351
|
Ramsey C, Hässler S, Marits P, Kämpe O, Surh CD, Peltonen L, Winqvist O. Increased antigen presenting cell-mediated T cell activation in mice and patients without the autoimmune regulator. Eur J Immunol 2006; 36:305-17. [PMID: 16421949 DOI: 10.1002/eji.200535240] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Patients with autoimmune polyendocrine syndrome type I (APS I)suffer from endocrine and non-endocrine disorders due to mutations in the autoimmune regulator gene (AIRE). Mouse Aire is expressed both in thymic medullary epithelial cells and in peripheral antigen-presenting cells, suggesting a role in both central and peripheral tolerance. We here report that Aire(-/-) dendritic cells (DC) activate naive T cells more efficiently than do Aire(+/+) DC. Expression array analyses of Aire(-/-) DC revealed differential regulation of 68 transcripts, among which, the vascular cell adhesion molecule-1 (VCAM-1) transcript was up-regulated in Aire(-/-) DC. Concurrently, the expression of the VCAM-1 protein was up-regulated on both Aire(-/-) DC and monocytes from APS I patients. Blocking the interaction of VCAM-1 prevented enhanced Aire(-/-) DC stimulation of T cell hybridomas. We determined an increased number of DC in spleen and lymph nodes and of monocytes in the blood from Aire(-/-) mice, and an increased number of blood monocytes in APS I patients. Our findings imply a role for Aire in peripheral DC regulation of T cell activation, and suggest that Aire participates in peripheral tolerance.
Collapse
Affiliation(s)
- Chris Ramsey
- Department of Immunology, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | | | | | | | |
Collapse
|
352
|
Nitta T, Takahama Y. [Central tolerance and autoimmune diseases]. NIHON RINSHO MEN'EKI GAKKAI KAISHI = JAPANESE JOURNAL OF CLINICAL IMMUNOLOGY 2006; 29:8-15. [PMID: 16505598 DOI: 10.2177/jsci.29.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Central tolerance is established by the repertoire selection of immature T lymphocytes in the thymus, avoiding autoimmune responses to self-antigens. Differential ligand-TCR interactions that result in positive and negative selection initiate differential intracellular signals that, in turn, lead to the survival-or-death decision of immature thymocytes. TCR signal dysregulation due to the mutation of ZAP-70 or defective apoptosis of autoreactive thymocytes due to the deficiency of pro-apoptotic protein Bim impair tolerance and cause autoimmunity. Thymic repertoire selection also induces the development of CD25(+)CD4(+) regulatory T cells, which play important roles for maintaining peripheral tolerance. Furthermore, the establishment of central tolerance requires the development of thymic medulla that is mediated by the activation of NF-kappaB signaling pathway, promiscuous expression of tissue-specific self-antigens by medullary epithelial cells that is regulated by AIRE, and cortex-to-medulla migration of developing thymocytes that is regulated by CCR7-mediated chemokine signals.
Collapse
Affiliation(s)
- Takeshi Nitta
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima
| | | |
Collapse
|
353
|
Gomez GG, Kruse CA. Mechanisms of malignant glioma immune resistance and sources of immunosuppression. GENE THERAPY & MOLECULAR BIOLOGY 2006; 10:133-146. [PMID: 16810329 PMCID: PMC1474813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
High grade malignant gliomas are genetically unstable, heterogeneous and highly infiltrative; all characteristics that lend glioma cells superior advantages in resisting conventional therapies. Unfortunately, the median survival time for patients with glioblastoma multiforme remains discouraging at 12-15 months from diagnosis. Neuroimmunologists/oncologists have focused their research efforts to harness the power of the immune system to improve brain tumor patient survival. In the past 30 years, small numbers of patients have been enrolled in a plethora of experimental immunotherapy Phase I and II trials. Some remarkable anecdotal responses to immune therapy are evident. Yet, the reasons for the mixed responses remain an enigma. The inability of the devised immunotherapies to consistently increase survival may be due, in part, to intrinsically-resistant glioma cells. It is also probable that the tumor compartment of the tumor-bearing host has mechanisms or produces factors that promote tumor tolerance and immune suppression. Finally, with adoptive immunotherapy of ex vivo activated effector cell preparations, the existence of suppressor T cells within them theoretically may contribute to immunotherapeutic failure. In this review, we will summarize our own studies with immunotherapy resistant glioma cell models, as well as cover other examined immunosuppressive factors in the tumor microenvironment and immune effector cell suppressor populations that may contribute to the overall immune suppression. An in-depth understanding of the obstacles will be necessary to appropriately develop strategies to overcome the resistance and improve survival in this select population of cancer patients.
