351
|
Zahmatkesh E, Othman A, Braun B, Aspera R, Ruoß M, Piryaei A, Vosough M, Nüssler A. In vitro modeling of liver fibrosis in 3D microtissues using scalable micropatterning system. Arch Toxicol 2022; 96:1799-1813. [PMID: 35366062 DOI: 10.1007/s00204-022-03265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/23/2022] [Indexed: 11/02/2022]
Abstract
Liver fibrosis is the late consequence of chronic liver inflammation which could eventually lead to cirrhosis, and liver failure. Among various etiological factors, activated hepatic stellate cells (aHSCs) are the major players in liver fibrosis. To date, various in vitro liver fibrosis models have been introduced to address biological and medical questions. Availability of traditional in vitro models could not fully recapitulate complicated pathology of liver fibrosis. The purpose of this study was to develop a simple and robust model to investigate the role of aHSCs on the progression of epithelial to mesenchymal transition (EMT) in hepatocytes during liver fibrogenesis. Therefore, we applied a micropatterning approach to generate 3D co-culture microtissues consisted of HepaRG and human umbilical cord endothelial cells (HUVEC) which co-cultured with inactivated LX-2 cells or activated LX-2 cells, respectively, as normal or fibrotic liver models in vitro. The result indicated that the activated LX-2 cells could induce EMT in HepaRG cells through activation of TGF-β/SMAD signaling pathway. Besides, in the fibrotic microtissue, physiologic function of HepaRG cells attenuated compared to the control group, e.g., metabolic activity and albumin secretion. Moreover, our results showed that after treatment with Galunisertib, the fibrogenic properties decreased, in the term of gene and protein expression. In conclusion, it is proposed that aHSCs could lead to EMT in hepatocytes during liver fibrogenesis. Furthermore, the scalable micropatterning approach could provide enough required liver microtissues to prosper our understanding of the mechanisms involved in the progression of liver fibrosis as well as high throughput (HT) drug screening.
Collapse
Affiliation(s)
- Ensieh Zahmatkesh
- Department of Traumatology, Siegfried Weller Institute, University of Tübingen, BG Tübingen, 72076, Tübingen, Germany
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Amnah Othman
- Department of Traumatology, Siegfried Weller Institute, University of Tübingen, BG Tübingen, 72076, Tübingen, Germany
| | - Bianca Braun
- Department of Traumatology, Siegfried Weller Institute, University of Tübingen, BG Tübingen, 72076, Tübingen, Germany
| | - Romina Aspera
- Department of Traumatology, Siegfried Weller Institute, University of Tübingen, BG Tübingen, 72076, Tübingen, Germany
| | - Marc Ruoß
- Department of Traumatology, Siegfried Weller Institute, University of Tübingen, BG Tübingen, 72076, Tübingen, Germany
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Andreas Nüssler
- Department of Traumatology, Siegfried Weller Institute, University of Tübingen, BG Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
352
|
Li H, Wu M, Zhao X. Role of chemokine systems in cancer and inflammatory diseases. MedComm (Beijing) 2022; 3:e147. [PMID: 35702353 PMCID: PMC9175564 DOI: 10.1002/mco2.147] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Chemokines are a large family of small secreted proteins that have fundamental roles in organ development, normal physiology, and immune responses upon binding to their corresponding receptors. The primary functions of chemokines are to coordinate and recruit immune cells to and from tissues and to participate in regulating interactions between immune cells. In addition to the generally recognized antimicrobial immunity, the chemokine/chemokine receptor axis also exerts a tumorigenic function in many different cancer models and is involved in the formation of immunosuppressive and protective tumor microenvironment (TME), making them potential prognostic markers for various hematologic and solid tumors. In fact, apart from its vital role in tumors, almost all inflammatory diseases involve chemokines and their receptors in one way or another. Modulating the expression of chemokines and/or their corresponding receptors on tumor cells or immune cells provides the basis for the exploitation of new drugs for clinical evaluation in the treatment of related diseases. Here, we summarize recent advances of chemokine systems in protumor and antitumor immune responses and discuss the prevailing understanding of how the chemokine system operates in inflammatory diseases. In this review, we also emphatically highlight the complexity of the chemokine system and explore its potential to guide the treatment of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Hongyi Li
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of EducationWest China Second HospitalSichuan UniversityChengduChina
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of EducationWest China Second HospitalSichuan UniversityChengduChina
| |
Collapse
|
353
|
Ngo W, Ahmed S, Blackadar C, Bussin B, Ji Q, Mladjenovic SM, Sepahi Z, Chan WC. Why nanoparticles prefer liver macrophage cell uptake in vivo. Adv Drug Deliv Rev 2022; 185:114238. [PMID: 35367524 DOI: 10.1016/j.addr.2022.114238] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/26/2022] [Accepted: 03/23/2022] [Indexed: 02/08/2023]
Abstract
Effective delivery of therapeutic and diagnostic nanoparticles is dependent on their ability to accumulate in diseased tissues. However, most nanoparticles end up in liver macrophages regardless of nanoparticle design after administration. In this review, we describe the interactions of liver macrophages with nanoparticles. Liver macrophages have significant advantages in interacting with circulating nanoparticles over most target cells and tissues in the body. We describe these advantages in this article. Understanding these advantages will enable the development of strategies to overcome liver macrophages and deliver nanoparticles to targeted diseased tissues effectively. Ultimately, these approaches will increase the therapeutic efficacy and diagnostic signal of nanoparticles.
Collapse
|
354
|
Alanyl-Glutamine Protects against Lipopolysaccharide-Induced Liver Injury in Mice via Alleviating Oxidative Stress, Inhibiting Inflammation, and Regulating Autophagy. Antioxidants (Basel) 2022; 11:antiox11061070. [PMID: 35739966 PMCID: PMC9220087 DOI: 10.3390/antiox11061070] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 12/23/2022] Open
Abstract
Acute liver injury is a worldwide problem with a high rate of morbidity and mortality, and effective pharmacological therapies are still urgently needed. Alanyl-glutamine (Ala-Gln), a dipeptide formed from L-alanine and L-glutamine, is known as a protective compound that is involved in various tissue injuries, but there are limited reports regarding the effects of Ala-Gln in acute liver injury. This present study aimed to investigate the protective effects of Ala-Gln in lipopolysaccharide (LPS)-induced acute liver injury in mice, with a focus on inflammatory responses and oxidative stress. The acute liver injury induced using LPS (50 μg/kg) and D-galactosamine (D-Gal) (400 mg/kg) stimulation in mice was significantly attenuated after Ala-Gln treatment (500 and 1500 mg/kg), as evidenced by reduced plasma alanine transaminase (ALT) (p < 0.01, p < 0.001), aspartate transaminase (AST) (p < 0.05, p < 0.001), and lactate dehydrogenase (LDH) (p < 0.01, p < 0.001) levels, and accompanied by improved histopathological changes. In addition, LPS/D-Gal-induced hepatic apoptosis was also alleviated by Ala-Gln administration, as shown by a greatly decreased ratio of TUNEL-positive hepatocytes, from approximately 10% to 2%, and markedly reduced protein levels of cleaved caspase-3 (p < 0.05, p < 0.001) in liver. Moreover, we found that LPS/D-Gal-triggered oxidative stress was suppressed after Ala-Gln treatment, the effect of which might be dependent on the elevation of SOD and GPX activities, and on GSH levels in liver. Interestingly, we observed that Ala-Gln clearly inhibited LPS/D-Gal exposure-induced macrophage accumulation and the production of proinflammatory factors in the liver. Furthermore, Ala-Gln greatly regulated autophagy in the liver in LPS/D-Gal-treated mice. Using RAW264.7 cells, we confirmed the anti-inflammatory role of Ala-Gln-targeting macrophages.
Collapse
|
355
|
Gadipudi LL, Ramavath NN, Provera A, Reutelingsperger C, Albano E, Perretti M, Sutti S. Annexin A1 treatment prevents the evolution to fibrosis of experimental nonalcoholic steatohepatitis. Clin Sci (Lond) 2022; 136:643-656. [PMID: 35438166 DOI: 10.1042/cs20211122] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
Annexin A1 (AnxA1) is an important effector in the resolution of inflammation which is involved in modulating hepatic inflammation in nonalcoholic steatohepatitis (NASH). In the present study, we have investigated the possible effects of treatment with AnxA1 for counteracting the progression of experimental NASH. NASH was induced in C57BL/6 mice by feeding methionine-choline deficient (MCD) or Western diets (WDs) and the animals were treated for 4-6 weeks with human recombinant AnxA1 (hrAnxA1; 1 µg, daily IP) or saline once NASH was established. In both experimental models, treatment with hrAnxA1 improved parenchymal injury and lobular inflammation without interfering with the extension of steatosis. Furthermore, administration of hrAnxA1 significantly attenuated the hepatic expression of α1-procollagen and TGF-β1 and reduced collagen deposition, as evaluated by collagen Sirius Red staining. Flow cytometry and immunohistochemistry showed that hrAnxA1 did not affect the liver recruitment of macrophages, but strongly interfered with the formation of crown-like macrophage aggregates and reduced their capacity of producing pro-fibrogenic mediators like osteopontin (OPN) and galectin-3 (Gal-3). This effect was related to an interference with the acquisition of a specific macrophage phenotype characterized by the expression of the Triggering Receptor Expressed on Myeloid cells 2 (TREM-2), CD9 and CD206, previously associated with NASH evolution to cirrhosis. Collectively, these results indicate that, beside ameliorating hepatic inflammation, AnxA1 is specifically effective in preventing NASH-associated fibrosis by interfering with macrophage pro-fibrogenic features. Such a novel function of AnxA1 gives the rationale for the development of AnxA1 analogs for the therapeutic control of NASH evolution.
Collapse
Affiliation(s)
- Laila Lavanya Gadipudi
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Naresh Naik Ramavath
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Alessia Provera
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Chris Reutelingsperger
- Cardiovascular Research Institute Maastricht, Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
| | - Emanuele Albano
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, U.K
| | - Salvatore Sutti
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| |
Collapse
|
356
|
Jiang XL, Luo PY, Zhou YY, Luo ZH, Hao YJ, Fan MZ, Wu XH, Gao H, Bi HC, Zhao ZB, Lian ML, Lian ZX. Hepatoprotective Effect of Oplopanax elatus Nakai Adventitious Roots Extract by Regulating CYP450 and PPAR Signaling Pathway. Front Pharmacol 2022; 13:761618. [PMID: 35586046 PMCID: PMC9108204 DOI: 10.3389/fphar.2022.761618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/30/2022] [Indexed: 12/11/2022] Open
Abstract
O. elatus Nakai is a traditional medicine that has been confirmed to exert effective antioxidant and anti-inflammatory functions, and is used for the treatment of different disorders. However, its potential beneficial effects on drug induced hepatotoxicity and relevant molecular mechanisms remain unclear. This study investigated the protective effect and further elucidated the mechanisms of action of O. elatus on liver protection. O. elatus chlorogenic acids-enriched fraction (OEB), which included chlorogenic acid and isochlorogenic acid A, were identified by HPLC-MS/MS. OEB was administrated orally daily for seven consecutive days, followed by a single intraperitoneal injection of an overdose of APAP after the final OEB administration. The effects of OEB on immune cells in mice liver were analyzed using flow cytometry. APAP metabolite content in serum was detected using HPLC-MS/MS in order to investigate whether OEB affects CYP450 activities. The intestinal content samples were processed for 16 s microbiota sequencing. Results demonstrated that OEB decreased alanine aminotransferase, aspartate aminotransferase contents, affected the metabolism of APAP, and decreased the concentrates of APAP, APAP-CYS and APAP-NAC by inhibiting CYP2E1 and CYP3A11 activity. Furthermore, OEB pretreatment regulated lipid metabolism by affecting the peroxisome proliferator-activated receptors (PPAR) signaling pathway in mice and also increased the abundance of Akkermansia and Parabacteroides. This study indicated that OEB is a potential drug candidate for treating hepatotoxicity because of its ability to affect drug metabolism and regulate lipid metabolism.
