351
|
Smith EN, Schwarzländer M, Ratcliffe RG, Kruger NJ. Shining a light on NAD- and NADP-based metabolism in plants. TRENDS IN PLANT SCIENCE 2021; 26:1072-1086. [PMID: 34281784 DOI: 10.1016/j.tplants.2021.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 05/20/2023]
Abstract
The pyridine nucleotides nicotinamide adenine dinucleotide [NAD(H)] and nicotinamide adenine dinucleotide phosphate [NADP(H)] simultaneously act as energy transducers, signalling molecules, and redox couples. Recent research into photosynthetic optimisation, photorespiration, immunity, hypoxia/oxygen signalling, development, and post-harvest metabolism have all identified pyridine nucleotides as key metabolites. Further understanding will require accurate description of NAD(P)(H) metabolism, and genetically encoded fluorescent biosensors have recently become available for this purpose. Although these biosensors have begun to provide novel biological insights, their limitations must be considered and the information they provide appropriately interpreted. We provide a framework for understanding NAD(P)(H) metabolism and explore what fluorescent biosensors can, and cannot, tell us about plant biology, looking ahead to the pressing questions that could be answered with further development of these tools.
Collapse
Affiliation(s)
- Edward N Smith
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK; Current address: Department of Molecular Systems Biology, University of Groningen, 9747 AG Groningen, The Netherlands.
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
| | | | - Nicholas J Kruger
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| |
Collapse
|
352
|
Pham DL, Miller CR, Myers MS, Myers DM, Hansen LA, Nichols MG. Development and characterization of phasor-based analysis for FLIM to evaluate the metabolic and epigenetic impact of HER2 inhibition on squamous cell carcinoma cultures. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210187R. [PMID: 34628733 PMCID: PMC8501457 DOI: 10.1117/1.jbo.26.10.106501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
SIGNIFICANCE Deranged metabolism and dysregulated growth factor signaling are closely associated with abnormal levels of proliferation, a recognized hallmark in tumorigenesis. Fluorescence lifetime imaging microscopy (FLIM) of endogenous nicotinamide adenine dinucleotide (NADH), a key metabolic coenzyme, offers a non-invasive, diagnostic indicator of disease progression, and treatment response. The model-independent phasor analysis approach leverages FLIM to rapidly evaluate cancer metabolism in response to targeted therapy. AIM We combined lifetime and phasor FLIM analysis to evaluate the influence of human epidermal growth factor receptor 2 (HER2) inhibition, a prevalent cancer biomarker, on both nuclear and cytoplasmic NAD(P)H of two squamous cell carcinoma (SCC) cultures. While better established, the standard lifetime analysis approach is relatively slow and potentially subject to intrinsic fitting errors and model assumptions. Phasor FLIM analysis offers a rapid, model-independent alternative, but the sensitivity of the bound NAD(P)H fraction to growth factor signaling must also be firmly established. APPROACH Two SCC cultures with low- and high-HER2 expression, were imaged using multiphoton-excited NAD(P)H FLIM, with and without treatment of the HER2 inhibitor AG825. Cells were challenged with mitochondrial inhibition and uncoupling to investigate AG825's impact on the overall metabolic capacity. Phasor FLIM and lifetime fitting analyses were compared within nuclear and cytoplasmic compartments to investigate epigenetic and metabolic impacts of HER2 inhibition. RESULTS NAD(P)H fluorescence lifetime and bound fraction consistently decreased following HER2 inhibition in both cell lines. High-HER2 SCC74B cells displayed a more significant response than low-HER2 SCC74A in both techniques. HER2 inhibition induced greater changes in nuclear than cytoplasmic compartments, leading to an increase in NAD(P)H intensity and concentration. CONCLUSIONS The use of both, complementary FLIM analysis techniques together with quantitative fluorescence intensity revealed consistent, quantitative changes in NAD(P)H metabolism associated with inhibition of growth factor signaling in SCC cell lines. HER2 inhibition promoted increased reliance on oxidative phosphorylation in both cell lines.
Collapse
Affiliation(s)
- Dan L. Pham
- Creighton University, Department of Physics, Omaha, Nebraska, United States
| | | | - Molly S. Myers
- Creighton University, Department of Physics, Omaha, Nebraska, United States
| | - Dominick M. Myers
- Creighton University, Department of Biomedical Sciences, Omaha, Nebraska, United States
| | - Laura A. Hansen
- Creighton University, Department of Biomedical Sciences, Omaha, Nebraska, United States
| | - Michael G. Nichols
- Creighton University, Department of Physics, Omaha, Nebraska, United States
- Creighton University, Department of Biomedical Sciences, Omaha, Nebraska, United States
| |
Collapse
|
353
|
Jones CM, Robkis DM, Blizzard RJ, Munari M, Venkatesh Y, Mihaila TS, Eddins AJ, Mehl RA, Zagotta WN, Gordon SE, Petersson EJ. Genetic encoding of a highly photostable, long lifetime fluorescent amino acid for imaging in mammalian cells. Chem Sci 2021; 12:11955-11964. [PMID: 34976337 PMCID: PMC8634729 DOI: 10.1039/d1sc01914g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/18/2021] [Indexed: 01/28/2023] Open
Abstract
Acridonylalanine (Acd) is a fluorescent amino acid that is highly photostable, with a high quantum yield and long fluorescence lifetime in water. These properties make it superior to existing genetically encodable fluorescent amino acids for monitoring protein interactions and conformational changes through fluorescence polarization or lifetime experiments, including fluorescence lifetime imaging microscopy (FLIM). Here, we report the genetic incorporation of Acd using engineered pyrrolysine tRNA synthetase (RS) mutants that allow for efficient Acd incorporation in both E. coli and mammalian cells. We compare protein yields and amino acid specificity for these Acd RSs to identify an optimal construct. We also demonstrate the use of Acd in FLIM, where its long lifetime provides strong contrast compared to endogenous fluorophores and engineered fluorescent proteins, which have lifetimes less than 5 ns.
Collapse
Affiliation(s)
- Chloe M Jones
- Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania 3700 Hamilton Walk Philadelphia PA 19104 USA
| | - D Miklos Robkis
- Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania 3700 Hamilton Walk Philadelphia PA 19104 USA
| | - Robert J Blizzard
- Department of Biochemistry and Biophysics, Oregon State University 2011 Ag Life Sciences Building Corvallis Oregon 97331 USA
| | - Mika Munari
- Department of Physiology and Biophysics, University of Washington 1705 NE Pacific St., Box 357290 Seattle WA 98195 USA
| | - Yarra Venkatesh
- Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Tiberiu S Mihaila
- Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Alex J Eddins
- Department of Biochemistry and Biophysics, Oregon State University 2011 Ag Life Sciences Building Corvallis Oregon 97331 USA
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University 2011 Ag Life Sciences Building Corvallis Oregon 97331 USA
| | - William N Zagotta
- Department of Physiology and Biophysics, University of Washington 1705 NE Pacific St., Box 357290 Seattle WA 98195 USA
| | - Sharona E Gordon
- Department of Physiology and Biophysics, University of Washington 1705 NE Pacific St., Box 357290 Seattle WA 98195 USA
| | - E James Petersson
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania 3700 Hamilton Walk Philadelphia PA 19104 USA
| |
Collapse
|
354
|
Lee M, Kannan S, Muniraj G, Rosa V, Lu WF, Fuh JYH, Sriram G, Cao T. Two-Photon Fluorescence Microscopy and Applications in Angiogenesis and Related Molecular Events. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:926-937. [PMID: 34541887 DOI: 10.1089/ten.teb.2021.0140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The role of angiogenesis in health and disease have gained considerable momentum in recent years. Visualizing angiogenic patterns and associated events of surrounding vascular beds in response to therapeutic and laboratory-grade biomolecules have become a commonplace in regenerative medicine and the biosciences. To aid imaging investigations in angiogenesis, the two-photon excitation fluorescence microscopy (2PEF), or multiphoton fluorescence microscopy is increasingly utilized in scientific investigations. The 2PEF microscope confers several distinct imaging advantages over other fluorescence excitation microscopy techniques - for the observation of in-depth, three-dimensional vascularity in a variety of tissue formats, including fixed tissue specimens and in vivo vasculature in live specimens. Understanding morphological and subcellular changes that occur in cells and tissues during angiogenesis will provide insights to behavioral responses in diseased states, advance the engineering of physiologically-relevant tissue models and provide biochemical clues for the design of therapeutic strategies. We review the applicability and limitations of the 2PEF microscope on the biophysical and molecular-level signatures of angiogenesis in various tissue models. Imaging techniques and strategies for best practices in 2PEF microscopy will be reviewed.
Collapse
Affiliation(s)
- Marcus Lee
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Sathya Kannan
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Giridharan Muniraj
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Wen Feng Lu
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Jerry Y H Fuh
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Tong Cao
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| |
Collapse
|
355
|
FLIM-Based Intracellular and Extracellular pH Measurements Using Genetically Encoded pH Sensor. BIOSENSORS-BASEL 2021; 11:bios11090340. [PMID: 34562930 PMCID: PMC8468847 DOI: 10.3390/bios11090340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 02/04/2023]
Abstract
The determination of pH in live cells and tissues is of high importance in physiology and cell biology. In this report, we outline the process of the creation of SypHerExtra, a genetically encoded fluorescent sensor that is capable of measuring extracellular media pH in a mildly alkaline range. SypHerExtra is a protein created by fusing the previously described pH sensor SypHer3s with the neurexin transmembrane domain that targets its expression to the cytoplasmic membrane. We showed that with excitation at 445 nm, the fluorescence lifetime of both SypHer3s and SypHerExtra strongly depend on pH. Using FLIM microscopy in live eukaryotic cells, we demonstrated that SypHerExtra can be successfully used to determine extracellular pH, while SypHer3s can be applied to measure intracellular pH. Thus, these two sensors are suitable for quantitative measurements using the FLIM method, to determine intracellular and extracellular pH in a range from pH 7.5 to 9.5 in different biological systems.
Collapse
|
356
|
Mishra PM, Yadav A, Kaushik K, Jaiswal A, Nandi CK. Super-Resolution Microscopy Revealed the Lysosomal Expansion During Epigallocatechin Gallate-Mediated Apoptosis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10818-10826. [PMID: 34470217 DOI: 10.1021/acs.langmuir.1c01742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Direct visualization of the dynamic events in lysosomes during drug-mediated programmed cell death (apoptosis) is a great challenge. This is due to the lack of resolving power of a conventional microscope and also the unavailability of a suitable multimodal probe that simultaneously can carry the drug with high loading capacity and ensure its specific internalization into lysosomes. In this work, using super-resolution microscopy, we observed the lysosomal expansion during apoptosis that was treated with epigallocatechin gallate (EGCG) conjugated to bovine serum albumin (BSA). Albumin protein is known to internalize into lysosomes via endocytosis, thus helping in the specific delivery of EGCG to the lysosomal compartment. The conjugation of EGCG to BSA not only helped in increasing the killing efficiency of cancer cells but it also reduces the side effects and produces minimal reactive oxygen species. The decrease in local viscosity helped in lysosomal expansion during apoptosis.