Collapse
Affiliation(s)
- German G. Gomez
- Department of Pathology, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | - Carol A. Kruse
- Division of Cancer Biology and Brain Tumor Research Program, La Jolla Institute for Molecular Medicine, San Diego, CA 92121, USA
| |
Collapse
|
354
|
Romagnoli P, Hudrisier D, van Meerwijk JPM. Molecular signature of recent thymic selection events on effector and regulatory CD4+ T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2005; 175:5751-8. [PMID: 16237066 PMCID: PMC2346488 DOI: 10.4049/jimmunol.175.9.5751] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Natural CD4+CD25+ regulatory T lymphocytes (Treg) are key protagonists in the induction and maintenance of peripheral T cell tolerance. Their thymic origin and biased repertoire continue to raise important questions about the signals that mediate their development. We validated analysis of MHC class II capture by developing thymocytes from thymic stroma as a tool to study quantitative and qualitative aspects of the cellular interactions involved in thymic T cell development and used it to analyze Treg differentiation in wild-type mice. Our data indicate that APCs of bone marrow origin, but, surprisingly and importantly, not thymic epithelial cells, induce significant negative selection among the very autoreactive Treg precursors. This fundamental difference between thymic development of regulatory and effector T lymphocytes leads to the development of a Treg repertoire enriched in cells specific for a selected subpopulation of self-Ags, i.e., those specifically expressed by thymic epithelial cells.
Collapse
Affiliation(s)
- Paola Romagnoli
- Institut National de la Santé et de la Recherche Médicale, Unité 563, Centre de Physiopathologie Toulouse Purpan, Toulouse, France.
| | | | | |
Collapse
|
355
|
Hogquist KA, Baldwin TA, Jameson SC. Central tolerance: learning self-control in the thymus. Nat Rev Immunol 2005; 5:772-82. [PMID: 16200080 DOI: 10.1038/nri1707] [Citation(s) in RCA: 436] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the past few years, there has been a flurry of discoveries and advancements in our understanding of how the thymus prepares T cells to exist at peace in normal healthy tissue: that is, to be self-tolerant. In the thymus, one of the main mechanisms of T-cell central tolerance is clonal deletion, although the selection of regulatory T cells is also important and is gaining enormous interest. In this Review, we discuss the emerging consensus about which models of clonal deletion are most physiological, and we review recent data that define the molecular mechanisms of central tolerance.
Collapse
Affiliation(s)
- Kristin A Hogquist
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, 312 Church Street South East, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
356
|
Li W, Kim MG, Gourley TS, McCarthy BP, Sant'Angelo DB, Chang CH. An Alternate Pathway for CD4 T Cell Development: Thymocyte-Expressed MHC Class II Selects a Distinct T Cell Population. Immunity 2005; 23:375-86. [PMID: 16226503 DOI: 10.1016/j.immuni.2005.09.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 08/19/2005] [Accepted: 09/02/2005] [Indexed: 12/22/2022]
Abstract
Conventional understanding of CD4 T cell development is that the MHC class II molecules on cortical thymic epithelial cell are necessary for positive selection, as demonstrated in mouse models. Clinical data, however, show that hematopoietic stem cells reconstitute CD4 T cells in patients devoid of MHC class II. Additionally, CD4 T cells generated from human stem cells in immunocompromised mice were restricted to human, but not mouse, MHC class II. These studies suggest an alternative pathway for CD4 T cell development that does not normally exist in mice. MHC class II is expressed on developing human thymocytes, indicating a possible role of MHC II on thymocytes for CD4 T cell generation. Therefore, we created mice in which MHC class II is expressed only on T lineage cells. Remarkably, the CD4 compartment in such mice is efficiently reconstituted with unique specificity, demonstrating a novel thymocyte-driven pathway of CD4 T cell selection.
Collapse
Affiliation(s)
- Wei Li
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | | | | | | | | | | |
Collapse
|
357
|
Bos R, van Duikeren S, van Hall T, Kaaijk P, Taubert R, Kyewski B, Klein L, Melief CJM, Offringa R. Expression of a natural tumor antigen by thymic epithelial cells impairs the tumor-protective CD4+ T-cell repertoire. Cancer Res 2005; 65:6443-9. [PMID: 16024649 DOI: 10.1158/0008-5472.can-05-0666] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A variety of antigens that display a highly tissue-specific expression pattern have recently found to be also expressed in medullary thymic epithelial cells (mTEC). This unique feature of mTEC plays an important role in preventing hazardous autoimmune responses through thymic tolerization of T-cell subsets directed against autoantigens but could also limit the possibility of exploiting tumor-associated antigens for immune-mediated targeting of cancers. Our present study shows that expression of carcinoembryonic antigen (CEA) in thymic epithelial cells of CEA-transgenic mice results in tolerization of a major fraction of the CD4+ T-cell repertoire against this antigen, thereby markedly limiting the effect of CEA-specific immunization against CEA-overexpressing tumors. The expression of CEA in mTEC of CEA-transgenic mice is mirrored by its expression in human mTEC, arguing that promiscuous gene expression in these thymic stromal cells needs to be considered as a potential hurdle for immunotherapies of cancer that target tissue-specific autoantigens.
