department of Earth Sciences , University of Southern California , Los Angeles , California United States
| | - Sergio A Sañudo-Wilhelmy
- Department of Earth Sciences , University of Southern California , Los Angeles , California United States
- Department of Biological Sciences , University of Southern California , Los Angeles , California United States
| |
Collapse
|
355
|
Hernando-Morales V, Varela MM, Needham DM, Cram J, Fuhrman JA, Teira E. Vertical and Seasonal Patterns Control Bacterioplankton Communities at Two Horizontally Coherent Coastal Upwelling Sites off Galicia (NW Spain). MICROBIAL ECOLOGY 2018; 76:866-884. [PMID: 29675703 DOI: 10.1007/s00248-018-1179-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
Analysis of seasonal patterns of marine bacterial community structure along horizontal and vertical spatial scales can help to predict long-term responses to climate change. Several recent studies have shown predictable seasonal reoccurrence of bacterial assemblages. However, only a few have assessed temporal variability over both horizontal and vertical spatial scales. Here, we simultaneously studied the bacterial community structure at two different locations and depths in shelf waters of a coastal upwelling system during an annual cycle. The most noticeable biogeographic patterns observed were seasonality, horizontal homogeneity, and spatial synchrony in bacterial diversity and community structure related with regional upwelling-downwelling dynamics. Water column mixing eventually disrupted bacterial community structure vertical heterogeneity. Our results are consistent with previous temporal studies of marine bacterioplankton in other temperate regions and also suggest a marked influence of regional factors on the bacterial communities inhabiting this coastal upwelling system. Bacterial-mediated carbon fluxes in this productive region appear to be mainly controlled by community structure dynamics in surface waters, and local environmental factors at the base of the euphotic zone.
Collapse
Affiliation(s)
- Víctor Hernando-Morales
- Grupo de Oceanografía Biolóxica, Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, 36310, Vigo, Spain.
- Estación de Ciencias Mariñas de Toralla (ECIMAT), Universidade de Vigo, Illa de Toralla, 36331, Vigo, Spain.
| | - Marta M Varela
- IEO, Instituto Español de Oceanografía, Centro Oceanográfico de A Coruña, Apdo 130, 15080, A Coruña, Spain
| | - David M Needham
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-0371, USA
| | - Jacob Cram
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-0371, USA
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-0371, USA
| | - Eva Teira
- Grupo de Oceanografía Biolóxica, Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, 36310, Vigo, Spain
- Estación de Ciencias Mariñas de Toralla (ECIMAT), Universidade de Vigo, Illa de Toralla, 36331, Vigo, Spain
| |
Collapse
|
356
|
Wang H, Nche-Fambo FA, Yu Z, Chen F. Using microalgal communities for high CO2-tolerant strain selection. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.08.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
357
|
Pearman JK, Afandi F, Hong P, Carvalho S. Plankton community assessment in anthropogenic-impacted oligotrophic coastal regions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31017-31030. [PMID: 30182317 DOI: 10.1007/s11356-018-3072-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Microbial planktonic communities are critical components of marine biogeochemical pathways. Despite this, there is still limited knowledge on the dynamics of this group in warm and oligotrophic waters. We used high-throughput sequencing to characterise the bacterial (16S rRNA) and eukaryotic (18S rRNA) microbial plankton communities in two regions under the influence of anthropogenic impacts (a port and sewage outflow) and a coastal region with no direct anthropogenic disturbances in the central Red Sea. Overall, bacterial and eukaryotic components responded in a similar way to the environmental conditions. Community composition and structure were more sensitive than alpha diversity measures to environmental impacts. With the exception of eukaryotes, for which the number of OTU differed significantly between sampling periods in all the regions, environmental changes associated with anthropogenic pressures seem to be better reflected by variations in the relative dominance of microbial groups. For example, elevated proportional abundances of nitrifying and sewage-/faecal-related bacteria at the impacted sites were observed compared with the coastal region. The recently developed microgAMBI also appeared to correlate well with the level of anthropogenic impact the regions experienced, showing the potential to be applied in oligotrophic waters.
Collapse
Affiliation(s)
- John K Pearman
- Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Fidan Afandi
- Bioecology Department, Ecology and Soil Science, Baku State University, Academic Zahid Xalilov Street, 23, 1148, Baku, Absheron Economic Region AZ, Azerbaijan
| | - Peiying Hong
- Water Desalination and Reuse Center (WDRC), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Susana Carvalho
- Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
358
|
Cenci S, Saavedra S. Uncertainty quantification of the effects of biotic interactions on community dynamics from nonlinear time-series data. J R Soc Interface 2018; 15:rsif.2018.0695. [PMID: 30381342 DOI: 10.1098/rsif.2018.0695] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022] Open
Abstract
Biotic interactions are expected to play a major role in shaping the dynamics of ecological systems. Yet, quantifying the effects of biotic interactions has been challenging due to a lack of appropriate methods to extract accurate measurements of interaction parameters from experimental data. One of the main limitations of existing methods is that the parameters inferred from noisy, sparsely sampled, nonlinear data are seldom uniquely identifiable. That is, many different parameters can be compatible with the same dataset and can generalize to independent data equally well. Hence, it is difficult to justify conclusive assertions about the effect of biotic interactions without information about their associated uncertainty. Here, we develop an ensemble method based on model averaging to quantify the uncertainty associated with the effect of biotic interactions on community dynamics from non-equilibrium ecological time-series data. Our method is able to detect the most informative time intervals for each biotic interaction within a multivariate time series and can be easily adapted to different regression schemes. Overall, this novel approach can be used to associate a time-dependent uncertainty with the effect of biotic interactions. Moreover, because we quantify uncertainty with minimal assumptions about the data-generating process, our approach can be applied to any data for which interactions among variables strongly affect the overall dynamics of the system.
Collapse
Affiliation(s)
- Simone Cenci
- Department of Civil and Environmental Engineering, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Serguei Saavedra
- Department of Civil and Environmental Engineering, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
359
|
Mangot JF, Forn I, Obiol A, Massana R. Constant abundances of ubiquitous uncultured protists in the open sea assessed by automated microscopy. Environ Microbiol 2018; 20:3876-3889. [PMID: 30209866 DOI: 10.1111/1462-2920.14408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/06/2018] [Accepted: 09/08/2018] [Indexed: 11/28/2022]
Abstract
Protists have fundamental ecological roles in marine environments and their diversity is being increasingly explored, yet little is known about the quantitative importance of specific taxa in these ecosystems. Here we optimized a newly developed automated system of image acquisition and image analysis to enumerate minute uncultured cells of different sizes targeted by fluorescence in situ hybridization. The automated counting routine was highly reproducible, well correlated with manual counts, and was then applied on surface and deep chlorophyll maximum samples from the Malaspina 2010 circumnavigation. The three targeted uncultured taxa (MAST-4, MAST-7 and MAST-1C) were found in virtually all samples from several ocean basins (Atlantic, Indian and Pacific) in fairly constant cell abundances, following typical lognormal distributions. Their global abundances averaged 49, 23 and 7 cells ml-1 , respectively, and altogether the three groups accounted for about 10%-20% of heterotrophic picoeukaryotes. Our innovative high-throughput cell counting routine allows for the first time a direct assessment of the biogeographic distribution of small protists (< 5 μm) and shows the ubiquity in sunlit oceans of three bacterivorous taxa, suggesting their key roles in marine ecosystems.
Collapse
Affiliation(s)
- Jean-François Mangot
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), E-08003 Barcelona, Catalonia, Spain
| | - Irene Forn
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), E-08003 Barcelona, Catalonia, Spain
| | - Aleix Obiol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), E-08003 Barcelona, Catalonia, Spain
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), E-08003 Barcelona, Catalonia, Spain
| |
Collapse
|
360
|
Zhou J, Song X, Zhang CY, Chen GF, Lao YM, Jin H, Cai ZH. Distribution Patterns of Microbial Community Structure Along a 7000-Mile Latitudinal Transect from the Mediterranean Sea Across the Atlantic Ocean to the Brazilian Coastal Sea. MICROBIAL ECOLOGY 2018; 76:592-609. [PMID: 29442157 DOI: 10.1007/s00248-018-1150-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
A central goal in marine microecology is to understand the ecological factors shaping spatiotemporal microbial patterns and the underlying processes. We hypothesized that abiotic and/or biotic interactions are probably more important for explaining the distribution patterns of marine bacterioplankton than environmental filtering. In this study, surface seawater samples were collected about 7000 miles from the Mediterranean Sea, transecting the North Atlantic Ocean, to the Brazilian marginal sea. In bacterial biosphere, SAR11, SAR86, Rhodobacteraceae, and Rhodospiriaceae were predominant in the Mediterranean Sea; Prochlorococcus was more frequent in Atlantic Ocean; whereas in the Brazilian coastal sea, the main bacterial members were Synechococcus and SAR11. With respect to archaea, Euryarchaeota were predominant in the Atlantic Ocean and Thaumarchaeota in the Mediterranean Sea. With respect to the eukaryotes, Syndiniales, Spumellaria, Cryomonadida, and Chlorodendrales were predominant in the open ocean, while diatoms and microzooplankton were dominant in the coastal sea. Distinct clusters of prokaryotes and eukaryotes displayed clear spatial heterogeneity. Among the environmental parameters measured, temperature and salinity were key factors controlling bacterial and archaeal community structure, respectively, whereas N/P/Si contributed to eukaryotic variation. The relative contribution of environmental parameters to the microbial distribution pattern was 45.2%. Interaction analysis showed that Gammaproteobacteria, Alphaproteobacteria, and Flavobacteriia were the keystone taxa within the positive-correlation network, while Thermoplasmata was the main contributor in the negative-correlation network. Our study demonstrated that microbial communities are co-governed by environmental filtering and biotic interactions, which are the main deterministic driving factors modulating the spatiotemporal patterns of marine plankton synergistically at the regional or global levels.