Collapse
Affiliation(s)
- Pushpendra M Mishra
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh175001, India
- Advanced Materials Research Centre, Indian Institute of Technology Mandi, Himachal Pradesh 175001, India
- BioX Centre, Indian Institute of Technology Mandi, Himachal Pradesh 175001, India
| | - Aditya Yadav
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh175001, India
- Advanced Materials Research Centre, Indian Institute of Technology Mandi, Himachal Pradesh 175001, India
| | - Kush Kaushik
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh175001, India
- Advanced Materials Research Centre, Indian Institute of Technology Mandi, Himachal Pradesh 175001, India
| | - Amit Jaiswal
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh175001, India
- BioX Centre, Indian Institute of Technology Mandi, Himachal Pradesh 175001, India
| | - Chayan K Nandi
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh175001, India
- Advanced Materials Research Centre, Indian Institute of Technology Mandi, Himachal Pradesh 175001, India
- BioX Centre, Indian Institute of Technology Mandi, Himachal Pradesh 175001, India
| |
Collapse
|
357
|
Huynh GT, Kesarwani V, Walker JA, Frith JE, Meagher L, Corrie SR. Review: Nanomaterials for Reactive Oxygen Species Detection and Monitoring in Biological Environments. Front Chem 2021; 9:728717. [PMID: 34568279 PMCID: PMC8461210 DOI: 10.3389/fchem.2021.728717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022] Open
Abstract
Reactive oxygen species (ROS) and dissolved oxygen play key roles across many biological processes, and fluorescent stains and dyes are the primary tools used to quantify these species in vitro. However, spatio-temporal monitoring of ROS and dissolved oxygen in biological systems are challenging due to issues including poor photostability, lack of reversibility, and rapid off-site diffusion. In particular, ROS monitoring is hindered by the short lifetime of ROS molecules and their low abundance. The combination of nanomaterials and fluorescent detection has led to new opportunities for development of imaging probes, sensors, and theranostic products, because the scaffolds lead to improved optical properties, tuneable interactions with cells and media, and ratiometric sensing robust to environmental drift. In this review, we aim to critically assess and highlight recent development in nanosensors and nanomaterials used for the detection of oxygen and ROS in biological systems, and their future potential use as diagnosis tools.
Collapse
Affiliation(s)
- Gabriel T. Huynh
- Department of Chemical Engineering, Monash University, Clayton, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Node, Clayton, VIC, Australia
| | - Vidhishri Kesarwani
- Department of Chemical Engineering, Monash University, Clayton, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Node, Clayton, VIC, Australia
| | - Julia A. Walker
- Department of Chemical Engineering, Monash University, Clayton, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Node, Clayton, VIC, Australia
| | - Jessica E. Frith
- Monash Institute of Medical Engineering, Monash University, Clayton, VIC, Australia
- Department of Material Science and Engineering, Monash University, Clayton, VIC, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, Australia
| | - Laurence Meagher
- Department of Material Science and Engineering, Monash University, Clayton, VIC, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, Australia
| | - Simon R. Corrie
- Department of Chemical Engineering, Monash University, Clayton, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Node, Clayton, VIC, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, Australia
| |
Collapse
|
358
|
Miller MQ, Hernández IC, Chacko JV, Minderler S, Jowett N. Two-photon excitation fluorescent spectral and decay properties of retrograde neuronal tracer Fluoro-Gold. Sci Rep 2021; 11:18053. [PMID: 34508127 PMCID: PMC8433443 DOI: 10.1038/s41598-021-97562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/26/2021] [Indexed: 11/14/2022] Open
Abstract
Fluoro-Gold is a fluorescent neuronal tracer suitable for targeted deep imaging of the nervous system. Widefield fluorescence microscopy enables visualization of Fluoro-Gold, but lacks depth discrimination. Though scanning laser confocal microscopy yields volumetric data, imaging depth is limited, and optimal single-photon excitation of Fluoro-Gold requires an unconventional ultraviolet excitation line. Two-photon excitation microscopy employs ultrafast pulsed infrared lasers to image fluorophores at high-resolution at unparalleled depths in opaque tissue. Deep imaging of Fluoro-Gold-labeled neurons carries potential to advance understanding of the central and peripheral nervous systems, yet its two-photon spectral and temporal properties remain uncharacterized. Herein, we report the two-photon excitation spectrum of Fluoro-Gold between 720 and 990 nm, and its fluorescence decay rate in aqueous solution and murine brainstem tissue. We demonstrate unprecedented imaging depth of whole-mounted murine brainstem via two-photon excitation microscopy of Fluoro-Gold labeled facial motor nuclei. Optimal two-photon excitation of Fluoro-Gold within microscope tuning range occurred at 720 nm, while maximum lifetime contrast was observed at 760 nm with mean fluorescence lifetime of 1.4 ns. Whole-mount brainstem explants were readily imaged to depths in excess of 450 µm via immersion in refractive-index matching solution.
Collapse
Affiliation(s)
- Matthew Q Miller
- Surgical Photonics and Engineering Laboratory, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA.,Department of Otolaryngology/Head and Neck Surgery, University of North Carolina Health Care, Chapel Hill, NC, USA
| | - Iván Coto Hernández
- Surgical Photonics and Engineering Laboratory, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA.
| | - Jenu V Chacko
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, WI, USA
| | - Steven Minderler
- Surgical Photonics and Engineering Laboratory, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA
| | - Nate Jowett
- Surgical Photonics and Engineering Laboratory, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA.
| |
Collapse
|
359
|
Shrirao AB, Schloss RS, Fritz Z, Shrirao MV, Rosen R, Yarmush ML. Autofluorescence of blood and its application in biomedical and clinical research. Biotechnol Bioeng 2021; 118:4550-4576. [PMID: 34487351 DOI: 10.1002/bit.27933] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 11/05/2022]
Abstract
Autofluorescence of blood has been explored as a label free approach for detection of cell types, as well as for diagnosis and detection of infection, cancer, and other diseases. Although blood autofluorescence is used to indicate the presence of several physiological abnormalities with high sensitivity, it often lacks disease specificity due to use of a limited number of fluorophores in the detection of several abnormal conditions. In addition, the measurement of autofluorescence is sensitive to the type of sample, sample preparation, and spectroscopy method used for the measurement. Therefore, while current blood autofluorescence detection approaches may not be suitable for primary clinical diagnosis, it certainly has tremendous potential in developing methods for large scale screening that can identify high risk groups for further diagnosis using highly specific diagnostic tests. This review discusses the source of blood autofluorescence, the role of spectroscopy methods, and various applications that have used autofluorescence of blood, to explore the potential of blood autofluorescence in biomedical research and clinical applications.
Collapse
Affiliation(s)
- Anil B Shrirao
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Rene S Schloss
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Zachary Fritz
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Mayur V Shrirao
- Department of pathology, Government Medical College, Nagpur, India
| | - Robert Rosen
- Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
360
|
Stewart HL, Birch DJS. Fluorescence Guided Surgery. Methods Appl Fluoresc 2021; 9. [PMID: 34399409 DOI: 10.1088/2050-6120/ac1dbb] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/16/2021] [Indexed: 01/22/2023]
Abstract
Fluorescence guided surgery (FGS) is an imaging technique that allows the surgeon to visualise different structures and types of tissue during a surgical procedure that may not be as visible under white light conditions. Due to the many potential advantages of fluorescence guided surgery compared to more traditional clinical imaging techniques such as its higher contrast and sensitivity, less subjective use, and ease of instrument operation, the research interest in fluorescence guided surgery continues to grow over various key aspects such as fluorescent probe development and surgical system development as well as its potential clinical applications. This review looks to summarise some of the emerging opportunities and developments that have already been made in fluorescence guided surgery in recent years while highlighting its advantages as well as limitations that need to be overcome in order to utilise the full potential of fluorescence within the surgical environment.
Collapse
Affiliation(s)
- Hazel L Stewart
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - David J S Birch
- Department of Physics, The Photophysics Research Group, University of Strathclyde, SUPA, John Anderson Building, 107 Rottenrow East, Glasgow G4 0NG, United Kingdom
| |
Collapse
|
361
|
Xiang L, Chen K, Xu K. Single Molecules Are Your Quanta: A Bottom-Up Approach toward Multidimensional Super-resolution Microscopy. ACS NANO 2021; 15:12483-12496. [PMID: 34304562 PMCID: PMC8789943 DOI: 10.1021/acsnano.1c04708] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The rise of single-molecule localization microscopy (SMLM) and related super-resolution methods over the past 15 years has revolutionized how we study biological and materials systems. In this Perspective, we reflect on the underlying philosophy of how diffraction-unlimited pictures containing rich spatial and functional information may gradually emerge through the local accumulation of single-molecule measurements. Starting with the basic concepts, we analyze the uniqueness of and opportunities in building up the final picture one molecule at a time. After brief introductions to the more established multicolor and three-dimensional measurements, we highlight emerging efforts to extend SMLM to new dimensions and functionalities as fluorescence polarization, emission spectra, and molecular motions, and discuss rising opportunities and future directions. With single molecules as our quanta, the bottom-up accumulation approach provides a powerful conduit for multidimensional microscopy at the nanoscale.
Collapse
|
362
|
Rice LJ, Ecroyd H, van Oijen AM. Illuminating amyloid fibrils: Fluorescence-based single-molecule approaches. Comput Struct Biotechnol J 2021; 19:4711-4724. [PMID: 34504664 PMCID: PMC8405898 DOI: 10.1016/j.csbj.2021.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
The aggregation of proteins into insoluble filamentous amyloid fibrils is a pathological hallmark of neurodegenerative diseases that include Parkinson's disease and Alzheimer's disease. Since the identification of amyloid fibrils and their association with disease, there has been much work to describe the process by which fibrils form and interact with other proteins. However, due to the dynamic nature of fibril formation and the transient and heterogeneous nature of the intermediates produced, it can be challenging to examine these processes using techniques that rely on traditional ensemble-based measurements. Single-molecule approaches overcome these limitations as rare and short-lived species within a population can be individually studied. Fluorescence-based single-molecule methods have proven to be particularly useful for the study of amyloid fibril formation. In this review, we discuss the use of different experimental single-molecule fluorescence microscopy approaches to study amyloid fibrils and their interaction with other proteins, in particular molecular chaperones. We highlight the mechanistic insights these single-molecule techniques have already provided in our understanding of how fibrils form, and comment on their potential future use in studying amyloid fibrils and their intermediates.
Collapse
Affiliation(s)
- Lauren J. Rice
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Heath Ecroyd
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Antoine M. van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
363
|
Tian L, Hunt B, Bell MAL, Yi J, Smith JT, Ochoa M, Intes X, Durr NJ. Deep Learning in Biomedical Optics. Lasers Surg Med 2021; 53:748-775. [PMID: 34015146 PMCID: PMC8273152 DOI: 10.1002/lsm.23414] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/02/2021] [Accepted: 04/15/2021] [Indexed: 01/02/2023]
Abstract
This article reviews deep learning applications in biomedical optics with a particular emphasis on image formation. The review is organized by imaging domains within biomedical optics and includes microscopy, fluorescence lifetime imaging, in vivo microscopy, widefield endoscopy, optical coherence tomography, photoacoustic imaging, diffuse tomography, and functional optical brain imaging. For each of these domains, we summarize how deep learning has been applied and highlight methods by which deep learning can enable new capabilities for optics in medicine. Challenges and opportunities to improve translation and adoption of deep learning in biomedical optics are also summarized. Lasers Surg. Med. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- L. Tian
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - B. Hunt
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - M. A. L. Bell
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - J. Yi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA
| | - J. T. Smith
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, New York NY 12180
| | - M. Ochoa
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, New York NY 12180
| | - X. Intes
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, New York NY 12180
| | - N. J. Durr
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
364
|
Differential Polarization Imaging of Plant Cells. Mapping the Anisotropy of Cell Walls and Chloroplasts. Int J Mol Sci 2021; 22:ijms22147661. [PMID: 34299279 PMCID: PMC8306740 DOI: 10.3390/ijms22147661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
Modern light microscopy imaging techniques have substantially advanced our knowledge about the ultrastructure of plant cells and their organelles. Laser-scanning microscopy and digital light microscopy imaging techniques, in general—in addition to their high sensitivity, fast data acquisition, and great versatility of 2D–4D image analyses—also opened the technical possibilities to combine microscopy imaging with spectroscopic measurements. In this review, we focus our attention on differential polarization (DP) imaging techniques and on their applications on plant cell walls and chloroplasts, and show how these techniques provided unique and quantitative information on the anisotropic molecular organization of plant cell constituents: (i) We briefly describe how laser-scanning microscopes (LSMs) and the enhanced-resolution Re-scan Confocal Microscope (RCM of Confocal.nl Ltd. Amsterdam, Netherlands) can be equipped with DP attachments—making them capable of measuring different polarization spectroscopy parameters, parallel with the ‘conventional’ intensity imaging. (ii) We show examples of different faces of the strong anisotropic molecular organization of chloroplast thylakoid membranes. (iii) We illustrate the use of DP imaging of cell walls from a variety of wood samples and demonstrate the use of quantitative analysis. (iv) Finally, we outline the perspectives of further technical developments of micro-spectropolarimetry imaging and its use in plant cell studies.
