351
|
Abstract
Biofilms are multicellular communities of bacteria attached to a surface and embedded in a protective matrix. In many cases, the signals that induce biofilm formation are unknown. Here, we report that biofilm formation by the marine bacterium Vibrio fischeri can be induced by the addition of arabinose to LBS (Luria-Bertani-salt), a tryptone-based medium. Growth of cells in the presence of 0.2% arabinose, but not other sugars, induced the production of a pellicle at the air/liquid interfaces of static cultures. V. fischeri failed to grow on arabinose as the sole carbon source, suggesting that pellicle production did not occur as a result of increased growth, but experiments using the acid/base indicator phenol red suggested that V. fischeri may partially metabolize arabinose. Pellicle production was independent of the syp polysaccharide locus but was altered upon disruption of the bcs cellulose locus. Through a screen for mutants defective for pellicle production, we found that loss of motility disrupted the formation of the arabinose-induced pellicle. Among the ∼20 mutants that retained motility were strains with insertions in a putative msh pilus locus and a strain with a defect in yidK, which is involved in galactose catabolism. Mutants with the msh gene disrupted grew poorly in the presence of arabinose, while the yidK mutant appeared to be "blind" to the presence of arabinose. Finally, arabinose impaired symbiotic colonization by V. fischeri. This work thus identifies a novel signal and new pathways involved in control of biofilm formation by V. fischeri.
Collapse
|
352
|
Ceh J, van Keulen M, Bourne DG. Intergenerational transfer of specific bacteria in corals and possible implications for offspring fitness. MICROBIAL ECOLOGY 2013; 65:227-231. [PMID: 22895828 DOI: 10.1007/s00248-012-0105-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/20/2012] [Indexed: 06/01/2023]
Abstract
Diverse and abundant bacterial populations play important functional roles in the multi-partite association of the coral holobiont. The specificity of coral-associated assemblages remains unclear, and little is known about the inheritance of specific bacteria from the parent colony to their offspring. This study investigated if broadcast spawning and brooding corals release specific and potentially beneficial bacteria with their offspring to secure maintenance across generations. Two coral species, Acropora tenuis and Pocillopora damicornis, were maintained in 0.2 μm filtered seawater during the release of their gametes and planulae, respectively. Water samples, excluding gametes and planulae, were subsequently collected, and bacterial diversity was assessed through a pyrosequencing approach amplifying a 470-bp region of the 16S rRNA gene including the variable regions 1-3. Compared to the high bacterial diversity harboured by corals, only a few taxa of bacteria were released by adult corals. Both A. tenuis and P. damicornis released similar bacteria, and the genera Alteromonas and Roseobacter were abundant in large proportions in the seawater of both species after reproduction. This study suggests that adult corals may release bacteria with their offspring to benefit the fitness in early coral life stages.
Collapse
Affiliation(s)
- Janja Ceh
- School of Environmental Sciences and Biotechnology, Murdoch University, 90 South St, Murdoch, Perth, WA 6050, Australia,
| | | | | |
Collapse
|
353
|
Abstract
A computer model of the gut shows how a host can readily select friendly bacteria over harmful bacteria through a process called “selectivity amplification.” The human gut harbours a large and genetically diverse population of symbiotic microbes that both feed and protect the host. Evolutionary theory, however, predicts that such genetic diversity can destabilise mutualistic partnerships. How then can the mutualism of the human microbiota be explained? Here we develop an individual-based model of host-associated microbial communities. We first demonstrate the fundamental problem faced by a host: The presence of a genetically diverse microbiota leads to the dominance of the fastest growing microbes instead of the microbes that are most beneficial to the host. We next investigate the potential for host secretions to influence the microbiota. This reveals that the epithelium–microbiota interface acts as a selectivity amplifier: Modest amounts of moderately selective epithelial secretions cause a complete shift in the strains growing at the epithelial surface. This occurs because of the physical structure of the epithelium–microbiota interface: Epithelial secretions have effects that permeate upwards through the whole microbial community, while lumen compounds preferentially affect cells that are soon to slough off. Finally, our model predicts that while antimicrobial secretion can promote host epithelial selection, epithelial nutrient secretion will often be key to host selection. Our findings are consistent with a growing number of empirical papers that indicate an influence of host factors upon microbiota, including growth-promoting glycoconjugates. We argue that host selection is likely to be a key mechanism in the stabilisation of the mutualism between a host and its microbiota. The cells of our bodies are greatly outnumbered by the bacteria that live on us and, in particular, in our gut. It is now clear that many gut bacteria are highly beneficial, protecting us from pathogens and helping us with digestion. But what prevents beneficial bacteria from going bad? Why don't bacteria evolve to shirk on the help that they provide and simply use us as a food source? Here we explore this problem using a computer model that reduces the problem to its key elements. We first illustrate the basic problem faced by a host: Whenever beneficial bacteria grow slowly, the host will lose them to fast-growing species that provide no benefit. We then propose a solution to the host's problem: The host can use secretions—nutrients and toxins—to control the bacteria that grow on the epithelial cell layer of the gut. In particular, our model predicts that the epithelial surface acts as a “selectivity amplifier”. The host can thereby maintain beneficial bacteria with only small amounts of weakly selective secretions. Our model fits with a growing body of experimental data showing that hosts have diverse and important influences on their gut bacteria.
Collapse
|
354
|
Knowing your friends: invertebrate innate immunity fosters beneficial bacterial symbioses. Nat Rev Microbiol 2012; 10:815-27. [PMID: 23147708 DOI: 10.1038/nrmicro2894] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The innate immune system is present in all animals and is a crucial first line of defence against pathogens. However, animals also harbour large numbers of beneficial microorganisms that can be housed in the digestive tract, in specialized organs or on tissue surfaces. Although invertebrates lack conventional antibody-based immunity, they are capable of eliminating pathogens and, perhaps more importantly, discriminating them from other microorganisms. This Review examines the interactions between the innate immune systems of several model invertebrates and the symbionts of these organisms, and addresses the central question of how these long-lived and specific associations are established and maintained.
Collapse
|
355
|
MyD88-deficient Hydra reveal an ancient function of TLR signaling in sensing bacterial colonizers. Proc Natl Acad Sci U S A 2012; 109:19374-9. [PMID: 23112184 DOI: 10.1073/pnas.1213110109] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Toll-like receptor (TLR) signaling is one of the most important signaling cascades of the innate immune system of vertebrates. Studies in invertebrates have focused on the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans, and there is little information regarding the evolutionary origin and ancestral function of TLR signaling. In Drosophila, members of the Toll-like receptor family are involved in both embryonic development and innate immunity. In C. elegans, a clear immune function of the TLR homolog TOL-1 is controversial and central components of vertebrate TLR signaling including the key adapter protein myeloid differentiation primary response gene 88 (MyD88) and the transcription factor NF-κB are not present. In basal metazoans such as the cnidarians Hydra magnipapillata and Nematostella vectensis, all components of the vertebrate TLR signaling cascade are present, but their role in immunity is unknown. Here, we use a MyD88 loss-of-function approach in Hydra to demonstrate that recognition of bacteria is an ancestral function of TLR signaling and that this process contributes to both host-mediated recolonization by commensal bacteria as well as to defense against bacterial pathogens.
Collapse
|
356
|
Laboratory culturing of Elysia chlorotica reveals a shift from transient to permanent kleptoplasty. Symbiosis 2012. [DOI: 10.1007/s13199-012-0192-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
357
|
Abstract
Symbiotic relationships are widespread in nature and are fundamental for ecosystem functioning and the evolution of biodiversity. In marine environments, photosymbiosis with microalgae is best known for sustaining benthic coral reef ecosystems. Despite the importance of oceanic microbiota in global ecology and biogeochemical cycles, symbioses are poorly characterized in open ocean plankton. Here, we describe a widespread symbiotic association between Acantharia biomineralizing microorganisms that are abundant grazers in plankton communities, and members of the haptophyte genus Phaeocystis that are cosmopolitan bloom-forming microalgae. Cophylogenetic analyses demonstrate that symbiont biogeography, rather than host taxonomy, is the main determinant of the association. Molecular dating places the origin of this photosymbiosis in the Jurassic (ca. 175 Mya), a period of accentuated marine oligotrophy. Measurements of intracellular dimethylated sulfur indicate that the host likely profits from antioxidant protection provided by the symbionts as an adaptation to life in transparent oligotrophic surface waters. In contrast to terrestrial and marine symbioses characterized to date, the symbiont reported in this association is extremely abundant and ecologically active in its free-living phase. In the vast and barren open ocean, partnership with photosymbionts that have extensive free-living populations is likely an advantageous strategy for hosts that rely on such interactions. Discovery of the Acantharia-Phaeocystis association contrasts with the widely held view that symbionts are specialized organisms that are rare and ecologically passive outside the host.