Collapse
Affiliation(s)
- Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen University Town, Room 905, Marine Building, Xili Town, Shenzhen, 518055, Guangdong Province, People's Republic of China
| | - Xiao Song
- The Department of Life Science, Tsinghua University, Beijing, People's Republic of China
| | - Chun-Yun Zhang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Shangdong Province, People's Republic of China
| | - Guo-Fu Chen
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Shangdong Province, People's Republic of China.
| | - Yong-Min Lao
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen University Town, Room 905, Marine Building, Xili Town, Shenzhen, 518055, Guangdong Province, People's Republic of China
| | - Hui Jin
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen University Town, Room 905, Marine Building, Xili Town, Shenzhen, 518055, Guangdong Province, People's Republic of China
| | - Zhong-Hua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen University Town, Room 905, Marine Building, Xili Town, Shenzhen, 518055, Guangdong Province, People's Republic of China.
| |
Collapse
|
361
|
Needham DM, Fichot EB, Wang E, Berdjeb L, Cram JA, Fichot CG, Fuhrman JA. Dynamics and interactions of highly resolved marine plankton via automated high-frequency sampling. THE ISME JOURNAL 2018; 12:2417-2432. [PMID: 29899514 PMCID: PMC6155038 DOI: 10.1038/s41396-018-0169-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/17/2018] [Accepted: 03/20/2018] [Indexed: 11/09/2022]
Abstract
Short timescale observations are valuable for understanding microbial ecological processes. We assessed dynamics in relative abundance and potential activities by sequencing the small sub-unit ribosomal RNA gene (rRNA gene) and rRNA molecules (rRNA) of Bacteria, Archaea, and Eukaryota once to twice daily between March 2014 and May 2014 from the surface ocean off Catalina Island, California. Typically Ostreococcus, Braarudosphaera, Teleaulax, and Synechococcus dominated phytoplankton sequences (including chloroplasts) while SAR11, Sulfitobacter, and Fluviicola dominated non-phytoplankton Bacteria and Archaea. We observed short-lived increases of diatoms, mostly Pseudo-nitzschia and Chaetoceros, with quickly responding Bacteria and Archaea including Flavobacteriaceae (Polaribacter & Formosa), Roseovarius, and Euryarchaeota (MGII), notably the exact amplicon sequence variants we observed responding similarly to another diatom bloom nearby, 3 years prior. We observed correlations representing known interactions among abundant phytoplankton rRNA sequences, demonstrating the biogeochemical and ecological relevance of such interactions: (1) The kleptochloroplastidic ciliate Mesodinium 18S rRNA gene sequences and a single Teleaulax taxon (via 16S rRNA gene sequences) were correlated (Spearman r = 0.83) yet uncorrelated to a Teleaulax 18S rRNA gene OTU, or any other taxon (consistent with a kleptochloroplastidic or karyokleptic relationship) and (2) the photosynthetic prymnesiophyte Braarudosphaera bigelowii and two strains of diazotrophic cyanobacterium UCYN-A were correlated and each taxon was also correlated to other taxa, including B. bigelowii to a verrucomicrobium and a dictyochophyte phytoplankter (all r > 0.8). We also report strong correlations (r > 0.7) between various ciliates, bacteria, and phytoplankton, suggesting interactions via currently unknown mechanisms. These data reiterate the utility of high-frequency time series to show rapid microbial reactions to stimuli, and provide new information about in situ dynamics of previously recognized and hypothesized interactions.
Collapse
Affiliation(s)
- David M Needham
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Erin B Fichot
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Ellice Wang
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Lyria Berdjeb
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jacob A Cram
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Cédric G Fichot
- Department of Earth and Environment, Boston University, Boston, MA, USA
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
362
|
Hernández-Ruiz M, Barber-Lluch E, Prieto A, Álvarez-Salgado XA, Logares R, Teira E. Seasonal succession of small planktonic eukaryotes inhabiting surface waters of a coastal upwelling system. Environ Microbiol 2018; 20:2955-2973. [DOI: 10.1111/1462-2920.14313] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/12/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Marta Hernández-Ruiz
- Biological Oceanography Group, Department of Ecology and Animal Biology; University of Vigo; Vigo, 36310 Spain
- Oceanography, Marine Science Station of Toralla (ECIMAT); University of Vigo; Vigo, 36331 Spain
| | - Esther Barber-Lluch
- Biological Oceanography Group, Department of Ecology and Animal Biology; University of Vigo; Vigo, 36310 Spain
- Oceanography, Marine Science Station of Toralla (ECIMAT); University of Vigo; Vigo, 36331 Spain
| | - Antero Prieto
- Biological Oceanography Group, Department of Ecology and Animal Biology; University of Vigo; Vigo, 36310 Spain
- Oceanography, Marine Science Station of Toralla (ECIMAT); University of Vigo; Vigo, 36331 Spain
| | | | - Ramiro Logares
- Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC); Barcelona, 08003 Spain
| | - Eva Teira
- Biological Oceanography Group, Department of Ecology and Animal Biology; University of Vigo; Vigo, 36310 Spain
- Oceanography, Marine Science Station of Toralla (ECIMAT); University of Vigo; Vigo, 36331 Spain
| |
Collapse
|
363
|
Sánchez-Soto Jiménez MF, Cerqueda-García D, Montero-Muñoz JL, Aguirre-Macedo ML, García-Maldonado JQ. Assessment of the bacterial community structure in shallow and deep sediments of the Perdido Fold Belt region in the Gulf of Mexico. PeerJ 2018; 6:e5583. [PMID: 30225176 PMCID: PMC6139248 DOI: 10.7717/peerj.5583] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 08/14/2018] [Indexed: 12/31/2022] Open
Abstract
The Mexican region of the Perdido Fold Belt (PFB), in northwestern Gulf of Mexico (GoM), is a geological province with important oil reservoirs that will be subjected to forthcoming oil exploration and extraction activities. To date, little is known about the native microbial communities of this region, and how these change relative to water depth. In this study we assessed the bacterial community structure of surficial sediments by high-throughput sequencing of the 16S rRNA gene at 11 sites in the PFB, along a water column depth gradient from 20 to 3,700 m, including five shallow (20–600 m) and six deep (2,800–3,700 m) samples. The results indicated that OTUs richness and diversity were higher for shallow sites (OTUs = 2,888.2 ± 567.88; H′ = 9.6 ± 0.85) than for deep sites (OTUs = 1,884.7 ± 464.2; H′ = 7.74 ± 1.02). Nonmetric multidimensional scaling (NMDS) ordination revealed that shallow microbial communities grouped separately from deep samples. Additionally, the shallow sites plotted further from each other on the NMDS whereas samples from the deeper sites (abyssal plains) plotted much more closely to each other. These differences were related to depth, redox potential, sulfur concentration, and grain size (lime and clay), based on the environmental variables fitted with the axis of the NMDS ordination. In addition, differential abundance analysis identified 147 OTUs with significant fold changes among the zones (107 from shallow and 40 from deep sites), which constituted 10 to 40% of the total relative abundances of the microbial communities. The most abundant OTUs with significant fold changes in shallow samples corresponded to Kordiimonadales, Rhodospirillales, Desulfobacterales (Desulfococcus), Syntrophobacterales and Nitrospirales (GOUTA 19, BD2-6, LCP-6), whilst Chromatiales, Oceanospirillales (Amphritea, Alcanivorax), Methylococcales, Flavobacteriales, Alteromonadales (Shewanella, ZD0117) and Rhodobacterales were the better represented taxa in deep samples. Several of the OTUs detected in both deep and shallow sites have been previously related to hydrocarbons consumption. Thus, this metabolism seems to be well represented in the studied sites, and it could abate future hydrocarbon contamination in this ecosystem. The results presented herein, along with biological and physicochemical data, constitute an available reference for further monitoring of the bacterial communities in this economically important region in the GoM.
Collapse
Affiliation(s)
- Ma Fernanda Sánchez-Soto Jiménez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Departamento de Recursos del Mar, Mérida, Yucatán, México
| | - Daniel Cerqueda-García
- Consorcio de Investigación del Golfo de México (CIGOM). Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida. Departamento de Recursos del Mar, Mérida, Yucatán, México
| | - Jorge L Montero-Muñoz
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Departamento de Recursos del Mar, Mérida, Yucatán, México
| | - Ma Leopoldina Aguirre-Macedo
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Departamento de Recursos del Mar, Mérida, Yucatán, México
| | - José Q García-Maldonado
- CONACYT - Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida. Departamento de Recursos del Mar, Mérida, Yucatán, México
| |
Collapse
|
364
|
Markussen T, Happel EM, Teikari JE, Huchaiah V, Alneberg J, Andersson AF, Sivonen K, Riemann L, Middelboe M, Kisand V. Coupling biogeochemical process rates and metagenomic blueprints of coastal bacterial assemblages in the context of environmental change. Environ Microbiol 2018; 20:3083-3099. [PMID: 30084235 DOI: 10.1111/1462-2920.14371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 11/28/2022]
Abstract
Bacteria are major drivers of biogeochemical nutrient cycles and energy fluxes in marine environments, yet how bacterial communities respond to environmental change is not well known. Metagenomes allow examination of genetic responses of the entire microbial community to environmental change. However, it is challenging to link metagenomes directly to biogeochemical process rates. Here, we investigate metagenomic responses in natural bacterioplankton communities to simulated environmental stressors in the Baltic Sea, including increased river water input, increased nutrient concentration, and reduced oxygen level. This allowed us to identify informative prokaryotic gene markers, responding to environmental perturbation. Our results demonstrate that metagenomic and metabolic changes in bacterial communities in response to environmental stressors are influenced both by the initial community composition and by the biogeochemical factors shaping the functional response. Furthermore, the different sources of dissolved organic matter (DOM) had the largest impact on metagenomic blueprint. Most prominently, changes in DOM loads influenced specific transporter types reflecting the substrate availability and DOC assimilation and consumption pathways. The results provide new knowledge for developing models of ecosystem structure and biogeochemical cycling in future climate change scenarios and advance our exploration of the potential use of marine microorganisms as markers for environmental conditions.
Collapse
Affiliation(s)
- Trine Markussen
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Elisabeth M Happel
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Jonna E Teikari
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Vimala Huchaiah
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Johannes Alneberg
- KTH Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, Stockholm, Sweden
| | - Anders F Andersson
- KTH Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, Stockholm, Sweden
| | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Lasse Riemann
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Mathias Middelboe
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Veljo Kisand
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
365
|
Jiang XT, Ye L, Ju F, Wang YL, Zhang T. Toward an Intensive Longitudinal Understanding of Activated Sludge Bacterial Assembly and Dynamics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8224-8232. [PMID: 29943968 DOI: 10.1021/acs.est.7b05579] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Temporal microbial community studies have broadened our knowledge of the dynamics and correlations among microbes in both natural and artificial engineering systems. Using activated sludge as a model system, we utilized the intensive longitudinal sampling method to identify overlooked diversity and the hidden dynamics of microbes, detect cross-associations among microbes after detrending, and reveal the central microbial dynamics during sludge bulking and foaming. We discovered that the accumulative alpha diversity in activated sludge sampled daily over 392 days could be as high as 14 000 OTUs, and that the bacterial community dynamics followed a gradual succession, drifting away from the initial observed day and displaying a significant time-dependent trend. Cross-associations among bacteria were modulated after removing potential spurious correlations based on autocorrelation in microbial time series. Moreover, clusters of bacteria displaying rapid turnover were discovered during the beginning, ongoing, and fading of sludge bulking and foaming, and their physicochemical parameters are resolved. These identified groups of bacteria and their related environmental factors could potentially supply clues to form hypotheses for treating operational problems, such as sludge bulking and foaming.
Collapse
Affiliation(s)
- Xiao-Tao Jiang
- Environmental Biotechnology Lab , The University of Hong Kong , Pokfulam , Hong Kong , SAR China
| | - Lin Ye
- Environmental Biotechnology Lab , The University of Hong Kong , Pokfulam , Hong Kong , SAR China
| | - Feng Ju
- Environmental Biotechnology Lab , The University of Hong Kong , Pokfulam , Hong Kong , SAR China
| | - Yu-Lin Wang
- Environmental Biotechnology Lab , The University of Hong Kong , Pokfulam , Hong Kong , SAR China
| | - Tong Zhang
- Environmental Biotechnology Lab , The University of Hong Kong , Pokfulam , Hong Kong , SAR China
| |
Collapse
|
366
|
Haro-Moreno JM, López-Pérez M, de la Torre JR, Picazo A, Camacho A, Rodriguez-Valera F. Fine metagenomic profile of the Mediterranean stratified and mixed water columns revealed by assembly and recruitment. MICROBIOME 2018; 6:128. [PMID: 29991350 PMCID: PMC6040077 DOI: 10.1186/s40168-018-0513-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/02/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND The photic zone of aquatic habitats is subjected to strong physicochemical gradients. To analyze the fine-scale variations in the marine microbiome, we collected seven samples from a single offshore location in the Mediterranean at 15 m depth intervals during a period of strong stratification, as well as two more samples during the winter when the photic water column was mixed. We were able to recover 94 new metagenome-assembled genomes (MAGs) from these metagenomes and examine the distribution of key marine microbes within the photic zone using metagenomic recruitment. RESULTS Our results showed significant differences in the microbial composition of different layers within the stratified photic water column. The majority of microorganisms were confined to discreet horizontal layers of no more than 30 m (stenobathic). Only a few such as members of the SAR11 clade appeared at all depths (eurybathic). During the winter mixing period, only some groups of bloomers such as Pseudomonas were favored. Although most microbes appeared in both seasons, some groups like the SAR116 clade and some Bacteroidetes and Verrucomicrobia seemed to disappear during the mixing period. Furthermore, we found that some microbes previously considered seasonal (e.g., Archaea or Actinobacteria) were living in deeper layers within the photic zone during the stratification period. A strong depth-related specialization was detected, not only at the taxonomic level but also at the functional level, even within the different clades, for the manipulation and uptake of specific polysaccharides. Rhodopsin sequences (green or blue) also showed narrow depth distributions that correlated with the taxonomy of the microbe in which they were found but not with depth. CONCLUSIONS Although limited to a single location in the Mediterranean, this study has profound implications for our understanding of how marine microbial communities vary with depth within the photic zone when stratified. Our results highlight the importance of collecting samples at different depths in the water column when comparing seasonal variations and have important ramifications for global marine studies that most often take samples from only one single depth. Furthermore, our perspective and approaches (metagenomic assembly and recruitment) are broadly applicable to other metagenomic studies.