Collapse
Affiliation(s)
- Rinke Bos
- Department of Immunohematology and Blood Transfusion, Tumor Immunology Group, Leiden University Medical Center, Leiden, Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
358
|
Baldwin TA, Sandau MM, Jameson SC, Hogquist KA. The timing of TCR alpha expression critically influences T cell development and selection. ACTA ACUST UNITED AC 2005; 202:111-21. [PMID: 15998791 PMCID: PMC2212895 DOI: 10.1084/jem.20050359] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sequential rearrangement of the T cell receptor for antigen (TCR) beta and alpha chains is a hallmark of thymocyte development. This temporal control is lost in TCR transgenics because the alpha chain is expressed prematurely at the CD4- CD8- double negative (DN) stage. To test the importance of this, we expressed the HY alpha chain at the physiological CD4+ CD8+ double positive (DP) stage. The reduced DP and increased DN cellularity typically seen in TCR transgenics was not observed when the alpha chain was expressed at the appropriate stage. Surprisingly, antigen-driven selection events were also altered. In male mice, thymocyte deletion now occurred at the single positive or medullary stage. In addition, no expansion of CD8 alpha alpha intestinal intraepithelial lymphocytes (IELs) was observed, despite the fact that HY transgenics have been used to model IEL development. Collectively, these data establish the importance of proper timing of TCR expression in thymic development and selection and emphasize the need to use models that most accurately reflect the physiologic process.
Collapse
Affiliation(s)
- Troy A Baldwin
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
359
|
Garcia CA, Prabakar KR, Diez J, Cao ZA, Allende G, Zeller M, Dogra R, Mendez A, Rosenkranz E, Dahl U, Ricordi C, Hanahan D, Pugliese A. Dendritic Cells in Human Thymus and Periphery Display a Proinsulin Epitope in a Transcription-Dependent, Capture-Independent Fashion. THE JOURNAL OF IMMUNOLOGY 2005; 175:2111-22. [PMID: 16081777 DOI: 10.4049/jimmunol.175.4.2111] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The natural expression of tissue-specific genes in the thymus, e.g., insulin, is critical for self-tolerance. The transcription of tissue-specific genes is ascribed to peripheral Ag-expressing (PAE) cells, which discordant studies identified as thymic epithelial cells (TEC) or CD11c+ dendritic cells (DC). We hypothesized that, consistent with APC function, PAE-DC should constitutively display multiple self-epitopes on their surface. If recognized by Abs, such epitopes could help identify PAE cells to further define their distribution, nature, and function. We report that selected Abs reacted with self-epitopes, including a proinsulin epitope, on the surface of CD11c+ cells. We find that Proins+ CD11c+ PAE cells exist in human thymus, spleen, and also circulate in blood. Human thymic Proins+ cells appear as mature DC but express CD8alpha, CD20, CD123, and CD14; peripheral Proins+ cells appear as immature DC. However, DC derived in vitro from human peripheral blood monocytes include Proins+ cells that uniquely differentiate and mature into thymic-like PAE-DC. Critically, we demonstrate that human Proins+ CD11c+ cells transcribe the insulin gene in thymus, spleen, and blood. Likewise, we show that mouse thymic and peripheral CD11c+ cells transcribe the insulin gene and display the proinsulin epitope; moreover, by using knockout mice, we show that the display of this epitope depends upon insulin gene transcription and is independent of Ag capturing. Thus, we propose that PAE cells include functionally distinct DC displaying self-epitopes through a novel, transcription-dependent mechanism. These cells might play a role in promoting self-tolerance, not only in the thymus but also in the periphery.