Collapse
|
358
|
Roles of the structural symbiosis polysaccharide (syp) genes in host colonization, biofilm formation, and polysaccharide biosynthesis in Vibrio fischeri. J Bacteriol 2012; 194:6736-47. [PMID: 23042998 DOI: 10.1128/jb.00707-12] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The symbiosis polysaccharide locus, syp, is required for Vibrio fischeri to form a symbiotic association with the squid Euprymna scolopes. It is also required for biofilm formation induced by the unlinked regulator RscS. The syp locus includes 18 genes that can be classified into four groups based on putative function: 4 genes encode putative regulators, 6 encode glycosyltransferases, 2 encode export proteins, and the remaining 6 encode proteins with other functions, including polysaccharide modification. To understand the roles of each of the 14 structural syp genes in colonization and biofilm formation, we generated nonpolar in-frame deletions of each gene. All of the deletion mutants exhibited defects in their ability to colonize juvenile squid, although the impact of the loss of SypB or SypI was modest. Consistent with their requirement for colonization, most of the structural genes were also required for RscS-induced biofilm formation. In particular, the production of wrinkled colonies, pellicles, and the matrix on the colony surface was eliminated or severely decreased in all mutants except for the sypB and sypI mutants; in contrast, only a subset of genes appeared to play a role in attachment to glass. Finally, immunoblotting data suggested that the structural Syp proteins are involved in polysaccharide production and/or export. These results provide important insights into the requirements for the syp genes under different environmental conditions and thus lay the groundwork for a more complete understanding of the matrix produced by V. fischeri to enhance cell-cell interactions and promote symbiotic colonization.
Collapse
|
359
|
Albertin CB, Bonnaud L, Brown CT, Crookes-Goodson WJ, da Fonseca RR, Di Cristo C, Dilkes BP, Edsinger-Gonzales E, Freeman RM, Hanlon RT, Koenig KM, Lindgren AR, Martindale MQ, Minx P, Moroz LL, Nödl MT, Nyholm SV, Ogura A, Pungor JR, Rosenthal JJC, Schwarz EM, Shigeno S, Strugnell JM, Wollesen T, Zhang G, Ragsdale CW. Cephalopod genomics: A plan of strategies and organization. Stand Genomic Sci 2012; 7:175-88. [PMID: 23451296 PMCID: PMC3570802 DOI: 10.4056/sigs.3136559] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Cephalopod Sequencing Consortium (CephSeq Consortium) was established at a NESCent Catalysis Group Meeting, “Paths to Cephalopod Genomics- Strategies, Choices, Organization,” held in Durham, North Carolina, USA on May 24-27, 2012. Twenty-eight participants representing nine countries (Austria, Australia, China, Denmark, France, Italy, Japan, Spain and the USA) met to address the pressing need for genome sequencing of cephalopod mollusks. This group, drawn from cephalopod biologists, neuroscientists, developmental and evolutionary biologists, materials scientists, bioinformaticians and researchers active in sequencing, assembling and annotating genomes, agreed on a set of cephalopod species of particular importance for initial sequencing and developed strategies and an organization (CephSeq Consortium) to promote this sequencing. The conclusions and recommendations of this meeting are described in this white paper.
Collapse
Affiliation(s)
- Caroline B Albertin
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
360
|
Dunlap PV, Gould AL, Wittenrich ML, Nakamura M. Symbiosis initiation in the bacterially luminous sea urchin cardinalfish Siphamia versicolor. JOURNAL OF FISH BIOLOGY 2012; 81:1340-1356. [PMID: 22957874 DOI: 10.1111/j.1095-8649.2012.03415.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
To determine how each new generation of the sea urchin cardinalfish Siphamia versicolor acquires the symbiotic luminous bacterium Photobacterium mandapamensis, and when in its development the S. versicolor initiates the symbiosis, procedures were established for rearing S. versicolor larvae in an aposymbiotic state. Under the conditions provided, larvae survived and developed for 28 days after their release from the mouths of males. Notochord flexion began at 8 days post release (dpr). By 28 dpr, squamation was evident and the caudal complex was complete. The light organ remained free of bacteria but increased in size and complexity during development of the larvae. Thus, aposymbiotic larvae of the fish can survive and develop for extended periods, major components of the luminescence system develop in the absence of the bacteria and the bacteria are not acquired directly from a parent, via the egg or during mouth brooding. Presentation of the symbiotic bacteria to aposymbiotic larvae at 8-10 dpr, but not earlier, led to initiation of the symbiosis. Upon colonization of the light organ, the bacterial population increased rapidly and cells forming the light-organ chambers exhibited a differentiated appearance. Therefore, the light organ apparently first becomes receptive to colonization after 1 week post-release development, the symbiosis is initiated by bacteria acquired from the environment and bacterial colonization induces morphological changes in the nascent light organ. The abilities to culture larvae of S. versicolor for extended periods and to initiate the symbiosis in aposymbiotic larvae are key steps in establishing the experimental tractability of this highly specific vertebrate and microbe mutualism.
Collapse
Affiliation(s)
- P V Dunlap
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA.
| | | | | | | |
Collapse
|
361
|
Taormina MJ, Jemielita M, Stephens WZ, Burns AR, Troll JV, Parthasarathy R, Guillemin K. Investigating bacterial-animal symbioses with light sheet microscopy. THE BIOLOGICAL BULLETIN 2012; 223:7-20. [PMID: 22983029 PMCID: PMC3952068 DOI: 10.1086/bblv223n1p7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Microbial colonization of the digestive tract is a crucial event in vertebrate development, required for maturation of host immunity and establishment of normal digestive physiology. Advances in genomic, proteomic, and metabolomic technologies are providing a more detailed picture of the constituents of the intestinal habitat, but these approaches lack the spatial and temporal resolution needed to characterize the assembly and dynamics of microbial communities in this complex environment. We report the use of light sheet microscopy to provide high-resolution imaging of bacterial colonization of the intestine of Danio rerio, the zebrafish. The method allows us to characterize bacterial population dynamics across the entire organ and the behaviors of individual bacterial and host cells throughout the colonization process. The large four-dimensional data sets generated by these imaging approaches require new strategies for image analysis. When integrated with other "omics" data sets, information about the spatial and temporal dynamics of microbial cells within the vertebrate intestine will provide new mechanistic insights into how microbial communities assemble and function within hosts.
Collapse
Affiliation(s)
| | | | - W. Zac Stephens
- Institute of Molecular Biology, University of Oregon, Eugene OR 97403
| | - Adam R. Burns
- Institute of Ecology and Evolution, University of Oregon, Eugene OR 97403
| | - Joshua V. Troll
- Institute of Molecular Biology, University of Oregon, Eugene OR 97403
| | - Raghuveer Parthasarathy
- Department of Physics, University of Oregon, Eugene OR 97403
- Institute of Molecular Biology, University of Oregon, Eugene OR 97403
- Materials Science Institute, University of Oregon, Eugene OR 97403
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene OR 97403
| |
Collapse
|
362
|
Rader BA, Nyholm SV. Host/microbe interactions revealed through "omics" in the symbiosis between the Hawaiian bobtail squid Euprymna scolopes and the bioluminescent bacterium Vibrio fischeri. THE BIOLOGICAL BULLETIN 2012; 223:103-111. [PMID: 22983036 DOI: 10.1086/bblv223n1p103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The association between Euprymna scolopes, the Hawaiian bobtail squid, and Vibrio fischeri, a bioluminescent bacterium, has served as a model for beneficial symbioses for over 25 years. The experimental tractability of this association has helped researchers characterize many of the colonization events necessary for symbiosis. Recent technological advances, such as the sequenced genome of V. fischeri, DNA microarrays, and high-throughput transcriptomics and proteomics, have allowed for the identification of host and symbiont factors that are important in establishing and maintaining specificity in the association. We highlight some of these findings pertaining to quorum sensing, luminescence, responses to reactive oxygen and nitrogen species, recognition of microbe-associated molecular patterns by the innate immune system of the host, and a diel rhythm that helps regulate the symbiont population. We also discuss how comparative genomics has allowed the identification of symbiont factors important for specificity and why sequencing the host's genome should be a priority for the research community.