Collapse
Affiliation(s)
- Jose M Haro-Moreno
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, San Juan de Alicante, 03550, Alicante, Spain
| | - Mario López-Pérez
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, San Juan de Alicante, 03550, Alicante, Spain
| | - José R de la Torre
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA
| | - Antonio Picazo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Burjassot, E-46100, Valencia, Spain
| | - Antonio Camacho
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Burjassot, E-46100, Valencia, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, San Juan de Alicante, 03550, Alicante, Spain.
| |
Collapse
|
367
|
A strong link between marine microbial community composition and function challenges the idea of functional redundancy. ISME JOURNAL 2018; 12:2470-2478. [PMID: 29925880 DOI: 10.1038/s41396-018-0158-1] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/31/2022]
Abstract
Marine microbes have tremendous diversity, but a fundamental question remains unanswered: why are there so many microbial species in the sea? The idea of functional redundancy for microbial communities has long been assumed, so that the high level of richness is often explained by the presence of different taxa that are able to conduct the exact same set of metabolic processes and that can readily replace each other. Here, we refute the hypothesis of functional redundancy for marine microbial communities by showing that a shift in the community composition altered the overall functional attributes of communities across different temporal and spatial scales. Our metagenomic monitoring of a coastal northwestern Mediterranean site also revealed that diverse microbial communities harbor a high diversity of potential proteins. Working with all information given by the metagenomes (all reads) rather than relying only on known genes (annotated orthologous genes) was essential for revealing the similarity between taxonomic and functional community compositions. Our finding does not exclude the possibility for a partial redundancy where organisms that share some specific function can coexist when they differ in other ecological requirements. It demonstrates, however, that marine microbial diversity reflects a tremendous diversity of microbial metabolism and highlights the genetic potential yet to be discovered in an ocean of microbes.
Collapse
|
368
|
Osterholz H, Kirchman DL, Niggemann J, Dittmar T. Diversity of bacterial communities and dissolved organic matter in a temperate estuary. FEMS Microbiol Ecol 2018; 94:5037919. [DOI: 10.1093/femsec/fiy119] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/10/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Helena Osterholz
- ICBM-MPI Bridging Group for Marine Geochemistry, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
| | - David L Kirchman
- School of Marine Science and Policy, University of Delaware, Lewes, DE 19958, USA
| | - Jutta Niggemann
- ICBM-MPI Bridging Group for Marine Geochemistry, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
| | - Thorsten Dittmar
- ICBM-MPI Bridging Group for Marine Geochemistry, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
369
|
Zhou J, Richlen ML, Sehein TR, Kulis DM, Anderson DM, Cai Z. Microbial Community Structure and Associations During a Marine Dinoflagellate Bloom. Front Microbiol 2018; 9:1201. [PMID: 29928265 PMCID: PMC5998739 DOI: 10.3389/fmicb.2018.01201] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 05/16/2018] [Indexed: 11/13/2022] Open
Abstract
Interactions between microorganisms and algae during bloom events significantly impacts their physiology, alters ambient chemistry, and shapes ecosystem diversity. The potential role these interactions have in bloom development and decline are also of particular interest given the ecosystem impacts of algal blooms. We hypothesized that microbial community structure and succession is linked to specific bloom stages, and reflects complex interactions among taxa comprising the phycosphere environment. This investigation used pyrosequencing and correlation approaches to assess patterns and associations among bacteria, archaea, and microeukaryotes during a spring bloom of the dinoflagellate Alexandrium catenella. Within the bacterial community, Gammaproteobacteria and Bacteroidetes were predominant during the initial bloom stage, while Alphaproteobacteria, Cyanobacteria, and Actinobacteria were the most abundant taxa present during bloom onset and termination. In the archaea biosphere, methanogenic members were present during the early bloom period while the majority of species identified in the late bloom stage were ammonia-oxidizing archaea and Halobacteriales. Dinoflagellates were the major eukaryotic group present during most stages of the bloom, whereas a mixed assemblage comprising diatoms, green-algae, rotifera, and other microzooplankton were present during bloom termination. Temperature and salinity were key environmental factors associated with changes in bacterial and archaeal community structure, respectively, whereas inorganic nitrogen and inorganic phosphate were associated with eukaryotic variation. The relative contribution of environmental parameters measured during the bloom to variability among samples was 35.3%. Interaction analysis showed that Maxillopoda, Spirotrichea, Dinoflagellata, and Halobacteria were keystone taxa within the positive-correlation network, while Halobacteria, Dictyochophyceae, Mamiellophyceae, and Gammaproteobacteria were the main contributors to the negative-correlation network. The positive and negative relationships were the primary drivers of mutualist and competitive interactions that impacted algal bloom fate, respectively. Functional predictions showed that blooms enhance microbial carbohydrate and energy metabolism, and alter the sulfur cycle. Our results suggest that microbial community structure is strongly linked to bloom progression, although specific drivers of community interactions and responses are not well understood. The importance of considering biotic interactions (e.g., competition, symbiosis, and predation) when investigating the link between microbial ecological behavior and an algal bloom's trajectory is also highlighted.
Collapse
Affiliation(s)
- Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Mindy L. Richlen
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Taylor R. Sehein
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - David M. Kulis
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Donald M. Anderson
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| |
Collapse
|
370
|
Breitbart M, Bonnain C, Malki K, Sawaya NA. Phage puppet masters of the marine microbial realm. Nat Microbiol 2018; 3:754-766. [PMID: 29867096 DOI: 10.1038/s41564-018-0166-y] [Citation(s) in RCA: 370] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 04/20/2018] [Indexed: 11/09/2022]
Abstract
Viruses numerically dominate our oceans; however, we have only just begun to document the diversity, host range and infection dynamics of marine viruses, as well as the subsequent effects of infection on both host cell metabolism and oceanic biogeochemistry. Bacteriophages (that is, phages: viruses that infect bacteria) are highly abundant and are known to play critical roles in bacterial mortality, biogeochemical cycling and horizontal gene transfer. This Review Article summarizes current knowledge of marine viral ecology and highlights the importance of phage particles to the dissolved organic matter pool, as well as the complex interactions between phages and their bacterial hosts. We emphasize the newly recognized roles of phages as puppet masters of their bacterial hosts, where phages are capable of altering the metabolism of infected bacteria through the expression of auxiliary metabolic genes and the redirection of host gene expression patterns. Finally, we propose the 'royal family model' as a hypothesis to describe successional patterns of bacteria and phages over time in marine systems, where despite high richness and significant seasonal differences, only a small number of phages appear to continually dominate a given marine ecosystem. Although further testing is required, this model provides a framework for assessing the specificity and ecological consequences of phage-host dynamics.
Collapse
Affiliation(s)
- Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, FL, USA.
| | - Chelsea Bonnain
- College of Marine Science, University of South Florida, Saint Petersburg, FL, USA
| | - Kema Malki
- College of Marine Science, University of South Florida, Saint Petersburg, FL, USA
| | - Natalie A Sawaya
- College of Marine Science, University of South Florida, Saint Petersburg, FL, USA
| |
Collapse
|
371
|
Banerjee S, Schlaeppi K, van der Heijden MGA. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol 2018; 16:567-576. [DOI: 10.1038/s41579-018-0024-1] [Citation(s) in RCA: 839] [Impact Index Per Article: 119.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
372
|
Jones AC, Hambright KD, Caron DA. Ecological Patterns Among Bacteria and Microbial Eukaryotes Derived from Network Analyses in a Low-Salinity Lake. MICROBIAL ECOLOGY 2018; 75:917-929. [PMID: 29110066 DOI: 10.1007/s00248-017-1087-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
Microbial communities are comprised of complex assemblages of highly interactive taxa. We employed network analyses to identify and describe microbial interactions and co-occurrence patterns between microbial eukaryotes and bacteria at two locations within a low salinity (0.5-3.5 ppt) lake over an annual cycle. We previously documented that the microbial diversity and community composition within Lake Texoma, southwest USA, were significantly affected by both seasonal forces and a site-specific bloom of the harmful alga, Prymnesium parvum. We used network analyses to answer ecological questions involving both the bacterial and microbial eukaryotic datasets and to infer ecological relationships within the microbial communities. Patterns of connectivity at both locations reflected the seasonality of the lake including a large rain disturbance in May, while a comparison of the communities between locations revealed a localized response to the algal bloom. A network built from shared nodes (microbial operational taxonomic units and environmental variables) and correlations identified conserved associations at both locations within the lake. Using network analyses, we were able to detect disturbance events, characterize the ecological extent of a harmful algal bloom, and infer ecological relationships not apparent from diversity statistics alone.
Collapse
Affiliation(s)
- Adriane Clark Jones
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-0371, USA.
- Department of Biological Sciences, Mount Saint Mary's University, Los Angeles, CA, 90049, USA.
| | - K David Hambright
- Program in Ecology and Evolutionary Biology, Department of Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - David A Caron
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-0371, USA
| |
Collapse
|
373
|
Schmeller DS, Loyau A, Bao K, Brack W, Chatzinotas A, De Vleeschouwer F, Friesen J, Gandois L, Hansson SV, Haver M, Le Roux G, Shen J, Teisserenc R, Vredenburg VT. People, pollution and pathogens - Global change impacts in mountain freshwater ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 622-623:756-763. [PMID: 29223902 DOI: 10.1016/j.scitotenv.2017.12.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 05/06/2023]
Abstract
Mountain catchments provide for the livelihood of more than half of humankind, and have become a key destination for tourist and recreation activities globally. Mountain ecosystems are generally considered to be less complex and less species diverse due to the harsh environmental conditions. As such, they are also more sensitive to the various impacts of the Anthropocene. For this reason, mountain regions may serve as sentinels of change and provide ideal ecosystems for studying climate and global change impacts on biodiversity. We here review different facets of anthropogenic impacts on mountain freshwater ecosystems. We put particular focus on micropollutants and their distribution and redistribution due to hydrological extremes, their direct influence on water quality and their indirect influence on ecosystem health via changes of freshwater species and their interactions. We show that those changes may drive pathogen establishment in new environments with harmful consequences for freshwater species, but also for the human population. Based on the reviewed literature, we recommend reconstructing the recent past of anthropogenic impact through sediment analyses, to focus efforts on small, but highly productive waterbodies, and to collect data on the occurrence and variability of microorganisms, biofilms, plankton species and key species, such as amphibians due to their bioindicator value for ecosystem health and water quality. The newly gained knowledge can then be used to develop a comprehensive framework of indicators to robustly inform policy and decision making on current and future risks for ecosystem health and human well-being.