Collapse
Affiliation(s)
- Carlos A Garcia
- Immunogenetics Program and Cell Transplant Center, Diabetes Research Institute, Miller School of Medicine, University of Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
360
|
Anderson MS, Venanzi ES, Chen Z, Berzins SP, Benoist C, Mathis D. The cellular mechanism of Aire control of T cell tolerance. Immunity 2005; 23:227-39. [PMID: 16111640 DOI: 10.1016/j.immuni.2005.07.005] [Citation(s) in RCA: 468] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Revised: 06/10/2005] [Accepted: 07/13/2005] [Indexed: 01/30/2023]
Abstract
Aire promotes the tolerization of thymocytes by inducing the expression of a battery of peripheral-tissue antigens in thymic medullary epithelial cells. We demonstrate that the cellular mechanism by which Aire exerts its tolerance-promoting function is not primarily positive selection of regulatory T cells, but rather negative selection of T effector cells. Surprisingly, supplementing its influence on the transcription of genes encoding peripheral-tissue antigens, Aire somehow enhances the antigen-presentation capability of medullary epithelial cells. Thus, this transcriptional control element promotes central tolerance both by furnishing a specific thymic stromal cell type with a repertoire of self antigens and by better arming such cells to present these antigens to differentiating thymocytes. In Aire's absence, autoimmunity and ultimately overt autoimmune disease develops.
Collapse
Affiliation(s)
- Mark S Anderson
- Section on Immunology and Immunogenetics, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
361
|
Gorczynski RM. Regulation of transplantation tolerance by antigen-presenting cells. Transplant Rev (Orlando) 2005. [DOI: 10.1016/j.trre.2005.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
362
|
Johnnidis JB, Venanzi ES, Taxman DJ, Ting JPY, Benoist CO, Mathis DJ. Chromosomal clustering of genes controlled by the aire transcription factor. Proc Natl Acad Sci U S A 2005; 102:7233-8. [PMID: 15883360 PMCID: PMC1129145 DOI: 10.1073/pnas.0502670102] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Autoimmune regulator (aire) is a transcription factor that controls the self-reactivity of the T cell repertoire. Although previous results indicate that it exerts this function in part by promoting ectopic expression of a battery of peripheral-tissue antigens in epithelial cells of the thymic medulla, recent data argue for additional roles in negative selection of thymocytes by medullary cells. As one approach to exploring such roles, we performed computational analyses of microarray data on medullary RNA transcripts from aire-deficient versus wild-type mice, focusing on the genomic localization of aire-controlled genes. Our results highlight this molecule's transcriptional activating and silencing roles and reveal a significant degree of clustering of its target genes. On a local scale, aire-regulated clusters appeared punctate, with aire-controlled and aire-independent genes often being interspersed. This pattern suggests that aire's action may not be a simple reflection of the wide action of a chromatin remodeling enzyme. Analysis of the identity of certain of the clustered genes was evocative of aire's potential roles in antigen presentation and the coordination of intrathymic cell migration: for example, major histocompatibility complex class I and class II gene products and certain chemokine genes are targets of aire-regulated transcription.
Collapse
|
363
|
Hansenne I. Thymic transcription of neurohypophysial and insulin-related genes: impact upon T-cell differentiation and self-tolerance. J Neuroendocrinol 2005; 17:321-7. [PMID: 15869568 DOI: 10.1111/j.1365-2826.2005.01301.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The thymus is the unique lymphoid organ responsible for the generation of a diverse repertoire of T lymphocytes that are competent against non self-antigens while being tolerant to self-antigens. A vast repertoire of neuroendocrine-related genes is transcribed in the nonlymphoid cellular compartment of the thymus (thymic epithelial cells, dendritic cells and macrophages). The precursors encoded by these genes engage two types of interactions with developing T cells (thymocytes). First, they are not processed in a classical neuroendocrine way but as the source of self-antigens that are presented to pre-T cells by the major histocompatibility complex proteins of the thymus. This presentation could be responsible for the establishment of central T-cell self-tolerance to neuroendocrine functions. Second, they also deliver signal ligands that are able to bind to neuroendocrine-type receptors expressed by thymocytes. This interaction activates several types of intracellular signalling pathways implicated in the developmental process of T lymphocytes. Several experimental arguments support a role for thymic dysfunction as a crucial factor in the development of organ-specific autoimmune endocrinopathies, such as 'idiopathic' central diabetes insipidus and type 1 diabetes mellitus. The rational use of tolerogenic neuroendocrine self-antigens for the prevention/treatment of autoimmune endocrinopathies is currently under investigation.