Collapse
Affiliation(s)
- Xiao-Long Jiang
- Key Laboratory for Natural Resource of ChangBai Mountain & Functional Molecules, Ministry of Education, Yanbian University, Yanji, China
| | - Pan-Yue Luo
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Yan-Ying Zhou
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhi-Hui Luo
- College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou, China
| | - Yue-Jun Hao
- Key Laboratory for Natural Resource of ChangBai Mountain & Functional Molecules, Ministry of Education, Yanbian University, Yanji, China
| | - Ming-Zhi Fan
- Key Laboratory for Natural Resource of ChangBai Mountain & Functional Molecules, Ministry of Education, Yanbian University, Yanji, China
| | - Xiao-Han Wu
- Key Laboratory for Natural Resource of ChangBai Mountain & Functional Molecules, Ministry of Education, Yanbian University, Yanji, China
| | - Hao Gao
- College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou, China
| | - Hui-Chang Bi
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhi-Bin Zhao
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Zhi-Bin Zhao, ; Mei-Lan Lian, ; Zhe-Xiong Lian,
| | - Mei-Lan Lian
- Key Laboratory for Natural Resource of ChangBai Mountain & Functional Molecules, Ministry of Education, Yanbian University, Yanji, China
- *Correspondence: Zhi-Bin Zhao, ; Mei-Lan Lian, ; Zhe-Xiong Lian,
| | - Zhe-Xiong Lian
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Zhi-Bin Zhao, ; Mei-Lan Lian, ; Zhe-Xiong Lian,
| |
Collapse
|
357
|
Niu L, Geyer PE, Gupta R, Santos A, Meier F, Doll S, Wewer Albrechtsen NJ, Klein S, Ortiz C, Uschner FE, Schierwagen R, Trebicka J, Mann M. Dynamic human liver proteome atlas reveals functional insights into disease pathways. Mol Syst Biol 2022; 18:e10947. [PMID: 35579278 PMCID: PMC9112488 DOI: 10.15252/msb.202210947] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
Deeper understanding of liver pathophysiology would benefit from a comprehensive quantitative proteome resource at cell type resolution to predict outcome and design therapy. Here, we quantify more than 150,000 sequence-unique peptides aggregated into 10,000 proteins across total liver, the major liver cell types, time course of primary cell cultures, and liver disease states. Bioinformatic analysis reveals that half of hepatocyte protein mass is comprised of enzymes and 23% of mitochondrial proteins, twice the proportion of other liver cell types. Using primary cell cultures, we capture dynamic proteome remodeling from tissue states to cell line states, providing useful information for biological or pharmaceutical research. Our extensive data serve as spectral library to characterize a human cohort of non-alcoholic steatohepatitis and cirrhosis. Dramatic proteome changes in liver tissue include signatures of hepatic stellate cell activation resembling liver cirrhosis and providing functional insights. We built a web-based dashboard application for the interactive exploration of our resource (www.liverproteome.org).
Collapse
Affiliation(s)
- Lili Niu
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Philipp E Geyer
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
OmicEra Diagnostics GmbHPlaneggGermany
| | - Rajat Gupta
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Present address:
Pfizer Worldwide Research and DevelopmentSan DiegoCAUSA
| | - Alberto Santos
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Center for Health Data ScienceFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
- Big Data InstituteNuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Florian Meier
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
Functional ProteomicsJena University HospitalJenaGermany
| | - Sophia Doll
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
OmicEra Diagnostics GmbHPlaneggGermany
| | - Nicolai J Wewer Albrechtsen
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Clinical BiochemistryRigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Sabine Klein
- Department of Internal Medicine IGoethe University Clinic FrankfurtFrankfurtGermany
- Department of Internal Medicine BWW University MünsterMünsterGermany
| | - Cristina Ortiz
- Department of Internal Medicine IGoethe University Clinic FrankfurtFrankfurtGermany
| | - Frank E Uschner
- Department of Internal Medicine IGoethe University Clinic FrankfurtFrankfurtGermany
- Department of Internal Medicine BWW University MünsterMünsterGermany
| | - Robert Schierwagen
- Department of Internal Medicine IGoethe University Clinic FrankfurtFrankfurtGermany
- Department of Internal Medicine BWW University MünsterMünsterGermany
| | - Jonel Trebicka
- Department of Internal Medicine IGoethe University Clinic FrankfurtFrankfurtGermany
- Department of Internal Medicine BWW University MünsterMünsterGermany
- European Foundation for the Study of Chronic Failure, EFCLIFBarcelonaSpain
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| |
Collapse
|
358
|
Abu-Gazala S, Bergel M, Arad Y, Hefetz L, Azulai S, Baker A, Haran A, Israeli H, Kleiman D, Samuel I, Tsubary U, Permyakova A, Tam J, Ben-Haroush Schyr R, Ben-Zvi D. Generation and characterization of a mouse model for one anastomosis gastric bypass surgery. Am J Physiol Endocrinol Metab 2022; 322:E414-E424. [PMID: 35285295 DOI: 10.1152/ajpendo.00416.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One anastomosis gastric bypass (OAGB) surgery became a common bariatric procedure in recent years. In this surgery, the distal stomach, duodenum, and proximal jejunum are bypassed, leading to weight loss, improvement in metabolic parameters, and a change in hormonal secretion. We sought to generate and characterize a mouse model for OAGB. Mice fed for 26 wk on a high-fat diet were assigned to OAGB, sham surgery, or caloric restriction and were followed for 50 more days on a high-fat diet. Physiological and histological parameters of the mice were compared during and at the end of the experiment. OAGB-operated mice lost weight and displayed low levels of plasma lipids, high insulin sensitivity, and rapid glucose metabolism compared with sham-operated mice. OAGB-operated mice had higher energy expenditure, higher levels of glucagon-like peptide (GLP-1), and lower albumin than weight-matched calorie-restricted mice. There was no difference in the histology of the endocrine pancreas. The livers of OAGB mice had little hepatic steatosis yet presented with a large number of phagocytic cells. The OAGB mouse model recapitulates many of the phenotypes described in patients that underwent OAGB and enables molecular and physiological studies on the outcome of this surgery.NEW & NOTEWORTHY A mouse model for one anastomosis gastric bypass (OAGB) surgery displays similar outcomes to clinical reports and enables to study the weight loss-dependent and -independent effects of this bariatric surgery.
Collapse
Affiliation(s)
- Samir Abu-Gazala
- Department of Surgery, Hadassah Medical Center-Ein Kerem, Jerusalem, Israel
- Department of Surgery, Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael Bergel
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yhara Arad
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
- Department of Military Medicine and Tzameret, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liron Hefetz
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
- Department of Military Medicine and Tzameret, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shira Azulai
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Aaron Baker
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Arnon Haran
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Hadar Israeli
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Doron Kleiman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Itia Samuel
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Uria Tsubary
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
- Department of Military Medicine and Tzameret, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anna Permyakova
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rachel Ben-Haroush Schyr
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Danny Ben-Zvi
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
359
|
Abstract
Hepatic macrophages are key immune cells associated with the broad ranges of liver diseases including steatosis, inflammation and fibrosis. Hepatic macrophages interact with other immune cells and orchestrate hepatic immune circumstances. Recently, the heterogenous populations of hepatic macrophages have been discovered termed residential Kupffer cells and monocyte-derived macrophages, and identified their distinct population dynamics during the progression of various liver diseases. Liver injury lead to Kupffer cells activation with induction of inflammatory cytokines and chemokines, which triggers recruitment of inflammatory monocyte-derived macrophages. To understand liver pathology, the functions of different subtypes of liver macrophages should be regarded with different perspectives. In this review, we summarize recent advances in the roles of hepatic macrophages under liver damages and suggest hepatic macrophages as promising therapeutic targets for treating liver diseases.
Collapse
Affiliation(s)
- Kyeong-Jin Lee
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Mi-Yeon Kim
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Yong-Hyun Han
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
360
|
Abstract
Although best known for their phagocytic and immunological functions, macrophages have increasingly been recognised as key players in the development, homeostasis and regeneration of their host tissues. Early during development, macrophages infiltrate and colonise all tissues within the body, developing symbiotically with their host tissues and acquiring unique functional adaptations based on the tissue microenvironment. These embryonic resident tissue macrophages (RTMs) are ontogenically distinct from the later adult bone marrow-derived monocytes, and in some tissues are self-maintained independently of general circulation at a steady state. In this article, we briefly discuss the ontogeny, maintenance and unique tissue adaptions of RTMs focusing on microglia, Kupffer cells, Langerhans cells, intestinal macrophages, cardiac macrophages and tumour-associated macrophages, and highlight their role in development, homeostasis and dysfunction.
Collapse
Affiliation(s)
- Christopher Zhe Wei Lee
- Singapore Immunology Network, 8A Biomedical Grove, Singapore 138648, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Florent Ginhoux
- Singapore Immunology Network, 8A Biomedical Grove, Singapore 138648, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.,Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9-04-07, 2 Medical Drive, Singapore 117593, Singapore.,Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, 31 Third Hospital Ave, #03-03 Bowyer Block C, Singapore 168753, Singapore
| |
Collapse
|
361
|
Chung KW, Cho YE, Kim SJ, Hwang S. Immune-related pathogenesis and therapeutic strategies of nonalcoholic steatohepatitis. Arch Pharm Res 2022; 45:229-244. [PMID: 35391713 DOI: 10.1007/s12272-022-01379-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/25/2022] [Indexed: 11/02/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome and has become prevalent in the adult population worldwide, given the ongoing obesity pandemic. NAFLD comprises several hepatic disorders, ranging from fatty liver to nonalcoholic steatohepatitis (NASH), cirrhosis, and carcinoma. Excessive fat accumulation in the liver can induce the development of fatty liver, whereas the progression of fatty liver to NASH involves various complex factors. The crucial difference between fatty liver and NASH is the presence of inflammation and fibrosis, the emergence of which is closely associated with the action of immune cells and immunological factors, such as chemokines and cytokines. Thus, expanding our understanding of immunological mechanisms contributing to NASH pathogenesis will lead to the identification of therapeutic targets and the development of viable therapeutics against NASH.
Collapse
Affiliation(s)
- Ki Wung Chung
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Ye Eun Cho
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Seung-Jin Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea.,Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seonghwan Hwang
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
362
|
Li S, Yu J, Huber A, Kryczek I, Wang Z, Jiang L, Li X, Du W, Li G, Wei S, Vatan L, Szeliga W, Chinnaiyan AM, Green MD, Cieslik M, Zou W. Metabolism drives macrophage heterogeneity in the tumor microenvironment. Cell Rep 2022; 39:110609. [PMID: 35385733 PMCID: PMC9052943 DOI: 10.1016/j.celrep.2022.110609] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 01/04/2022] [Accepted: 03/11/2022] [Indexed: 12/18/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are a major cellular component in the tumor microenvironment (TME). However, the relationship between the phenotype and metabolic pattern of TAMs remains poorly understood. We performed single-cell transcriptome profiling on hepatic TAMs from mice bearing liver metastatic tumors. We find that TAMs manifest high heterogeneity at the levels of transcription, development, metabolism, and function. Integrative analyses and validation experiments indicate that increased purine metabolism is a feature of TAMs with pro-tumor and terminal differentiation phenotypes. Like mouse TAMs, human TAMs are highly heterogeneous. Human TAMs with increased purine metabolism exhibit a pro-tumor phenotype and correlate with poor therapeutic efficacy to immune checkpoint blockade. Altogether, our work demonstrates that TAMs are developmentally, metabolically, and functionally heterogeneous and purine metabolism may be a key metabolic feature of a pro-tumor macrophage population.
Collapse
Affiliation(s)
- Shasha Li
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Jiali Yu
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Amanda Huber
- Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Ilona Kryczek
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Zhuwen Wang
- Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Long Jiang
- Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Xiong Li
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Wan Du
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Gaopeng Li
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Shuang Wei
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Linda Vatan
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Wojciech Szeliga
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; Michigan Center for Translational Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; Howard Hughes Medical Institute, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Michael D Green
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA; Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, MI, USA; Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Marcin Cieslik
- Department of Computational Medicine and Bioinformatics, University of Michigan School of Medicine, Ann Arbor, MI, USA; Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; Michigan Center for Translational Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA; Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; Graduate Program in Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA; Graduate Program in Cancer Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
363
|
Lee KJ, Kim MY, Han YH. Roles of heterogenous hepatic macrophages in the progression of liver diseases. BMB Rep 2022; 55:166-174. [PMID: 35321784 PMCID: PMC9058466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 02/21/2025] Open
Abstract
Hepatic macrophages are key immune cells associated with the broad ranges of liver diseases including steatosis, inflammation and fibrosis. Hepatic macrophages interact with other immune cells and orchestrate hepatic immune circumstances. Recently, the heterogenous populations of hepatic macrophages have been discovered termed residential Kupffer cells and monocyte-derived macrophages, and identified their distinct population dynamics during the progression of various liver diseases. Liver injury lead to Kupffer cells activation with induction of inflammatory cytokines and chemokines, which triggers recruitment of inflammatory monocyte-derived macrophages. To understand liver pathology, the functions of different subtypes of liver macrophages should be regarded with different perspectives. In this review, we summarize recent advances in the roles of hepatic macrophages under liver damages and suggest hepatic macrophages as promising therapeutic targets for treating liver diseases. [BMB Reports 2022; 55(4): 166-174].
Collapse
Affiliation(s)
- Kyeong-Jin Lee
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Mi-Yeon Kim
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Yong-Hyun Han
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
364
|
Ramadori P, Kam S, Heikenwalder M. T cells: Friends and foes in NASH pathogenesis and hepatocarcinogenesis. Hepatology 2022; 75:1038-1049. [PMID: 35023202 DOI: 10.1002/hep.32336] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/20/2022]
Abstract
In association with the pandemic spreading of obesity and metabolic syndrome, the prevalence of NAFLD-related HCC is increasing almost exponentially. In recent years, many of the underlining multifactorial causes of NAFLD have been identified, and the cellular mechanisms sustaining disease development have been dissected up to the single-cell level. However, there is still an urgent need to provide clinicians with more therapeutic targets, with particular attention on NAFLD-induced HCC, where immune checkpoint inhibitors do not work as efficiently. Whereas much effort has been invested in elucidating the role of innate immune response in the hepatic NAFLD microenvironment, only in the past decade have novel critical roles been unraveled for T cells in driving chronic inflammation toward HCC. The metabolic and immune microenvironment interact to recreate a tumor-promoting and immune-suppressive terrain, responsible for resistance to anticancer therapy. In this article, we will review the specific functions of several T-cell populations involved in NAFLD and NAFLD-driven HCC. We will illustrate the cellular crosstalk with other immune cells, regulatory networks or stimulatory effects of these interactions, and role of the metabolic microenvironment in influencing immune cell functionality. Finally, we will present the pros and cons of the current therapeutic strategies against NAFLD-related HCC and delineate possible novel approaches for the future.