Collapse
|
365
|
Giampetraglia M, Weigelin B. Recent advances in intravital microscopy for preclinical research. Curr Opin Chem Biol 2021; 63:200-208. [PMID: 34274700 DOI: 10.1016/j.cbpa.2021.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022]
Abstract
Intravital microscopy (IVM) has revolutionized our understanding of single-cell behavior in complex tissues by enabling real-time observation of molecular and cellular processes in their natural environment. In preclinical research, IVM has emerged as a standard tool for mechanistic studies of therapy response and the rational design of new treatment strategies. Technological developments keep expanding the imaging depth and quality that can be achieved in living tissue, and the maturation of imaging modalities such as fluorescence and phosphorescence lifetime imaging facilitates co-registration of individual cell dynamics with metabolic tissue states. Correlation of IVM with mesoscopic and macroscopic imaging modalities further promotes the translation of mechanistic insights gained by IVM into clinically relevant information. This review highlights some of the recent advances in IVM that have made the transition from experimental optical techniques to practical applications in basic and preclinical research.
Collapse
Affiliation(s)
- Martina Giampetraglia
- David H. Koch Center for Applied Research of Genitourinary Cancers, Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Bettina Weigelin
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Germany.
| |
Collapse
|
366
|
Poole JJA, Mostaço-Guidolin LB. Optical Microscopy and the Extracellular Matrix Structure: A Review. Cells 2021; 10:1760. [PMID: 34359929 PMCID: PMC8308089 DOI: 10.3390/cells10071760] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
Biological tissues are not uniquely composed of cells. A substantial part of their volume is extracellular space, which is primarily filled by an intricate network of macromolecules constituting the extracellular matrix (ECM). The ECM serves as the scaffolding for tissues and organs throughout the body, playing an essential role in their structural and functional integrity. Understanding the intimate interaction between the cells and their structural microenvironment is central to our understanding of the factors driving the formation of normal versus remodelled tissue, including the processes involved in chronic fibrotic diseases. The visualization of the ECM is a key factor to track such changes successfully. This review is focused on presenting several optical imaging microscopy modalities used to characterize different ECM components. In this review, we describe and provide examples of applications of a vast gamut of microscopy techniques, such as widefield fluorescence, total internal reflection fluorescence, laser scanning confocal microscopy, multipoint/slit confocal microscopy, two-photon excited fluorescence (TPEF), second and third harmonic generation (SHG, THG), coherent anti-Stokes Raman scattering (CARS), fluorescence lifetime imaging microscopy (FLIM), structured illumination microscopy (SIM), stimulated emission depletion microscopy (STED), ground-state depletion microscopy (GSD), and photoactivated localization microscopy (PALM/fPALM), as well as their main advantages, limitations.
Collapse
Affiliation(s)
| | - Leila B. Mostaço-Guidolin
- Department of Systems and Computer Engineering, Faculty of Engineering and Design, Carleton University 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada;
| |
Collapse
|
367
|
Freymüller C, Kalinina S, Rück A, Sroka R, Rühm A. Quenched coumarin derivatives as fluorescence lifetime phantoms for NADH and FAD. JOURNAL OF BIOPHOTONICS 2021; 14:e202100024. [PMID: 33749988 DOI: 10.1002/jbio.202100024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/22/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Two-photon fluorescence lifetime imaging is a versatile laboratory technique in the field of biophotonics and its importance is also growing in the field of in vivo diagnostics for medical purposes. After years of experience in dermatology, endoscopic implementations of the technique are now posing new technical challenges. To develop, test, and compare instrumental solutions for this purpose suitable reference samples have been devised and tested. These reference samples can serve as reliable NADH- and FAD-mimicking optical phantoms for 2-photon fluorescence lifetime imaging, as they can be prepared relatively easily with reproducible and stable characteristics for this quite relevant diagnostic technique. The reference samples (mixtures of coumarin 1 and coumarin 6 in ethanol with suitable amounts of 4-hydroxy-TEMPO) have been tuned to exhibit spectral and temporal fluorescence characteristics very similar to those of NADH and FAD, the two molecules most frequently utilized to characterize cell metabolism.
Collapse
Affiliation(s)
- Christian Freymüller
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Planegg, Germany
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Sviatlana Kalinina
- Core Facility Confocal and Multiphoton Microscopy N24, University of Ulm, Ulm, Germany
| | - Angelika Rück
- Core Facility Confocal and Multiphoton Microscopy N24, University of Ulm, Ulm, Germany
| | - Ronald Sroka
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Planegg, Germany
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Adrian Rühm
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Planegg, Germany
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
368
|
Sorrells JE, Iyer RR, Yang L, Bower AJ, Spillman DR, Chaney EJ, Tu H, Boppart SA. Real-time pixelwise phasor analysis for video-rate two-photon fluorescence lifetime imaging microscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:4003-4019. [PMID: 34457395 PMCID: PMC8367245 DOI: 10.1364/boe.424533] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 05/06/2023]
Abstract
Two-photon fluorescence lifetime imaging microscopy (FLIM) is a widely used technique in biomedical optical imaging. Presently, many two-photon time-domain FLIM setups are limited by long acquisition and postprocessing times that decrease data throughput and inhibit the ability to image fast sub-second processes. Here, we present a versatile two-photon FLIM setup capable of video-rate (up to 25 fps) imaging with graphics processing unit (GPU)-accelerated pixelwise phasor analysis displayed and saved simultaneously with acquisition. The system uses an analog output photomultiplier tube in conjunction with 12-bit digitization at 3.2 GHz to overcome the limited maximum acceptable photon rate associated with the photon counting electronics in many FLIM systems. This allows for higher throughput FLIM acquisition and analysis, and additionally enables the user to assess sample fluorescence lifetime in real-time. We further explore the capabilities of the system to examine the kinetics of Rhodamine B uptake by human breast cancer cells and characterize the effect of pixel dwell time on the reduced nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H) autofluorescence lifetime estimation accuracy.
Collapse
Affiliation(s)
- Janet E. Sorrells
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rishyashring R. Iyer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lingxiao Yang
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew J. Bower
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Darold R. Spillman
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Eric J. Chaney
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Haohua Tu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
369
|
Datta R, Gillette A, Stefely M, Skala MC. Recent innovations in fluorescence lifetime imaging microscopy for biology and medicine. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210093-PER. [PMID: 34247457 PMCID: PMC8271181 DOI: 10.1117/1.jbo.26.7.070603] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/11/2021] [Indexed: 05/05/2023]
Abstract
SIGNIFICANCE Fluorescence lifetime imaging microscopy (FLIM) measures the decay rate of fluorophores, thus providing insights into molecular interactions. FLIM is a powerful molecular imaging technique that is widely used in biology and medicine. AIM This perspective highlights some of the major advances in FLIM instrumentation, analysis, and biological and clinical applications that we have found impactful over the last year. APPROACH Innovations in FLIM instrumentation resulted in faster acquisition speeds, rapid imaging over large fields of view, and integration with complementary modalities such as single-molecule microscopy or light-sheet microscopy. There were significant developments in FLIM analysis with machine learning approaches to enhance processing speeds, fit-free techniques to analyze images without a priori knowledge, and open-source analysis resources. The advantages and limitations of these recent instrumentation and analysis techniques are summarized. Finally, applications of FLIM in the last year include label-free imaging in biology, ophthalmology, and intraoperative imaging, FLIM of new fluorescent probes, and lifetime-based Förster resonance energy transfer measurements. CONCLUSIONS A large number of high-quality publications over the last year signifies the growing interest in FLIM and ensures continued technological improvements and expanding applications in biomedical research.
Collapse
Affiliation(s)
- Rupsa Datta
- Morgridge Institute for Research, Madison, Wisconsin, United States
| | - Amani Gillette
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Matthew Stefely
- Morgridge Institute for Research, Madison, Wisconsin, United States
| | - Melissa C. Skala
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin, Department of Biomedical Engineering, Madison, Wisconsin, United States
- Address all correspondence to Melissa C. Skala,
| |
Collapse
|
370
|
Gil DA, Deming DA, Skala MC. Volumetric growth tracking of patient-derived cancer organoids using optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:3789-3805. [PMID: 34457380 PMCID: PMC8367263 DOI: 10.1364/boe.428197] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 05/02/2023]
Abstract
Patient-derived cancer organoids (PCOs) are in vitro organotypic models that reflect in vivo drug response, thus PCOs are an accessible model for cancer drug screening in a clinically relevant timeframe. However, current methods to assess the response of PCOs are limited. Here, a custom swept-source optical coherence tomography (OCT) system was used to rapidly evaluate volumetric growth and drug response in PCOs. This system was optimized for an inverted imaging geometry to enable high-throughput imaging of PCOs. An automated image analysis framework was developed to perform 3D single-organoid tracking of PCOs across multiple time points over 48 hours. Metabolic inhibitors and cancer therapies decreased PCOs volumetric growth rate compared to control PCOs. Single-organoid tracking improved sensitivity to drug treatment compared to a pooled analysis of changes in organoid volume. OCT provided a more accurate assessment of organoid volume compared to a volume estimation method based on 2D projections. Single-organoid tracking with OCT also identified heterogeneity in drug response between solid and hollow PCOs. This work demonstrates that OCT and 3D single-organoid tracking are attractive tools to monitor volumetric growth and drug response in PCOs, providing rapid, non-destructive methods to quantify heterogeneity in PCOs.
Collapse
Affiliation(s)
- Daniel A. Gil
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53704, USA
- Morgridge Institute for Research, Madison, WI 53704, USA
| | - Dustin A. Deming
- University of Wisconsin Carbone Cancer Center, Madison, WI 53704, USA
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin, Madison, WI 53704, USA
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53704, USA
| | - Melissa C. Skala
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53704, USA
- Morgridge Institute for Research, Madison, WI 53704, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI 53704, USA
| |
Collapse
|
371
|
Incoronato A, Locatelli M, Zappa F. Statistical Modelling of SPADs for Time-of-Flight LiDAR. SENSORS 2021; 21:s21134481. [PMID: 34209114 PMCID: PMC8271703 DOI: 10.3390/s21134481] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 11/30/2022]
Abstract
Time-of-Flight (TOF) based Light Detection and Ranging (LiDAR) is a widespread technique for distance measurements in both single-spot depth ranging and 3D mapping. Single Photon Avalanche Diode (SPAD) detectors provide single-photon sensitivity and allow in-pixel integration of a Time-to-Digital Converter (TDC) to measure the TOF of single-photons. From the repetitive acquisition of photons returning from multiple laser shots, it is possible to accumulate a TOF histogram, so as to identify the laser pulse return from unwelcome ambient light and compute the desired distance information. In order to properly predict the TOF histogram distribution and design each component of the LiDAR system, from SPAD to TDC and histogram processing, we present a detailed statistical modelling of the acquisition chain and we show the perfect matching with Monte Carlo simulations in very different operating conditions and very high background levels. We take into consideration SPAD non-idealities such as hold-off time, afterpulsing, and crosstalk, and we show the heavy pile-up distortion in case of high background. Moreover, we also model non-idealities of timing electronics chain, namely, TDC dead-time, limited number of storage cells for TOF data, and TDC sharing. Eventually, we show how the exploit the modelling to reversely extract the original LiDAR return signal from the distorted measured TOF data in different operating conditions.
