351
|
Kerchev PI, Van Breusegem F. Improving oxidative stress resilience in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:359-372. [PMID: 34519111 DOI: 10.1111/tpj.15493] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 05/22/2023]
Abstract
Originally conceived as harmful metabolic byproducts, reactive oxygen species (ROS) are now recognized as an integral part of numerous cellular programs. Thanks to their diverse physicochemical properties, compartmentalized production, and tight control exerted by the antioxidant machinery they activate signaling pathways that govern plant growth, development, and defense. Excessive ROS levels are often driven by adverse changes in environmental conditions, ultimately causing oxidative stress. The associated negative impact on cellular constituents have been a major focus of decade-long research efforts to improve the oxidative stress resilience by boosting the antioxidant machinery in model and crop species. We highlight the role of enzymatic and non-enzymatic antioxidants as integral factors of multiple signaling cascades beyond their mere function to prevent oxidative damage under adverse abiotic stress conditions.
Collapse
Affiliation(s)
- Pavel I Kerchev
- Phytophthora Research Centre, Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300, Brno, Czech Republic
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Gent, Belgium
| |
Collapse
|
352
|
Mhamdi A, Van Breusegem F, Noctor G. Measurement of NAD(P)H and NADPH-Generating Enzymes. Methods Mol Biol 2022; 2526:97-106. [PMID: 35657514 DOI: 10.1007/978-1-0716-2469-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pyridine nucleotides (NAD(H) and NADP(H)) are key redox carriers in cells and may also have other functions related to stress. These two molecules are crucial in linking metabolism to electron transport chains in photosynthesis and respiration, but they are also critical for ensuring redox signaling and homeostasis during episodes of stress. This is especially the case for NADPH, which must be generated from its oxidized form, NADP+, by key dehydrogenases. Here, we describe methods that can be used to assay contents and redox states of NAD(H) and NADP(H), as well as simple assays to measure the capacity of two key NADPH-generating enzymes.
Collapse
Affiliation(s)
- Amna Mhamdi
- VIB Center for Plant Systems Biology, Ghent University, Zwijnaarde, Belgium.
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Graham Noctor
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, Orsay cedex, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
353
|
Abstract
Ascorbate and glutathione are key chemical antioxidants present at relatively high concentrations in plant cells. They are also reducing cofactors for enzymes that process hydrogen peroxide in the ascorbate-glutathione pathway. Due to these two related biochemical functions, the compounds form an interface between reactive oxygen species and sensitive cellular components. Therefore, their status can provide reliable and direct information on cell redox state, signaling, and plant health. While several methods exist for quantification of ascorbate and glutathione, simple enzyme-dependent assays allow them to be measured easily and inexpensively in common extracts. This chapter describes a protocol to measure total contents, as well as the major oxidized and reduced forms, of both compounds in plant tissues.
Collapse
Affiliation(s)
- Graham Noctor
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, Orsay cedex, France.
- Institut Universitaire de France (IUF), Paris, France.
| | - Amna Mhamdi
- VIB Center for Plant Systems Biology, Ghent University, Zwijnaarde, Belgium
| |
Collapse
|
354
|
Hippmann AA, Schuback N, Moon K, McCrow JP, Allen AE, Foster LF, Green BR, Maldonado MT. Proteomic analysis of metabolic pathways supports chloroplast-mitochondria cross-talk in a Cu-limited diatom. PLANT DIRECT 2022; 6:e376. [PMID: 35079683 PMCID: PMC8777261 DOI: 10.1002/pld3.376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 05/19/2023]
Abstract
Diatoms are one of the most successful phytoplankton groups in our oceans, being responsible for over 20% of the Earth's photosynthetic productivity. Their chimeric genomes have genes derived from red algae, green algae, bacteria, and heterotrophs, resulting in multiple isoenzymes targeted to different cellular compartments with the potential for differential regulation under nutrient limitation. The resulting interactions between metabolic pathways are not yet fully understood. We previously showed how acclimation to Cu limitation enhanced susceptibility to overreduction of the photosynthetic electron transport chain and its reorganization to favor photoprotection over light harvesting in the oceanic diatom Thalassiosira oceanica (Hippmann et al., 2017, 10.1371/journal.pone.0181753). In order to gain a better understanding of the overall metabolic changes that help alleviate the stress of Cu limitation, we have further analyzed the comprehensive proteomic datasets generated in that study to identify differentially expressed proteins involved in carbon, nitrogen, and oxidative stress-related metabolic pathways. Metabolic pathway analysis showed integrated responses to Cu limitation. The upregulation of ferredoxin (Fdx) was correlated with upregulation of plastidial Fdx-dependent isoenzymes involved in nitrogen assimilation as well as enzymes involved in glutathione synthesis, thus suggesting an integration of nitrogen uptake and metabolism with photosynthesis and oxidative stress resistance. The differential expression of glycolytic isoenzymes located in the chloroplast and mitochondria may enable them to channel both excess electrons and/or ATP between these compartments. An additional support for chloroplast-mitochondrial cross-talk is the increased expression of chloroplast and mitochondrial proteins involved in the proposed malate shunt under Cu limitation.
Collapse
Affiliation(s)
- Anna A. Hippmann
- Department of Earth Ocean and Atmospheric ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Nina Schuback
- Department of Earth Ocean and Atmospheric ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Kyung‐Mee Moon
- Biochemistry and Molecular BiologyMichael Smith LaboratoriesVancouverBritish ColumbiaCanada
| | - John P. McCrow
- Microbial and Environmental GenomicsJ. Craig Venter InstituteLa JollaCAUSA
| | - Andrew E. Allen
- Microbial and Environmental GenomicsJ. Craig Venter InstituteLa JollaCAUSA
- Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoCAUSA
| | - Leonard F. Foster
- Biochemistry and Molecular BiologyMichael Smith LaboratoriesVancouverBritish ColumbiaCanada
| | - Beverley R. Green
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Maria T. Maldonado
- Department of Earth Ocean and Atmospheric ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
355
|
Thakur M, Praveen S, Divte PR, Mitra R, Kumar M, Gupta CK, Kalidindi U, Bansal R, Roy S, Anand A, Singh B. Metal tolerance in plants: Molecular and physicochemical interface determines the "not so heavy effect" of heavy metals. CHEMOSPHERE 2022; 287:131957. [PMID: 34450367 DOI: 10.1016/j.chemosphere.2021.131957] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 05/27/2023]
Abstract
An increase in technological interventions and ruthless urbanization in the name of development has deteriorated our environment over time and caused the buildup of heavy metals (HMs) in the soil and water resources. These heavy metals are gaining increased access into our food chain through the plant and/or animal-based products, to adversely impact human health. The issue of how to restrict the entry of HMs or modulate their response in event of their ingress into the plant system is worrisome. The current knowledge on the interactive-regulatory role and contribution of different physical, biophysical, biochemical, physiological, and molecular factors that determine the heavy metal availability-uptake-partitioning dynamics in the soil-plant-environment needs to be updated. The present review critically analyses the interactive overlaps between different adaptation and tolerance strategies that may be causally related to their cellular localization, conjugation and homeostasis, a relative affinity for the transporters, rhizosphere modifications, activation of efflux pumps and vacuolar sequestration that singly or collectively determine a plant's response to HM stress. Recently postulated role of gaseous pollutants such as SO2 and other secondary metabolites in heavy metal tolerance, which may be regulated at the whole plant and/or tissue/cell is discussed to delineate and work towards a "not so heavy" response of plants to heavy metals present in the contaminated soils.
Collapse
Affiliation(s)
- Meenakshi Thakur
- College of Horticulture and Forestry (Dr. Y.S. Parmar University of Horticulture and Forestry), Neri, Hamirpur, 177 001, Himachal Pradesh, India
| | - Shamima Praveen
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Pandurang R Divte
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Raktim Mitra
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Mahesh Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Maharashtra, 413 115, India
| | - Chandan Kumar Gupta
- Division of Plant Physiology and Biochemistry, ICAR-Indian Institute of Sugarcane Research, Lucknow, 226 002, India
| | - Usha Kalidindi
- Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Ruchi Bansal
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110 012, India
| | - Suman Roy
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata, 700 120, India
| | - Anjali Anand
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India.
| | - Bhupinder Singh
- Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India.
| |
Collapse
|
356
|
García de la Torre VS, Coba de la Peña T, Lucas MM, Pueyo JJ. Transgenic Medicago truncatula Plants That Accumulate Proline Display Enhanced Tolerance to Cadmium Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:829069. [PMID: 35154232 PMCID: PMC8826176 DOI: 10.3389/fpls.2022.829069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/03/2022] [Indexed: 05/15/2023]
Abstract
Cadmium (Cd) accumulation in agricultural soils constitutes a serious problem for crop yields and food safety. It is known that proline (Pro) can rapidly accumulate in plant tissues in response to abiotic stress. To analyze the potential protective effect of Pro accumulation against Cd toxicity, we compared the response to Cd stress of wild-type (WT) Medicago truncatula and a transgenic line that we had previously obtained and characterized (p18), which expressed the Δ 1-pyrroline-5-carboxylate synthetase gene from Vigna aconitifolia (VaP5CS), and accumulated high Pro levels. Cadmium significantly reduced germination of WT seeds compared to p18 seeds, and seedling relative root growth, a valid indicator of metal tolerance, was significantly higher for p18 than WT seedlings. We analyzed the relative expression of genes related to Pro metabolism, phytochelatin biosynthesis. antioxidant machinery, and NADPH recycling, which are relevant mechanisms in the response to Cd stress. They presented differential expression in the seedlings of both genotypes both under control conditions and under Cd stress, suggesting that the Cd response mechanisms might be constitutively activated in the transgenic line. Pro accumulation promoted higher survival, enhanced growth performance, and minor nutrient imbalance in transgenic p18 plants compared to WT plants. These facts, together with the recorded gluthatione levels, lipid peroxidation and antioxidant enzyme activities strongly suggested that VaP5CS expression and Pro accumulation conferred enhanced Cd tolerance to M. truncatula p18 plants, which was likely mediated by changes in Pro metabolism, increased phytochelatin biosynthesis and a more efficient antioxidant response. Moreover, p18 roots accumulated significantly higher Cd amounts than WT roots, while Cd translocation to the aerial part was similar to WT plants, thus suggesting that high Pro levels increased not only Cd tolerance, but also Cd phytostabilization by rhizosequestration.