Collapse
Affiliation(s)
- Bethany A Rader
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Rd., Storrs, Connecticut 06269, USA
| | | |
Collapse
|
363
|
Abstract
Omics, including genomics, proteomics, and metabolomics, enable us to explain symbioses in terms of the underlying molecules and their interactions. The central task is to transform molecular catalogs of genes, metabolites, etc., into a dynamic understanding of symbiosis function. We review four exemplars of omics studies that achieve this goal, through defined biological questions relating to metabolic integration and regulation of animal-microbial symbioses, the genetic autonomy of bacterial symbionts, and symbiotic protection of animal hosts from pathogens. As omic datasets become increasingly complex, computationally sophisticated downstream analyses are essential to reveal interactions not evident from visual inspection of the data. We discuss two approaches, phylogenomics and transcriptional clustering, that can divide the primary output of omics studies-long lists of factors-into manageable subsets, and we describe how they have been applied to analyze large datasets and generate testable hypotheses.
Collapse
Affiliation(s)
- J Chaston
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
364
|
Abstract
Marine sponges (phylum Porifera) often contain dense and diverse microbial communities, which can constitute up to 35% of the sponge biomass. The genome of one sponge, Amphimedon queenslandica, was recently sequenced, and this has provided new insights into the origins of animal evolution. Complementary efforts to sequence the genomes of uncultivated sponge symbionts have yielded the first glimpse of how these intimate partnerships are formed. The remarkable microbial and chemical diversity of the sponge-microorganism association, coupled with its postulated antiquity, makes sponges important model systems for the study of metazoan host-microorganism interactions, and their evolution, as well as for enabling access to biotechnologically important symbiont-derived natural products. In this Review, we discuss our current understanding of the interactions between marine sponges and their microbial symbiotic consortia, and highlight recent insights into these relationships from genomic studies.
Collapse
|
365
|
Jones EI, Bronstein JL, Ferrière R. The fundamental role of competition in the ecology and evolution of mutualisms. Ann N Y Acad Sci 2012; 1256:66-88. [PMID: 22583047 DOI: 10.1111/j.1749-6632.2012.06552.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mutualisms are interspecific interactions that yield reciprocal benefits. Here, by adopting a consumer-resource perspective, we show how considering competition is necessary in order to understand the evolutionary and ecological dynamics of mutualism. We first review the ways in which competition shapes the ecology of mutualisms, using a graphical framework based on resource flows rather than net effects to highlight the opportunities for competition. We then describe the known mechanisms of competition and show how it is a critical driver of the evolutionary dynamics, persistence, and diversification of mutualism. We argue that empirical and theoretical research on the ecology and evolution of mutualisms will jointly progress by addressing four key points: (i) the existence and shape of physiological trade-offs among cooperation, competition, and other life-history and functional traits; (ii) the capacity for individuals to express conditional responses to variation in their mutualistic and competitive environment; (iii) the existence of heritable variation for mutualistic and competitive traits and their potentially conditional expression; and (iv) the structure of the network of consumer-resource interactions in which individuals are embedded.
Collapse
Affiliation(s)
- Emily I Jones
- School of Biological Sciences, Washington State University, Pullman, Washington 99164, USA.
| | | | | |
Collapse
|
366
|
Youle M, Rohwer F, Stacy A, Whiteley M, Steel BC, Delalez NJ, Nord AL, Berry RM, Armitage JP, Kamoun S, Hogenhout S, Diggle SP, Gurney J, Pollitt EJG, Boetius A, Cary SC. The Microbial Olympics. Nat Rev Microbiol 2012; 10:583-8. [PMID: 22796885 DOI: 10.1038/nrmicro2837] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Every four years, the Olympic Games plays host to competitors who have built on their natural talent by training for many years to become the best in their chosen discipline. Similar spirit and endeavour can be found throughout the microbial world, in which every day is a competition to survive and thrive. Microorganisms are trained through evolution to become the fittest and the best adapted to a particular environmental niche or lifestyle, and to innovate when the 'rules of the game' are changed by alterations to their natural habitats. In this Essay, we honour the best competitors in the microbial world by inviting them to take part in the inaugural Microbial Olympics.
Collapse
Affiliation(s)
- Merry Youle
- Rainbow Rock, Ocean View, Hawaii 96737, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
367
|
Abstract
Gastrointestinal microbiomes play important roles in the health and nutrition of animals and humans. The medicinal leech, Hirudo verbana, serves as a powerful model for the study of microbial symbioses of the gut, due to its naturally limited microbiome compared with other popular models, the ability to cultivate the most abundant microbes, and genetically manipulate one of them, Aeromonas veronii. This review covers the relevance and application of leeches in modern medicine as well as recent discoveries detailing the nature of the gut microbiome. Additionally, the dual life-style of A. veronii allows one to do direct comparisons between colonization factors for beneficial and pathogenic associations, and relevant findings are detailed with respect to their role within the host and pathogenicity to other animals.
Collapse
|
368
|
Daniels C, Breitbart M. Bacterial communities associated with the ctenophores Mnemiopsis leidyi and Beroe ovata. FEMS Microbiol Ecol 2012; 82:90-101. [DOI: 10.1111/j.1574-6941.2012.01409.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 05/01/2012] [Accepted: 05/06/2012] [Indexed: 01/25/2023] Open
Affiliation(s)
- Camille Daniels
- College of Marine Science, University of South Florida; St. Petersburg; FL; USA
| | - Mya Breitbart
- College of Marine Science, University of South Florida; St. Petersburg; FL; USA
| |
Collapse
|
369
|
Nyholm SV, Song P, Dang J, Bunce C, Girguis PR. Expression and putative function of innate immunity genes under in situ conditions in the symbiotic hydrothermal vent tubeworm Ridgeia piscesae. PLoS One 2012; 7:e38267. [PMID: 22701617 PMCID: PMC3372519 DOI: 10.1371/journal.pone.0038267] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 05/05/2012] [Indexed: 11/19/2022] Open
Abstract
The relationships between hydrothermal vent tubeworms and sulfide-oxidizing bacteria have served as model associations for understanding chemoautotrophy and endosymbiosis. Numerous studies have focused on the physiological and biochemical adaptations that enable these symbioses to sustain some of the highest recorded carbon fixation rates ever measured. However, far fewer studies have explored the molecular mechanisms underlying the regulation of host and symbiont interactions, specifically those mediated by the innate immune system of the host. To that end, we conducted a series of studies where we maintained the tubeworm, Ridgeia piscesae, in high-pressure aquaria and examined global and quantitative changes in gene expression via high-throughput transcriptomics and quantitative real-time PCR (qPCR). We analyzed over 32,000 full-length expressed sequence tags as well as 26 Mb of transcript sequences from the trophosome (the organ that houses the endosymbiotic bacteria) and the plume (the gas exchange organ in contact with the free-living microbial community). R. piscesae maintained under conditions that promote chemoautotrophy expressed a number of putative cell signaling and innate immunity genes, including pattern recognition receptors (PRRs), often associated with recognizing microbe-associated molecular patterns (MAMPs). Eighteen genes involved with innate immunity, cell signaling, cell stress and metabolite exchange were further analyzed using qPCR. PRRs, including five peptidoglycan recognition proteins and a Toll-like receptor, were expressed significantly higher in the trophosome compared to the plume. Although PRRs are often associated with mediating host responses to infection by pathogens, the differences in expression between the plume and trophosome also implicate similar mechanisms of microbial recognition in interactions between the host and symbiont. We posit that regulation of this association involves a molecular "dialogue" between the partners that includes interactions between the host's innate immune system and the symbiont.
Collapse
Affiliation(s)
- Spencer V. Nyholm
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail: (SVN); (PRG)
| | - Pengfei Song
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Jeanne Dang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Corey Bunce
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Peter R. Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail: (SVN); (PRG)
| |
Collapse
|
370
|
Abstract
The symbiosis between cnidarians (e.g., corals or sea anemones) and intracellular dinoflagellate algae of the genus Symbiodinium is of immense ecological importance. In particular, this symbiosis promotes the growth and survival of reef corals in nutrient-poor tropical waters; indeed, coral reefs could not exist without this symbiosis. However, our fundamental understanding of the cnidarian-dinoflagellate symbiosis and of its links to coral calcification remains poor. Here we review what we currently know about the cell biology of cnidarian-dinoflagellate symbiosis. In doing so, we aim to refocus attention on fundamental cellular aspects that have been somewhat neglected since the early to mid-1980s, when a more ecological approach began to dominate. We review the four major processes that we believe underlie the various phases of establishment and persistence in the cnidarian/coral-dinoflagellate symbiosis: (i) recognition and phagocytosis, (ii) regulation of host-symbiont biomass, (iii) metabolic exchange and nutrient trafficking, and (iv) calcification. Where appropriate, we draw upon examples from a range of cnidarian-alga symbioses, including the symbiosis between green Hydra and its intracellular chlorophyte symbiont, which has considerable potential to inform our understanding of the cnidarian-dinoflagellate symbiosis. Ultimately, we provide a comprehensive overview of the history of the field, its current status, and where it should be going in the future.
