351
|
Herman A, Brandvain Y, Weagley J, Jeffery WR, Keene AC, Kono TJY, Bilandžija H, Borowsky R, Espinasa L, O'Quin K, Ornelas-García CP, Yoshizawa M, Carlson B, Maldonado E, Gross JB, Cartwright RA, Rohner N, Warren WC, McGaugh SE. The role of gene flow in rapid and repeated evolution of cave-related traits in Mexican tetra, Astyanax mexicanus. Mol Ecol 2018; 27:4397-4416. [PMID: 30252986 PMCID: PMC6261294 DOI: 10.1111/mec.14877] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/08/2018] [Accepted: 08/19/2018] [Indexed: 12/13/2022]
Abstract
Understanding the molecular basis of repeatedly evolved phenotypes can yield key insights into the evolutionary process. Quantifying gene flow between populations is especially important in interpreting mechanisms of repeated phenotypic evolution, and genomic analyses have revealed that admixture occurs more frequently between diverging lineages than previously thought. In this study, we resequenced 47 whole genomes of the Mexican tetra from three cave populations, two surface populations and outgroup samples. We confirmed that cave populations are polyphyletic and two Astyanax mexicanus lineages are present in our data set. The two lineages likely diverged much more recently than previous mitochondrial estimates of 5-7 mya. Divergence of cave populations from their phylogenetically closest surface population likely occurred between ~161 and 191 k generations ago. The favoured demographic model for most population pairs accounts for divergence with secondary contact and heterogeneous gene flow across the genome, and we rigorously identified gene flow among all lineages sampled. Therefore, the evolution of cave-related traits occurred more rapidly than previously thought, and trogolomorphic traits are maintained despite gene flow with surface populations. The recency of these estimated divergence events suggests that selection may drive the evolution of cave-derived traits, as opposed to disuse and drift. Finally, we show that a key trogolomorphic phenotype QTL is enriched for genomic regions with low divergence between caves, suggesting that regions important for cave phenotypes may be transferred between caves via gene flow. Our study shows that gene flow must be considered in studies of independent, repeated trait evolution.
Collapse
Affiliation(s)
- Adam Herman
- Plant and Microbial Biology, Gortner Lab, University of Minnesota, Saint Paul, Minnesota
- Department of Molecular Biology, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Yaniv Brandvain
- Plant and Microbial Biology, Gortner Lab, University of Minnesota, Saint Paul, Minnesota
| | - James Weagley
- Ecology, Evolution, and Behavior, Gortner Lab, University of Minnesota, Saint Paul, Minnesota
| | - William R Jeffery
- Department of Biology, University of Maryland, College Park, Maryland
| | - Alex C Keene
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida
| | - Thomas J Y Kono
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota
| | - Helena Bilandžija
- Department of Molecular Biology, Rudjer Boskovic Institute, Zagreb, Croatia
- Department of Biology, University of Maryland, College Park, Maryland
| | | | - Luis Espinasa
- School of Science, Marist College, Poughkeepsie, New York
| | - Kelly O'Quin
- Department of Biology, Centre College, Danville, Kentucky
| | - Claudia P Ornelas-García
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Coyoacán, Mexico
| | - Masato Yoshizawa
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, Hawaii
| | - Brian Carlson
- Department of Biology, College of Wooster, Wooster, Ohio
| | - Ernesto Maldonado
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Reed A Cartwright
- The Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, Missouri
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University, St Louis, Missouri
| | - Suzanne E McGaugh
- Department of Molecular Biology, Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
352
|
Mandic M, Regan MD. Can variation among hypoxic environments explain why different fish species use different hypoxic survival strategies? ACTA ACUST UNITED AC 2018; 221:221/21/jeb161349. [PMID: 30381477 DOI: 10.1242/jeb.161349] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In aquatic environments, hypoxia is a multi-dimensional stressor that can vary in O2 level (partial pressure of O2 in water, PwO2 ), rate of induction and duration. Natural hypoxic environments can therefore be very different from one another. For the many fish species that have evolved to cope with these different hypoxic environments, survival requires adjusting energy supply and demand pathways to maintain energy balance. The literature describes innumerable ways that fishes combine aerobic metabolism, anaerobic metabolism and metabolic rate depression (MRD) to accomplish this, but it is unknown whether the evolutionary paths leading to these different strategies are determined primarily by species' phylogenetic histories, genetic constraint or their native hypoxic environments. We explored this idea by devising a four-quadrant matrix that bins different aquatic hypoxic environments according to their duration and PwO2 characteristics. We then systematically mined the literature for well-studied species native to environments within each quadrant, and, for each of 10 case studies, described the species' total hypoxic response (THR), defined as its hypoxia-induced combination of sustained aerobic metabolism, enhanced anaerobic metabolism and MRD, encompassing also the mechanisms underlying these metabolic modes. Our analysis revealed that fishes use a wide range of THRs, but that distantly related species from environments within the same matrix quadrant have converged on similar THRs. For example, environments of moderately hypoxic PwO2 favoured predominantly aerobic THRs, whereas environments of severely hypoxic PwO2 favoured MRD. Capacity for aerial emergence as well as predation pressure (aquatic and aerial) also contributed to these responses, in addition to other biotic and abiotic factors. Generally, it appears that the particular type of hypoxia experienced by a fish plays a major role in shaping its particular THR.
Collapse
Affiliation(s)
- Milica Mandic
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Matthew D Regan
- Comparative Biosciences Department, University of Wisconsin-Madison, Madison, WI 35706, USA
| |
Collapse
|
353
|
Evolutionary Genetics of Hypoxia and Cold Tolerance in Mammals. J Mol Evol 2018; 86:618-634. [PMID: 30327830 DOI: 10.1007/s00239-018-9870-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/03/2018] [Indexed: 01/30/2023]
Abstract
Low oxygen and fluctuant ambient temperature pose serious challenges to mammalian survival. Physiological adaptations in mammals to hypoxia and low temperatures have been intensively investigated, yet their underlying molecular mechanisms need further exploration. Independent invasions of high-altitude plateaus, subterranean burrows and marine environments by different mammals provide opportunities to conduct such analyses. Here, we focused on six genes in the hypoxia inducible factor (HIF) pathway and two non-shivering thermogenesis (NST)-related genes [PPAR co-activator 1 (PGC-1) and uncoupling protein 1 (UCP1)] in representative species of pikas and other mammals to understand whether these loci were targeted by natural selection during independent invasions to conditions characterized by hypoxia and temperature fluctuations by high-altitude, subterranean and marine mammals. Our analyses revealed pervasive positive selection signals in the HIF pathway genes of mammals occupying high-altitude, subterranean and aquatic ecosystems; however, the mechanisms underlying their independent adaptations to hypoxic environments varied by taxa, since different genes were positively selected in each taxon and expression levels of individual genes varied among species. Additionally, parallel amino acid substitutions were also detected in hypoxia-tolerant mammals, indicating that convergent evolution may play a role in their independent adaptations to hypoxic environments. However, divergent evolutionary histories of NST-related genes were noted, since significant evidence of positive selection was observed in PGC-1 and UCP1 in high-altitude species and subterranean rodents; however, UCP1 may have already lost its function in diving cetaceans, which may be related to the thick blubber layer of adipose and connective tissue in these mammals.
Collapse
|
354
|
Foster KL, Garland T, Schmitz L, Higham TE. Skink ecomorphology: forelimb and hind limb lengths, but not static stability, correlate with habitat use and demonstrate multiple solutions. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kathleen L Foster
- University of California, Riverside, University Ave., Riverside, CA, USA
- University of Ottawa, Marie Curie, Ottawa, ON, Canada
| | - Theodore Garland
- University of California, Riverside, University Ave., Riverside, CA, USA
| | - Lars Schmitz
- W.M. Keck Science Department, Claremont McKenna, Scripps, and Pitzer Colleges, N Mills Ave., Claremont, CA, USA
| | - Timothy E Higham
- University of California, Riverside, University Ave., Riverside, CA, USA
| |
Collapse
|
355
|
Developmental Bias and Evolution: A Regulatory Network Perspective. Genetics 2018; 209:949-966. [PMID: 30049818 DOI: 10.1534/genetics.118.300995] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/19/2018] [Indexed: 01/12/2023] Open
Abstract
Phenotypic variation is generated by the processes of development, with some variants arising more readily than others-a phenomenon known as "developmental bias." Developmental bias and natural selection have often been portrayed as alternative explanations, but this is a false dichotomy: developmental bias can evolve through natural selection, and bias and selection jointly influence phenotypic evolution. Here, we briefly review the evidence for developmental bias and illustrate how it is studied empirically. We describe recent theory on regulatory networks that explains why the influence of genetic and environmental perturbation on phenotypes is typically not uniform, and may even be biased toward adaptive phenotypic variation. We show how bias produced by developmental processes constitutes an evolving property able to impose direction on adaptive evolution and influence patterns of taxonomic and phenotypic diversity. Taking these considerations together, we argue that it is not sufficient to accommodate developmental bias into evolutionary theory merely as a constraint on evolutionary adaptation. The influence of natural selection in shaping developmental bias, and conversely, the influence of developmental bias in shaping subsequent opportunities for adaptation, requires mechanistic models of development to be expanded and incorporated into evolutionary theory. A regulatory network perspective on phenotypic evolution thus helps to integrate the generation of phenotypic variation with natural selection, leaving evolutionary biology better placed to explain how organisms adapt and diversify.