Collapse
Affiliation(s)
| | - Teodoro Coba de la Peña
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile
- *Correspondence: Teodoro Coba de la Peña,
| | - M. Mercedes Lucas
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Cientiíficas (ICA-CSIC), Madrid, Spain
- M. Mercedes Lucas,
| | - José J. Pueyo
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Cientiíficas (ICA-CSIC), Madrid, Spain
- José J. Pueyo,
| |
Collapse
|
357
|
Luo Q, Ma Y, Chen Z, Xie H, Wang Y, Zhou L, Ma Y. Biochemical responses of hairgrass ( Deschampsia caespitosa) to hydrological change. FRONTIERS IN PLANT SCIENCE 2022; 13:987845. [PMID: 36226294 PMCID: PMC9549154 DOI: 10.3389/fpls.2022.987845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/22/2022] [Indexed: 05/17/2023]
Abstract
Plant growth and development are closely related to water availability. Water deficit and water excess are detrimental to plants, causing a series of damage to plant morphology, physiological and biochemical processes. In the long evolutionary process, plants have evolved an array of complex mechanisms to combat against stressful conditions. In the present study, the duration-dependent changes in ascorbate (AsA) and glutathione (GSH) contents and activities of enzymes involved in the AsA-GSH cycle in hairgrass (Deschampsia caespitosa) in response to water stress was investigated in a pot trial using a complete random block design. The treatments were as follows: (1) heavily waterlogging, (2) moderate waterlogging, (3) light waterlogging, (4) light drought, (5) moderate drought, (6) heavily drought, and (7) a control (CK) with plant be maintained at optimum water availability. The hairgrass plants were subjected to waterlogging or drought for 7, 14, 21 and 28 days and data were measured following treatment. Results revealed that hairgrass subjected to water stress can stimulate enzymatic activities of ascorbate peroxidase (APX), glutathione peroxidase (GPX), glutathione reductase (GR), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR) and L-galactono-1, 4-lactone dehydrogenase (GalLDH), switched on the ascorbate-glutathione (AsA-GSH) cycle and the L-galactose synthesis, up-regulated the contents of AsA and GSH, and maintained higher ratios of ascorbate to dehydroascorbate (AsA/DHA) and reduced glutathione to oxidized glutathione (GSH/GSSG) to alleviate potential oxidative damage. However, the light waterlogging did not induce hairgrass under stress to switch on the AsA-GSH pathway. In general, the critic substances and enzyme activities in AsA-GSH metabolic pathway increased as the increase of water stress intensity. As the increase of exposure duration, the critic antioxidant substances content and enzyme activities increased first and then maintained a relatively stable higher level. Our findings provide comprehensive information on biochemical responses of hairgrass to hydrological change, which would be a major step for accelerating ecological restoration of degradation alpine marshes in the Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
- Qiaoyu Luo
- School of Life Sciences, Qinghai Normal University, Xining, China
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, Qinghai Normal University, Xining, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Yonggui Ma
- School of Life Sciences, Qinghai Normal University, Xining, China
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, Qinghai Normal University, Xining, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| | - Zhi Chen
- School of Life Sciences, Qinghai Normal University, Xining, China
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, Qinghai Normal University, Xining, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| | - Huichun Xie
- School of Life Sciences, Qinghai Normal University, Xining, China
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, Qinghai Normal University, Xining, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| | - Yanlong Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Lianyu Zhou
- School of Life Sciences, Qinghai Normal University, Xining, China
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, Qinghai Normal University, Xining, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| | - Yushou Ma
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
- *Correspondence: Yushou Ma,
| |
Collapse
|
358
|
Comparative kinetic analysis of ascorbate (Vitamin-C) recycling dehydroascorbate reductases from plants and humans. Biochem Biophys Res Commun 2021; 591:110-117. [PMID: 35007834 DOI: 10.1016/j.bbrc.2021.12.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 12/26/2021] [Indexed: 11/20/2022]
Abstract
Ascorbate is an important cellular antioxidant that gets readily oxidized to dehydroascorbate (DHA). Recycling of DHA is therefore paramount in the maintenance of cellular homeostasis and preventing oxidative stress. Dehydroascorbate reductases (DHARs), in conjunction with glutathione (GSH), carry out this vital process in eukaryotes, among which plant DHARs have garnered considerable attention. A detailed kinetic analysis of plant DHARs relative to their human counterparts is, however, lacking. Chloride intracellular channels (HsCLICs) are close homologs of plant DHARs, recently demonstrated to share their enzymatic activity. This study reports the highest turnover rate for a plant DHAR from stress adapted Pennisetum glaucum (PgDHAR). In comparison, HsCLICs 1, 3, and 4 reduced DHA at a significantly lower rate. We further show that the catalytic cysteine from both homologs was susceptible to varying degrees of oxidation, validated by crystal structures and mass-spectrometry. Our findings may have broader implications on crop improvement using pearl millet DHAR vis-à-vis discovery of cancer therapeutics targeting Vitamin-C recycling capability of human CLICs.
Collapse
|
359
|
NAD(P)H Drives the Ascorbate-Glutathione Cycle and Abundance of Catalase in Developing Beech Seeds Differently in Embryonic Axes and Cotyledons. Antioxidants (Basel) 2021; 10:antiox10122021. [PMID: 34943124 PMCID: PMC8698623 DOI: 10.3390/antiox10122021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 02/06/2023] Open
Abstract
European beech is an important component of European lowland forests in terms of ecology, and produces irregular seeds categorized as intermediate due to their limited longevity. Removal of the excess of reactive oxygen species is crucial for redox homeostasis in growing plant tissues. Hydrogen peroxide (H2O2) is detoxified via the plant-specific ascorbate-glutathione cycle, and enzymatically, mainly by catalase (CAT). The reduced and oxidized (redox) forms of ascorbate (AsA, DHA) and glutathione (GSH, GSSG) decreased during maturation as the content of redox forms of nicotinamide adenine dinucleotide (NADH, NAD+) phosphate (NADPH, NADP+), cofactors of ascorbate–glutathione enzymes, declined and limited this cycle. The degree of oxidation of glutathione peaked at approximately 80%, at the exact time when the NADP content was the lowest and the NADPH/NADP+ ratio reached the highest values. The glutathione pool was reflected in changes in the NADP pool, both in embryonic axes (R2 = 0.61) and in cotyledons (R2 = 0.98). A large excess of NADPH was reported in embryonic axes, whereas cotyledons displayed more unified levels of NADP redox forms. As a result, anabolic redox charge and reducing power were higher in embryonic axes. CAT was recognized as two proteins, and the abundance of the 55 kDa protein was correlated with all redox forms of ascorbate, glutathione, NAD, and NADP, whereas the 37 kDa protein was oppositely regulated in embryonic axes and cotyledons. Here, we discuss the role of NAD(P) in the regulation of the ascorbate–glutathione cycle, catalase, and seed longevity concerning a putative role of NAD(P)H as a redox biomarker involved in predefining seed quality, because NAD(P)H-derived redox homeostasis was found to be better controlled in embryonic axes than cotyledons.
Collapse
|
360
|
Cheng F, Gao M, Lu J, Huang Y, Bie Z. Spatial-Temporal Response of Reactive Oxygen Species and Salicylic Acid Suggest Their Interaction in Pumpkin Rootstock-Induced Chilling Tolerance in Watermelon Plants. Antioxidants (Basel) 2021; 10:2024. [PMID: 34943126 PMCID: PMC8698449 DOI: 10.3390/antiox10122024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Grafting with pumpkin rootstock could improve chilling tolerance in watermelon, and salicylic acid (SA) as a signal molecule is involved in regulating plant tolerance to chilling and other abiotic stresses. To clarify the mechanism in pumpkin rootstock-induced systemic acquired acclimation in grafted watermelon under chilling stress, we used self-grafted (Cl/Cl) and pumpkin rootstock-grafted (Cl/Cm) watermelon seedlings to study the changes in lipid peroxidation, photosystem II (PSII) activity and antioxidant metabolism, the spatio-temporal response of SA biosynthesis and H2O2 accumulation to chilling, and the role of H2O2 signal in SA-induced chilling tolerance in grafted watermelon. The results showed that pumpkin rootstock grafting promoted SA biosynthesis in the watermelon scions. Chilling induced hydrolysis of conjugated SA into free SA in the roots and accumulation of free SA in the leaves in Cl/Cm plants. Further, pumpkin rootstock grafting induced early response of antioxidant enzyme system in the roots and increased activities of ascorbate peroxidase and glutathione reductase in the leaves, thus maintaining cellular redox homeostasis. Exogenous SA improved while the inhibition of SA biosynthesis reduced chilling tolerance in Cl/Cl seedlings. The application of diphenyleneiodonium (DPI, inhibitor of NADPH oxidase) and dimethylthiourea (DMTU, H2O2 scavenger) decreased, while exogenous H2O2 improved the PSII activity in Cl/Cl plants under chilling stress. Additionally, the decrease of the net photosynthetic rate in DMTU- and DPI-pretreated Cl/Cl plants under chilling conditions could be alleviated by subsequent application of H2O2 but not SA. In conclusion, pumpkin rootstock grafting induces SA biosynthesis and redistribution in the leaves and roots and participates in the regulation of antioxidant metabolism probably through interaction with the H2O2 signal, thus improving chilling tolerance in watermelon.
Collapse
Affiliation(s)
| | | | | | | | - Zhilong Bie
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (F.C.); (M.G.); (J.L.); (Y.H.)
| |
Collapse
|
361
|
Barba-Espín G, Martínez-Jiménez C, Izquierdo-Martínez A, Acosta-Motos JR, Hernández JA, Díaz-Vivancos P. H 2O 2-Elicitation of Black Carrot Hairy Roots Induces a Controlled Oxidative Burst Leading to Increased Anthocyanin Production. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122753. [PMID: 34961224 PMCID: PMC8703307 DOI: 10.3390/plants10122753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 05/23/2023]
Abstract
Hairy roots (HRs) grown in vitro are a powerful platform for plant biotechnological advances and for the bio-based production of metabolites of interest. In this work, black carrot HRs able to accumulate anthocyanin as major secondary metabolite were used. Biomass and anthocyanin accumulation were improved by modulating growth medium composition-different Murashige & Skoog (MS)-based media-and H2O2-elicitation, and the level of the main antioxidant enzymes on elicited HRs was measured. Higher growth was obtained on liquid 1/2 MS medium supplemented with 60 g/L sucrose for HRs grown over 20 days. In this medium, 200 µM H2O2 applied on day 12 induced anthocyanin accumulation by 20%. The activity of superoxide dismutase (SOD)-which generates H2O2 from O2•--increased by over 50%, whereas the activity of H2O2-scavenging enzymes was not enhanced. Elicitation in the HRs can result in a controlled oxidative burst, in which SOD activity increased H2O2 levels, whereas anthocyanins, as effective reactive oxygen species scavengers, could be induced to modulate the oxidative burst generated. Moreover, given the proven stability of the HR lines used and their remarkable productivity, this system appears as suitable for elucidating the interplay between antioxidant and secondary metabolism.
Collapse
|
362
|
Zhao J, Wang X, Pan X, Jiang Q, Xi Z. Exogenous Putrescine Alleviates Drought Stress by Altering Reactive Oxygen Species Scavenging and Biosynthesis of Polyamines in the Seedlings of Cabernet Sauvignon. FRONTIERS IN PLANT SCIENCE 2021; 12:767992. [PMID: 34970285 PMCID: PMC8712750 DOI: 10.3389/fpls.2021.767992] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/16/2021] [Indexed: 06/09/2023]
Abstract
Climate change imposes intensive dry conditions in most grape-growing regions. Drought stress is one of the most devastating abiotic factors threatening grape growth, yield, and fruit quality. In this study, the alleviation effect of exogenous putrescine (Put) was evaluated using the seedlings of Cabernet Sauvignon (Vitis vinifera L.) subjected to drought stress. The phenotype, photosynthesis index, membrane injury index (MII), and antioxidant system, as well as the dynamic changes of endogenous polyamines (PAs) of grape seedlings, were monitored. Results showed that drought stress increased the MII, lipid peroxidation, and the contents of reactive oxygen species (ROS) (H2O2 and O2 -), while it decreased the antioxidant enzyme activity and the net photosynthesis rate (Pn). However, the application of Put alleviated the effects of drought stress by altering ROS scavenging, enhancing the antioxidant system, and increasing the net Pn. Put distinctly increased the activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as well as the contents of ascorbic acid (AsA) and glutathione (GSH). Meanwhile, exogenous Put also promoted the metabolism of endogenous PAs by upregulating their synthetic genes. Our results confirmed that the exogenous application of Put can enhance the antioxidant capacity as well as alter the PA pool, which provides better drought tolerance for Cabernet Sauvignon seedlings.
Collapse
Affiliation(s)
- Jiaqi Zhao
- College of Enology, Northwest A&F University, Xianyang, China
| | - Xuefei Wang
- College of Enology, Northwest A&F University, Xianyang, China
| | - Xingbo Pan
- College of Enology, Northwest A&F University, Xianyang, China
| | - Qianqian Jiang
- College of Enology, Northwest A&F University, Xianyang, China
| | - Zhumei Xi
- College of Enology, Northwest A&F University, Xianyang, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Xianyang, China
| |
Collapse
|
363
|
Fàbregas N, Fernie AR. The interface of central metabolism with hormone signaling in plants. Curr Biol 2021; 31:R1535-R1548. [PMID: 34875246 DOI: 10.1016/j.cub.2021.09.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Amongst the myriad of metabolites produced by plants, primary metabolites and hormones play crucial housekeeping roles in the cell and are essential for proper plant growth and development. While the biosynthetic pathways of primary metabolism are well characterized, those of hormones are yet to be completely defined. Central metabolism provides precursors for hormone biosynthesis and the regulation and function of primary metabolites and hormones are tightly entwined. The combination of reverse genetics and technological advances in our ability to evaluate the levels of the molecular entities of the cell (transcripts, proteins and metabolites) has led to considerable improvements in our understanding of both the regulatory interaction between primary metabolites and hormones and its coordination in response to different conditions. Here, we provide an overview of the interaction of primary and hormone metabolism at the metabolic and signaling levels, as well as a perspective regarding the tools that can be used to tackle our current knowledge gaps at the signaling level.
Collapse
Affiliation(s)
- Norma Fàbregas
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany.
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
364
|
Zhang J, Hamza A, Xie Z, Hussain S, Brestic M, Tahir MA, Ulhassan Z, Yu M, Allakhverdiev SI, Shabala S. Arsenic transport and interaction with plant metabolism: Clues for improving agricultural productivity and food safety. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117987. [PMID: 34425370 DOI: 10.1016/j.envpol.2021.117987] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/12/2021] [Accepted: 08/14/2021] [Indexed: 05/13/2023]
Abstract
Arsenic (As) is a ubiquitous metalloid that is highly toxic to all living organisms. When grown in As-contaminated soils, plants may accumulate significant amounts of As in the grains or edible shoot parts which then enter a food chain. Plant growth and development per se are also both affected by arsenic. These effects are traditionally attributed to As-induced accumulation of reactive oxygen species (ROS) and a consequent lipid peroxidation and damage to cellular membranes. However, this view is oversimplified, as As exposure have a major impact on many metabolic processes in plants, including availability of essential nutrients, photosynthesis, carbohydrate metabolism, lipid metabolism, protein metabolism, and sulfur metabolism. This review is aimed to fill this gap in the knowledge. In addition, the molecular basis of arsenic uptake and transport in plants and prospects of creating low As-accumulating crop species, for both agricultural productivity and food safety, are discussed.