Collapse
Affiliation(s)
- Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
| | | | | |
Collapse
|
371
|
Dulla GFJ, Go RA, Stahl DA, Davidson SK. Verminephrobacter eiseniae type IV pili and flagella are required to colonize earthworm nephridia. THE ISME JOURNAL 2012; 6:1166-75. [PMID: 22170422 PMCID: PMC3358029 DOI: 10.1038/ismej.2011.183] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/31/2011] [Accepted: 11/03/2011] [Indexed: 11/08/2022]
Abstract
The bacterial symbiont Verminephrobacter eiseniae colonizes nephridia, the excretory organs, of the lumbricid earthworm Eisenia fetida. E. fetida transfers V. eisenia into the egg capsule albumin during capsule formation and V. eiseniae cells migrate into the earthworm nephridia during embryogenesis, where they bind and persist. In order to characterize the mechanistic basis of selective tissue colonization, methods for site-directed mutagenesis and colonization competence were developed and used to evaluate the consequences of individual gene disruptions. Using these newly developed tools, two distinct modes of bacterial motility were shown to be required for V. eiseniae colonization of nascent earthworm nephridia. Flagella and type IV pili mutants lacked motility in culture and were not able to colonize embryonic earthworms, indicating that both twitching and flagellar motility are required for entrance into the nephridia.
Collapse
Affiliation(s)
- Glenn F J Dulla
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Ruth A Go
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Seana K Davidson
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
372
|
Chavez-Dozal A, Hogan D, Gorman C, Quintanal-Villalonga A, Nishiguchi MK. Multiple Vibrio fischeri genes are involved in biofilm formation and host colonization. FEMS Microbiol Ecol 2012; 81:562-73. [PMID: 22486781 DOI: 10.1111/j.1574-6941.2012.01386.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 02/03/2023] Open
Abstract
Biofilms are increasingly recognized as being the predominant form for survival for most bacteria in the environment. The successful colonization of Vibrio fischeri in its squid host Euprymna tasmanica involves complex microbe-host interactions mediated by specific genes that are essential for biofilm formation and colonization. Here, structural and regulatory genes were selected to study their role in biofilm formation and host colonization. We have mutated several genes (pilT, pilU, flgF, motY, ibpA and mifB) by an insertional inactivation strategy. The results demonstrate that structural genes responsible for synthesis of type IV pili and flagella are crucial for biofilm formation and host infection. Moreover, regulatory genes affect colony aggregation by various mechanisms, including alteration of synthesis of transcriptional factors and regulation of extracellular polysaccharide production. These results reflect the significance of how genetic alterations influence communal behavior, which is important in understanding symbiotic relationships.
Collapse
Affiliation(s)
- Alba Chavez-Dozal
- Department of Biology, New Mexico State University, Las Cruces, NM 88003-8001, USA
| | | | | | | | | |
Collapse
|
373
|
Collins AJ, Schleicher TR, Rader BA, Nyholm SV. Understanding the role of host hemocytes in a squid/vibrio symbiosis using transcriptomics and proteomics. Front Immunol 2012; 3:91. [PMID: 22590467 PMCID: PMC3349304 DOI: 10.3389/fimmu.2012.00091] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 04/08/2012] [Indexed: 11/13/2022] Open
Abstract
The symbiosis between the squid, Euprymna scolopes, and the bacterium, Vibrio fischeri, serves as a model for understanding interactions between beneficial bacteria and animal hosts. The establishment and maintenance of the association is highly specific and depends on the selection of V. fischeri and exclusion of non-symbiotic bacteria from the environment. Current evidence suggests that the host's cellular innate immune system, in the form of macrophage-like hemocytes, helps to mediate host tolerance of V. fischeri. To begin to understand the role of hemocytes in this association, we analyzed these cells by high-throughput 454 transcriptomic and liquid chromatography/tandem mass spectrometry (LC-MS/MS) proteomic analyses. 454 high-throughput sequencing produced 650, 686 reads totaling 279.9 Mb while LC-MS/MS analyses of circulating hemocytes putatively identified 702 unique proteins. Several receptors involved with the recognition of microbial-associated molecular patterns were identified. Among these was a complete open reading frame to a putative peptidoglycan recognition protein (EsPGRP5) with conserved residues for amidase activity. Assembly of the hemocyte transcriptome showed EsPGRP5 had high coverage, suggesting it is among the 5% most abundant transcripts in circulating hemocytes. Other transcripts and proteins identified included members of the conserved NF-κB signaling pathway, putative members of the complement pathway, the carbohydrate binding protein galectin, and cephalotoxin. Quantitative Real-Time PCR of complement-like genes, cephalotoxin, EsPGRP5, and a nitric oxide synthase showed differential expression in circulating hemocytes from adult squid with colonized light organs compared to those isolated from hosts where the symbionts were removed. These data suggest that the presence of the symbiont influences gene expression of the cellular innate immune system of E. scolopes.
Collapse
Affiliation(s)
- Andrew J Collins
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | | | | | | |
Collapse
|
374
|
Nussbaum JC, Locksley RM. Infectious (Non)tolerance--frustrated commensalism gone awry? Cold Spring Harb Perspect Biol 2012; 4:a007328. [PMID: 22456498 PMCID: PMC3331693 DOI: 10.1101/cshperspect.a007328] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite advances in medicine, infectious diseases remain major causes of death and disability worldwide. Acute or chronic infectious agents mediate host tissue damage and cause a spectrum of disease as diverse as overwhelming sepsis and shock within hours to persistent tissue inflammation causing organ failure or even cancer over years. Although pathogen exposure can cause disease via host-derived inflammation, pathogens share recognized elements with harmless human commensals. Mouse models and organisms with simpler flora are revealing the dialogue between multicellular hosts and commensal flora. In some instances the persistent inflammation associated with pathogens can be interpreted within a framework of frustrated commensalism in which the host and pathogen cannot complete the requisite dialogue that establishes homeostasis. In contrast, coevolved commensals interact cooperatively with the host immune system, resulting in immunotolerance. Attempts to more thoroughly understand the molecular nature of the dialogue may uncover novel approaches to the control of inflammation and tissue damage.
Collapse
Affiliation(s)
- Jesse C Nussbaum
- Department of Medicine, University of California, San Francisco, 94143, USA
| | | |
Collapse
|
375
|
Squid-derived chitin oligosaccharides are a chemotactic signal during colonization by Vibrio fischeri. Appl Environ Microbiol 2012; 78:4620-6. [PMID: 22522684 DOI: 10.1128/aem.00377-12] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chitin, a polymer of N-acetylglucosamine (GlcNAc), is noted as the second most abundant biopolymer in nature. Chitin serves many functions for marine bacteria in the family Vibrionaceae ("vibrios"), in some instances providing a physical attachment site, inducing natural genetic competence, and serving as an attractant for chemotaxis. The marine luminous bacterium Vibrio fischeri is the specific symbiont in the light-emitting organ of the Hawaiian bobtail squid, Euprymna scolopes. The bacterium provides the squid with luminescence that the animal uses in an antipredatory defense, while the squid supports the symbiont's nutritional requirements. V. fischeri cells are harvested from seawater during each host generation, and V. fischeri is the only species that can complete this process in nature. Furthermore, chitin is located in squid hemocytes and plays a nutritional role in the symbiosis. We demonstrate here that chitin oligosaccharides produced by the squid host serve as a chemotactic signal for colonizing bacteria. V. fischeri uses the gradient of host chitin to enter the squid light organ duct and colonize the animal. We provide evidence that chitin serves a novel function in an animal-bacterial mutualism, as an animal-produced bacterium-attracting synomone.