Collapse
Affiliation(s)
- I Hansenne
- Liege University, Center of Immunology, Laboratory of Neuroimmune-Endocrinology and Embryology, Institute of Pathology, Liege-Sart Tilman, Belgium.
| |
Collapse
|
364
|
Gray DHD, Ueno T, Chidgey AP, Malin M, Goldberg GL, Takahama Y, Boyd RL. Controlling the thymic microenvironment. Curr Opin Immunol 2005; 17:137-43. [PMID: 15766672 DOI: 10.1016/j.coi.2005.02.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
T-cell development in the thymus is a stepwise process, mediated by a variety of stromal cells in different regions of the organ. Although the cellular composition of the thymic microenvironment has been known for over a decade, the molecular cues that govern its formation are only beginning to be understood. Stromal-derived chemokines attract T-cell precursors to the thymus and direct maturing thymocytes to appropriate niches for their further development. Reciprocal signals from developing T cells provide crosstalk that is essential for establishment and maintenance of the thymic microenvironment. Elucidation of the molecular players involved and their context within the organ is the challenge for the field today. This knowledge could then be translated to clinical restoration of thymic function and T-cell reconstitution.
Collapse
Affiliation(s)
- Daniel H D Gray
- Department of Immunology, Central and Eastern Clinical School, Monash University, Melbourne, 3181, Australia
| | | | | | | | | | | | | |
Collapse
|
365
|
Abstract
The discovery of defined tumor antigens and their application in therapeutic cancer vaccines has not yet resulted in a successful therapy for cancer patients. Recent data suggest that this might be because most current clinical immunotherapeutic strategies rely on a tolerized tumor-reactive T-cell repertoire, resulting in a weak T-cell response that cannot induce tumor regression in the face of a multitude of normal and tumor-induced immunoregulatory mechanisms. New insights from animal models and clinical trials suggest a rationale for combination approaches in which the ineffective endogenous anti-tumor immune response is enhanced through a combination of adoptive cell transfer (ACT), specific vaccination and cytokine help for the reliable induction of a robust anti-tumor immune response and tumor regression.
Collapse
Affiliation(s)
- Willem W Overwijk
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Box 904, Houston, Texas 77030, USA.
| |
Collapse
|
366
|
Segura E, Nicco C, Lombard B, Véron P, Raposo G, Batteux F, Amigorena S, Théry C. ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming. Blood 2005; 106:216-23. [PMID: 15790784 DOI: 10.1182/blood-2005-01-0220] [Citation(s) in RCA: 475] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Exosomes are secreted vesicles formed in late endocytic compartments. Immature dendritic cells (DCs) secrete exosomes, which transfer functional major histocompatibility complex (MHC)-peptide complexes to other DCs. Since immature and mature DCs induce different functional T-cell responses (ie, tolerance versus priming), we asked whether DC maturation also influenced the priming abilities of their exosomes. We show that exosomes secreted by lipopolysaccharide (LPS)-treated mature DCs are 50- to 100-fold more potent to induce antigen-specific T-cell activation in vitro than exosomes from immature DCs. In vitro, exosomes from mature DCs transfer to B lymphocytes the ability to prime naive T cells. In vivo, only mature exosomes trigger effector T-cell responses, leading to fast skin graft rejection. Proteomic and biochemical analyses revealed that mature exosomes are enriched in MHC class II, B7.2, intercellular adhesion molecule 1 (ICAM-1), and bear little milk-fat globule-epidermal growth factor-factor VIII (MFG-E8) as compared with immature exosomes. Functional analysis using DC-derived exosomes from knock-out mice showed that MHC class II and ICAM-1 are required for mature exosomes to prime naive T cells, whereas B7.2 and MFG-E8 are dispensable. Therefore, changes in protein composition and priming abilities of exosomes reflect the maturation signals received by DCs.
Collapse
Affiliation(s)
- Elodie Segura
- Institut National de la Santé et de la Recherche Médicale, Laboratory of Mass Spectrometry and Proteomics, Centre National de la Recherche Scientifique-Unité Mixte de Recherche, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
367
|
Redmond WL, Sherman LA. Peripheral Tolerance of CD8 T Lymphocytes. Immunity 2005; 22:275-84. [PMID: 15780985 DOI: 10.1016/j.immuni.2005.01.010] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 01/10/2005] [Accepted: 01/13/2005] [Indexed: 01/18/2023]
Abstract
Whereas high-avidity recognition of peptide-MHC complexes by developing T cells in the thymus results in deletion and promotes self-tolerance, such recognition by mature T cells in the periphery results in activation and clonal expansion. This dichotomy represents the basis of a dilemma that has stumped immunologists for many years, how are self-specific T cells tolerized in the periphery? There appear to be two important criteria used to achieve this goal. The first is that in the absence of inflammatory pathogens, tolerance is promoted when T cells recognize antigen presented by quiescent dendritic cells (DCs) expressing low levels of costimulatory molecules. A second critical factor that defines "self" and drives tolerance through deletion, anergy, or suppression is the persistence of antigen.
Collapse
Affiliation(s)
- William L Redmond
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|