Collapse
Affiliation(s)
- Jie Zhang
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
| | - Ameer Hamza
- School of Environment Science and Engineering, China University of Geoscience, Wuhan, 430074, China; College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Zuoming Xie
- School of Environment Science and Engineering, China University of Geoscience, Wuhan, 430074, China
| | - Sajad Hussain
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang, Chengdu, 611130, China.
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic
| | - Mukkram Ali Tahir
- College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
| | - Suleyman I Allakhverdiev
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China; K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St. 35, Moscow, 127276, Russia
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China; Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas7001, Australia.
| |
Collapse
|
365
|
Zhu F, Zhang Q, Che Y, Zhu P, Zhang Q, Ji Z. Glutathione contributes to resistance responses to TMV through a differential modulation of salicylic acid and reactive oxygen species. MOLECULAR PLANT PATHOLOGY 2021; 22:1668-1687. [PMID: 34553471 PMCID: PMC8578835 DOI: 10.1111/mpp.13138] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 05/04/2023]
Abstract
Systemic acquired resistance (SAR) is induced by pathogens and confers protection against a broad range of pathogens. Several SAR signals have been characterized, but the nature of the other unknown signalling by small metabolites in SAR remains unclear. Glutathione (GSH) has long been implicated in the defence reaction against biotic stress. However, the mechanism that GSH increases plant tolerance against virus infection is not entirely known. Here, a combination of a chemical, virus-induced gene-silencing-based genetics approach, and transgenic technology was undertaken to investigate the role of GSH in plant viral resistance in Nicotiana benthamiana. Tobacco mosaic virus (TMV) infection results in increasing the expression of GSH biosynthesis genes NbECS and NbGS, and GSH content. Silencing of NbECS or NbGS accelerated oxidative damage, increased accumulation of reactive oxygen species (ROS), compromised plant resistance to TMV, and suppressed the salicylic acid (SA)-mediated signalling pathway. Application of GSH or l-2-oxothiazolidine-4-carboxylic acid (a GSH activator) alleviated oxidative damage, decreased accumulation of ROS, elevated plant local and systemic resistance, enhanced the SA-mediated signalling pathway, and increased the expression of ROS scavenging-related genes. However, treatment with buthionine sulfoximine (a GSH inhibitor) accelerated oxidative damage, elevated ROS accumulation, compromised plant systemic resistance, suppressed the SA-mediated signalling pathway, and reduced the expression of ROS-regulating genes. Overexpression of NbECS reduced oxidative damage, decreased accumulation of ROS, increased resistance to TMV, activated the SA-mediated signalling pathway, and increased the expression of the ROS scavenging-related genes. We present molecular evidence suggesting GSH is essential for both local and systemic resistance of N. benthamiana to TMV through a differential modulation of SA and ROS.
Collapse
Affiliation(s)
- Feng Zhu
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Qi‐Ping Zhang
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Yan‐Ping Che
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Peng‐Xiang Zhu
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Qin‐Qin Zhang
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Zhao‐Lin Ji
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| |
Collapse
|
366
|
Yadav V, Gill RA, Arif N, Gill SA, Singh VP, Ramawat N, Zhou W, Tripathi DK, Chauhan DK. Endogenous indole-3-acetic acid and nitric oxide are required for calcium-mediated alleviation of copper oxide nanoparticles toxicity in wheat seedlings. PHYSIOLOGIA PLANTARUM 2021; 173:2262-2275. [PMID: 34590723 DOI: 10.1111/ppl.13576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 06/29/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
The action of nanoparticles is increasingly being studied in recent years to minimize their toxic impacts. Besides this, efforts are also being made to minimize their toxicity in crop plants by using various chemicals, i.e. nutrients, donors of signaling molecules, plant hormones, and so on. However, associated alleviatory mechanisms are still not well known. Therefore, in the present study, we have investigated the toxicity of CuONPs and its mitigation by exogenously applied calcium (Ca). The focus was on whether indole-3-acetic acid (IAA) or endogenous nitric oxide (NO) has any role in accomplishing this task. CuONPs declined wheat growth due to increased accumulation of Cu and oxidative stress markers such as superoxide radicals, hydrogen peroxide, and lipid peroxidation (malondialdehyde) and it was also accompanied by a decline in endogenous NO. CuONPs also altered the redox status of ascorbate and glutathione by inhibiting the activity of their regenerating enzymes. This collectively leads to cell death in wheat seedlings. However, exogenous supplementation of Ca mitigated toxic effects of CuONPs by reducing the excess accumulation of Cu, which caused remarkable enhancement in growth, protein contents, photosynthetic pigments, and endogenous NO; altogether protecting wheat roots from cell death. Interestingly, addition of 2,3,5-triiodobenzoic acid (TIBA) further increased CuONPs toxicity even in the presence of Ca, but the addition of IAA rescued this effect of TIBA. These results clearly show that Ca mitigates CuONPs toxicity in wheat seedlings by involving IAA. Further, the results also showed that endogenous NO has a positive and indispensable role in Ca-mediated mitigation of CuONPs toxicity in wheat seedlings.
Collapse
Affiliation(s)
- Vaishali Yadav
- D D Pant Interdisciplinary Research Laboratory, Department of Botany, Prayagraj, India
| | - Rafaqat Ali Gill
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Namira Arif
- D D Pant Interdisciplinary Research Laboratory, Department of Botany, Prayagraj, India
| | - Skhawat Ali Gill
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constitute Post Graduate College of University of Allahabad, Prayagraj, India
| | - Naleeni Ramawat
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, India
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | | | - Devendra K Chauhan
- D D Pant Interdisciplinary Research Laboratory, Department of Botany, Prayagraj, India
| |
Collapse
|
367
|
Zeeshan M, Hu YX, Iqbal A, Salam A, Liu YX, Muhammad I, Ahmad S, Khan AH, Hale B, Wu HY, Zhou XB. Amelioration of AsV toxicity by concurrent application of ZnO-NPs and Se-NPs is associated with differential regulation of photosynthetic indexes, antioxidant pool and osmolytes content in soybean seedling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112738. [PMID: 34481352 DOI: 10.1016/j.ecoenv.2021.112738] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Arsenic is a significant food safety and environmental concern due to its mutagenic and carcinogenic effect on living organism. Soybean (Glycine max [L.] Merrill) is a global staple crop grown intensively in arsenic-contaminated regions of the world (e.g., Southern Province of China). Therefore, the objective of this study was to investigate whether Se-NPs and/or ZnO-NPs could be used as an eco-friendly and efficient amendment to reduce arsenic uptake and toxicity in soybean. Ten-days-old seedling, grown in vermiculite, were transferred to hydroponic media and further grown till V2 growth stage appeared. AsV (25 μM Na2HAsO4) stressed plants were treated with ZnONP (25 μM ZnO) and SeNP (25 μM Se) separately and in combination, which were grown for another 10 d. The result demonstrated that arsenic-treated soybean plants displayed a reduction in photosynthetic efficiency, increased proline and glycine betaine accumulation in tissues, and altered antioxidant activity compared to an untreated control. The application of zinc oxide and selenium nanoparticles, both independently and in tandem, reduced arsenic stress in root and shoot tissues and rescued plant health. This was reflected through increased levels of reduced glutathione content, ascorbic acid, and various photosynthesis- and antioxidant-relevant enzymes. In addition, nanoparticle-treated soybean plants displayed higher expression of defense- and detoxification-related genes compared to controls. Cellular toxicants (i.e., oxidized glutathione, reactive oxygen species, and malondialdehyde) were reduced upon nanoparticle treatment. These data collectively suggest that selenium and zinc oxide nanoparticles may be a solution to ameliorate arsenic toxicity in agricultural soils and crop plants.
Collapse
Affiliation(s)
- Muhammad Zeeshan
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yu Xin Hu
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Anas Iqbal
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Abdul Salam
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yong Xin Liu
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Ihsan Muhammad
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Shakeel Ahmad
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Aamir Hamid Khan
- National Key Lab of Crop Genetic Improvement, Huazhong Agriculture University, Wuhan, China
| | - Brett Hale
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, USA
| | - Hai Yan Wu
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xun Bo Zhou
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China.
| |
Collapse
|
368
|
Siddiqui MH, Alamri S, Mukherjee S, Al-Amri AA, Alsubaie QD, Al-Munqedhi BMA, Ali HM, Kalaji HM, Fahad S, Rajput VD, Narayan OP. Molybdenum and hydrogen sulfide synergistically mitigate arsenic toxicity by modulating defense system, nitrogen and cysteine assimilation in faba bean (Vicia faba L.) seedlings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117953. [PMID: 34438168 DOI: 10.1016/j.envpol.2021.117953] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/25/2021] [Accepted: 08/10/2021] [Indexed: 05/10/2023]
Abstract
Hydrogen sulfide (H2S) has emerged as a potential gasotransmitter in plants with a beneficial role in stress amelioration. Despite the various known functions of H2S in plants, not much information is available to explain the associative role of molybdenum (Mo) and hydrogen sulfide (H2S) signaling in plants under arsenic toxicity. In view to address such lacunae in our understanding of the integrative roles of these biomolecules, the present work attempts to decipher the roles of Mo and H2S in mitigation of arsenate (AsV) toxicity in faba bean (Vicia faba L.) seedlings. AsV-stressed seedlings supplemented with exogenous Mo and/or NaHS treatments (H2S donor) showed resilience to AsV toxicity manifested by reduction of apoptosis, reactive oxygen species (ROS) content, down-regulation of NADPH oxidase and GOase activity followed by upregulation of antioxidative enzymes in leaves. Fluorescent localization of ROS in roots reveals changes in its intensity and spatial distribution in response to MO and NaHS supplementation during AsV stress. Under AsV toxicity conditions, seedlings subjected to Mo + NaHS showed an increased rate of nitrogen metabolism evident by elevation in nitrate reductase, nitrite reductase and glutamine synthetase activity. Furthermore, the application of Mo and NaHS in combination positively upregulates cysteine and hydrogen sulfide biosynthesis in the absence and presence of AsV stress. Mo plus NaHS-supplemented seedlings exposed to AsV toxicity showed a substantial reduction in oxidative stress manifested by reduced ELKG, lowered MDA content and higher accumulation of proline in leaves. Taken together, the present findings provide substantial evidence on the synergetic role of Mo and H2S in mitigating AsV stress in faba bean seedlings. Thus, the application of Mo and NaHS reveals their agronomic importance to encounter heavy metal stress for management of various food crops.
Collapse
Affiliation(s)
- Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia.
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal, 742213, India
| | - Abdullah A Al-Amri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Qasi D Alsubaie
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Bander M A Al-Munqedhi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Hazem M Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska 159, 02-776, Warsaw, Poland; Institute of Technology and Life Sciences, National Research Institute, Falenty, Al. Hrabska 3, 05-090, Raszyn, Poland
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical, Bio Resource, College of Tropical Crops, Hainan University, Haikou, 570228, China; Department of Agronomy, The University of Haripur, Haripur, 22620, Pakistan
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | | |
Collapse
|
369
|
ElSayed AI, Rafudeen MS, Gomaa AM, Hasanuzzaman M. Exogenous melatonin enhances the reactive oxygen species metabolism, antioxidant defense-related gene expression, and photosynthetic capacity of Phaseolus vulgaris L. to confer salt stress tolerance. PHYSIOLOGIA PLANTARUM 2021; 173:1369-1381. [PMID: 33619766 DOI: 10.1111/ppl.13372] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/28/2021] [Accepted: 02/16/2021] [Indexed: 05/03/2023]
Abstract
Melatonin (MT) has been reported to regulate certain plant physiological processes and promote tolerance to different environmental stresses such as salinity. Green bean (Phaseolus vulgaris L. cv. Royal Nel) seedlings were exposed to 200 mM NaCl with or without pre-treatment with 150 μM MT. Salt stress led to a lower chlorophyll content, a reduced photosynthetic activity, increased reactive oxygen species (ROS) contents, and decreased photosystem II (PSII) activity. The application of exogenous MT to green bean seedlings under salt stress improved photosynthetic activity and alleviated the oxidative damages by enhancing the activity of antioxidant enzymes. The expression of catalase (CAT1), glutathione reductase (GR), superoxide dismutase (CuZnSOD1), ascorbate peroxidase (APX), Peroxiredoxin Q (PrxQ), and 2-cysteine peroxiredoxin (2-Cys-Prx) encoding genes was significantly increased under salt stress in green bean seedling compared with the untreated control. However, plants treated with exogenous MT and NaCl had 28.8, 21.1, 26.1, 20, 26.2, and 22.4% higher CuZnSOD, CAT1, APX, GR, PrxQ, and 2-Cys-Prx transcript levels, respectively, compared to NaCl stress alone. Our study revealed the protective mechanisms mediated by exogenous MT application in NaCl stress alleviation and our findings could be used in the management of green bean cultivation in salinity-prone soils.