Collapse
|
376
|
Diversity and partitioning of bacterial populations within the accessory nidamental gland of the squid Euprymna scolopes. Appl Environ Microbiol 2012; 78:4200-8. [PMID: 22504817 DOI: 10.1128/aem.07437-11] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Microbial consortia confer important benefits to animal and plant hosts, and model associations are necessary to examine these types of host/microbe interactions. The accessory nidamental gland (ANG) is a female reproductive organ found among cephalopod mollusks that contains a consortium of bacteria, the exact function of which is unknown. To begin to understand the role of this organ, the bacterial consortium was characterized in the Hawaiian bobtail squid, Euprymna scolopes, a well-studied model organism for symbiosis research. Transmission electron microscopy (TEM) analysis of the ANG revealed dense bacterial assemblages of rod- and coccus-shaped cells segregated by morphology into separate, epithelium-lined tubules. The host epithelium was morphologically heterogeneous, containing ciliated and nonciliated cells with various brush border thicknesses. Hemocytes of the host's innate immune system were also found in close proximity to the bacteria within the tubules. A census of 16S rRNA genes suggested that Rhodobacterales, Rhizobiales, and Verrucomicrobia bacteria were prevalent, with members of the genus Phaeobacter dominating the consortium. Analysis of 454-shotgun sequencing data confirmed the presence of members of these taxa and revealed members of a fourth, Flavobacteria of the Bacteroidetes phylum. 16S rRNA fluorescent in situ hybridization (FISH) revealed that many ANG tubules were dominated by members of specific taxa, namely, Rhodobacterales, Verrucomicrobia, or Cytophaga-Flavobacteria-Bacteroidetes, suggesting symbiont partitioning to specific host tubules. In addition, FISH revealed that bacteria, including Phaeobacter species from the ANG, are likely deposited into the jelly coat of freshly laid eggs. This report establishes the ANG of the invertebrate E. scolopes as a model to examine interactions between a bacterial consortium and its host.
Collapse
|
377
|
Enomoto M, Nakagawa S, Sawabe T. Microbial communities associated with holothurians: presence of unique bacteria in the coelomic fluid. Microbes Environ 2012; 27:300-5. [PMID: 22446312 PMCID: PMC4036045 DOI: 10.1264/jsme2.me12020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Marine invertebrates interact with various microorganisms ranging from pathogens to symbionts. One-to-one symbiosis between a single microbial species and a single host animal has served as a model for the study of host-microbe interactions. In addition, increasing attention has recently been focused on the complex symbiotic associations, e.g., associations between sponges and their symbionts, due to their biotechnological potential; however, relatively little is known about the microbial diversity associated with members of the phylum Echinodermata. Here, for the first time, we investigated microbial communities associated with a commercially important holothurian species, Apostichopus japonicus, using culture-dependent and -independent methods. Diverse and abundant heterotrophs, mostly Gammaproteobacteria members, were cultured semi-quantitatively. Using the cloning and sequencing technique, different microbial communities were found in different holothurian tissues. In the holothurian coelomic fluid, potentially metabolically active and phylogenetically unique members of Epsilonproteobacteria and Rickettsiales were discovered. This study suggests that coelomic fluids of marine invertebrates, at least those inhabiting intertidal areas where physical and chemical conditions fluctuate, provide microbes with unique and stable habitats.
Collapse
Affiliation(s)
- Masaki Enomoto
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan
| | | | | |
Collapse
|
378
|
Naughton LM, Mandel MJ. Colonization of Euprymna scolopes squid by Vibrio fischeri. J Vis Exp 2012:e3758. [PMID: 22414870 DOI: 10.3791/3758] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Specific bacteria are found in association with animal tissue. Such host-bacterial associations (symbioses) can be detrimental (pathogenic), have no fitness consequence (commensal), or be beneficial (mutualistic). While much attention has been given to pathogenic interactions, little is known about the processes that dictate the reproducible acquisition of beneficial/commensal bacteria from the environment. The light-organ mutualism between the marine Gram-negative bacterium V. fischeri and the Hawaiian bobtail squid, E. scolopes, represents a highly specific interaction in which one host (E. scolopes) establishes a symbiotic relationship with only one bacterial species (V. fischeri) throughout the course of its lifetime. Bioluminescence produced by V. fischeri during this interaction provides an anti-predatory benefit to E. scolopes during nocturnal activities, while the nutrient-rich host tissue provides V. fischeri with a protected niche. During each host generation, this relationship is recapitulated, thus representing a predictable process that can be assessed in detail at various stages of symbiotic development. In the laboratory, the juvenile squid hatch aposymbiotically (uncolonized), and, if collected within the first 30-60 minutes and transferred to symbiont-free water, cannot be colonized except by the experimental inoculum. This interaction thus provides a useful model system in which to assess the individual steps that lead to specific acquisition of a symbiotic microbe from the environment. Here we describe a method to assess the degree of colonization that occurs when newly hatched aposymbiotic E. scolopes are exposed to (artificial) seawater containing V. fischeri. This simple assay describes inoculation, natural infection, and recovery of the bacterial symbiont from the nascent light organ of E. scolopes. Care is taken to provide a consistent environment for the animals during symbiotic development, especially with regard to water quality and light cues. Methods to characterize the symbiotic population described include (1) measurement of bacterially-derived bioluminescence, and (2) direct colony counting of recovered symbionts.
Collapse
Affiliation(s)
- Lynn M Naughton
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University
| | | |
Collapse
|
379
|
Gilbert SF. Ecological developmental biology: environmental signals for normal animal development. Evol Dev 2012; 14:20-8. [DOI: 10.1111/j.1525-142x.2011.00519.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Scott F. Gilbert
- Swarthmore College; Swarthmore PA 19081 USA
- Biotechnology Institute; University of Helsinki; Helsinki Finland
| |
Collapse
|
380
|
Post DMB, Yu L, Krasity BC, Choudhury B, Mandel MJ, Brennan CA, Ruby EG, McFall-Ngai MJ, Gibson BW, Apicella MA. O-antigen and core carbohydrate of Vibrio fischeri lipopolysaccharide: composition and analysis of their role in Euprymna scolopes light organ colonization. J Biol Chem 2012; 287:8515-30. [PMID: 22247546 DOI: 10.1074/jbc.m111.324012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vibrio fischeri exists in a symbiotic relationship with the Hawaiian bobtail squid, Euprymna scolopes, where the squid provides a home for the bacteria, and the bacteria in turn provide camouflage that helps protect the squid from night-time predators. Like other gram-negative organisms, V. fischeri expresses lipopolysaccharide (LPS) on its cell surface. The structure of the O-antigen and the core components of the LPS and their possible role in colonization of the squid have not previously been determined. In these studies, an O-antigen ligase mutant, waaL, was utilized to determine the structures of these LPS components and their roles in colonization of the squid. WaaL ligates the O-antigen to the core of the LPS; thus, LPS from waaL mutants lacks O-antigen. Our results show that the V. fischeri waaL mutant has a motility defect, is significantly delayed in colonization, and is unable to compete with the wild-type strain in co-colonization assays. Comparative analyses of the LPS from the wild-type and waaL strains showed that the V. fischeri LPS has a single O-antigen repeat composed of yersiniose, 8-epi-legionaminic acid, and N-acetylfucosamine. In addition, the LPS from the waaL strain showed that the core structure consists of L-glycero-D-manno-heptose, D-glycero-D-manno-heptose, glucose, 3-deoxy-D-manno-octulosonic acid, N-acetylgalactosamine, 8-epi-legionaminic acid, phosphate, and phosphoethanolamine. These studies indicate that the unusual V. fischeri O-antigen sugars play a role in the early phases of bacterial colonization of the squid.
Collapse
Affiliation(s)
- Deborah M B Post
- Buck Institute for Research on Aging, Novato, California 94945, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
381
|
Abstract
The human gastrointestinal tract is divided into sections, allowing digestion and nutrient absorption in the proximal region to be separate from the vast microbial populations in the large intestine, thereby reducing conflict between host and microbes. In the distinct habitats of the gut, environmental filtering and competitive exclusion between microbes are the driving factors shaping microbial diversity, and stochastic factors during colonization history and in situ evolution are likely to introduce intersubject variability. Adaptive strategies of microbes with different niches are genomically encoded: Specialists have smaller genomes than generalists, and microbes with environmental reservoirs have large accessory genomes. A shift toward a Neolithic diet increased loads of simple carbohydrates and selected for their increased breakdown and absorption in the small intestine. Humans who outcompeted microbes for the new substrates obtained more energy from their diets and prospered, an evolutionary process reflected in modern population genetics. The three-way interactions between human genetics, diet, and the microbiota fundamentally shaped modern populations and continue to affect health globally.
