351
|
Sargazi S, Heidari Nia M, Mirani Sargazi F, Sheervalilou R, Saravani R, Bahrami S, Mirinejad S, Alidadi A. Functional miR143/145 Cluster Variants and Haplotypes Are Associated with Chronic Kidney Disease: a Preliminary Case-Control Study and Computational Analyses. Appl Biochem Biotechnol 2021; 193:1532-1544. [PMID: 33484447 DOI: 10.1007/s12010-021-03489-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
Abstract
MiR-143/145 cluster is a novel transcriptional target of many signaling pathways, with variations within this cluster contributed to the risk of multiple diseases. To date, no data regarding the link between miR143/145 cluster polymorphisms and the risk of developing chronic kidney disease (CKD) has been reported. Hence, we aimed to examine such association in a population of Iranian ancestry. In this preliminary study, 276 CKD patients and 300 unrelated age and sex-matched healthy controls were recruited. Genotyping was performed by PCR-RFLP and allele-specific-PCR methods. Computational analyses were performed to predict the potential effects of the variants. Our findings indicated that rs41291957, rs12659504, and rs353292 polymorphisms were positively associated with CKD, while rs4705342 and rs4705343 polymorphisms demonstrated a significant negative association with the disease. Moreover, a significant association was observed between CC + TC and TT genotypes and CKD stages. We found that AACTT, AATTC, AATTT, GATTC, GATTT, and GGCTT haplotypes significantly enhanced the risk of CKD compared with the Grs41291957AArs12659504Crs353292Trs4705342Trs4705343 haplotype. Computational analysis showed that rs353292, rs4705342, and rs4705343 might alter the binding of the transcription factors in this gene cluster. We found that miR-143/145 cluster polymorphisms were associated with CKD risk in a sample of the Iranian population. Replicated studies on different ethnicities are necessary to investigate the association between these promoter variants and clinical outcomes.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Milad Heidari Nia
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fariba Mirani Sargazi
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Roghayeh Sheervalilou
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ramin Saravani
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Sara Bahrami
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ali Alidadi
- Nephrology Department, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
352
|
Song M, He J, Pan QZ, Yang J, Zhao J, Zhang YJ, Huang Y, Tang Y, Wang Q, He J, Gu J, Li Y, Chen S, Zeng J, Zhou ZQ, Yang C, Han Y, Chen H, Xiang T, Weng DS, Xia JC. Cancer-Associated Fibroblast-Mediated Cellular Crosstalk Supports Hepatocellular Carcinoma Progression. Hepatology 2021; 73:1717-1735. [PMID: 33682185 DOI: 10.1002/hep.31792] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 01/14/2021] [Accepted: 02/01/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND AIMS Cancer-associated fibroblasts (CAFs) are key players in multicellular, stromal-dependent alterations leading to HCC pathogenesis. However, the intricate crosstalk between CAFs and other components in the tumor microenvironment (TME) remains unclear. This study aimed to investigate the cellular crosstalk among CAFs, tumor cells, and tumor-associated neutrophils (TANs) during different stages of HCC pathogenesis. APPROACH AND RESULTS In the HCC-TME, CAF-derived cardiotrophin-like cytokine factor 1 (CLCF1) increased chemokine (C-X-C motif) ligand 6 (CXCL6) and TGF-β secretion in tumor cells, which subsequently promoted tumor cell stemness in an autocrine manner and TAN infiltration and polarization in a paracrine manner. Moreover, CXCL6 and TGF-β secreted by HCC cells activated extracellular signal-regulated kinase (ERK) 1/2 signaling of CAFs to produce more CLCF1, thus forming a positive feedback loop to accelerate HCC progression. Inhibition of ERK1/2 or CLCF1/ciliary neurotrophic factor receptor signaling efficiently impaired CLCF1-mediated crosstalk among CAFs, tumor cells, and TANs both in vitro and in vivo. In clinical samples, up-regulation of the CLCF1-CXCL6/TGF-β axis exhibited a marked correlation with increased cancer stem cells, "N2"-polarized TANs, tumor stage, and poor prognosis. CONCLUSIONS This study reveals a cytokine-mediated cellular crosstalk and clinical network involving the CLCF1-CXCL6/TGF-β axis, which regulates the positive feedback loop among CAFs, tumor stemness, and TANs, HCC progression, and patient prognosis. These results may support the CLCF1 cascade as a potential prognostic biomarker and suggest that selective blockade of CLCF1/ciliary neurotrophic factor receptor or ERK1/2 signaling could provide an effective therapeutic target for patients with HCC.
Collapse
Affiliation(s)
- Mengjia Song
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Junyi He
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Qiu-Zhong Pan
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jieying Yang
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jingjing Zhao
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yao-Jun Zhang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yue Huang
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yan Tang
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Qijing Wang
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jia He
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jiamei Gu
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yongqiang Li
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Shiping Chen
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jianxiong Zeng
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Zi-Qi Zhou
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Chaopin Yang
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yulong Han
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Hao Chen
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Tong Xiang
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - De-Sheng Weng
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jian-Chuan Xia
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| |
Collapse
|
353
|
Galiègue‐Zouitina S, Fu Q, Carton‐Latreche C, Poret N, Cheok M, Leprêtre F, Figeac M, Quesnel B, El Bouazzati H, Shelley CS. Bimodal expression of RHOH during myelomonocytic differentiation: Implications for the expansion of AML differentiation therapy. EJHAEM 2021; 2:196-210. [PMID: 35845268 PMCID: PMC9175762 DOI: 10.1002/jha2.128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/09/2020] [Accepted: 10/26/2020] [Indexed: 11/06/2022]
Abstract
RhoH is an unusual member of the Rho family of small GTP-binding proteins in that it lacks GTPase activity. Since the RhoH protein is constantly bound by GTP, it is constitutively active and controlled predominantly by changes in quantitative expression. Abnormal levels of RHOH gene transcripts have been linked to a range of malignancies including acute myeloid leukemia (AML). One of the hallmarks of AML is a block in the normal program of myeloid differentiation. Here we investigate how myeloid differentiation is controlled by the quantitative expression of RHOH. Our analysis demonstrates that increasingly mature myeloid cells express progressively lower levels of RHOH. However, as monocytic myeloid cells terminally differentiate into macrophages, RHOH expression is up-regulated. This up-regulation is not apparent in AML where myeloid differentiation is blocked at stages of low RHOH expression. Nevertheless, when the up-regulation of RHOH is forced, then terminal macrophage differentiation is induced and the Cdc42 and Wnt intracellular signalling pathways are repressed. These results indicate that RHOH induction is a driver of terminal differentiation and might represent a means of effecting AML differentiation therapy. The potential of this therapeutic strategy is supported by forced up-regulation of RHOH reducing the ability of AML cells to produce tumours in vivo.
Collapse
Affiliation(s)
- Sylvie Galiègue‐Zouitina
- JPARCUMRS 1172 InsermLille UniversityLilleFrance
- Place de VerdunInstitut pour la Recherche sur le Cancer de LilleLilleCedexFrance
| | - Qiangwei Fu
- California Institute for Biomedical ResearchLa JollaCaliforniaUSA
| | - Céline Carton‐Latreche
- JPARCUMRS 1172 InsermLille UniversityLilleFrance
- Place de VerdunInstitut pour la Recherche sur le Cancer de LilleLilleCedexFrance
| | - Nicolas Poret
- JPARCUMRS 1172 InsermLille UniversityLilleFrance
- Place de VerdunInstitut pour la Recherche sur le Cancer de LilleLilleCedexFrance
| | - Meyling Cheok
- JPARCUMRS 1172 InsermLille UniversityLilleFrance
- Place de VerdunInstitut pour la Recherche sur le Cancer de LilleLilleCedexFrance
- CantherUMR 1277 Inserm‐9020 CNRSLille UniversityLilleFrance
| | - Frédéric Leprêtre
- UMS 2014 ‐ US 41Plateau de Génomique Fonctionnelle et StructuraleLille UniversityLilleFrance
| | - Martin Figeac
- UMS 2014 ‐ US 41Plateau de Génomique Fonctionnelle et StructuraleLille UniversityLilleFrance
| | - Bruno Quesnel
- JPARCUMRS 1172 InsermLille UniversityLilleFrance
- Place de VerdunInstitut pour la Recherche sur le Cancer de LilleLilleCedexFrance
- CantherUMR 1277 Inserm‐9020 CNRSLille UniversityLilleFrance
- CHU LilleService des Maladies du SangLilleFrance
| | - Hassiba El Bouazzati
- JPARCUMRS 1172 InsermLille UniversityLilleFrance
- Place de VerdunInstitut pour la Recherche sur le Cancer de LilleLilleCedexFrance
- CantherUMR 1277 Inserm‐9020 CNRSLille UniversityLilleFrance
| | | |
Collapse
|
354
|
Lagunas-Rangel FA, Bazán-Tejeda ML, Bermúdez-Cruz RM. Ribosomal DNA in the protozoan parasite Giardia duodenalis has a differential chromatin distribution and epigenetic markings across the subunits. Acta Trop 2021; 217:105872. [PMID: 33639100 DOI: 10.1016/j.actatropica.2021.105872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/12/2021] [Accepted: 02/22/2021] [Indexed: 02/08/2023]
Abstract
Giardia duodenalis is a parasite that causes a large number of diarrheal diseases around the world. It is noteworthy that in a large number of processes, Giardia requires fewer components than other eukaryotes, even without some organelles such as mitochondria and peroxisomes. Despite this, core histones are known to exist in Giardia and epigenetic marks have been found on them, suggesting that they somehow control the expression of certain genes. The regulation of the expression of ribosomal DNA (rDNA) is essential, since it is required to maintain adequate levels of ribosomes and, given the nature of tandem repeat, it is a feasible area to create genomic instability. In Giardia, it is not known how this process occurs, but as in other eukaryotes, it is suggested through various epigenetic mechanisms. Thus, in the present work we seek to identify how chromatin is distributed through the Giardia rDNA and if there were histone marks that could control its expression.
Collapse
|
355
|
Garcia LA, Day SE, Coletta RL, Campos B, Benjamin TR, De Filippis E, Madura JA, Mandarino LJ, Roust LR, Coletta DK. Weight loss after Roux-En-Y gastric bypass surgery reveals skeletal muscle DNA methylation changes. Clin Epigenetics 2021; 13:100. [PMID: 33933146 PMCID: PMC8088644 DOI: 10.1186/s13148-021-01086-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The mechanisms of weight loss and metabolic improvements following bariatric surgery in skeletal muscle are not well known; however, epigenetic modifications are likely to contribute. The aim of our study was to investigate skeletal muscle DNA methylation after weight loss induced by Roux-en-Y gastric bypass (RYGB) surgery. Muscle biopsies were obtained basally from seven insulin-resistant obese (BMI > 40 kg/m2) female subjects (45.1 ± 3.6 years) pre- and 3-month post-surgery with euglycemic hyperinsulinemic clamps to assess insulin sensitivity. Four lean (BMI < 25 kg/m2) females (38.5 ± 5.8 years) served as controls. We performed reduced representation bisulfite sequencing next generation methylation on DNA isolated from the vastus lateralis muscle biopsies. RESULTS Global methylation was significantly higher in the pre- (32.97 ± 0.02%) and post-surgery (33.31 ± 0.02%) compared to the lean (30.46 ± 0.02%), P < 0.05. MethylSig analysis identified 117 differentially methylated cytosines (DMCs) that were significantly altered in the post- versus pre-surgery (Benjamini-Hochberg q < 0.05). In addition, 2978 DMCs were significantly altered in the pre-surgery obese versus the lean controls (Benjamini-Hochberg q < 0.05). For the post-surgery obese versus the lean controls, 2885 DMCs were altered (Benjamini-Hochberg q < 0.05). Seven post-surgery obese DMCs were normalized to levels similar to those observed in lean controls. Of these, 5 were within intergenic regions (chr11.68,968,018, chr16.73,100,688, chr5.174,115,531, chr5.1,831,958 and chr9.98,547,011) and the remaining two DMCs chr17.45,330,989 and chr14.105,353,824 were within in the integrin beta 3 (ITGB3) promoter and KIAA0284 exon, respectively. ITGB3 methylation was significantly decreased in the post-surgery (0.5 ± 0.5%) and lean controls (0 ± 0%) versus pre-surgery (13.6 ± 2.7%, P < 0.05). This decreased methylation post-surgery was associated with an increase in ITGB3 gene expression (fold change + 1.52, P = 0.0087). In addition, we showed that ITGB3 promoter methylation in vitro significantly suppressed transcriptional activity (P < 0.05). Transcription factor binding analysis for ITGB3 chr17.45,330,989 identified three putative transcription factor binding motifs; PAX-5, p53 and AP-2alphaA. CONCLUSIONS These results demonstrate that weight loss after RYGB alters the epigenome through DNA methylation. In particular, this study highlights ITGB3 as a novel gene that may contribute to the metabolic improvements observed post-surgery. Future additional studies are warranted to address the exact mechanism of ITGB3 in skeletal muscle.
Collapse
Affiliation(s)
- Luis A Garcia
- Department of Medicine, Division of Endocrinology, The University of Arizona College of Medicine, 1501 N. Campbell Ave, PO Box 245035, Tucson, AZ, 85724-5035, USA
| | - Samantha E Day
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Richard L Coletta
- Department of Medicine, Division of Endocrinology, The University of Arizona College of Medicine, 1501 N. Campbell Ave, PO Box 245035, Tucson, AZ, 85724-5035, USA
| | - Baltazar Campos
- Department of Medicine, Division of Endocrinology, The University of Arizona College of Medicine, 1501 N. Campbell Ave, PO Box 245035, Tucson, AZ, 85724-5035, USA
| | - Tonya R Benjamin
- Department of Endocrinology, Metabolism and Diabetes, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Eleanna De Filippis
- Department of Endocrinology, Metabolism and Diabetes, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | | | - Lawrence J Mandarino
- Department of Medicine, Division of Endocrinology, The University of Arizona College of Medicine, 1501 N. Campbell Ave, PO Box 245035, Tucson, AZ, 85724-5035, USA
| | - Lori R Roust
- Department of Endocrinology, Metabolism and Diabetes, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Dawn K Coletta
- Department of Medicine, Division of Endocrinology, The University of Arizona College of Medicine, 1501 N. Campbell Ave, PO Box 245035, Tucson, AZ, 85724-5035, USA. .,Department of Physiology, The University of Arizona College of Medicine, Tucson, AZ, USA.
| |
Collapse
|
356
|
Wu JH, Zhang L, Nepliouev I, Brian L, Huang T, Snow KP, Schickling BM, Hauser ER, Miller FJ, Freedman NJ, Stiber JA. Drebrin attenuates atherosclerosis by limiting smooth muscle cell transdifferentiation. Cardiovasc Res 2021; 118:772-784. [PMID: 33914863 DOI: 10.1093/cvr/cvab156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 04/27/2021] [Indexed: 01/01/2023] Open
Abstract
AIMS The F-actin-binding protein Drebrin inhibits smooth muscle cell (SMC) migration, proliferation and pro-inflammatory signaling. Therefore, we tested the hypothesis that Drebrin constrains atherosclerosis. METHODS AND RESULTS SM22-Cre+/Dbnflox/flox/Ldlr-/- (SMC-Dbn-/-/Ldlr-/-) and control mice (SM22-Cre+/Ldlr-/-, Dbnflox/flox/Ldlr-/-, and Ldlr-/-) were fed a Western diet for 14-20 weeks. Brachiocephalic arteries of SMC-Dbn-/-/Ldlr-/- mice exhibited 1.5- or 1.8-fold greater cross-sectional lesion area than control mice at 14 or 20 wk, respectively. Aortic atherosclerotic lesion surface area was 1.2-fold greater in SMC-Dbn-/-/Ldlr-/- mice. SMC-Dbn-/-/Ldlr-/- lesions comprised necrotic cores that were two-fold greater in size than those of control mice. Consistent with their bigger necrotic core size, lesions in SMC-Dbn-/- arteries also showed more transdifferentiation of SMCs to macrophage-like cells: 1.5- to 2.5-fold greater, assessed with BODIPY or with CD68, respectively. In vitro data were concordant: Dbn-/- SMCs had 1.7-fold higher levels of KLF4 and transdifferentiated to macrophage-like cells more readily than Dbnflox/flox SMCs upon cholesterol loading, as evidenced by greater up-regulation of CD68 and galectin-3. Adenovirally mediated Drebrin rescue produced equivalent levels of macrophage-like transdifferentiation in Dbn-/- and Dbnflox/flox SMCs. During early atherogenesis, SMC-Dbn-/-/Ldlr-/- aortas demonstrated 1.6-fold higher levels of reactive oxygen species than control mouse aortas. The 1.8-fold higher levels of Nox1 in Dbn-/- SMCs was reduced to WT levels with KLF4 silencing. Inhibition of Nox1 chemically or with siRNA produced equivalent levels of macrophage-like transdifferentiation in Dbn-/- and Dbnflox/flox SMCs. CONCLUSIONS We conclude that SMC Drebrin limits atherosclerosis by constraining SMC Nox1 activity and SMC transdifferentiation to macrophage-like cells. TRANSLATIONAL PERSPECTIVE Drebrin is abundantly expressed in vascular smooth muscle cells (SMCs) and is up-regulated in human atherosclerosis. A hallmark of atherosclerosis is the accumulation of foam cells that secrete pro-inflammatory cytokines and contribute to plaque instability. A large proportion of these foam cells in humans derive from SMCs. We found that SMC Drebrin limits atherosclerosis by reducing SMC transdifferentiation to macrophage-like foam cells in a manner dependent on Nox1 and KLF4. For this reason, strategies aimed at augmenting SMC Drebrin expression in atherosclerotic plaques may limit atherosclerosis progression and enhance plaque stability by bridling SMC-to-foam-cell transdifferentiation.