Collapse
Affiliation(s)
- Pierluigi Ramadori
- Division of Chronic Inflammation and CancerGerman Center for Cancer Research (DKFZ)HeidelbergGermany
| | | | | |
Collapse
|
365
|
Tumor Microenvironment of Hepatocellular Carcinoma: Challenges and Opportunities for New Treatment Options. Int J Mol Sci 2022; 23:ijms23073778. [PMID: 35409139 PMCID: PMC8998420 DOI: 10.3390/ijms23073778] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
The prevalence of liver cancer is constantly rising, with increasing incidence and mortality in Europe and the USA in recent decades. Among the different subtypes of liver cancers, hepatocellular carcinoma (HCC) is the most commonly diagnosed liver cancer. Besides advances in diagnosis and promising results of pre-clinical studies, HCC remains a highly lethal disease. In many cases, HCC is an effect of chronic liver inflammation, which leads to the formation of a complex tumor microenvironment (TME) composed of immune and stromal cells. The TME of HCC patients is a challenge for therapies, as it is involved in metastasis and the development of resistance. However, given that the TME is an intricate system of immune and stromal cells interacting with cancer cells, new immune-based therapies are being developed to target the TME of HCC. Therefore, understanding the complexity of the TME in HCC will provide new possibilities to design novel and more effective immunotherapeutics and combinatorial therapies to overcome resistance to treatment. In this review, we describe the role of inflammation during the development and progression of HCC by focusing on TME. We also describe the most recent therapeutic advances for HCC and possible combinatorial treatment options.
Collapse
|
366
|
Avolio F, Martinotti S, Khavinson VK, Esposito JE, Giambuzzi G, Marino A, Mironova E, Pulcini R, Robuffo I, Bologna G, Simeone P, Lanuti P, Guarnieri S, Trofimova S, Procopio AD, Toniato E. Peptides Regulating Proliferative Activity and Inflammatory Pathways in the Monocyte/Macrophage THP-1 Cell Line. Int J Mol Sci 2022; 23:ijms23073607. [PMID: 35408963 PMCID: PMC8999041 DOI: 10.3390/ijms23073607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/18/2022] Open
Abstract
This study evaluates the effects of five different peptides, the Epitalon® tetrapeptide, the Vilon® dipeptide, the Thymogen® dipeptide, the Thymalin® peptide complex, and the Chonluten® tripeptide, as regulators of inflammatory and proliferative processes in the human monocytic THP-1, which is a human leukemia monocytic cell line capable of differentiating into macrophages by PMA in vitro. These peptides (Khavinson Peptides®), characterized by Prof. Khavinson from 1973 onwards, were initially isolated from animal tissues and found to be organ specific. We tested the capacity of the five peptides to influence cell cultures in vitro by incubating THP-1 cells with peptides at certain concentrations known for being effective on recipient cells in culture. We found that all five peptides can modulate key proliferative patterns, increasing tyrosine phosphorylation of mitogen-activated cytoplasmic kinases. In addition, the Chonluten tripeptide, derived from bronchial epithelial cells, inhibited in vitro tumor necrosis factor (TNF) production of monocytes exposed to pro-inflammatory bacterial lipopolysaccharide (LPS). The low TNF release by monocytes is linked to a documented mechanism of TNF tolerance, promoting attenuation of inflammatory action. Therefore, all peptides inhibited the expression of TNF and pro-inflammatory IL-6 cytokine stimulated by LPS on terminally differentiated THP-1 cells. Lastly, by incubating the THP1 cells, treated with the peptides, on a layer of activated endothelial cells (HUVECs activated by LPS), we observed a reduction in cell adhesion, a typical pro-inflammatory mechanism. Overall, the results suggest that the Khavinson Peptides® cooperate as natural inducers of TNF tolerance in monocyte, and act on macrophages as anti-inflammatory molecules during inflammatory and microbial-mediated activity.
Collapse
Affiliation(s)
- Francesco Avolio
- Department of Innovative Technology in Medicine and Odontoiatrics, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (S.M.); (J.E.E.); (G.G.); (A.M.); (R.P.)
| | - Stefano Martinotti
- Department of Innovative Technology in Medicine and Odontoiatrics, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (S.M.); (J.E.E.); (G.G.); (A.M.); (R.P.)
| | - Vladimir Kh. Khavinson
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (V.K.K.); (E.M.); (S.T.)
| | - Jessica Elisabetta Esposito
- Department of Innovative Technology in Medicine and Odontoiatrics, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (S.M.); (J.E.E.); (G.G.); (A.M.); (R.P.)
| | - Giulia Giambuzzi
- Department of Innovative Technology in Medicine and Odontoiatrics, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (S.M.); (J.E.E.); (G.G.); (A.M.); (R.P.)
| | - Antonio Marino
- Department of Innovative Technology in Medicine and Odontoiatrics, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (S.M.); (J.E.E.); (G.G.); (A.M.); (R.P.)
| | - Ekaterina Mironova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (V.K.K.); (E.M.); (S.T.)
| | - Riccardo Pulcini
- Department of Innovative Technology in Medicine and Odontoiatrics, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (S.M.); (J.E.E.); (G.G.); (A.M.); (R.P.)
| | - Iole Robuffo
- Institute of Molecular Genetics, National Research Council, Section of Chieti, 66100 Chieti, Italy;
| | - Giuseppina Bologna
- Department of Medicine and Aging Sciences, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (G.B.); (P.S.); (P.L.)
| | - Pasquale Simeone
- Department of Medicine and Aging Sciences, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (G.B.); (P.S.); (P.L.)
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (G.B.); (P.S.); (P.L.)
| | - Simone Guarnieri
- Department of Neuroscience, Center of Advanced Studies and Technology, Imaging and Clinical Sciences, University of Chieti, 66100 Chieti, Italy;
| | - Svetlana Trofimova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (V.K.K.); (E.M.); (S.T.)
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, Politecnic University of Marche, 60121 Ancona, Italy;
- INRCA-IRCCS, Clinic of Laboratory and Precision Medicine, 60121 Ancona, Italy
| | - Elena Toniato
- Department of Innovative Technology in Medicine and Odontoiatrics, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (S.M.); (J.E.E.); (G.G.); (A.M.); (R.P.)
- Unicamillus—Saint Unicamillus of Health Science, 00131 Rome, Italy
- Correspondence:
| |
Collapse
|
367
|
Trappetti V, Fazzari J, Fernandez-Palomo C, Smyth L, Potez M, Shintani N, de Breuyn Dietler B, Martin OA, Djonov V. Targeted Accumulation of Macrophages Induced by Microbeam Irradiation in a Tissue-Dependent Manner. Biomedicines 2022; 10:735. [PMID: 35453485 PMCID: PMC9025837 DOI: 10.3390/biomedicines10040735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
Radiation therapy (RT) is a vital component of multimodal cancer treatment, and its immunomodulatory effects are a major focus of current therapeutic strategies. Macrophages are some of the first cells recruited to sites of radiation-induced injury where they can aid in tissue repair, propagate radiation-induced fibrogenesis and influence tumour dynamics. Microbeam radiation therapy (MRT) is a unique, spatially fractionated radiation modality that has demonstrated exceptional tumour control and reduction in normal tissue toxicity, including fibrosis. We conducted a morphological analysis of MRT-irradiated normal liver, lung and skin tissues as well as lung and melanoma tumours. MRT induced distinct patterns of DNA damage, reflecting the geometry of the microbeam array. Macrophages infiltrated these regions of peak dose deposition at variable timepoints post-irradiation depending on the tissue type. In normal liver and lung tissue, macrophages clearly demarcated the beam path by 48 h and 7 days post-irradiation, respectively. This was not reflected, however, in normal skin tissue, despite clear DNA damage marking the beam path. Persistent DNA damage was observed in MRT-irradiated lung carcinoma, with an accompanying geometry-specific influx of mixed M1/M2-like macrophage populations. These data indicate the unique potential of MRT as a tool to induce a remarkable accumulation of macrophages in an organ/tissue-specific manner. Further characterization of these macrophage populations is warranted to identify their organ-specific roles in normal tissue sparing and anti-tumour responses.
Collapse
Affiliation(s)
- Verdiana Trappetti
- Institute of Anatomy, University of Bern, Baltzerstarsse 2, 3012 Bern, Switzerland; (V.T.); (J.F.); (C.F.-P.); (M.P.); (N.S.); (B.d.B.D.); (O.A.M.)
| | - Jennifer Fazzari
- Institute of Anatomy, University of Bern, Baltzerstarsse 2, 3012 Bern, Switzerland; (V.T.); (J.F.); (C.F.-P.); (M.P.); (N.S.); (B.d.B.D.); (O.A.M.)
| | - Cristian Fernandez-Palomo
- Institute of Anatomy, University of Bern, Baltzerstarsse 2, 3012 Bern, Switzerland; (V.T.); (J.F.); (C.F.-P.); (M.P.); (N.S.); (B.d.B.D.); (O.A.M.)
| | - Lloyd Smyth
- Department of Obstetrics and Gynaecology, Royal Women’s Hospital, University of Melbourne, Melbourne, VIC 3052, Australia;
| | - Marine Potez
- Institute of Anatomy, University of Bern, Baltzerstarsse 2, 3012 Bern, Switzerland; (V.T.); (J.F.); (C.F.-P.); (M.P.); (N.S.); (B.d.B.D.); (O.A.M.)
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Nahoko Shintani
- Institute of Anatomy, University of Bern, Baltzerstarsse 2, 3012 Bern, Switzerland; (V.T.); (J.F.); (C.F.-P.); (M.P.); (N.S.); (B.d.B.D.); (O.A.M.)
| | - Bettina de Breuyn Dietler
- Institute of Anatomy, University of Bern, Baltzerstarsse 2, 3012 Bern, Switzerland; (V.T.); (J.F.); (C.F.-P.); (M.P.); (N.S.); (B.d.B.D.); (O.A.M.)
| | - Olga A. Martin
- Institute of Anatomy, University of Bern, Baltzerstarsse 2, 3012 Bern, Switzerland; (V.T.); (J.F.); (C.F.-P.); (M.P.); (N.S.); (B.d.B.D.); (O.A.M.)
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, 305 Grattan St., Melbourne, VIC 3000, Australia
- Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstarsse 2, 3012 Bern, Switzerland; (V.T.); (J.F.); (C.F.-P.); (M.P.); (N.S.); (B.d.B.D.); (O.A.M.)
| |
Collapse
|
368
|
Luo W, Ye L, Hu XT, Wang MH, Wang MX, Jin LM, Xiao ZX, Qian JC, Wang Y, Zuo W, Huang LJ, Liang G. MD2 deficiency prevents high-fat diet-induced AMPK suppression and lipid accumulation through regulating TBK1 in non-alcoholic fatty liver disease. Clin Transl Med 2022; 12:e777. [PMID: 35343085 PMCID: PMC8958353 DOI: 10.1002/ctm2.777] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the most predominant form of liver diseases worldwide. Recent evidence shows that myeloid differentiation factor 2 (MD2), a protein in innate immunity and inflammation, regulates liver injury in models of NAFLD. Here, we investigated a new mechanism by which MD2 participates in the pathogenesis of experimental NAFLD. METHODS Wild-type, Md2-/- and bone marrow reconstitution mice fed with high-fat diet (HFD) were used to identify the role of hepatocyte MD2 in NAFLD. Transcriptomic RNA-seq and pathway enrich analysis were performed to explore the potential mechanisms of MD2. In vitro, primary hepatocytes and macrophages were cultured for mechanistic studies. RESULTS Transcriptome analysis and bone marrow reconstitution studies showed that hepatocyte MD2 may participate in regulating lipid metabolism in models with NAFLD. We then discovered that Md2 deficiency in mice prevents HFD-mediated suppression of AMP-activated protein kinase (AMPK). This preservation of AMPK in Md2-deficient mice was associated with normalized sterol regulatory element binding protein 1 (SREBP1) transcriptional program and a lack of lipid accumulation in both hepatocytes and liver. We then showed that hepatocyte MD2 links HFD to AMPK/SREBP1 through TANK binding kinase 1 (TBK1). In addition, MD2-increased inflammatory factor from macrophages induces hepatic TBK1 activation and AMPK suppression. CONCLUSION Hepatocyte MD2 plays a pathogenic role in NAFLD through TBK1-AMPK/SREBP1 and lipid metabolism pathway. These studies provide new insight into a non-inflammatory function of MD2 and evidence for the important role of MD2 in NALFD.