Collapse
Affiliation(s)
| | | | - Franco Zappa
- Correspondence: (A.I.); (F.Z.); Tel.: +39-02-2399-6149 (F.Z.)
| |
Collapse
|
372
|
Zhang Y, Guldner IH, Nichols EL, Benirschke D, Smith CJ, Zhang S, Howard SS. Instant FLIM enables 4D in vivo lifetime imaging of intact and injured zebrafish and mouse brains. OPTICA 2021; 8:885-897. [PMID: 39867356 PMCID: PMC11759494 DOI: 10.1364/optica.426870] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/12/2021] [Indexed: 01/28/2025]
Abstract
Traditional fluorescence microscopy is blind to molecular microenvironment information that is present in fluorescence lifetime, which can be measured by fluorescence lifetime imaging microscopy (FLIM). However, most existing FLIM techniques are slow to acquire and process lifetime images, difficult to implement, and expensive. Here, we present instant FLIM, an analog signal processing method that allows real-time streaming of fluorescence intensity, lifetime, and phasor imaging data through simultaneous image acquisition and instantaneous data processing. Instant FLIM can be easily implemented by upgrading an existing two-photon microscope using cost-effective components and our open-source software. We further improve the functionality, penetration depth, and resolution of instant FLIM using phasor segmentation, adaptive optics, and super-resolution techniques. We demonstrate through-skull intravital 3D FLIM of mouse brains to depths of 300 μm and present the first in vivo 4D FLIM of microglial dynamics in intact and injured zebrafish and mouse brains up to 12 hours.
Collapse
Affiliation(s)
- Yide Zhang
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ian H. Guldner
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, IN 46556, USA
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Evan L. Nichols
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, IN 46556, USA
| | - David Benirschke
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Cody J. Smith
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, IN 46556, USA
| | - Siyuan Zhang
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, IN 46556, USA
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Scott S. Howard
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, IN 46556, USA
| |
Collapse
|
373
|
Analyzing Olfactory Neuron Precursors Non-Invasively Isolated through NADH FLIM as a Potential Tool to Study Oxidative Stress in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22126311. [PMID: 34204595 PMCID: PMC8231156 DOI: 10.3390/ijms22126311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 12/22/2022] Open
Abstract
Among all the proposed pathogenic mechanisms to understand the etiology of Alzheimer’s disease (AD), increased oxidative stress seems to be a robust and early disease feature where many of those hypotheses converge. However, despite the significant lines of evidence accumulated, an effective diagnosis and treatment of AD are not yet available. This limitation might be partially explained by the use of cellular and animal models that recapitulate partial aspects of the disease and do not account for the particular biology of patients. As such, cultures of patient-derived cells of peripheral origin may provide a convenient solution for this problem. Peripheral cells of neuronal lineage such as olfactory neuronal precursors (ONPs) can be easily cultured through non-invasive isolation, reproducing AD-related oxidative stress. Interestingly, the autofluorescence of key metabolic cofactors such as reduced nicotinamide adenine dinucleotide (NADH) can be highly correlated with the oxidative state and antioxidant capacity of cells in a non-destructive and label-free manner. In particular, imaging NADH through fluorescence lifetime imaging microscopy (FLIM) has greatly improved the sensitivity in detecting oxidative shifts with minimal intervention to cell physiology. Here, we discuss the translational potential of analyzing patient-derived ONPs non-invasively isolated through NADH FLIM to reveal AD-related oxidative stress. We believe this approach may potentially accelerate the discovery of effective antioxidant therapies and contribute to early diagnosis and personalized monitoring of this devastating disease.
Collapse
|
374
|
Xiao D, Zang Z, Sapermsap N, Wang Q, Xie W, Chen Y, Uei Li DD. Dynamic fluorescence lifetime sensing with CMOS single-photon avalanche diode arrays and deep learning processors. BIOMEDICAL OPTICS EXPRESS 2021; 12:3450-3462. [PMID: 34221671 PMCID: PMC8221960 DOI: 10.1364/boe.425663] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
Measuring fluorescence lifetimes of fast-moving cells or particles have broad applications in biomedical sciences. This paper presents a dynamic fluorescence lifetime sensing (DFLS) system based on the time-correlated single-photon counting (TCSPC) principle. It integrates a CMOS 192 × 128 single-photon avalanche diode (SPAD) array, offering an enormous photon-counting throughput without pile-up effects. We also proposed a quantized convolutional neural network (QCNN) algorithm and designed a field-programmable gate array embedded processor for fluorescence lifetime determinations. The processor uses a simple architecture, showing unparallel advantages in accuracy, analysis speed, and power consumption. It can resolve fluorescence lifetimes against disturbing noise. We evaluated the DFLS system using fluorescence dyes and fluorophore-tagged microspheres. The system can effectively measure fluorescence lifetimes within a single exposure period of the SPAD sensor, paving the way for portable time-resolved devices and shows potential in various applications.
Collapse
Affiliation(s)
- Dong Xiao
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, UK
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1XQ, Scotland, UK
| | - Zhenya Zang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, UK
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1XQ, Scotland, UK
| | - Natakorn Sapermsap
- Department of Physics, University of Strathclyde, Glasgow, G4 0RE, Scotland, UK
| | - Quan Wang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, UK
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1XQ, Scotland, UK
| | - Wujun Xie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, UK
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1XQ, Scotland, UK
| | - Yu Chen
- Department of Physics, University of Strathclyde, Glasgow, G4 0RE, Scotland, UK
| | - David Day Uei Li
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, UK
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1XQ, Scotland, UK
| |
Collapse
|
375
|
Farina S, Acconcia G, Labanca I, Ghioni M, Rech I. Toward ultra-fast time-correlated single-photon counting: A compact module to surpass the pile-up limit. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:063702. [PMID: 34243546 DOI: 10.1063/5.0044774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
Time-Correlated Single-Photon Counting (TCSPC) is an excellent technique used in a great variety of scientific experiments to acquire exceptionally fast and faint light signals. Above all, in Fluorescence Lifetime Imaging (FLIM), it is widely recognized as the gold standard to record sub-nanosecond transient phenomena with picosecond precision. Unfortunately, TCSPC has an intrinsic limitation: to avoid the so-called pile-up distortion, the experiments have been historically carried out, limiting the acquisition rate below 5% of the excitation frequency. In 2017, we demonstrated that such a limitation can be overcome if the detector dead time is exactly matched with the excitation period, thus paving the way to unprecedented speedup of FLIM measurements. In this paper, we present the first single-channel system that implements the novel proposed methodology to be used in modern TCSPC experimental setups. To achieve this goal, we designed a compact detection head, including a custom single-photon avalanche diode externally driven by a fully integrated Active Quenching Circuit (AQC), featuring a finely tunable dead time and a short reset time. The output timing signal is extracted by using a picosecond precision Pick-Up Circuit (PUC) and fed to a newly developed timing module consisting of a mixed-architecture Fast Time to Amplitude Converter (F-TAC) followed by high-performance Analog-to-Digital Converters (ADCs). Data are transmitted in real-time to a Personal Computer (PC) at USB 3.0 rate for specific and custom elaboration. Preliminary experimental results show that the new TCSPC system is suitable for implementing the proposed technique, achieving, indeed, high timing precision along with a count rate as high as 40 Mcps.
Collapse
Affiliation(s)
- S Farina
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - G Acconcia
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - I Labanca
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - M Ghioni
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - I Rech
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
376
|
Alfonso-Garcia A, Bec J, Weyers B, Marsden M, Zhou X, Li C, Marcu L. Mesoscopic fluorescence lifetime imaging: Fundamental principles, clinical applications and future directions. JOURNAL OF BIOPHOTONICS 2021; 14:e202000472. [PMID: 33710785 PMCID: PMC8579869 DOI: 10.1002/jbio.202000472] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 05/16/2023]
Abstract
Fluorescence lifetime imaging (FLIm) is an optical spectroscopic imaging technique capable of real-time assessments of tissue properties in clinical settings. Label-free FLIm is sensitive to changes in tissue structure and biochemistry resulting from pathological conditions, thus providing optical contrast to identify and monitor the progression of disease. Technical and methodological advances over the last two decades have enabled the development of FLIm instrumentation for real-time, in situ, mesoscopic imaging compatible with standard clinical workflows. Herein, we review the fundamental working principles of mesoscopic FLIm, discuss the technical characteristics of current clinical FLIm instrumentation, highlight the most commonly used analytical methods to interpret fluorescence lifetime data and discuss the recent applications of FLIm in surgical oncology and cardiovascular diagnostics. Finally, we conclude with an outlook on the future directions of clinical FLIm.
Collapse
Affiliation(s)
- Alba Alfonso-Garcia
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Julien Bec
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Brent Weyers
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Mark Marsden
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Xiangnan Zhou
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Cai Li
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Laura Marcu
- Department of Biomedical Engineering, University of California, Davis, Davis, California
- Department Neurological Surgery, University of California, Davis, California
| |
Collapse
|
377
|
Kalinina S, Freymueller C, Naskar N, von Einem B, Reess K, Sroka R, Rueck A. Bioenergetic Alterations of Metabolic Redox Coenzymes as NADH, FAD and FMN by Means of Fluorescence Lifetime Imaging Techniques. Int J Mol Sci 2021; 22:5952. [PMID: 34073057 PMCID: PMC8199032 DOI: 10.3390/ijms22115952] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
Metabolic FLIM (fluorescence lifetime imaging) is used to image bioenergetic status in cells and tissue. Whereas an attribution of the fluorescence lifetime of coenzymes as an indicator for cell metabolism is mainly accepted, it is debated whether this is valid for the redox state of cells. In this regard, an innovative algorithm using the lifetime characteristics of nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD) to calculate the fluorescence lifetime induced redox ratio (FLIRR) has been reported so far. We extended the FLIRR approach and present new results, which includes FLIM data of the various enzymes, such as NAD(P)H, FAD, as well as flavin mononucleotide (FMN). Our algorithm uses a two-exponential fitting procedure for the NAD(P)H autofluorescence and a three-exponential fit of the flavin signal. By extending the FLIRR approach, we introduced FLIRR1 as protein-bound NAD(P)H related to protein-bound FAD, FLIRR2 as protein-bound NAD(P)H related to free (unbound) FAD and FLIRR3 as protein-bound NAD(P)H related to protein-bound FMN. We compared the significance of extended FLIRR to the metabolic index, defined as the ratio of protein-bound NAD(P)H to free NAD(P)H. The statistically significant difference for tumor and normal cells was found to be highest for FLIRR1.
Collapse
Affiliation(s)
- Sviatlana Kalinina
- Core Facility Confocal and Multiphoton Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (N.N.); (K.R.)
| | - Christian Freymueller
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Fraunhoferstrasse 20, 82152 Planegg, Germany; (C.F.); (R.S.)
- Department of Urology, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Nilanjon Naskar
- Core Facility Confocal and Multiphoton Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (N.N.); (K.R.)
| | - Bjoern von Einem
- Zentrum Biomedizinische Forschung (ZBMF), Department of Neurology, Ulm University, Helmholtzstrasse, 8/1, 89081 Ulm, Germany;
| | - Kirsten Reess
- Core Facility Confocal and Multiphoton Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (N.N.); (K.R.)
| | - Ronald Sroka
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Fraunhoferstrasse 20, 82152 Planegg, Germany; (C.F.); (R.S.)