Collapse
Affiliation(s)
- Jiao-Hui Wu
- Department of Medicine (Cardiology), Duke University Medical Center, 10 Duke Medicine Circle, Durham, NC 27710, USA
| | - Lisheng Zhang
- Department of Medicine (Cardiology), Duke University Medical Center, 10 Duke Medicine Circle, Durham, NC 27710, USA
| | - Igor Nepliouev
- Department of Medicine (Cardiology), Duke University Medical Center, 10 Duke Medicine Circle, Durham, NC 27710, USA
| | - Leigh Brian
- Department of Medicine (Cardiology), Duke University Medical Center, 10 Duke Medicine Circle, Durham, NC 27710, USA
| | - Taiqin Huang
- Department of Medicine (Cardiology), Duke University Medical Center, 10 Duke Medicine Circle, Durham, NC 27710, USA
| | - Kamie P Snow
- Department of Medicine (Cardiology), Duke University Medical Center, 10 Duke Medicine Circle, Durham, NC 27710, USA
| | - Brandon M Schickling
- Department of Medicine (Cardiology), Duke University Medical Center, 10 Duke Medicine Circle, Durham, NC 27710, USA
| | - Elizabeth R Hauser
- Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Francis J Miller
- Department of Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| | - Neil J Freedman
- Department of Medicine (Cardiology), Duke University Medical Center, 10 Duke Medicine Circle, Durham, NC 27710, USA
| | - Jonathan A Stiber
- Department of Medicine (Cardiology), Duke University Medical Center, 10 Duke Medicine Circle, Durham, NC 27710, USA
| |
Collapse
|
357
|
Kiehlmeier S, Rafiee MR, Bakr A, Mika J, Kruse S, Müller J, Schweiggert S, Herrmann C, Sigismondo G, Schmezer P, Krijgsveld J, Gröschel S. Identification of therapeutic targets of the hijacked super-enhancer complex in EVI1-rearranged leukemia. Leukemia 2021; 35:3127-3138. [PMID: 33911178 PMCID: PMC8550965 DOI: 10.1038/s41375-021-01235-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 03/22/2021] [Indexed: 12/20/2022]
Abstract
Deregulation of the EVI1 proto-oncogene by the GATA2 distal hematopoietic enhancer (G2DHE) is a key event in high-risk acute myeloid leukemia carrying 3q21q26 aberrations (3q-AML). Upon chromosomal rearrangement, G2DHE acquires characteristics of a super-enhancer and causes overexpression of EVI1 at 3q26.2. However, the transcription factor (TF) complex of G2DHE remains poorly characterized. The aim of this study was to unravel key components of G2DHE-bound TFs involved in the deregulation of EVI1. We have identified several CEBPA and RUNX1 binding sites to be enriched and critical for G2DHE function in 3q-AML cells. Using ChIP-SICAP (ChIP followed by selective isolation of chromatin-associated proteins), a panel of chromatin interactors of RUNX1 and CEBPA were detected in 3q-AML, including PARP1 and IKZF1. PARP1 inhibition (PARPi) caused a reduction of EVI1 expression and a decrease in EVI1-G2DHE interaction frequency, highlighting the involvement of PARP1 in oncogenic super-enhancer formation. Furthermore, 3q-AML cells were highly sensitive to PARPi and displayed morphological changes with higher rates of differentiation and apoptosis as well as depletion of CD34 + cells. In summary, integrative analysis of the 3q-AML super-enhancer complex identified CEBPA and RUNX1 associated proteins and nominated PARP1 as a potential new therapeutic target in EVI1 + 3q-AML.
Collapse
Affiliation(s)
- Sandra Kiehlmeier
- Molecular Leukemogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Mahmoud-Reza Rafiee
- Bioinformatics and Computational Biology Laboratory, The Francis Crick Institute, London, United Kingdom.,Proteomics of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Ali Bakr
- Cancer Epigenomics, German Cancer Research Center, Heidelberg, Germany
| | - Jagoda Mika
- Molecular Leukemogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Sabrina Kruse
- Molecular Leukemogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Judith Müller
- Molecular Leukemogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Sabrina Schweiggert
- Molecular Leukemogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Carl Herrmann
- Health Data Science Unit, Medical Faculty Heidelberg and BioQuant, Heidelberg, Germany
| | - Gianluca Sigismondo
- Proteomics of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Peter Schmezer
- Cancer Epigenomics, German Cancer Research Center, Heidelberg, Germany
| | - Jeroen Krijgsveld
- Proteomics of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany.,Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Stefan Gröschel
- Molecular Leukemogenesis, German Cancer Research Center, Heidelberg, Germany. .,Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany. .,Oncology Center Worms, Worms, Germany.
| |
Collapse
|
358
|
El-Magd MA, Fathy A, Kahilo KA, Saleh AA, El Sheikh AI, AL-Shami S, El-Komy SM. Polymorphisms of the PRLR Gene and Their Association with Milk Production Traits in Egyptian Buffaloes. Animals (Basel) 2021; 11:ani11051237. [PMID: 33923003 PMCID: PMC8146870 DOI: 10.3390/ani11051237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The two non-synonymous g.11685G>A and g.11773T>C SNPs of PRLR(L2) were significantly associated with milk yield, fat%, and protein%, and mRNA and protein levels of PRL and PRLR in milk somatic cells. GT-animals had the best milk performance; however, AC-animals had inferior milk production. Thus, the selection of buffaloes with GT haplotypes may enhance milk performance in Egyptian buffaloes. Abstract Prolactin (PRL) and its receptor (PRLR) were considered as potential genetic markers for milk production and quality traits in cattle. However, little information is available regarding PRLR genetic diversity and association studies with milk traits in Egyptian water buffaloes. Therefore, the present study was conducted to search for mutations in PRLR and determine their associations with milk performance in these animals. Exon3 (E3) and E10 of PRLR were screened for polymorphisms using single strand conformation polymorphism (SSCP) and sequencing in 400 buffaloes. The associations between haplotypes and milk production (fat%, protein%, lactose%, and solid%) traits as well as mRNA and protein levels of PRL and PRLR were studied. Two single nucleotide polymorphisms (SNPs) in E10 were detected: g.11685G>A (p.Ala494Thr) and g.11773T>C (p.Val523Aal). The G and T alleles were wild (ancestral) alleles, while the A and C alleles were mutant alleles. These SNPs resulted in four haplotypes; AC, AT, GC, and GT. Buffaloes with wild GT haplotypes showed significantly higher milk yield, fat% and protein%, mRNA and protein levels of PRL and PRLR in milk somatic cells than other animals. Animals carrying mutant AC haplotype had inferior milk traits and lowest levels of associated mRNAs and proteins. With these results, we could conclude that the selection of buffaloes with wild GT haplotypes for g.11685G>A and g.11773T>C SNPs of the PRLR gene might improve the milk production traits of Egyptian water buffaloes.
Collapse
Affiliation(s)
- Mohammed A. El-Magd
- Department of Anatomy & Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Correspondence:
| | - Aziza Fathy
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (A.F.); (K.A.K.)
| | - Khaled A. Kahilo
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (A.F.); (K.A.K.)
| | - Ayman A. Saleh
- Department of Animal Wealth Development, Veterinary Genetics & Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Ahmed I. El Sheikh
- Department of Public Health, Faculty of Veterinary Medicine, King Faisal University, Alahssa 31982, Saudi Arabia; (A.I.E.S.); (S.A.-S.)
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21561, Egypt
| | - Salah AL-Shami
- Department of Public Health, Faculty of Veterinary Medicine, King Faisal University, Alahssa 31982, Saudi Arabia; (A.I.E.S.); (S.A.-S.)
| | - Shymaa M. El-Komy
- Department of Animal Production, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt;
| |
Collapse
|
359
|
Wang N, Yuan J, Liu F, Wei J, Liu Y, Xue M, Dong R. NFIB promotes the migration and progression of kidney renal clear cell carcinoma by regulating PINK1 transcription. PeerJ 2021; 9:e10848. [PMID: 33981484 PMCID: PMC8074839 DOI: 10.7717/peerj.10848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/06/2021] [Indexed: 12/30/2022] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) is the most common and aggressive type of renal cell carcinoma. Due to high mortality rate, high metastasis rate and chemical resistance, the prognosis of KIRC patients is poor. Therefore, it is necessary to study the mechanisms of KIRC development and to develop more effective prognostic molecular biomarkers to help clinical patients. In our study, we used The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to investigate that the expression of nuclear factor I B (NFIB) is significantly higher in KIRC than in adjacent tissues. Moreover, NFIB expression levels are associated with multiple clinical pathological parameters of KIRC, and KIRC patients with high NFIB expression have poor prognosis, suggesting that NFIB may play vital roles in the malignant development of KIRC. Further studies demonstrated that NFIB could promote the progression and metastasis of KIRC and participate in the regulation of PTEN induced kinase 1 (PINK1). Furthermore, we used chromatin immunoprecipitation (ChIP) experiments to confirm that NFIB binds to the PINK1 promoter and regulates its expression at the transcriptional level. Further experiments also confirmed the important roles of PINK1 in promoting the development of tumors by NFIB. Hence, our data provide a new NFIB-mediated regulatory mechanism for the tumor progression of KIRC and suggest that NFIB can be applied as a new predictor and therapeutic target for KIRC.
Collapse
Affiliation(s)
- Ninghua Wang
- Department of Urology, Hanyang Hospital, Wuhan, Hubei, China
| | - Jing Yuan
- Department of Urology, Hanyang Hospital, Wuhan, Hubei, China
| | - Fei Liu
- Department of Urology, Hanyang Hospital, Wuhan, Hubei, China
| | - Jun Wei
- Department of Urology, Hanyang Hospital, Wuhan, Hubei, China
| | - Yu Liu
- Department of Urology, Hanyang Hospital, Wuhan, Hubei, China
| | - Mei Xue
- Department of Urology, Hanyang Hospital, Wuhan, Hubei, China
| | - Rui Dong
- Department of Urology, Hanyang Hospital, Wuhan, Hubei, China
| |
Collapse
|
360
|
Fu Y, Katsaros D, Biglia N, Wang Z, Pagano I, Tius M, Tiirikainen M, Rosser C, Yang H, Yu H. Vitamin D receptor upregulates lncRNA TOPORS-AS1 which inhibits the Wnt/β-catenin pathway and associates with favorable prognosis of ovarian cancer. Sci Rep 2021; 11:7484. [PMID: 33820921 PMCID: PMC8021562 DOI: 10.1038/s41598-021-86923-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/17/2021] [Indexed: 12/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have important biological functions, but their involvement in ovarian cancer remains elusive. We analyzed high-throughput data to identify lncRNAs associated with ovarian cancer outcomes. Our search led to the discovery of lncRNA TOPORS Antisense RNA 1 (TOPORS-AS1). Patients with high TOPORS-AS1 expression had favorable overall survival compared to low expression. This association was replicated in our study and confirmed by meta-analysis. In vitro experiments demonstrated that overexpressing TOPORS-AS1 in ovarian cancer cells suppressed cell proliferation and inhibited aggressive cell behaviors, including migration, invasion, and colony formation. Analysis of tumor cell transcriptomes indicated TOPORS-AS1′s influence on the Wnt/β-catenin signaling. Additional experiments revealed that TOPORS-AS1 increased the phosphorylation of β-catenin and suppressed the expression of CTNNB1, disrupting the Wnt/β-catenin pathway. Our experiments further discovered that vitamin D receptor (VDR) upregulated TOPORS-AS1 expression and that inhibition of β-catenin by TOPORS-AS1 required a RNA binding protein, hnRNPA2B1 (heterogeneous nuclear ribonucleoprotein A2B1). Taken together, these findings suggest that TOPORS-AS1 may behave like a tumor suppressor in ovarian cancer through interrupting the Wnt/β-catenin signaling and that VDR upregulates the expression of TOPORS-AS1. Assessing TOPORS-AS1 expression in ovarian cancer may help predict disease prognosis and develop treatment strategy
Collapse
Affiliation(s)
- Yuanyuan Fu
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA.,Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Dionyssios Katsaros
- Department of Surgical Sciences, Gynecology, AOU Città Della Salute, University of Torino, Turin, Italy
| | - Nicoletta Biglia
- Division of Obstetrics and Gynecology, Department of Surgical Sciences, University of Torino School of Medicine, Mauriziano Hospital, Turin, Italy
| | - Zhanwei Wang
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Ian Pagano
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Marcus Tius
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Maarit Tiirikainen
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Charles Rosser
- Department of Surgery, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Haining Yang
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Herbert Yu
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA.
| |
Collapse
|
361
|
Tooley JG, Catlin JP, Schaner Tooley CE. CREB-mediated transcriptional activation of NRMT1 drives muscle differentiation. Transcription 2021; 12:72-88. [PMID: 34403304 PMCID: PMC8555533 DOI: 10.1080/21541264.2021.1963627] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/29/2022] Open
Abstract
The N-terminal methyltransferase NRMT1 is an important regulator of protein/DNA interactions and plays a role in many cellular processes, including mitosis, cell cycle progression, chromatin organization, DNA damage repair, and transcriptional regulation. Accordingly, loss of NRMT1 results in both developmental pathologies and oncogenic phenotypes. Though NRMT1 plays such important and diverse roles in the cell, little is known about its own regulation. To better understand the mechanisms governing NRMT1 expression, we first identified its predominant transcriptional start site and minimal promoter region with predicted transcription factor motifs. We then used a combination of luciferase and binding assays to confirm CREB1 as the major regulator of NRMT1 transcription. We tested which conditions known to activate CREB1 also activated NRMT1 transcription, and found CREB1-mediated NRMT1 expression was increased during recovery from serum starvation and muscle cell differentiation. To determine how NRMT1 expression affects myoblast differentiation, we used CRISPR/Cas9 technology to knock out NRMT1 expression in immortalized C2C12 mouse myoblasts. C2C12 cells depleted of NRMT1 lacked Pax7 expression and were unable to proceed down the muscle differentiation pathway. Instead, they took on characteristics of C2C12 cells that have transdifferentiated into osteoblasts, including increased alkaline phosphatase and type I collagen expression and decreased proliferation. These data implicate NRMT1 as an important downstream target of CREB1 during muscle cell differentiation.
