351
|
Vitetta L, Henson JD. Probiotics and synbiotics targeting the intestinal microbiome attenuate non-alcoholic fatty liver disease. Hepatobiliary Surg Nutr 2020; 9:526-529. [PMID: 32832510 DOI: 10.21037/hbsn.2019.11.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Luis Vitetta
- Faculty of Medicine and Health, Sydney School of Medicine, The University of Sydney, Sydney, Australia.,Medlab Clinical Sydney, Sydney, Australia
| | - Jeremy D Henson
- Medlab Clinical Sydney, Sydney, Australia.,Faculty of Medicine, Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| |
Collapse
|
352
|
Dysbiosis of the Duodenal Mucosal Microbiota Is Associated With Increased Small Intestinal Permeability in Chronic Liver Disease. Clin Transl Gastroenterol 2020; 10:e00068. [PMID: 31373933 PMCID: PMC6736223 DOI: 10.14309/ctg.0000000000000068] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chronic liver disease (CLD) is associated with both alterations of the stool microbiota and increased small intestinal permeability. However, little is known about the role of the small intestinal mucosa-associated microbiota (MAM) in CLD. The aim of this study was to evaluate the relationship between the duodenal MAM and both small intestinal permeability and liver disease severity in CLD.
Collapse
|
353
|
Zhou Q, Jiang L, Qiu J, Pan Y, Swanda RV, Shi P, Li AM, Zhang X. Oral Exposure to 1,4-Dioxane Induces Hepatic Inflammation in Mice: The Potential Promoting Effect of the Gut Microbiome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10149-10158. [PMID: 32674564 DOI: 10.1021/acs.est.0c01543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
1,4-Dioxane is a widely used industrial solvent that has been frequently detected in aquatic environments. However, the hepatotoxicity of long-term dioxane exposure at environmentally relevant concentrations and underlying mechanisms of liver damage remain unclear. In this study, male mice were exposed to dioxane at concentrations of 0.5, 5, 50, and 500 ppm for 12 weeks, followed by histopathological examination of liver sections and multiomics investigation of the hepatic transcriptome, serum metabolome, and gut microbiome. Results showed that dioxane exposure at environmentally relevant concentrations induced hepatic inflammation and caused changes in the hepatic transcriptome and serum metabolic profiles. However, no inflammatory response was observed after in vitro exposure to all concentrations of dioxane and its in vivo metabolites. The gut microbiome was considered to be contributing to this apparently contradictory response. Increased levels of lipopolysaccharide (LPS) may be produced by some gut microbiota, such as Porphyromonadaceae and Helicobacteraceae, after in vivo 500 ppm of dioxane exposure. LPS may enter the blood circulation through an impaired intestinal wall and aggravate hepatic inflammation in mice. This study provides novel insight into the underlying mechanisms of hepatic inflammation induced by dioxane and highlights the need for concerns about environmentally relevant concentrations of dioxane exposure.
Collapse
Affiliation(s)
- Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, People's Republic of China
| | - Liujing Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, People's Republic of China
| | - Jingfan Qiu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, People's Republic of China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, People's Republic of China
| | - Robert V Swanda
- Division of Nutritional Sciences, Cornell University, 244 Garden Avenue, Ithaca, New York 14853, United States
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, People's Republic of China
| | - Ai-Min Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, People's Republic of China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, People's Republic of China
| |
Collapse
|
354
|
Ni Y, Ni L, Zhuge F, Fu Z. The Gut Microbiota and Its Metabolites, Novel Targets for Treating and Preventing Non-Alcoholic Fatty Liver Disease. Mol Nutr Food Res 2020; 64:e2000375. [PMID: 32738185 DOI: 10.1002/mnfr.202000375] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Indexed: 12/15/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent metabolic disorders worldwide, along with obesity and type 2 diabetes. NAFLD involves a series of liver abnormalities from simple hepatic steatosis to non-alcoholic steatohepatitis, which can ultimately lead to liver cirrhosis and cancer. The gut-liver axis plays an important role in the development of NAFLD, which depends mainly on regulation of the gut microbiota and its bacterial products. These intestinal bacterial species and their metabolites, including bile acids, tryptophan catabolites, and branched-chain amino acids, regulate adipose tissue and intestinal homeostasis and contribute to the pathogenesis of NAFLD/non-alcoholic steatohepatitis. In this review, the current evidence regarding the key role of the gut microbiota and its metabolites in the pathogenesis and development of NAFLD is highlighted, and the advances in the progression and applied prospects of gut microbiota-targeted dietary and exercise therapies is also discussed.