Collapse
Affiliation(s)
- Jens Walter
- Department of Food Science, University of Nebraska, Lincoln, Nebraska 68583-0919, USA
| | | |
Collapse
|
382
|
Abstract
Mutualistic microbial symbioses are one of the key innovations in the evolution of biological diversity, enabling the expansion of species' niches and the production of sophisticated structures such as the eukaryotic cell. For some of the best-studied cases, we are beginning to have network models of symbiotic metabolism, but this work is in its infancy and has not been developed with an evolutionary perspective. However, theoreticians have long been interested in how these symbioses arise and persist and have applied modelling approaches from economics, evolution, ecology, and sociobology to a number of fundamental questions. We provide an overview of these questions, followed by specific modelling examples. We cover economic game theory, including the Prisoner's Dilemma, the Snowdrift game, and biological markets. We also describe the eco-evolutionary framework of adaptive dynamics, inclusive fitness, and population genetic models. We aim to provide insight into the strengths and weaknesses of each approach and into how current evolutionary methods can benefit an understanding of the mechanistic basis of host-symbiont interactions elucidated by molecular network models.
Collapse
Affiliation(s)
- Maren L Friesen
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA.
| | | |
Collapse
|
383
|
Deloney-Marino CR, Visick KL. Role for cheR of Vibrio fischeri in the Vibrio-squid symbiosis. Can J Microbiol 2011; 58:29-38. [PMID: 22182211 DOI: 10.1139/w11-107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Upon hatching, the Hawaiian squid Euprymna scolopes is rapidly colonized by its symbiotic partner, the bioluminescent marine bacterium Vibrio fischeri . Vibrio fischeri cells present in the seawater enter the light organ of juvenile squid in a process that requires bacterial motility. In this study, we investigated the role chemotaxis may play in establishing this symbiotic colonization. Previously, we reported that V. fischeri migrates toward numerous attractants, including N-acetylneuraminic acid (NANA), a component of squid mucus. However, whether or not migration toward an attractant such as squid-derived NANA helps the bacterium to localize toward the light organ is unknown. When tested for the ability to colonize juvenile squid, a V. fischeri chemotaxis mutant defective for the methyltransferase CheR was outcompeted by the wild-type strain in co-inoculation experiments, even when the mutant was present in fourfold excess. Our results suggest that the ability to perform chemotaxis is an advantage during colonization, but not essential.
Collapse
|
384
|
Peptidoglycan recognition proteins: modulators of the microbiome and inflammation. Nat Rev Immunol 2011; 11:837-51. [DOI: 10.1038/nri3089] [Citation(s) in RCA: 274] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
385
|
Sensor kinase RscS induces the production of antigenically distinct outer membrane vesicles that depend on the symbiosis polysaccharide locus in Vibrio fischeri. J Bacteriol 2011; 194:185-94. [PMID: 22020639 DOI: 10.1128/jb.05926-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Robust biofilm formation by Vibrio fischeri depends upon activation of the symbiosis polysaccharide (syp) locus, which is achieved by overexpressing the RscS sensor kinase (RscS(+)). Other than the Syp polysaccharide, however, little is known about V. fischeri biofilm matrix components. In other bacteria, biofilms contain polysaccharides, secreted proteins, and outer membrane vesicles (OMVs). Here, we asked whether OMVs are part of V. fischeri biofilms. Transmission electron microscopy revealed OMV-like particles between cells within colonies. In addition, OMVs could be purified from culture supernatants of both RscS(+) and control cells, with the former releasing 2- to 3-fold more OMVs. The increase depended upon the presence of an intact syp locus, as an RscS(+) strain deleted for sypK, which encodes a putative oligosaccharide translocase, exhibited reduced production of OMVs; it also showed a severe defect in biofilm formation. Western immunoblot analyses revealed that the RscS(+) strain, but not the control strain or the RscS(+) sypK mutant, produced a distinct set of nonproteinaceous molecules that could be detected in whole-cell extracts, OMV preparations, and lipopolysaccharide (LPS) extracts. Finally, deletion of degP, which in other bacteria influences OMV production, decreased OMV production and reduced the ability of the cells to form biofilms. We conclude that overexpression of RscS induces OMV production in a manner that depends on the presence of the syp locus and that OMVs produced under these conditions contain antigenically distinct molecules, possibly representing a modified form of lipopolysaccharide (LPS). Finally, our data indicate a correlation between OMV production and biofilm formation by V. fischeri.
Collapse
|
386
|
Archetti M, Scheuring I, Hoffman M, Frederickson ME, Pierce NE, Yu DW. Economic game theory for mutualism and cooperation. Ecol Lett 2011; 14:1300-12. [DOI: 10.1111/j.1461-0248.2011.01697.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
387
|
Schleicher TR, Nyholm SV. Characterizing the host and symbiont proteomes in the association between the Bobtail squid, Euprymna scolopes, and the bacterium, Vibrio fischeri. PLoS One 2011; 6:e25649. [PMID: 21998678 PMCID: PMC3187790 DOI: 10.1371/journal.pone.0025649] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 09/07/2011] [Indexed: 11/26/2022] Open
Abstract
The beneficial symbiosis between the Hawaiian bobtail squid, Euprymna scolopes, and the bioluminescent bacterium, Vibrio fischeri, provides a unique opportunity to study host/microbe interactions within a natural microenvironment. Colonization of the squid light organ by V. fischeri begins a lifelong association with a regulated daily rhythm. Each morning the host expels an exudate from the light organ consisting of 95% of the symbiont population in addition to host hemocytes and shed epithelial cells. We analyzed the host and symbiont proteomes of adult squid exudate and surrounding light organ epithelial tissue using 1D- and 2D-polyacrylamide gel electrophoresis and multidimensional protein identification technology (MudPIT) in an effort to understand the contribution of both partners to the maintenance of this association. These proteomic analyses putatively identified 1581 unique proteins, 870 proteins originating from the symbiont and 711 from the host. Identified host proteins indicate a role of the innate immune system and reactive oxygen species (ROS) in regulating the symbiosis. Symbiont proteins detected enhance our understanding of the role of quorum sensing, two-component signaling, motility, and detoxification of ROS and reactive nitrogen species (RNS) inside the light organ. This study offers the first proteomic analysis of the symbiotic microenvironment of the adult light organ and provides the identification of proteins important to the regulation of this beneficial association.
Collapse
Affiliation(s)
- Tyler R. Schleicher
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Spencer V. Nyholm
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
388
|
Tabei Y, Era M, Ogawa A, Morita H. Interactions between bicarbonate, potassium, and magnesium, and sulfur-dependent induction of luminescence in Vibrio fischeri. J Basic Microbiol 2011; 52:350-9. [PMID: 21953119 DOI: 10.1002/jobm.201100185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 06/03/2011] [Indexed: 11/06/2022]
Abstract
In spite of its central importance in research efforts, the relationship between seawater compounds and bacterial luminescence has not previously been investigated in detail. Thus, in this study, we investigated the effect of cations (Na(+) , K(+) , NH(4) (+) , Mg(2+) , and Ca(2+) ) and anions (Cl(-) , HCO(3) (-) , CO(3) (2-) , and NO(3) (-) ) on the induction of both inorganic (sulfate, sulfite, and thiosulfate) and organic (L-cysteine and L-cystine) sulfur-dependent luminescence in Vibrio fischeri. We found that HCO(3) (-) (bicarbonate) and CO(3) (2-) (carbonate), in the form of various compounds, had a stimulatory effect on sulfur-dependent luminescence. The luminescence induced by bicarbonate was further promoted by the addition of magnesium. Potassium also increased sulfur-dependent luminescence when sulfate or thiosulfate was supplied as the sole sulfur source, but not when sulfite, L-cysteine, or L-cystine was supplied. The positive effect of potassium was accelerated by the addition of magnesium and/or calcium. Furthermore, the additional supply of magnesium improved the induction of sulfite- or L-cysteine-dependent luminescence, but not the l-cystine-dependent type. These results suggest that sulfur-dependent luminescence of V. fischeri under nutrient-starved conditions is mainly controlled by bicarbonate, carbonate, and potassium. In addition, our results indicate that an additional supply of magnesium is effective for increasing V. fischeri luminescence.