- Department of Urology, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Angelika Rueck
- Core Facility Confocal and Multiphoton Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (N.N.); (K.R.)
| |
Collapse
|
378
|
Mehta S, Chakraborty A, Roy A, Singh IK, Singh A. Fight Hard or Die Trying: Current Status of Lipid Signaling during Plant-Pathogen Interaction. PLANTS (BASEL, SWITZERLAND) 2021; 10:1098. [PMID: 34070722 PMCID: PMC8228701 DOI: 10.3390/plants10061098] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/15/2021] [Accepted: 05/24/2021] [Indexed: 12/29/2022]
Abstract
Plant diseases pose a substantial threat to food availability, accessibility, and security as they account for economic losses of nearly $300 billion on a global scale. Although various strategies exist to reduce the impact of diseases, they can introduce harmful chemicals to the food chain and have an impact on the environment. Therefore, it is necessary to understand and exploit the plants' immune systems to control the spread of pathogens and enable sustainable agriculture. Recently, growing pieces of evidence suggest a functional myriad of lipids to be involved in providing structural integrity, intracellular and extracellular signal transduction mediators to substantial cross-kingdom cell signaling at the host-pathogen interface. Furthermore, some pathogens recognize or exchange plant lipid-derived signals to identify an appropriate host or development, whereas others activate defense-related gene expression. Typically, the membrane serves as a reservoir of lipids. The set of lipids involved in plant-pathogen interaction includes fatty acids, oxylipins, phospholipids, glycolipids, glycerolipids, sphingolipids, and sterols. Overall, lipid signals influence plant-pathogen interactions at various levels ranging from the communication of virulence factors to the activation and implementation of host plant immune defenses. The current review aims to summarize the progress made in recent years regarding the involvement of lipids in plant-pathogen interaction and their crucial role in signal transduction.
Collapse
Affiliation(s)
- Sahil Mehta
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India;
| | - Amrita Chakraborty
- EVA4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Kamýcká 129, Suchdol, 165 21 Prague 6, Czech Republic; (A.C.); (A.R.)
| | - Amit Roy
- EVA4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Kamýcká 129, Suchdol, 165 21 Prague 6, Czech Republic; (A.C.); (A.R.)
- Excelentní Tým pro Mitigaci (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Kamýcká 129, Suchdol, 165 21 Prague 6, Czech Republic
| | - Indrakant K. Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, New Delhi 110007, India
| |
Collapse
|
379
|
Hu Y, Han AY, Huang S, Pellionisz P, Alhiyari Y, Krane JF, Shori R, Stafsudd O, St John MA. A Tool to Locate Parathyroid Glands Using Dynamic Optical Contrast Imaging. Laryngoscope 2021; 131:2391-2397. [PMID: 34043240 DOI: 10.1002/lary.29633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/05/2021] [Accepted: 05/15/2021] [Indexed: 01/29/2023]
Abstract
OBJECTIVES/HYPOTHESIS Identification of parathyroid glands and adjacent tissues intraoperatively can be quite challenging because of their small size, variable locations, and indistinct external features. The objective of this study is to test the efficacy of the dynamic optical contrast imaging (DOCI) technique as a tool in specifically differentiating parathyroid tissue and adjacent structures, facilitating efficient and reliable tissue differentiation. STUDY DESIGN Prospective study. METHODS Both animal and human tissues were included in this study. Fresh specimens were imaged with DOCI and subsequently processed for hematoxylin and eosin (H&E) stain. The DOCI images were analyzed and compared to the H&E results as ground truth. RESULTS In both animal and human experiments, significant DOCI contrast was observed between parathyroid glands and adjacent tissue of all types. Region of interest analysis revealed most distinct DOCI values for each tissue when using 494 and 572 nm-specific band pass filter for signal detection (P < .005 for porcine tissues, and P = .02 for human specimens). Linear discriminant classifier for tissue type prediction based on DOCI also matched the underlying histology. CONCLUSIONS We demonstrate that the DOCI technique reliably facilitates specific parathyroid gland localization. The DOCI technique constitutes important groundwork for in vivo precision endocrine surgery. LEVEL OF EVIDENCE 4 Laryngoscope, 2021.
Collapse
Affiliation(s)
- Yong Hu
- Department of Head and Neck Surgery, University of California Los Angeles (UCLA), Los Angeles, California, U.S.A
| | - Albert Y Han
- Department of Head and Neck Surgery, University of California Los Angeles (UCLA), Los Angeles, California, U.S.A.,UCLA Head and Neck Cancer Program, UCLA Medical Center, Los Angeles, California, U.S.A.,Jonsson Comprehensive Cancer Center, UCLA Medical Center, Los Angeles, California, U.S.A
| | - Shan Huang
- Department of Materials Science and Engineering, UCLA, Los Angeles, California, U.S.A
| | - Peter Pellionisz
- Department of Biomedical Engineering, UCLA, Los Angeles, California, U.S.A
| | - Yazeed Alhiyari
- Department of Head and Neck Surgery, University of California Los Angeles (UCLA), Los Angeles, California, U.S.A
| | - Jeffrey F Krane
- Department of Pathology and Laboratory Medicine, UCLA Medical Center, Los Angeles, California, U.S.A
| | - Ramesh Shori
- Department of Electrical and Computer Engineering, Henry Samueli School of Engineering, UCLA, Los Angeles, California, U.S.A
| | - Oscar Stafsudd
- Department of Electrical and Computer Engineering, Henry Samueli School of Engineering, UCLA, Los Angeles, California, U.S.A
| | - Maie A St John
- Department of Head and Neck Surgery, University of California Los Angeles (UCLA), Los Angeles, California, U.S.A.,UCLA Head and Neck Cancer Program, UCLA Medical Center, Los Angeles, California, U.S.A.,Jonsson Comprehensive Cancer Center, UCLA Medical Center, Los Angeles, California, U.S.A.,Department of Pathology and Laboratory Medicine, UCLA Medical Center, Los Angeles, California, U.S.A
| |
Collapse
|
380
|
Samimi K, Guzman EC, Trier SM, Pham DL, Qian T, Skala MC. Time-domain single photon-excited autofluorescence lifetime for label-free detection of T cell activation. OPTICS LETTERS 2021; 46:2168-2171. [PMID: 33929445 PMCID: PMC8109150 DOI: 10.1364/ol.422445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/01/2021] [Indexed: 05/12/2023]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) is a powerful technique, capable of label-free assessment of the metabolic state and function within single cells. The FLIM measurements of autofluorescence were recently shown to be sensitive to the functional state and subtype of T cells. Therefore, autofluorescence FLIM could improve cell manufacturing technologies for adoptive immunotherapy, which currently require a time-intensive process of cell labeling with fluorescent antibodies. However, current autofluorescence FLIM implementations are typically too slow, bulky, and prohibitively expensive for use in cell manufacturing pipelines. Here we report a single photon-excited confocal whole-cell autofluorescence system that uses fast field-programmable gate array-based time tagging electronics to achieve time-correlated single photon counting (TCSPC) of single-cell autofluorescence. The system includes simultaneous near-infrared bright-field imaging and is sensitive to variations in the fluorescence decay profile of the metabolic coenzyme NAD(P)H in human T cells due to the activation state. The classification of activated and quiescent T cells achieved high accuracy and precision (area under the receiver operating characteristic curve, AUC = 0.92). The lower-cost, higher acquisition speed, and resistance to pile-up effects at high photon flux compared to traditional multiphoton-excited FLIM and TCSPC implementations with similar SNR make this system attractive for integration into flow cytometry, sorting, and quality control in cell manufacturing.
Collapse
Affiliation(s)
| | | | | | - Dan L. Pham
- Morgridge Institute for Research, Madison, WI 53715
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706
| | | | - Melissa C. Skala
- Morgridge Institute for Research, Madison, WI 53715
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
381
|
Dmitriev RI, Intes X, Barroso MM. Luminescence lifetime imaging of three-dimensional biological objects. J Cell Sci 2021; 134:1-17. [PMID: 33961054 PMCID: PMC8126452 DOI: 10.1242/jcs.254763] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A major focus of current biological studies is to fill the knowledge gaps between cell, tissue and organism scales. To this end, a wide array of contemporary optical analytical tools enable multiparameter quantitative imaging of live and fixed cells, three-dimensional (3D) systems, tissues, organs and organisms in the context of their complex spatiotemporal biological and molecular features. In particular, the modalities of luminescence lifetime imaging, comprising fluorescence lifetime imaging (FLI) and phosphorescence lifetime imaging microscopy (PLIM), in synergy with Förster resonance energy transfer (FRET) assays, provide a wealth of information. On the application side, the luminescence lifetime of endogenous molecules inside cells and tissues, overexpressed fluorescent protein fusion biosensor constructs or probes delivered externally provide molecular insights at multiple scales into protein-protein interaction networks, cellular metabolism, dynamics of molecular oxygen and hypoxia, physiologically important ions, and other physical and physiological parameters. Luminescence lifetime imaging offers a unique window into the physiological and structural environment of cells and tissues, enabling a new level of functional and molecular analysis in addition to providing 3D spatially resolved and longitudinal measurements that can range from microscopic to macroscopic scale. We provide an overview of luminescence lifetime imaging and summarize key biological applications from cells and tissues to organisms.
Collapse
Affiliation(s)
- Ruslan I. Dmitriev
- Tissue Engineering and Biomaterials Group, Department of
Human Structure and Repair, Faculty of Medicine and Health Sciences,
Ghent University, Ghent 9000,
Belgium
| | - Xavier Intes
- Department of Biomedical Engineering, Center for
Modeling, Simulation and Imaging for Medicine (CeMSIM),
Rensselaer Polytechnic Institute, Troy, NY
12180-3590, USA
| | - Margarida M. Barroso
- Department of Molecular and Cellular
Physiology, Albany Medical College,
Albany, NY 12208, USA
| |
Collapse
|
382
|
Heaster TM, Heaton AR, Sondel PM, Skala MC. Intravital Metabolic Autofluorescence Imaging Captures Macrophage Heterogeneity Across Normal and Cancerous Tissue. Front Bioeng Biotechnol 2021; 9:644648. [PMID: 33959597 PMCID: PMC8093439 DOI: 10.3389/fbioe.2021.644648] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/30/2021] [Indexed: 12/17/2022] Open
Abstract
Macrophages are dynamic immune cells that govern both normal tissue function and disease progression. However, standard methods to measure heterogeneity in macrophage function within tissues require tissue excision and fixation, which limits our understanding of diverse macrophage function in vivo. Two-photon microscopy of the endogenous metabolic co-enzymes NAD(P)H and flavin adenine dinucleotide (FAD) (metabolic autofluorescence imaging) enables dynamic imaging of mouse models in vivo. Here, we demonstrate metabolic autofluorescence imaging to assess cell-level macrophage heterogeneity in response to normal and cancerous tissue microenvironments in vivo. NAD(P)H and FAD fluorescence intensities and lifetimes were measured for both tissue-resident macrophages in mouse ear dermis and tumor-associated macrophages in pancreatic flank tumors. Metabolic and spatial organization of macrophages were determined by performing metabolic autofluorescence imaging and single macrophage segmentation in mice engineered for macrophage-specific fluorescent protein expression. Tumor-associated macrophages exhibited decreased optical redox ratio [NAD(P)H divided by FAD intensity] compared to dermal macrophages, indicating that tumor-associated macrophages are more oxidized than dermal macrophages. The mean fluorescence lifetimes of NAD(P)H and FAD were longer in dermal macrophages than in tumor-associated macrophages, which reflects changes in NAD(P)H and FAD protein-binding activities. Dermal macrophages had greater heterogeneity in optical redox ratio, NAD(P)H mean lifetime, and FAD mean lifetime compared to tumor-associated macrophages. Similarly, standard markers of macrophage phenotype (CD206 and CD86) assessed by immunofluorescence revealed greater heterogeneity in dermal macrophages compared to tumor-associated macrophages. Ultimately, metabolic autofluorescence imaging provides a novel tool to assess tissue-specific macrophage behavior and cell-level heterogeneity in vivo in animal models.