Collapse
Affiliation(s)
- Wu Luo
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Medical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lin Ye
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xue-Ting Hu
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mei-Hong Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Min-Xiu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lei-Ming Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhong-Xiang Xiao
- Affiliated Yueqing Hospital, Wenzhou Medical University, Yueqing, China
| | - Jian-Chang Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wei Zuo
- Affiliated Yueqing Hospital, Wenzhou Medical University, Yueqing, China
| | - Li-Jiang Huang
- Affiliated Xiangshan Hospital, Wenzhou Medial University (Xiangshan First People's Hospital Medical and Health Group), Xiangshan, China
| | - Guang Liang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
369
|
Ortmayr G, Brunnthaler L, Pereyra D, Huber H, Santol J, Rumpf B, Najarnia S, Smoot R, Ammon D, Sorz T, Fritsch F, Schodl M, Voill-Glaninger A, Weitmayr B, Födinger M, Klimpfinger M, Gruenberger T, Assinger A, Mikulits W, Starlinger P. Immunological Aspects of AXL/GAS-6 in the Context of Human Liver Regeneration. Hepatol Commun 2022; 6:576-592. [PMID: 34951136 PMCID: PMC8870037 DOI: 10.1002/hep4.1832] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/03/2021] [Accepted: 08/22/2021] [Indexed: 12/13/2022] Open
Abstract
AXL and its corresponding ligand growth arrest-specific 6 (GAS-6) are critically involved in hepatic immunomodulation and regenerative processes. Pleiotropic inhibitory effects on innate inflammatory responses might essentially involve the shift of macrophage phenotype from a pro-inflammatory M1 to an anti-inflammatory M2. We aimed to assess the relevance of the AXL/GAS-6-pathway in human liver regeneration and, consequently, its association with clinical outcome after hepatic resection. Soluble AXL (sAXL) and GAS-6 levels were analyzed at preoperative and postoperative stages in 154 patients undergoing partial hepatectomy and correlated with clinical outcome. Perioperative dynamics of interleukin (IL)-6, soluble tyrosine-protein kinase MER (sMerTK), soluble CD163 (sCD163), and cytokeratin (CK) 18 were assessed to reflect pathophysiological processes. Preoperatively elevated sAXL and GAS-6 levels predicted postoperative liver dysfunction (area under the curve = 0.721 and 0.722; P < 0.005) and worse clinical outcome. These patients failed to respond with an immediate increase of sAXL and GAS-6 upon induction of liver regeneration. Abolished AXL pathway response resulted in a restricted increase of sCD163, suggesting a disrupted phenotypical switch to regeneratory M2 macrophages. No association with sMerTK was observed. Concomitantly, a distinct association of IL-6 levels with an absent increase of AXL/GAS-6 signaling indicated pronounced postoperative inflammation. This was further supported by increased intrahepatic secondary necrosis as reflected by CK18M65. sAXL and GAS-6 represent not only potent and easily accessible preoperative biomarkers for the postoperative outcome but also AXL/GAS-6 signaling might be of critical relevance in human liver regeneration. Refractory AXL/GAS-6 signaling, due to chronic overactivation/stimulation in the context of underlying liver disease, appears to abolish their immediate release following induction of liver regeneration, causing overwhelming immune activation, presumably via intrahepatic immune regulation.
Collapse
Affiliation(s)
- Gregor Ortmayr
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria
| | - Laura Brunnthaler
- Center of Physiology and PharmacologyInstitute of Vascular Biology and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - David Pereyra
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria.,Center of Physiology and PharmacologyInstitute of Vascular Biology and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - Heidemarie Huber
- Department of Medicine IInstitute of Cancer ResearchComprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Jonas Santol
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria
| | - Benedikt Rumpf
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria
| | - Sina Najarnia
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria
| | - Rory Smoot
- Department of SurgeryMayo ClinicRochesterMNUSA
| | - Daphni Ammon
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria
| | - Thomas Sorz
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria
| | - Fabian Fritsch
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria
| | - Michael Schodl
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria
| | - Astrid Voill-Glaninger
- Department of Laboratory MedicineViennese Health Network, Clinic LandstraßeViennaAustria
| | - Barbara Weitmayr
- Department of PathologyViennese Health Network, Clinic LandstraßeViennaAustria
| | - Manuela Födinger
- Department of Laboratory MedicineViennese Health NetworkClinic FavoritenViennaAustria
| | - Martin Klimpfinger
- Department of PathologyViennese Health NetworkClinic FavoritenViennaAustria
| | - Thomas Gruenberger
- Department of SurgeryHPB Center, Viennese Health Network, Clinic Favoriten and Sigmund Freud Private UniversityViennaAustria
| | - Alice Assinger
- Center of Physiology and PharmacologyInstitute of Vascular Biology and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - Wolfgang Mikulits
- Department of Medicine IInstitute of Cancer ResearchComprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Patrick Starlinger
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria.,Department of SurgeryMayo ClinicRochesterMNUSA
| |
Collapse
|
370
|
Gallego-Durán R, Albillos A, Ampuero J, Arechederra M, Bañares R, Blas-García A, Berná G, Caparrós E, Delgado TC, Falcón-Pérez JM, Francés R, Fernández-Barrena MG, Graupera I, Iruzubieta P, Nevzorova YA, Nogueiras R, Macías RIR, Marín F, Sabio G, Soriano G, Vaquero J, Cubero FJ, Gracia-Sancho J. Metabolic-associated fatty liver disease: from simple steatosis towards liver cirrhosis and potential complications. Proceedings of the Third Translational Hepatology Meeting, endorsed by the Spanish Association for the Study of the Liver (AEEH). GASTROENTEROLOGIA Y HEPATOLOGIA 2022; 45:724-734. [PMID: 35248669 DOI: 10.1016/j.gastrohep.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 11/28/2022]
|
371
|
Liu Z, Xiang H, Xiang D, Xiao S, Xiang H, Xiao J, Ren H, Hu P, Liu H, Peng M. Revealing potential anti-fibrotic mechanism of Ganxianfang formula based on RNA sequence. Chin Med 2022; 17:23. [PMID: 35180857 PMCID: PMC8855591 DOI: 10.1186/s13020-022-00579-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
Background Ganxianfang (GXF) formula as a traditional Chinese medicine (TCM) is used for liver fibrosis in clinical practice while its mechanism is unclear. The aim of this study is to explore the molecular mechanism of GXF against CCl4-induced liver fibrosis rats. Methods Detected the main compounds of GXF by UPLC-MS/MS. Evaluated the efficacy of GXF (1.58, 3.15, 4.73 g/kg/day) and Fuzheng Huayu (FZHY, positive control, 0.47 g/kg/day) through serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) levels and histopathological changes. Explored the underlying mechanisms by integrating our total liver RNA sequencing (RNA-seq) data with recent liver single-cell sequencing (scRNA-seq) studies. Verified potential pharmacodynamic substances of GXF by hepatic stellate cell (HSC)-T6 line. Results Main compounds were identified in GXF by UPLC-MS/MS, including baicalin, wogonoside and matrine etc. With GXF-high dose treatment, the elevation of ALT and AST induced by CCl4 were significantly reduced, and the protective effect of GXF-high dose treatment was better than FZHY. Liver histopathological changes were alleviated by GXF-high dose treatment, the ISHAK scoring showed the incidence of liver cirrhosis (F5/F6) decreased from 76.5 to 55.6%. The results of liver hydroxyproline content were consistent with the histopathological changes. RNA-seq analysis revealed the differential genes (DEGs) were mainly enriched in ECM-receptor interaction and chemokine signaling pathway. GXF effectively inhibited collagen deposition and significantly downregulated CCL2 to inhibit the recruitment of macrophages in liver tissue. Integrating scRNA-seq data revealed that GXF effectively inhibited the expansion of scar-associated Trem2+CD9+ macrophages subpopulation and PDGFRα+PDGFRβ+ scar-producing myofibroblasts in the damaged liver, and remodeled the fibrotic niche via regulation of ligand-receptor interactions including TGFβ/EGFR, PDGFB/PDGFRα, and TNFSF12/TNFRSF12a signaling. In vitro experiments demonstrated that baicalin, matrine and hesperidin in GXF inhibited the activation of hepatic stellate cells. Conclusions This study clarified the potential anti-fibrotic effects and molecular mechanism of GXF in CCl4-induced liver fibrosis rats, which deserves further promotion and application. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-022-00579-7.
Collapse
Affiliation(s)
- Zongyi Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Huanyu Xiang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Dejuan Xiang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Shuang Xiao
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Hongyan Xiang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Jing Xiao
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Hong Ren
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Peng Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Huabao Liu
- Department of Liver Diseases, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
| | - Mingli Peng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
372
|
Kawaguchi S, Sakuraba H, Horiuchi M, Ding J, Matsumiya T, Seya K, Iino C, Endo T, Kikuchi H, Yoshida S, Hiraga H, Fukuda S, Imaizumi T. Hepatic Macrophages Express Melanoma Differentiation-Associated Gene 5 in Nonalcoholic Steatohepatitis. Inflammation 2022; 45:343-355. [PMID: 34523053 DOI: 10.1007/s10753-021-01550-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
The activation of innate immune system is essential for the pathogenesis of nonalcoholic steatohepatitis (NASH). Among pattern recognition receptors, it is well-characterized that toll-like receptors (TLRs) are deeply involved in the development of NASH to reflect exposure of the liver to gut-driven endotoxins. In contrast, it has not been elucidated whether retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) are similarly implicated in the disease progression. In the present study, we examined the expression of melanoma differentiation-associated antigen 5 (MDA5), known to be a member of RLRs, in a diet-induced murine model of NASH. The liver tissues were collected from C57BL/6 J mice at 1, 3, and 6 weeks after choline-deficient L-amino acid-defined high-fat diet (CDAHFD), and the expression of MDA5 was analyzed by western blotting, immunofluorescence (IF), and real-time quantitative PCR (qPCR). The results of western blotting showed that hepatic expression of MDA5 was increased at 3 and 6 weeks. In IF, MDA5-positive cells co-expressed F4/80 and CD11b, indicating they were activated macrophages, and these cells began to appear at 1 week after CDAHFD. The mRNA expression of MDA5 was significantly upregulated at 1 week. Additionally, we performed IF using liver biopsy specimens collected from 11 patients with nonalcoholic fatty liver diseases (NAFLD), and found that MDA5-positive macrophages were detected in eight out of eleven patients. In an in vitro study, MDA5 was induced upon stimulation with lipopolysaccharide in murine bone marrow-derived macrophages and THP-1 cells. Our findings suggest that MDA5 may be involved in the inflammation of NASH.
Collapse
Affiliation(s)
- Shogo Kawaguchi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan.
| | - Hirotake Sakuraba
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Momone Horiuchi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Jiangli Ding
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Tomoh Matsumiya
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Kazuhiko Seya
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Chikara Iino
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Tetsu Endo
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Hidezumi Kikuchi
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Shukuko Yoshida
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
- Shibata Irika Co. Ltd. Hirosaki, Aomori, Japan
| | - Hiroto Hiraga
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Shinsaku Fukuda
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| |
Collapse
|
373
|
Ji K, Fan M, Huang D, Sun L, Li B, Xu R, Zhang J, Shao X, Chen Y. Clodronate-nintedanib-loaded exosome-liposome hybridization enhances the liver fibrosis therapy by inhibiting Kupffer cell activity. Biomater Sci 2022; 10:702-713. [PMID: 34927632 DOI: 10.1039/d1bm01663f] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Liver fibrosis therapy remains limited due to the inefficiency of drug delivery and inflammation induced by Kupffer cells. In this study, an exosome-liposome hybrid drug delivery system (LIEV) was developed to increase the efficacy of clodronate (CLD)-inhibition of Kupffer cells and to effectively deliver nintedanib (NIN) to liver fibroblasts to ensure enhanced anti-fibrosis therapy. CLD and NIN co-loaded LIEV (CLD/NIN@LIEV) exerted non-specific inhibition of phagocytosis by Kupffer cells, reduced inflammatory cytokines, and showed homologous homing properties mediated by fibroblast-derived exosomes, thereby achieving superior antifibrotic effects in a CCl4-induced fibrosis mouse model by inhibiting the proliferation of fibroblasts. Furthermore, the inhibited Kupffer cells regenerated within 10 days after dosage withdrawal. Unlike carrier-free NIN treatment, CLD/NIN@LIEV induced a marked decrease in liver enzymes, indicating improved safety and anti-fibrosis efficacy. These results indicate its great potential for treatment with the combined anti-fibrosis agent and Kupffer cell inhibition strategies to enhance the liver fibrosis therapy.