Collapse
Affiliation(s)
- John G. Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - James P. Catlin
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Christine E. Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
362
|
Fetke JK, Martinson JW, Flick RW, Huang W, Bencic DC, See MJ, Pilgrim EM, Debry RW, Biales AD. DNA methylation and expression of estrogen receptor alpha in fathead minnows exposed to 17α-ethynylestradiol. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 233:105788. [PMID: 33662878 PMCID: PMC8317993 DOI: 10.1016/j.aquatox.2021.105788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 05/12/2023]
Abstract
The gene expression response thought to underlie the negative apical effects resulting from estrogen exposure have been thoroughly described in fish. Although epigenetics are believed to play a critical role translating environmental exposures into the development of adverse apical effects, they remain poorly characterized in fish species. This study investigated alterations of DNA methylation of estrogen receptor alpha (esr1) in brain and liver tissues from 8 to 10 month old male fathead minnows (Pimephales promelas) after a 2d exposure to either 2.5 ng/L or 10 ng/L 17α-ethynylestradiol (EE2). Changes in the patterns of methylation were evaluated using targeted deep sequencing of bisulfite treated DNA in the 5' region of esr1. Methylation and gene expression were assessed at 2d of exposure and after a 7 and 14d depuration period. After 2d EE2 exposure, males exhibited significant demethylation in the 5' upstream region of esr1 in liver tissue, which was inversely correlated to gene expression. This methylation pattern reflected what was seen in females. No gene body methylation (GBM) was observed for liver of exposed males. Differential methylation was observed for a single upstream CpG site in the liver after the 14d depuration. A less pronounced methylation response was observed in the upstream region in brain tissue, however, several CpGs were necessarily excluded from the analysis. In contrast to the liver, a significant GBM response was observed across the entire gene body, which was sustained until at least 7d post-exposure. No differential expression was observed in the brain, limiting functional interpretation of methylation changes. The identification of EE2-dependent changes in methylation levels strongly suggests the importance of epigenetic mechanisms as a mediator of the organismal response to environmental exposures and the need for further characterization of the epigenome. Further, differential methylation following depuration indicates estrogenic effects persist well after the active exposure, which has implications for the risk posed by repeated exposures..
Collapse
Affiliation(s)
- J K Fetke
- Oak Ridge Institute for Science and Education (ORISE) Research Participant at US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, United States; Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - J W Martinson
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, United States
| | - R W Flick
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, United States
| | - W Huang
- US Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, 27709, United States
| | - D C Bencic
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, United States
| | - M J See
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, United States
| | - E M Pilgrim
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, United States
| | - R W Debry
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - A D Biales
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, United States.
| |
Collapse
|
363
|
Busacca S, Zhang Q, Sharkey A, Dawson AG, Moore DA, Waller DA, Nakas A, Jones C, Cain K, Luo JL, Salcedo A, Salaroglio IC, Riganti C, Le Quesne J, John T, Boutros PC, Zhang SD, Fennell DA. Transcriptional perturbation of protein arginine methyltransferase-5 exhibits MTAP-selective oncosuppression. Sci Rep 2021; 11:7434. [PMID: 33795785 PMCID: PMC8016828 DOI: 10.1038/s41598-021-86834-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/18/2021] [Indexed: 02/05/2023] Open
Abstract
We hypothesized that small molecule transcriptional perturbation could be harnessed to target a cellular dependency involving protein arginine methyltransferase 5 (PRMT5) in the context of methylthioadenosine phosphorylase (MTAP) deletion, seen frequently in malignant pleural mesothelioma (MPM). Here we show, that MTAP deletion is negatively prognostic in MPM. In vitro, the off-patent antibiotic Quinacrine efficiently suppressed PRMT5 transcription, causing chromatin remodelling with reduced global histone H4 symmetrical demethylation. Quinacrine phenocopied PRMT5 RNA interference and small molecule PRMT5 inhibition, reducing clonogenicity in an MTAP-dependent manner. This activity required a functional PRMT5 methyltransferase as MTAP negative cells were rescued by exogenous wild type PRMT5, but not a PRMT5E444Q methyltransferase-dead mutant. We identified c-jun as an essential PRMT5 transcription factor and a probable target for Quinacrine. Our results therefore suggest that small molecule-based transcriptional perturbation of PRMT5 can leverage a mutation-selective vulnerability, that is therapeutically tractable, and has relevance to 9p21 deleted cancers including MPM.
Collapse
Affiliation(s)
- Sara Busacca
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Qi Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, China
| | - Annabel Sharkey
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Alan G Dawson
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK.,Department of Thoracic Surgery, Glenfield Hospital, University Hospitals of Leicester, Leicester, UK
| | - David A Moore
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.,Department of Cellular Pathology, University College London Hospital, London, UK
| | - David A Waller
- Department of Thoracic Surgery, St. Bartholomew's Hospital, London, UK
| | - Apostolos Nakas
- Department of Thoracic Surgery, Glenfield Hospital, University Hospitals of Leicester, Leicester, UK
| | - Carolyn Jones
- MRC Toxicology Unit, University of Cambridge, Leicester, UK
| | - Kelvin Cain
- MRC Toxicology Unit, University of Cambridge, Leicester, UK
| | - Jin-Li Luo
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Adriana Salcedo
- Departments of Human Genetics and Urology, Jonsson Comprehensive Cancer Center and Institute for Precision Health, University of California, Los Angeles, USA.,Ontario Institute for Cancer Research, Toronto, Canada.,Departments of Medical Biophysics and Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | | | - Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy
| | - John Le Quesne
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK.,MRC Toxicology Unit, University of Cambridge, Leicester, UK
| | - Tom John
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Paul C Boutros
- Departments of Human Genetics and Urology, Jonsson Comprehensive Cancer Center and Institute for Precision Health, University of California, Los Angeles, USA
| | - Shu-Dong Zhang
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Londonderry, UK
| | - Dean A Fennell
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK.
| |
Collapse
|
364
|
Zheng K, Hu F, Zhou Y, Zhang J, Zheng J, Lai C, Xiong W, Cui K, Hu YZ, Han ZT, Zhang HH, Chen JG, Man HY, Liu D, Lu Y, Zhu LQ. miR-135a-5p mediates memory and synaptic impairments via the Rock2/Adducin1 signaling pathway in a mouse model of Alzheimer's disease. Nat Commun 2021; 12:1903. [PMID: 33771994 PMCID: PMC7998005 DOI: 10.1038/s41467-021-22196-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
Aberrant regulation of microRNAs (miRNAs) has been implicated in the pathogenesis of Alzheimer's disease (AD), but most abnormally expressed miRNAs found in AD are not regulated by synaptic activity. Here we report that dysfunction of miR-135a-5p/Rock2/Add1 results in memory/synaptic disorder in a mouse model of AD. miR-135a-5p levels are significantly reduced in excitatory hippocampal neurons of AD model mice. This decrease is tau dependent and mediated by Foxd3. Inhibition of miR-135a-5p leads to synaptic disorder and memory impairments. Furthermore, excess Rock2 levels caused by loss of miR-135a-5p plays an important role in the synaptic disorder of AD via phosphorylation of Ser726 on adducin 1 (Add1). Blocking the phosphorylation of Ser726 on Add1 with a membrane-permeable peptide effectively rescues the memory impairments in AD mice. Taken together, these findings demonstrate that synaptic-related miR-135a-5p mediates synaptic/memory deficits in AD via the Rock2/Add1 signaling pathway, illuminating a potential therapeutic strategy for AD.
Collapse
Affiliation(s)
- Kai Zheng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Hu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yang Zhou
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Juan Zhang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Jie Zheng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuan Lai
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Wan Xiong
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Ke Cui
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Ya-Zhuo Hu
- Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Disease, Institute of Geriatrics, Chinese PLA General Hospital and Chinese PLA Medical Academy, Beijing, P. R. China
| | - Zhi-Tao Han
- Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Disease, Institute of Geriatrics, Chinese PLA General Hospital and Chinese PLA Medical Academy, Beijing, P. R. China
| | - Hong-Hong Zhang
- Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Disease, Institute of Geriatrics, Chinese PLA General Hospital and Chinese PLA Medical Academy, Beijing, P. R. China
| | - Jian-Guo Chen
- The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, USA
| | - Dan Liu
- The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Youming Lu
- The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P. R. China.
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China.
- The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P. R. China.
| |
Collapse
|
365
|
Adiponectin DNA methylation in South African women with gestational diabetes mellitus: Effects of HIV infection. PLoS One 2021; 16:e0248694. [PMID: 33750967 PMCID: PMC7984613 DOI: 10.1371/journal.pone.0248694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
DNA methylation is increasingly recognized as a potential biomarker of metabolic disease. However, there is limited information on the impact of human immunodeficiency virus (HIV) infection on the candidacy of DNA methylation to serve as molecular biomarkers. This study investigated the effect of HIV infection on DNA methylation patterns in the peripheral blood of South African women with (n = 95) or without (n = 191) gestational diabetes mellitus (GDM). DNA methylation levels at eight CpG sites in the adiponectin gene (ADIPOQ) promoter were measured using bisulfite conversion and pyrosequencing. Differences between HIV negative (-) and positive (+) women were observed. In HIV- women, methylation at CpG -3400 was lower in GDM+ women compared to those with normoglycemia (8.5-fold; p = 0.004), and was associated with higher fasting glucose (β-co-efficient = 0.973; p = 0.006) and lower adiponectin (β-co-efficient = -0.057; p = 0.014) concentrations. These associations were not observed in HIV+ women. In silico analysis showed that Transcription Factor AP2-alpha is able to bind to the altered CpG site, suggesting that CpG -3400 may play a functional role in the regulation of ADIPOQ expression. Our findings show that DNA methylation differs by HIV status, suggesting that HIV infection needs to be taken into consideration in studies exploring DNA methylation as a biomarker of GDM in high HIV prevalence settings.
Collapse
|
366
|
Mahananda B, Vinay J, Palo A, Singh A, Sahu SK, Singh SP, Dixit M. SERPINB5 Genetic Variants rs2289519 and rs2289521 are Significantly Associated with Gallbladder Cancer Risk. DNA Cell Biol 2021; 40:706-712. [PMID: 33691472 DOI: 10.1089/dna.2021.0056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Serine protease inhibitor b5 (SERPINB5) is a tumor suppressor gene that plays a critical role in various cellular processes. In gallbladder cancer (GBC), SERPINB5's aberrant expression is reported but its role in genetic predisposition is not known. We enrolled 270 cases and 296 controls and genotyped them for single nucleotide polymorphisms (SNPs) using direct DNA sequencing, followed by genotype-phenotype analysis in GBC and other cancer cell lines. Luciferase assay was done to determine the role of rs2289521 SNP on expression regulation. We found that two SERPINB5 variants rs2289519 and rs2289521 are significantly associated with GBC and contribute to genetic predisposition. The TT genotype of variant rs2289519 was found to be significantly associated (p = 0.008) with GBC in a recessive model. C allele of rs2289521 increased the risk for GBC significantly at genotypic (CT, p = 0.026) and allelic (p = 0.04) levels. In silico analysis and luciferase assay uncovered the probable regulatory role of the rs2289521 variant on expression. Genotype-phenotype correlation in GBC and breast cancer cell lines showed reduced expression of SERPINB5 in the presence of C allele that was consistent with the result of luciferase assay. Overall, our study reveals the genetic association of two SERPINB5 variants with GBC and rs2289521's possible role in the regulation of expression.
Collapse
Affiliation(s)
- Biswaheree Mahananda
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute, Mumbai, India
| | - J Vinay
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute, Mumbai, India
| | - Ananya Palo
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute, Mumbai, India
| | - Ayaskanta Singh
- Department of Gastroenterology and Hepato-Biliary Sciences, IMS & SUM Hospital, Sikshya O Anusandhan University, Bhubaneswar, India
| | - Saroj Kanta Sahu
- Department of Gastroenterology and Hepato-Biliary Sciences, IMS & SUM Hospital, Sikshya O Anusandhan University, Bhubaneswar, India
| | - Shivaram Prasad Singh
- Department of Gastroenterology, Sriram Chandra Bhanja Medical College and Hospital, Cuttack, India
| | - Manjusha Dixit
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
367
|
Brym P, Wasilewska-Sakowska K, Mogielnicka-Brzozowska M, Mańkowska A, Paukszto Ł, Pareek CS, Kordan W, Kondracki S, Fraser L. Gene promoter polymorphisms in boar spermatozoa differing in freezability. Theriogenology 2021; 166:112-123. [PMID: 33735665 DOI: 10.1016/j.theriogenology.2021.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 01/23/2021] [Accepted: 02/22/2021] [Indexed: 01/13/2023]
Abstract
Single nucleotide polymorphisms (SNPs) in the 5'-flanking regulatory regions of genes could affect their expression levels. This is a follow-up study aimed to identify polymorphic variants in the 5'-flanking regulatory regions of genes expressed in boar spermatozoa, and to predict the interactions of such variants with transcription factors (TFs) on the gene promoter activity, using bioinformatics. Five and six boars were classified as having good and poor semen freezability (GSF and PSF, respectively) according to post-thaw (PT) assessment of sperm motility and membrane integrity characteristics. The 5'-flanking region sequences of the 14 genes (FOS, NFATC3, EAF2, FGF-14, BAMBI, RAB33B, CKS2, LARS2, SLC25A16, ACADM, CPT2, CCT3, DTD2 and CCDC85A) were PCR amplified and analyzed by Sanger sequencing method. A total of 32 polymorphic variants were identified in the 5'-flanking regions of the genes, including 4 insertion/deletion (indel) polymorphisms, and 8 unknown (novel) SNPs. Multiple sequence alignment analysis revealed a 26-bp indel variant in the 5'-flanking region of the LARS2 gene, which showed greater protein expression in spermatozoa from boars of the PSF group. It was found that 17 polymorphic variants, observed in the differentially expressed (DE) genes, showed significant allele frequency differences between the GSF and PSF groups. Polymorphic variants in the 5'-flanking regulatory regions of the genes contributed to the decrease or increase in the binding affinity for different testis-specific TFs, such as SMAD1, NF-1, FOXMI, RXRA, STAT4 and C/EBPβ. This study provides more insights into the mechanisms responsible for variations in transcriptional activity in promoters of genes expressed in boar spermatozoa. The allelic variants are promising genetic markers for predicting the freezability of boar spermatozoa.