Collapse
Affiliation(s)
- Yosuke Tabei
- Faculty of Environment Engineering, The University of Kitakyushu 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, Japan
| | | | | | | |
Collapse
|
389
|
Heath-Heckman EA, McFall-Ngai MJ. The occurrence of chitin in the hemocytes of invertebrates. ZOOLOGY 2011; 114:191-8. [PMID: 21723107 PMCID: PMC3243742 DOI: 10.1016/j.zool.2011.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 02/10/2011] [Accepted: 02/11/2011] [Indexed: 10/18/2022]
Abstract
The light-organ symbiosis of Euprymna scolopes, the Hawaiian bobtail squid, is a useful model for the study of animal-microbe interactions. Recent analyses have demonstrated that chitin breakdown products play a role in communication between E. scolopes and its bacterial symbiont Vibrio fischeri. In this study, we sought to determine the source of chitin in the symbiotic organ. We used a commercially available chitin-binding protein (CBP) conjugated to fluorescein to label the polymeric chitin in host tissues. Confocal microscopy revealed that the only cells in contact with the symbionts that labeled with the probe were the macrophage-like hemocytes, which traffic into the light-organ crypts where the bacteria reside. Labeling of extracted hemocytes by CBP was markedly decreased following treatment with purified chitinase, providing further evidence that the labeled molecule is polymeric chitin. Further, CBP-positive areas co-localized with both a halide peroxidase antibody and Lysotracker, a lysosomal marker, suggesting that the chitin-like biomolecule occurs in the lysosome or acidic vacuoles. Reverse transcriptase polymerase chain reaction (PCR) of hemocytes revealed mRNA coding for a chitin synthase, suggesting that the hemocytes synthesize chitin de novo. Finally, upon surveying blood cells from other invertebrate species, we observed CBP-positive regions in all granular blood cells examined, suggesting that this feature is a shared character among the invertebrates; the vertebrate blood cells that we sampled did not label with CBP. Although the function of the chitin-like material remains undetermined, its presence and subcellular location in invertebrate hemocytes suggests a conserved role for this polysaccharide in the immune system of diverse animals.
Collapse
|
390
|
Septer AN, Wang Y, Ruby EG, Stabb EV, Dunn AK. The haem-uptake gene cluster in Vibrio fischeri is regulated by Fur and contributes to symbiotic colonization. Environ Microbiol 2011; 13:2855-64. [PMID: 21883801 DOI: 10.1111/j.1462-2920.2011.02558.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Although it is accepted that bacteria-colonizing host tissues are commonly faced with iron-limiting conditions and that pathogenic bacteria often utilize iron from host-derived haem-based compounds, the mechanisms of iron acquisition by beneficial symbiotic bacteria are less clear. The bacterium Vibrio fischeri mutualistically colonizes the light organ of the squid Euprymna scolopes. Genome sequence analysis of V. fischeri revealed a putative haem-uptake gene cluster, and through mutant analysis we confirmed this cluster is important for haemin use by V. fischeri in culture. LacZ reporter assays demonstrated Fur-dependent transcriptional regulation of cluster promoter activity in culture. GFP-based reporter assays revealed that gene cluster promoter activity is induced in symbiotic V. fischeri as early as 14 h post inoculation, although colonization assays with the haem uptake mutant suggested an inability to uptake haem does not begin to limit colonization until later stages of the symbiosis. Our data indicate that the squid light organ is a low iron environment and that haem-based sources of iron are used by symbiotic V. fischeri cells. These findings provide important additional information on the availability of iron during symbiotic colonization of E. scolopes by V. fischeri, as well as the role of haem uptake in non-pathogenic host-microbe interactions.
Collapse
Affiliation(s)
- Alecia N Septer
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
391
|
Mansson M, Gram L, Larsen TO. Production of bioactive secondary metabolites by marine vibrionaceae. Mar Drugs 2011; 9:1440-1468. [PMID: 22131950 PMCID: PMC3225927 DOI: 10.3390/md9091440] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 08/11/2011] [Accepted: 08/15/2011] [Indexed: 11/25/2022] Open
Abstract
Bacteria belonging to the Vibrionaceae family are widespread in the marine environment. Today, 128 species of vibrios are known. Several of them are infamous for their pathogenicity or symbiotic relationships. Despite their ability to interact with eukaryotes, the vibrios are greatly underexplored for their ability to produce bioactive secondary metabolites and studies have been limited to only a few species. Most of the compounds isolated from vibrios so far are non-ribosomal peptides or hybrids thereof, with examples of N-containing compounds produced independent of nonribosomal peptide synthetases (NRPS). Though covering a limited chemical space, vibrios produce compounds with attractive biological activities, including antibacterial, anticancer, and antivirulence activities. This review highlights some of the most interesting structures from this group of bacteria. Many compounds found in vibrios have also been isolated from other distantly related bacteria. This cosmopolitan occurrence of metabolites indicates a high incidence of horizontal gene transfer, which raises interesting questions concerning the ecological function of some of these molecules. This account underlines the pending potential for exploring new bacterial sources of bioactive compounds and the challenges related to their investigation.
Collapse
Affiliation(s)
- Maria Mansson
- Center from Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Søltofts Plads 221, DK-2800 Kgs. Lyngby, Denmark; E-Mail:
| | - Lone Gram
- National Food Institute, Technical University of Denmark, Søltofts Plads 221, DK-2800 Kgs. Lyngby, Denmark; E-Mail:
| | - Thomas O. Larsen
- Center from Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Søltofts Plads 221, DK-2800 Kgs. Lyngby, Denmark; E-Mail:
| |
Collapse
|
392
|
Hendry TA, Dunlap PV. The uncultured luminous symbiont of Anomalops katoptron (Beryciformes: Anomalopidae) represents a new bacterial genus. Mol Phylogenet Evol 2011; 61:834-43. [PMID: 21864694 DOI: 10.1016/j.ympev.2011.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 07/30/2011] [Accepted: 08/03/2011] [Indexed: 10/17/2022]
Abstract
Flashlight fishes (Beryciformes: Anomalopidae) harbor luminous symbiotic bacteria in subocular light organs and use the bacterial light for predator avoidance, feeding, and communication. Despite many attempts anomalopid symbionts have not been brought into laboratory culture, which has restricted progress in understanding their phylogenetic relationships with other luminous bacteria, identification of the genes of their luminescence system, as well as the nature of their symbiotic interactions with their fish hosts. To begin addressing these issues, we used culture-independent analysis of the bacteria symbiotic with the anomalopid fish, Anomalops katoptron, to characterize the phylogeny of the bacteria and to identify the genes of their luminescence system including those involved in the regulation of luminescence. Analysis of the 16S rRNA, atpA, gapA, gyrB, pyrH, recA, rpoA, and topA genes resolved the A. katoptron symbionts as a clade nested within and deeply divergent from other members of Vibrionaceae. The bacterial luminescence (lux) genes were identified as a contiguous set (luxCDABEG), as found for the lux operons of other luminous bacteria. Phylogenetic analysis based on the lux genes confirmed the housekeeping gene phylogenetic placement. Furthermore, genes flanking the lux operon in the A. katoptron symbionts differed from those flanking lux operons of other genera of luminous bacteria. We therefore propose the candidate name Candidatus Photodesmus (Greek: photo = light, desmus = servant) katoptron for the species of bacteria symbiotic with A. katoptron. Results of a preliminary genomic analysis for genes regulating luminescence in other bacteria identified only a Vibrio harveyi-type luxR gene. These results suggest that expression of the luminescence system might be continuous in P. katoptron.
Collapse
Affiliation(s)
- Tory A Hendry
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1048, United States.
| | | |
Collapse
|
393
|
Yoshizawa S, Karatani H, Wada M, Yokota A, Kogure K. Aliivibrio sifiae sp. nov., luminous marine bacteria isolated from seawater. J GEN APPL MICROBIOL 2011; 56:509-18. [PMID: 21282907 DOI: 10.2323/jgam.56.509] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan.
| | | | | | | | | |
Collapse
|
394
|
Infection Dynamics Vary between Symbiodinium Types and Cell Surface Treatments during Establishment of Endosymbiosis with Coral Larvae. DIVERSITY-BASEL 2011. [DOI: 10.3390/d3030356] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
395
|
McInnis CE, Blackwell HE. Design, synthesis, and biological evaluation of abiotic, non-lactone modulators of LuxR-type quorum sensing. Bioorg Med Chem 2011; 19:4812-9. [PMID: 21798749 DOI: 10.1016/j.bmc.2011.06.072] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 06/22/2011] [Accepted: 06/26/2011] [Indexed: 10/17/2022]
Abstract
Quorum sensing (QS) is a cell-cell signaling mechanism that allows bacteria to monitor their population size and alter their behavior at high cell densities. Gram-negative bacteria use N-acylated L-homoserine lactones (AHLs) as their primary signals for QS. These signals are susceptible to lactone hydrolysis in biologically relevant media, and the ring-opened products are inactive QS signals. We have previously identified a range of non-native AHLs capable of strongly agonizing and antagonizing QS in Gram-negative bacteria. However, these abiotic AHLs are also prone to hydrolysis and inactivation and thereby have a relatively short time window for use (∼12-48 h). Non-native QS modulators with reduced or no hydrolytic instability could have enhanced potencies and would be valuable as tools to study the mechanisms of QS in a range of environments (for example, on eukaryotic hosts). This study reports the design and synthesis of two libraries of new, non-hydrolyzable AHL mimics. The libraries were screened for QS modulatory activity using LasR, LuxR, and TraR bacterial reporter strains, and several new, abiotic agonists and antagonists of these receptors were identified.