Collapse
Affiliation(s)
| | | | - Ayman M Gomaa
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| |
Collapse
|
370
|
Dubey AK, Kumar A, Kumar N, Kumar S, Gautam A, Ansari MA, Manika N, Lal S, Behera SK, Mallick S, Sanyal I. Over-expression of chickpea metallothionein 1 gene confers tolerance against major toxic heavy metal stress in Arabidopsis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2665-2678. [PMID: 35035129 PMCID: PMC8720129 DOI: 10.1007/s12298-021-01103-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 05/19/2023]
Abstract
UNLABELLED Heavy metals are ubiquitously present in nature, including soil, water, and thus in plants, thereby causing a potential health risk. This study has investigated the role and efficiency of the chickpea metallothionein 1 (MT1) gene against the major toxic heavy metals, i.e., As [As(III) and As(V)], Cr(VI), and Cd toxicity. MT1 over-expressing transgenic lines had reduced As(V) and Cr(VI) accumulation, whereas Cd accumulation was enhanced in the L3 line. The physiological responses (WUE, A, Gs, E, ETR, and qP) were noted to be enhanced in transgenic plants, whereas qN was decreased. Similarly, the antioxidant molecules and enzymatic activities (GSH/GSSG, Asc/DHA, APX, GPX, and GRX) were higher in the transgenic plants. The activity of antioxidant enzymes, i.e., SOD, APX, GPX, and POD, were highest in the Cd-treated lines, whereas higher CAT activity was observed in As(V)-L1 and GRX in Cr-L3 line. The stress markers TBARS, H2O2, and electrolyte leakage were lower in transgenic lines in comparison to WT, while RWC was enhanced in the transgenic lines, and the transcript of MT1 gene was accumulated in the transgenic lines. Similarly, the level of stress-responsive amino acid cysteine was higher in transgenic plants as compared to WT plants. Among all the heavy metals, MT1 over-expressing lines showed a highly increased accumulation of Cd, whereas a non-significant effect was observed with As(III) treatment. Overall, the results demonstrate that Arabidopsis thaliana transformed with the MT1 gene mitigates heavy metal stress by regulating the defense mechanisms in plants. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01103-1.
Collapse
Affiliation(s)
- Arvind Kumar Dubey
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| | - Anil Kumar
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| | - Navin Kumar
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| | - Sanoj Kumar
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| | - Ambedkar Gautam
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| | - Mohd Akram Ansari
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| | - N. Manika
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| | - Swati Lal
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| | - Soumit Kumar Behera
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| | - Shekhar Mallick
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| | - Indraneel Sanyal
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| |
Collapse
|
371
|
Hu W, Zhang J, Yan K, Zhou Z, Zhao W, Zhang X, Pu Y, Yu R. Beneficial effects of abscisic acid and melatonin in overcoming drought stress in cotton (Gossypium hirsutum L.). PHYSIOLOGIA PLANTARUM 2021; 173:2041-2054. [PMID: 34487361 DOI: 10.1111/ppl.13550] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 05/23/2023]
Abstract
Pot experiments were performed to study the effects of abscisic acid (ABA) and melatonin (MT) on cotton drought tolerance and to explore their combined effects. ABA or MT spraying promoted water status and antioxidant capacity of drought-stressed leaves, which was conducive to scavenge ROS, finally increasing lint yield. However, the mitigation mechanisms of ABA and MT on drought were not identical, which were mainly manifested as: (1) ABA increased the relative water content (RWC) of drought-stressed leaves via, reducing water loss, but MT increased it via, promoting water uptake efficiency; (2) for enzymatic antioxidant system, ABA and MT might modulate different kinds of superoxide dismutase to catalyze the reduction of O2 - under drought; and (3) for ascorbic acid (AsA)-glutathione (GSH) cycle, MT increased the glutathione reductase activity in drought-stressed leaves, but ABA did not. ABA + MT spraying led to higher leaf RWC and total antioxidant capacity than single hormone under drought, leading to a lower H2 O2 level. For the enzymatic antioxidant system, single hormone treatment affected Cu/ZnSOD or MnSOD expression, but ABA + MT upregulated both genes in drought-stressed leaves. Hormones combined application also had higher CAT expression than single hormone. For AsA-GSH cycle, ABA + MT had higher dehydroascorbic acid reductase activity than single hormone, resulting in higher AsA content. Moreover, hormones combined application caused higher ascorbate peroxidase activity than single hormone, suggesting that their combination synergistically improved the ability of AsA to eliminate ROS. All these confirmed that ABA plus MT had synergistic effects on improving crop drought resistance.
Collapse
Affiliation(s)
- Wei Hu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Jipeng Zhang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Ke Yan
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Zhiguo Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Wenqing Zhao
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Xuandi Zhang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yanhong Pu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Runxing Yu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
372
|
Gallé Á, Bela K, Hajnal Á, Faragó N, Horváth E, Horváth M, Puskás L, Csiszár J. Crosstalk between the redox signalling and the detoxification: GSTs under redox control? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:149-159. [PMID: 34798389 DOI: 10.1016/j.plaphy.2021.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/24/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Reactive oxygen species (ROS), antioxidants and their reduction-oxidation (redox) states all contribute to the redox homeostasis, but glutathione is considered to be the master regulator of it. We aimed to understand the relationship between the redox potential and the diverse glutathione transferase (GST) enzyme family by comparing the stress responses of two tomato cultivars (Solanum lycopersicum 'Moneymaker' and 'Ailsa Craig'). Four-week-old plants were treated by two concentrations of mannitol, NaCl and salicylic acid. The lower H2O2 and malondialdehyde contents indicated higher stress tolerance of 'Moneymaker'. The redox status of roots was characterized by measuring the reduced and oxidized form of ascorbate and glutathione spectrophotometrically after 24 h. The redox potential of 'Ailsa Craig' was more oxidized compared to 'Moneymaker' even under control conditions and became more positive due to treatments. High-throughput quantitative real-time PCR revealed that besides overall higher expression levels, SlGSTs were activated more efficiently in 'Moneymaker' due to stresses, resulting in generally higher GST and glutathione peroxidase activities compared to 'Ailsa Craig'. The expression level of SlGSTs correlated differently, however Pearson's correlation analysis showed usually strong positive correlation between SlGST transcription and glutathione redox potential. The possible redox regulation of SlGST expressions was discussed.
Collapse
Affiliation(s)
- Ágnes Gallé
- Department of Plant Biology, Faculty of Sciences, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - Krisztina Bela
- Department of Plant Biology, Faculty of Sciences, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - Ádám Hajnal
- Department of Plant Biology, Faculty of Sciences, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - Nóra Faragó
- Avidin Ltd., Alsó Kikötő sor 11/D, Szeged, 6726, Hungary; Laboratory of Functional Genomics, Biological Research Centre, Temesvári körút 62, Szeged, 6726, Hungary; Research Group for Cortical Microcircuits of the Hungarian Academy of Sciences, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Edit Horváth
- Department of Plant Biology, Faculty of Sciences, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - Mátyás Horváth
- Department of Plant Biology, Faculty of Sciences, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - László Puskás
- Avidin Ltd., Alsó Kikötő sor 11/D, Szeged, 6726, Hungary; Laboratory of Functional Genomics, Biological Research Centre, Temesvári körút 62, Szeged, 6726, Hungary
| | - Jolán Csiszár
- Department of Plant Biology, Faculty of Sciences, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary.
| |
Collapse
|
373
|
Hannachi S, Werbrouck S, Bahrini I, Abdelgadir A, Siddiqui HA, Van Labeke MC. Obtaining Salt Stress-Tolerant Eggplant Somaclonal Variants from In Vitro Selection. PLANTS (BASEL, SWITZERLAND) 2021; 10:2539. [PMID: 34834902 PMCID: PMC8617975 DOI: 10.3390/plants10112539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 05/14/2023]
Abstract
An efficient regeneration protocol was applied to regenerate shoots on salt stress-tolerant calli lines of aubergine (Solanum melongena). These NaCl-tolerant cell lines were obtained by two different methods. On the one hand, the developed callus tissue was transferred to a medium with a continuous salt content of 40, 80, 120, or 160 mM NaCl. On the other hand, the callus tissue was subjected to a stepwise increasing salinity to 160 mM NaCl every 30 days. With the second method, calli which could be selected were characterized by compact growth, a greenish color, and absence of necrotic zones. When grown on salt-free medium again, NaCl-tolerant calli showed a decline in relative growth rate and water content in comparison to the control line. This was more obvious in the 120 mM NaCl-tolerant callus. Lipid peroxidase activity increased in 40 and 80 mM NaCl-tolerant calli; yet did not increase further in 120 mM-tolerant callus. An increase in ascorbic acid content was observed in 80 and 120 mM NaCl-tolerant calli compared to the 40 mM NaCl-tolerant lines, in which ascorbic acid content was twice that of the control. All NaCl-tolerant lines showed significantly higher superoxide dismutase (SOD) (208-305-370 µmol min-1 mg-1 FW) and catalase (CAT) (136-211-238 µmol min-1 mg-1 FW) activities compared to control plants (231 and 126 µmol min-1 mg-1 FW). Plants were regenerated on the calli lines that could tolerate up to 120 mM NaCl. From the 32 plants tested in vitro, ten plants with a higher number of leaves and root length could be selected for further evaluation in the field. Their high salt tolerance was evident by their more elevated fresh and dry weight, their more increased relative water content, and a higher number and weight of fruits compared to the wild-type parental control. The presented work shows that somaclonal variation can be efficiently used to develop salt-tolerant mutants.
Collapse
Affiliation(s)
- Sami Hannachi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 81451, Saudi Arabia; (I.B.); (A.A.); (H.A.S.)
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (S.W.); (M.C.V.L.)
| | - Stefaan Werbrouck
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (S.W.); (M.C.V.L.)
| | - Insaf Bahrini
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 81451, Saudi Arabia; (I.B.); (A.A.); (H.A.S.)
| | - Abdelmuhsin Abdelgadir
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 81451, Saudi Arabia; (I.B.); (A.A.); (H.A.S.)
| | - Hira Affan Siddiqui
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 81451, Saudi Arabia; (I.B.); (A.A.); (H.A.S.)
| | - Marie Christine Van Labeke
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (S.W.); (M.C.V.L.)
| |
Collapse
|
374
|
Spermine-Mediated Tolerance to Selenium Toxicity in Wheat ( Triticum aestivum L.) Depends on Endogenous Nitric Oxide Synthesis. Antioxidants (Basel) 2021; 10:antiox10111835. [PMID: 34829706 PMCID: PMC8614684 DOI: 10.3390/antiox10111835] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 01/24/2023] Open
Abstract
Excess selenium (Se) causes toxicity, and nitric oxide (NO)’s function in spermine (Spm)-induced tolerance to Se stress is unknown. Using wheat plants exposed to 1 mM sodium selenate—alone or in combination with either 1 mM Spm, 0.1 mM NO donor sodium nitroprusside (SNP) or 0.1 mM NO scavenger cPTIO—the potential beneficial effects of these compounds to palliate Se-induced stress were evaluated at physiological, biochemical and molecular levels. Se-treated plants accumulated Se in their roots (92%) and leaves (95%) more than control plants. Furthermore, Se diminished plant growth, photosynthetic traits and the relative water content and increased the levels of malondialdehyde, H2O2, osmolyte and endogenous NO. Exogenous Spm significantly decreased the levels of malondialdehyde by 28%, H2O2 by 37% and electrolyte leakage by 42%. Combined Spm/NO treatment reduced the Se content and triggered plant growth, photosynthetic traits, antioxidant enzymes and glyoxalase systems. Spm/NO also upregulated MTP1, MTPC3 and HSP70 and downregulated TaPCS1 and NRAMP1 (metal stress-related genes involved in selenium uptake, translocation and detoxification). However, the positive effects of Spm on Se-stressed plants were eliminated by the NO scavenger. Accordingly, data support the notion that Spm palliates selenium-induced oxidative stress since the induced NO elicits antioxidant defence upregulation but downregulates Se uptake and translocation. These findings pave the way for potential biotechnological approaches to supporting sustainable wheat crop production in selenium-contaminated areas.