Collapse
Affiliation(s)
- Paweł Brym
- Department of Animal Genetics, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | | | - Marzena Mogielnicka-Brzozowska
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Anna Mańkowska
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Chandra S Pareek
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100, Toruń, Poland
| | - Władysław Kordan
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Stanisław Kondracki
- Faculty of Agrobioengineering and Animal Husbandry, Siedlce University of Natural Sciences and Humanities, 08-110, Siedlce, Poland
| | - Leyland Fraser
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland.
| |
Collapse
|
368
|
Murphy A, Roy N, Sun H, Jin C, Costa M. Induction of NUPR1 and AP‑1 contributes to the carcinogenic potential of nickel. Oncol Rep 2021; 45:41. [PMID: 33649793 DOI: 10.3892/or.2021.7992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/03/2021] [Indexed: 12/25/2022] Open
Abstract
Nickel (Ni) is carcinogenic to humans, and causes cancers of the lung, nasal cavity, and paranasal sinuses. The primary mechanisms of Ni‑mediated carcinogenesis involve the epigenetic reprogramming of cells and the ability for Ni to mimic hypoxia. However, the exact mechanisms of carcinogenesis related to Ni are obscure. Nuclear protein 1 (NUPR1) is a stress‑response gene overexpressed in cancers, and is capable of conferring chemotherapeutic resistance. Likewise, activator protein 1 (AP‑1) is highly responsive to environmental signals, and has been associated with cancer development. In this study, NUPR1 was found to be rapidly and highly induced in human bronchial epithelial (BEAS‑2B) cells exposed to Ni, and was overexpressed in Ni‑transformed BEAS‑2B cells. Similarly, AP‑1 subunits, JUN and FOS, were induced in BEAS‑2B cells following Ni exposure. Knockdown of JUN or FOS was found to significantly suppress NUPR1 induction following Ni exposure, demonstrating their importance in NUPR1 transactivation. Reactive oxygen species (ROS) are known to induce AP‑1, and Ni has been shown to produce ROS. Treatment of BEAS‑2B cells with antioxidants was unable to prevent NUPR1 induction by Ni, suggesting that NUPR1 induction by Ni relies on mechanisms other than oxidative stress. To determine how NUPR1 is transcriptionally regulated following Ni exposure, the NUPR1 promoter was cloned and inserted into a luciferase gene reporter vector. Multiple JUN binding sites reside within the NUPR1 promoter, and upon deleting a JUN binding site in the upstream most region within the NUPR1 promoter using site‑directed mutagenesis, NUPR1 promoter activity was significantly reduced. This suggests that AP‑1 transcriptionally regulates NUPR1. Moreover, knockdown of NUPR1 significantly reduced colony formation and anchorage‑independent growth in Ni‑transformed BEAS‑2B cells. Therefore, these results collectively demonstrate a novel mechanism of NUPR1 induction following Ni exposure, and provide a molecular basis by which NUPR1 may contribute to lung carcinogenesis.
Collapse
Affiliation(s)
- Anthony Murphy
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Nirmal Roy
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Hong Sun
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Chunyuan Jin
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
369
|
Guo Y, Zhou J, Li X, Xiao Y, Zhang J, Yang Y, Feng L, Kang YJ. The Association of Suppressed Hypoxia-Inducible Factor-1 Transactivation of Angiogenesis With Defective Recovery From Cerebral Ischemic Injury in Aged Rats. Front Aging Neurosci 2021; 13:648115. [PMID: 33716719 PMCID: PMC7953721 DOI: 10.3389/fnagi.2021.648115] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/09/2021] [Indexed: 02/05/2023] Open
Abstract
Elderly patients suffer more brain damage in comparison with young patients from the same ischemic stroke. The present study was undertaken to test the hypothesis that suppressed hypoxia-inducible factor-1 (HIF-1) transcription activity is responsible for defective recovery after ischemic stroke in the elders. Aged and young rats underwent 1-h transient middle cerebral artery occlusion (MCAO) to produce cerebral ischemic injury. The initial cerebral infarct volume in the young gradually declined as time elapsed, but in the aged rats remained the same. The defective recovery in the aged was associated with depressed angiogenesis and retarded neurorestoration. There was no difference in HIF-1α accumulation in the brain between the two age groups, but the expression of HIF-1 regulated genes involved in cerebral recovery was suppressed in the aged. In confirmation, inhibition of HIF-1 transactivation of gene expression in the young suppressed cerebral recovery from MCAO as the same as that observed in the aged rats. Furthermore, a copper metabolism MURR domain 1 (COMMD1) was significantly elevated after MCAO only in the brain of aged rats, and suppression of COMMD1 by siRNA targeting COMMD1 restored HIF-1 transactivation and improved recovery from MCAO-induced damage in the aged brain. These results demonstrate that impaired HIF-1 transcription activity, due at least partially to overexpression of COMMD1, is associated with the defective cerebral recovery from ischemic stroke in the aged rats.
Collapse
Affiliation(s)
- Yingjia Guo
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Junpeng Zhou
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xianglong Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ying Xiao
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingyao Zhang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yutao Yang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Li Feng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Y James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.,Memphis Institute of Regenerative Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
370
|
Cai T, Qin Q, Song R, Zhao J, Wang G, Zhang J. Identifying and Validating Differentially Methylated Regions in Newly Diagnosed Patients with Graves' Disease. DNA Cell Biol 2021; 40:482-490. [PMID: 33617351 DOI: 10.1089/dna.2020.6215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
This research used combined bioinformatic methods to identify differentially methylated regions (DMRs) in newly diagnosed patients with Graves' disease (GD). Peripheral blood from six GD patients and controls was collected and methyl-DNA immunoprecipitation (MeDIP), and NimbleGen Human DNA Methylation 3 × 720 K promoter plus CpG island microarrays were further analyzed. DMRs were categorized into low-methylated genes and high-methylated genes, which were mapped into a protein-protein interaction (PPI) network constructed by a dataset. Then, six candidate genes were validated in an expanded population with 32 GD patients and 30 controls using bisulfite amplicon sequencing. Top 10 hub genes revealed by PPI analysis were CRHR1, CAMK2A, SERPINA1, RANBP9, ICAM1, ADRB2, KRTAP13-1, PTPRA, S100A2, and KPRP. Five CpG sites of CDKN2C (51436061), SERPINA1 (94856657), B3GNT2 (62422532 and 62422689), and IRS4 (107979477) were validated, having significantly different methylation levels between GD patients and controls. Based on gender stratification, nine significant CpG sites of CDKN2C (51436061), SERPINA1 (94855831), and B3GNT2 (62422301, 62422327, 62422356, 62422365, 62422374, 62422532, and 62422689) were detected between female GD patients and controls. The methylation level of 62422532 of B3GNT2 was significantly associated with levels of serum TGAb and TRAb. In addition, the methylation level of 62422689 of B3GNT2 showed significant correlation with the age of GD patients. In the analysis of prediction of transcription factor binding at specific CpG sites in B3GNT2 promoter region, paired box protein 5 (Pax-5) and CCAAT/enhancer-binding protein (C/EBP β) might be under the influence of methylation at CpG sites 62422365 and 62422532, respectively. CDKN2C, SERPINA1, IRS4, and especially B3GNT2 were potential aberrantly methylated genes related to GD. These findings might supply the latest information of DNA methylation in the GD disease.
Collapse
Affiliation(s)
- Tiantian Cai
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Department of Endocrinology and The First People's Hospital of Xianyang, Xianyang, People's Republic of China
| | - Qiu Qin
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Ronghua Song
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jing Zhao
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Guofei Wang
- Department of Neurosurgery, The First People's Hospital of Xianyang, Xianyang, People's Republic of China
| | - Jinan Zhang
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
371
|
Trombetta-Lima M, Assis-Ribas T, Cintra RC, Campeiro JD, Guerreiro JR, Winnischofer SMB, Nascimento ICC, Ulrich H, Hayashi MAF, Sogayar MC. Impact of Reck expression and promoter activity in neuronal in vitro differentiation. Mol Biol Rep 2021; 48:1985-1994. [PMID: 33619662 DOI: 10.1007/s11033-021-06175-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
Reck (REversion-inducing Cysteine-rich protein with Kazal motifs) tumor suppressor gene encodes a multifunctional glycoprotein which inhibits the activity of several matrix metalloproteinases (MMPs), and has the ability to modulate the Notch and canonical Wnt pathways. Reck-deficient neuro-progenitor cells undergo precocious differentiation; however, modulation of Reck expression during progression of the neuronal differentiation process is yet to be characterized. In the present study, we demonstrate that Reck expression levels are increased during in vitro neuronal differentiation of PC12 pheochromocytoma cells and P19 murine teratocarcinoma cells and characterize mouse Reck promoter activity during this process. Increased Reck promoter activity was found upon induction of differentiation in PC12 cells, in accordance with its increased mRNA expression levels in mouse in vitro models. Interestingly, Reck overexpression, prior to the beginning of the differentiation protocol, led to diminished efficiency of the neuronal differentiation process. Taken together, our findings suggest that increased Reck expression at early stages of differentiation diminishes the number of neuron-like cells, which are positive for the beta-3 tubulin marker. Our data highlight the importance of Reck expression evaluation to optimize in vitro neuronal differentiation protocols.
Collapse
Affiliation(s)
- Marina Trombetta-Lima
- Núcleo de Terapia Celular e Molecular (NUCEL), Faculdade de Medicina, Universidade de São Paulo (USP), Rua Pangaré, 100 (Cidade Universitária), São Paulo, SP, 05360-130, Brazil
| | - Thais Assis-Ribas
- Núcleo de Terapia Celular e Molecular (NUCEL), Faculdade de Medicina, Universidade de São Paulo (USP), Rua Pangaré, 100 (Cidade Universitária), São Paulo, SP, 05360-130, Brazil
| | - Ricardo C Cintra
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, 05508-000, Brazil
| | - Joana D Campeiro
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Rua 3 de Maio 100, Ed INFAR, 3º andar, São Paulo, SP, 04044-020, Brazil
| | - Juliano R Guerreiro
- Faculdade de Farmácia, Universidade Paulista (UNIP), São Paulo, SP, 05347-020, Brazil
| | - Sheila M B Winnischofer
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba, PR, 81531-990, Brazil
- Departamento de Biologia Celular, Universidade Federal do Paraná (UFPR), Curitiba, PR, 81531-990, Brazil
| | - Isis C C Nascimento
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, 05508-000, Brazil
| | - Mirian A F Hayashi
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Rua 3 de Maio 100, Ed INFAR, 3º andar, São Paulo, SP, 04044-020, Brazil.
| | - Mari C Sogayar
- Núcleo de Terapia Celular e Molecular (NUCEL), Faculdade de Medicina, Universidade de São Paulo (USP), Rua Pangaré, 100 (Cidade Universitária), São Paulo, SP, 05360-130, Brazil.
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
372
|
Zhou B, Qin Y, Zhou J, Ruan J, Xiong F, Dong J, Huang X, Yu Z, Gao S. Bortezomib suppresses self-renewal and leukemogenesis of leukemia stem cell by NF-ĸB-dependent inhibition of CDK6 in MLL-rearranged myeloid leukemia. J Cell Mol Med 2021; 25:3124-3135. [PMID: 33599085 PMCID: PMC7957264 DOI: 10.1111/jcmm.16377] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/26/2022] Open
Abstract
Acute myeloid leukaemia (AML) with chromosomal rearrangements involving the H3K4 methyltransferase mixed‐lineage leukaemia (MLL) is an aggressive subtype with low overall survival. Bortezomib (Bort) is first applied in multiple myeloma. However, whether bort possesses anti‐self‐renewal and leukemogenesis of leukaemia stem cell (LSC) in AML with MLL rearrangements is still unclear. Here, we found that bort suppressed cell proliferation and decreased colony formation in human and murine leukaemic blasts. Besides, bort reduced the frequency and function of LSC, inhibited the progression, and extended the overall survival in MLL‐AF9 (MF9) ‐transformed leukaemic mice. Furthermore, bort decreased the percentage of human LSC (CD34+CD38‐) cells and extended the overall survival in AML blasts‐xenografted NOD/SCID‐IL2Rγ (NSG) mice. Mechanistically, cyclin dependent kinase 6 (CDK6) was identified as a bort target by RNA sequencing. Bort reduced the expressions of CDK6 by inhibiting NF ĸB recruitment to the promoter of CDK6, leading to the abolishment of NF ĸB DNA‐binding activity for CDK6 promoter. Overexpression of CDK6 partially rescued bort‐induced anti‐leukemogenesis. Most importantly, bort had little side‐effect against the normal haematological stem and progenitor cell (HSPC) and did not affect CDK6 expression in normal HSPC. In conclusion, our results suggest that bort selectively targets LSC in MLL rearrangements. Bort might be a prospective drug for AML patients bearing MLL rearrangements.
Collapse
Affiliation(s)
- Bin Zhou
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yaqian Qin
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingying Zhou
- Department of Hematology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jichen Ruan
- Department of Hematology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fang Xiong
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinglai Dong
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xingzhou Huang
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhijie Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shenmeng Gao
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
373
|
Sogut MS, Venugopal C, Kandemir B, Dag U, Mahendram S, Singh S, Gulfidan G, Arga KY, Yilmaz B, Kurnaz IA. ETS-Domain Transcription Factor Elk-1 Regulates Stemness Genes in Brain Tumors and CD133+ BrainTumor-Initiating Cells. J Pers Med 2021; 11:jpm11020125. [PMID: 33672811 PMCID: PMC7917801 DOI: 10.3390/jpm11020125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/22/2022] Open
Abstract
Elk-1, a member of the ternary complex factors (TCFs) within the ETS (E26 transformation-specific) domain superfamily, is a transcription factor implicated in neuroprotection, neurodegeneration, and brain tumor proliferation. Except for known targets, c-fos and egr-1, few targets of Elk-1 have been identified. Interestingly, SMN, SOD1, and PSEN1 promoters were shown to be regulated by Elk-1. On the other hand, Elk-1 was shown to regulate the CD133 gene, which is highly expressed in brain-tumor-initiating cells (BTICs) and used as a marker for separating this cancer stem cell population. In this study, we have carried out microarray analysis in SH-SY5Y cells overexpressing Elk-1-VP16, which has revealed a large number of genes significantly regulated by Elk-1 that function in nervous system development, embryonic development, pluripotency, apoptosis, survival, and proliferation. Among these, we have shown that genes related to pluripotency, such as Sox2, Nanog, and Oct4, were indeed regulated by Elk-1, and in the context of brain tumors, we further showed that Elk-1 overexpression in CD133+ BTIC population results in the upregulation of these genes. When Elk-1 expression is silenced, the expression of these stemness genes is decreased. We propose that Elk-1 is a transcription factor upstream of these genes, regulating the self-renewal of CD133+ BTICs.
Collapse
Affiliation(s)
- Melis Savasan Sogut
- Institute of Biotechnology, Gebze Technical University, 41400 Kocaeli, Turkey; (M.S.S.); (B.K.)
- Molecular Neurobiology Laboratory (AxanLab), Department of Molecular Biology and Genetics, Gebze Technical University, 41400 Kocaeli, Turkey
- Biotechnology Graduate Program, Graduate School of Sciences, Yeditepe University, 26 Agustos Yerlesimi, Kayisdagi, 34755 Istanbul, Turkey;
| | - Chitra Venugopal
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada; (C.V.); (S.M.); (S.S.)
| | - Basak Kandemir
- Institute of Biotechnology, Gebze Technical University, 41400 Kocaeli, Turkey; (M.S.S.); (B.K.)
- Molecular Neurobiology Laboratory (AxanLab), Department of Molecular Biology and Genetics, Gebze Technical University, 41400 Kocaeli, Turkey
- Biotechnology Graduate Program, Graduate School of Sciences, Yeditepe University, 26 Agustos Yerlesimi, Kayisdagi, 34755 Istanbul, Turkey;
| | - Ugur Dag
- Biotechnology Graduate Program, Graduate School of Sciences, Yeditepe University, 26 Agustos Yerlesimi, Kayisdagi, 34755 Istanbul, Turkey;
| | - Sujeivan Mahendram
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada; (C.V.); (S.M.); (S.S.)
| | - Sheila Singh
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada; (C.V.); (S.M.); (S.S.)
| | - Gizem Gulfidan
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (G.G.); (K.Y.A.)
| | - Kazim Yalcin Arga
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (G.G.); (K.Y.A.)
| | - Bayram Yilmaz
- Department of Physiology, Faculty of Medicine, Yeditepe University, 26 Agustos Yerlesimi, Kayisdagi, 34755 Istanbul, Turkey
- Correspondence: (B.Y.); (I.A.K.)
| | - Isil Aksan Kurnaz
- Institute of Biotechnology, Gebze Technical University, 41400 Kocaeli, Turkey; (M.S.S.); (B.K.)