Collapse
Affiliation(s)
- Keqin Ji
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| | - Mingrui Fan
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| | - Dong Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| | - Lingna Sun
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| | - Bingqin Li
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| | - Ruoting Xu
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| | - Jiajing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| | - Xuan Shao
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| | - Yanzuo Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
374
|
Sojoodi M, Erstad DJ, Barrett SC, Salloum S, Zhu S, Qian T, Colon S, Gale EM, Jordan VC, Wang Y, Li S, Ataeinia B, Jalilifiroozinezhad S, Lanuti M, Zukerberg L, Caravan P, Hoshida Y, Chung RT, Bhave G, Lauer GM, Fuchs BC, Tanabe KK. Peroxidasin Deficiency Re-programs Macrophages Toward Pro-fibrolysis Function and Promotes Collagen Resolution in Liver. Cell Mol Gastroenterol Hepatol 2022; 13:1483-1509. [PMID: 35093588 PMCID: PMC9043497 DOI: 10.1016/j.jcmgh.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS During liver fibrosis, tissue repair mechanisms replace necrotic tissue with highly stabilized extracellular matrix proteins. Extracellular matrix stabilization influences the speed of tissue recovery. Here, we studied the expression and function of peroxidasin (PXDN), a peroxidase that uses hydrogen peroxide to cross-link collagen IV during liver fibrosis progression and regression. METHODS Mouse models of liver fibrosis and cirrhosis patients were analyzed for the expression of PXDN in liver and serum. Pxdn-/- and Pxdn+/+ mice were either treated with carbon tetrachloride for 6 weeks to generate toxin-induced fibrosis or fed with a choline-deficient L-amino acid-defined high-fat diet for 16 weeks to create nonalcoholic fatty liver disease fibrosis. Liver histology, quantitative real-time polymerase chain reaction, collagen content, flowcytometry and immunostaining of immune cells, RNA-sequencing, and liver function tests were analyzed. In vivo imaging of liver reactive oxygen species (ROS) was performed using a redox-active iron complex, Fe-PyC3A. RESULTS In human and mouse cirrhotic tissue, PXDN is expressed by stellate cells and is secreted into fibrotic areas. In patients with nonalcoholic fatty liver disease, serum levels of PXDN increased significantly. In both mouse models of liver fibrosis, PXDN deficiency resulted in elevated monocyte and pro-fibrolysis macrophage recruitment into fibrotic bands and caused decreased accumulation of cross-linked collagens. In Pxdn-/- mice, collagen fibers were loosely organized, an atypical phenotype that is reversible upon macrophage depletion. Elevated ROS in Pxdn-/- livers was observed, which can result in activation of hypoxic signaling cascades and may affect signaling pathways involved in macrophage polarization such as TNF-a via NF-kB. Fibrosis resolution in Pxdn-/- mice was associated with significant decrease in collagen content and improved liver function. CONCLUSION PXDN deficiency is associated with increased ROS levels and a hypoxic liver microenvironment that can regulate recruitment and programming of pro-resolution macrophages. Our data implicate the importance of the liver microenvironment in macrophage programming during liver fibrosis and suggest a novel pathway that is involved in the resolution of scar tissue.
Collapse
Affiliation(s)
- Mozhdeh Sojoodi
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Derek J. Erstad
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stephen C. Barrett
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shadi Salloum
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shijia Zhu
- Liver Tumor Translational Research Program, Simmons 22 Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tongqi Qian
- Liver Tumor Translational Research Program, Simmons 22 Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Selene Colon
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i3), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Veronica Clavijo Jordan
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i3), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yongtao Wang
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shen Li
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bahar Ataeinia
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i3), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Michael Lanuti
- Division of Thoracic Surgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Lawrence Zukerberg
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i3), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Simmons 22 Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Raymond T. Chung
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Gautam Bhave
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Georg M. Lauer
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Bryan C. Fuchs
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kenneth K. Tanabe
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts,Correspondence Address correspondence to: Kenneth K. Tanabe, Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114. tel: (617) 724-3868.
| |
Collapse
|
375
|
Lotersztajn S, Riva A, Wang S, Dooley S, Chokshi S, Gao B. Inflammation in alcohol-associated liver disease progression. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2022; 60:58-66. [PMID: 35042254 DOI: 10.1055/a-1714-9246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Chronic alcohol consumption induces stress and damage in alcohol metabolising hepatocytes, which leads to inflammatory and fibrogenic responses. Besides these direct effects, alcohol disrupts intestinal barrier functions and induces gut microbial dysbiosis, causing translocation of bacteria or microbial products through the gut mucosa to the liver and, which induce inflammation indirectly. Inflammation is one of the key drivers of alcohol-associated liver disease progression from steatosis to severe alcoholic hepatitis. The current standard of care for the treatment of severe alcoholic hepatitis is prednisolone, aiming to reduce inflammation. Prednisolone, however improves only short-term but not long-term survival rates in those patients, and even increases the risk for bacterial infections. Thus, recent studies focus on the exploration of more specific inflammatory targets for the treatment of severe alcoholic hepatitis. These comprise, among others interference with inflammatory cytokines, modulation of macrophage phenotypes or targeting of immune cell communication, as summarized in the present overview. Although several approaches give promising results in preclinical studies, data robustness and ability to transfer experimental results to human disease is still not sufficient for effective clinical translation.
Collapse
Affiliation(s)
- Sophie Lotersztajn
- Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Antonio Riva
- The Roger Williams Institute of Hepatology, Foundation for Liver Research affiliated with King's College London, King's College London, London, United Kingdom of Great Britain and Northern Ireland
| | - Sai Wang
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Steven Dooley
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Shilpa Chokshi
- The Roger Williams Institute of Hepatology, Foundation for Liver Research affiliated with King's College London, King's College London, London, United Kingdom of Great Britain and Northern Ireland
| | - Bin Gao
- Laboratory of Liver diseases, National Institute on Alcohol Abuse and Alcoholism Laboratory of Liver Diseases, Bethesda, United States
| |
Collapse
|
376
|
Sung PS, Kim CM, Cha JH, Park JY, Yu YS, Wang HJ, Kim JK, Bae SH. A Unique Immune-Related Gene Signature Represents Advanced Liver Fibrosis and Reveals Potential Therapeutic Targets. Biomedicines 2022; 10:biomedicines10010180. [PMID: 35052861 PMCID: PMC8774116 DOI: 10.3390/biomedicines10010180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
Innate and adaptive immune responses are critically associated with the progression of fibrosis in chronic liver diseases. In this study, we aim to identify a unique immune-related gene signature representing advanced liver fibrosis and to reveal potential therapeutic targets. Seventy-seven snap-frozen liver tissues with various chronic liver diseases at different fibrosis stages (1: n = 12, 2: n = 12, 3: n = 25, 4: n = 28) were subjected to expression analyses. Gene expression analysis was performed using the nCounter PanCancer Immune Profiling Panel (NanoString Technologies, Seattle, WA, USA). Biological meta-analysis was performed using the CBS Probe PINGSTM (CbsBioscience, Daejeon, Korea). Using non-tumor tissues from surgically resected specimens, we identified the immune-related, five-gene signature (CHIT1_FCER1G_OSM_VEGFA_ZAP70) that reliably differentiated patients with low- (F1 and F2) and high-grade fibrosis (F3 and F4; accuracy = 94.8%, specificity = 91.7%, sensitivity = 96.23%). The signature was independent of all pathological and clinical features and was independently associated with high-grade fibrosis using multivariate analysis. Among these genes, the expression of inflammation-associated FCER1G, OSM, VEGFA, and ZAP70 was lower in high-grade fibrosis than in low-grade fibrosis, whereas CHIT1 expression, which is associated with fibrogenic activity of macrophages, was higher in high-grade fibrosis. Meta-analysis revealed that STAT3, a potential druggable target, highly interacts with the five-gene signature. Overall, we identified an immune gene signature that reliably predicts advanced fibrosis in chronic liver disease. This signature revealed potential immune therapeutic targets to ameliorate liver fibrosis.
Collapse
Affiliation(s)
- Pil-Soo Sung
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (P.-S.S.); (J.-H.C.)
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea
| | - Chang-Min Kim
- CbsBioscience, Inc., Daejeon 34036, Korea; (C.-M.K.); (J.-Y.P.); (Y.-S.Y.)
- Department of Pharmacy, College of Pharmacy, CHA University, Seongnam 13488, Korea;
| | - Jung-Hoon Cha
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (P.-S.S.); (J.-H.C.)
| | - Jin-Young Park
- CbsBioscience, Inc., Daejeon 34036, Korea; (C.-M.K.); (J.-Y.P.); (Y.-S.Y.)
| | - Yun-Suk Yu
- CbsBioscience, Inc., Daejeon 34036, Korea; (C.-M.K.); (J.-Y.P.); (Y.-S.Y.)
| | - Hee-Jung Wang
- Department of Surgery, Inje University Haeundae Paik Hospital, Busan 48108, Korea;
| | - Jin-Kyeoung Kim
- Department of Pharmacy, College of Pharmacy, CHA University, Seongnam 13488, Korea;
| | - Si-Hyun Bae
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (P.-S.S.); (J.-H.C.)
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul 03383, Korea
- Correspondence: ; Tel.: +82-2-2030-2530; Fax: +82-2-3481-4025
| |
Collapse
|
377
|
Gu L, Zhang F, Wu J, Zhuge Y. Nanotechnology in Drug Delivery for Liver Fibrosis. Front Mol Biosci 2022; 8:804396. [PMID: 35087870 PMCID: PMC8787125 DOI: 10.3389/fmolb.2021.804396] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022] Open
Abstract
Liver fibrosis is a reversible disease course caused by various liver injury etiologies, and it can lead to severe complications, such as liver cirrhosis, liver failure, and even liver cancer. Traditional pharmacotherapy has several limitations, such as inadequate therapeutic effect and side effects. Nanotechnology in drug delivery for liver fibrosis has exhibited great potential. Nanomedicine improves the internalization and penetration, which facilitates targeted drug delivery, combination therapy, and theranostics. Here, we focus on new targets and new mechanisms in liver fibrosis, as well as recent designs and development work of nanotechnology in delivery systems for liver fibrosis treatment.
Collapse
Affiliation(s)
- Lihong Gu
- Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Feng Zhang
- Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Yuzheng Zhuge
- Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
378
|
Liedtke C, Nevzorova YA, Luedde T, Zimmermann H, Kroy D, Strnad P, Berres ML, Bernhagen J, Tacke F, Nattermann J, Spengler U, Sauerbruch T, Wree A, Abdullah Z, Tolba RH, Trebicka J, Lammers T, Trautwein C, Weiskirchen R. Liver Fibrosis-From Mechanisms of Injury to Modulation of Disease. Front Med (Lausanne) 2022; 8:814496. [PMID: 35087852 PMCID: PMC8787129 DOI: 10.3389/fmed.2021.814496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
The Transregional Collaborative Research Center "Organ Fibrosis: From Mechanisms of Injury to Modulation of Disease" (referred to as SFB/TRR57) was funded for 13 years (2009-2021) by the German Research Council (DFG). This consortium was hosted by the Medical Schools of the RWTH Aachen University and Bonn University in Germany. The SFB/TRR57 implemented combined basic and clinical research to achieve detailed knowledge in three selected key questions: (i) What are the relevant mechanisms and signal pathways required for initiating organ fibrosis? (ii) Which immunological mechanisms and molecules contribute to organ fibrosis? and (iii) How can organ fibrosis be modulated, e.g., by interventional strategies including imaging and pharmacological approaches? In this review we will summarize the liver-related key findings of this consortium gained within the last 12 years on these three aspects of liver fibrogenesis. We will highlight the role of cell death and cell cycle pathways as well as nutritional and iron-related mechanisms for liver fibrosis initiation. Moreover, we will define and characterize the major immune cell compartments relevant for liver fibrogenesis, and finally point to potential signaling pathways and pharmacological targets that turned out to be suitable to develop novel approaches for improved therapy and diagnosis of liver fibrosis. In summary, this review will provide a comprehensive overview about the knowledge on liver fibrogenesis and its potential therapy gained by the SFB/TRR57 consortium within the last decade. The kidney-related research results obtained by the same consortium are highlighted in an article published back-to-back in Frontiers in Medicine.
Collapse
Affiliation(s)
- Christian Liedtke
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Yulia A. Nevzorova
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- Department of Immunology, Ophthalmology and Otolaryngology, School of Medicine, Complutense University Madrid, Madrid, Spain
| | - Tom Luedde
- Medical Faculty, Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Henning Zimmermann
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Daniela Kroy
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Pavel Strnad
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Marie-Luise Berres
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Ulrich Spengler
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Tilman Sauerbruch
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Alexander Wree
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Zeinab Abdullah
- Institute for Molecular Medicine and Experimental Immunology, University Hospital of Bonn, Bonn, Germany
| | - René H. Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Jonel Trebicka
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
379
|
Crosstalk between Oxidative Stress and Inflammatory Liver Injury in the Pathogenesis of Alcoholic Liver Disease. Int J Mol Sci 2022; 23:ijms23020774. [PMID: 35054960 PMCID: PMC8775426 DOI: 10.3390/ijms23020774] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease (ALD) is characterized by the injury, inflammation, and scarring in the liver owing to excessive alcohol consumption. Currently, ALD is a leading cause for liver transplantation. Therefore, extensive studies (in vitro, in experimental ALD models and in humans) are needed to elucidate pathological features and pathogenic mechanisms underlying ALD. Notably, oxidative changes in the liver have been recognized as a signature trait of ALD. Progression of ALD is linked to the generation of highly reactive free radicals by reactions involving ethanol and its metabolites. Furthermore, hepatic oxidative stress promotes tissue injury and, in turn, stimulates inflammatory responses in the liver, forming a pathological loop that promotes the progression of ALD. Accordingly, accumulating further knowledge on the relationship between oxidative stress and inflammation may help establish a viable therapeutic approach for treating ALD.