Collapse
Affiliation(s)
- Dirk S Schmeller
- Helmholtz Centre for Environmental Research - UFZ, Department of Conservation Biology, Permoserstrasse 15, 04318 Leipzig, Germany; ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Adeline Loyau
- Helmholtz Centre for Environmental Research - UFZ, Department of Conservation Biology, Permoserstrasse 15, 04318 Leipzig, Germany; ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France; Helmholtz Centre for Environmental Research - UFZ, Department of System Ecotoxicology, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Kunshan Bao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, East Beijing Road 73, 210008 Nanjing, China
| | - Werner Brack
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstrasse 15, 04318 Leipzig, Germany; RWTH Aachen University, Department of Ecosystem Analysis, Institute for Environmental Research, Worringerweg 1, 52074 Aachen, Germany
| | - Antonis Chatzinotas
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig, Germany
| | | | - Jan Friesen
- Helmholtz Centre for Environmental Research - UFZ, Department of Catchment Hydrology, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Laure Gandois
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Sophia V Hansson
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France; Aarhus University, Department of Bioscience - Arctic Research Centre, Fredriksborgvej 399, 4000 Roskilde, Denmark
| | - Marilen Haver
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Gaël Le Roux
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Ji Shen
- Helmholtz Centre for Environmental Research - UFZ, Department of System Ecotoxicology, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Roman Teisserenc
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Vance T Vredenburg
- San Francisco State University, Department of Biology, 1600 Holloway Ave, San Francisco, CA 94132, USA
| |
Collapse
|
374
|
Houghton IA, Koseff JR, Monismith SG, Dabiri JO. Vertically migrating swimmers generate aggregation-scale eddies in a stratified column. Nature 2018; 556:497-500. [PMID: 29670284 DOI: 10.1038/s41586-018-0044-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 03/12/2018] [Indexed: 01/16/2023]
Abstract
Biologically generated turbulence has been proposed as an important contributor to nutrient transport and ocean mixing1-3. However, to produce non-negligible transport and mixing, such turbulence must produce eddies at scales comparable to the length scales of stratification in the ocean. It has previously been argued that biologically generated turbulence is limited to the scale of the individual animals involved 4 , which would make turbulence created by highly abundant centimetre-scale zooplankton such as krill irrelevant to ocean mixing. Their small size notwithstanding, zooplankton form dense aggregations tens of metres in vertical extent as they undergo diurnal vertical migration over hundreds of metres3,5,6. This behaviour potentially introduces additional length scales-such as the scale of the aggregation-that are of relevance to animal interactions with the surrounding water column. Here we show that the collective vertical migration of centimetre-scale swimmers-as represented by the brine shrimp Artemia salina-generates aggregation-scale eddies that mix a stable density stratification, resulting in an effective turbulent diffusivity up to three orders of magnitude larger than the molecular diffusivity of salt. These observed large-scale mixing eddies are the result of flow in the wakes of the individual organisms coalescing to form a large-scale downward jet during upward swimming, even in the presence of a strong density stratification relative to typical values observed in the ocean. The results illustrate the potential for marine zooplankton to considerably alter the physical and biogeochemical structure of the water column, with potentially widespread effects owing to their high abundance in climatically important regions of the ocean 7 .
Collapse
Affiliation(s)
- Isabel A Houghton
- Bob and Norma Street Environmental Fluid Mechanics Laboratory, Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Jeffrey R Koseff
- Bob and Norma Street Environmental Fluid Mechanics Laboratory, Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Stephen G Monismith
- Bob and Norma Street Environmental Fluid Mechanics Laboratory, Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - John O Dabiri
- Bob and Norma Street Environmental Fluid Mechanics Laboratory, Civil and Environmental Engineering, Stanford University, Stanford, CA, USA. .,Mechanical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
375
|
Function and functional redundancy in microbial systems. Nat Ecol Evol 2018; 2:936-943. [PMID: 29662222 DOI: 10.1038/s41559-018-0519-1] [Citation(s) in RCA: 775] [Impact Index Per Article: 110.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 02/26/2018] [Indexed: 11/08/2022]
Abstract
Microbial communities often exhibit incredible taxonomic diversity, raising questions regarding the mechanisms enabling species coexistence and the role of this diversity in community functioning. On the one hand, many coexisting but taxonomically distinct microorganisms can encode the same energy-yielding metabolic functions, and this functional redundancy contrasts with the expectation that species should occupy distinct metabolic niches. On the other hand, the identity of taxa encoding each function can vary substantially across space or time with little effect on the function, and this taxonomic variability is frequently thought to result from ecological drift between equivalent organisms. Here, we synthesize the powerful paradigm emerging from these two patterns, connecting the roles of function, functional redundancy and taxonomy in microbial systems. We conclude that both patterns are unlikely to be the result of ecological drift, but are inevitable emergent properties of open microbial systems resulting mainly from biotic interactions and environmental and spatial processes.
Collapse
|
376
|
Wear EK, Wilbanks EG, Nelson CE, Carlson CA. Primer selection impacts specific population abundances but not community dynamics in a monthly time-series 16S rRNA gene amplicon analysis of coastal marine bacterioplankton. Environ Microbiol 2018. [PMID: 29521439 PMCID: PMC6175402 DOI: 10.1111/1462-2920.14091] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Primers targeting the 16S small subunit ribosomal RNA marker gene, used to characterize bacterial and archaeal communities, have recently been re‐evaluated for marine planktonic habitats. To investigate whether primer selection affects the ecological interpretation of bacterioplankton populations and community dynamics, amplicon sequencing with four primer sets targeting several hypervariable regions of the 16S rRNA gene was conducted on both mock communities constructed from cloned 16S rRNA genes and a time‐series of DNA samples from the temperate coastal Santa Barbara Channel. Ecological interpretations of community structure (delineation of depth and seasonality, correlations with environmental factors) were similar across primer sets, while population dynamics varied. We observed substantial differences in relative abundances of taxa known to be poorly resolved by some primer sets, such as Thaumarchaeota and SAR11, and unexpected taxa including Roseobacter clades. Though the magnitude of relative abundances of common OTUs differed between primer sets, the relative abundances of the OTUs were nonetheless strongly correlated. We do not endorse one primer set but rather enumerate strengths and weaknesses to facilitate selection appropriate to a system or experimental goal. While 16S rRNA gene primer bias suggests caution in assessing quantitative population dynamics, community dynamics appear robust across studies using different primers.
Collapse
Affiliation(s)
- Emma K Wear
- Department of Ecology, Evolution and Marine Biology and Marine Science Institute; University of California, Santa Barbara, CA 93106, USA
| | - Elizabeth G Wilbanks
- Department of Ecology, Evolution and Marine Biology and Marine Science Institute; University of California, Santa Barbara, CA 93106, USA
| | - Craig E Nelson
- Center for Microbial Oceanography: Research and Education; Department of Oceanography and Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Craig A Carlson
- Department of Ecology, Evolution and Marine Biology and Marine Science Institute; University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
377
|
Deng Y, Li B, Zhang T. Bacteria That Make a Meal of Sulfonamide Antibiotics: Blind Spots and Emerging Opportunities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3854-3868. [PMID: 29498514 DOI: 10.1021/acs.est.7b06026] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The release of sulfonamide antibiotics into the environment is alarming because the existence of these antibiotics in the environment may promote resistance in clinically relevant microorganisms, which is a potential threat to the effectiveness of antibiotic therapies. Controllable biodegradation processes are of particular significance for the inexpensive yet effective restoration of sulfonamide-contaminated environments. Cultivation-based techniques have already made great strides in successfully isolating bacteria with promising sulfonamide degradation abilities, but the implementation of these isolates in bioremediation has been limited by unknown microbial diversity, vast population responsiveness, and the impact of perturbations from open and complex environments. Advances in DNA sequencing technologies and metagenomic analyses are being used to complement the information derived from cultivation-based procedures. In this Review, we provide an overview of the growing understanding of isolated sulfonamide degraders and identify shortcomings of the prevalent literature in this field. In addition, we propose a technical paradigm that integrates experimental testing with metagenomic analysis to pave the way for improved understanding and exploitation of these ecologically important isolates. Overall, this Review aims to outline how metagenomic studies of isolated sulfonamide degraders are being applied for the advancement of bioremediation strategies for sulfonamide contamination.
Collapse
Affiliation(s)
- Yu Deng
- Environmental Biotechnology Laboratory, Department of Civil Engineering , The University of Hong Kong , Pokfulam Road , Hong Kong , PR China
| | - Bing Li
- Division of Energy & Environment, Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , PR China
| | - Tong Zhang
- Environmental Biotechnology Laboratory, Department of Civil Engineering , The University of Hong Kong , Pokfulam Road , Hong Kong , PR China
| |
Collapse
|
378
|
Taxon Disappearance from Microbiome Analysis Reinforces the Value of Mock Communities as a Standard in Every Sequencing Run. mSystems 2018; 3:mSystems00023-18. [PMID: 29629423 PMCID: PMC5883066 DOI: 10.1128/msystems.00023-18] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/07/2018] [Indexed: 01/10/2023] Open
Abstract
Mock communities have been used in microbiome method development to help estimate biases introduced in PCR amplification and sequencing and to optimize pipeline outputs. Nevertheless, the strong value of routine mock community analysis beyond initial method development is rarely, if ever, considered. Here we report that our routine use of mock communities as internal standards allowed us to discover highly aberrant and strong biases in the relative proportions of multiple taxa in a single Illumina HiSeqPE250 run. In this run, an important archaeal taxon virtually disappeared from all samples, and other mock community taxa showed >2-fold high or low abundance, whereas a rerun of those identical amplicons (from the same reaction tubes) on a different date yielded "normal" results. Although obvious from the strange mock community results, we could have easily missed the problem had we not used the mock communities because of natural variation of microbiomes at our site. The "normal" results were validated over four MiSeqPE300 runs and three HiSeqPE250 runs, and run-to-run variation was usually low. While validating these "normal" results, we also discovered that some mock microbial taxa had relatively modest, but consistent, differences between sequencing platforms. We strongly advise the use of mock communities in every sequencing run to distinguish potentially serious aberrations from natural variations. The mock communities should have more than just a few members and ideally at least partly represent the samples being analyzed to detect problems that show up only in some taxa and also to help validate clustering. IMPORTANCE Despite the routine use of standards and blanks in virtually all chemical or physical assays and most biological studies (a kind of "control"), microbiome analysis has traditionally lacked such standards. Here we show that unexpected problems of unknown origin can occur in such sequencing runs and yield completely incorrect results that would not necessarily be detected without the use of standards. Assuming that the microbiome sequencing analysis works properly every time risks serious errors that can be detected by the use of mock communities.