- Molecular Neurobiology Laboratory (AxanLab), Department of Molecular Biology and Genetics, Gebze Technical University, 41400 Kocaeli, Turkey
- Correspondence: (B.Y.); (I.A.K.)
| |
Collapse
|
374
|
Wisnieski F, Geraldis JC, Santos LC, Leal MF, Calcagno DQ, Gigek CO, Chen ES, Anauate AC, Artigiani R, Demachki S, Assumpção PP, Lourenço LG, Arasaki CH, Krainer J, Pabinger S, Burbano RR, Smith MAC. Differential regulation of LRRC37A2 in gastric cancer by DNA methylation. Epigenetics 2021; 17:110-116. [PMID: 33491552 DOI: 10.1080/15592294.2021.1878724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gastric cancer (GC) is one of the leading types of fatal cancer worldwide. Epigenetic manipulation of cancer cells is a useful tool to better understand gene expression regulatory mechanisms and contributes to the discovery of novel biomarkers. Our research group recently reported a list of 83 genes that are potentially modulated by DNA methylation in GC cell lines. Herein, we further explored the regulation of one of these genes, LRRC37A2, in clinical samples. LRRC37A2 expression was evaluated by RT-qPCR, and DNA methylation was studied using next-generation bisulphite sequencing in 36 GC and paired adjacent nonneoplastic tissue samples. We showed that both reduced LRRC37A2 mRNA levels and increased LRRC37A2 exon methylation were associated with undifferentiated and poorly differentiated tumours. Moreover, LRRC37A2 gene expression and methylation levels were inversely correlated at the +45 exon CpG site. We suggest that DNA hypermethylation may contribute to reducing LRRC37A2 expression in undifferentiated and poorly differentiated GC. Therefore, our results show how some genes may be useful to stratify patients who are more likely to benefit from epigenetic therapy.Abbreviations: AR: androgen receptor; 5-AZAdC: 5-aza-2'-deoxycytidine; B2M: beta-2-microglobulin; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GC: gastric cancer; GLM: general linear model; LRRC37A2: leucine-rich repeat containing 37 member A2; SD: standard deviation; TFII-I: general transcription factor II-I; TSS: transcription start site; XBP1: X-box binding protein 1.
Collapse
Affiliation(s)
- Fernanda Wisnieski
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brazil.,Disciplina de Gastroenterologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jaqueline Cruz Geraldis
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Leonardo Caires Santos
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mariana Ferreira Leal
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brazil.,Universidade Federal do Pará, Belém, Brazil
| | | | | | - Elizabeth Suchi Chen
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Carolina Anauate
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ricardo Artigiani
- Departamento de Patologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | - Laercio Gomes Lourenço
- Disciplina de Gastroenterologia Cirúrgica, Departamento de Cirurgia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carlos Haruo Arasaki
- Disciplina de Gastroenterologia Cirúrgica, Departamento de Cirurgia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Julie Krainer
- Center for Health & Bioresources, Austrian Institute of Technology, Vienna, Austria
| | - Stephan Pabinger
- Center for Health & Bioresources, Austrian Institute of Technology, Vienna, Austria
| | - Rommel Rodriguez Burbano
- Universidade Federal do Pará, Belém, Brazil.,Laboratório de Biologia Molecular, Hospital Ophir Loyola, Belém, Brazil
| | - Marilia Arruda Cardoso Smith
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
375
|
Giri PS, Patel S, Begum R, Dwivedi M. Association of FOXP3 and GAGE10 promoter polymorphisms and decreased FOXP3 expression in regulatory T cells with susceptibility to generalized vitiligo in Gujarat population. Gene 2021; 768:145295. [PMID: 33181260 DOI: 10.1016/j.gene.2020.145295] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/24/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
Alterations in regulatory T (Treg) cells have been observed in generalized vitiligo (GV) patients and decreased Forkhead Box P3 (FOXP3) has been implicated in the disease pathogenesis. The present study examined FOXP3 rs3761547(A > G), rs3761548(C > A), rs2232365(A > G) and GAGE10 rs11798415(A > T) promoter single nucleotide polymorphisms (SNPs) in 419 GV patients and 429 controls from Gujarat population using PCR-RFLP and ARMS-PCR. Real-time PCR and flow cytometry were used for assessment of FOXP3 mRNA and protein levels respectively in 96 GV patients and 90 controls. The frequency of genotypes (p < 0.001) and alleles (p = 0.012 & p = 0.040) for rs3761547(A > G) and rs11798415(A > T) SNPs significantly differed between GV patients and controls. FOXP3 mRNA and protein levels were significantly decreased (p < 0.001) in GV Tregs compared to controls. Active vitiligo (AV) Tregs showed significantly reduced FOXP3 mRNA and protein levels compared to that of stable vitiligo (SV) (p = 0.02 & p = 0.039). The correlation of genotype-phenotype of FOXP3 SNPs suggested reduced FOXP3 mRNA (p = 0.019, p < 0.001 & p < 0.001) and protein (p = 0.028, p < 0.001 & p = 0.022) levels in patients with susceptible GG, AA and GG genotypes respectively. The GAGT, GCGT & ACGT haplotypes were prevalent in GV patients (p = 0.004, p = 0.004 & p = 0.016); however, GAGT & GCGT were overrepresented in patients with AV (p = 0.044 & p = 0.024). The susceptible GAGT and GCGT haplotypes in patients exhibited reduction in FOXP3 mRNA (p = 0.014 & p = 0.019) and protein (p = 0.024 & p = 0.028). DNA-protein docking analysis revealed reduced binding for transcription factor C/EBP to the susceptible allele 'G' (rs3761547) compared to A allele. For the first time, the study suggests significant association of FOXP3 rs3761547(A > G) & GAGE10 rs11798415(A > T) SNPs with susceptibility to GV in Gujarat population. In addition, the likely role of these SNPs in altered FOXP3 expression of Tregs may possibly affect Treg suppressive function in GV.
Collapse
Affiliation(s)
- Prashant S Giri
- C. G. Bhakta Institute of Biotechnology, Faculty of Science, Uka Tarsadia University, Bardoli, Surat 394 350, Gujarat, India
| | - Shivani Patel
- C. G. Bhakta Institute of Biotechnology, Faculty of Science, Uka Tarsadia University, Bardoli, Surat 394 350, Gujarat, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, Gujarat, India
| | - Mitesh Dwivedi
- C. G. Bhakta Institute of Biotechnology, Faculty of Science, Uka Tarsadia University, Bardoli, Surat 394 350, Gujarat, India.
| |
Collapse
|
376
|
Caloric restriction following early-life high fat-diet feeding represses skeletal muscle TNF in male rats. J Nutr Biochem 2021; 91:108598. [PMID: 33549890 DOI: 10.1016/j.jnutbio.2021.108598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/03/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023]
Abstract
Chronic metabolic diseases are on the rise worldwide and their etiology is multifactorial. Among them, inflammatory components like Tumor Necrosis Factor (TNF), contribute to whole-body metabolic impairment. Caloric Restriction (CR) combats metabolic diseases, but how it reduces inflammation remains understudied. We aimed to evaluate the impact of chronic CR on muscle inflammation, in particular TNF. In our study, 4-week old male Sprague-Dawley rats were fed a high-fat diet (HF, 45% Kcal of fat from lard) ad libitum for 3 months. After estimation of their energy requirement (1 month), they were then divided into three groups: HF ad libitum (OL), weight maintenance with AIN93M (9.5% Kcal from fat; ML, 100% of energy requirement), and caloric restriction (CR, AIN93M with 75% of energy requirement). This dietary intervention continued for six months. At this point, rats were sacrificed and gastrocnemius muscle was collected. CR induced a profound shift in fat and lean mass, and decreased growth factor IGF-1. Muscle qPCR analysis showed a marked decrease in inflammation and TNF (premRNA, mRNA, and protein) by CR, accompanied by Tnf promoter DNA hypermethylation. CR increased expression of histone deacetylase Sirt6 and decreased methyltransferase Suv39h1, together with decreased Tnf promoter and coding region binding of NF- κB and C/EBP-β. Following miRNA database mining, qPCR analysis revealed that CR downregulated the proinflammatory miR-19b and increased the anti-inflammatory miR-181a and its known targets. Chronic CR is able to regulate muscle-specific inflammation by targeting the NF-κB pathway as well as transcriptional and post-transcriptional regulation of Tnf gene.
Collapse
|
377
|
Dehnad A, Fan W, Jiang JX, Fish SR, Li Y, Das S, Mozes G, Wong KA, Olson KA, Charville GW, Ali M, Török NJ. AGER1 downregulation associates with fibrosis in nonalcoholic steatohepatitis and type 2 diabetes. J Clin Invest 2021; 130:4320-4330. [PMID: 32657776 DOI: 10.1172/jci133051] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 05/05/2020] [Indexed: 12/25/2022] Open
Abstract
Type 2 diabetes is clinically associated with progressive necroinflammation and fibrosis in nonalcoholic steatohepatitis (NASH). Advanced glycation end-products (AGEs) accumulate during prolonged hyperglycemia, but the mechanistic pathways that lead to accelerated liver fibrosis have not been well defined. In this study, we show that the AGEs clearance receptor AGER1 was downregulated in patients with NASH and diabetes and in our NASH models, whereas the proinflammatory receptor RAGE was induced. These findings were associated with necroinflammatory, fibrogenic, and pro-oxidant activity via the NADPH oxidase 4. Inhibition of AGEs or RAGE deletion in hepatocytes in vivo reversed these effects. We demonstrate that dysregulation of NRF2 by neddylation of cullin 3 was linked to AGER1 downregulation and that induction of NRF2 using an adeno-associated virus-mediated approach in hepatocytes in vivo reversed AGER1 downregulation, lowered the level of AGEs, and improved proinflammatory and fibrogenic responses in mice on a high AGEs diet. In patients with NASH and diabetes or insulin resistance, low AGER1 levels were associated with hepatocyte ballooning degeneration and ductular reaction. Collectively, prolonged exposure to AGEs in the liver promotes an AGER1/RAGE imbalance and consequent redox, inflammatory, and fibrogenic activity in NASH.
Collapse
Affiliation(s)
- Ali Dehnad
- Gastroenterology and Hepatology, Stanford University, Stanford, and VA Palo Alto, California, USA
| | - Weiguo Fan
- Gastroenterology and Hepatology, Stanford University, Stanford, and VA Palo Alto, California, USA
| | | | | | - Yuan Li
- Gastroenterology and Hepatology, Stanford University, Stanford, and VA Palo Alto, California, USA
| | - Suvarthi Das
- Gastroenterology and Hepatology, Stanford University, Stanford, and VA Palo Alto, California, USA
| | - Gergely Mozes
- Gastroenterology and Hepatology, Stanford University, Stanford, and VA Palo Alto, California, USA
| | | | - Kristin A Olson
- Department of Pathology, UC Davis Medical Center, Sacramento, California, USA
| | | | - Mohammed Ali
- Department of Surgery, UC Davis Medical Center, Sacramento, California, USA
| | - Natalie J Török
- Gastroenterology and Hepatology, Stanford University, Stanford, and VA Palo Alto, California, USA
| |
Collapse
|
378
|
Fortini BK, Tring S, Devall MA, Ali MW, Plummer SJ, Casey G. SNPs associated with colorectal cancer at 15q13.3 affect risk enhancers that modulate GREM1 gene expression. Hum Mutat 2021; 42:237-245. [PMID: 33476087 PMCID: PMC7898835 DOI: 10.1002/humu.24166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/12/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022]
Abstract
Several genome wide association studies of colorectal cancer (CRC) have identified single nucleotide polymorphisms (SNPs) on chromosome 15q13.3 associated with CRC risk. To identify functional variant(s) underlying this association, we investigated SNPs in linkage disequilibrium with the risk‐associated SNP rs4779584 that overlapped regulatory regions/enhancer elements characterized in colon‐related tissues and cells. We identified several SNP‐containing regulatory regions that exhibited enhancer activity in vitro, including one SNP (rs1406389) that correlated with allele‐specific effects on enhancer activity. Deletion of either this enhancer or another enhancer that had previously been reported in this region correlated with decreased expression of GREM1 following CRISPR/Cas9 genome editing. That GREM1 is one target of these enhancers was further supported by an expression quantitative trait loci correlation between rs1406389 and GREM1 expression in the transverse but not sigmoid colon in the Genotype‐Tissue Expression dataset. Taken together, we conclude that the 15q13.3 region contains at least two functional variants that map to distinct enhancers and impact CRC risk through modulation of GREM1 expression.
Collapse
Affiliation(s)
| | - Stephanie Tring
- Molecular Genomics Core, University of Southern California, Los Angeles, California, USA
| | - Matthew A Devall
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Mourad Wagdy Ali
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Sarah J Plummer
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
379
|
Boesche K, Donkin S. Bovine pyruvate carboxylase gene proximal promoter activity is regulated by saturated and unsaturated fatty acids in Madin-Darby bovine kidney cells. J Dairy Sci 2021; 104:2308-2317. [DOI: 10.3168/jds.2020-18803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/17/2020] [Indexed: 01/10/2023]
|
380
|
Shang W, Wang Y, Liang X, Li T, Shao W, Liu F, Cui X, Wang Y, Lv L, Chai L, Qu L, Zheng L, Jia J. SETDB1 promotes gastric carcinogenesis and metastasis via upregulation of CCND1 and MMP9 expression. J Pathol 2021; 253:148-159. [PMID: 33044755 DOI: 10.1002/path.5568] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 09/20/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022]
Abstract
SETDB1 is a histone lysine methyltransferase that has critical roles in cancers. However, its potential role in gastric cancer (GC) remains obscure. Here, we mainly investigate the clinical significance and the possible role of SETDB1 in GC. We find that SETDB1 expression is upregulated in GC tissues and its high-level expression was a predictor of poor prognosis in patients. Overexpression of SETDB1 promoted cell proliferation and metastasis, while SETDB1 suppression had an opposite effect both in vitro and in vivo. Mechanistically, SETDB1 was shown to interact with ERG to promote the transcription of cyclin D1 (CCND1) and matrix metalloproteinase 9 (MMP9) through binding to their promoter regions. In addition, the expression of SETDB1 was also enhanced by the transcription factor TCF4 at the transcriptional level in GC. Furthermore, SETDB1 expression was found to be induced by Helicobacter pylori (H. pylori) infection in a TCF4-dependent manner. Taken together, our results indicate that SETDB1 is aberrantly overexpressed in GC and plays key roles in gastric carcinogenesis and metastasis via upregulation of CCND1 and MMP9. Our work also suggests that SETDB1 could be a potential oncogenic factor and a therapeutic target for GC. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wenjing Shang
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China
- Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Yue Wang
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xiuming Liang
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China
- Shandong University-Karolinska Institute Collaborative Laboratory for Cancer Research, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Tongyu Li
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Wei Shao
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Fen Liu
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xiujie Cui
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Yuanyuan Wang
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Lin Lv
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Li Chai
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Lingxin Qu
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Lixin Zheng
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Jihui Jia
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China
- Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China
- Shandong University-Karolinska Institute Collaborative Laboratory for Cancer Research, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| |
Collapse
|
381
|
Mandal JP, Shiue CN, Chen YC, Lee MC, Yang HH, Chang HH, Hu CT, Liao PC, Hui LC, You RI, Wu WS. PKCδ mediates mitochondrial ROS generation and oxidation of HSP60 to relieve RKIP inhibition on MAPK pathway for HCC progression. Free Radic Biol Med 2021; 163:69-87. [PMID: 33307168 DOI: 10.1016/j.freeradbiomed.2020.12.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022]
Abstract
Both protein kinase C (PKC) and reactive oxygen species (ROS) are well-known signaling messengers cross-talking with each other to activate mitogen-activated protein kinases (MAPKs) for progression of hepatocellular carcinoma (HCC). However, the underlying mechanisms are not well elucidated. Especially, whether mitochondrial ROS (mtROS) is involved and how it triggers MAPK signaling are intriguing. In this study, we found mtROS generation and phosphorylation of MAPKs were mediated by PKCδ in HCCs treated with the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Heat shock protein 60 (HSP60), one of the chaperones in mitochondria was the major protein oxidized in TPA-treated HCCs. Moreover, depletion of HSP60 or expression of HSP60 cysteine mutant prevented TPA-induced phosphorylation of MAPKs. To delineate how HSP60 mediated MAPK activation, the role of Raf kinase inhibitor protein (RKIP), a negative regulator of MAPK, was investigated. TPA dissociated RKIP from HSP60 in both mitochondria and cytosol, concurrently with translocation of HSP60 and MAPK from mitochondria to cytosol, which was associated with robust phosphorylation of MAPKs in the cytosol. Moreover, TPA induced opposite phenotypical changes of HCCs, G1 cell cycle arrest, and cell migration, which were prevented by mtROS scavengers and depletion of PKCδ and HSP60. Consistently, TPA increased the migration-related genes, hydrogen peroxide inducible clone5, matrix metalloproteinase-1/3, lamininγ2, and suppressed the cell cycle regulator cyclin E1 (CCNE1) via PKCδ/mtROS/HSP60/MAPK-axis. Finally, c-jun and c-fos were required for TPA-induced expression of the migration-related genes and a novel microRNA, miR-6134, was responsible for TPA-induced suppression of CCNE1. In conclusion, PKCδ cross-talked with mtROS to trigger HSP60 oxidation for release of RKIP to activate MAPK, regulating gene expression for migration, and G1 cell cycle arrest in HCC. Targeted therapy aiming at key players like PKCδ, RKIP, and HSP60 is promising for preventing HCC progression.