Collapse
Affiliation(s)
- Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Liyang Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Fen Zhuge
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, 310015, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| |
Collapse
|
355
|
Intestinal epithelial chemokine (C-C motif) ligand 7 overexpression protects against high fat diet-induced obesity and hepatic steatosis in mice. Chin Med J (Engl) 2020; 133:1805-1814. [PMID: 32649507 PMCID: PMC7469995 DOI: 10.1097/cm9.0000000000000915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background We previously found that the intestinal epithelial chemokine (C-C motif) ligand 7 (CCL7) plays an important role in the development of toxin-induced acute liver damage. The detailed effects of intestinal epithelial CCL7 on chronic diseases; however, are still unclear. Here, we aimed to investigate the impact of intestinal epithelial CCL7 overexpression on high-fat diet (HFD)-induced obesity and steatohepatitis in mice. Methods Intestinal epithelial CCL7 overexpression (CCL7tgIEC) mice and their wild-type (WT) littermates were fed with normal chow or HFD for 16 weeks to induce obesity and non-alcoholic fatty liver disease. Body weight gain, as well as adipose tissue index were assessed. Liver injury was monitored by histological analysis and real time polymerase chain reaction. Gut microbial composition was analyzed by 16S rRNA gene sequencing. Results We found that the CCL7tgIEC mice on a HFD had markedly decreased weight gain (8.9 vs. 17.0 g, P < 0.05) and a lower adipose tissue index that include mesenteric fat (1.0% vs. 1.76%, P < 0.05), gonadal fat (2.1% vs. 6.1%, P < 0.05), subcutaneous fat (1.0% vs. 2.8%, P < 0.05) compared to WT animals. HFD-induced glucose intolerance and insulin resistance were also significantly improved in CCL7tgIEC mice compared to WT. Furthermore, HFD-fed CCL7tgIEC mice displayed less hepatic lipid accumulation and lower expression of inflammatory factors than WT mice. 16S rRNA gene sequencing demonstrated that CCL7 overexpression in intestinal epithelial cells improved HFD-induced gut microbial dysbiosis. Conclusions Our study revealed that CCL7 overexpression in the intestinal epithelium protects mice against the progression of diet-induced obesity, hepatic steatosis, and enteric dysbiosis.
Collapse
|
356
|
Arias N, Arboleya S, Allison J, Kaliszewska A, Higarza SG, Gueimonde M, Arias JL. The Relationship between Choline Bioavailability from Diet, Intestinal Microbiota Composition, and Its Modulation of Human Diseases. Nutrients 2020; 12:nu12082340. [PMID: 32764281 PMCID: PMC7468957 DOI: 10.3390/nu12082340] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Choline is a water-soluble nutrient essential for human life. Gut microbial metabolism of choline results in the production of trimethylamine (TMA), which, upon absorption by the host is converted into trimethylamine-N-oxide (TMAO) in the liver. A high accumulation of both components is related to cardiovascular disease, inflammatory bowel disease, non-alcoholic fatty liver disease, and chronic kidney disease. However, the relationship between the microbiota production of these components and its impact on these diseases still remains unknown. In this review, we will address which microbes contribute to TMA production in the human gut, the extent to which host factors (e.g., the genotype) and diet affect TMA production, and the colonization of these microbes and the reversal of dysbiosis as a therapy for these diseases.