Collapse
|
379
|
Berdjeb L, Parada A, Needham DM, Fuhrman JA. Short-term dynamics and interactions of marine protist communities during the spring-summer transition. ISME JOURNAL 2018; 12:1907-1917. [PMID: 29599520 DOI: 10.1038/s41396-018-0097-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 02/15/2018] [Accepted: 02/26/2018] [Indexed: 11/09/2022]
Abstract
We examined the short-term variability, by daily to weekly sampling, of protist assemblages from March to July in surface water of the San Pedro Ocean Time-series station (eastern North Pacific), by V4 Illumina sequencing of the 18S rRNA gene. The sampling period encompassed a spring bloom followed by progression to summer conditions. Several protistan taxa displayed sharp increases and declines, with whole community Bray-Curtis dissimilarities of adjacent days being 66% in March and 40% in May. High initial abundance of parasitic Cercozoa Cryothecomonas longipes and Protaspis grandis coincided with a precipitous decline of blooming Pseudo-nitzschia diatoms, possibly suggesting their massive infection by these parasites; these cercozoans were hardly detectable afterwards. Canonical correspondence analysis indicated a limited predictability of community variability from environmental factors. This indicates that other factors are relevant in explaining changes in protist community composition at short temporal scales, such as interspecific relationships, stochastic processes, mixing with adjacent water, or advection of patches with different protist communities. Association network analysis revealed that interactions between the many parasitic OTUs and other taxa were overwhelmingly positive and suggest that although sometimes parasites may cause a crash of host populations, they may often follow their hosts and do not regularly cause enough mortality to potentially create negative correlations at the daily to weekly time scales we studied.
Collapse
Affiliation(s)
- Lyria Berdjeb
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Alma Parada
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - David M Needham
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
380
|
Kelly RP, Gallego R, Jacobs-Palmer E. The effect of tides on nearshore environmental DNA. PeerJ 2018; 6:e4521. [PMID: 29576982 PMCID: PMC5863721 DOI: 10.7717/peerj.4521] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/28/2018] [Indexed: 11/20/2022] Open
Abstract
We can recover genetic information from organisms of all kinds using environmental sampling. In recent years, sequencing this environmental DNA (eDNA) has become a tractable means of surveying many species using water, air, or soil samples. The technique is beginning to become a core tool for ecologists, environmental scientists, and biologists of many kinds, but the temporal resolution of eDNA sampling is often unclear, limiting the ecological interpretations of the resulting datasets. Here, in a temporally and spatially replicated field study using ca. 313 bp of eukaryotic COI mtDNA as a marker, we find that nearshore organismal communities are largely consistent across tides. Our findings suggest that nearshore eDNA from both benthic and planktonic taxa tends to be endogenous to the site and water mass sampled, rather than changing with each tidal cycle. However, where physiochemical water mass characteristics change, we find that the relative contributions of a broad range of organisms to eDNA communities shift in concert.
Collapse
Affiliation(s)
- Ryan P Kelly
- School of Marine and Environmental Affairs, University of Washington, Seattle, WA, United States of America
| | - Ramón Gallego
- School of Marine and Environmental Affairs, University of Washington, Seattle, WA, United States of America
| | - Emily Jacobs-Palmer
- School of Marine and Environmental Affairs, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
381
|
Buttigieg PL, Fadeev E, Bienhold C, Hehemann L, Offre P, Boetius A. Marine microbes in 4D-using time series observation to assess the dynamics of the ocean microbiome and its links to ocean health. Curr Opin Microbiol 2018; 43:169-185. [PMID: 29477022 DOI: 10.1016/j.mib.2018.01.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 02/07/2023]
Abstract
Microbial observation is of high relevance in assessing marine phenomena of scientific and societal concern including ocean productivity, harmful algal blooms, and pathogen exposure. However, we have yet to realise its potential to coherently and comprehensively report on global ocean status. The ability of satellites to monitor the distribution of phytoplankton has transformed our appreciation of microbes as the foundation of key ecosystem services; however, more in-depth understanding of microbial dynamics is needed to fully assess natural and anthropogenically induced variation in ocean ecosystems. While this first synthesis shows that notable efforts exist, vast regions such as the ocean depths, the open ocean, the polar oceans, and most of the Southern Hemisphere lack consistent observation. To secure a coordinated future for a global microbial observing system, existing long-term efforts must be better networked to generate shared bioindicators of the Global Ocean's state and health.
Collapse
Affiliation(s)
- Pier Luigi Buttigieg
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, D-27570 Bremerhaven, Germany; Max Planck Institut für Marine Mikrobiologie, Celsiusstr. 1, D-28359 Bremen, Germany.
| | - Eduard Fadeev
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, D-27570 Bremerhaven, Germany; Max Planck Institut für Marine Mikrobiologie, Celsiusstr. 1, D-28359 Bremen, Germany
| | - Christina Bienhold
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, D-27570 Bremerhaven, Germany; Max Planck Institut für Marine Mikrobiologie, Celsiusstr. 1, D-28359 Bremen, Germany
| | - Laura Hehemann
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Pierre Offre
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands
| | - Antje Boetius
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, D-27570 Bremerhaven, Germany; Max Planck Institut für Marine Mikrobiologie, Celsiusstr. 1, D-28359 Bremen, Germany; MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Str. 8, D-28334 Bremen, Germany.
| |
Collapse
|
382
|
Freilich MA, Wieters E, Broitman BR, Marquet PA, Navarrete SA. Species co-occurrence networks: Can they reveal trophic and non-trophic interactions in ecological communities? Ecology 2018; 99:690-699. [PMID: 29336480 DOI: 10.1002/ecy.2142] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 12/02/2017] [Accepted: 12/18/2017] [Indexed: 01/31/2023]
Abstract
Co-occurrence methods are increasingly utilized in ecology to infer networks of species interactions where detailed knowledge based on empirical studies is difficult to obtain. Their use is particularly common, but not restricted to, microbial networks constructed from metagenomic analyses. In this study, we test the efficacy of this procedure by comparing an inferred network constructed using spatially intensive co-occurrence data from the rocky intertidal zone in central Chile to a well-resolved, empirically based, species interaction network from the same region. We evaluated the overlap in the information provided by each network and the extent to which there is a bias for co-occurrence data to better detect known trophic or non-trophic, positive or negative interactions. We found a poor correspondence between the co-occurrence network and the known species interactions with overall sensitivity (probability of true link detection) equal to 0.469, and specificity (true non-interaction) equal to 0.527. The ability to detect interactions varied with interaction type. Positive non-trophic interactions such as commensalism and facilitation were detected at the highest rates. These results demonstrate that co-occurrence networks do not represent classical ecological networks in which interactions are defined by direct observations or experimental manipulations. Co-occurrence networks provide information about the joint spatial effects of environmental conditions, recruitment, and, to some extent, biotic interactions, and among the latter, they tend to better detect niche-expanding positive non-trophic interactions. Detection of links (sensitivity or specificity) was not higher for well-known intertidal keystone species than for the rest of consumers in the community. Thus, as observed in previous empirical and theoretical studies, patterns of interactions in co-occurrence networks must be interpreted with caution, especially when extending interaction-based ecological theory to interpret network variability and stability. Co-occurrence networks may be particularly valuable for analysis of community dynamics that blends interactions and environment, rather than pairwise interactions alone.
Collapse
Affiliation(s)
- Mara A Freilich
- Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
- Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 02543, USA
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, C.P. 6513677, Santiago, Chile
| | - Evie Wieters
- Estación Costera de Investigaciones Marinas, Departamento de Ecología, Center for Marine Conservation, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bernardo R Broitman
- Centro de Estudios Avanzados en Zonas Áridas, Ossandon 877, Coquimbo, Chile
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Pablo A Marquet
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, C.P. 6513677, Santiago, Chile
- Instituto de Ecología y Biodiversidad (IEB), Las Palmeras 3425, Santiago, Chile
- Instituto de Sistemas Complejos de Valparaíso (ISCV), Artillería 470, Cerro Artillería, Valparaiso, Chile
- Laboratorio Internacional en Cambio Global (LINCGlobal), Centro de Cambio Global (PUCGlobal), Pontificia Universidad Catolica de Chile, Alameda 340, C.P. 6513677, Santiago, Chile
- The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico, 87501, USA
| | - Sergio A Navarrete
- Estación Costera de Investigaciones Marinas, Departamento de Ecología, Center for Marine Conservation, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratorio Internacional en Cambio Global (LINCGlobal), Centro de Cambio Global (PUCGlobal), Pontificia Universidad Catolica de Chile, Alameda 340, C.P. 6513677, Santiago, Chile
| |
Collapse
|
383
|
Edwardson CF, Hollibaugh JT. Composition and Activity of Microbial Communities along the Redox Gradient of an Alkaline, Hypersaline, Lake. Front Microbiol 2018; 9:14. [PMID: 29445359 PMCID: PMC5797777 DOI: 10.3389/fmicb.2018.00014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/05/2018] [Indexed: 11/21/2022] Open
Abstract
We compared the composition of microbial communities obtained by sequencing 16S rRNA gene amplicons with taxonomy derived from metatranscriptomes from the same samples. Samples were collected from alkaline, hypersaline Mono Lake, California, USA at five depths that captured the major redox zones of the lake during the onset of meromixis. The prokaryotic community was dominated by bacteria from the phyla Proteobacteria, Firmicutes, and Bacteroidetes, while the picoeukaryotic chlorophyte Picocystis dominated the eukaryotes. Most (80%) of the abundant (>1% relative abundance) OTUs recovered as amplicons of 16S rRNA genes have been reported in previous surveys, indicating that Mono Lake's microbial community has remained stable over 12 years that have included periods of regular, annual overturn interspersed by episodes of prolonged meromixis that result in extremely reducing conditions in bottom water. Metatranscriptomic sequences binned predominately to the Gammaproteobacteria genera Thioalkalivibrio (4–13%) and Thioalkalimicrobium (0–14%); and to the Firmicutes genera Dethiobacter (0–5%) and Clostridium (1–4%), which were also abundant in the 16S rRNA gene amplicon libraries. This study provides insight into the taxonomic affiliations of transcriptionally active communities of the lake's water column under different redox conditions.
Collapse
Affiliation(s)
- Christian F Edwardson
- Department of Marine Sciences, University of Georgia, Athens, GA, United States.,Department of Microbiology, University of Georgia, Athens, GA, United States
| | - James T Hollibaugh
- Department of Marine Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
384
|
Martin-Platero AM, Cleary B, Kauffman K, Preheim SP, McGillicuddy DJ, Alm EJ, Polz MF. High resolution time series reveals cohesive but short-lived communities in coastal plankton. Nat Commun 2018; 9:266. [PMID: 29348571 PMCID: PMC5773528 DOI: 10.1038/s41467-017-02571-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 12/11/2017] [Indexed: 11/09/2022] Open
Abstract
Because microbial plankton in the ocean comprise diverse bacteria, algae, and protists that are subject to environmental forcing on multiple spatial and temporal scales, a fundamental open question is to what extent these organisms form ecologically cohesive communities. Here we show that although all taxa undergo large, near daily fluctuations in abundance, microbial plankton are organized into clearly defined communities whose turnover is rapid and sharp. We analyze a time series of 93 consecutive days of coastal plankton using a technique that allows inference of communities as modular units of interacting taxa by determining positive and negative correlations at different temporal frequencies. This approach shows both coordinated population expansions that demarcate community boundaries and high frequency of positive and negative associations among populations within communities. Our analysis thus highlights that the environmental variability of the coastal ocean is mirrored in sharp transitions of defined but ephemeral communities of organisms.