Collapse
Affiliation(s)
| | - Chiou-Nan Shiue
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan.
| | - Yen-Cheng Chen
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical foundation, Hualien, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan.
| | - Ming-Che Lee
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical foundation, Hualien, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan.
| | - Hsueh-Hui Yang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan.
| | - Hsin-Hou Chang
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan; Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan.
| | - Chi-Tan Hu
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan; Division of Gastroenterology, Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical foundation, Hualien, Taiwan; Research Centre for Hepatology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical foundation, Hualien, Taiwan.
| | - Pei-Chen Liao
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan.
| | - Lin-Ching Hui
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan.
| | - Ren-In You
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan.
| | - Wen-Sheng Wu
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical foundation, Hualien, Taiwan; Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
382
|
Kim DH, Kim HY, Cho S, Yoo SJ, Kim WJ, Yeon HR, Choi K, Choi JM, Kang SW, Lee WW. Induction of the IL-1RII decoy receptor by NFAT/FOXP3 blocks IL-1β-dependent response of Th17 cells. eLife 2021; 10:61841. [PMID: 33507149 PMCID: PMC7872515 DOI: 10.7554/elife.61841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/28/2021] [Indexed: 12/29/2022] Open
Abstract
Derived from a common precursor cell, the balance between Th17 and Treg cells must be maintained within immune system to prevent autoimmune diseases. IL-1β-mediated IL-1 receptor (IL-1R) signaling is essential for Th17-cell biology. Fine-tuning of IL-1R signaling is controlled by two receptors, IL-1RI and IL-RII, IL-1R accessory protein, and IL-1R antagonist. We demonstrate that the decoy receptor, IL-1RII, is important for regulating IL-17 responses in TCR-stimulated CD4+ T cells expressing functional IL-1RI via limiting IL-1β responsiveness. IL-1RII expression is regulated by NFAT via its interaction with Foxp3. The NFAT/FOXP3 complex binds to the IL-1RII promoter and is critical for its transcription. Additionally, IL-1RII expression is dysregulated in CD4+ T cells from patients with rheumatoid arthritis. Thus, differential expression of IL-1Rs on activated CD4+ T cells defines unique immunological features and a novel molecular mechanism underlies IL-1RII expression. These findings shed light on the modulatory effects of IL-1RII on Th17 responses.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Young Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute and Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sunjung Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Su-Jin Yoo
- Department of Internal Medicine, Chungnam National University School of Medicine, 282 Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
| | - Won-Ju Kim
- Department of Life Science, College of Natural Sciences and Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Hye Ran Yeon
- Department of Biochemistry and Molecular Biology, Department of Biomedical Sciences, and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyungho Choi
- Department of Biochemistry and Molecular Biology, Department of Biomedical Sciences, and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences and Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Seong Wook Kang
- Department of Internal Medicine, Chungnam National University School of Medicine, 282 Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
| | - Won-Woo Lee
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute and Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine; Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| |
Collapse
|
383
|
Gnodi E, Mancuso C, Elli L, Ballarini E, Meneveri R, Beaulieu JF, Barisani D. Gliadin, through the Activation of Innate Immunity, Triggers lncRNA NEAT1 Expression in Celiac Disease Duodenal Mucosa. Int J Mol Sci 2021; 22:1289. [PMID: 33525473 PMCID: PMC7865487 DOI: 10.3390/ijms22031289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Celiac disease (CD) is an autoimmune enteropathy arising in genetically predisposed subjects exposed to gluten, which activates both innate and adaptive immunity. Although the pathogenesis is common to all patients, the clinical spectrum is quite variable, and differences could be explained by gene expression variations. Among the factors able to affect gene expression, there are lncRNAs. We evaluated the expression profile of 87 lncRNAs in CD vs. healthy control (HC) intestinal biopsies by RT-qPCR array. Nuclear enriched abundant transcript 1 (NEAT1) and taurine upregulated gene 1 (TUG1) were detected as downregulated in CD patients at diagnosis, but their expression increased in biopsies of patients on a gluten-free diet (GFD) exposed to gluten. The increase in NEAT1 expression after gluten exposure was mediated by IL-15 and STAT3 activation and binding to the NEAT1 promoter, as demonstrated by gel shift assay. NEAT1 is localized in the nucleus and can regulate gene expression by sequestering transcription factors, and it has been implicated in immune regulation and control of cell proliferation. The demonstration of its regulation by gluten thus also supports the role of lncRNAs in CD and prompts further research on these RNAs as gene expression regulators.
Collapse
Affiliation(s)
- Elisa Gnodi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.G.); (C.M.); (E.B.); (R.M.)
| | - Clara Mancuso
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.G.); (C.M.); (E.B.); (R.M.)
| | - Luca Elli
- Centre for the Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Elisa Ballarini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.G.); (C.M.); (E.B.); (R.M.)
| | - Raffaella Meneveri
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.G.); (C.M.); (E.B.); (R.M.)
| | - Jean François Beaulieu
- Laboratory of Intestinal Physiopathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Donatella Barisani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.G.); (C.M.); (E.B.); (R.M.)
| |
Collapse
|
384
|
Shi F, Li Y, Han R, Fu A, Wang R, Nusbaum O, Qin Q, Chen X, Hou L, Zhu Y. Valerian and valeric acid inhibit growth of breast cancer cells possibly by mediating epigenetic modifications. Sci Rep 2021; 11:2519. [PMID: 33510252 PMCID: PMC7844014 DOI: 10.1038/s41598-021-81620-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/06/2021] [Indexed: 12/27/2022] Open
Abstract
Valerian root (Valeriana officinalis) is a popular and widely available herbal supplement used to treat sleeping disorders and insomnia. The herb's ability to ameliorate sleep dysfunction may signify an unexplored anti-tumorigenic effect due to the connection between circadian factors and tumorigenesis. Of particular interest are the structural similarities shared between valeric acid, valerian's active chemical ingredient, and certain histone deacteylase (HDAC) inhibitors, which imply that valerian may play a role in epigenetic gene regulation. In this study, we tested the hypothesis that the circadian-related herb valerian can inhibit breast cancer cell growth and explored epigenetic changes associated with valeric acid treatment. Our results showed that aqueous valerian extract reduced growth of breast cancer cells. In addition, treatment of valeric acid was associated with decreased breast cancer cell proliferation, migration, colony formation and 3D formation in vitro in a dose- and time-dependent manner, as well as reduced HDAC activity and a global DNA hypomethylation. Overall, these findings demonstrate that valeric acid can decrease the breast cancer cell proliferation possibly by mediating epigenetic modifications such as the inhibition of histone deacetylases and alterations of DNA methylation. This study highlights a potential utility of valeric acid as a novel HDAC inhibitor and a therapeutic agent in the treatment of breast cancer.
Collapse
Affiliation(s)
- Fengqin Shi
- Department of Environmental Health Sciences, Yale University School of Public Health, New Haven, CT, 06520, USA
- Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Ya Li
- Department of Environmental Health Sciences, Yale University School of Public Health, New Haven, CT, 06520, USA
- Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Rui Han
- Department of Environmental Health Sciences, Yale University School of Public Health, New Haven, CT, 06520, USA
- Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Alan Fu
- Department of Environmental Health Sciences, Yale University School of Public Health, New Haven, CT, 06520, USA
| | - Ronghua Wang
- Department of Environmental Health Sciences, Yale University School of Public Health, New Haven, CT, 06520, USA
- Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Olivia Nusbaum
- Department of Environmental Health Sciences, Yale University School of Public Health, New Haven, CT, 06520, USA
| | - Qin Qin
- Department of Environmental Health Sciences, Yale University School of Public Health, New Haven, CT, 06520, USA
| | - Xinyi Chen
- Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Li Hou
- Department of Environmental Health Sciences, Yale University School of Public Health, New Haven, CT, 06520, USA
- Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yong Zhu
- Department of Environmental Health Sciences, Yale University School of Public Health, New Haven, CT, 06520, USA.
| |
Collapse
|
385
|
The DNA-helicase HELLS drives ALK - ALCL proliferation by the transcriptional control of a cytokinesis-related program. Cell Death Dis 2021; 12:130. [PMID: 33504766 PMCID: PMC7840974 DOI: 10.1038/s41419-021-03425-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022]
Abstract
Deregulation of chromatin modifiers, including DNA helicases, is emerging as one of the mechanisms underlying the transformation of anaplastic lymphoma kinase negative (ALK-) anaplastic large cell lymphoma (ALCL). We recently identified the DNA-helicase HELLS as central for proficient ALK-ALCL proliferation and progression. Here we assessed in detail its function by performing RNA-sequencing profiling coupled with bioinformatic prediction to identify HELLS targets and transcriptional cooperators. We demonstrated that HELLS, together with the transcription factor YY1, contributes to an appropriate cytokinesis via the transcriptional regulation of genes involved in cleavage furrow regulation. Binding target promoters, HELLS primes YY1 recruitment and transcriptional activation of cytoskeleton genes including the small GTPases RhoA and RhoU and their effector kinase Pak2. Single or multiple knockdowns of these genes reveal that RhoA and RhoU mediate HELLS effects on cell proliferation and cell division of ALK-ALCLs. Collectively, our work demonstrates the transcriptional role of HELLS in orchestrating a complex transcriptional program sustaining neoplastic features of ALK-ALCL.
Collapse
|
386
|
Ou CM, Lee RKK, Lin MH, Lu CH, Yang TH, Yeh LY, Tsai PSJ, Li SH. A mouse seminal vesicle-secreted lysozyme c-like protein modulates sperm capacitation. J Cell Biochem 2021; 122:653-666. [PMID: 33469950 DOI: 10.1002/jcb.29894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 01/19/2023]
Abstract
Lysozyme (LYZ) c-like proteins are primarily present in the testis and epididymis of male reproductive tissues. Here, we report a novel member of the c-type LYZ family, the seminal vesicle-secreted LYZ c-like protein (SVLLP). Three forms of SVLLP were purified from mouse seminal vesicle secretions and characterized as glycoproteins with the same protein core but different N-linked glycans. SVLLP is structurally similar to c-type LYZ proteins. Only one of the 20 invariant residues was altered in the consensus sequence of c-type LYZs; however, the changed residue (N53S) is one of two essential catalytic residues. LYZ activity assays demonstrated that the three glycoforms of SVLLP lacked enzyme activity. SVLLP is primarily expressed in seminal vesicles. Immunohistochemistry revealed that it occurs in the luminal fluid and mucosal epithelium of the seminal vesicles. Testosterone is not the primary regulator for its expression in the seminal vesicle. SVLLP binds to sperm and suppresses bovine serum albumin-induced sperm capacitation, inhibits the acrosome reaction, and blocks sperm-oocyte interactions in vitro, suggesting that SVLLP is a sperm capacitation inhibitor.
Collapse
Affiliation(s)
- Chung-Mao Ou
- Chemistry Division, Institute of Nuclear Energy Research, Taoyuan City, Taiwan
| | - Robert Kuo-Kuang Lee
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan.,Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ming-Huei Lin
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan.,MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Chung-Hao Lu
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Tsung-Hsien Yang
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan
| | - Ling-Yu Yeh
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan
| | - Pei-Shiue Jason Tsai
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Sheng-Hsiang Li
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan.,MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| |
Collapse
|
387
|
Takkar S, Sharma V, Ghosh S, Suri A, Sarkar C, Kulshreshtha R. Hypoxia-inducible miR-196a modulates glioblastoma cell proliferation and migration through complex regulation of NRAS. Cell Oncol (Dordr) 2021; 44:433-451. [PMID: 33469841 DOI: 10.1007/s13402-020-00580-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common and aggressive malignant brain tumor in humans. Hypoxia has been correlated with the aggressive form of glial tumors, poor prognosis, recurrence and resistance to various therapies. MicroRNAs (miRNAs) have emerged as critical mediators of hypoxic responses and have shown great potential for cancer diagnostics and therapeutics. Here, we focus on the regulatory and functional characterization of miR-196a, a hypoxia-inducible miRNA, in GBM. METHODS Hypoxia/HIF regulation of miR-196a was assessed by RT-qPCR, promoter-luciferase and ChIP assays in GBM cell lines. miR-196a levels were analyzed in The Cancer Genome Atlas (TCGA)-GBM, Chinese Glioma Genome Atlas (CGGA) and Indian GBM patient cohorts. miR-target interactions were studied using RNA/protein quantification and 3'UTR luciferase assays. The effect of miR-196a overexpression/inhibition was assessed on cellular viability, migration and apoptosis under hypoxia and normoxia. Microarray-based gene expression profiling studies were performrd to study the effect of miR-196a on the GBM cellular transcriptome under hypoxia. RESULTS We identified miR-196a as a hypoxia-inducible and hypoxia-inducible factor (HIF)-regulated miRNA that plays an oncogenic role in GBM. miR-196a was found to be significantly up-regulated in TCGA-GBM, CGGA glioma as well as Indian GBM patient cohorts. miR-196a overexpression was found to induce cellular proliferation, migration, spheroid formation and colony formation and to inhibit apoptosis, while miR-196a inhibition using anti-miR-196a yielded opposite results, suggesting an oncogenic role of miR-196a in GBM. We further unveiled NRAS, AJAP1, TAOK1 and COL24A1 as direct targets of miR-196a. We also report a complex competitive regulation of oncogenic NRAS by miR-196a, miR-146a and let-7 in GBM. Analysis of microarray-based gene expression data obtained by miR-196a inhibition under hypoxia revealed a role of miR-196a in HIF, calcium adhesion, Wnt and cell adhesion pathways. Interestingly, miR-196a was found to positively regulate the expression of various genes involved in the induction or stabilization of HIFs and in maintenance of hypoxic conditions, thereby suggesting the existence of an indirect miR-196a/HIF positive feedback loop under hypoxia. CONCLUSIONS Overall, our work identifies a novel association between hypoxia/HIF signalling and miR-196a in GBM and suggests its therapeutic significance.