Collapse
|
356
|
Cordero GA, Quinteros K, Janzen FJ. Delayed trait development and the convergent evolution of shell kinesis in turtles. Proc Biol Sci 2018; 285:rspb.2018.1585. [PMID: 30282655 DOI: 10.1098/rspb.2018.1585] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/10/2018] [Indexed: 12/30/2022] Open
Abstract
Understanding developmental processes is foundational to clarifying the mechanisms by which convergent evolution occurs. Here, we show how a key convergently evolving trait is slowly 'acquired' in growing turtles. Many functionally relevant traits emerge late in turtle ontogeny, owing to design constraints imposed by the shell. We investigated this trend by examining derived patterns of shell formation associated with the multiple (at least 8) origins of shell kinesis in small-bodied turtles. Using box turtles as a model, we demonstrate that the flexible hinge joint required for shell kinesis differentiates gradually and via extensive repatterning of shell tissue. Disproportionate changes in shell shape and size substantiate that this transformation is a delayed ontogenetic response (3-5 years post-hatching) to structural alterations that arise in embryogenesis. These findings exemplify that the translation of genotype to phenotype may reach far beyond embryonic life stages. Thus, the temporal scope for developmental origins of adaptive morphological change might be broader than generally understood. We propose that delayed trait differentiation via tissue repatterning might facilitate phenotypic diversification and innovation that otherwise would not arise due to developmental constraints.
Collapse
Affiliation(s)
- Gerardo A Cordero
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 2200 Osborn Drive, 251 Bessey Hall, Ames, IA, USA
| | - Kevin Quinteros
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 2200 Osborn Drive, 251 Bessey Hall, Ames, IA, USA
| | - Fredric J Janzen
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 2200 Osborn Drive, 251 Bessey Hall, Ames, IA, USA
| |
Collapse
|
357
|
Gaitonde N, Joshi J, Kunte K. Evolution of ontogenic change in color defenses of swallowtail butterflies. Ecol Evol 2018; 8:9751-9763. [PMID: 30386572 PMCID: PMC6202720 DOI: 10.1002/ece3.4426] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 11/27/2022] Open
Abstract
Natural selection by visually hunting predators has led to the evolution of color defense strategies such as masquerade, crypsis, and aposematism that reduce the risk of predation in prey species. These color defenses are not mutually exclusive, and switches between strategies with ontogenic development are widespread across taxa. However, the evolutionary dynamics of ontogenic color change are poorly understood. Using comparative phylogenetics, we studied the evolution of color defenses in the complex life cycles of swallowtail butterflies (family Papilionidae). We also tested the relative importance of life history traits, chemical and visual backgrounds, and ancestry on the evolution of protective coloration. We found that vulnerable early- and late-instar caterpillars of species that feed on sparsely vegetated, toxic plants were aposematic, whereas species that feed on densely vegetated, nontoxic plants had masquerading and cryptic caterpillars. Masquerading caterpillars resembled bird droppings at early instars and transitioned to crypsis with an increase in body size at late instars. The immobile pupae-safe from motion-detecting, visually hunting predators-retained the ancestral cryptic coloration in all lineages, irrespective of the toxic nature of the host plant. Thus, color defense strategy (masquerade, crypsis, or aposematism) at a particular lifestage in the life cycle of swallowtail butterflies was determined by the interaction between life history traits such as body size and motion levels, phytochemical and visual backgrounds, and ancestry. We show that ontogenic color change in swallowtail butterflies is an adaptive response to age-dependent vulnerability to predation.
Collapse
Affiliation(s)
- Nikhil Gaitonde
- National Center for Biological SciencesTata Institute of Fundamental ResearchBengaluruIndia
- Manipal Academy of Higher Education (MAHE)ManipalIndia
| | - Jahnavi Joshi
- National Center for Biological SciencesTata Institute of Fundamental ResearchBengaluruIndia
| | - Krushnamegh Kunte
- National Center for Biological SciencesTata Institute of Fundamental ResearchBengaluruIndia
| |
Collapse
|
358
|
Sorrells TR, Johnson AN, Howard CJ, Britton CS, Fowler KR, Feigerle JT, Weil PA, Johnson AD. Intrinsic cooperativity potentiates parallel cis-regulatory evolution. eLife 2018; 7:37563. [PMID: 30198843 PMCID: PMC6173580 DOI: 10.7554/elife.37563] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/09/2018] [Indexed: 12/27/2022] Open
Abstract
Convergent evolutionary events in independent lineages provide an opportunity to understand why evolution favors certain outcomes over others. We studied such a case where a large set of genes-those coding for the ribosomal proteins-gained cis-regulatory sequences for a particular transcription regulator (Mcm1) in independent fungal lineages. We present evidence that these gains occurred because Mcm1 shares a mechanism of transcriptional activation with an ancestral regulator of the ribosomal protein genes, Rap1. Specifically, we show that Mcm1 and Rap1 have the inherent ability to cooperatively activate transcription through contacts with the general transcription factor TFIID. Because the two regulatory proteins share a common interaction partner, the presence of one ancestral cis-regulatory sequence can 'channel' random mutations into functional sites for the second regulator. At a genomic scale, this type of intrinsic cooperativity can account for a pattern of parallel evolution involving the fixation of hundreds of substitutions.
Collapse
Affiliation(s)
- Trevor R Sorrells
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| | - Amanda N Johnson
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Conor J Howard
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| | - Candace S Britton
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| | - Kyle R Fowler
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| | - Jordan T Feigerle
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - P Anthony Weil
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Alexander D Johnson
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| |
Collapse
|
359
|
Divergence, Convergence and Phenotypic Diversity of Neotropical Frugivorous Bats. DIVERSITY 2018. [DOI: 10.3390/d10030100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Knowing how adaptation shapes morphological evolution is fundamental to understanding the processes that promote biological diversity. However, there is a lack of empirical evidence on the effects of adaptive radiations on phenotypic diversity, which is related to processes that promote phenotypic divergence and convergence. We applied comparative methods to identify shifts in adaptive peaks and to detect divergence and convergence in skull morphology of frugivorous bats (Phyllostomidae: Stenodermatinae and Carollinae), an ecologically diverse group with strong association between skull morphology, feeding performance and diet that suggests adaptive diversification through morphological innovation. We found divergence and convergence for skull morphology. Fifteen peak shifts were found for jaws, which result in four convergent and four divergent regimes. For skull, nine peak shifts were detected that result in three convergent and three divergent regimes. Furthermore, convergence was significant and strong for skull morphology since distantly related organisms converged to the same adaptive optima. Results suggest that convergence indicates the effect of restriction on phenotypes to keep the advantages provided by the skull phenotype that played a central role in the evolution of strict frugivory in phyllostomids. We conclude that convergence has limited phenotypic diversity of functional traits related to feeding in phyllostomid frugivores.
Collapse
|
360
|
Predicting the evolution of Escherichia coli by a data-driven approach. Nat Commun 2018; 9:3562. [PMID: 30177705 PMCID: PMC6120903 DOI: 10.1038/s41467-018-05807-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 06/12/2018] [Indexed: 12/31/2022] Open
Abstract
A tantalizing question in evolutionary biology is whether evolution can be predicted from past experiences. To address this question, we created a coherent compendium of more than 15,000 mutation events for the bacterium Escherichia coli under 178 distinct environmental settings. Compendium analysis provides a comprehensive view of the explored environments, mutation hotspots and mutation co-occurrence. While the mutations shared across all replicates decrease with the number of replicates, our results argue that the pairwise overlapping ratio remains the same, regardless of the number of replicates. An ensemble of predictors trained on the mutation compendium and tested in forward validation over 35 evolution replicates achieves a 49.2 ± 5.8% (mean ± std) precision and 34.5 ± 5.7% recall in predicting mutation targets. This work demonstrates how integrated datasets can be harnessed to create predictive models of evolution at a gene level and elucidate the effect of evolutionary processes in well-defined environments. How reproducible evolutionary processes are remains an important question in evolutionary biology. Here, the authors compile a compendium of more than 15,000 mutation events for Escherichia coli under 178 distinct environmental settings, and develop an ensemble of predictors to predict evolution at a gene level.
Collapse
|
361
|
Trejo L, Rosell JA, Olson ME. Nearly 200 years of sustained selection have not overcome the leaf area-stem size relationship in the poinsettia. Evol Appl 2018; 11:1401-1411. [PMID: 30151048 PMCID: PMC6099819 DOI: 10.1111/eva.12634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/19/2018] [Indexed: 11/28/2022] Open
Abstract
Organismal parts often covary in their proportions, a phenomenon known as allometry. One way of exploring the causes of widespread allometric patterns is with artificial selection, to test whether or not it is possible to move populations into "empty" allometric space not occupied by the wild type. Domesticated organisms have been subject to many generations of selection, making them ideal model systems. We used the domesticated Christmas poinsettia Euphorbia pulcherrima in combination with wild populations to examine the origin of the proportionality between leaf area and stem size, which scales predictably across nearly all plants. In accordance with the stated aims of breeders to produce more compact plants, we predicted that domesticated poinsettias would have greater leaf area for a given stem volume than the tall, lanky wild ancestors. Our data rejected this prediction, showing instead that domesticates have leaf area-stem volume relationships identical to the wild ancestors. Presumably the metabolic dependence between stems and leaves makes the leaf area-stem volume relationship difficult to overcome. The relative fixity of this relationship leads to predictable covariation in other traits: The fuller outlines of domestic poinsettias involve significantly shorter internodes, and given a constant leaf area-stem volume relationship, smaller individual leaf areas. At the same time, domestic poinsettias are subject to selection favoring breakage resistance, which is achieved via thicker stems for a given length rather than stiffer stem tissue resistance to bending. Our results show that domesticated poinsettias differ from wild plants in a suite of traits including leaf size, internode distances, and stem length-diameter relations, but despite over 200 years of selection favoring rounded outlines, there has been no change in the total leaf area-stem volume relationship, helping to predict which changes are likely achievable and which will not be under continued artificial selection and in the wild.