Collapse
|
380
|
Liu D, Zheng Y, Kang J, Wang D, Bai L, Mao Y, Zha G, Tang H, Zhang R. Not Only High Number and Specific Comorbidities but Also Age Are Closely Related to Progression and Poor Prognosis in Patients With COVID-19. Front Med (Lausanne) 2022; 8:736109. [PMID: 35071254 PMCID: PMC8782432 DOI: 10.3389/fmed.2021.736109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 12/02/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Some patients with comorbidities and rapid disease progression have a poor prognosis. Aim: We aimed to investigate the characteristics of comorbidities and their relationship with disease progression and outcomes of COVID-19 patients. Methods: A total of 718 COVID-19 patients were divided into five clinical type groups and eight age-interval groups. The characteristics of comorbidities were compared between the different clinical type groups and between the different age-interval groups, and their relationships with disease progression and outcomes of COVID-19 patients were assessed. Results: Approximately 91.23% (655/718) of COVID-19 patients were younger than 60 years old. Approximately 64.76% (465/718) had one or more comorbidities, and common comorbidities included non-alcoholic fatty liver disease (NAFLD), hyperlipidaemia, hypertension, diabetes mellitus (DM), chronic hepatitis B (CHB), hyperuricaemia, and gout. COVID-19 patients with comorbidities were older, especially those with chronic obstructive pulmonary disease (COPD) and cardiovascular disease (CVD). Hypertension, DM, COPD, chronic kidney disease (CKD) and CVD were mainly found in severe COVID-19 patients. According to spearman correlation analysis the number of comorbidities was correlated positively with disease severity, the number of comorbidities and NAFLD were correlated positively with virus negative conversion time, hypertension, CKD and CVD were primarily associated with those who died, and the above-mentioned correlation existed independently of age. Risk factors included age, the number of comorbidities and hyperlipidaemia for disease severity, the number of comorbidities, hyperlipidaemia, NAFLD and COPD for the virus negative conversion time, and the number of comorbidities and CKD for prognosis. Number of comorbidities and age played a predictive role in disease progression and outcomes. Conclusion: Not only high number and specific comorbidities but also age are closely related to progression and poor prognosis in patients with COVID-19. These findings provide a reference for clinicians to focus on not only the number and specific comorbidities but also age in COVID-19 patients to predict disease progression and prognosis. Clinical Trial Registry: Chinese Clinical Trial Register ChiCTR2000034563.
Collapse
Affiliation(s)
- Dafeng Liu
- Department of Internal Medicine, The Public and Health Clinic Centre of Chengdu, Chengdu, China
- The Public and Health Clinic Centre of Chengdu Substation, Chengdu New Emergent Infectious Disease Prevention and Control Workstation, Chengdu, China
| | - Yongli Zheng
- Department of Internal Medicine, The Public and Health Clinic Centre of Chengdu, Chengdu, China
- The Public and Health Clinic Centre of Chengdu Substation, Chengdu New Emergent Infectious Disease Prevention and Control Workstation, Chengdu, China
| | - Jun Kang
- Department of Internal Medicine, The Public and Health Clinic Centre of Chengdu, Chengdu, China
- The Public and Health Clinic Centre of Chengdu Substation, Chengdu New Emergent Infectious Disease Prevention and Control Workstation, Chengdu, China
| | - Dongmei Wang
- Department of Internal Medicine, The Public and Health Clinic Centre of Chengdu, Chengdu, China
- The Public and Health Clinic Centre of Chengdu Substation, Chengdu New Emergent Infectious Disease Prevention and Control Workstation, Chengdu, China
| | - Lang Bai
- Center of Infectious Diseases, Sichuan University West China Hospital, Chengdu, China
| | - Yi Mao
- Department of Internal Medicine, The Public and Health Clinic Centre of Chengdu, Chengdu, China
- The Public and Health Clinic Centre of Chengdu Substation, Chengdu New Emergent Infectious Disease Prevention and Control Workstation, Chengdu, China
| | - Guifang Zha
- Department of Internal Medicine, The Public and Health Clinic Centre of Chengdu, Chengdu, China
- The Public and Health Clinic Centre of Chengdu Substation, Chengdu New Emergent Infectious Disease Prevention and Control Workstation, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, Sichuan University West China Hospital, Chengdu, China
| | - Renqing Zhang
- Department of Internal Medicine, The Public and Health Clinic Centre of Chengdu, Chengdu, China
- The Public and Health Clinic Centre of Chengdu Substation, Chengdu New Emergent Infectious Disease Prevention and Control Workstation, Chengdu, China
| |
Collapse
|
381
|
Zeng Z, Lan T, Wei Y, Wei X. CCL5/CCR5 axis in human diseases and related treatments. Genes Dis 2022; 9:12-27. [PMID: 34514075 PMCID: PMC8423937 DOI: 10.1016/j.gendis.2021.08.004] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 02/05/2023] Open
Abstract
To defense harmful stimuli or maintain the immune homeostasis, the body produces and recruits a superfamily of cytokines such as interleukins, interferons, chemokines etc. Among them, chemokines act as crucial regulators in defense systems. CCL5/CCR5 combination is known for facilitating inflammatory responses, as well as inducing the adhesion and migration of different T cell subsets in immune responses. In addition, recent studies have shown that the interaction between CCL5 and CCR5 is involved in various pathological processes including inflammation, chronic diseases, cancers as well as the infection of COVID-19. This review focuses on how CCL5/CCR5 axis participates in the pathological processes of different diseases and their relevant signaling pathways for the regulation of the axis. Moreover, we highlighted the gene therapy and chemotherapy studies for treating CCR5-related diseases, including the ongoing clinical trials. The barriers and perspectives for future application and translational research were also summarized.
Collapse
Affiliation(s)
- Zhen Zeng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, PR China
| | - Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
382
|
Alshoubaki YK, Nayer B, Das S, Martino MM. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:248-258. [PMID: 35303109 PMCID: PMC8968657 DOI: 10.1093/stcltm/szab022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/09/2021] [Indexed: 12/04/2022] Open
Abstract
Numerous components of the immune system, including inflammatory mediators, immune cells and cytokines, have a profound modulatory effect on the homeostatic regulation and regenerative activity of endogenous stem cells and progenitor cells. Thus, understanding how the immune system interacts with stem/progenitor cells could build the foundation to design novel and more effective regenerative therapies. Indeed, utilizing and controlling immune system components may be one of the most effective approaches to promote tissue regeneration. In this review, we first summarize the effects of various immune cell types on endogenous stem/progenitor cells, focusing on the tissue healing context. Then, we present interesting regenerative strategies that control or mimic the effect of immune components on stem/progenitor cells, in order to enhance the regenerative capacity of endogenous and transplanted stem cells. We highlight the potential clinical translation of such approaches for multiple tissues and organ systems, as these novel regenerative strategies could considerably improve or eventually substitute stem cell-based therapies. Overall, harnessing the power of the cross-talk between the immune system and stem/progenitor cells holds great potential for the development of novel and effective regenerative therapies.
Collapse
Affiliation(s)
- Yasmin K Alshoubaki
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Bhavana Nayer
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Surojeet Das
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Mikaël M Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Corresponding author: Mikaël M. Martino, Martino Lab, Australian Regenerative Medicine Institute, 15 Innovation Walk, Level 1, Monash University, Victoria 3800, Australia;
| |
Collapse
|
383
|
Papachristoforou E, Ramachandran P. Macrophages as key regulators of liver health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:143-212. [PMID: 35636927 DOI: 10.1016/bs.ircmb.2022.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Macrophages are a heterogeneous population of innate immune cells and key cellular components of the liver. Hepatic macrophages consist of embryologically-derived resident Kupffer cells (KC), recruited monocyte-derived macrophages (MDM) and capsular macrophages. Both the diversity and plasticity of hepatic macrophage subsets explain their different functions in the maintenance of hepatic homeostasis and in injury processes in acute and chronic liver diseases. In this review, we assess the evidence for macrophage involvement in regulating both liver health and injury responses in liver diseases including acute liver injury (ALI), chronic liver disease (CLD) (including liver fibrosis) and hepatocellular carcinoma (HCC). In healthy livers, KC display critical functions such as phagocytosis, danger signal recognition, cytokine release, antigen processing and the ability to orchestrate immune responses and maintain immunological tolerance. However, in most liver diseases there is a striking hepatic MDM expansion, which orchestrate both disease progression and regression. Single-cell approaches have transformed our understanding of liver macrophage heterogeneity, dynamics, and functions in both human samples and preclinical models. We will further discuss the new insights provided by these approaches and how they are enabling high-fidelity work to specifically identify pathogenic macrophage subpopulations. Given the important role of macrophages in regulating injury responses in a broad range of settings, there is now a huge interest in developing new therapeutic strategies aimed at targeting macrophages. Therefore, we also review the current approaches being used to modulate macrophage function in liver diseases and discuss the therapeutic potential of targeting macrophage subpopulations as a novel treatment strategy for patients with liver disorders.
Collapse
Affiliation(s)
- Eleni Papachristoforou
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Prakash Ramachandran
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, United Kingdom.
| |
Collapse
|
384
|
Sayaf K, Zanotto I, Russo FP, Gabbia D, De Martin S. The Nuclear Receptor PXR in Chronic Liver Disease. Cells 2021; 11:61. [PMID: 35011625 PMCID: PMC8750019 DOI: 10.3390/cells11010061] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
Pregnane X receptor (PXR), a nuclear receptor known for modulating the transcription of drug metabolizing enzymes and transporters (DMETs), such as cytochrome P450 3A4 and P-glycoprotein, is functionally involved in chronic liver diseases of different etiologies. Furthermore, PXR activity relates to that of other NRs, such as constitutive androstane receptor (CAR), through a crosstalk that in turn orchestrates a complex network of responses. Thus, besides regulating DMETs, PXR signaling is involved in both liver damage progression and repair and in the neoplastic transition to hepatocellular carcinoma. We here summarize the present knowledge about PXR expression and function in chronic liver diseases characterized by different etiologies and clinical outcome, focusing on the molecular pathways involved in PXR activity. Although many molecular details of these finely tuned networks still need to be fully understood, we conclude that PXR and its modulation could represent a promising pharmacological target for the identification of novel therapeutical approaches to chronic liver diseases.
Collapse
Affiliation(s)
- Katia Sayaf
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35121 Padova, Italy; (K.S.); (F.P.R.)
| | - Ilaria Zanotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35121 Padova, Italy; (I.Z.); (S.D.M.)
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35121 Padova, Italy; (K.S.); (F.P.R.)
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35121 Padova, Italy; (I.Z.); (S.D.M.)
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35121 Padova, Italy; (I.Z.); (S.D.M.)
| |
Collapse
|
385
|
Hadjittofi C, Feretis M, Martin J, Harper S, Huguet E. Liver regeneration biology: Implications for liver tumour therapies. World J Clin Oncol 2021; 12:1101-1156. [PMID: 35070734 PMCID: PMC8716989 DOI: 10.5306/wjco.v12.i12.1101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
The liver has remarkable regenerative potential, with the capacity to regenerate after 75% hepatectomy in humans and up to 90% hepatectomy in some rodent models, enabling it to meet the challenge of diverse injury types, including physical trauma, infection, inflammatory processes, direct toxicity, and immunological insults. Current understanding of liver regeneration is based largely on animal research, historically in large animals, and more recently in rodents and zebrafish, which provide powerful genetic manipulation experimental tools. Whilst immensely valuable, these models have limitations in extrapolation to the human situation. In vitro models have evolved from 2-dimensional culture to complex 3 dimensional organoids, but also have shortcomings in replicating the complex hepatic micro-anatomical and physiological milieu. The process of liver regeneration is only partially understood and characterized by layers of complexity. Liver regeneration is triggered and controlled by a multitude of mitogens acting in autocrine, paracrine, and endocrine ways, with much redundancy and cross-talk between biochemical pathways. The regenerative response is variable, involving both hypertrophy and true proliferative hyperplasia, which is itself variable, including both cellular phenotypic fidelity and cellular trans-differentiation, according to the type of injury. Complex interactions occur between parenchymal and non-parenchymal cells, and regeneration is affected by the status of the liver parenchyma, with differences between healthy and diseased liver. Finally, the process of termination of liver regeneration is even less well understood than its triggers. The complexity of liver regeneration biology combined with limited understanding has restricted specific clinical interventions to enhance liver regeneration. Moreover, manipulating the fundamental biochemical pathways involved would require cautious assessment, for fear of unintended consequences. Nevertheless, current knowledge provides guiding principles for strategies to optimise liver regeneration potential.