Collapse
Affiliation(s)
- Antonio M Martin-Platero
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Department of Microbiology, University of Granada, Granada, 18071, Spain
| | - Brian Cleary
- Broad Institute, Cambridge, MA, 02139, USA.,Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kathryn Kauffman
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sarah P Preheim
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Department of Geography and Environmental Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Dennis J McGillicuddy
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Eric J Alm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. .,Broad Institute, Cambridge, MA, 02139, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Martin F Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
385
|
Yang W, Zheng Z, Zheng C, Lu K, Ding D, Zhu J. Temporal variations in a phytoplankton community in a subtropical reservoir: An interplay of extrinsic and intrinsic community effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:720-727. [PMID: 28866399 DOI: 10.1016/j.scitotenv.2017.08.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
The phytoplankton community structure is potentially influenced by both extrinsic effects originating from the surrounding environment and intrinsic effects relying on interspecific interactions between two species. However, few studies have simultaneously considered both types of effects and assessed the relative importance of these factors. In this study, we used data collected over nine months (August 2012-May 2013) from a typical subtropical reservoir in southeast China to analyze the temporal variation of its phytoplankton community structure and develop a quantitative understanding of the extrinsic and intrinsic effects on phytoplankton community dynamics. Significant temporal variations were observed in environmental variables as well as the phytoplankton and zooplankton communities, whereas their variational trajectories and directions were entirely different. Variance partitioning analysis showed that extrinsic factors significantly explained only 31% of the variation in the phytoplankton community, thus suggesting that these factors were incomplete predictors of the community structure. Random forest-based models showed that 48% of qualified responsible phytoplankton species were more accurately predicted by phytoplankton-only models, which revealed clear effects of interspecific species-to-species interactions. Furthermore, we used association networks to model the interactions among phytoplankton, zooplankton and the environment. Network comparisons indicated that interspecific interactions were widely present in the phytoplankton community and dominated the network rather than those between phytoplankton and extrinsic factors. These findings expand the current understanding of the underlying mechanisms that govern phytoplankton community dynamics.
Collapse
Affiliation(s)
- Wen Yang
- School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Zhongming Zheng
- School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Cheng Zheng
- School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Kaihong Lu
- School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Dewen Ding
- The First Institute of Oceanography, State Oceanic Administration (SOA), Qingdao 266061, China
| | - Jinyong Zhu
- School of Marine Science, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
386
|
Koch C, Korth B, Harnisch F. Microbial ecology-based engineering of Microbial Electrochemical Technologies. Microb Biotechnol 2018; 11:22-38. [PMID: 28805354 PMCID: PMC5743830 DOI: 10.1111/1751-7915.12802] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 11/27/2022] Open
Abstract
Microbial ecology is devoted to the understanding of dynamics, activity and interaction of microorganisms in natural and technical ecosystems. Bioelectrochemical systems represent important technical ecosystems, where microbial ecology is of highest importance for their function. However, whereas aspects of, for example, materials and reactor engineering are commonly perceived as highly relevant, the study and engineering of microbial ecology are significantly underrepresented in bioelectrochemical systems. This shortfall may be assigned to a deficit on knowledge and power of these methods as well as the prerequisites for their thorough application. This article discusses not only the importance of microbial ecology for microbial electrochemical technologies but also shows which information can be derived for a knowledge-driven engineering. Instead of providing a comprehensive list of techniques from which it is hard to judge the applicability and value of information for a respective one, this review illustrates the suitability of selected techniques on a case study. Thereby, best practice for different research questions is provided and a set of key questions for experimental design, data acquisition and analysis is suggested.
Collapse
Affiliation(s)
- Christin Koch
- Department of Environmental MicrobiologyHelmholtz Centre for Environmental Research GmbH ‐ UFZPermoserstraße 1504318LeipzigGermany
| | - Benjamin Korth
- Department of Environmental MicrobiologyHelmholtz Centre for Environmental Research GmbH ‐ UFZPermoserstraße 1504318LeipzigGermany
| | - Falk Harnisch
- Department of Environmental MicrobiologyHelmholtz Centre for Environmental Research GmbH ‐ UFZPermoserstraße 1504318LeipzigGermany
| |
Collapse
|
387
|
Xie W, Luo H, Murugapiran SK, Dodsworth JA, Chen S, Sun Y, Hedlund BP, Wang P, Fang H, Deng M, Zhang CL. Localized high abundance of Marine Group II archaea in the subtropical Pearl River Estuary: implications for their niche adaptation. Environ Microbiol 2017; 20:734-754. [PMID: 29235710 DOI: 10.1111/1462-2920.14004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/18/2017] [Accepted: 11/19/2017] [Indexed: 11/29/2022]
Abstract
Marine Group II archaea are widely distributed in global oceans and dominate the total archaeal community within the upper euphotic zone of temperate waters. However, factors controlling the distribution of MGII are poorly delineated and the physiology and ecological functions of these still-uncultured organisms remain elusive. In this study, we investigated the planktonic MGII associated with particles and in free-living forms in the Pearl River Estuary (PRE) over a 10-month period. We detected high abundance of particle-associated MGII in PRE (up to ∼108 16S rRNA gene copies/l), which was around 10-fold higher than the free-living MGII in the same region, and an order of magnitude higher than previously reported in other marine environments. 10‰ salinity appeared to be a threshold value for these MGII because MGII abundance decreased sharply below it. Above 10‰ salinity, the abundance of MGII on the particles was positively correlated with phototrophs and MGII in the surface water was negatively correlated with irradiance. However, the abundances of those free-living MGII showed positive correlations with salinity and temperature, suggesting the different physiological characteristics between particle-attached and free-living MGIIs. A nearly completely assembled metagenome, MGIIa_P, was recovered using metagenome binning methods. Compared with the other two MGII genomes from surface ocean, MGIIa_P contained higher proportions of glycoside hydrolases, indicating the ability of MGIIa_P to hydrolyse glycosidic bonds in complex sugars in PRE. MGIIa_P is the first assembled MGII metagenome containing a catalase gene, which might be involved in scavenging reactive oxygen species generated by the abundant phototrophs in the eutrophic PRE. Our study presented the widespread and high abundance of MGII in the water columns of PRE, and characterized the determinant abiotic factors affecting their distribution. Their association with heterotrophs, preference for particles and resourceful metabolic traits indicate MGII might play a significant role in metabolising organic matters in the PRE and other temperate estuarine systems.
Collapse
Affiliation(s)
- Wei Xie
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Senthil K Murugapiran
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA.,MetaGénoPolis, Institut National de la Recherche Agronomique (INRA), Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | - Jeremy A Dodsworth
- Department of Biology, California State University, San Bernardino, CA 92407, USA
| | - Songze Chen
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Ying Sun
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA
| | - Peng Wang
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Huaying Fang
- School of Mathematical Sciences, Peking University, Beijing, 100871, China
| | - Minghua Deng
- School of Mathematical Sciences, Peking University, Beijing, 100871, China
| | - Chuanlun L Zhang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
388
|
Contrasting patterns of genome-level diversity across distinct co-occurring bacterial populations. ISME JOURNAL 2017; 12:742-755. [PMID: 29222442 PMCID: PMC5962901 DOI: 10.1038/s41396-017-0001-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 08/16/2017] [Accepted: 10/09/2017] [Indexed: 01/25/2023]
Abstract
To understand the forces driving differentiation and diversification in wild bacterial populations, we must be able to delineate and track ecologically relevant units through space and time. Mapping metagenomic sequences to reference genomes derived from the same environment can reveal genetic heterogeneity within populations, and in some cases, be used to identify boundaries between genetically similar, but ecologically distinct, populations. Here we examine population-level heterogeneity within abundant and ubiquitous freshwater bacterial groups such as the acI Actinobacteria and LD12 Alphaproteobacteria (the freshwater sister clade to the marine SAR11) using 33 single-cell genomes and a 5-year metagenomic time series. The single-cell genomes grouped into 15 monophyletic clusters (termed “tribes”) that share at least 97.9% 16S rRNA identity. Distinct populations were identified within most tribes based on the patterns of metagenomic read recruitments to single-cell genomes representing these tribes. Genetically distinct populations within tribes of the acI Actinobacterial lineage living in the same lake had different seasonal abundance patterns, suggesting these populations were also ecologically distinct. In contrast, sympatric LD12 populations were less genetically differentiated. This suggests that within one lake, some freshwater lineages harbor genetically discrete (but still closely related) and ecologically distinct populations, while other lineages are composed of less differentiated populations with overlapping niches. Our results point at an interplay of evolutionary and ecological forces acting on these communities that can be observed in real time.
Collapse
|
389
|
Xie X, He Z, Hu X, Yin H, Liu X, Yang Y. Large-scale seaweed cultivation diverges water and sediment microbial communities in the coast of Nan'ao Island, South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 598:97-108. [PMID: 28437776 DOI: 10.1016/j.scitotenv.2017.03.233] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/25/2017] [Accepted: 03/25/2017] [Indexed: 06/07/2023]
Abstract
Seaweed cultivation not only provides economy benefits, but also remediates the environment contaminated by mariculture of animals (e.g., fish, shrimps). However, the response of microbial communities to seaweed cultivation is poorly understood. In this study, we analyzed the diversity, composition, and structure of water and sediment microbial communities at a seaweed, Gracilaria lemaneiformis, cultivation zone and a control zone near Nan'ao Island, South China Sea by MiSeq sequencing of 16S rRNA gene amplicons. We found that large-scale cultivation of G. lemaneiformis increased dissolved oxygen (DO) and pH but decreased inorganic nutrients, possibly due to nutrient uptake, photosynthesis and other physiological processes of G. lemaneiformis. These environmental changes significantly (adonis, P<0.05) shifted the microbial community composition and structure of both water column and sediment samples in the G. lemaneiformis cultivation zone, compared to the control zone. Also, certain microbial taxa associated with seaweed, such as Arenibacter, Croceitalea, Glaciecola, Leucothrix and Maribacter were enriched at the cultivation zone. In addition, we have proposed a conceptual model to summarize the results in this study and guide future studies on relationships among seaweed processes, microbial communities and their environments. Thus, this study not only provides new insights into our understanding the effect of G. lemaneiformis cultivation on microbial communities, but also guides future studies on coastal ecosystems.
Collapse
Affiliation(s)
- Xinfei Xie
- Institute of Hydrobiology, Department of Ecology, Jinan University, Guangzhou, China; Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Zhili He
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA; School of Environmental Science and Engineering, Environmental Microbiome Research Center, Sun Yat-Sen University, Guangzhou, China.
| | - Xiaojuan Hu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Yufeng Yang
- Institute of Hydrobiology, Department of Ecology, Jinan University, Guangzhou, China.
| |
Collapse
|
390
|
Tucker SJ, McManus GB, Katz LA, Grattepanche JD. Distribution of Abundant and Active Planktonic Ciliates in Coastal and Slope Waters Off New England. Front Microbiol 2017; 8:2178. [PMID: 29250036 PMCID: PMC5715329 DOI: 10.3389/fmicb.2017.02178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 10/23/2017] [Indexed: 11/18/2022] Open
Abstract
Despite their important role of linking microbial and classic marine food webs, data on biogeographical patterns of microbial eukaryotic grazers are limited, and even fewer studies have used molecular tools to assess active (i.e., those expressing genes) community members. Marine ciliate diversity is believed to be greatest at the chlorophyll maximum, where there is an abundance of autotrophic prey, and is often assumed to decline with depth. Here, we assess the abundant (DNA) and active (RNA) marine ciliate communities throughout the water column at two stations off the New England coast (Northwest Atlantic)—a coastal station 43 km from shore (40 m depth) and a slope station 135 km off shore (1,000 m). We analyze ciliate communities using a DNA fingerprinting technique, Denaturing Gradient Gel Electrophoresis (DGGE), which captures patterns of abundant community members. We compare estimates of ciliate communities from SSU-rDNA (abundant) and SSU-rRNA (active) and find complex patterns throughout the water column, including many active lineages below the photic zone. Our analyses reveal (1) a number of widely-distributed taxa that are both abundant and active; (2) considerable heterogeneity in patterns of presence/absence of taxa in offshore samples taken 50 m apart throughout the water column; and (3) three distinct ciliate assemblages based on position from shore and depth. Analysis of active (RNA) taxa uncovers biodiversity hidden to traditional DNA-based approaches (e.g., clone library, rDNA amplicon studies).