Collapse
Affiliation(s)
- Laura Trejo
- Laboratorio Regional de Biodiversidad y Cultivo de Tejidos VegetalesInstituto de Biología, Universidad Nacional Autónoma de MéxicoMéxicoMexico
| | - Julieta A. Rosell
- Laboratorio Nacional de Ciencias de la SostenibilidadInstituto de EcologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Mark E. Olson
- Instituto de BiologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| |
Collapse
|
362
|
Eisen KE, Geber MA. Ecological sorting and character displacement contribute to the structure of communities of Clarkia species. J Evol Biol 2018; 31:1440-1458. [PMID: 30099807 DOI: 10.1111/jeb.13365] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/10/2018] [Accepted: 08/06/2018] [Indexed: 01/27/2023]
Abstract
Despite long-standing interest in the evolutionary ecology of plants that share pollinators, few studies have explored how these interactions may affect communities during both community assembly (ecological sorting) and through ongoing, in situ evolution (character displacement), and how the effects of these interactions may change with community context. To determine if communities display patterns consistent with ecological sorting, we assessed the frequency of co-occurrence of four species of Clarkia in the southern Sierra foothills (Kern County, CA, USA). To investigate potential character displacement, we measured pollination-related traits on plants grown in a greenhouse common garden from seed collected in communities with one, two or four Clarkia species. Among the four species of Clarkia in this region, the two species that are often found in multi-species communities also co-occur with one another more frequently than expected under a null model. This pattern is consistent with ecological sorting, although further investigation is needed to determine the role of pollinators in shaping community assembly. Patterns of trait variation in a common garden suggest that these two species have diverged in floral traits and converged in flowering time where they co-occur, which is consistent with character displacement. Trait variation across community types also suggests that the process and outcome of character displacement may vary with community context. Because community context appears to affect both the direction and magnitude of character displacement, change in more species-rich communities may not be predictable from patterns of change in simpler communities.
Collapse
Affiliation(s)
- Katherine E Eisen
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Monica A Geber
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
363
|
Riesch R, Martin RA, Diamond SE, Jourdan J, Plath M, Brian Langerhans R. Thermal regime drives a latitudinal gradient in morphology and life history in a livebearing fish. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Rüdiger Riesch
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, UK
| | - Ryan A Martin
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Jonas Jourdan
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Martin Plath
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - R Brian Langerhans
- Department of Biological Sciences & W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
364
|
Sackman AM, McGee LW, Morrison AJ, Pierce J, Anisman J, Hamilton H, Sanderbeck S, Newman C, Rokyta DR. Mutation-Driven Parallel Evolution during Viral Adaptation. Mol Biol Evol 2018; 34:3243-3253. [PMID: 29029274 DOI: 10.1093/molbev/msx257] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Convergent evolution has been demonstrated across all levels of biological organization, from parallel nucleotide substitutions to convergent evolution of complex phenotypes, but whether instances of convergence are the result of selection repeatedly finding the same optimal solution to a recurring problem or are the product of mutational biases remains unsettled. We generated 20 replicate lineages allowed to fix a single mutation from each of four bacteriophage genotypes under identical selective regimes to test for parallel changes within and across genotypes at the levels of mutational effect distributions and gene, protein, amino acid, and nucleotide changes. All four genotypes shared a distribution of beneficial mutational effects best approximated by a distribution with a finite upper bound. Parallel adaptation was high at the protein, gene, amino acid, and nucleotide levels, both within and among phage genotypes, with the most common first-step mutation in each background fixing on an average in 7 of 20 replicates and half of the substitutions in two of the four genotypes occurring at shared sites. Remarkably, the mutation of largest beneficial effect that fixed for each genotype was never the most common, as would be expected if parallelism were driven by selection. In fact, the mutation of smallest benefit for each genotype fixed in a total of 7 of 80 lineages, equally as often as the mutation of largest benefit, leading us to conclude that adaptation was largely mutation-driven, such that mutational biases led to frequent parallel fixation of mutations of suboptimal effect.
Collapse
Affiliation(s)
- Andrew M Sackman
- Department of Biological Science, Florida State University, Tallahassee, FL
| | - Lindsey W McGee
- Department of Biological Science, Florida State University, Tallahassee, FL
| | | | - Jessica Pierce
- Department of Biological Science, Florida State University, Tallahassee, FL
| | - Jeremy Anisman
- Department of Biological Science, Florida State University, Tallahassee, FL
| | - Hunter Hamilton
- Department of Biological Science, Florida State University, Tallahassee, FL
| | | | - Cayla Newman
- Department of Biological Science, Florida State University, Tallahassee, FL
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL
| |
Collapse
|
365
|
Henry CS, Brooks SJ, Johnson JB, Mochizuki A, Mirmoayedi A, Duelli P. Distinctive but functionally convergent song phenotypes characterize two new allopatric species of the Chrysoperla carnea-group in Asia, Chrysoperla shahrudensis sp. nov. and Chrysoperla bolti sp. nov. (Neuroptera: Chrysopidae). J NAT HIST 2018. [DOI: 10.1080/00222933.2018.1478011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Charles S. Henry
- Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | | | | | - Atsushi Mochizuki
- Entomology Department, Institute for Agro-Environmental Sciences NARO, Tsukuba City, Japan
| | | | - Peter Duelli
- Biodiversity and Conservation Biology, WSL Swiss Federal Research Institute, Birmensdorf, Switzerland
| |
Collapse
|
366
|
Bingham EL, Gilby BL, Olds AD, Weston MA, Connolly RM, Henderson CJ, Maslo B, Peterson CF, Voss CM, Schlacher TA. Functional plasticity in vertebrate scavenger assemblages in the presence of introduced competitors. Oecologia 2018; 188:583-593. [PMID: 29980845 DOI: 10.1007/s00442-018-4217-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 07/02/2018] [Indexed: 11/29/2022]
Abstract
Introduced species may suppress or enhance ecological functions, or they may have neutral effects in ecosystems where they replace or complement native species. Few studies, however, have explicitly tested for these trajectories, and for the effect these might have for native species. In this study, we experimentally test the trajectory and scale of change in the function of 'carrion removal' at different carrion loads along ocean beaches in Eastern Australia that have different numbers of introduced red foxes (Vulpes vulpes) and several species of native raptors. We hypothesized that the 'positive' effect of foxes on carrion removal would be greatest at high carrion loads, because competition for resources between native and introduced species is lower. Scavenger abundance, fox occurrences, and carrion consumption by these species differed widely between locations and times. Despite distinct spatial differences in the structure of vertebrate scavenger assemblages, total carrion consumption was not significantly different between locations at any carrion load. This lack of variation in functional rates indicates potential functional plasticity in the scavenger assemblage and possible functional accommodation of red foxes. Neutral fox effects on ecological functions or the ecosystem more broadly are, however, very unlikely to extend beyond carrion consumption.
Collapse
Affiliation(s)
- Ellen L Bingham
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia
| | - Ben L Gilby
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia. .,The ANIMAL Research Centre: Health + Ecology + Conservation, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia.
| | - Andrew D Olds
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia.,The ANIMAL Research Centre: Health + Ecology + Conservation, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia
| | - Michael A Weston
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia
| | - Rod M Connolly
- Australian Rivers Institute, Coasts and Estuaries, Griffith University, Gold Coast, 4222, QLD, Australia
| | - Christopher J Henderson
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia.,The ANIMAL Research Centre: Health + Ecology + Conservation, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia
| | - Brooke Maslo
- Department of Ecology, Evolution and Natural Resources, The State University of New Jersey, Rutgers, 08901, USA
| | - Charles F Peterson
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC, 28557, USA
| | - Christine M Voss
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC, 28557, USA
| | - Thomas A Schlacher
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia.,The ANIMAL Research Centre: Health + Ecology + Conservation, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia
| |
Collapse
|
367
|
Santos BF, Perrard A. Testing the Dutilleul syndrome: host use drives the convergent evolution of multiple traits in parasitic wasps. J Evol Biol 2018; 31:1430-1439. [PMID: 29957856 DOI: 10.1111/jeb.13343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 11/27/2022]
Abstract
Common life-history aspects among independent lineages often result in the repeated evolution of suites of adaptive traits, or 'syndromes'. Such syndromes can be key avenues to understand relationships between morphological and ecological traits, but are rarely tested due to insufficient trait shift repetitions. We use a hyperdiverse lineage to investigate the evolution of a syndrome. Cryptine ichneumonid wasps that parasitize insects concealed in hard substrates display several traits that are putative adaptations to that end. Using a phylogenetic framework from a combined multigene molecular and morphological data set with 308 cryptine species, we tested whether these traits were part of a morphofunctional syndrome related to host use. Ancestral state estimations show multiple origins for six investigated traits, which are correlated to each other and to the use of deeply concealed hosts, suggesting adaptation. Putatively adaptive traits showed a much stronger link among themselves than with an assemblage of 49 other morphological traits. However, estimation of the order of evolution in adaptive traits showed no structured pattern. The results indicate that the challenge of attacking deeply concealed hosts induced the repeated evolution of a 'Dutilleul syndrome', named after the 'walker-through-walls' character from French literature. They also point towards a dynamic scenario in the evolution of complex functional systems. These findings highlight the power of morphology to illuminate poorly known aspects of natural history, and how hyperdiverse lineages can be used to understand the evolution of complex traits.
Collapse
Affiliation(s)
- Bernardo F Santos
- Department of Entomology, National Museum of Natural History, Washington, DC, USA
| | - Adrien Perrard
- Université Paris Diderot, Sorbonne Université, CNRS, IRD, INRA, Institute of Ecology and Environmental Sciences, iEES-Paris, Paris, France
| |
Collapse
|
368
|
San-Jose LM, Roulin A. Toward Understanding the Repeated Occurrence of Associations between Melanin-Based Coloration and Multiple Phenotypes. Am Nat 2018; 192:111-130. [PMID: 30016163 DOI: 10.1086/698010] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Melanin is the most widespread pigment in organisms. Melanin-based coloration has been repeatedly observed to be associated with the same traits and in the same direction in different vertebrate and insect species. However, whether any factors that are common to different taxa account for the repeated evolution of melanin-phenotype associations remains unclear. We propose to approach this question from the perspective of convergent and parallel evolution to clarify to what extent different species have evolved the same associations owing to a shared genetic basis and being subjected to similar selective pressures. Our current understanding of the genetic basis of melanin-phenotype associations allows for both convergent and parallel evolution, but this understanding is still limited. Further research is needed to clarify the generality and interdependencies of the different proposed mechanisms (supergenes, pleiotropy based on hormones, or neural crest cells). The general ecological scenarios whereby melanin-based coloration is under selection-protection from ultraviolet radiation, thermoregulation in cold environments, or as a signal of social status-offer a good opportunity to study how melanin-phenotype associations evolve. Reviewing these scenarios shows that some traits associated with melanin-based coloration might be selected together with coloration by also favoring adaptation but that other associated traits might impede adaptation, which may be indicative of genetic constraints. We therefore encourage further research on the relative roles that selection and genetic constraints play in shaping multiple melanin-phenotype associations. Placed into a phylogenetic context, this will help clarify to what extent these associations result from convergent or parallel evolutionary processes and why melanin-phenotype associations are so common across the tree of life.