Collapse
|
375
|
Zhu C, Wu S, Sun T, Zhou Z, Hu Z, Yu J. Rosmarinic Acid Delays Tomato Fruit Ripening by Regulating Ripening-Associated Traits. Antioxidants (Basel) 2021; 10:1821. [PMID: 34829692 PMCID: PMC8614985 DOI: 10.3390/antiox10111821] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/05/2022] Open
Abstract
Fruits are excellent sources of essential vitamins and health-boosting minerals. Recently, regulation of fruit ripening by both internal and external cues for the improvement of fruit quality and shelf life has received considerable attention. Rosmarinic acid (RA) is a kind of natural plant-derived polyphenol, widely used in the drug therapy and food industry due to its distinct physiological functions. However, the role of RA in plant growth and development, especially at the postharvest period of fruits, remains largely unknown. Here, we demonstrated that postharvest RA treatment delayed the ripening in tomato fruits. Exogenous application of RA decreased ripening-associated ethylene production and inhibited the fruit color change from green to red based on the decline in lycopene accumulation. We also found that the degradation of sucrose and malic acid during ripening was significantly suppressed in RA-treated tomato fruits. The results of metabolite profiling showed that RA application promoted the accumulation of multiple amino acids in tomato fruits, such as aspartic acid, serine, tyrosine, and proline. Meanwhile, RA application also strengthened the antioxidant system by increasing both the activity of antioxidant enzymes and the contents of reduced forms of antioxidants. These findings not only unveiled a novel function of RA in fruit ripening, but also indicated an attractive strategy to manage and improve shelf life, flavor, and sensory evolution of tomato fruits.
Collapse
Affiliation(s)
- Changan Zhu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China; (C.Z.); (S.W.); (T.S.); (Z.Z.); (J.Y.)
| | - Shaofang Wu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China; (C.Z.); (S.W.); (T.S.); (Z.Z.); (J.Y.)
| | - Ting Sun
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China; (C.Z.); (S.W.); (T.S.); (Z.Z.); (J.Y.)
| | - Zhiwen Zhou
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China; (C.Z.); (S.W.); (T.S.); (Z.Z.); (J.Y.)
| | - Zhangjian Hu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China; (C.Z.); (S.W.); (T.S.); (Z.Z.); (J.Y.)
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China; (C.Z.); (S.W.); (T.S.); (Z.Z.); (J.Y.)
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| |
Collapse
|
376
|
Liu B, Jing D, Liu F, Ma H, Liu X, Peng L. Serendipita indica alleviates drought stress responses in walnut (Juglans regia L.) seedlings by stimulating osmotic adjustment and antioxidant defense system. Appl Microbiol Biotechnol 2021; 105:8951-8968. [PMID: 34735609 DOI: 10.1007/s00253-021-11653-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 11/28/2022]
Abstract
Juglans regia L. is a good host for Serendipita indica. Under drought condition, seedlings colonized with S. indica showed higher values in plant height, total fresh biomass, root/shoot ratio, relative growth rate, leaf relative water content and chlorophyll content, gas exchange parameters, maximal photochemical efficiency, photochemical quenching, and effective photosystem II quantum yield than the uncolonized seedlings. It suggested beneficial effects of S. indica on host plants' growth and physiological parameters in response to drought. In comparison with the uncolonized seedlings, S. indica-colonized seedlings showed lower levels in hydrogen peroxide, superoxide anion, malondialdehyde, and relative electrical conductivity under drought condition, suggesting the ability of S. indica to prevent or retard the accumulation of reactive oxygen species and to diminish the oxidative injure. Furthermore, walnut seedlings responded to drought by actively accumulating osmotic regulation substances including soluble protein, soluble sugar, and proline. Root colonization with S. indica was more conductive to the accumulation. Moreover, in response to drought stress, walnut seedlings, regardless of colonization, increased activities of superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione reductase, levels of ascorbate and glutathione, and ratios of reduced ascorbate/dehydroascorbic acid and reduced glutathione/oxidized glutathione in leaves and roots. S. indica colonization induced much more increase in the abovementioned indicators as compared to the uncolonized seedlings. Overall, S. indica colonization alleviated the detrimental effects of drought stress by altering root system, enhancing osmotic adjustment, and repressing the accumulation of reactive oxygen species via stimulating antioxidant system including enzymatic and nonenzymatic components. KEY POINTS: • S. indica stimulated root growth of walnut seedlings under drought condition. • S. indica accelerated osmotic adjustment under drought condition. • S. indica activated antioxidant defense mechanism under drought condition.
Collapse
Affiliation(s)
- Binghua Liu
- Shandong Academy of Forestry, 42, East Wenhua Road, Jinan, 250014, Shandong, China. .,Economic Forest Products Quality Inspection Test Center of State Forestry Administration (Jinan), Jinan, 250014, Shandong, China.
| | - Dawei Jing
- Dezhou University, Dezhou, 253023, Shandong, China
| | - Fangchun Liu
- Shandong Academy of Forestry, 42, East Wenhua Road, Jinan, 250014, Shandong, China.,Shandong Engineering Research Center for Ecological Restoration of Forest Vegetation, Jinan, 250014, Shandong, China
| | - Hailin Ma
- Shandong Academy of Forestry, 42, East Wenhua Road, Jinan, 250014, Shandong, China.,Shandong Engineering Research Center for Ecological Restoration of Forest Vegetation, Jinan, 250014, Shandong, China
| | - Xinghong Liu
- Shandong Academy of Forestry, 42, East Wenhua Road, Jinan, 250014, Shandong, China
| | - Lin Peng
- Shandong Academy of Forestry, 42, East Wenhua Road, Jinan, 250014, Shandong, China
| |
Collapse
|
377
|
Gao M, Sun H, Shi M, Wu Q, Ji D, Wang B, Zhang L, Liu Y, Han L, Ruan X, Xu H, Yang W. 2-Keto-L-Gulonic Acid Improved the Salt Stress Resistance of Non-heading Chinese Cabbage by Increasing L-Ascorbic Acid Accumulation. FRONTIERS IN PLANT SCIENCE 2021; 12:697184. [PMID: 34804078 PMCID: PMC8599927 DOI: 10.3389/fpls.2021.697184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Salt stress has long been a prominent obstacle that restricts crop growth, and increasing the L-ascorbic acid (ASA) content of crops is an effective means of alleviating this stress. 2-Keto-L-gulonic acid (2KGA) is a precursor used in industrial ASA production as well as an ASA degradation product in plants. However, to date, no study has investigated the effects of 2KGA on ASA metabolism and salt stress. Here, we evaluated the potential of using 2KGA to improve crop resistance to salt stress (100mM NaCl) through a cultivation experiment of non-heading Chinese cabbage (Brassica campestris ssp. chinensis). The results showed that the leaf and root biomass were significantly improved by 2KGA application. The levels of metabolites and enzymes related to stress resistance were increased, whereas the hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents were decreased. Lipid peroxidation and cell membrane damage were alleviated following 2KGA treatment. Positive correlations were found between photosynthetic pigments and organic solutes, ASA and photosynthetic pigments, and ASA and antioxidant enzymes. In contrast, negative correlations were observed between antioxidant enzymes and H2O2/MDA. Moreover, the expression levels of L-gulono-1,4-lactone oxidase, GDP-mannose pyrophosphorylase, dehydroascorbate reductase-3, and ascorbate peroxidase were increased by 2KGA treatment. These results suggested that exogenous 2KGA application can relieve the inhibitory effect of salt stress on plant growth, and the promotion of ASA synthesis may represent a critical underlying mechanism. Our findings have significant implications for the future application of 2KGA or its fermentation residue in agriculture.
Collapse
Affiliation(s)
- Mingfu Gao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Sun
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- CAS Engineering Laboratory for Green Fertilizers, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Meijun Shi
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiqi Wu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongxu Ji
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bing Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, China
| | - Yang Liu
- Yikang Environment Biotechnology Development Co., Ltd, Shenyang, China
| | - Litao Han
- Yikang Environment Biotechnology Development Co., Ltd, Shenyang, China
| | - Xicheng Ruan
- Yikang Environment Biotechnology Development Co., Ltd, Shenyang, China
| | - Hui Xu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- CAS Engineering Laboratory for Green Fertilizers, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Weichao Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- CAS Engineering Laboratory for Green Fertilizers, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
378
|
Rattanawong K, Koiso N, Toda E, Kinoshita A, Tanaka M, Tsuji H, Okamoto T. Regulatory functions of ROS dynamics via glutathione metabolism and glutathione peroxidase activity in developing rice zygote. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1097-1115. [PMID: 34538012 PMCID: PMC9293154 DOI: 10.1111/tpj.15497] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 06/01/2023]
Abstract
Reactive oxygen species (ROS) play essential roles in plant development and environmental stress responses. In this study, ROS dynamics, the glutathione redox status, the expression and subcellular localization of glutathione peroxidases (GPXs), and the effects of inhibitors of ROS-mediated metabolism were investigated along with fertilization and early zygotic embryogenesis in rice (Oryza sativa). Zygotes and early embryos exhibited developmental arrest upon inhibition of ROS production. Egg cells accumulated high ROS levels, and, after fertilization, intracellular ROS levels progressively declined in zygotes in which de novo expression of GPX1 and 3 was observed through upregulation of the genes. In addition to inhibition of GPX activity, depletion of glutathione impeded early embryonic development and led to failure of the zygote to appropriately decrease H2 O2 levels. Moreover, through monitoring of the glutathione redox status, the developing zygotes exhibited a progressive glutathione oxidation, which became extremely delayed under inhibited GPX activity. Our results provide insights into the importance of ROS dynamics, GPX antioxidant activity, and glutathione redox metabolism during zygotic/embryonic development.
Collapse
Affiliation(s)
- Kasidit Rattanawong
- Department of Biological SciencesTokyo Metropolitan UniversityMinami‐osawaHachioji, TokyoJapan
| | - Narumi Koiso
- Department of Biological SciencesTokyo Metropolitan UniversityMinami‐osawaHachioji, TokyoJapan
| | - Erika Toda
- Department of Biological SciencesTokyo Metropolitan UniversityMinami‐osawaHachioji, TokyoJapan
| | - Atsuko Kinoshita
- Department of Biological SciencesTokyo Metropolitan UniversityMinami‐osawaHachioji, TokyoJapan
| | - Mari Tanaka
- Kihara Institute for Biological ResearchYokohama City UniversityMaiokachoTotsuka‐kuYokohamaKanagawaJapan
| | - Hiroyuki Tsuji
- Kihara Institute for Biological ResearchYokohama City UniversityMaiokachoTotsuka‐kuYokohamaKanagawaJapan
| | - Takashi Okamoto
- Department of Biological SciencesTokyo Metropolitan UniversityMinami‐osawaHachioji, TokyoJapan
| |
Collapse
|
379
|
Gupta S, Seth CS. Salicylic acid alleviates chromium (VI) toxicity by restricting its uptake, improving photosynthesis and augmenting antioxidant defense in Solanum lycopersicum L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2651-2664. [PMID: 34924716 PMCID: PMC8639991 DOI: 10.1007/s12298-021-01088-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/24/2021] [Accepted: 10/05/2021] [Indexed: 05/03/2023]
Abstract
Contamination of agricultural soil by chromium (Cr) is a serious menace to environmental safety and global food security. Although potential of salicylic acid (SA) in mitigating heavy metal (HM) toxicity in plants is well recognized, detailed physiological mechanisms behind such beneficial effects under Cr-stress in tomato (Solanum lycopersicum L.) plant are far from being completely unravelled. The present study evaluated the efficacy of exogenously applied SA, in alleviating Cr-mediated alterations on photosynthesis and antioxidant defense in tomato exposed to three different concentrations of Cr(VI) [0, 50, and 100 mg Cr(VI) kg-1 soil]. Exposure of tomato plants to Cr resulted in increased Cr-accumulation and oxidative damage, as signposted by high Cr concentration in root as well as shoot, augmented malondialdehyde (MDA) and superoxides levels, and inhibition in enzymes of ascorbate-glutathione (AsA-GSH) cycle. Furthermore, a significant (P ≤ 0.05) reduction in photosynthetic pigments and gas exchange parameters was also evident in Cr-stressed tomato plants. Findings of the present study showed that exogenous application of 0.5 mM SA not only promoted plant growth subjected to Cr, but also restored Cr-mediated disturbances in plant physiology. A significant (P ≤ 0.05) decrease in Cr acquisition and translocation as evidenced by improved growth and photosynthesis in SA-treated plants was observed. Additionally, exogenous SA application by virtue of its positive effect on efficient antioxidant system ameliorated the Cr-mediated oxidative stress in tomato plants as signposted by lower MDA and superoxide levels and improved AsA-GSH cycle. Overall, current study advocates the potential of exogenous SA application in amelioration of Cr-mediated physiological disturbances in tomato plant.