Collapse
Affiliation(s)
- Tiffany M. Heaster
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
- Morgridge Institute for Research, Madison, WI, United States
| | - Alexa R. Heaton
- Morgridge Institute for Research, Madison, WI, United States
- Department of Human Oncology, University of Wisconsin–Madison, Madison, WI, United States
| | - Paul M. Sondel
- Department of Human Oncology, University of Wisconsin–Madison, Madison, WI, United States
- Department of Pediatrics, University of Wisconsin–Madison, Madison, WI, United States
| | - Melissa C. Skala
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
- Morgridge Institute for Research, Madison, WI, United States
| |
Collapse
|
383
|
Monteleone A, Schary W, Wenzel F, Langhals H, Dietrich DR. Label-free identification and differentiation of different microplastics using phasor analysis of fluorescence lifetime imaging microscopy (FLIM)-generated data. Chem Biol Interact 2021; 342:109466. [PMID: 33865829 DOI: 10.1016/j.cbi.2021.109466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022]
Abstract
As plastic pollution is becoming an increasing worldwide problem, a variety of different techniques for the detection and in-depth characterization of plastics, including spectroscopy and chromatography methods, were introduced to the public. Recently we presented fluorescence lifetime imaging microscopy (FLIM) a new approach for the identification and characterization of microplastics using their fluorescence lifetime (τ) for differentiation. A very powerful extension of the recently established FLIM could be phasor analysis, which allows data representation in an interactive 2D graphical phasor plot thereby enabling a global view of the fluorescence decay in each pixel of the measured image. Microplastic particles generated from six different types of plastics were subjected to excitation wavelengths of 440 nm, upon which specific fluorescence lifetimes as well as the photon yield were determined using FLIM and phasor analysis. We could show that phasor analysis for FLIM with a laser pulse repetition frequency of 40 MHz was able to generate specific locations in the phasor plot for the plastics for fast differentiation, e.g. resulting in well-defined phasor plot positions for ABS at 3.019 ns, PPE at 6.239 ns, PET bottle from Germany at 2.703 ns and PET bottle from USA at 2.711 ns. Phasor analysis for FLIM proves to be a fast, label-free, and sensitive method for the identification and differentiation of plastics also with the aid of visualization variation enabling techniques such as heat treatment of plastics.
Collapse
Affiliation(s)
- Adrian Monteleone
- Faculty of Medical and Life Sciences, Hochschule Furtwangen, Villingen-Schwenningen, Germany; Human and Environmental Toxicology, University Konstanz, Constance, Germany
| | - Weronika Schary
- Faculty of Medical and Life Sciences, Hochschule Furtwangen, Villingen-Schwenningen, Germany
| | - Folker Wenzel
- Faculty of Medical and Life Sciences, Hochschule Furtwangen, Villingen-Schwenningen, Germany.
| | - Heinz Langhals
- Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniel R Dietrich
- Human and Environmental Toxicology, University Konstanz, Constance, Germany.
| |
Collapse
|
384
|
A 2BC-Type Porphyrin SAM on Gold Surface for Bacteria Detection Applications: Synthesis and Surface Functionalization. MATERIALS 2021; 14:ma14081934. [PMID: 33924427 PMCID: PMC8070129 DOI: 10.3390/ma14081934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 11/17/2022]
Abstract
Currently used elaborate technologies for the detection of bacteria can be improved in regard to their time consumption, labor intensity, accuracy and reproducibility. Well-known electrical measurement methods might connect highly sensitive sensing systems with biological requirements. The development of modified sensor surfaces with self-assembled monolayers (SAMs) from functionalized porphyrin for bacteria trapping can lead to a highly sensitive sensor for bacteria detection. Different A2BC-type porphyrin structures were synthesized and examined regarding their optical behavior. We achieved the synthesis of a porphyrin for SAM formation on a gold surface as electrode material. Two possible bio linkers were attached on the opposite meso-position of the porphyrin, which allows the porphyrin to react as a linker on the surface for bacteria trapping. Different porphyrin structures were attached to a gold surface, the SAM formation and the respective coverage was investigated.
Collapse
|
385
|
Campos-Delgado DU, Gutierrez-Navarro O, Salinas-Martinez R, Duran E, Mejia-Rodriguez AR, Velazquez-Duran MJ, Jo JA. Blind deconvolution estimation by multi-exponential models and alternated least squares approximations: Free-form and sparse approach. PLoS One 2021; 16:e0248301. [PMID: 33735228 PMCID: PMC7971520 DOI: 10.1371/journal.pone.0248301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/23/2021] [Indexed: 11/18/2022] Open
Abstract
The deconvolution process is a key step for quantitative evaluation of fluorescence lifetime imaging microscopy (FLIM) samples. By this process, the fluorescence impulse responses (FluoIRs) of the sample are decoupled from the instrument response (InstR). In blind deconvolution estimation (BDE), the FluoIRs and InstR are jointly extracted from a dataset with minimal a priori information. In this work, two BDE algorithms are introduced based on linear combinations of multi-exponential functions to model each FluoIR in the sample. For both schemes, the InstR is assumed with a free-form and a sparse structure. The local perspective of the BDE methodology assumes that the characteristic parameters of the exponential functions (time constants and scaling coefficients) are estimated based on a single spatial point of the dataset. On the other hand, the same exponential functions are used in the whole dataset in the global perspective, and just the scaling coefficients are updated for each spatial point. A least squares formulation is considered for both BDE algorithms. To overcome the nonlinear interaction in the decision variables, an alternating least squares (ALS) methodology iteratively solves both estimation problems based on non-negative and constrained optimizations. The validation stage considered first synthetic datasets at different noise types and levels, and a comparison with the standard deconvolution techniques with a multi-exponential model for FLIM measurements, as well as, with two BDE methodologies in the state of the art: Laguerre basis, and exponentials library. For the experimental evaluation, fluorescent dyes and oral tissue samples were considered. Our results show that local and global perspectives are consistent with the standard deconvolution techniques, and they reached the fastest convergence responses among the BDE algorithms with the best compromise in FluoIRs and InstR estimation errors.
Collapse
Affiliation(s)
- Daniel U. Campos-Delgado
- Facultad de Ciencias, Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
- Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
- * E-mail:
| | - Omar Gutierrez-Navarro
- Department of Biomedical Engineering, Universidad Autonoma de Aguascalientes, Aguascalientes, Mexico
| | | | - Elvis Duran
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, United States of America
| | | | | | - Javier A. Jo
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma, United States of America
| |
Collapse
|
386
|
Ghiman R, Nistor M, Focșan M, Pintea A, Aștilean S, Rugina D. Fluorescent Polyelectrolyte System to Track Anthocyanins Delivery inside Melanoma Cells. NANOMATERIALS 2021; 11:nano11030782. [PMID: 33808532 PMCID: PMC8003217 DOI: 10.3390/nano11030782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022]
Abstract
Over the past decades, there has been a growing interest in using natural molecules with therapeutic potential for biomedical applications. In this context, our aim is focused on anthocyanins (AN) as molecules with anticancer properties that could be used in melanoma local therapies. Due to their susceptibility to environmental changes, current study is based on the design and development of a fluorescent system for carrying and trafficking AN inside melanoma cells. The architectural structure of the proposed system CaCO3(PAH)@RBITC@AN reflects a spherical shape, 1080 nm diameter and a solid groundwork CaCO3(PAH), on which rhodamine B isothiocyanate (RBITC) fluorophore was firstly added; then, poly(acrylic acid) (PAA) polyelectrolytes and poly(allylamine hydrochloride) (PAH) were successfully deposited. Purified AN from chokeberries were entrapped between PAA layers (rate of 94.6%). In vitro tests confirmed that CaCO3(PAH)@RBITC@AN does not affect the proliferation of melanoma B16-F10 cells and proved that their internalization and trafficking can be followed after 24 h of treatment. Data presented here could contribute not only to the existing knowledge about the encapsulation technology of AN but also might bring relevant information for a novel formula to deliver therapeutic molecules or other bio-imaging agents directly into melanoma cells, a strategy that could positively improve tumor therapies.
Collapse
Affiliation(s)
- Raluca Ghiman
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurean, 400271 Cluj-Napoca, Romania; (R.G.); (S.A.)
| | - Madalina Nistor
- Biochemistry Department, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (M.N.); (A.P.)
| | - Monica Focșan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurean, 400271 Cluj-Napoca, Romania; (R.G.); (S.A.)
- Correspondence: (M.F.); (D.R.)
| | - Adela Pintea
- Biochemistry Department, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (M.N.); (A.P.)
| | - Simion Aștilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurean, 400271 Cluj-Napoca, Romania; (R.G.); (S.A.)
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu, 400084 Cluj-Napoca, Romania
| | - Dumitrita Rugina
- Biochemistry Department, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (M.N.); (A.P.)
- Correspondence: (M.F.); (D.R.)
| |
Collapse
|
387
|
Ghezzi A, Farina A, Bassi A, Valentini G, Labanca I, Acconcia G, Rech I, D'Andrea C. Multispectral compressive fluorescence lifetime imaging microscopy with a SPAD array detector. OPTICS LETTERS 2021; 46:1353-1356. [PMID: 33720185 DOI: 10.1364/ol.419381] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/06/2021] [Indexed: 05/22/2023]
Abstract
Multispectral/hyperspectral fluorescence lifetime imaging microscopy (λFLIM) is a promising tool for studying functional and structural biological processes. The rich information content provided by a multidimensional dataset is often in contrast with the acquisition speed. In this work, we develop and experimentally demonstrate a wide-field λFLIM setup, based on a novel time-resolved 18×1 single-photon avalanche diode array detector working in a single-pixel camera scheme, which parallelizes the spectral detection, reducing measurement time. The proposed system, which implements a single-pixel camera with a compressive sensing scheme, represents an optimal microscopy framework towards the design of λFLIM setups.
Collapse
|
388
|
Rivas Aiello MB, Azcárate JC, Zelaya E, David Gara P, Bosio GN, Gensch T, Mártire DO. Photothermal therapy with silver nanoplates in HeLa cells studied by in situ fluorescence microscopy. Biomater Sci 2021; 9:2608-2619. [PMID: 33595000 DOI: 10.1039/d0bm01952f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photothermal therapy (PTT) is a noninvasive treatment for cancer relying on the incorporation of NIR-light absorbing nanomaterials into cells, which upon illumination release heat causing thermally induced cell death. We prove that irradiation of aqueous suspensions of poly(vinylpyrrolidone)-coated silver nanoplates (PVPAgNP) or PVPAgNP in HeLa cells with red or NIR lasers causes a sizeable photothermal effect, which in cells can be visualized with the temperature sensing fluorophore Rhodamine B (RhB) using spinning disk confocal fluorescence microscopy or fluorescence lifetime imaging. Upon red-light irradiation of cells that were incubated with both, RhB and PVPAgNP at concentrations with no adverse effects on cell viability, a substantial heat release is detected. Initiation of cell death by photothermal effect is observed by positive signals of fluorescent markers for early and late apoptosis. Surprisingly, a new nanomaterial-assisted cell killing mode is operating when PVPAgNP-loaded HeLa cells are excited with moderate powers of fs-pulsed NIR light. Small roundish areas are generated with bright and fast (<1 ns) decaying emission, which expand fast and destroy the whole cell in seconds. This characteristic emission is assigned to efficient optical breakdown initiation around the strongly absorbing PVPAgNP leading to plasma formation that spreads fast through the cell.