Collapse
|
369
|
Velasco JA, Martínez-Meyer E, Flores-Villela O. Climatic Niche Dynamics and Its Role in the Insular Endemism of Anolis Lizards. Evol Biol 2018. [DOI: 10.1007/s11692-018-9455-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
370
|
Shooner S, Davies TJ, Saikia P, Deka J, Bharali S, Tripathi OP, Singha L, Latif Khan M, Dayanandan S. Phylogenetic diversity patterns in Himalayan forests reveal evidence for environmental filtering of distinct lineages. Ecosphere 2018. [DOI: 10.1002/ecs2.2157] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Stephanie Shooner
- Department of Biology Concordia University 7141 Sherbrooke Street West Montreal Quebec H4B 1R6 Canada
- Department of Biology McGill University 1205 Avenue Docteur Penfield Montreal Quebec H3A 1B1 Canada
- Quebec Centre for Biodiversity Science McGill University 1205 Avenue Docteur Penfield Montreal Quebec H3A 1B1 Canada
| | - T. Jonathan Davies
- Department of Biology McGill University 1205 Avenue Docteur Penfield Montreal Quebec H3A 1B1 Canada
- Quebec Centre for Biodiversity Science McGill University 1205 Avenue Docteur Penfield Montreal Quebec H3A 1B1 Canada
- African Centre for DNA Barcoding University of Johannesburg Johannesburg 2006 South Africa
| | - Purabi Saikia
- Department of Forestry North Eastern Regional Institute of Science and Technology (Deemed University) Nirjuli 791109 Arunachal Pradesh India
- Centre for Environmental Sciences Central University of Jharkhand Brambe Ranchi 835205 Jharkhand India
| | - Jyotishman Deka
- Department of Forestry North Eastern Regional Institute of Science and Technology (Deemed University) Nirjuli 791109 Arunachal Pradesh India
- Department of Botany University of Science and Technology Ri‐Bhoi Meghalaya 793101 India
| | - Sanjeeb Bharali
- Department of Forestry North Eastern Regional Institute of Science and Technology (Deemed University) Nirjuli 791109 Arunachal Pradesh India
| | - Om Prakash Tripathi
- Department of Forestry North Eastern Regional Institute of Science and Technology (Deemed University) Nirjuli 791109 Arunachal Pradesh India
| | - Lalbihari Singha
- Department of Forestry North Eastern Regional Institute of Science and Technology (Deemed University) Nirjuli 791109 Arunachal Pradesh India
| | - Mohammed Latif Khan
- Department of Forestry North Eastern Regional Institute of Science and Technology (Deemed University) Nirjuli 791109 Arunachal Pradesh India
- Department of Botany Dr. Harisingh Gour Central University Sagar 470003 Madhya Pradesh India
| | - Selvadurai Dayanandan
- Department of Biology Concordia University 7141 Sherbrooke Street West Montreal Quebec H4B 1R6 Canada
- Quebec Centre for Biodiversity Science McGill University 1205 Avenue Docteur Penfield Montreal Quebec H3A 1B1 Canada
| |
Collapse
|
371
|
García-Navas V, Rodríguez-Rey M, Marki PZ, Christidis L. Environmental determinism, and not interspecific competition, drives morphological variability in Australasian warblers (Acanthizidae). Ecol Evol 2018; 8:3871-3882. [PMID: 29721264 PMCID: PMC5916309 DOI: 10.1002/ece3.3925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 01/12/2018] [Accepted: 01/23/2018] [Indexed: 01/11/2023] Open
Abstract
Interspecific competition is thought to play a key role in determining the coexistence of closely related species within adaptive radiations. Competition for ecological resources can lead to different outcomes from character displacement to, ultimately, competitive exclusion. Accordingly, divergent natural selection should disfavor those species that are the most similar to their competitor in resource use, thereby increasing morphological disparity. Here, we examined ecomorphological variability within an Australo‐Papuan bird radiation, the Acanthizidae, which include both allopatric and sympatric complexes. In addition, we investigated whether morphological similarities between species are related to environmental factors at fine scale (foraging niche) and/or large scale (climate). Contrary to that predicted by the competition hypothesis, we did not find a significant correlation between the morphological similarities found between species and their degree of range overlap. Comparative modeling based on both a priori and data‐driven identification of selective regimes suggested that foraging niche is a poor predictor of morphological variability in acanthizids. By contrast, our results indicate that climatic conditions were an important factor in the formation of morphological variation. We found a significant negative correlation between species scores for PC1 (positively associated to tarsus length and tail length) and both temperature and precipitation, whereas PC2 (positively associated to bill length and wing length) correlated positively with precipitation. In addition, we found that species inhabiting the same region are closer to each other in morphospace than to species outside that region regardless of genus to which they belong or its foraging strategy. Our results indicate that the conservative body form of acanthizids is one that can work under a wide variety of environments (an all‐purpose morphology), and the observed interspecific similarity is probably driven by the common response to environment.
Collapse
Affiliation(s)
- Vicente García-Navas
- Department of Integrative Ecology Estación Biológica de Doñana (EBD-CSIC) Seville Spain
| | | | - Petter Z Marki
- Center for Macroecology, Evolution and Climate Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark.,Natural History Museum University of Oslo Oslo Norway
| | - Les Christidis
- National Marine Science Centre Southern Cross University Lismore NSW Australia.,School of BioSciences University of Melbourne Parkville Vic. Australia
| |
Collapse
|
372
|
Chaturvedi S, Lucas LK, Nice CC, Fordyce JA, Forister ML, Gompert Z. The predictability of genomic changes underlying a recent host shift in Melissa blue butterflies. Mol Ecol 2018; 27:2651-2666. [DOI: 10.1111/mec.14578] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/05/2018] [Accepted: 02/09/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Samridhi Chaturvedi
- Department of Biology Utah State University Logan Utah
- Ecology Center Utah State University Logan Utah
| | | | | | | | | | - Zachariah Gompert
- Department of Biology Utah State University Logan Utah
- Ecology Center Utah State University Logan Utah
| |
Collapse
|
373
|
Rodriguez ZB, Perkins SL, Austin CC. Multiple origins of green blood in New Guinea lizards. SCIENCE ADVANCES 2018; 4:eaao5017. [PMID: 29774232 PMCID: PMC5955620 DOI: 10.1126/sciadv.aao5017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 03/30/2018] [Indexed: 06/08/2023]
Abstract
Several species of lizards from the megadiverse island of New Guinea have evolved green blood. An unusually high concentration of the green bile pigment biliverdin in the circulatory system of these lizards makes the blood, muscles, bones, tongue, and mucosal tissues bright green in color, eclipsing the crimson color from their red blood cells. This is a remarkable physiological feature because bile pigments are toxic physiological waste products of red blood cell catabolism and, when chronically elevated, cause jaundice in humans and all other vertebrates. Although these lizards offer a promising system to examine the evolution of extraordinary physiological characteristics, little is known about the phylogenetic relationships of green-blooded lizards or the evolutionary origins of green blood. We present the first extensive phylogeny for green-blooded lizards and closely related Australasian lizards using thousands of genomic regions to examine the evolutionary history of this unusual trait. Maximum likelihood ancestral character state reconstruction supports four independent origins of green blood. Our results lay the phylogenetic foundation necessary to determine the role, if any, of natural selection in shaping this enigmatic physiological trait as well as understanding the genetic, proteomic, and biochemical basis for the lack of jaundice in those species that have independently evolved green blood.
Collapse
Affiliation(s)
- Zachary B. Rodriguez
- Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Susan L. Perkins
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Christopher C. Austin
- Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
374
|
Hidden and cryptic species reflect parallel and correlated evolution in the phylogeny of the genus Callyntra (Coleoptera: Tenebrionidae) of Central Chile. Mol Phylogenet Evol 2018; 127:405-415. [PMID: 29702216 DOI: 10.1016/j.ympev.2018.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/02/2018] [Accepted: 04/15/2018] [Indexed: 11/23/2022]
Abstract
The origin of cryptic species has traditionally been associated with events of recent speciation, genetic constraints, selection of an adaptive character, sexual selection and/or convergent evolution. Species of the genus Callyntra inhabit coastal terraces, mountain slopes, and peaks; their elytral designs are associated with each of these habitats. However, cryptic species have been described within each of these habitats; the taxonomy of this group has been problematic, thus establishing the phylogenetic relationships in this group is fundamental to clarify the systematics and evolutionary patterns of Callyntra. We reconstructed the phylogeny of this group using two mitochondrial genes (COI, 16S) and one nuclear gene (Mp20). We also performed species delimitation using PTP based methods (PTP, mlPTP, bPTP) and GMYC, and evaluated the evolution of the elytral design related to habitat preference. The results showed a tree with five clades, that together with the different methods of species delimitation recovered the described species and suggested at least five new species. The elytral design and habitat preference showed phylogenetic signals. We propose a new classification based on monophyletic groups recovered by phylogenetic analyses. We also suggest that parallel evolution in different habitats and later stasis in the elytral design would be the cause of the origin of cryptic species in this group from central Chile.