Collapse
Affiliation(s)
- Samta Gupta
- Department of Botany, University of Delhi, Delhi, 110007 India
| | | |
Collapse
|
380
|
Colak N, Kurt-Celebi A, Fauzan R, Torun H, Ayaz FA. The protective effect of exogenous salicylic and gallic acids ameliorates the adverse effects of ionizing radiation stress in wheat seedlings by modulating the antioxidant defence system. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:526-545. [PMID: 34826704 DOI: 10.1016/j.plaphy.2021.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Plant growth regulatory substances play a significant role in maintaining developmental and physiological processes in plants under abiotic stress. Apart from traditional plant hormones, the phenolic acids, salicylic acid (SA) and gallic acid (GaA), are emerging players with pivotal roles in alleviating various environmental perturbations. The present study compared the stress alleviation effect of these two phenolic acids in wheat (Triticum aestivum L. 'Gönen-98') seedling whose seeds were used in this study pre-treated with increasing doses of gamma irradiation (IR, 100 > 400 Gy). Leaves from seedlings hydroponically grown for 10 days in medium containing 100 μmol/l SA and GaA were used in the measurements and determinations. Accordingly, exogenous treatment with SA and GaA significantly improved plant growth and photosynthetic activity and regulated stress-induced osmolyte accumulation against γ-irradiation. Treatments also led to significant reductions in TBARS and H2O2 contents. Antioxidant enzyme activities were further stimulated by SA and GaA treatment in comparison to IR alone. The phenolic pool including phenolic acids and GSH content in whole seedlings were promoted by IR and further SA and GaA applications. Contents in phenolic acids liberated from soluble free, soluble ester-conjugated and soluble glycoside-conjugated SA and GaA contents in roots and leaves increased following SA and GaA treatments alone in comparison to the control and IR groups. The present results indicate that SA and GaA can alleviate the ameliorative effects of IR, leading to further oxidative stress, and can improve the tolerance of stressed wheat seedlings by stimulating enzymatic and non-enzymatic antioxidant defence system components.
Collapse
Affiliation(s)
- Nesrin Colak
- Department of Biology, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey.
| | - Aynur Kurt-Celebi
- Department of Biology, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Rızky Fauzan
- Department of Biology, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Hülya Torun
- Biosystem Engineering, Faculty of Agriculture, Düzce University, 81620, Düzce, Turkey
| | - Faik Ahmet Ayaz
- Department of Biology, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| |
Collapse
|
381
|
Saleem M, Fariduddin Q, Castroverde CDM. Salicylic acid: A key regulator of redox signalling and plant immunity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:381-397. [PMID: 34715564 DOI: 10.1016/j.plaphy.2021.10.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/30/2021] [Accepted: 10/03/2021] [Indexed: 05/04/2023]
Abstract
In plants, the reactive oxygen species (ROS) formed during normal conditions are essential in regulating several processes, like stomatal physiology, pathogen immunity and developmental signaling. However, biotic and abiotic stresses can cause ROS over-accumulation leading to oxidative stress. Therefore, a suitable equilibrium is vital for redox homeostasis in plants, and there have been major advances in this research arena. Salicylic acid (SA) is known as a chief regulator of ROS; however, the underlying mechanisms remain largely unexplored. SA plays an important role in establishing the hypersensitive response (HR) and systemic acquired resistance (SAR). This is underpinned by a robust and complex network of SA with Non-Expressor of Pathogenesis Related protein-1 (NPR1), ROS, calcium ions (Ca2+), nitric oxide (NO) and mitogen-activated protein kinase (MAPK) cascades. In this review, we summarize the recent advances in the regulation of ROS and antioxidant defense system signalling by SA at the physiological and molecular levels. Understanding the molecular mechanisms of how SA controls redox homeostasis would provide a fundamental framework to develop approaches that will improve plant growth and fitness, in order to meet the increasing global demand for food and bioenergy.
Collapse
Affiliation(s)
- Mohd Saleem
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | | |
Collapse
|
382
|
Živanović B, Milić Komić S, Nikolić N, Mutavdžić D, Srećković T, Veljović Jovanović S, Prokić L. Differential Response of Two Tomato Genotypes, Wild Type cv. Ailsa Craig and Its ABA-Deficient Mutant flacca to Short-Termed Drought Cycles. PLANTS 2021; 10:plants10112308. [PMID: 34834671 PMCID: PMC8617711 DOI: 10.3390/plants10112308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 01/14/2023]
Abstract
Two tomato genotypes with constitutively different ABA level, flacca mutant and wild type of Ailsa Craig cv. (WT), were subjected to three repeated drought cycles, with the aim to reveal the role of the abscisic acid (ABA) threshold in developing drought tolerance. Differential responses to drought of two genotypes were obtained: more pronounced stomatal closure, ABA biosynthesis and proline accumulation in WT compared to the mutant were compensated by dry weight accumulation accompanied by transient redox disbalance in flacca. Fourier-transform infrared (FTIR) spectra analysis of isolated cell wall material and morphological parameter measurements on tomato leaves indicated changes in dry weight accumulation and carbon re-allocation to cell wall constituents in flacca, but not in WT. A higher proportion of cellulose, pectin and lignin in isolated cell walls from flacca leaves further increased with repeated drought cycles. Different ABA-dependent stomatal closure between drought cycles implies that acquisition of stomatal sensitivity may be a part of stress memory mechanism developed under given conditions. The regulatory role of ABA in the cell wall restructuring and growth regulation under low leaf potential was discussed with emphasis on the beneficial effects of drought priming in developing differential defense strategies against drought.
Collapse
Affiliation(s)
- Bojana Živanović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
| | - Sonja Milić Komić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
| | - Nenad Nikolić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
| | - Dragosav Mutavdžić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
- Center for Green Technologies, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Tatjana Srećković
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
- Center for Green Technologies, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Sonja Veljović Jovanović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
- Center for Green Technologies, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
- Correspondence: (S.V.J.); (L.P.)
| | - Ljiljana Prokić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
- Correspondence: (S.V.J.); (L.P.)
| |
Collapse
|
383
|
Foliar Supplementation of Clove Fruit Extract and Salicylic Acid Maintains the Performance and Antioxidant Defense System of Solanum tuberosum L. under Deficient Irrigation Regimes. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7110435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A field trial was conducted twice (in 2020 and 2021) to evaluate the effect of clove fruit extract (CFE) and/or salicylic acid (SA), which were used as a foliar nourishment, on growth and yield traits, as well as physiological and biochemical indices utilizing potato (Solanum tuberosum L.) plants irrigated with deficient regimes in an arid environment. Three drip irrigation regimes [e.g., well watering (7400 m3 ha−1), moderate drought (6200 m3 ha−1), and severe drought (5000 m3 ha−1)] were designed for this study. The tested growth, yield, and photosynthetic traits, along with the relative water content, were negatively affected, whereas markers of oxidative stress (hydrogen peroxide and superoxide), electrolyte leakage, and peroxidation of membrane lipids (assessed as malondialdehyde level) were augmented along with increased antioxidative defense activities under drought stress. These effects were gradually increased with the gradual reduction in the irrigation regime. However, under drought stress, CFE and/or SA significantly enhanced growth characteristics (fresh and dry weight of plant shoot and plant leaf area) and yield components (average tuber weight, number of plant tubers, and total tuber yield). In addition, photosynthetic attributes (chlorophylls and carotenoids contents, net photosynthetic and transpiration rates, and stomatal conductance) were also improved, and defensive antioxidant components (glutathione, free proline, ascorbate, soluble sugars, and α-tocopherol levels, and activities of glutathione reductase, peroxidase, superoxide dismutase, catalase, and ascorbate peroxidase) were further enhanced. The study findings advocate the idea of using a CFE+SA combined treatment, which was largely efficient in ameliorating potato plant growth and productivity by attenuating the limiting influences of drought stress in dry environments.
Collapse
|
384
|
Koramutla MK, Negi M, Ayele BT. Roles of Glutathione in Mediating Abscisic Acid Signaling and Its Regulation of Seed Dormancy and Drought Tolerance. Genes (Basel) 2021; 12:1620. [PMID: 34681014 PMCID: PMC8535772 DOI: 10.3390/genes12101620] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
Plant growth and development and interactions with the environment are regulated by phytohormones and other signaling molecules. During their evolution, plants have developed strategies for efficient signal perception and for the activation of signal transduction cascades to maintain proper growth and development, in particular under adverse environmental conditions. Abscisic acid (ABA) is one of the phytohormones known to regulate plant developmental events and tolerance to environmental stresses. The role of ABA is mediated by both its accumulated level, which is regulated by its biosynthesis and catabolism, and signaling, all of which are influenced by complex regulatory mechanisms. Under stress conditions, plants employ enzymatic and non-enzymatic antioxidant strategies to scavenge excess reactive oxygen species (ROS) and mitigate the negative effects of oxidative stress. Glutathione (GSH) is one of the main antioxidant molecules playing a critical role in plant survival under stress conditions through the detoxification of excess ROS, maintaining cellular redox homeostasis and regulating protein functions. GSH has recently emerged as an important signaling molecule regulating ABA signal transduction and associated developmental events, and response to stressors. This review highlights the current knowledge on the interplay between ABA and GSH in regulating seed dormancy, germination, stomatal closure and tolerance to drought.
Collapse
Affiliation(s)
| | | | - Belay T. Ayele
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.K.K.); (M.N.)
| |
Collapse
|
385
|
Zhang T, Xiao J, Zhao Y, Zhang Y, Jie Y, Shen D, Yue C, Huang J, Hua Y, Zhou T. Comparative physiological and transcriptomic analyses reveal ascorbate and glutathione coregulation of cadmium toxicity resistance in wheat genotypes. BMC PLANT BIOLOGY 2021; 21:459. [PMID: 34625028 PMCID: PMC8501743 DOI: 10.1186/s12870-021-03225-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/21/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Cadmium (Cd) is a heavy metal with high toxicity that severely inhibits wheat growth and development. Cd easily accumulates in wheat kernels and enters the human food chain. Genetic variation in the resistance to Cd toxicity found in wheat genotypes emphasizes the complex response architecture. Understanding the Cd resistance mechanisms is crucial for combating Cd phytotoxicity and meeting the increasing daily food demand. RESULTS Using two wheat genotypes (Cd resistant and sensitive genotypes T207 and S276, respectively) with differing root growth responses to Cd, we conducted comparative physiological and transcriptomic analyses and exogenous application tests to evaluate Cd detoxification mechanisms. S276 accumulated more H2O2, O2-, and MDA than T207 under Cd toxicity. Catalase activity and levels of ascorbic acid (AsA) and glutathione (GSH) were greater, whereas superoxide dismutase (SOD) and peroxidase (POD) activities were lower in T207 than in S276. Transcriptomic analysis showed that the expression of RBOHA, RBOHC, and RBOHE was significantly increased under Cd toxicity, and two-thirds (22 genes) of the differentially expressed RBOH genes had higher expression levels in S276 than inT207. Cd toxicity reshaped the transcriptional profiling of the genes involving the AsA-GSH cycle, and a larger proportion (74.25%) of the corresponding differentially expressed genes showed higher expression in T207 than S276. The combined exogenous application of AsA and GSH alleviated Cd toxicity by scavenging excess ROS and coordinately promoting root length and branching, especially in S276. CONCLUSIONS The results indicated that the ROS homeostasis plays a key role in differential Cd resistance in wheat genotypes, and the AsA-GSH cycle fundamentally and vigorously influences wheat defense against Cd toxicity, providing insight into the physiological and transcriptional mechanisms underlying Cd detoxification.
Collapse
Affiliation(s)
- Tao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Jingui Xiao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Yongsheng Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Yifan Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Yaqi Jie
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Dandan Shen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Caipeng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Yingpeng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
386
|
Akter S, Khan MS, Smith EN, Flashman E. Measuring ROS and redox markers in plant cells. RSC Chem Biol 2021; 2:1384-1401. [PMID: 34704044 PMCID: PMC8495998 DOI: 10.1039/d1cb00071c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/28/2021] [Indexed: 01/05/2023] Open
Abstract
Reactive oxygen species (ROS) are produced throughout plant cells as a by-product of electron transfer processes. While highly oxidative and potentially damaging to a range of biomolecules, there exists a suite of ROS-scavenging antioxidant strategies that maintain a redox equilibrium. This balance can be disrupted in the event of cellular stress leading to increased ROS levels, which can act as a useful stress signal but, in excess, can result in cell damage and death. As crop plants become exposed to greater degrees of multiple stresses due to climate change, efforts are ongoing to engineer plants with greater stress tolerance. It is therefore important to understand the pathways underpinning ROS-mediated signalling and damage, both through measuring ROS themselves and other indicators of redox imbalance. The highly reactive and transient nature of ROS makes this challenging to achieve, particularly in a way that is specific to individual ROS species. In this review, we describe the range of chemical and biological tools and techniques currently available for ROS and redox marker measurement in plant cells and tissues. We discuss the limitations inherent in current methodology and opportunities for advancement.