Collapse
Affiliation(s)
- Sarah J Tucker
- Department of Biological Sciences, Smith College, Northampton, MA, United States
| | - George B McManus
- Department of Marine Sciences, University of Connecticut, Groton, CT, United States
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, MA, United States.,Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, United States
| | | |
Collapse
|
391
|
Wu W, Lu HP, Sastri A, Yeh YC, Gong GC, Chou WC, Hsieh CH. Contrasting the relative importance of species sorting and dispersal limitation in shaping marine bacterial versus protist communities. ISME JOURNAL 2017; 12:485-494. [PMID: 29125596 PMCID: PMC5776463 DOI: 10.1038/ismej.2017.183] [Citation(s) in RCA: 274] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/23/2017] [Accepted: 09/24/2017] [Indexed: 01/21/2023]
Abstract
A central challenge in microbial ecology is to understand the underlying mechanisms driving community assembly, particularly in the continuum of species sorting and dispersal limitation. However, little is known about the relative importance of species sorting and dispersal limitation in shaping marine microbial communities; especially, how they are related to organism types/traits and water depth. Here, we used variation partitioning and null model analysis to compare mechanisms driving bacterial and protist metacommunity dynamics at the basin scale in the East China Sea, based on MiSeq paired-end sequencing of 16S ribosomal DNA (rDNA) and 18S rDNA, respectively, in surface, deep chlorophyll maximum and bottom layers. Our analyses indicated that protist communities were governed more strongly by species sorting relative to dispersal limitation than were bacterial communities; this pattern was consistent across the three-depth layers, albeit to different degrees. Furthermore, we detected that bacteria exhibited wider habitat niche breadths than protists, whereas, passive dispersal abilities were not appreciably different between them. Our findings support the 'size-plasticity' hypothesis: smaller organisms (bacteria) are less environment filtered than larger organisms (protists), as smaller organisms are more likely to be plastic in metabolic abilities and have greater environmental tolerance.
Collapse
Affiliation(s)
- Wenxue Wu
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Pei Lu
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Akash Sastri
- Biology Department and Ocean Networks Canada, University of Victoria, Victoria, British Columbia, Canada
| | - Yi-Chun Yeh
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Gwo-Ching Gong
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
| | - Wen-Chen Chou
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
| | - Chih-Hao Hsieh
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan.,Department of Life Science, Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan.,Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan.,National Center for Theoretical Sciences, Taipei, Taiwan
| |
Collapse
|
392
|
Wemheuer B, Wemheuer F, Meier D, Billerbeck S, Giebel HA, Simon M, Scherber C, Daniel R. Linking Compositional and Functional Predictions to Decipher the Biogeochemical Significance in DFAA Turnover of Abundant Bacterioplankton Lineages in the North Sea. Microorganisms 2017; 5:microorganisms5040068. [PMID: 29113091 PMCID: PMC5748577 DOI: 10.3390/microorganisms5040068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 11/16/2022] Open
Abstract
Deciphering the ecological traits of abundant marine bacteria is a major challenge in marine microbial ecology. In the current study, we linked compositional and functional predictions to elucidate such traits for abundant bacterioplankton lineages in the North Sea. For this purpose, we investigated entire and active bacterioplankton composition along a transect ranging from the German Bight to the northern North Sea by pyrotag sequencing of bacterial 16S rRNA genes and transcripts. Functional profiles were inferred from 16S rRNA data using Tax4Fun. Bacterioplankton communities were dominated by well-known marine lineages including clusters/genera that are affiliated with the Roseobacter group and the Flavobacteria. Variations in community composition and function were significantly explained by measured environmental and microbial properties. Turnover of dissolved free amino acids (DFAA) showed the strongest correlation to community composition and function. We applied multinomial models, which enabled us to identify bacterial lineages involved in DFAA turnover. For instance, the genus Planktomarina was more abundant at higher DFAA turnover rates, suggesting its vital role in amino acid degradation. Functional predictions further indicated that Planktomarina is involved in leucine and isoleucine degradation. Overall, our results provide novel insights into the biogeochemical significance of abundant bacterioplankton lineages in the North Sea.
Collapse
Affiliation(s)
- Bernd Wemheuer
- Institute of Microbiology and Genetics, University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany.
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney 2052, Australia.
| | - Franziska Wemheuer
- Institute of Microbiology and Genetics, University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany.
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney 2052, Australia.
| | - Dimitri Meier
- Institute of Microbiology and Genetics, University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany.
| | - Sara Billerbeck
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, D-26111 Oldenburg, Germany.
| | - Helge-Ansgar Giebel
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, D-26111 Oldenburg, Germany.
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, D-26111 Oldenburg, Germany.
| | - Christoph Scherber
- Institute of Landscape Ecology, University of Muenster, Heisenbergstr. 2, D-48149 Muenster, Germany.
| | - Rolf Daniel
- Institute of Microbiology and Genetics, University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany.
| |
Collapse
|
393
|
|
394
|
Hawley AK, Torres-Beltrán M, Zaikova E, Walsh DA, Mueller A, Scofield M, Kheirandish S, Payne C, Pakhomova L, Bhatia M, Shevchuk O, Gies EA, Fairley D, Malfatti SA, Norbeck AD, Brewer HM, Pasa-Tolic L, del Rio TG, Suttle CA, Tringe S, Hallam SJ. A compendium of multi-omic sequence information from the Saanich Inlet water column. Sci Data 2017; 4:170160. [PMID: 29087368 PMCID: PMC5663217 DOI: 10.1038/sdata.2017.160] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 08/02/2017] [Indexed: 01/08/2023] Open
Abstract
Marine oxygen minimum zones (OMZs) are widespread regions of the ocean that are currently expanding due to global warming. While inhospitable to most metazoans, OMZs are hotspots for microbial mediated biogeochemical cycling of carbon, nitrogen and sulphur, contributing disproportionately to marine nitrogen loss and climate active trace gas production. Our current understanding of microbial community responses to OMZ expansion is limited by a lack of time-resolved data sets linking multi-omic sequence information (DNA, RNA, protein) to geochemical parameters and process rates. Here, we present six years of time-resolved multi-omic observations in Saanich Inlet, a seasonally anoxic fjord on the coast of Vancouver Island, British Columbia, Canada that undergoes recurring changes in water column oxygenation status. This compendium provides a unique multi-omic framework for studying microbial community responses to ocean deoxygenation along defined geochemical gradients in OMZ waters.
Collapse
Affiliation(s)
- Alyse K. Hawley
- Department of Microbiology and Immunology, University of
British Columbia, Vancouver, British
Columbia, Canada V63 1Z3
| | - Mónica Torres-Beltrán
- Department of Microbiology and Immunology, University of
British Columbia, Vancouver, British
Columbia, Canada V63 1Z3
| | - Elena Zaikova
- Department of Biology, Georgetown University,
Washington, District Of Columbia 20057,
USA
| | - David A. Walsh
- Department of Biology, Concordia University,
Montreal, Quebec, Canada H4B 1R6
| | - Andreas Mueller
- Department of Microbiology and Immunology, University of
British Columbia, Vancouver, British
Columbia, Canada V63 1Z3
| | - Melanie Scofield
- Department of Microbiology and Immunology, University of
British Columbia, Vancouver, British
Columbia, Canada V63 1Z3
| | - Sam Kheirandish
- Department of Microbiology and Immunology, University of
British Columbia, Vancouver, British
Columbia, Canada V63 1Z3
| | - Chris Payne
- Earth, Ocean and Atmospheric Sciences, University of British
Columbia, Vancouver,
British Columbia, Canada
V6T 1Z4
| | - Larysa Pakhomova
- Earth, Ocean and Atmospheric Sciences, University of British
Columbia, Vancouver,
British Columbia, Canada
V6T 1Z4
| | - Maya Bhatia
- Department of Microbiology and Immunology, University of
British Columbia, Vancouver, British
Columbia, Canada V63 1Z3
| | - Olena Shevchuk
- Department of Microbiology and Immunology, University of
British Columbia, Vancouver, British
Columbia, Canada V63 1Z3
| | - Esther A. Gies
- Department of Civil Engineering, University of British
Columbia, Vancouver,
British Columbia, Canada
V6T 1Z4
| | - Diane Fairley
- Department of Microbiology and Immunology, University of
British Columbia, Vancouver, British
Columbia, Canada V63 1Z3
| | | | - Angela D. Norbeck
- Biological and Computational Sciences Division, Pacific
Northwest National Laboratory, Richland, Washington
99352, USA
| | - Heather M. Brewer
- Biological and Computational Sciences Division, Pacific
Northwest National Laboratory, Richland, Washington
99352, USA
| | - Ljiljana Pasa-Tolic
- Biological and Computational Sciences Division, Pacific
Northwest National Laboratory, Richland, Washington
99352, USA
| | | | - Curtis A. Suttle
- Department of Microbiology and Immunology, University of
British Columbia, Vancouver, British
Columbia, Canada V63 1Z3
- Earth, Ocean and Atmospheric Sciences, University of British
Columbia, Vancouver,
British Columbia, Canada
V6T 1Z4
- Department of Botany, University of British
Columbia, Vancouver,
British Columbia, Canada
V6T 1Z4
| | - Susannah Tringe
- Department of Energy Joint Genome Institute,
Walnut Creek, California 94598, USA
| | - Steven J. Hallam
- Department of Microbiology and Immunology, University of
British Columbia, Vancouver, British
Columbia, Canada V63 1Z3
- Peter Wall Institute for Advanced Studies, University of
British Columbia, Canada V6T 1Z2
- Genome Science and Technology Program, University of British
Columbia, Vancouver,
British Columbia, Canada
V6T 1Z3
- Graduate Program in Bioinformatics, University of British
Columbia, Vancouver,
British Columbia, Canada
V6T 1Z3
- ECOSCOPE Training Program, University of British
Columbia, Vancouver,
British Columbia, Canada
V6T 1Z3
| |
Collapse
|
395
|
Chafee M, Fernàndez-Guerra A, Buttigieg PL, Gerdts G, Eren AM, Teeling H, Amann RI. Recurrent patterns of microdiversity in a temperate coastal marine environment. ISME JOURNAL 2017; 12:237-252. [PMID: 29064479 PMCID: PMC5739018 DOI: 10.1038/ismej.2017.165] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 08/18/2017] [Accepted: 09/04/2017] [Indexed: 12/25/2022]
Abstract
Temperate coastal marine environments are replete with complex biotic and abiotic interactions that are amplified during spring and summer phytoplankton blooms. During these events, heterotrophic bacterioplankton respond to successional releases of dissolved organic matter as algal cells are lysed. Annual seasonal shifts in the community composition of free-living bacterioplankton follow broadly predictable patterns, but whether similar communities respond each year to bloom disturbance events remains unknown owing to a lack of data sets, employing high-frequency sampling over multiple years. We capture the fine-scale microdiversity of these events with weekly sampling using a high-resolution method to discriminate 16S ribosomal RNA gene amplicons that are >99% identical. Furthermore, we used 2 complete years of data to facilitate identification of recurrent sub-networks of co-varying microbes. We demonstrate that despite inter-annual variation in phytoplankton blooms and despite the dynamism of a coastal–oceanic transition zone, patterns of microdiversity are recurrent during both bloom and non-bloom conditions. Sub-networks of co-occurring microbes identified reveal that correlation structures between community members appear quite stable in a seasonally driven response to oligotrophic and eutrophic conditions.