Collapse
|
375
|
Turko AJ, Tatarenkov A, Currie S, Earley RL, Platek A, Taylor DS, Wright PA. Emersion behaviour underlies variation in gill morphology and aquatic respiratory function in the amphibious fish Kryptolebias marmoratus. ACTA ACUST UNITED AC 2018; 221:jeb.168039. [PMID: 29511069 DOI: 10.1242/jeb.168039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 03/01/2018] [Indexed: 12/21/2022]
Abstract
Fishes acclimated to hypoxic environments often increase gill surface area to improve O2 uptake. In some species, surface area is increased via reduction of an interlamellar cell mass (ILCM) that fills water channels between gill lamellae. Amphibious fishes, however, may not increase gill surface area in hypoxic water because these species can, instead, leave water and breathe air. To differentiate between these possibilities, we compared wild amphibious mangrove rivulus Kryptolebias marmoratus from two habitats that varied in O2 availability - a hypoxic freshwater pool versus nearly anoxic crab burrows. Fish captured from crab burrows had less gill surface area (as ILCMs were enlarged by ∼32%), increased rates of normoxic O2 consumption and increased critical O2 tension compared with fish from the freshwater pool. Thus, wild mangrove rivulus do not respond to near-anoxic water by decreasing metabolism or increasing O2 extraction. Instead, fish from the crab burrow habitat spent three times longer out of water, which probably caused the observed changes in gill morphology and respiratory phenotype. We also tested whether critical O2 tension is influenced by genetic heterozygosity, as K. marmoratus is one of only two hermaphroditic vertebrate species that can produce both self-fertilized (inbred) or out-crossed (more heterozygous) offspring. We found no evidence for inbreeding depression, suggesting that self-fertilization does not impair respiratory function. Overall, our results demonstrate that amphibious fishes that inhabit hypoxic aquatic habitats can use a fundamentally different strategy from that used by fully aquatic water-breathing fishes, relying on escape behaviour rather than metabolic depression or increased O2 extraction ability.
Collapse
Affiliation(s)
- A J Turko
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - A Tatarenkov
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - S Currie
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada E4L 1E2
| | - R L Earley
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - A Platek
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - D S Taylor
- Brevard County Environmentally Endangered Lands Program, Melbourne, FL 32904, USA
| | - P A Wright
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
376
|
Lucas LK, Nice CC, Gompert Z. Genetic constraints on wing pattern variation in
Lycaeides
butterflies: A case study on mapping complex, multifaceted traits in structured populations. Mol Ecol Resour 2018. [DOI: 10.1111/1755-0998.12777] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Chris C. Nice
- Department of Biology Texas State University San Marcos TX USA
| | - Zachariah Gompert
- Department of Biology Utah State University Logan UT USA
- Ecology Center Utah State University Logan UT USA
| |
Collapse
|
377
|
Barts N, Greenway R, Passow CN, Arias-Rodriguez L, Kelley JL, Tobler M. Molecular evolution and expression of oxygen transport genes in livebearing fishes (Poeciliidae) from hydrogen sulfide rich springs. Genome 2018; 61:273-286. [DOI: 10.1139/gen-2017-0051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hydrogen sulfide (H2S) is a natural toxicant in some aquatic environments that has diverse molecular targets. It binds to oxygen transport proteins, rendering them non-functional by reducing oxygen-binding affinity. Hence, organisms permanently inhabiting H2S-rich environments are predicted to exhibit adaptive modifications to compensate for the reduced capacity to transport oxygen. We investigated 10 lineages of fish of the family Poeciliidae that have colonized freshwater springs rich in H2S—along with related lineages from non-sulfidic environments—to test hypotheses about the expression and evolution of oxygen transport genes in a phylogenetic context. We predicted shifts in the expression of and signatures of positive selection on oxygen transport genes upon colonization of H2S-rich habitats. Our analyses indicated significant shifts in gene expression for multiple hemoglobin genes in lineages that have colonized H2S-rich environments, and three hemoglobin genes exhibited relaxed selection in sulfidic compared to non-sulfidic lineages. However, neither changes in gene expression nor signatures of selection were consistent among all lineages in H2S-rich environments. Oxygen transport genes may consequently be predictable targets of selection during adaptation to sulfidic environments, but changes in gene expression and molecular evolution of oxygen transport genes in H2S-rich environments are not necessarily repeatable across replicated lineages.
Collapse
Affiliation(s)
- Nicholas Barts
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Ryan Greenway
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Courtney N. Passow
- Ecology, Evolution and Behavior, University of Minnesota St. Paul, 205 Cargill Building, St. Paul, MN 55108, USA
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), C.P. 86150, Villahermosa, Tabasco, México
| | - Joanna L. Kelley
- Department of Biological Sciences, Washington State University, 431 Heald Hall, Pullman, WA 99164, USA
| | - Michael Tobler
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| |
Collapse
|
378
|
Keagy J, Braithwaite VA, Boughman JW. Brain differences in ecologically differentiated sticklebacks. Curr Zool 2018; 64:243-250. [PMID: 30402065 PMCID: PMC5905471 DOI: 10.1093/cz/zox074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/20/2017] [Indexed: 11/12/2022] Open
Abstract
Populations that have recently diverged offer a powerful model for studying evolution. Ecological differences are expected to generate divergent selection on multiple traits, including neurobiological ones. Animals must detect, process, and act on information from their surroundings and the form of this information can be highly dependent on the environment. We might expect different environments to generate divergent selection not only on the sensory organs, but also on the brain regions responsible for processing sensory information. Here, we test this hypothesis using recently evolved reproductively isolated species pairs of threespine stickleback fish Gasterosteus aculeatus that have well-described differences in many morphological and behavioral traits correlating with ecological differences. We use a state-of-the-art method, magnetic resonance imaging, to get accurate volumetric data for 2 sensory processing regions, the olfactory bulbs and optic tecta. We found a tight correlation between ecology and the size of these brain regions relative to total brain size in 2 lakes with intact species pairs. Limnetic fish, which rely heavily on vision, had relatively larger optic tecta and smaller olfactory bulbs compared with benthic fish, which utilize olfaction to a greater extent. Benthic fish also had larger total brain volumes relative to their body size compared with limnetic fish. These differences were erased in a collapsed species pair in Enos Lake where anthropogenic disturbance has led to intense hybridization. Together these data indicate that evolution of sensory processing regions can occur rapidly and independently.
Collapse
Affiliation(s)
- Jason Keagy
- Department of Animal Biology, School of Integrative Biology, University of Illinois, Urbana-Champaign, IL 61801, USA
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA
| | - Victoria A Braithwaite
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Center for Brain, Behavior and Cognition, Pennsylvania State University, University Park, PA 16802, USA
| | - Janette W Boughman
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA
- Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
379
|
McGirr JA, Martin CH. Parallel evolution of gene expression between trophic specialists despite divergent genotypes and morphologies. Evol Lett 2018; 2:62-75. [PMID: 30283665 PMCID: PMC6089502 DOI: 10.1002/evl3.41] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 12/20/2022] Open
Abstract
Parallel evolution of gene expression commonly underlies convergent niche specialization, but parallel changes in expression could also underlie divergent specialization. We investigated divergence in gene expression and whole-genome genetic variation across three sympatric Cyprinodon pupfishes endemic to San Salvador Island, Bahamas. This recent radiation consists of a generalist and two derived specialists adapted to novel niches: a scale-eating and a snail-eating pupfish. We sampled total mRNA from all three species at two early developmental stages and compared gene expression with whole-genome genetic differentiation among all three species in 42 resequenced genomes. Eighty percent of genes that were differentially expressed between snail-eaters and generalists were up or down regulated in the same direction between scale-eaters and generalists; however, there were no fixed variants shared between species underlying these parallel changes in expression. Genes showing parallel evolution of expression were enriched for effects on metabolic processes, whereas genes showing divergent expression were enriched for effects on cranial skeleton development and pigment biosynthesis, reflecting the most divergent phenotypes observed between specialist species. Our findings reveal that even divergent niche specialists may exhibit convergent adaptation to higher trophic levels through shared genetic pathways. This counterintuitive result suggests that parallel evolution in gene expression can accompany divergent ecological speciation during adaptive radiation.
Collapse
Affiliation(s)
- Joseph A. McGirr
- Department of BiologyUniversity of North Carolina at Chapel HillChapel HillNorth Carolina27514
| | - Christopher H. Martin
- Department of BiologyUniversity of North Carolina at Chapel HillChapel HillNorth Carolina27514
| |
Collapse
|
380
|
Renaud S, Ledevin R, Pisanu B, Chapuis JL, Quillfeldt P, Hardouin EA. Divergent in shape and convergent in function: Adaptive evolution of the mandible in Sub-Antarctic mice. Evolution 2018. [PMID: 29528493 DOI: 10.1111/evo.13467] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Convergent evolution in similar environments constitutes strong evidence of adaptive evolution. Transported with people around the world, house mice colonized even remote areas, such as Sub-Antarctic islands. There, they returned to a feral way of life, shifting towards a diet enriched in terrestrial macroinvertebrates. Here, we test the hypothesis that this triggered convergent evolution of the mandible, a morphological character involved in food consumption. Mandible shape from four Sub-Antarctic islands was compared to phylogeny, tracing the history of colonization, and climatic conditions. Mandible shape was primarily influenced by phylogenetic history, thus discarding the hypothesis of convergent evolution. The biomechanical properties of the jaw were then investigated. Incisor in-lever and temporalis out-lever suggested an increase in the velocity of incisor biting, in agreement with observations on various carnivorous and insectivorous rodents. The mechanical advantage related to incisor biting also revealed an increased functional performance in Sub-Antarctic populations, and appears to be an adaptation to catch prey more efficiently. The amount of change involved was larger than expected for a plastic response, suggesting microevolutionary processes were evolved. This study thus denotes some degree of adaptive convergent evolution related to changes in habitat-related changes in dietary items in Sub-Antarctic mice, but only regarding simple, functionally relevant aspects of mandible morphology.