Collapse
Affiliation(s)
- Christopher Hadjittofi
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Michael Feretis
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Jack Martin
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Simon Harper
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Emmanuel Huguet
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
386
|
Cell Death in Hepatocellular Carcinoma: Pathogenesis and Therapeutic Opportunities. Cancers (Basel) 2021; 14:cancers14010048. [PMID: 35008212 PMCID: PMC8750350 DOI: 10.3390/cancers14010048] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The progression of liver tumors is highly influenced by the interactions between cancer cells and the surrounding environment, and, consequently, can determine whether the primary tumor regresses, metastasizes, or establishes micrometastases. In the context of liver cancer, cell death is a double-edged sword. On one hand, cell death promotes inflammation, fibrosis, and angiogenesis, which are tightly orchestrated by a variety of resident and infiltrating host cells. On the other hand, targeting cell death in advanced hepatocellular carcinoma could represent an attractive therapeutic approach for limiting tumor growth. Further studies are needed to investigate therapeutic strategies combining current chemotherapies with novel drugs targeting either cell death or the tumor microenvironment. Abstract Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer and the third leading cause of cancer death worldwide. Closely associated with liver inflammation and fibrosis, hepatocyte cell death is a common trigger for acute and chronic liver disease arising from different etiologies, including viral hepatitis, alcohol abuse, and fatty liver. In this review, we discuss the contribution of different types of cell death, including apoptosis, necroptosis, pyroptosis, or autophagy, to the progression of liver disease and the development of HCC. Interestingly, inflammasomes have recently emerged as pivotal innate sensors with a highly pathogenic role in various liver diseases. In this regard, an increased inflammatory response would act as a key element promoting a pro-oncogenic microenvironment that may result not only in tumor growth, but also in the formation of a premetastatic niche. Importantly, nonparenchymal hepatic cells, such as liver sinusoidal endothelial cells, hepatic stellate cells, and hepatic macrophages, play an important role in establishing the tumor microenvironment, stimulating tumorigenesis by paracrine communication through cytokines and/or angiocrine factors. Finally, we update the potential therapeutic options to inhibit tumorigenesis, and we propose different mechanisms to consider in the tumor microenvironment field for HCC resolution.
Collapse
|
387
|
Zhang C, Liu S, Yang M. Functions of two distinct Kupffer cells in the liver. EXPLORATION OF MEDICINE 2021:511-515. [DOI: 10.37349/emed.2021.00067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/19/2021] [Indexed: 11/28/2023] Open
Abstract
Tissue-resident macrophages play critically important roles in host homeostasis and pathogenesis of diseases, with the functions of phagocytosis, metabolism, and immune modulation. Recently, two research studies accomplished by a collaborated group of researchers showed that there are two populations of liver resident Kupffer cells (KCs), including a major cluster of differentiation 206 low expression (CD206low)endothelial cell-selective adhesion molecule negative (ESAM-) population (KC1) and a minor CD206highESAM+ population (KC2). Both KC1 and KC2 express KC markers, such as C-type lectin domain family 4 member F (CLEC4F) and T-cell membrane protein 4 (Tim4). In fatty liver, the frequency of KC2 was increased, and those KC2 expressed some markers like liver sinusoidal endothelial cells (LSECs), such as CD31 and ESAM. In addition, KC2 population had a relatively higher expression of CD36, as fatty acid transporter, which was implicated in the production of reactive oxygen species (ROS) and lipid peroxidation. Furthermore, this collaborated group also showed that KC2 can cross-present hepatocellular antigens to prime antiviral function of CD8+ T cells by sensing interleukin-2 (IL-2) in hepatitis B virus (HBV) replication-competent transgenic mice. Increasing evidence shows that targeting hepatic macrophages can prevent and reverse non-alcoholic fatty liver disease (NAFLD), with a new suggested name metabolic dysfunction-associated fatty liver disease (MAFLD) to include metabolic dysfunction-associated fatty liver diseases, such as viruses and alcohol. In summary, differentiating specific populations of hepatic macrophages is critically important for the treatment of MAFLD or NAFLD, and their overlaps. Markers specifically expressed on sub-types of hepatic macrophages may be applied for liver disease diagnosis.
Collapse
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, Zhejiang, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
388
|
Ramavath NN, Gadipudi LL, Provera A, Gigliotti LC, Boggio E, Bozzola C, Albano E, Dianzani U, Sutti S. Inducible T-Cell Costimulator Mediates Lymphocyte/Macrophage Interactions During Liver Repair. Front Immunol 2021; 12:786680. [PMID: 34925367 PMCID: PMC8678521 DOI: 10.3389/fimmu.2021.786680] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
The liver capacity to recover from acute liver injury is a critical factor in the development of acute liver failure (ALF) caused by viral infections, ischemia/reperfusion or drug toxicity. Liver healing requires the switching of pro-inflammatory monocyte-derived macrophages(MoMFs) to a reparative phenotype. However, the mechanisms involved are still incompletely characterized. In this study we investigated the contribution of T-lymphocyte/macrophage interaction through the co-stimulatory molecule Inducible T-cell co-stimulator (ICOS; CD278) and its ligand (ICOSL; CD275) in modulating liver repair. The role of ICOS/ICOSL dyad was investigated during the recovery from acute liver damage induced by a single dose of carbon tetrachloride (CCl4). Flow cytometry of non-parenchymal liver cells obtained from CCl4-treated wild-type mice revealed that the recovery from acute liver injury associated with a specific up-regulation of ICOS in CD8+ T-lymphocytes and with an increase in ICOSL expression involving CD11bhigh/F4-80+ hepatic MoMFs. Although ICOS deficiency did not influence the severity of liver damage and the evolution of inflammation, CCl4-treated ICOS knockout (ICOS-/- ) mice showed delayed clearance of liver necrosis and increased mortality. These animals were also characterized by a significant reduction of hepatic reparative MoMFs due to an increased rate of cell apoptosis. An impaired liver healing and loss of reparative MoMFs was similarly evident in ICOSL-deficient mice or following CD8+ T-cells ablation in wild-type mice. The loss of reparative MoMFs was prevented by supplementing CCl4-treated ICOS-/- mice with recombinant ICOS (ICOS-Fc) which also stimulated full recovery from liver injury. These data demonstrated that CD8+ T-lymphocytes play a key role in supporting the survival of reparative MoMFs during liver healing trough ICOS/ICOSL-mediated signaling. These observations open the possibility of targeting ICOS/ICOSL dyad as a novel tool for promoting efficient healing following acute liver injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Emanuele Albano
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | | | | |
Collapse
|
389
|
Zhang J, Liu Q, He J, Li Y. Novel Therapeutic Targets in Liver Fibrosis. Front Mol Biosci 2021; 8:766855. [PMID: 34805276 PMCID: PMC8602792 DOI: 10.3389/fmolb.2021.766855] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/18/2021] [Indexed: 02/05/2023] Open
Abstract
Liver fibrosis is end-stage liver disease that can be rescued. If irritation continues due to viral infection, schistosomiasis and alcoholism, liver fibrosis can progress to liver cirrhosis and even cancer. The US Food and Drug Administration has not approved any drugs that act directly against liver fibrosis. The only treatments currently available are drugs that eliminate pathogenic factors, which show poor efficacy; and liver transplantation, which is expensive. This highlights the importance of clarifying the mechanism of liver fibrosis and searching for new treatments against it. This review summarizes how parenchymal, nonparenchymal cells, inflammatory cells and various processes (liver fibrosis, hepatic stellate cell activation, cell death and proliferation, deposition of extracellular matrix, cell metabolism, inflammation and epigenetics) contribute to liver fibrosis. We highlight discoveries of novel therapeutic targets, which may provide new insights into potential treatments for liver fibrosis.
Collapse
Affiliation(s)
- Jinhang Zhang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, China
| | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, China
| | - Jinhan He
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, China.,Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, China
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, China
| |
Collapse
|
390
|
TM4SF5-dependent crosstalk between hepatocytes and macrophages to reprogram the inflammatory environment. Cell Rep 2021; 37:110018. [PMID: 34788612 DOI: 10.1016/j.celrep.2021.110018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/10/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic injury to hepatocytes results in inflammation, steatohepatitis, fibrosis, and nonalcoholic fatty liver disease (NAFLD). The tetraspanin TM4SF5 is implicated in fibrosis and cancer. We investigate the role of TM4SF5 in communication between hepatocytes and macrophages (MΦs) and its possible influence on the inflammatory microenvironment that may lead to NAFLD. TM4SF5 induction in differentiated MΦs promotes glucose uptake, glycolysis, and glucose sensitivity, leading to M1-type MΦ activation. Activated M1-type MΦs secrete pro-inflammatory interleukin-6 (IL-6), which induces the secretion of CCL20 and CXCL10 from TM4SF5-positive hepatocytes. Although TM4SF5-dependent secretion of these chemokines enhances glycolysis in M0 MΦs, further chronic exposure reprograms MΦs for an increase in the proportion of M2-type MΦs in the population, which may support diet- and chemical-induced NAFLD progression. We suggest that TM4SF5 expression in MΦs and hepatocytes is critically involved in modulating the inflammatory environment during NAFLD progression.
Collapse
|
391
|
Conte E. Targeting monocytes/macrophages in fibrosis and cancer diseases: Therapeutic approaches. Pharmacol Ther 2021; 234:108031. [PMID: 34774879 DOI: 10.1016/j.pharmthera.2021.108031] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 02/08/2023]
Abstract
Over almost 140 years since their identification, the knowledge about macrophages has unbelievably evolved. The 'big eaters' from being thought of as simple phagocytic cells have been recognized as master regulators in immunity, homeostasis, healing/repair and organ development. Long considered to originate exclusively from bone marrow-derived circulating monocytes, macrophages have been also demonstrated to be the first immune cells colonizing tissues in the developing embryo and persisting in adult life by self-renewal, as long-lived tissue resident macrophages. Therefore, heterogeneous populations of macrophages with different ontogeny and functions co-exist in tissues. Macrophages act as sentinels of homeostasis and are intrinsically programmed to lead the wound healing and repair processes that occur after injury. However, in certain pathological circumstances macrophages get dysfunctional, and impaired or aberrant macrophage activities become key features of diseases. For instance, in both fibrosis and cancer, that have been defined 'wounds that do not heal', dysfunctional monocyte-derived macrophages overall play a key detrimental role. On the other hand, due to their plasticity these cells can be 're-educated' and exert anti-fibrotic and anti-cancer functions. Therefore macrophages represent an important therapeutic target in both fibrosis and cancer diseases. The current review will illustrate new insights into the role of monocytes/macrophages in these devastating diseases and summarize new therapeutic strategies and applications of macrophage-targeted drug development in their clinical setting.
Collapse
|
392
|
De Muynck K, Vanderborght B, Van Vlierberghe H, Devisscher L. The Gut-Liver Axis in Chronic Liver Disease: A Macrophage Perspective. Cells 2021; 10:2959. [PMID: 34831182 PMCID: PMC8616442 DOI: 10.3390/cells10112959] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic liver disease (CLD) is a growing health concern which accounts for two million deaths per year. Obesity, alcohol overconsumption, and progressive cholestasis are commonly characterized by persistent low-grade inflammation and advancing fibrosis, which form the basis for development of end-stage liver disease complications, including hepatocellular carcinoma. CLD pathophysiology extends to the intestinal tract and is characterized by intestinal dysbiosis, bile acid dysregulation, and gut barrier disruption. In addition, macrophages are key players in CLD progression and intestinal barrier breakdown. Emerging studies are unveiling macrophage heterogeneity and driving factors of their plasticity in health and disease. To date, in-depth investigation of how gut-liver axis disruption impacts the hepatic and intestinal macrophage pool in CLD pathogenesis is scarce. In this review, we give an overview of the role of intestinal and hepatic macrophages in homeostasis and gut-liver axis disruption in progressive stages of CLD.
Collapse
Affiliation(s)
- Kevin De Muynck
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Bart Vanderborght
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Hans Van Vlierberghe
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
| |
Collapse
|
393
|
Goto T, Ito Y, Satoh M, Nakamoto S, Nishizawa N, Hosono K, Naitoh T, Eshima K, Iwabuchi K, Hiki N, Amano H. Activation of iNKT Cells Facilitates Liver Repair After Hepatic Ischemia Reperfusion Injury Through Acceleration of Macrophage Polarization. Front Immunol 2021; 12:754106. [PMID: 34691073 PMCID: PMC8526965 DOI: 10.3389/fimmu.2021.754106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022] Open
Abstract
Macrophage polarization is critical for liver tissue repair following acute liver injury. However, the underlying mechanisms of macrophage phenotype switching are not well defined. Invariant natural killer T (iNKT) cells orchestrate tissue inflammation and tissue repair by regulating cytokine production. Herein, we examined whether iNKT cells played an important role in liver repair after hepatic ischemia-reperfusion (I/R) injury by affecting macrophage polarization. To this end, we subjected male C57BL/6 mice to hepatic I/R injury, and mice received an intraperitoneal (ip) injection of α-galactosylceramide (α-GalCer) or vehicle. Compared with that of the vehicle, α-GalCer administration resulted in the promotion of liver repair accompanied by acceleration of macrophage differentiation and by increases in the numbers of Ly6Chigh pro-inflammatory macrophages and Ly6Clow reparative macrophages. iNKT cells activated with α-GalCer produced interleukin (IL)-4 and interferon (IFN)-γ. Treatment with anti-IL-4 antibodies delayed liver repair, which was associated with an increased number of Ly6Chigh macrophages and a decreased number of Ly6Clow macrophages. Treatment with anti-IFN-γ antibodies promoted liver repair, associated with reduced the number of Ly6Chigh macrophages, but did not change the number of Ly6Clow macrophages. Bone marrow-derived macrophages up-regulated the expression of genes related to both a pro-inflammatory and a reparative phenotype when co-cultured with activated iNKT cells. Anti-IL-4 antibodies increased the levels of pro-inflammatory macrophage-related genes and decreased those of reparative macrophage-related genes in cultured macrophages, while anti-IFN-γ antibodies reversed the polarization of macrophages. Cd1d-deficient mice showed delayed liver repair and suppressed macrophage switching, compared with that in wild-type mice. These results suggest that the activation of iNKT cells by α-GalCer facilitated liver repair after hepatic I/R injury by both IL-4-and IFN-γ-mediated acceleration of macrophage polarization. Therefore, the activation of iNKT cells may represent a therapeutic tool for liver repair after hepatic I/R injury.