Collapse
Affiliation(s)
- Salma Akter
- Department of Chemistry, University of Oxford Oxford UK
- Faculty of Biological Sciences, University of Dhaka Dhaka 1000 Bangladesh
| | - Mohammad Shahneawz Khan
- Department of Chemistry, University of Oxford Oxford UK
- Faculty of Biological Sciences, University of Dhaka Dhaka 1000 Bangladesh
| | | | | |
Collapse
|
387
|
Wakao S, Niyogi KK. Chlamydomonas as a model for reactive oxygen species signaling and thiol redox regulation in the green lineage. PLANT PHYSIOLOGY 2021; 187:687-698. [PMID: 35237823 PMCID: PMC8491031 DOI: 10.1093/plphys/kiab355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/13/2021] [Indexed: 05/15/2023]
Abstract
One-sentence summary: Advances in proteomic and transcriptomic studies have made Chlamydomonas a powerful research model in redox and reactive oxygen species regulation with unique and overlapping mechanisms with plants.
Collapse
Affiliation(s)
- Setsuko Wakao
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Author for communication: Senior author
| | - Krishna K. Niyogi
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
| |
Collapse
|
388
|
Song YJ, Li Y, Leng Y, Li SW. 24-epibrassinolide improves differential cadmium tolerance of mung bean roots, stems, and leaves via amending antioxidative systems similar to that of abscisic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52032-52045. [PMID: 33999324 DOI: 10.1007/s11356-021-14404-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) pollution has attracted global concern. In the present study, the biochemical mechanisms underlying the amelioration of 24-epibrassinolide (eBL) and abscisic acid (ABA) on Cd tolerance of roots, stems, and leaves in mung bean seedlings were comparatively analyzed. Foliar application of eBL markedly ameliorated the growth of mung bean seedling exposed to 100 μM Cd. eBL alone had no significant effects on the activities of antioxidative enzymes and the contents of glutathione (GSH) and polyphenols in the three organs whereas significantly increased the root, stem, and leaf proline contents on average by 54.9%, 39.9%, and 94.4%, respectively, and leaf malondialdehyde (MDA) content on average by 69.0% compared with the controls. When the plants were exposed to Cd, eBL significantly reversed the Cd-increased root ascorbate peroxidase (APX) and superoxide dismutase (SOD) activities, root polyphenol, proline, and GSH levels, leaf chlorophyll contents, and MDA levels in the three organs. eBL significantly restored the Cd-decreased leaf catalase (CAT) activity and leaf polyphenol levels. These results indicated that eBL played roles in maintaining cellular redox homeostasis and evidently alleviated Cd-caused membrane lipid peroxidation via controlling the activity of antioxidative systems. eBL mediated the differential responses of cellular biochemical processes in the three organs to Cd exposure. Furthermore, a comparative analysis revealed that, under Cd stress, the effects of eBL on the biochemical processes were very similar to those of ABA, suggesting that ABA and eBL improve plant Cd tolerance via some common downstream pathways.
Collapse
Affiliation(s)
- Ya-Juan Song
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, P. R. China
| | - Yi Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, P. R. China
| | - Yan Leng
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, P. R. China
| | - Shi-Weng Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, P. R. China.
| |
Collapse
|
389
|
Reginato M, Cenzano AM, Arslan I, Furlán A, Varela C, Cavallin V, Papenbrock J, Luna V. Na 2SO 4 and NaCl salts differentially modulate the antioxidant systems in the highly stress tolerant halophyte Prosopis strombulifera. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:748-762. [PMID: 34509937 DOI: 10.1016/j.plaphy.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/02/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Prosopis strombulifera (Lam.) Benth. is a halophytic shrub abundant in high-salinity areas in central Argentina, with high tolerance against NaCl but strong growth inhibition by Na2SO4. In the present study, the modulation of the antioxidant systems (enzymatic and non-enzymatic components) was analyzed under different salt treatments (NaCl, Na2SO4 and the iso-osmotic mixture) in hydroponic cultivation. Na2SO4-treated plants showed strong indications of oxidative stress (H2O2 and O2-• increase). Modifications in antioxidant enzymes activities were observed mainly under Na2SO4 treatment, where CAT seems to play an important role in early detoxification of H2O2 in roots, whereas SOD and APX have a predominant role in leaves. As part of the non-enzymatic system, 21 compounds were identified in leaves, being polyphenols the most abundant. Control plants contained the major variety of detected phytochemicals (14). Na2SO4-treated plants contained 10 compounds and NaCl-treated plants nine compounds, but with a different profile. NaCl-treated plants showed the highest antioxidant capacity. Our findings confirm that different types of salt treatments provoke a differential modulation of the antioxidant systems. Polyphenols and other ROS-detoxifying compounds, in a joint action with the enzymatic antioxidant system, are proposed to have a fundamental role in the cellular protection of P. strombulifera plants under severe oxidative stress. Our findings also highlight the potential of this halophyte as a valuable source of bioactive compounds with high antioxidant activity and health benefits.
Collapse
Affiliation(s)
- Mariana Reginato
- Laboratorio de Fisiología Vegetal Interacción Planta-Ambiente, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina; Instituto de Investigaciones Agrobiotecnológicas (INIAB-UNRC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto, Córdoba, Argentina.
| | - Ana M Cenzano
- Laboratorio de Ecofisiología y Bioquímica Vegetal. Instituto Patagónico para el Estudio de los Ecosistemas Continentales- Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC- CONICET). Puerto Madryn, Chubut, Argentina
| | - Idris Arslan
- Biomedical Eng. Incivez, Bulent Ecevit University, Zonguldak, Turkey
| | - Ana Furlán
- Instituto de Investigaciones Agrobiotecnológicas (INIAB-UNRC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto, Córdoba, Argentina; Biología, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Celeste Varela
- Laboratorio de Fisiología Vegetal Interacción Planta-Ambiente, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Vanina Cavallin
- Laboratorio de Bioquímica Vegetal. Instituto de Biología Agrícola de Mendoza. Consejo Nacional de Investigaciones Científicas y Técnicas (IBAM-CONICET). Chacras de Coria, Mendoza, Argentina
| | - Jutta Papenbrock
- Institute of Botany, Leibniz University Hannover, Herrenhäuserstr. 2, D-30419, Hannover, Germany
| | - Virginia Luna
- Laboratorio de Fisiología Vegetal Interacción Planta-Ambiente, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina; Instituto de Investigaciones Agrobiotecnológicas (INIAB-UNRC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto, Córdoba, Argentina
| |
Collapse
|
390
|
Kaya C, Polat T, Ashraf M, Kaushik P, Alyemeni MN, Ahmad P. Endogenous nitric oxide and its potential sources regulate glutathione-induced cadmium stress tolerance in maize plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:723-737. [PMID: 34500197 DOI: 10.1016/j.plaphy.2021.08.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/14/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
It was aimed to assess that up to what extent endogenous nitric oxide (NO) and its sources are involved in glutathione (GSH)-mediated tolerance of maize plants to cadmium (Cd) stress. The Cd-stressed maize plants were sprayed with or without GSH (1.0 mM) once every week for two weeks. Before initiating the stress treatment, the Cd-stressed plants sprayed with GSH were supplied with or without 0.1 mM, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO; a NO scavenger) for two weeks or with 0.1 mM sodium tungstate (ST; a nitrate reductase inhibitor), or 0.1 mM NG-nitro-L-arginine methyl ester hydrochloride (L-NAME). Cadmium stress suppressed the activities of dehydroascorbate reductase, monodehydroascorbate reductase, and glyoxalase II, while increased leaf NO, Cadmium content, proline, oxidative stress, the activities of glutathione reductase, ascorbate peroxidase, the key enzymes of oxidative defense system, glyoxalase I, NR and NOS. GSH reduced oxidative stress and tissue Cd2+ content, but it improved growth, altered water relations, and additionally increased proline levels, activities of the AsA-GSH cycle, key enzymatic antioxidants, glyoxalase I and II, NR and NOS as well as NO content. The cPTIO and ST supplementation abolished the beneficial effects of GSH by reducing the activities of NO and NR. However, L-NAME did not retreat the favorable effects of GSH, although it reduced the NOS activity without eliminating NO content, suggesting that NR might be a prospective source of NO generated by GSH in Cd-stressed plants, which in turn accelerated the activities of antioxidant enzymes.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Agriculture Faculty, Harran University, Sanliurfa, Turkey
| | - Tahir Polat
- Field Crops Department, Agriculture Faculty, Harran University, Sanliurfa, Turkey
| | | | - Prashant Kaushik
- Kikugawa Research Station, Yokohama Ueki, 2265, Kamo, Kikugawa City, Shizuoka, 439-0031, Japan
| | | | - Parvaiz Ahmad
- Botany and Microbiology Department, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
391
|
Ma Y, He B, Wang X, He L, Niu J, Huan L, Lu X, Xie X, Wang G. Differential proteomic analysis by iTRAQ reveals the growth mechanism in Pyropia yezoensis mutant. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
392
|
Panjekobi M, Einali A. Trehalose treatment alters carbon partitioning and reduces the accumulation of individual metabolites but does not affect salt tolerance in the green microalga Dunaliella bardawil. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2333-2344. [PMID: 34744369 PMCID: PMC8526648 DOI: 10.1007/s12298-021-01078-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/27/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
The effects of trehalose (Tre), a non-reducing disaccharide, on metabolic changes, antioxidant status, and salt tolerance in Dunaliella bardawil cells were investigated. Algal suspensions containing 1, 2, and 3 M NaCl were treated with 5 mM Tre. While the content of pigments, reducing sugars, proteins, glycerol, and ascorbate pool accumulated with increasing salinity, the content of non-reducing sugars, starch, amino acids, proline, hydrogen peroxide, and lipid peroxidation level decreased significantly. Tre-treated cells showed a decrease in pigments content, reducing sugars, starch, proteins, amino acids, proline, glycerol, and the activity of non-specific peroxidase and polyphenol oxidase, but an increase in non-reducing sugars, oxidized ascorbate, and ascorbate peroxidase activity occurred unchanged in the ascorbate pool. However, the density and fresh weight of the cells remained statistically unchanged in all Tre-treated and untreated cultures. These results suggest that D. bardawil cells potentially tolerate different salt levels by accumulating metabolites, whereas Tre treatment changes carbon partitioning and significantly reduces beneficial metabolites without altering salt tolerance. Therefore, the regulation of carbon partitioning rather than the amount of assimilated carbon may play an important role in inducing salinity tolerance of D. bardawil. However, Tre is not able to enhance the salt tolerance of halotolerants and is even economically damaging due to the reduction of unique metabolites such as glycerol and β-carotene.
Collapse
Affiliation(s)
- Mahdieh Panjekobi
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Alireza Einali
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
393
|
Chen P, Yang W, Jin S, Liu Y. Hydrogen sulfide alleviates salinity stress in Cyclocarya paliurus by maintaining chlorophyll fluorescence and regulating nitric oxide level and antioxidant capacity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:738-747. [PMID: 34509132 DOI: 10.1016/j.plaphy.2021.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Cyclocarya paliurus is commonly used to treat diabetes in China. However, the natural habitats of C. paliurus are typically affected by salt stress. Hydrogen sulfide (H2S) is a growth regulator that is widely used to enhance plant stress tolerance, but the possible mechanism underlying H2S-alleviated salt stress in C. paliurus remains unclear. C. paliurus seedlings pretreated with NaHS (an H2S donor) were exposed to salt stress, and then, the leaf and total biomass, chlorophyll fluorescence parameters, nitric oxide (NO) content, oxidative damage, and proline and phenolic content were investigated to test the hypothesis that H2S and NO were involved in the salt tolerance of C. paliurus. The results showed that H2S pretreatment maintained chlorophyll fluorescence and attenuated the loss of plant biomass. We also found that H2S pretreatment further increased the endogenous NO content and nitrate reductase activity compared with salt treatment. Moreover, H2S pretreatment alleviated salt-induced oxidative damage, as indicated by lowered lipid peroxidation, through an enhanced antioxidant system including more proline and phenolic accumulation and increased antioxidant enzyme activities. However, C. paliurus leaves treated with the NO scavenger significantly diminished H2S-mediated NO production and alleviation of membrane lipid peroxidation. Thus, we concluded that H2S-induced NO was involved in C. paliurus salt tolerance.