Collapse
Affiliation(s)
- Sabrina Renaud
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université Lyon 1, CNRS, Campus de la Doua, F-69100 Villeurbanne, France
| | - Ronan Ledevin
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université Lyon 1, CNRS, Campus de la Doua, F-69100 Villeurbanne, France.,Current Address: UMR5199 PACEA, Université de Bordeaux, Allée Geoffroy Saint Hilaire, Bâtiment B8, F-33615 Pessac, France
| | - Benoit Pisanu
- Centre d'Ecologie et des Sciences de la Conservation, UMR 7204, Sorbonne Universités, Muséum National d'Histoire Naturelle, CNRS, Université Pierre et Marie Curie, 61 rue Buffon, F-75005 Paris, France
| | - Jean-Louis Chapuis
- Centre d'Ecologie et des Sciences de la Conservation, UMR 7204, Sorbonne Universités, Muséum National d'Histoire Naturelle, CNRS, Université Pierre et Marie Curie, 61 rue Buffon, F-75005 Paris, France
| | - Petra Quillfeldt
- Justus-Liebig-Universität, AG Verhaltensökologie und Ökophysiologie der Tiere, Heinrich-Buff-Ring 38, D-35392 Giessen, Germany
| | - Emilie A Hardouin
- Department of Life and Environmental Sciences, Faculty of Sciences and Technology, Bournemouth University, Christchurch House, Talbot Campus, Poole, Dorset, BH12 5BB, United Kingdom
| |
Collapse
|
381
|
Cheng J, Guo X, Cai P, Cheng X, Piškur J, Ma Y, Jiang H, Gu Z. Parallel Evolution of Chromatin Structure Underlying Metabolic Adaptation. Mol Biol Evol 2018; 34:2870-2878. [PMID: 28961859 DOI: 10.1093/molbev/msx220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Parallel evolution occurs when a similar trait emerges in independent evolutionary lineages. Although changes in protein coding and gene transcription have been investigated as underlying mechanisms for parallel evolution, parallel changes in chromatin structure have never been reported. Here, Saccharomyces cerevisiae and a distantly related yeast species, Dekkera bruxellensis, are investigated because both species have independently evolved the capacity of aerobic fermentation. By profiling and comparing genome sequences, transcriptomic landscapes, and chromatin structures, we revealed that parallel changes in nucleosome occupancy in the promoter regions of mitochondria-localized genes led to concerted suppression of mitochondrial functions by glucose, which can explain the metabolic convergence in these two independent yeast species. Further investigation indicated that similar mutational processes in the promoter regions of these genes in the two independent evolutionary lineages underlay the parallel changes in chromatin structure. Our results indicate that, despite several hundred million years of separation, parallel changes in chromatin structure, can be an important adaptation mechanism for different organisms. Due to the important role of chromatin structure changes in regulating gene expression and organism phenotypes, the novel mechanism revealed in this study could be a general phenomenon contributing to parallel adaptation in nature.
Collapse
Affiliation(s)
- Jian Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xiaoxian Guo
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | - Pengli Cai
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xiaozhi Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jure Piškur
- Department of Biology, Lund University, Lund, Sweden
| | - Yanhe Ma
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| |
Collapse
|
382
|
Garland T, Albuquerque RL. Locomotion, Energetics, Performance, and Behavior: A Mammalian Perspective on Lizards, and Vice Versa. Integr Comp Biol 2018; 57:252-266. [PMID: 28859413 DOI: 10.1093/icb/icx059] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
SYNOPSIS Animals are constrained by their abilities and by interactions with environmental factors, such as low ambient temperatures. These constraints range from physical impossibilities to energetic inefficiencies, and may entail trade-offs. Some of the constraints related to locomotion and activity metabolism can be illustrated through allometric comparisons of mammals and lizards, as representative terrestrial vertebrate endotherms and ectotherms, respectively, because these lineages differ greatly in aerobic metabolic capacities, resting energetic costs, and thermoregulatory patterns. Allometric comparisons are both useful and unavoidable, but "outlier" species (unusual for their clade) can also inform evolutionary scenarios, as they help indicate extremes of possible adaptation within mammalian and saurian levels of organization. We compared mammals and lizards for standard metabolic rate (SMR), maximal oxygen consumption during forced exercise (VO2max), net (incremental) cost of transport (NCT), maximal aerobic speed (MAS), daily movement distance (DMD), daily energy expenditure (DEE) during the active season, and the ecological cost of transport (ECT = percentage of DEE attributable to locomotion). (Snakes were excluded because their limbless locomotion has no counterpart in terrestrial mammals.) We only considered lizard SMR, VO2max, NCT, MAS, and sprint speed data if measured at 35-40 °C. On average, MAS is ∼7.4-fold higher in mammals, whereas SMR and VO2max are ∼6-fold greater, but values for all three of these traits overlap (or almost overlap) between mammals and lizards, a fact that has not previously been appreciated. Previous studies show that sprint speeds are similar for smaller mammals and lizards, but at larger sizes lizards are not as fast as some mammals. Mammals move ∼6-fold further each day than lizards, and DMD is by far the most variable trait considered here, but their NCT is similar. Mammals exceed lizards by ∼11.4-fold for DEE. On average for both lineages, the ECT is surprisingly low, somewhat higher for lizards, and positively allometric. If a lizard and mammal of 100 g body mass were both to move their entire DMD at their MAS, they could do so in ∼21 and 17 min, respectively, thus de-emphasizing the possible importance of time constraints. We conclude that ecological-energetic constraints related to locomotion are relatively more likely to occur in large, carnivorous lizards. Overall, our comparisons support the idea that the (gradual) evolution of mammalian endothermy did not necessarily require major changes in locomotor energetics, performance, or associated behaviors. Instead, we speculate that the evolution of thermoregulatory responses to low temperatures (e.g., shivering) may have been a key and "difficult" step in this transition.
Collapse
Affiliation(s)
- Theodore Garland
- Department of Biology, University of California, Riverside, CA 92506, USA
| | | |
Collapse
|
383
|
Audino JA, Marian JEAR. Comparative and functional anatomy of the mantle margin in ark clams and their relatives (Bivalvia: Arcoidea) supports association between morphology and life habits. J Zool (1987) 2018. [DOI: 10.1111/jzo.12544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J. A. Audino
- Department of Zoology University of São Paulo São Paulo Brazil
| | | |
Collapse
|
384
|
Simple observations with complex implications: What we have learned and can learn about parental care from a frog that feeds its young. ZOOL ANZ 2018. [DOI: 10.1016/j.jcz.2017.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
385
|
Fišer C, Robinson CT, Malard F. Cryptic species as a window into the paradigm shift of the species concept. Mol Ecol 2018; 27:613-635. [DOI: 10.1111/mec.14486] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Cene Fišer
- SubBio Lab; Department of Biology; Biotechnical Faculty; University of Ljubljana; Ljubljana Slovenia
| | - Christopher T. Robinson
- Department of Aquatic Ecology; Eawag; Dübendorf Switzerland
- Institute of Integrative Biology; ETH Zürich; Zürich Switzerland
| | - Florian Malard
- Université Lyon; Université Claude Bernard Lyon 1; CNRS; ENTPE; UMR5023 LEHNA Villeurbanne France
| |
Collapse
|
386
|
McLean BS, Helgen KM, Goodwin HT, Cook JA. Trait‐specific processes of convergence and conservatism shape ecomorphological evolution in ground‐dwelling squirrels. Evolution 2018; 72:473-489. [DOI: 10.1111/evo.13422] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/18/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Bryan S. McLean
- Department of Biology and Museum of Southwestern Biology University of New Mexico Albuquerque New Mexico 87131
- Florida Museum of Natural History University of Florida Gainesville Florida 32611
| | - Kristofer M. Helgen
- School of Biological Sciences University of Adelaide Adelaide SA 5005 Australia
| | - H. Thomas Goodwin
- Department of Biology Andrews University Berrien Springs Michigan 49104
| | - Joseph A. Cook
- Department of Biology and Museum of Southwestern Biology University of New Mexico Albuquerque New Mexico 87131
| |
Collapse
|
387
|
Males J. Geography, environment and organismal traits in the diversification of a major tropical herbaceous angiosperm radiation. AOB PLANTS 2018; 10:ply008. [PMID: 29479409 PMCID: PMC5814923 DOI: 10.1093/aobpla/ply008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 01/29/2018] [Indexed: 06/08/2023]
Abstract
The generation of plant diversity involves complex interactions between geography, environment and organismal traits. Many macroevolutionary processes and emergent patterns have been identified in different plant groups through the study of spatial data, but rarely in the context of a large radiation of tropical herbaceous angiosperms. A powerful system for testing interrelated biogeographical hypotheses is provided by the terrestrial bromeliads, a Neotropical group of extensive ecological diversity and importance. In this investigation, distributional data for 564 species of terrestrial bromeliads were used to estimate variation in the position and width of species-level hydrological habitat occupancy and test six core hypotheses linking geography, environment and organismal traits. Taxonomic groups and functional types differed in hydrological habitat occupancy, modulated by convergent and divergent trait evolution, and with contrasting interactions with precipitation abundance and seasonality. Plant traits in the Bromeliaceae are intimately associated with bioclimatic differentiation, which is in turn strongly associated with variation in geographical range size and species richness. These results emphasize the ecological relevance of structural-functional innovation in a major plant radiation.
Collapse
Affiliation(s)
- Jamie Males
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, UK
| |
Collapse
|
388
|
Tseng ZJ, Flynn JJ. Structure-function covariation with nonfeeding ecological variables influences evolution of feeding specialization in Carnivora. SCIENCE ADVANCES 2018; 4:eaao5441. [PMID: 29441363 PMCID: PMC5810607 DOI: 10.1126/sciadv.aao5441] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/08/2018] [Indexed: 05/06/2023]
Abstract
Skull shape convergence is pervasive among vertebrates. Although this is frequently inferred to indicate similar functional underpinnings, neither the specific structure-function linkages nor the selective environments in which the supposed functional adaptations arose are commonly identified and tested. We demonstrate that nonfeeding factors relating to sexual maturity and precipitation-related arboreality also can generate structure-function relationships in the skulls of carnivorans (dogs, cats, seals, and relatives) through covariation with masticatory performance. We estimated measures of masticatory performance related to ecological variables that covary with cranial shape in the mammalian order Carnivora, integrating geometric morphometrics and finite element analyses. Even after accounting for phylogenetic autocorrelation, cranial shapes are significantly correlated to both feeding and nonfeeding ecological variables, and covariation with both variable types generated significant masticatory performance gradients. This suggests that mechanisms of obligate shape covariation with nonfeeding variables can produce performance changes resembling those arising from feeding adaptations in Carnivora.