Collapse
Affiliation(s)
- Takuya Goto
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yoshiya Ito
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Masashi Satoh
- Department of Immunology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Shuji Nakamoto
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of General Pediatric Hepatobiliary Pancreatic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Nobuyuki Nishizawa
- Department of General Pediatric Hepatobiliary Pancreatic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kanako Hosono
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Takeshi Naitoh
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Koji Eshima
- Department of Immunology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kazuya Iwabuchi
- Department of Immunology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Naoki Hiki
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Hideki Amano
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
394
|
Udomsinprasert W, Sobhonslidsuk A, Jittikoon J, Honsawek S, Chaikledkaew U. Cellular senescence in liver fibrosis: Implications for age-related chronic liver diseases. Expert Opin Ther Targets 2021; 25:799-813. [PMID: 34632912 DOI: 10.1080/14728222.2021.1992385] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION New insights indicate a causative link between cellular senescence and liver fibrosis. Senescent hepatic stellate cells (HSCs) facilitate fibrosis resolution, while senescence in hepatocytes and cholangiocytes acts as a potent mechanism driving liver fibrogenesis. In many clinical studies, telomeres and mitochondrial DNA contents, which are both aging biomarkers, were reportedly associated with a degree of liver fibrosis in patients with chronic liver diseases (CLDs); this highlights their potential as biomarkers for liver fibrogenesis. A deeper understanding of mechanisms underlying multi-step progression of senescence may yield new therapeutic strategies for age-related chronic liver pathologies. AREAS COVERED This review examines the recent findings from preclinical and clinical studies on mechanisms of senescence in liver fibrogenesis and its involvement in liver fibrosis. A comprehensive literature search in electronic databases consisting of PubMed and Scopus from inception to 31 August 2021 was performed. EXPERT OPINION Cellular senescence has diagnostic, prognostic, and therapeutic potential in progressive liver complications, especially liver fibrosis. Stimulating or reinforcing the immune response against senescent cells may be a promising and forthright biotherapeutic strategy. This approach will need a deeper understanding of the immune system's ability to eliminate senescent cells and the molecular and cellular mechanisms underlying this process.
Collapse
Affiliation(s)
| | - Abhasnee Sobhonslidsuk
- Division of Gastroenterology and Hepatology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Jiraphun Jittikoon
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Sittisak Honsawek
- Department of Biochemistry, Osteoarthritis and Musculoskeleton Research Unit, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Usa Chaikledkaew
- Social and Administrative Pharmacy Division, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.,Mahidol University Health Technology Assessment (MUHTA) Graduate Program, Mahidol University, Bangkok, Thailand
| |
Collapse
|
395
|
Troutman TD, Kofman E, Glass CK. Exploiting dynamic enhancer landscapes to decode macrophage and microglia phenotypes in health and disease. Mol Cell 2021; 81:3888-3903. [PMID: 34464593 PMCID: PMC8500948 DOI: 10.1016/j.molcel.2021.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/19/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022]
Abstract
The development and functional potential of metazoan cells is dependent on combinatorial roles of transcriptional enhancers and promoters. Macrophages provide exceptionally powerful model systems for investigation of mechanisms underlying the activation of cell-specific enhancers that drive transitions in cell fate and cell state. Here, we review recent advances that have expanded appreciation of the diversity of macrophage phenotypes in health and disease, emphasizing studies of liver, adipose tissue, and brain macrophages as paradigms for other tissue macrophages and cell types. Studies of normal tissue-resident macrophages and macrophages associated with cirrhosis, obese adipose tissue, and neurodegenerative disease illustrate the major roles of tissue environment in remodeling enhancer landscapes to specify the development and functions of distinct macrophage phenotypes. We discuss the utility of quantitative analysis of environment-dependent changes in enhancer activity states as an approach to discovery of regulatory transcription factors and upstream signaling pathways.
Collapse
Affiliation(s)
- Ty D Troutman
- Department of Medicine, University of California, San Diego, San Diego, CA, USA; Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Eric Kofman
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, USA; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, San Diego, CA, USA
| | - Christopher K Glass
- Department of Medicine, University of California, San Diego, San Diego, CA, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
396
|
Bellanti F, Vendemiale G. Coronavirus disease 2019 and non-alcoholic fatty liver disease. World J Hepatol 2021; 13:969-978. [PMID: 34630869 PMCID: PMC8473503 DOI: 10.4254/wjh.v13.i9.969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/15/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic may present with a broad range of clinical manifestations, from no or mild symptoms to severe disease. Patients with specific pre-existing comorbidities, such as obesity and type 2 diabetes, are at high risk of coming out with a critical form of COVID-19. Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, and, because of its frequent association with metabolic alterations including obesity and type 2 diabetes, it has recently been re-named as metabolic-associated fatty liver disease (MAFLD). Several studies and systematic reviews pointed out the increased risk of severe COVID-19 in NAFLD/MAFLD patients. Even though dedicated mechanistic studies are missing, this higher probability may be justified by systemic low-grade chronic inflammation associated with immune dysregulation in NAFLD/MAFLD, which could trigger cytokine storm and hypercoagulable state after severe acute respiratory syndrome coronavirus 2 infection. This review focuses on the predisposing role of NAFLD/MAFLD in favoring severe COVID-19, discussing the available information on specific risk factors, clinical features, outcomes, and pathogenetic mechanisms.
Collapse
Affiliation(s)
- Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy.
| | - Gianluigi Vendemiale
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| |
Collapse
|
397
|
Serfecz JC, Saadin A, Santiago CP, Zhang Y, Bentzen SM, Vogel SN, Feldman RA. C5a Activates a Pro-Inflammatory Gene Expression Profile in Human Gaucher iPSC-Derived Macrophages. Int J Mol Sci 2021; 22:9912. [PMID: 34576075 PMCID: PMC8466165 DOI: 10.3390/ijms22189912] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022] Open
Abstract
Gaucher disease (GD) is an autosomal recessive disorder caused by bi-allelic GBA1 mutations that reduce the activity of the lysosomal enzyme β-glucocerebrosidase (GCase). GCase catalyzes the conversion of glucosylceramide (GluCer), a ubiquitous glycosphingolipid, to glucose and ceramide. GCase deficiency causes the accumulation of GluCer and its metabolite glucosylsphingosine (GluSph) in a number of tissues and organs. In the immune system, GCase deficiency deregulates signal transduction events, resulting in an inflammatory environment. It is known that the complement system promotes inflammation, and complement inhibitors are currently being considered as a novel therapy for GD; however, the mechanism by which complement drives systemic macrophage-mediated inflammation remains incompletely understood. To help understand the mechanisms involved, we used human GD-induced pluripotent stem cell (iPSC)-derived macrophages. We found that GD macrophages exhibit exacerbated production of inflammatory cytokines via an innate immune response mediated by receptor 1 for complement component C5a (C5aR1). Quantitative RT-PCR and ELISA assays showed that in the presence of recombinant C5a (rC5a), GD macrophages secreted 8-10-fold higher levels of TNF-α compared to rC5a-stimulated control macrophages. PMX53, a C5aR1 blocker, reversed the enhanced GD macrophage TNF-α production, indicating that the observed effect was predominantly C5aR1-mediated. To further analyze the extent of changes induced by rC5a stimulation, we performed gene array analysis of the rC5a-treated macrophage transcriptomes. We found that rC5a-stimulated GD macrophages exhibit increased expression of genes involved in TNF-α inflammatory responses compared to rC5a-stimulated controls. Our results suggest that rC5a-induced inflammation in GD macrophages activates a unique immune response, supporting the potential use of inhibitors of the C5a-C5aR1 receptor axis to mitigate the chronic inflammatory abnormalities associated with GD.
Collapse
Affiliation(s)
- Jacquelyn C. Serfecz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.C.S.); (A.S.); (S.N.V.)
| | - Afsoon Saadin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.C.S.); (A.S.); (S.N.V.)
| | - Clayton P. Santiago
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Yuji Zhang
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, MD 21201, USA; (Y.Z.); (S.M.B.)
| | - Søren M. Bentzen
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, MD 21201, USA; (Y.Z.); (S.M.B.)
| | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.C.S.); (A.S.); (S.N.V.)
| | - Ricardo A. Feldman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.C.S.); (A.S.); (S.N.V.)
| |
Collapse
|
398
|
Abstract
Antifibrotic therapies for the treatment of liver fibrosis represent an unconquered area of drug development. The significant involvement of the gut microbiota as a driving force in a multitude of liver disease, be it pathogenesis or fibrotic progression, suggest that targeting the gut–liver axis, relevant signaling pathways, and/or manipulation of the gut’s commensal microbial composition and its metabolites may offer opportunities for biomarker discovery, novel therapies and personalized medicine development. Here, we review potential links between bacterial translocation and deficits of host-microbiome compartmentalization and liver fibrosis that occur in settings of advanced chronic liver disease. We discuss established and emerging therapeutic strategies, translated from our current knowledge of the gut–liver axis, targeted at restoring intestinal eubiosis, ameliorating hepatic fibrosis and rising portal hypertension that characterize and define the course of decompensated cirrhosis.
Collapse
|
399
|
Solhi R, Lotfinia M, Gramignoli R, Najimi M, Vosough M. Metabolic hallmarks of liver regeneration. Trends Endocrinol Metab 2021; 32:731-745. [PMID: 34304970 DOI: 10.1016/j.tem.2021.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/29/2022]
Abstract
Despite the crucial role of cell metabolism in biological processes, particularly cell division, metabolic aspects of liver regeneration are not well defined. Better understanding of the metabolic activity governing division of liver cells will provide powerful insights into mechanisms of physiological and pathological liver regeneration. Recent studies have provided evidence that metabolic response to liver failure might be a proximal signal to initiate cell proliferation in liver regeneration. In this review, we highlight how lipids, carbohydrates, and proteins dynamically change and orchestrate liver regeneration. In addition, we discuss translational studies in which metabolic intervention has been used to treat chronic liver diseases (CLDs).
Collapse
Affiliation(s)
- Roya Solhi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Majid Lotfinia
- Physiology Research Center, Basic Sciences Research Institute, Kashan University of Medical Sciences, Kashan, Iran; Core Research Lab, Kashan University of Medical Sciences, Kashan, Iran
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.
| |
Collapse
|
400
|
Ait Ahmed Y, Fu Y, Rodrigues RM, He Y, Guan Y, Guillot A, Ren R, Feng D, Hidalgo J, Ju C, Lafdil F, Gao B. Kupffer cell restoration after partial hepatectomy is mainly driven by local cell proliferation in IL-6-dependent autocrine and paracrine manners. Cell Mol Immunol 2021; 18:2165-2176. [PMID: 34282300 PMCID: PMC8429713 DOI: 10.1038/s41423-021-00731-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Kupffer cells (KCs), which are liver-resident macrophages, originate from the fetal yolk sac and represent one of the largest macrophage populations in the body. However, the current data on the origin of the cells that restore macrophages during liver injury and regeneration remain controversial. Here, we address the question of whether liver macrophage restoration results from circulating monocyte infiltration or local KC proliferation in regenerating livers after partial hepatectomy (PHx) and uncover the underlying mechanisms. By using several strains of genetically modified mice and performing immunohistochemical analyses, we demonstrated that local KC proliferation mainly contributed to the restoration of liver macrophages after PHx. Peak KC proliferation was impaired in Il6-knockout (KO) mice and restored after the administration of IL-6 protein, whereas KC proliferation was not affected in Il4-KO or Csf2-KO mice. The source of IL-6 was identified using hepatocyte- and myeloid-specific Il6-KO mice and the results revealed that both hepatocytes and myeloid cells contribute to IL-6 production after PHx. Moreover, peak KC proliferation was also impaired in myeloid-specific Il6 receptor-KO mice after PHx, suggesting that IL-6 signaling directly promotes KC proliferation. Studies using several inhibitors to block the IL-6 signaling pathway revealed that sirtuin 1 (SIRT1) contributed to IL-6-mediated KC proliferation in vitro. Genetic deletion of the Sirt1 gene in myeloid cells, including KCs, impaired KC proliferation after PHx. In conclusion, our data suggest that KC repopulation after PHx is mainly driven by local KC proliferation, which is dependent on IL-6 and SIRT1 activation in KCs.
Collapse
Affiliation(s)
- Yeni Ait Ahmed
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- Université Paris-Est-Créteil, Créteil, France
| | - Yaojie Fu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Robim M Rodrigues
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Yukun Guan
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Adrien Guillot
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Ruixue Ren
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Juan Hidalgo
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cynthia Ju
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fouad Lafdil
- Université Paris-Est-Créteil, Créteil, France.
- INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France.
- Institut Universitaire de France (IUF), Paris, France.
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|