Collapse
Affiliation(s)
- Pei Chen
- Jiyang College, Zhejiang A&F University, Zhuji, Zhejiang, 311800, China
| | - Wanxia Yang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Songheng Jin
- Jiyang College, Zhejiang A&F University, Zhuji, Zhejiang, 311800, China
| | - Yang Liu
- Jiyang College, Zhejiang A&F University, Zhuji, Zhejiang, 311800, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
394
|
Gaur S, Kumar J, Prasad SM, Sharma S, Bhat JA, Sahi S, Singh VP, Tripathi DK, Chauhan DK. Silicon and nitric oxide interplay alleviates copper induced toxicity in mung bean seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:713-722. [PMID: 34500196 DOI: 10.1016/j.plaphy.2021.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
The present study was aimed to investigate copper (Cu) toxicity alleviatory potential of silicon in Vigna radiata L. (mung bean) seedlings. Moreover, attention has also been paid to find out whether endogenous nitric oxide (NO) has any role in Si-governed alleviation of Cu stress. The length of root and shoot, fresh weight, and biochemical attributes were adversely affected by Cu exposure. However, application of Si rescued negative effects of Cu. Cu exposure decreased cell viability, and enhanced cell death and levels of oxidative stress markers (O2•‾, H2O2 and MDA), but Si significantly mitigated these effects of Cu. Application of Cu substantially stimulated the activities of superoxide dismutase and guaiacol peroxidase while inhibited activity of catalase. However, Si addition reversed this effect of Cu. Ascorbate and glutathione contents in roots and shoots were declined by Cu but stimulated by Si. Moreover, we noticed that addition of Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME) and sodium tungstate (Tung) further augmented Cu toxicity but addition of sodium nitroprusside rescued adverse effects of L-NAME and Tung. Altogether, data suggest that though Si was able in alleviating Cu toxicity in mung bean seedlings but it requires endogenous nitric oxide.
Collapse
Affiliation(s)
- Shweta Gaur
- D D Pant Interdisciplinary Research Laboratory, University of Allahabad, Prayagraj, 211002, India
| | - Jitendra Kumar
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad, 211002, India
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad, 211002, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India
| | - Javaid Akhter Bhat
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shivendra Sahi
- University of the Sciences in Philadelphia (USP), Philadelphia, PA, USA
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India.
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, I 2 Block, 5th Floor, AUUP Campus Sector-125, Noida, 201313, India.
| | - Devendra Kumar Chauhan
- D D Pant Interdisciplinary Research Laboratory, University of Allahabad, Prayagraj, 211002, India.
| |
Collapse
|
395
|
Sarkar S, Dey A, Kumar V, Batiha GES, El-Esawi MA, Tomczyk M, Ray P. Fungal Endophyte: An Interactive Endosymbiont With the Capability of Modulating Host Physiology in Myriad Ways. FRONTIERS IN PLANT SCIENCE 2021; 12:701800. [PMID: 34659281 PMCID: PMC8514756 DOI: 10.3389/fpls.2021.701800] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/28/2021] [Indexed: 05/23/2023]
Abstract
Endophytic fungi ubiquitously dwell inside the tissue-spaces of plants, mostly asymptomatically. They grow either intercellularly or intracellularly in a particular host plant to complete the whole or part of their life cycle. They have been found to be associated with almost all the plants occurring in a natural ecosystem. Due to their important role in the survival of plants (modulate photosynthesis, increase nutrient uptake, alleviate the effect of various stresses) they have been selected to co-evolve with their hosts through the course of evolution. Many years of intense research have discovered their tremendous roles in increasing the fitness of the plants in both normal and stressed conditions. There are numerous literature regarding the involvement of various endophytic fungi in enhancing plant growth, nutrient uptake, stress tolerance, etc. But, there are scant reports documenting the specific mechanisms employed by fungal endophytes to manipulate plant physiology and exert their effects. In this review, we aim to document the probable ways undertaken by endophytic fungi to alter different physiological parameters of their host plants. Our objective is to present an in-depth elucidation about the impact of fungal endophytes on plant physiology to make this evolutionarily conserved symbiotic interaction understandable from a broader perspective.
Collapse
Affiliation(s)
- Sohini Sarkar
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, Egypt
| | | | - Michał Tomczyk
- Departament of Pharmacognosy, Medical University of Białystok, Białystok, Poland
| | - Puja Ray
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
396
|
Exogenous Application of Methyl Jasmonate and Salicylic Acid Mitigates Drought-Induced Oxidative Damages in French Bean ( Phaseolus vulgaris L.). PLANTS 2021; 10:plants10102066. [PMID: 34685876 PMCID: PMC8538183 DOI: 10.3390/plants10102066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/02/2022]
Abstract
Drought stress impairs the normal growth and development of plants through various mechanisms including the induction of cellular oxidative stresses. The aim of this study was to evaluate the effect of the exogenous application of methyl jasmonate (MeJA) and salicylic acid (SA) on the growth, physiology, and antioxidant defense system of drought-stressed French bean plants. Application of MeJA (20 μM) or SA (2 mM) alone caused modest reductions in the harmful effects of drought. However, combined application substantially enhanced drought tolerance by improving the physiological activities and antioxidant defense system. The drought-induced generation of O2●− and H2O2, the MDA content, and the LOX activity were significantly lower in leaves when seeds or leaves were pre-treated with a combination of MeJA (10 μM) and SA (1 mM) than with either hormone alone. The combined application of MeJA and SA to drought-stressed plants also significantly increased the activities of the major antioxidant enzymes superoxide dismutase, catalase, peroxidase, glutathione peroxidase, and glutathione-S-transferase as well as the enzymes of the ascorbate–glutathione cycle. Taken together, our results suggest that seed or foliar application of a combination of MeJA and SA restore growth and normal physiological processes by triggering the antioxidant defense system in drought-stressed plants.
Collapse
|
397
|
Espinoza D, González A, Pizarro J, Segura R, Laporte D, Rodríguez-Rojas F, Sáez CA, Moenne A. Ulva compressa from Copper-Polluted Sites Exhibits Intracellular Copper Accumulation, Increased Expression of Metallothioneins and Copper-Containing Nanoparticles in Chloroplasts. Int J Mol Sci 2021; 22:ijms221910531. [PMID: 34638871 PMCID: PMC8508654 DOI: 10.3390/ijms221910531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 02/01/2023] Open
Abstract
In order to analyze the mechanisms involved in copper accumulation in Ulva compressa, algae were collected at control sites of central and northern Chile, and at two copper-polluted sites of northern Chile. The level of intracellular copper, reduced glutathione (GSH), phytochelatins (PCs), PC2 and PC4, and transcripts encoding metallothioneins (MTs) of U. compressa, UcMT1, UcMT2 and UcMT3, were determined. Algae of control sites contained around 20 μg of copper g−1 of dry tissue (DT) whereas algae of copper-polluted sites contained 260 and 272 μg of copper g−1 of DT. Algae of control sites and copper-polluted sites did not show detectable amounts of GSH, the level of PC2 did not change among sites whereas PC4 was increased in one of the copper-polluted sites. The level of transcripts of UcMT1 and UcMT2 were increased in algae of copper-polluted sites, but the level of UcMT3 did not change. Algae of a control site and a copper-polluted site were visualized by transmission electron microscopy (TEM) and the existence of copper in electrodense particles was analyzed using energy dispersive x-ray spectroscopy (EDXS). Algae of copper-polluted sites showed electrodense nanoparticles containing copper in the chloroplasts, whereas algae of control sites did not. Algae of a control site, Cachagua, were cultivated without copper (control) and with 10 μM copper for 5 days and they were analyzed by TEM-EDXS. Algae cultivated with copper showed copper-containing nanoparticles in the chloroplast whereas control algae did not. Thus, U. compressa from copper-polluted sites exhibits intracellular copper accumulation, an increase in the level of PC4 and expression of UcMTs, and the accumulation of copper-containing particles in chloroplasts.
Collapse
Affiliation(s)
- Daniela Espinoza
- Laboratory of Marine Biotecnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (D.E.); (A.G.)
| | - Alberto González
- Laboratory of Marine Biotecnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (D.E.); (A.G.)
| | - Jaime Pizarro
- Laboratory of Inorganic Chemistry, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (J.P.); (R.S.)
| | - Rodrigo Segura
- Laboratory of Inorganic Chemistry, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (J.P.); (R.S.)
| | - Daniel Laporte
- Laboratorio Multidisciplinario, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca 3467987, Chile;
| | - Fernanda Rodríguez-Rojas
- Laboratory of Aquatic Environmental Research, Hub Ambiental UPLA, Centro de Estudios Avanzados, Universidad de Playa Ancha, Valparaíso 2340000, Chile; (F.R.-R.); (C.A.S.)
| | - Claudio A. Sáez
- Laboratory of Aquatic Environmental Research, Hub Ambiental UPLA, Centro de Estudios Avanzados, Universidad de Playa Ancha, Valparaíso 2340000, Chile; (F.R.-R.); (C.A.S.)
- Departamento de Ciencias del Mar y Biología Aplicada, Universidad de Alicante, 03690 Alicante, Spain
| | - Alejandra Moenne
- Laboratory of Marine Biotecnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (D.E.); (A.G.)
- Correspondence:
| |
Collapse
|
398
|
Zeiss DR, Steenkamp PA, Piater LA, Dubery IA. Altered metabolomic states elicited by Flg22 and FlgII-28 in Solanum lycopersicum: intracellular perturbations and metabolite defenses. BMC PLANT BIOLOGY 2021; 21:429. [PMID: 34548030 PMCID: PMC8456652 DOI: 10.1186/s12870-021-03200-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/31/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Surveillance of potential pathogens is a key feature of plant innate immunity. For non-self-recognition plants rely on the perception of pathogen-derived molecules. Early post-perception events activate signaling cascades, leading to the synthesis of defense-related proteins and specialized metabolites, thereby providing a broad-spectrum antimicrobial coverage. This study was concerned with tracking changes in the tomato plant metabolome following perception of the flagellum-derived elicitors (Flg22 and FlgII-28). RESULTS Following an untargeted metabolomics workflow, the metabolic profiles of a Solanum lycopersicum cultivar were monitored over a time range of 16-32 h post-treatment. Liquid chromatography was used to resolve the complex mixture of metabolites and mass spectrometry for the detection of differences associated with the elicitor treatments. Stringent data processing and multivariate statistical tools were applied to the complex dataset to extract relevant metabolite features associated with the elicitor treatments. Following perception of Flg22 and FlgII-28, both elicitors triggered an oxidative burst, albeit with different kinetic responses. Signatory biomarkers were annotated from diverse metabolite classes which included amino acid derivatives, lipid species, steroidal glycoalkaloids, hydroxybenzoic acids, hydroxycinnamic acids and derivatives, as well as flavonoids. CONCLUSIONS An untargeted metabolomics approach adequately captured the subtle and nuanced perturbations associated with elicitor-linked plant defense responses. The shared and unique features characterizing the metabolite profiles suggest a divergence of signal transduction events following perception of Flg22 vs. FlgII-28, leading to a differential reorganization of downstream metabolic pathways.
Collapse
Affiliation(s)
- Dylan R Zeiss
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, Johannesburg, South Africa
| | - Paul A Steenkamp
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, Johannesburg, South Africa
| | - Lizelle A Piater
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, Johannesburg, South Africa
| | - Ian A Dubery
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, Johannesburg, South Africa.
| |
Collapse
|
399
|
Dorion S, Ouellet JC, Rivoal J. Glutathione Metabolism in Plants under Stress: Beyond Reactive Oxygen Species Detoxification. Metabolites 2021; 11:metabo11090641. [PMID: 34564457 PMCID: PMC8464934 DOI: 10.3390/metabo11090641] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 01/16/2023] Open
Abstract
Glutathione is an essential metabolite for plant life best known for its role in the control of reactive oxygen species (ROS). Glutathione is also involved in the detoxification of methylglyoxal (MG) which, much like ROS, is produced at low levels by aerobic metabolism under normal conditions. While several physiological processes depend on ROS and MG, a variety of stresses can dramatically increase their concentration leading to potentially deleterious effects. In this review, we examine the structure and the stress regulation of the pathways involved in glutathione synthesis and degradation. We provide a synthesis of the current knowledge on the glutathione-dependent glyoxalase pathway responsible for MG detoxification. We present recent developments on the organization of the glyoxalase pathway in which alternative splicing generate a number of isoforms targeted to various subcellular compartments. Stress regulation of enzymes involved in MG detoxification occurs at multiple levels. A growing number of studies show that oxidative stress promotes the covalent modification of proteins by glutathione. This post-translational modification is called S-glutathionylation. It affects the function of several target proteins and is relevant to stress adaptation. We address this regulatory function in an analysis of the enzymes and pathways targeted by S-glutathionylation.
Collapse
|
400
|
Advances in Vacuum Ultraviolet Photolysis in the Postharvest Management of Fruit and Vegetables Along the Value Chains: a Review. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|