Collapse
Affiliation(s)
- Z. Jack Tseng
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
- Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
- Corresponding author.
| | - John J. Flynn
- Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
- Richard Gilder Graduate School, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| |
Collapse
|
389
|
Davis AM, Betancur-R R. Widespread ecomorphological convergence in multiple fish families spanning the marine-freshwater interface. Proc Biol Sci 2018; 284:rspb.2017.0565. [PMID: 28515206 DOI: 10.1098/rspb.2017.0565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/19/2017] [Indexed: 11/12/2022] Open
Abstract
The theoretical definition and quantification of convergence is an increasingly topical focus in evolutionary research, with particular growing interest on study scales spanning deep phylogenetic divergences and broad geographical areas. While much progress has recently been made in understanding the role of convergence in driving terrestrial (e.g. anole lizards) and aquatic (e.g. cichlids) radiations, little is known about its macroevolutionary effects across environmental gradients. This study uses a suite of recently developed comparative approaches integrating diverse aspects of morphology, dietary data, habitat affiliation and phylogeny to assess convergence across several well-known tropical-temperate fish families in the percomorph suborder Terapontoidei, a clade with considerable phenotypic and ecological diversity radiating in both marine and freshwater environments. We demonstrate significant widespread convergence across many lineages occupying equivalent trophic niches, particularly feeding habits such as herbivory and biting of attached prey off hard substrates. These include several examples of convergent morphotypes evolving independently in marine and freshwater clades, separated by deep evolutionary divergences (tens of millions of years). The Terapontoidei present a new example of the macroevolutionary dynamics of morphological and ecological coevolution in relation to habitat and trophic preferences, at a greater phylogenetic and habitat scale than most well-studied adaptive radiations.
Collapse
Affiliation(s)
- Aaron M Davis
- Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland 4811, Australia .,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, MRC 159, Washington, DC 20013-7012, USA
| | - Ricardo Betancur-R
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, MRC 159, Washington, DC 20013-7012, USA.,Department of Biology, University of Puerto Rico, Río Piedras, PO Box 23360, San Juan, Puerto Rico 00931, USA
| |
Collapse
|
390
|
Wheeler GL, Carstens BC. Evaluating the adaptive evolutionary convergence of carnivorous plant taxa through functional genomics. PeerJ 2018; 6:e4322. [PMID: 29404217 PMCID: PMC5797450 DOI: 10.7717/peerj.4322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/13/2018] [Indexed: 12/18/2022] Open
Abstract
Carnivorous plants are striking examples of evolutionary convergence, displaying complex and often highly similar adaptations despite lack of shared ancestry. Using available carnivorous plant genomes along with non-carnivorous reference taxa, this study examines the convergence of functional overrepresentation of genes previously implicated in plant carnivory. Gene Ontology (GO) coding was used to quantitatively score functional representation in these taxa, in terms of proportion of carnivory-associated functions relative to all functional sequence. Statistical analysis revealed that, in carnivorous plants as a group, only two of the 24 functions tested showed a signal of substantial overrepresentation. However, when the four carnivorous taxa were analyzed individually, 11 functions were found to be significant in at least one taxon. Though carnivorous plants collectively may show overrepresentation in functions from the predicted set, the specific functions that are overrepresented vary substantially from taxon to taxon. While it is possible that some functions serve a similar practical purpose such that one taxon does not need to utilize both to achieve the same result, it appears that there are multiple approaches for the evolution of carnivorous function in plant genomes. Our approach could be applied to tests of functional convergence in other systems provided on the availability of genomes and annotation data for a group.
Collapse
Affiliation(s)
- Gregory L. Wheeler
- Department of Evolution, Ecology, & Organismal Biology, The Ohio State University, Columbus, OH, United States of America
| | - Bryan C. Carstens
- Department of Evolution, Ecology, & Organismal Biology, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
391
|
Riesch R, Plath M, Bierbach D. Ecology and evolution along environmental gradients. Curr Zool 2018; 64:193-196. [PMID: 30402059 PMCID: PMC5905473 DOI: 10.1093/cz/zoy015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Rüdiger Riesch
- School of Biological Sciences, Centre for Ecology, Evolution and Behaviour, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Martin Plath
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, D-12587, Germany
| |
Collapse
|
392
|
Convergent evolution of caffeine in plants by co-option of exapted ancestral enzymes. Proc Natl Acad Sci U S A 2018; 113:10613-8. [PMID: 27638206 DOI: 10.1073/pnas.1602575113] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Convergent evolution is a process that has occurred throughout the tree of life, but the historical genetic and biochemical context promoting the repeated independent origins of a trait is rarely understood. The well-known stimulant caffeine, and its xanthine alkaloid precursors, has evolved multiple times in flowering plant history for various roles in plant defense and pollination. We have shown that convergent caffeine production, surprisingly, has evolved by two previously unknown biochemical pathways in chocolate, citrus, and guaraná plants using either caffeine synthase- or xanthine methyltransferase-like enzymes. However, the pathway and enzyme lineage used by any given plant species is not predictable from phylogenetic relatedness alone. Ancestral sequence resurrection reveals that this convergence was facilitated by co-option of genes maintained over 100 million y for alternative biochemical roles. The ancient enzymes of the Citrus lineage were exapted for reactions currently used for various steps of caffeine biosynthesis and required very few mutations to acquire modern-day enzymatic characteristics, allowing for the evolution of a complete pathway. Future studies aimed at manipulating caffeine content of plants will require the use of different approaches given the metabolic and genetic diversity revealed by this study.
Collapse
|
393
|
Shape Covariation (or the Lack Thereof) Between Vertebrae and Other Skeletal Traits in Felids: The Whole is Not Always Greater than the Sum of Parts. Evol Biol 2018; 45:196-210. [PMID: 29755151 PMCID: PMC5938317 DOI: 10.1007/s11692-017-9443-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/18/2017] [Indexed: 12/25/2022]
Abstract
Within carnivorans, cats show comparatively little disparity in overall morphology, with species differing mainly in body size. However, detailed shape analyses of individual osteological structures, such as limbs or skulls, have shown that felids display significant morphological differences that correlate with their observed ecological and behavioural ranges. Recently, these shape analyses have been extended to the felid axial skeleton. Results demonstrate a functionally-partitioned vertebral column, with regions varying greatly in level of correlation between shape and ecology. Moreover, a clear distinction is evident between a phylogenetically-constrained neck region and a selection-responsive posterior spine. Here, we test whether this regionalisation of function reflected in vertebral column shape is also translated into varying levels of phenotypic integration between this structure and most other skeletal elements. We accomplish this comparison by performing pairwise tests of integration between vertebral and other osteological units, quantified with 3D geometric morphometric data and analysed both with and without phylogenetic correction. To our knowledge, this is the first study to test for integration across a comprehensive sample of whole-skeleton elements. Our results show that, prior to corrections, strong covariation is present between vertebrae across the vertebral column and all other elements, with the exception of the femur. However, most of these significant correlations disappear after correcting for phylogeny, which is a significant influence on cranial and limb morphology of felids and other carnivorans. Our results thus suggest that the vertebral column of cats displays relative independence from other skeletal elements and may represent several distinct evolutionary morphological modules.
Collapse
|
394
|
Castiglione GM, Schott RK, Hauser FE, Chang BSW. Convergent selection pressures drive the evolution of rhodopsin kinetics at high altitudes via nonparallel mechanisms. Evolution 2018; 72:170-186. [DOI: 10.1111/evo.13396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/02/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Gianni M. Castiglione
- Department of Cell & Systems Biology; University of Toronto; Toronto Ontario M5S 3G5 Canada
- Department of Ecology & Evolutionary Biology; University of Toronto; Toronto Ontario M5S 3B2 Canada
| | - Ryan K. Schott
- Department of Ecology & Evolutionary Biology; University of Toronto; Toronto Ontario M5S 3B2 Canada
| | - Frances E. Hauser
- Department of Ecology & Evolutionary Biology; University of Toronto; Toronto Ontario M5S 3B2 Canada
| | - Belinda S. W. Chang
- Department of Cell & Systems Biology; University of Toronto; Toronto Ontario M5S 3G5 Canada
- Department of Ecology & Evolutionary Biology; University of Toronto; Toronto Ontario M5S 3B2 Canada
- Centre for the Analysis of Genome Evolution and Function; University of Toronto; Toronto Ontario M5S 3B2 Canada
| |
Collapse
|
395
|
Burns EE, Keith BK, Refai MY, Bothner B, Dyer WE. Constitutive redox and phosphoproteome changes in multiple herbicide resistant Avena fatua L. are similar to those of systemic acquired resistance and systemic acquired acclimation. JOURNAL OF PLANT PHYSIOLOGY 2018; 220:105-114. [PMID: 29169105 DOI: 10.1016/j.jplph.2017.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/26/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
Plants are routinely confronted with numerous biotic and abiotic stressors, and in response have evolved highly effective strategies of systemic acquired resistance (SAR) and systemic acquired acclimation (SAA), respectively. A much more evolutionarily recent abiotic stress is the application of herbicides to control weedy plants, and their intensive use has selected for resistant weed populations that cause substantial crop yield losses and increase production costs. Non-target site resistance (NTSR) to herbicides is rapidly increasing worldwide and is associated with alterations in generalized stress defense networks. This work investigated protein post-translational modifications associated with NTSR in multiple herbicide resistant (MHR) Avena fatua, and their commonalities with those of SAR and SAA. We used proteomic, biochemical, and immunological approaches to compare constitutive protein profiles in MHR and herbicide susceptible (HS) A. fatua populations. Phosphoproteome and redox proteome surveys showed that post-translational modifications of proteins with functions in core cellular processes were reduced in MHR plants, while those involved in xenobiotic and stress response, reactive oxygen species detoxification and redox maintenance, heat shock response, and intracellular signaling were elevated in MHR as compared to HS plants. More specifically, MHR plants contained constitutively elevated levels of three protein kinases including the lectin S-receptor-like serine/threonine-protein kinase LecRK2, a well-characterized component of SAR. Analyses of superoxide dismutase enzyme activity and protein levels did not reveal constitutive differences between MHR and HS plants. The overall results support the idea that herbicide stress is perceived similarly to other abiotic stresses, and that A. fatua NTSR shares analogous features with SAR and SAA. We speculate that MHR A. fatua's previous exposure to sublethal herbicide doses, as well as earlier evolution under a diversity of abiotic and biotic stressors, has led to a heightened state of stress preparedness that includes NTSR to a number of unrelated herbicides.