Collapse
Affiliation(s)
- Christine E McInnis
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706, USA
| | | |
Collapse
|
396
|
Rosenberg E, Zilber-Rosenberg I. Symbiosis and development: the hologenome concept. ACTA ACUST UNITED AC 2011; 93:56-66. [PMID: 21425442 DOI: 10.1002/bdrc.20196] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
All animals and plants establish symbiotic relationships with microorganisms; often the combined genetic information of the diverse microbiota exceeds that of the host. How the genetic wealth of the microbiota affects all aspects of the holobiont's (host plus all of its associated microorganisms) fitness (adaptation, survival, development, growth and reproduction) and evolution is reviewed, using selected coral, insect, squid, plant, and human/mouse published experimental results. The data are discussed within the framework of the hologenome theory of evolution, which demonstrates that changes in environmental parameters, for example, diet, can cause rapid changes in the diverse microbiota, which not only can benefit the holobiont in the short term but also can be transmitted to offspring and lead to long lasting cooperations. As acquired characteristics (microbes) are heritable, consideration of the holobiont as a unit of selection in evolution leads to neo-Lamarckian principles within a Darwinian framework. The potential application of these principles can be seen in the growing fields of prebiotics and probiotics.
Collapse
Affiliation(s)
- Eugene Rosenberg
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Givat Shmuel, Israel.
| | | |
Collapse
|
397
|
Altura MA, Stabb E, Goldman W, Apicella M, McFall-Ngai MJ. Attenuation of host NO production by MAMPs potentiates development of the host in the squid-vibrio symbiosis. Cell Microbiol 2011; 13:527-37. [PMID: 21091598 DOI: 10.1111/j.1462-5822.2010.01552.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial pathogens typically upregulate the host's production of nitric oxide synthase (NOS) and nitric oxide (NO) as antimicrobial agents, a response that is often mediated by microbe-associated molecular patterns (MAMPs) of the pathogen. In contrast, previous studies of the beneficial Euprymna scolopes/Vibrio fischeri symbiosis demonstrated that symbiont colonization results in attenuation of host NOS/NO, which occurs in high levels in hatchling light organs. Here, we sought to determine whether V. fischeri MAMPs, specifically lipopolysaccharide (LPS) and the peptidoglycan derivative tracheal cytotoxin (TCT), attenuate NOS/NO, and whether this activity mediates the MAMPs-induced light organ morphogenesis. Using confocal microscopy, we characterized levels of NOS with immunocytochemistry and NO with a NO-specific fluorochrome. When added exogenously to seawater containing hatchling animals, V. fischeri LPS and TCT together, but not individually, induced normal NOS/NO attenuation. Further, V. fischeri mutants defective in TCT release did not. Experiments with NOS inhibitors and NO donors provided evidence that NO mediates apoptosis and morphogenesis associated with symbiont colonization. Attenuation of NOS/NO by LPS and TCT in the squid-vibrio symbiosis provides another example of how the host's response to MAMPs depends on the context. These data also provide a mechanism by which symbiont MAMPs regulate host development.
Collapse
Affiliation(s)
- Melissa A Altura
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | |
Collapse
|
398
|
Abstract
Diverse bacterial lineages form beneficial infections with eukaryotic hosts. The origins, evolution, and breakdown of these mutualisms represent important evolutionary transitions. To examine these key events, we synthesize data from diverse interactions between bacteria and eukaryote hosts. Five evolutionary transitions are investigated, including the origins of bacterial associations with eukaryotes, the origins and subsequent stable maintenance of bacterial mutualism with hosts, the capture of beneficial symbionts via the evolution of strict vertical transmission within host lineages, and the evolutionary breakdown of bacterial mutualism. Each of these transitions has occurred many times in the history of bacterial-eukaryote symbiosis. We investigate these evolutionary events across the bacterial domain and also among a focal set of well studied bacterial mutualist lineages. Subsequently, we generate a framework for examining evolutionary transitions in bacterial symbiosis and test hypotheses about the selective, ecological, and genomic forces that shape these events.
Collapse
|
399
|
Phillips NJ, Adin DM, Stabb EV, McFall-Ngai MJ, Apicella MA, Gibson BW. The lipid A from Vibrio fischeri lipopolysaccharide: a unique structure bearing a phosphoglycerol moiety. J Biol Chem 2011; 286:21203-19. [PMID: 21498521 PMCID: PMC3122182 DOI: 10.1074/jbc.m111.239475] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/13/2011] [Indexed: 11/06/2022] Open
Abstract
Vibrio fischeri, a bioluminescent marine bacterium, exists in an exclusive symbiotic relationship with the Hawaiian bobtail squid, Euprymna scolopes, whose light organ it colonizes. Previously, it has been shown that the lipopolysaccharide (LPS) or free lipid A of V. fischeri can trigger morphological changes in the juvenile squid's light organ that occur upon colonization. To investigate the structural features that might be responsible for this phenomenon, the lipid A from V. fischeri ES114 LPS was isolated and characterized by multistage mass spectrometry (MS(n)). A microheterogeneous mixture of mono- and diphosphorylated diglucosamine disaccharides was observed with variable states of acylation ranging from tetra- to octaacylated forms. All lipid A species, however, contained a set of conserved primary acyl chains consisting of an N-linked C14:0(3-OH) at the 2-position, an unusual N-linked C14:1(3-OH) at the 2'-position, and two O-linked C12:0(3-OH) fatty acids at the 3- and 3'-positions. The fatty acids found in secondary acylation were considerably more variable, with either a C12:0 or C16:1 at the 2-position, C14:0 or C14:0(3-OH) at the 2'-position, and C12:0 or no substituent at the 3'-position. Most surprising was the presence of an unusual set of modifications at the secondary acylation site of the 3-position consisting of phosphoglycerol (GroP), lysophosphatidic acid (GroP bearing C12:0, C16:0, or C16:1), or phosphatidic acid (GroP bearing either C16:0 + C12:0 or C16:0 + C16:1). Given their unusual nature, it is possible that these features of the V. fischeri lipid A may underlie the ability of E. scolopes to recognize its symbiotic partner.
Collapse
Affiliation(s)
- Nancy J. Phillips
- From the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143
| | - Dawn M. Adin
- the Department of Microbiology, University of Georgia, Athens, Georgia 30602
| | - Eric V. Stabb
- the Department of Microbiology, University of Georgia, Athens, Georgia 30602
| | - Margaret J. McFall-Ngai
- the Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin 53706
| | - Michael A. Apicella
- the Department of Microbiology, University of Iowa College of Medicine, Iowa City, Iowa 52242, and
| | - Bradford W. Gibson
- From the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143
- the Buck Institute for Research on Aging, Novato, California 94945
| |
Collapse
|
400
|
Tabei Y, Era M, Ogawa A, Morita H. Requirements for sulfur in cell density-independent induction of luminescence in Vibrio fischeri under nutrient-starved conditions. J Basic Microbiol 2011; 52:216-23. [PMID: 21656822 DOI: 10.1002/jobm.201100055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/09/2011] [Indexed: 11/11/2022]
Abstract
Despite the universal requirement for sulfur in living organisms, it is not known whether the luminescence of Vibrio fischeri is sulfur-dependent and how sulfur affects the intensity of its luminescence. In this study, we investigated the requirement for sulfur in V. fischeri luminescence under nutrient-starved conditions. Full induction of V. fischeri luminescence required MgSO(4); in artificial seawater cultures that lacked sufficient MgSO(4), its luminescence was not fully induced. This induction of luminescence was not dependent on autoinduction because the cell density of V. fischeri did not reach the critical threshold concentration. In addition to MgSO(4), this cell density-independent luminescence was induced or maintained by nontoxic concentrations of l-cysteine, sulfate, sulfite, and thiosulfate. Moreover, the addition of N -3-oxo-hexanoyl homoserine lactone and N -octanoyl homoserine lactone, which are known autoinducers in V. fischeri, did not induce luminescence under these conditions. This result suggested that the underlying mechanism of luminescence may be different from the known autoinduction mechanism.
Collapse
Affiliation(s)
- Yosuke Tabei
- Faculty of Environment Engineering, The University of Kitakyushu, Kitakyushu, Fukuoka, Japan
| | | | | | | |
Collapse
|