Collapse
Affiliation(s)
- María Belén Rivas Aiello
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C. C. 16, Suc. 4, (1900) La Plata, Argentina.
| | | | | | | | | | | | | |
Collapse
|
389
|
Li Y, Tian J, Li DDU. Theoretical investigations of a modified compressed ultrafast photography method suitable for single-shot fluorescence lifetime imaging. APPLIED OPTICS 2021; 60:1476-1483. [PMID: 33690594 DOI: 10.1364/ao.415594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
A single-shot fluorescence lifetime imaging (FLIM) method based on the compressed ultrafast photography (CUP) is proposed, named space-restricted CUP (srCUP). srCUP is suitable for imaging objects moving slowly (<∼150/Mmm/s, M is the magnification of the objective lens) in the field of view with the intensity changing within nanoseconds in a measurement window around 10 ns. We used synthetic datasets to explore the performances of srCUP compared with CUP and TCUP (a variant of CUP). srCUP not only provides superior reconstruction performances, but its reconstruction speed is also twofold and threefold faster than CUP and TCUP, respectively. The lifetime determination performances were assessed by estimating lifetime components, amplitude- and intensity-weighted average lifetimes (τA and τI), with the reconstructed scenes using the least squares method based on a bi-exponential model. srCUP has the best accuracy and precision for lifetime determinations with a relative bias less than 7% and a coefficient of variation less than 7% for τA, and a relative bias less than 10% and a coefficient of variation less than 11% for τI.
Collapse
|
390
|
Chacko JV, Lee HN, Wu W, Otegui MS, Eliceiri KW. Hyperdimensional Imaging Contrast Using an Optical Fiber. SENSORS 2021; 21:s21041201. [PMID: 33572130 PMCID: PMC7914562 DOI: 10.3390/s21041201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022]
Abstract
Fluorescence properties of a molecule can be used to study the structural and functional nature of biological processes. Physical properties, including fluorescence lifetime, emission spectrum, emission polarization, and others, help researchers probe a molecule, produce desired effects, and infer causes and consequences. Correlative imaging techniques such as hyperdimensional imaging microscopy (HDIM) combine the physical properties and biochemical states of a fluorophore. Here we present a fiber-based imaging system that can generate hyper-dimensional contrast by combining multiple fluorescence properties into a single fluorescence lifetime decay curve. Fluorescence lifetime imaging microscopy (FLIM) with controlled excitation polarization and temporally dispersed emission can generate a spectrally coded, polarization-filtered lifetime distribution for a pixel. This HDIM scheme generates a better contrast between different molecules than that from individual techniques. This setup uses only a single detector and is simpler to implement, modular, cost-efficient, and adaptable to any existing FLIM microscope. We present higher contrast data from Arabidopsis thaliana epidermal cells based on intrinsic anthocyanin emission properties under multiphoton excitation. This work lays the foundation for an alternative hyperdimensional imaging system and demonstrates that contrast-based imaging is useful to study cellular heterogeneity in biological samples.
Collapse
Affiliation(s)
- Jenu V. Chacko
- Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI 53706, USA; (J.V.C.); (H.N.L.); (W.W.); (M.S.O.)
| | - Han Nim Lee
- Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI 53706, USA; (J.V.C.); (H.N.L.); (W.W.); (M.S.O.)
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA
| | - Wenxin Wu
- Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI 53706, USA; (J.V.C.); (H.N.L.); (W.W.); (M.S.O.)
| | - Marisa S. Otegui
- Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI 53706, USA; (J.V.C.); (H.N.L.); (W.W.); (M.S.O.)
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA
| | - Kevin W. Eliceiri
- Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI 53706, USA; (J.V.C.); (H.N.L.); (W.W.); (M.S.O.)
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53706, USA
- Department of Medical Physics, University of Wisconsin, Madison, WI 53706, USA
- Morgridge Institute for Research, University of Wisconsin, Madison, WI 53706, USA
- Correspondence:
| |
Collapse
|
391
|
Bodman SE, Butler SJ. Advances in anion binding and sensing using luminescent lanthanide complexes. Chem Sci 2021; 12:2716-2734. [PMID: 34164038 PMCID: PMC8179419 DOI: 10.1039/d0sc05419d] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Luminescent lanthanide complexes have been actively studied as selective anion receptors for the past two decades. Ln(iii) complexes, particularly of europium(iii) and terbium(iii), offer unique photophysical properties that are very valuable for anion sensing in biological media, including long luminescence lifetimes (milliseconds) that enable time-gating methods to eliminate background autofluorescence from biomolecules, and line-like emission spectra that allow ratiometric measurements. By careful design of the organic ligand, stable Ln(iii) complexes can be devised for rapid and reversible anion binding, providing a luminescence response that is fast and sensitive, offering the high spatial resolution required for biological imaging applications. This review focuses on recent progress in the development of Ln(iii) receptors that exhibit sufficiently high anion selectivity to be utilised in biological or environmental sensing applications. We evaluate the mechanisms of anion binding and sensing, and the strategies employed to tune anion affinity and selectivity, through variations in the structure and geometry of the ligand. We highlight examples of luminescent Ln(iii) receptors that have been utilised to detect and quantify specific anions in biological media (e.g. human serum), monitor enzyme reactions in real-time, and visualise target anions with high sensitivity in living cells.
Collapse
Affiliation(s)
- Samantha E Bodman
- Department of Chemistry, Loughborough University Epinal Way, Loughborough LE11 3TU UK
| | - Stephen J Butler
- Department of Chemistry, Loughborough University Epinal Way, Loughborough LE11 3TU UK
| |
Collapse
|
392
|
Amreddy N, Munshi A, Ramesh R. Multifunctional dendrimers for theranostic applications. DENDRIMER-BASED NANOTHERAPEUTICS 2021:385-397. [DOI: 10.1016/b978-0-12-821250-9.00010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
393
|
Gao D, Barber PR, Chacko JV, Kader Sagar MA, Rueden CT, Grislis AR, Hiner MC, Eliceiri KW. FLIMJ: An open-source ImageJ toolkit for fluorescence lifetime image data analysis. PLoS One 2020; 15:e0238327. [PMID: 33378370 PMCID: PMC7773231 DOI: 10.1371/journal.pone.0238327] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
In the field of fluorescence microscopy, there is continued demand for dynamic technologies that can exploit the complete information from every pixel of an image. One imaging technique with proven ability for yielding additional information from fluorescence imaging is Fluorescence Lifetime Imaging Microscopy (FLIM). FLIM allows for the measurement of how long a fluorophore stays in an excited energy state, and this measurement is affected by changes in its chemical microenvironment, such as proximity to other fluorophores, pH, and hydrophobic regions. This ability to provide information about the microenvironment has made FLIM a powerful tool for cellular imaging studies ranging from metabolic measurement to measuring distances between proteins. The increased use of FLIM has necessitated the development of computational tools for integrating FLIM analysis with image and data processing. To address this need, we have created FLIMJ, an ImageJ plugin and toolkit that allows for easy use and development of extensible image analysis workflows with FLIM data. Built on the FLIMLib decay curve fitting library and the ImageJ Ops framework, FLIMJ offers FLIM fitting routines with seamless integration with many other ImageJ components, and the ability to be extended to create complex FLIM analysis workflows. Building on ImageJ Ops also enables FLIMJ's routines to be used with Jupyter notebooks and integrate naturally with science-friendly programming in, e.g., Python and Groovy. We show the extensibility of FLIMJ in two analysis scenarios: lifetime-based image segmentation and image colocalization. We also validate the fitting routines by comparing them against industry FLIM analysis standards.
Collapse
Affiliation(s)
- Dasong Gao
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI, United States of America
| | - Paul R. Barber
- UCL Cancer Institute, Paul O’Gorman Building, University College London, London, United Kingdom
| | - Jenu V. Chacko
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI, United States of America
| | - Md. Abdul Kader Sagar
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI, United States of America
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States of America
| | - Curtis T. Rueden
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI, United States of America
| | - Aivar R. Grislis
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI, United States of America
| | - Mark C. Hiner
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI, United States of America
| | - Kevin W. Eliceiri
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI, United States of America
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States of America
- Department of Medical Physics, University of Wisconsin, Madison, WI, United States of America
- Morgridge Institute for Research, University of Wisconsin, Madison, WI, United States of America
| |
Collapse
|
394
|
Bares AJ, Mejooli MA, Pender MA, Leddon SA, Tilley S, Lin K, Dong J, Kim M, Fowell DJ, Nishimura N, Schaffer CB. Hyperspectral multiphoton microscopy for in vivo visualization of multiple, spectrally overlapped fluorescent labels. OPTICA 2020; 7:1587-1601. [PMID: 33928182 PMCID: PMC8081374 DOI: 10.1364/optica.389982] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/30/2020] [Indexed: 05/17/2023]
Abstract
The insensitivity of multiphoton microscopy to optical scattering enables high-resolution, high-contrast imaging deep into tissue, including in live animals. Scattering does, however, severely limit the use of spectral dispersion techniques to improve spectral resolution. In practice, this limited spectral resolution together with the need for multiple excitation wavelengths to excite different fluorophores limits multiphoton microscopy to imaging a few, spectrally-distinct fluorescent labels at a time, restricting the complexity of biological processes that can be studied. Here, we demonstrate a hyperspectral multiphoton microscope that utilizes three different wavelength excitation sources together with multiplexed fluorescence emission detection using angle-tuned bandpass filters. This microscope maintains scattering insensitivity, while providing high enough spectral resolution on the emitted fluorescence and capitalizing on the wavelength-dependent nonlinear excitation of fluorescent dyes to enable clean separation of multiple, spectrally overlapping labels, in vivo. We demonstrated the utility of this instrument for spectral separation of closely-overlapped fluorophores in samples containing ten different colors of fluorescent beads, live cells expressing up to seven different fluorescent protein fusion constructs, and in multiple in vivo preparations in mouse cortex and inflamed skin with up to eight different cell types or tissue structures distinguished.
Collapse
Affiliation(s)
- Amanda J. Bares
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Menansili A. Mejooli
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Mitchell A. Pender
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Scott A. Leddon
- Center for Vaccine Biology and Immunology, Dept. of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Steven Tilley
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Karen Lin
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jingyuan Dong
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Minsoo Kim
- Center for Vaccine Biology and Immunology, Dept. of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Deborah J. Fowell
- Center for Vaccine Biology and Immunology, Dept. of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Nozomi Nishimura
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Chris B. Schaffer
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
395
|
Thiele JC, Helmerich DA, Oleksiievets N, Tsukanov R, Butkevich E, Sauer M, Nevskyi O, Enderlein J. Confocal Fluorescence-Lifetime Single-Molecule Localization Microscopy. ACS NANO 2020; 14:14190-14200. [PMID: 33035050 DOI: 10.1021/acsnano.0c07322] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Fluorescence lifetime imaging microscopy is an important technique that adds another dimension to intensity and color acquired by conventional microscopy. In particular, it allows for multiplexing fluorescent labels that have otherwise similar spectral properties. Currently, the only super-resolution technique that is capable of recording super-resolved images with lifetime information is stimulated emission depletion microscopy. In contrast, all single-molecule localization microscopy (SMLM) techniques that employ wide-field cameras completely lack the lifetime dimension. Here, we combine fluorescence-lifetime confocal laser-scanning microscopy with SMLM for realizing single-molecule localization-based fluorescence-lifetime super-resolution imaging. Besides yielding images with a spatial resolution much beyond the diffraction limit, it determines the fluorescence lifetime of all localized molecules. We validate our technique by applying it to direct stochastic optical reconstruction microscopy and points accumulation for imaging in nanoscale topography imaging of fixed cells, and we demonstrate its multiplexing capability on samples with two different labels that differ only by fluorescence lifetime but not by their spectral properties.