Collapse
Affiliation(s)
- Sonam Takkar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Vikas Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Sourabh Ghosh
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, 110016, New Delhi, India
| | - Ashish Suri
- Department of Neurosurgery, All India Institute of Medical Sciences, 110029, New Delhi, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, 110029, New Delhi, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
388
|
Idris AB, Idris EB, Ataelmanan AE, Mohamed AEA, Osman Arbab BM, Ibrahim EAM, Hassan MA. First insights into the molecular basis association between promoter polymorphisms of the IL1B gene and Helicobacter pylori infection in the Sudanese population: computational approach. BMC Microbiol 2021; 21:16. [PMID: 33413117 PMCID: PMC7792167 DOI: 10.1186/s12866-020-02072-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infects nearly half of the world's population with a variation in incidence among different geographic regions. Genetic variants in the promoter regions of the IL1B gene can affect cytokine expression and creates a condition of hypoacidity which favors the survival and colonization of H. pylori. Therefore, the aim of this study was to characterize the polymorphic sites in the 5'- region [-687_ + 297] of IL1B in H. pylori infection using in silico tools. RESULTS A total of five nucleotide variations were detected in the 5'-regulatory region [-687_ + 297] of IL1B which led to the addition or alteration of transcription factor binding sites (TFBSs) or composite regulatory elements (CEs). Genotyping of IL1B - 31 C > T revealed a significant association between -31 T and susceptibility to H. pylori infection in the studied population (P = 0.0363). Comparative analysis showed conservation rates of IL1B upstream [-368_ + 10] region above 70% in chimpanzee, rhesus monkey, a domesticated dog, cow and rat. CONCLUSIONS In H. pylori-infected patients, three detected SNPs (- 338, - 155 and - 31) located in the IL1B promoter were predicted to alter TFBSs and CE, which might affect the gene expression. These in silico predictions provide insight for further experimental in vitro and in vivo studies of the regulation of IL1B expression and its relationship to H. pylori infection. However, the recognition of regulatory motifs by computer algorithms is fundamental for understanding gene expression patterns.
Collapse
Affiliation(s)
- Abeer Babiker Idris
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Einas Babiker Idris
- Medical Laboratory Specialist, Department of Medical Microbiology, Rashid Medical Complex, Riyadh, Saudi Arabia
| | - Amany Eltayib Ataelmanan
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Al-Gazirah, Wad Madani, Sudan
| | | | | | - El-Amin Mohamed Ibrahim
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Mohamed A. Hassan
- Department of Bioinformatics, Africa city of technology, Khartoum, Sudan
- Department of Bioinformatics, DETAGEN Genetic Diagnostics Center, Kayseri, Turkey
- Department of Translation Bioinformatics, Detavax Biotech, Kayseri, Turkey
| |
Collapse
|
389
|
Marotta A, Noro F, Parisi R, Gialluisi A, Tirozzi A, De Curtis A, Costanzo S, Di Castelnuovo A, Cerletti C, Donati MB, de Gaetano G, Iacoviello L, Izzi B, Gianfagna F. NMU DNA methylation in blood is associated with metabolic and inflammatory indices: results from the Moli-sani study. Epigenetics 2021; 16:1347-1360. [PMID: 33393847 DOI: 10.1080/15592294.2020.1864167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuromedin U (NMU) is a neuropeptide involved in gut-brain axis, energy balance and immune response. We aimed at analysing the association between NMU epigenetic variability and metabolic indices and the potential mediating role of low-grade inflammation in a general population of Italian adults.NMU Blood DNA methylation levels at two CpG islands (NMU76 and NMU32) were analysed using pyrosequencing in a randomly selected sub-cohort of 1,160 subjects from the Moli-sani study (≥35years; 49.20% men). Multivariable regressions adjusted for age, sex, smoking, alcohol and vegetable consumption were performed to estimate the associations between methylation and metabolic phenotypes (BMI, waist-to-hip ratio, blood pressure, glucose, HOMA-IR, lipids, lipoprotein(a) and apolipoproteins). Mediation analysis was performed to identify the influence of low-grade inflammation in the association using a composite index based on C reactive protein, granulocyte-to-lymphocyte ratio (GLR), platelet and white blood cell counts (INFLA-score).Using principal component analysis four methylation factors were identified: NMU76-F1, NMU76-F2, NMU32-F1 and NMU32-F2. NMU76-F1 was FDR significantly associated with total cholesterol (for 1 SD increase: β = 4.5 ± 1.4 mg/dL of, R2 = 10.8%, p = 0.001), ApoB (0.03 ± 0.01 g/L, 12.2%, p = 0.0004), with INFLA-score (1.05 ± 0.22, p = 2.7E-6) and GLR (-0.27 ± 0.03, 30.4%, p = 1.3E-20). GLR and lymphocyte numbers mediate the association of NMU76-F1 with cholesterol (24.0% of total effect, Sobel p = 0.013) and ApoB (42.6%, p = 9E-7), respectively.These findings suggest that NMU promoter methylation patterns could mark a pathway linking lipids with haematopoiesis and systemic inflammation.
Collapse
Affiliation(s)
- Annalisa Marotta
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | - Fabrizia Noro
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | - Roberta Parisi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | | | - Alfonsina Tirozzi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | - Amalia De Curtis
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | - Simona Costanzo
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | | | - Chiara Cerletti
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | | | | | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy.,EPIMED Research Center, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Benedetta Izzi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | - Francesco Gianfagna
- Mediterranea Cardiocentro, Napoli, Italy.,EPIMED Research Center, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
390
|
Zhang Y, Xiang X, Lu Y, Li H, Wahaab A, Sharma M, Liu K, Wei J, Li Z, Shao D, Li B, Ma Z, Qiu Y. Downregulation of miR-296-3p by highly pathogenic porcine reproductive and respiratory syndrome virus activates the IRF1/TNF-α signaling axis in porcine alveolar macrophages. Arch Virol 2021; 166:511-519. [PMID: 33394172 DOI: 10.1007/s00705-020-04921-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/01/2020] [Indexed: 12/19/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV, species Betaarterivirus suid 1 or 2) is a major pathogen affecting pigs on farms throughout the world. miR-296-3p is a multifunctional microRNA involved in the regulation of the inflammatory response in mice and humans. However, little is known about the biological functions of miR-296-3p in pigs. In this study, we used a highly pathogenic PRRSV-2 (species Betaarterivirus suid 2) strain to show that PRRSV infection robustly downregulates the expression of miR-296-3p in porcine alveolar macrophages (PAMs). Furthermore, we demonstrated that overexpression of miR-296-3p increases the replication of highly pathogenic (HP)-PRRSV in PAMs. Notably, the overexpression of miR-296-3p inhibited the induction of TNF-α, even with increased viral replication, compared with that in the HP-PRRSV-infected control group. We also demonstrated that miR-296-3p targets IRF1-facilitated viral infection and modulates the expression of TNF-α in PAMs during HP-PRRSV infection and that IRF1 regulates the expression of TNF-α by activating the TNF promoter via IRF1 response elements. In summary, these findings show that HP-PRRSV infection activates the IRF1/TNF-α signaling axis in PAMs by downregulating host miR-296-3p. This extends our understanding of the inflammatory response induced by HP-PRRSV infection.
Collapse
Affiliation(s)
- Yanbing Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Xiao Xiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Yan Lu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Hui Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Abdul Wahaab
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Mona Sharma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Zongjie Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China.
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China.
| |
Collapse
|
391
|
Yang S, Zhao T, Ma A, Huang Z, Yang J, Yuan C, Guo X, Zhu C. Heat stress-induced HSP90 expression is dependent on ERK and HSF1 activation in turbot (Scophthalmus maximus) kidney cells. Cell Stress Chaperones 2021; 26:173-185. [PMID: 33025381 PMCID: PMC7736437 DOI: 10.1007/s12192-020-01166-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/01/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) and heat shock proteins (HSPs) are ubiquitous proteins that are functional mediators in both normal and stressed states of the cell. In this study, we performed heat stress (37 °C) experiments on turbot kidney (TK) cells. Heat stress expression patterns of HSP90, as well as the expression and phosphorylation levels of extracellular-regulated signal kinases (ERKs) and the transcription factor HSF1 and c-Fos, were examined. The results show that heat stress activates ERK1/2 and HSF1, and induces HSP90 gene expression in TK cells. Inhibition of ERK activation attenuates heat stress-induced HSP90 gene expression. The double luciferase reporter gene experiment showed that HSF1 is an important transcription factor for heat-induced HSP90 gene expression. Likewise, c-Fos does not directly regulate the heat-induced expression of HSP90 in turbot kidney cells. To our knowledge, this is the first study to report a signaling pathway that regulates the heat shock response in turbot cells. Our results may facilitate an understanding of the underlying molecular mechanisms of the cellular stress response in marine fish.
Collapse
Affiliation(s)
- Shuangshuang Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, China
- Shandong Qilu Cell Therapy Engineering Technology Co., Ltd, Jinan, 250000, China
| | - Tingting Zhao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Aijun Ma
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, China.
| | - Zhihui Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, China
| | - Jingkun Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, China
| | - Chenhao Yuan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, China
| | - Xiaoli Guo
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Chunyue Zhu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
392
|
Abstract
Biological processes are often mediated by complexes formed between proteins and various biomolecules. The 3D structures of such protein-biomolecule complexes provide insights into the molecular mechanism of their action. The structure of these complexes can be predicted by various computational methods. Choosing an appropriate method for modelling depends on the category of biomolecule that a protein interacts with and the availability of structural information about the protein and its interacting partner. We intend for the contents of this chapter to serve as a guide as to what software would be the most appropriate for the type of data at hand and the kind of 3D complex structure required. Particularly, we have dealt with protein-small molecule ligand, protein-peptide, protein-protein, and protein-nucleic acid interactions.Most, if not all, model building protocols perform some sampling and scoring. Typically, several alternate conformations and configurations of the interactors are sampled. Each such sample is then scored for optimization. To boost the confidence in these predicted models, their assessment using other independent scoring schemes besides the inbuilt/default ones would prove to be helpful. This chapter also lists such software and serves as a guide to gauge the fidelity of modelled structures of biomolecular complexes.
Collapse
|
393
|
Lin M, Wang YN, Ye Y, Xiong Z, Guo F, Chen H. DNAJC12 as a Mediator Between ESR1 and ERBB4 in Breast Carcinoma Cells. Front Oncol 2021; 11:582277. [PMID: 33718139 PMCID: PMC7943744 DOI: 10.3389/fonc.2021.582277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 01/05/2021] [Indexed: 02/05/2023] Open
Abstract
Mutation of the DNAJC12 gene is typically associated with non-progressive Parkinsonism, but is also detectable in breast carcinoma where its contribution and mechanisms are unexplored. In breast carcinoma, ESR1 was positively correlated with DNAJC12 and ERBB4, and DNAJC12 was positively correlated with ERBB4. We used the GEO2R tool to compare differential gene expression of MCF-7 cells, following ESR1 knockdown (GEO database, E-GEOD-27473 array), and found decreased expression of DNAJC12 and ERBB4 in ESR1-silenced MCF-7 cells. The number of identical genes having correlativity with ESR1, DNAJC12, or ERBB4 was 12,165 (66.41%). These results suggest that ESR1 can promote the expression of DNAJC12 and ERBB4, and DNAJC12 can enhance the expression of ERBB4 in MCF-7 cells, implying that there may be a regulatory network among these three genes.
Collapse
Affiliation(s)
- Mianjie Lin
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Shantou University Medical College, Shantou, China
| | - Ya-Nan Wang
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Yixin Ye
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Zhelei Xiong
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Fengbiao Guo
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Haibin Chen
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Shantou University Medical College, Shantou, China
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
- *Correspondence: Haibin Chen,
| |
Collapse
|
394
|
Fan F, Malvestiti S, Vallet S, Lind J, Garcia-Manteiga JM, Morelli E, Jiang Q, Seckinger A, Hose D, Goldschmidt H, Stadlbauer A, Sun C, Mei H, Pecherstorfer M, Bakiri L, Wagner EF, Tonon G, Sattler M, Hu Y, Tassone P, Jaeger D, Podar K. JunB is a key regulator of multiple myeloma bone marrow angiogenesis. Leukemia 2021; 35:3509-3525. [PMID: 34007044 PMCID: PMC8632680 DOI: 10.1038/s41375-021-01271-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/14/2021] [Accepted: 04/28/2021] [Indexed: 02/04/2023]
Abstract
Bone marrow (BM) angiogenesis significantly influences disease progression in multiple myeloma (MM) patients and correlates with adverse prognosis. The present study shows a statistically significant correlation of the AP-1 family member JunB with VEGF, VEGFB, and IGF1 expression levels in MM. In contrast to the angiogenic master regulator Hif-1α, JunB protein levels were independent of hypoxia. Results in tumor-cell models that allow the induction of JunB knockdown or JunB activation, respectively, corroborated the functional role of JunB in the production and secretion of these angiogenic factors (AFs). Consequently, conditioned media derived from MM cells after JunB knockdown or JunB activation either inhibited or stimulated in vitro angiogenesis. The impact of JunB on MM BM angiogenesis was finally confirmed in a dynamic 3D model of the BM microenvironment, a xenograft mouse model as well as in patient-derived BM sections. In summary, in continuation of our previous study (Fan et al., 2017), the present report reveals for the first time that JunB is not only a mediator of MM cell survival, proliferation, and drug resistance, but also a promoter of AF transcription and consequently of MM BM angiogenesis. Our results thereby underscore worldwide efforts to target AP-1 transcription factors such as JunB as a promising strategy in MM therapy.