Collapse
Affiliation(s)
- Meghan Chafee
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Antonio Fernàndez-Guerra
- Max Planck Institute for Marine Microbiology, Bremen, Germany.,Jacobs University Bremen gGmbH, Bremen, Germany.,University of Oxford, Oxford e-Research Centre, Oxford, UK
| | - Pier Luigi Buttigieg
- HGF-MPG Bridge-Group for Deep Sea Ecology and Technology, Alfred-Wegener Institute, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Gunnar Gerdts
- Alfred-Wegener Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
| | - A Murat Eren
- University of Chicago, Department of Medicine, Knapp Center for Biomedical Discovery, Chicago, IL, USA.,Marine Biological Laboratory, Woods Hole, MA, USA
| | - Hanno Teeling
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Rudolf I Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
396
|
Feng K, Zhang Z, Cai W, Liu W, Xu M, Yin H, Wang A, He Z, Deng Y. Biodiversity and species competition regulate the resilience of microbial biofilm community. Mol Ecol 2017; 26:6170-6182. [DOI: 10.1111/mec.14356] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 07/30/2017] [Accepted: 09/05/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Kai Feng
- CAS Key Laboratory for Environmental Biotechnology Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences Beijing China
- Department of Chemical and Biochemical Engineering Technical University of Denmark Lyngby Denmark
- Sino‐Danish Center for Education and Research Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Zhaojing Zhang
- CAS Key Laboratory for Environmental Biotechnology Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences Beijing China
- State Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China) School of Environmental Science and Technology Dalian University of Technology Dalian China
| | - Weiwei Cai
- CAS Key Laboratory for Environmental Biotechnology Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences Beijing China
- State Key Laboratory of Urban Water Resource and Environment Harbin Institute of Technology (SKLUWRE, HIT) Harbin China
| | - Wenzong Liu
- CAS Key Laboratory for Environmental Biotechnology Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences Beijing China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application Guangdong Institute of Microbiology Guangzhou China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering Central South University Changsha China
| | - Aijie Wang
- CAS Key Laboratory for Environmental Biotechnology Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences Beijing China
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
| | - Zhili He
- School of Environmental Science and Engineering Sun Yat‐sen University Guangzhou China
- Department of Microbiology and Plant Biology Institute for Environmental Genomics University of Oklahoma Norman OK USA
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences Beijing China
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
397
|
Quero GM, Perini L, Pesole G, Manzari C, Lionetti C, Bastianini M, Marini M, Luna GM. Seasonal rather than spatial variability drives planktonic and benthic bacterial diversity in a microtidal lagoon and the adjacent open sea. Mol Ecol 2017; 26:5961-5973. [PMID: 28926207 DOI: 10.1111/mec.14363] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/08/2017] [Accepted: 09/05/2017] [Indexed: 12/20/2022]
Abstract
Coastal lagoons are highly productive ecosystems, which are experiencing a variety of human disturbances at increasing frequency. Bacteria are key ecological players within lagoons, yet little is known about the magnitude, patterns and drivers of diversity in these transitional environments. We carried out a seasonal study in the Venice Lagoon (Italy) and the adjacent sea, to simultaneously explore diversity patterns in different domains (pelagic, benthic) and their spatio-temporal variability, and test the role of environmental gradients in structuring assemblages. Community composition differed between lagoon and open sea, and between domains. The dominant phyla varied temporally, with varying trends for the two domains, suggesting different environmental constraints on the assemblages. The percentage of freshwater taxa within the lagoon increased during higher river run-off, pointing at the lagoon as a dynamic mosaic of microbial taxa that generate the metacommunity across the whole hydrological continuum. Seasonality was more important than spatial variability in shaping assemblages. Network analyses indicated more interactions between several genera and environmental variables in the open sea than the lagoon. Our study provides evidences for a temporally dynamic nature of bacterial assemblages in lagoons and suggests that an interplay of seasonally influenced environmental drivers shape assemblages in these vulnerable ecosystems.
Collapse
Affiliation(s)
| | - Laura Perini
- Institute of Marine Sciences (CNR-ISMAR), National Research Council, Venezia, Italy
| | - Graziano Pesole
- Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy.,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy.,Consorzio Interuniversitario Biotecnologie (CIB) and Istituto Nazionale Biostrutture e Biosistemi (INBB), Bari, Italy
| | - Caterina Manzari
- Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy
| | - Claudia Lionetti
- Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy
| | - Mauro Bastianini
- Institute of Marine Sciences (CNR-ISMAR), National Research Council, Venezia, Italy
| | - Mauro Marini
- Institute of Marine Sciences (CNR-ISMAR), National Research Council, Ancona, Italy
| | - Gian Marco Luna
- Institute of Marine Sciences (CNR-ISMAR), National Research Council, Ancona, Italy
| |
Collapse
|
398
|
|
399
|
He Y, Sen B, Zhou S, Xie N, Zhang Y, Zhang J, Wang G. Distinct Seasonal Patterns of Bacterioplankton Abundance and Dominance of Phyla α- Proteobacteria and Cyanobacteria in Qinhuangdao Coastal Waters Off the Bohai Sea. Front Microbiol 2017; 8:1579. [PMID: 28868051 PMCID: PMC5563310 DOI: 10.3389/fmicb.2017.01579] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/03/2017] [Indexed: 11/13/2022] Open
Abstract
Qinhuangdao coastal waters in northern China are heavily impacted by anthropogenic and natural activities, and we anticipate a direct influence of the impact on the bacterioplankton abundance and diversity inhabiting the adjacent coastal areas. To ascertain the anthropogenic influences, we first evaluated the seasonal abundance patterns and diversity of bacterioplankton in the coastal areas with varied levels of natural and anthropogenic activities and then analyzed the environmental factors which influenced the abundance patterns. Results indicated distinct patterns in bacterioplankton abundance across the warm and cold seasons in all stations. Total bacterial abundance in the stations ranged from 8.67 × 104 to 2.08 × 106 cells/mL and had significant (p < 0.01) positive correlation with total phosphorus (TP), which indicated TP as the key monitoring parameter for anthropogenic impact on nutrients cycling. Proteobacteria and Cyanobacteria were the most abundant phyla in the Qinhuangdao coastal waters. Redundancy analysis revealed significant (p < 0.01) influence of temperature, dissolved oxygen and chlorophyll a on the spatiotemporal abundance pattern of α-Proteobacteria and Cyanobacteria groups. Among the 19 identified bacterioplankton subgroups, α-Proteobacteria (phylum Proteobacteria) was the dominant one followed by Family II (phylum Cyanobacteria), representing 19.1-55.2% and 2.3-54.2% of total sequences, respectively. An inverse relationship (r = -0.82) was observed between the two dominant subgroups, α-Proteobacteria and Family II. A wide range of inverse Simpson index (10.2 to 105) revealed spatial heterogeneity of bacterioplankton diversity likely resulting from the varied anthropogenic and natural influences. Overall, our results suggested that seasonal variations impose substantial influence on shaping bacterioplankton abundance patterns. In addition, the predominance of only a few cosmopolitan species in the Qinhuangdao coastal wasters was probably an indication of their competitive advantage over other bacterioplankton groups in the degradation of anthropogenic inputs. The results provided an evidence of their ecological significance in coastal waters impacted by seasonal inputs of the natural and anthropogenic matter. In conclusion, the findings anticipate future development of effective indicators of coastal health monitoring and subsequent management strategies to control the anthropogenic inputs in the Qinhuangdao coastal waters.
Collapse
Affiliation(s)
- Yaodong He
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin UniversityTianjin, China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin UniversityTianjin, China
| | - Shuangyan Zhou
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin UniversityTianjin, China
| | - Ningdong Xie
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin UniversityTianjin, China
| | - Yongfeng Zhang
- Qinhuangdao Marine Environmental Monitoring Central Station, State Oceanic AdministrationQinhuangdao, China
| | - Jianle Zhang
- Qinhuangdao Marine Environmental Monitoring Central Station, State Oceanic AdministrationQinhuangdao, China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin UniversityTianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin UniversityTianjin, China
| |
Collapse
|
400
|
Wurzbacher C, Attermeyer K, Kettner MT, Flintrop C, Warthmann N, Hilt S, Grossart HP, Monaghan MT. DNA metabarcoding of unfractionated water samples relates phyto-, zoo- and bacterioplankton dynamics and reveals a single-taxon bacterial bloom. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:383-388. [PMID: 28429584 DOI: 10.1101/058628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 04/02/2017] [Indexed: 05/25/2023]
Abstract
Most studies of aquatic plankton focus on either macroscopic or microbial communities, and on either eukaryotes or prokaryotes. This separation is primarily for methodological reasons, but can overlook potential interactions among groups. Here we tested whether DNA metabarcoding of unfractionated water samples with universal primers could be used to qualitatively and quantitatively study the temporal dynamics of the total plankton community in a shallow temperate lake. Significant changes in the relative proportions of normalized sequence reads of eukaryotic and prokaryotic plankton communities over a 3-month period in spring were found. Patterns followed the same trend as plankton estimates measured using traditional microscopic methods. The bloom of a conditionally rare bacterial taxon belonging to Arcicella was characterized, which rapidly came to dominate the whole lake ecosystem and would have remained unnoticed without metabarcoding. The data demonstrate the potential of universal DNA metabarcoding applied to unfractionated samples for providing a more holistic view of plankton communities.
Collapse
Affiliation(s)
- Christian Wurzbacher
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, Göteborg, 40530, Sweden
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, Berlin, 12587, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, Stechlin, 16775, Germany
- Berlin Center for Genomics in Biodiversity Research, Königin-Luise-Str. 6-8, Berlin, 14195, Germany
| | - Katrin Attermeyer
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, Stechlin, 16775, Germany
- Department of Ecology and Genetics, Limnology, Uppsala University, Norbyvägen 18D, Uppsala, 75236, Sweden
| | - Marie Therese Kettner
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, Stechlin, 16775, Germany
- Potsdam University, Institute of Biochemistry and Biology, Maulbeerallee 2, Potsdam, 14469, Germany
| | - Clara Flintrop
- Berlin Center for Genomics in Biodiversity Research, Königin-Luise-Str. 6-8, Berlin, 14195, Germany
- Helmholtz Young Investigator Group SEAPUMP, Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, and MARUM, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| | - Norman Warthmann
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, Berlin, 12587, Germany
- Berlin Center for Genomics in Biodiversity Research, Königin-Luise-Str. 6-8, Berlin, 14195, Germany
- Research School of Biology, The Australian National University, Linnaeus Way, Canberra, ACT, 2601, Australia
| | - Sabine Hilt
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, Berlin, 12587, Germany
| | - Hans-Peter Grossart
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, Stechlin, 16775, Germany
- Potsdam University, Institute of Biochemistry and Biology, Maulbeerallee 2, Potsdam, 14469, Germany
| | - Michael T Monaghan
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, Berlin, 12587, Germany
- Berlin Center for Genomics in Biodiversity Research, Königin-Luise-Str. 6-8, Berlin, 14195, Germany
| |
Collapse
|