Collapse
Affiliation(s)
- Jan Christoph Thiele
- III. Institute of Physics-Biophysics, Georg August University, Göttingen 37077, Germany
| | - Dominic A Helmerich
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Nazar Oleksiievets
- III. Institute of Physics-Biophysics, Georg August University, Göttingen 37077, Germany
| | - Roman Tsukanov
- III. Institute of Physics-Biophysics, Georg August University, Göttingen 37077, Germany
| | - Eugenia Butkevich
- III. Institute of Physics-Biophysics, Georg August University, Göttingen 37077, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Oleksii Nevskyi
- III. Institute of Physics-Biophysics, Georg August University, Göttingen 37077, Germany
| | - Jörg Enderlein
- III. Institute of Physics-Biophysics, Georg August University, Göttingen 37077, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Georg August University, Göttingen 37077, Germany
| |
Collapse
|
396
|
DeCamp SJ, Tsuda VMK, Ferruzzi J, Koehler SA, Giblin JT, Roblyer D, Zaman MH, Weiss ST, Kılıç A, De Marzio M, Park CY, Ogassavara NC, Mitchel JA, Butler JP, Fredberg JJ. Epithelial layer unjamming shifts energy metabolism toward glycolysis. Sci Rep 2020; 10:18302. [PMID: 33110128 PMCID: PMC7591531 DOI: 10.1038/s41598-020-74992-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/29/2020] [Indexed: 01/06/2023] Open
Abstract
In development of an embryo, healing of a wound, or progression of a carcinoma, a requisite event is collective epithelial cellular migration. For example, cells at the advancing front of a wound edge tend to migrate collectively, elongate substantially, and exert tractions more forcefully compared with cells many ranks behind. With regards to energy metabolism, striking spatial gradients have recently been reported in the wounded epithelium, as well as in the tumor, but within the wounded cell layer little is known about the link between mechanical events and underlying energy metabolism. Using the advancing confluent monolayer of MDCKII cells as a model system, here we report at single cell resolution the evolving spatiotemporal fields of cell migration speeds, cell shapes, and traction forces measured simultaneously with fields of multiple indices of cellular energy metabolism. Compared with the epithelial layer that is unwounded, which is non-migratory, solid-like and jammed, the leading edge of the advancing cell layer is shown to become progressively more migratory, fluid-like, and unjammed. In doing so the cytoplasmic redox ratio becomes progressively smaller, the NADH lifetime becomes progressively shorter, and the mitochondrial membrane potential and glucose uptake become progressively larger. These observations indicate that a metabolic shift toward glycolysis accompanies collective cellular migration but show, further, that this shift occurs throughout the cell layer, even in regions where associated changes in cell shapes, traction forces, and migration velocities have yet to penetrate. In characterizing the wound healing process these morphological, mechanical, and metabolic observations, taken on a cell-by-cell basis, comprise the most comprehensive set of biophysical data yet reported. Together, these data suggest the novel hypothesis that the unjammed phase evolved to accommodate fluid-like migratory dynamics during episodes of tissue wound healing, development, and plasticity, but is more energetically expensive compared with the jammed phase, which evolved to maintain a solid-like non-migratory state that is more energetically economical.
Collapse
Affiliation(s)
- Stephen J DeCamp
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Victor M K Tsuda
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Jacopo Ferruzzi
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Stephan A Koehler
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - John T Giblin
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Darren Roblyer
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Muhammad H Zaman
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Howard Hughes Medical Institute, Boston University, Boston, MA, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ayşe Kılıç
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Margherita De Marzio
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Chan Young Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Nicolas Chiu Ogassavara
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Jennifer A Mitchel
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - James P Butler
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeffrey J Fredberg
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
397
|
Heaster TM, Humayun M, Yu J, Beebe DJ, Skala MC. Autofluorescence Imaging of 3D Tumor-Macrophage Microscale Cultures Resolves Spatial and Temporal Dynamics of Macrophage Metabolism. Cancer Res 2020; 80:5408-5423. [PMID: 33093167 DOI: 10.1158/0008-5472.can-20-0831] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/17/2020] [Accepted: 10/19/2020] [Indexed: 12/24/2022]
Abstract
Macrophages within the tumor microenvironment (TME) exhibit a spectrum of protumor and antitumor functions, yet it is unclear how the TME regulates this macrophage heterogeneity. Standard methods to measure macrophage heterogeneity require destructive processing, limiting spatiotemporal studies of function within the live, intact 3D TME. Here, we demonstrate two-photon autofluorescence imaging of NAD(P)H and FAD to nondestructively resolve spatiotemporal metabolic heterogeneity of individual macrophages within 3D microscale TME models. Fluorescence lifetimes and intensities of NAD(P)H and FAD were acquired at 24, 48, and 72 hours poststimulation for mouse macrophages (RAW264.7) stimulated with IFNγ or IL4 plus IL13 in 2D culture, confirming that autofluorescence measurements capture known metabolic phenotypes. To quantify metabolic dynamics of macrophages within the TME, mouse macrophages or human monocytes (RAW264.7 or THP-1) were cultured alone or with breast cancer cells (mouse polyoma-middle T virus or primary human IDC) in 3D microfluidic platforms. Human monocytes and mouse macrophages in tumor cocultures exhibited significantly different FAD mean lifetimes and greater migration than monocultures at 24, 48, and 72 hours postseeding. In cocultures with primary human cancer cells, actively migrating monocyte-derived macrophages had greater redox ratios [NAD(P)H/FAD intensity] compared with passively migrating monocytes at 24 and 48 hours postseeding, reflecting metabolic heterogeneity in this subpopulation of monocytes. Genetic analyses further confirmed this metabolic heterogeneity. These results establish label-free autofluorescence imaging to quantify dynamic metabolism, polarization, and migration of macrophages at single-cell resolution within 3D microscale models. This combined culture and imaging system provides unique insights into spatiotemporal tumor-immune cross-talk within the 3D TME. SIGNIFICANCE: Label-free metabolic imaging and microscale culture technologies enable monitoring of single-cell macrophage metabolism, migration, and function in the 3D tumor microenvironment.
Collapse
Affiliation(s)
- Tiffany M Heaster
- Department of Biomedical Engineering, University of Wisconsin- Madison, Madison, Wisconsin.,Morgridge Institute for Research, Madison, Wisconsin
| | - Mouhita Humayun
- Department of Biomedical Engineering, University of Wisconsin- Madison, Madison, Wisconsin
| | - Jiaquan Yu
- Department of Biomedical Engineering, University of Wisconsin- Madison, Madison, Wisconsin.,Massachusetts Institute of Technology Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts
| | - David J Beebe
- Department of Biomedical Engineering, University of Wisconsin- Madison, Madison, Wisconsin.,The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin.,Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, Wisconsin
| | - Melissa C Skala
- Department of Biomedical Engineering, University of Wisconsin- Madison, Madison, Wisconsin. .,Morgridge Institute for Research, Madison, Wisconsin.,The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
398
|
Sagoo K, Cumberbatch N, Holland A, Hungerford G. Rapid (FLASH-FLIM) imaging of protoporphyrin IX in a lipid mixture using a CMOS based widefield fluorescence lifetime imaging camera in real time for margin demarcation applications. Methods Appl Fluoresc 2020; 9. [PMID: 32992309 DOI: 10.1088/2050-6120/abbcc6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/29/2020] [Indexed: 01/23/2023]
Abstract
The fluorescence from protoporphyrin IX (PpIX) has been employed to characterise cellular activity and assist in the visualisation of tumour cells. Its formation can be induced by 5-aminolevulonic acid (5-ALA) which is metabolised by tumour cells to form PpIX. The PpIX is localised within the cells, rather than spreading into the vascular system. This, plus its photophysics, exhibits potential in photodynamic therapy. Hence its study and the ability to rapidly image its localisation is of importance, especially in the field of fluorescence guided surgery. This has led to investigations using tissue phantoms and widefield intensity imaging. Aggregation or the presence of photoproducts can alter PpIX emission, which has implications using widefield imaging and a broad wavelength range detection. The use of the fluorescence lifetime imaging (FLIM) is therefore advantageous as it can distinguish between the emissive species as they exhibit different fluorescence lifetimes. Here we use PpIX in a construct consisting of lipid mixture (Intralipid), employed to simulate fat content and optical scattering, in a gellan gum matrix. PpIX in intralipid in aqueous solution was injected into the gellan host to form inclusions. The samples are imaged using commercial widefield TCSPC camera based on a sensor chip with 192 x 128 pixels. Each pixel contains both detection and photon timing enabling the Fluorescence Lifetime Acquisition by Simultaneous Histogramming (FLASH). This "FLASH-FLIM" approach enables widefield fluorescence lifetime images, displayed in real time to be acquired, which has potential for use in visualising tumour boundaries.
Collapse
Affiliation(s)
- Kulwinder Sagoo
- Horiba Jobin Yvon, Glasgow, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Nathan Cumberbatch
- HORIBA UK Ltd, Northampton, London, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Adam Holland
- HORIBA UK Ltd, Northampton, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Graham Hungerford
- Horiba Jobin Yvon, 133 Finnieston Street, Glasgow, G3 8HB, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
399
|
Ripoll C, Roldan M, Contreras-Montoya R, Diaz-Mochon JJ, Martin M, Ruedas-Rama MJ, Orte A. Mitochondrial pH Nanosensors for Metabolic Profiling of Breast Cancer Cell Lines. Int J Mol Sci 2020; 21:E3731. [PMID: 32466332 PMCID: PMC7279253 DOI: 10.3390/ijms21103731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
The main role of mitochondria, as pivotal organelles for cellular metabolism, is the production of energy (ATP) through an oxidative phosphorylation system. During this process, the electron transport chain creates a proton gradient that drives the synthesis of ATP. One of the main features of tumoral cells is their altered metabolism, providing alternative routes to enhance proliferation and survival. Hence, it is of utmost importance to understand the relationship between mitochondrial pH, tumoral metabolism, and cancer. In this manuscript, we develop a highly specific nanosensor to accurately measure the intramitochondrial pH using fluorescence lifetime imaging microscopy (FLIM). Importantly, we have applied this nanosensor to establish differences that may be hallmarks of different metabolic pathways in breast cancer cell models, leading to the characterization of different metabophenotypes.
Collapse
Affiliation(s)
- Consuelo Ripoll
- Departamento de Fisicoquimica, Facultad de Farmacia, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Campus Cartuja, 18071 Granada, Spain; (C.R.); (M.J.R.-R.)
| | - Mar Roldan
- GENYO, Pfizer-Universidad de Granada-Junta de Andalucia Centre for Genomics and Oncological Research, Avda Ilustracion 114, PTS, 18016 Granada, Spain; (M.R.); (J.J.D.-M.); (M.M)
| | - Rafael Contreras-Montoya
- Departamento de Quimica Organica, Facultad de Ciencias, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Campus Fuentenueva, 18071 Granada, Spain;
| | - Juan J. Diaz-Mochon
- GENYO, Pfizer-Universidad de Granada-Junta de Andalucia Centre for Genomics and Oncological Research, Avda Ilustracion 114, PTS, 18016 Granada, Spain; (M.R.); (J.J.D.-M.); (M.M)
- Departamento de Quimica Farmaceutica y Organica, Facultad de Farmacia, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Campus Cartuja, 18071 Granada, Spain
| | - Miguel Martin
- GENYO, Pfizer-Universidad de Granada-Junta de Andalucia Centre for Genomics and Oncological Research, Avda Ilustracion 114, PTS, 18016 Granada, Spain; (M.R.); (J.J.D.-M.); (M.M)
- Departamento de Bioquimica y Biologia Celular I, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva, 18071 Granada, Spain
| | - Maria J. Ruedas-Rama
- Departamento de Fisicoquimica, Facultad de Farmacia, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Campus Cartuja, 18071 Granada, Spain; (C.R.); (M.J.R.-R.)
| | - Angel Orte
- Departamento de Fisicoquimica, Facultad de Farmacia, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Campus Cartuja, 18071 Granada, Spain; (C.R.); (M.J.R.-R.)
| |
Collapse
|