Collapse
Affiliation(s)
- Erin E Burns
- Department of Plant Sciences & Plant Pathology, PO Box 173150, Montana State University, Bozeman, MT 59717, United States
| | - Barbara K Keith
- Department of Plant Sciences & Plant Pathology, PO Box 173150, Montana State University, Bozeman, MT 59717, United States
| | - Mohammed Y Refai
- Department of Chemistry & Biochemistry Research, PO Box 173400, Montana State University, Bozeman, MT 59717, United States
| | - Brian Bothner
- Department of Chemistry & Biochemistry Research, PO Box 173400, Montana State University, Bozeman, MT 59717, United States
| | - William E Dyer
- Department of Plant Sciences & Plant Pathology, PO Box 173150, Montana State University, Bozeman, MT 59717, United States.
| |
Collapse
|
396
|
Lyu H, He Z, Wu CI, Shi S. Convergent adaptive evolution in marginal environments: unloading transposable elements as a common strategy among mangrove genomes. THE NEW PHYTOLOGIST 2018; 217:428-438. [PMID: 28960318 DOI: 10.1111/nph.14784] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/10/2017] [Indexed: 05/18/2023]
Abstract
Several clades of mangrove trees independently invade the interface between land and sea at the margin of woody plant distribution. As phenotypic convergence among mangroves is common, the possibility of convergent adaptation in their genomes is quite intriguing. To study this molecular convergence, we sequenced multiple mangrove genomes. In this study, we focused on the evolution of transposable elements (TEs) in relation to the genome size evolution. TEs, generally considered genomic parasites, are the most common components of woody plant genomes. Analyzing the long terminal repeat-retrotransposon (LTR-RT) type of TE, we estimated their death rates by counting solo-LTRs and truncated elements. We found that all lineages of mangroves massively and convergently reduce TE loads in comparison to their nonmangrove relatives; as a consequence, genome size reduction happens independently in all six mangrove lineages; TE load reduction in mangroves can be attributed to the paucity of young elements; the rarity of young LTR-RTs is a consequence of fewer births rather than access death. In conclusion, mangrove genomes employ a convergent strategy of TE load reduction by suppressing element origination in their independent adaptation to a new environment.
Collapse
Affiliation(s)
- Haomin Lyu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ziwen He
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, China
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | - Suhua Shi
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
397
|
Vogwill T, Phillips RL, Gifford DR, MacLean RC. Divergent evolution peaks under intermediate population bottlenecks during bacterial experimental evolution. Proc Biol Sci 2017; 283:rspb.2016.0749. [PMID: 27466449 PMCID: PMC4971204 DOI: 10.1098/rspb.2016.0749] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/04/2016] [Indexed: 12/30/2022] Open
Abstract
There is growing evidence that parallel molecular evolution is common, but its causes remain poorly understood. Demographic parameters such as population bottlenecks are predicted to be major determinants of parallelism. Here, we test the hypothesis that bottleneck intensity shapes parallel evolution by elucidating the genomic basis of adaptation to antibiotic-supplemented media in hundreds of populations of the bacterium Pseudomonas fluorescens Pf0-1. As expected, bottlenecking decreased the rate of phenotypic and molecular adaptation. Surprisingly, bottlenecking had no impact on the likelihood of parallel adaptive molecular evolution at a genome-wide scale. However, bottlenecking had a profound impact on the genes involved in antibiotic resistance. Specifically, under either intense or weak bottlenecking, resistance predominantly evolved by strongly beneficial mutations which provide high levels of antibiotic resistance. In contrast with intermediate bottlenecking regimes, resistance evolved by a greater diversity of genetic mechanisms, significantly reducing the observed levels of parallel genetic evolution. Our results demonstrate that population bottlenecking can be a major predictor of parallel evolution, but precisely how may be more complex than many simple theoretical predictions.
Collapse
Affiliation(s)
- Tom Vogwill
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Robyn L Phillips
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Danna R Gifford
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - R Craig MacLean
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
398
|
Feigin CY, Newton AH, Doronina L, Schmitz J, Hipsley CA, Mitchell KJ, Gower G, Llamas B, Soubrier J, Heider TN, Menzies BR, Cooper A, O'Neill RJ, Pask AJ. Genome of the Tasmanian tiger provides insights into the evolution and demography of an extinct marsupial carnivore. Nat Ecol Evol 2017; 2:182-192. [PMID: 29230027 DOI: 10.1038/s41559-017-0417-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 11/16/2017] [Indexed: 12/30/2022]
Abstract
The Tasmanian tiger or thylacine (Thylacinus cynocephalus) was the largest carnivorous Australian marsupial to survive into the modern era. Despite last sharing a common ancestor with the eutherian canids ~160 million years ago, their phenotypic resemblance is considered the most striking example of convergent evolution in mammals. The last known thylacine died in captivity in 1936 and many aspects of the evolutionary history of this unique marsupial apex predator remain unknown. Here we have sequenced the genome of a preserved thylacine pouch young specimen to clarify the phylogenetic position of the thylacine within the carnivorous marsupials, reconstruct its historical demography and examine the genetic basis of its convergence with canids. Retroposon insertion patterns placed the thylacine as the basal lineage in Dasyuromorphia and suggest incomplete lineage sorting in early dasyuromorphs. Demographic analysis indicated a long-term decline in genetic diversity starting well before the arrival of humans in Australia. In spite of their extraordinary phenotypic convergence, comparative genomic analyses demonstrated that amino acid homoplasies between the thylacine and canids are largely consistent with neutral evolution. Furthermore, the genes and pathways targeted by positive selection differ markedly between these species. Together, these findings support models of adaptive convergence driven primarily by cis-regulatory evolution.
Collapse
Affiliation(s)
- Charles Y Feigin
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Axel H Newton
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.,Museums Victoria, Melbourne, Victoria, Australia
| | - Liliya Doronina
- Institute of Experimental Pathology (ZMBE), University of Münster, Münster, Germany
| | - Jürgen Schmitz
- Institute of Experimental Pathology (ZMBE), University of Münster, Münster, Germany
| | - Christy A Hipsley
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.,Museums Victoria, Melbourne, Victoria, Australia
| | - Kieren J Mitchell
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, South Australia, Australia
| | - Graham Gower
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, South Australia, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, South Australia, Australia
| | - Julien Soubrier
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, South Australia, Australia
| | - Thomas N Heider
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Brandon R Menzies
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Alan Cooper
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, South Australia, Australia
| | - Rachel J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia. .,Museums Victoria, Melbourne, Victoria, Australia.
| |
Collapse
|
399
|
Rates of morphological evolution, asymmetry and morphological integration of shell shape in scallops. BMC Evol Biol 2017; 17:248. [PMID: 29216839 PMCID: PMC5721563 DOI: 10.1186/s12862-017-1098-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022] Open
Abstract
Background Rates of morphological evolution vary across different taxonomic groups, and this has been proposed as one of the main drivers for the great diversity of organisms on Earth. Of the extrinsic factors pertaining to this variation, ecological hypotheses feature prominently in observed differences in phenotypic evolutionary rates across lineages. But complex organisms are inherently modular, comprising distinct body parts that can be differentially affected by external selective pressures. Thus, the evolution of trait covariation and integration in modular systems may also play a prominent role in shaping patterns of phenotypic diversity. Here we investigate the role ecological diversity plays in morphological integration, and the tempo of shell shape evolution and of directional asymmetry in bivalved scallops. Results Overall, the shape of both valves and the magnitude of asymmetry of the whole shell (difference in shape between valves) are traits that are evolving fast in ecomorphs under strong selective pressures (gliders, recessers and nestling), compared to low rates observed in other ecomorphs (byssal-attaching, free-living and cementing). Given that different parts of an organism can be under different selective pressures from the environment, we also examined the degree of evolutionary integration between the valves as it relates to ecological shifts. We find that evolutionary morphological integration is consistent and surprisingly high across species, indicating that while the left and right valves of a scallop shell are diversifying in accordance with ecomorphology, they are doing so in a concerted fashion. Conclusions Our study on scallops adds another strong piece of evidence that ecological shifts play an important role in the tempo and mode of morphological evolution. Strong selective pressures from the environment, inferred from the repeated evolution of distinct ecomorphs, have influenced the rate of morphological evolution in valve shape and the magnitude of asymmetry between valves. Our observation that morphological integration of the valves making up the shell is consistently strong suggests tight developmental pathways are responsible for the concerted evolution of these structures while environmental pressures are driving whole shell shape. Finally, our study shows that directional asymmetry in shell shape among species is an important aspect of scallop macroevolution. Electronic supplementary material The online version of this article (10.1186/s12862-017-1098-5) contains supplementary material, which is available to authorized users.
Collapse
|
400
|
Coevolution takes the sting out of it: Evolutionary biology and mechanisms of toxin resistance in animals. Toxicon 2017; 140:118-131. [DOI: 10.1016/j.toxicon.2017.10.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/06/2017] [Accepted: 10/23/2017] [Indexed: 01/09/2023]
|