Collapse
Affiliation(s)
- Fengjuan Fan
- grid.412839.50000 0004 1771 3250Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China ,grid.7700.00000 0001 2190 4373Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany
| | - Stefano Malvestiti
- grid.7700.00000 0001 2190 4373Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany
| | - Sonia Vallet
- grid.488547.2Department of Internal Medicine II, University Hospital Krems, Krems an der Donau, Austria ,grid.459693.4Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Judith Lind
- grid.459693.4Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Jose Manuel Garcia-Manteiga
- grid.18887.3e0000000417581884Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eugenio Morelli
- grid.411489.10000 0001 2168 2547Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy ,grid.38142.3c000000041936754XDepartment of Medicine, Harvard Medical School, Boston, MA USA
| | - Qinyue Jiang
- grid.412839.50000 0004 1771 3250Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anja Seckinger
- grid.5253.10000 0001 0328 4908University Hospital Heidelberg, Heidelberg, Germany ,grid.8767.e0000 0001 2290 8069Laboratory of Hematology and Immunology & Laboratory for Myeloma Research, Vrije Universiteit Brussel (VUB) Belgium, Brussels, Belgium
| | - Dirk Hose
- grid.5253.10000 0001 0328 4908University Hospital Heidelberg, Heidelberg, Germany ,grid.8767.e0000 0001 2290 8069Laboratory of Hematology and Immunology & Laboratory for Myeloma Research, Vrije Universiteit Brussel (VUB) Belgium, Brussels, Belgium
| | - Hartmut Goldschmidt
- grid.7700.00000 0001 2190 4373Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany ,grid.5253.10000 0001 0328 4908University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas Stadlbauer
- grid.5330.50000 0001 2107 3311Department of Neurosurgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany ,grid.459693.4Institute of Medical Radiology, University Hospital St. Pölten, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Chunyan Sun
- grid.412839.50000 0004 1771 3250Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Mei
- grid.412839.50000 0004 1771 3250Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Martin Pecherstorfer
- grid.488547.2Department of Internal Medicine II, University Hospital Krems, Krems an der Donau, Austria
| | - Latifa Bakiri
- grid.22937.3d0000 0000 9259 8492Genes & Disease Group, Department of Dermatology, Medical University of Vienna (MUW), Vienna, Austria
| | - Erwin F. Wagner
- grid.22937.3d0000 0000 9259 8492Genes & Disease Group, Department of Dermatology, Medical University of Vienna (MUW), Vienna, Austria ,grid.22937.3d0000 0000 9259 8492Genes & Disease Group, Department of Laboratory Medicine, Medical University of Vienna (MUW), Vienna, Austria
| | - Giovanni Tonon
- grid.18887.3e0000000417581884Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy ,grid.18887.3e0000000417581884Functional Genomics of Cancer Unit, Experimental Oncology Division, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martin Sattler
- grid.38142.3c000000041936754XDepartment of Medicine, Harvard Medical School, Boston, MA USA ,grid.62560.370000 0004 0378 8294Department of Surgery, Brigham and Women’s Hospital, Boston, MA USA
| | - Yu Hu
- grid.412839.50000 0004 1771 3250Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pierfrancesco Tassone
- grid.411489.10000 0001 2168 2547Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Dirk Jaeger
- grid.7700.00000 0001 2190 4373Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany
| | - Klaus Podar
- grid.7700.00000 0001 2190 4373Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany ,grid.488547.2Department of Internal Medicine II, University Hospital Krems, Krems an der Donau, Austria ,grid.459693.4Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| |
Collapse
|
395
|
Antonacopoulou A, Kottorou AE, Dimitrakopoulos FI, Marousi S, Kalofonou F, Koutras A, Makatsoris T, Tzelepi V, Kalofonos HP. NF-κB2 and RELB offer prognostic information in colorectal cancer and NFKB2 rs7897947 represents a genetic risk factor for disease development. Transl Oncol 2021; 14:100912. [PMID: 33074124 PMCID: PMC7568186 DOI: 10.1016/j.tranon.2020.100912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/16/2020] [Accepted: 10/06/2020] [Indexed: 10/25/2022] Open
Abstract
The Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) family of transcription factors plays an important role in immune responses and cancer development and progression. We have focused on NF-κB2 and RELB of the alternative pathway of NF-κB, which remains largely underexplored in colorectal cancer (CRC). We found that NF-κB2 and RELB protein levels were upregulated in tumour and surrounding stromal tissue compared to distant non-neoplastic tissue (NN) and associated stroma (p<0.001 in all associations). Moreover, low RELB protein expression was associated with decreased overall survival (p = 0.032). Lower RELB gene expression levels were observed in tumour compared to NN tissue (p = 0.003) and were associated with shorter time to progression (TTP) (p = 0.025). NF-κB2 gene expression levels were similar in tumour and NN tissue, but higher tumour levels were prognostic for improved survival (p = 0.038) and TTP (p<0.001). We also assessed the significance of two NF-κB2 genetic polymorphisms, rs12769316 and rs7897947. Both polymorphisms were associated with lymph node infiltration (p = 0.045 and p = 0.009, respectively). In addition, rs12769316 AA homozygotes relapsed less often compared to G allele carriers (p = 0.029). Moreover, rs7897947 allele frequencies differed significantly between CRC patients and healthy controls (p<0.001) and the minor allele (G) was associated with reduced risk for developing CRC (p<0.001, OR: 0.527, 95% CI: 0.387-0.717). In conclusion, the alternative NF-κB pathway appears deregulated in CRC. Moreover, NF-κB2 and RELB expression levels seem to be significant for the clinical outcome of CRC patients and rs7897947 appears to be a risk factor for CRC development.
Collapse
Affiliation(s)
- Anna Antonacopoulou
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Department of Medicine, Medical School, University of Patras, Patras, Greece.
| | - Anastasia E Kottorou
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Department of Medicine, Medical School, University of Patras, Patras, Greece
| | - Foteinos-Ioannis Dimitrakopoulos
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Department of Medicine, Medical School, University of Patras, Patras, Greece
| | - Stella Marousi
- "G. Gennimatas" General Hospital of Athens, Neurology Department, Athens, Greece
| | | | - Angelos Koutras
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Department of Medicine, Medical School, University of Patras, Patras, Greece
| | - Thomas Makatsoris
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Department of Medicine, Medical School, University of Patras, Patras, Greece
| | - Vassiliki Tzelepi
- Department of Pathology, Medical School, University of Patras, Patras, Greece
| | - Haralabos P Kalofonos
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Department of Medicine, Medical School, University of Patras, Patras, Greece.
| |
Collapse
|
396
|
Ma J, Liu X, Chen H, Abbas MK, Yang L, Sun H, Sun T, Wu B, Yang S, Zhou D. c-KIT-ERK1/2 signaling activated ELK1 and upregulated carcinoembryonic antigen expression to promote colorectal cancer progression. Cancer Sci 2020; 112:655-667. [PMID: 33247506 PMCID: PMC7894012 DOI: 10.1111/cas.14750] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 12/27/2022] Open
Abstract
Carcinoembryonic antigen (CEA) is highly expressed in embryo and colorectal cancer (CRC) and has been widely used as a marker for CRC. Emerging evidence has demonstrated that elevated CEA levels promote CRC progression. However, the mechanism of the increased CEA expression in patients with primary and recurrent CRC is still an open question. In this study, we showed that c‐KIT, ELK1, and CEA were hyperexpressed in patients with CRC, especially patients with recurrent disease. From bioinformatics analysis, we picked ELK1 as a candidate transcription factor (TF) for CEA; the binding site of ELK1 within the CEA promoter was confirmed by chromatin immunoprecipitation and dual luciferase reporter assays. Overexpression of ELK1 increased CEA expression in vitro, while knockdown of ELK1 decreased CEA. Upregulated ELK1 promoted the adhesion, migration, and invasion of CRC cells, however knockdown of CEA blocked the activities of ELK1‐overexpressed CRC cells. Furthermore, we explored the role of c‐KIT‐ERK1/2 signaling in activation of ELK1. Blocking c‐KIT signaling using Imatinib or ISCK03 reduced p‐ELK1 expression and consequently decreased CEA levels in CRC cells, as did blocking the ERK1/2 pathway by U0126. Compared with wild type littermates, the c‐kit loss‐of‐functional Wadsm/m mice showed lowered c‐KIT, ELK1, and CEA expression. In conclusion, our study revealed that ELK1, which was activated by c‐KIT‐ERK1/2 signaling, was a key TF for CEA expression. Blocking ELK1 or its upstream signaling could be an alternative way to decelerate CRC progression. Besides being a biomarker for CRC, CEA could be used for guiding targeted therapy.
Collapse
Affiliation(s)
- Jian Ma
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, China
| | - Xiaohui Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, China
| | - Hong Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, China
| | - Muhammad Khawar Abbas
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, China
| | - Liu Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, China
| | - Haimei Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, China
| | - Tingyi Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, China
| | - Bo Wu
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, China.,Cancer Institute of Capital Medical University, Beijing, China
| | - Shu Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, China.,Cancer Institute of Capital Medical University, Beijing, China
| | - Deshan Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, China.,Cancer Institute of Capital Medical University, Beijing, China
| |
Collapse
|
397
|
Zhao Q, Guo J, Zhao Y, Shen J, Kaboli PJ, Xiang S, Du F, Wu X, Li M, Wan L, Li X, Wen Q, Li J, Zou C, Xiao Z. Comprehensive assessment of PD-L1 and PD-L2 dysregulation in gastrointestinal cancers. Epigenomics 2020; 12:2155-2171. [PMID: 33337915 DOI: 10.2217/epi-2020-0093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: PD-L1 and PD-L2 are ligands of PD-1. Their overexpression has been reported in different cancers. However, the underlying mechanism of PD-L1 and PD-L2 dysregulation and their related signaling pathways are still unclear in gastrointestinal cancers. Materials & methods: The expression of PD-L1 and PD-L2 were studied in The Cancer Genome Atlas and Genotype-Tissue Expression databases. The gene and protein alteration of PD-L1 and PD-L2 were analyzed in cBioportal. The direct transcription factor regulating PD-L1/PD-L2 was determined with ChIP-seq data. The association of PD-L1/PD-L2 expression with clinicopathological parameters, survival, immune infiltration and tumor mutation burden were investigated with data from The Cancer Genome Atlas. Potential targets and pathways of PD-L1 and PD-L2 were determined by protein enrichment, WebGestalt and gene ontology. Results: Comprehensive analysis revealed that PD-L1 and PD-L2 were significantly upregulated in most types of gastrointestinal cancers and their expressions were positively correlated. SP1 was a key transcription factor regulating the expression of PD-L1. Conclusion: Higher PD-L1 or PD-L2 expression was significantly associated with poor overall survival, higher tumor mutation burden and more immune and stromal cell populations. Finally, HIF-1, ERBB and mTOR signaling pathways were most significantly affected by PD-L1 and PD-L2 dysregulation. Altogether, this study provided comprehensive analysis of the dysregulation of PD-L1 and PD-L2, its underlying mechanism and downstream pathways, which add to the knowledge of manipulating PD-L1/PD-L2 for cancer immunotherapy.
Collapse
Affiliation(s)
- Qijie Zhao
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, PR China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,Department of Pathophysiology, College of Basic Medical Science, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Jinan Guo
- The department of urology, The Second Clinical Medical college of Jinan University (Shenzhen people's Hospital), The First Affiliated Hospital of South University of Science & Technology of China, Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, Guangdong, PR China.,Shenzhen Public Service Platform on Tumor Precision Medicine & Molecular Diagnosis, Shenzhen, Guangdong, PR China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, PR China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, PR China
| | - Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, PR China
| | - Shixin Xiang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, PR China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, PR China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, PR China
| | - Lin Wan
- Department of Hematology & Oncology, The Children's Hospital of Soochow, Jiangsu, PR China
| | - Xiang Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
| | - Jing Li
- Department of Oncology & Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, PR China
| | - Chang Zou
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, PR China.,Shenzhen Public Service Platform on Tumor Precision Medicine & Molecular Diagnosis, Shenzhen, Guangdong, PR China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, PR China
| |
Collapse
|
398
|
de Jong LM, Jiskoot W, Swen JJ, Manson ML. Distinct Effects of Inflammation on Cytochrome P450 Regulation and Drug Metabolism: Lessons from Experimental Models and a Potential Role for Pharmacogenetics. Genes (Basel) 2020; 11:genes11121509. [PMID: 33339226 PMCID: PMC7766585 DOI: 10.3390/genes11121509] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022] Open
Abstract
Personalized medicine strives to optimize drug treatment for the individual patient by taking into account both genetic and non-genetic factors for drug response. Inflammation is one of the non-genetic factors that has been shown to greatly affect the metabolism of drugs—primarily through inhibition of cytochrome P450 (CYP450) drug-metabolizing enzymes—and hence contribute to the mismatch between the genotype predicted drug response and the actual phenotype, a phenomenon called phenoconversion. This review focuses on inflammation-induced drug metabolism alterations. In particular, we discuss the evidence assembled through human in-vitro models on the effect of inflammatory mediators on clinically relevant CYP450 isoform levels and their metabolizing capacity. We also present an overview of the current understanding of the mechanistic pathways via which inflammation in hepatocytes may modulate hepatic functions that are critical for drug metabolism. Furthermore, since large inter-individual variability in response to inflammation is observed in human in-vitro models and clinical studies, we evaluate the potential role of pharmacogenetic variability in the inflammatory signaling cascade and how this can modulate the outcome of inflammation on drug metabolism and response.
Collapse
Affiliation(s)
- Laura M. de Jong
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands; (L.M.d.J.); (W.J.)
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands; (L.M.d.J.); (W.J.)
| | - Jesse J. Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands;
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Martijn L. Manson
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands; (L.M.d.J.); (W.J.)
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Correspondence:
| |
Collapse
|
399
|
Chen X, Lin Y, Qu Q, Ning B, Chen H, Cai L. A Multi-Source Data Fusion Framework for Revealing the Regulatory Mechanism of Breast Cancer Immune Evasion. Front Genet 2020; 11:595324. [PMID: 33304391 PMCID: PMC7693564 DOI: 10.3389/fgene.2020.595324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 09/30/2020] [Indexed: 01/03/2023] Open
Abstract
For precision medicine, there is an enormous need to understand the immune evasion mechanism of tumor development, especially when tumor heterogeneity significantly affects the effect of immunotherapy. Recognizing the subtypes of breast cancer based on the immune-related genes helps to understand the immune escape pathways dominated by different subtypes, so as to implement effective treatment measures for different subtypes. For that, we used non-negative matrix factorization and consistent clustering algorithm on The Cancer Genome Atlas RNA-seq breast cancer data and recognized 4 subtypes according to the curated immune-related genes. Then, we conducted differential expression analysis between each subtype of breast cancer and normal tissue of RNA-seq data from non-cancer individuals collected by the Genotype-Tissue Expression to find out subtype-related immune genes. After that, we carried out correlation analysis between copy number variants (CNV) and mRNA of immune genes and investigated the regulatory mechanism of the immune genes, which cannot be explained by CNV based on ATAC-seq data. The experimental results reveal that CDH1 and PVRL2 are potential for immune evasion in all 4 subgroups. The expression variations of CDH1 can be mainly explained by its CNV, while the expression variation of PVRL2 is more likely regulated by transcript factors.
Collapse
Affiliation(s)
- Xia Chen
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China.,School of Basic Education, Changsha Aeronautical Vocational and Technical College, Changsha, China
| | - Yexiong Lin
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Qiang Qu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Bin Ning
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Haowen Chen
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Lijun Cai
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| |
Collapse
|
400
|
Gu Y, Niu S, Wang Y, Duan L, Pan Y, Tong Z, Zhang X, Yang Z, Peng B, Wang X, Han X, Li Y, Cheng T, Liu Y, Shang L, Liu T, Yang X, Sun M, Jiang S, Zhang C, Zhang N, Ye Q, Gao S. DMDRMR-Mediated Regulation of m 6A-Modified CDK4 by m 6A Reader IGF2BP3 Drives ccRCC Progression. Cancer Res 2020; 81:923-934. [PMID: 33293428 DOI: 10.1158/0008-5472.can-20-1619] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/09/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022]
Abstract
Aberrant N 6-methyladenosine (m6A) modification has emerged as a driver of tumor initiation and progression, yet how long noncoding RNAs (lncRNA) are involved in the regulation of m6A remains unknown. Here we utilize data from 12 cancer types from The Cancer Genome Atlas to comprehensively map lncRNAs that are potentially deregulated by DNA methylation. A novel DNA methylation-deregulated and RNA m6A reader-cooperating lncRNA (DMDRMR) facilitated tumor growth and metastasis in clear cell renal cell carcinoma (ccRCC). Mechanistically, DMDRMR bound insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) to stabilize target genes, including the cell-cycle kinase CDK4 and three extracellular matrix components (COL6A1, LAMA5, and FN1), by specifically enhancing IGF2BP3 activity on them in an m6A-dependent manner. Consequently, DMDRMR and IGF2BP3 enhanced the G1-S transition, thus promoting cell proliferation in ccRCC. In patients with ccRCC, high coexpression of DMDRMR and IGF2BP3 was associated with poor outcomes. Our findings reveal that DMDRMR cooperates with IGF2BP3 to regulate target genes in an m6A-dependent manner and may represent a potential diagnostic, prognostic, and therapeutic target in ccRCC. SIGNIFICANCE: This study demonstrates that the lncRNA DMDRMR acts as a cofactor for IGF2BP3 to stabilize target genes in an m6A-dependent manner, thus exerting essential oncogenic roles in ccRCC.
Collapse
Affiliation(s)
- Yinmin Gu
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shaoxi Niu
- Department of Urology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yang Wang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Liqiang Duan
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Yongbo Pan
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Zhou Tong
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Xu Zhang
- Department of Urology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhenyu Yang
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bo Peng
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaodong Wang
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaoqi Han
- Medical College, Guizhou University, Guiyang, China
| | - Yuxin Li
- Pharmaceutical Analysis, College of Pharmacy, Beihua University, Jilin, China
| | - Tianyou Cheng
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Yajuan Liu
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Lina Shang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Tongfeng Liu
- Medical College, Guizhou University, Guiyang, China
| | - Xiwang Yang
- Medical College, Guizhou University, Guiyang, China
| | - Minxuan Sun
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Siyuan Jiang
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Chang Zhang
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Ning Zhang
- College of Life Science, Northwest A&F University, Yangling, China
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Shan Gao
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China. .,Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| |
Collapse
|