Collapse
Affiliation(s)
- Natalia Arias
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33003 Oviedo, Asturias, Spain; (S.G.H.); (J.L.A.)
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (J.A.); (A.K.)
- Correspondence:
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33003 Oviedo, Asturias, Spain; (S.A.); (M.G.)
| | - Joseph Allison
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (J.A.); (A.K.)
| | - Aleksandra Kaliszewska
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (J.A.); (A.K.)
| | - Sara G. Higarza
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33003 Oviedo, Asturias, Spain; (S.G.H.); (J.L.A.)
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, s/n, 33003 Oviedo, Asturias, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33003 Oviedo, Asturias, Spain; (S.A.); (M.G.)
| | - Jorge L. Arias
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33003 Oviedo, Asturias, Spain; (S.G.H.); (J.L.A.)
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, s/n, 33003 Oviedo, Asturias, Spain
| |
Collapse
|
357
|
Iogna Prat L, Tsochatzis EA. Pediatric NAFLD: lessons from the gut. Hepatobiliary Surg Nutr 2020; 9:534-536. [PMID: 32832512 PMCID: PMC7423538 DOI: 10.21037/hbsn.2020.01.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 01/28/2020] [Indexed: 09/11/2024]
Affiliation(s)
- Laura Iogna Prat
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College of London, London, UK
| | - Emmanuel A Tsochatzis
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College of London, London, UK
| |
Collapse
|
358
|
Effects of Maresin 1 (MaR1) on Colonic Inflammation and Gut Dysbiosis in Diet-Induced Obese Mice. Microorganisms 2020; 8:microorganisms8081156. [PMID: 32751593 PMCID: PMC7465372 DOI: 10.3390/microorganisms8081156] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to characterize the effects of Maresin 1 (MaR1), a DHA-derived pro-resolving lipid mediator, on obesity-related colonic inflammation and gut dysbiosis in diet-induced obese (DIO) mice. In colonic mucosa of DIO mice, the MaR1 treatment decreased the expression of inflammatory genes, such as Tnf-α and Il-1β. As expected, the DIO mice exhibited significant changes in gut microbiota composition at the phylum, genus, and species levels, with a trend to a higher Firmicutes/Bacteroidetes ratio. Deferribacteres and Synergistetes also increased in the DIO animals. In contrast, these animals exhibited a significant decrease in the content of Cyanobacteria and Actinobacteria. Treatment with MaR1 was not able to reverse the dysbiosis caused by obesity on the most abundant phyla. However, the MaR1 treatment increased the content of P. xylanivorans, which have been considered to be a promising probiotic with healthy effects on gut inflammation. Finally, a positive association was found between the Deferribacteres and Il-1β expression, suggesting that the increase in Deferribacteres observed in obesity could contribute to the overexpression of inflammatory cytokines in the colonic mucosa. In conclusion, MaR1 administration ameliorates the inflammatory state in the colonic mucosa and partially compensates changes on gut microbiota caused by obesity.
Collapse
|
359
|
Wang X, Tian Z, Azad MAK, Zhang W, Blachier F, Wang Z, Kong X. Dietary supplementation with Bacillus mixture modifies the intestinal ecosystem of weaned piglets in an overall beneficial way. J Appl Microbiol 2020; 130:233-246. [PMID: 32654235 DOI: 10.1111/jam.14782] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/27/2020] [Accepted: 07/07/2020] [Indexed: 01/22/2023]
Abstract
AIMS This study was conducted to investigate the effects of dietary supplementation with a mixture of Bacillus, which serves as an alternative of antibiotics on the intestinal ecosystem of weaned piglets. METHODS AND RESULTS We randomly assigned 120 piglets to three groups: a control group (a basal diet), a probiotics group (a basal diet supplemented with 4 × 109 CFU per gram Bacillus licheniformis-Bacillus subtilis mixture; BLS mix), and an antibiotics group (a basal diet supplemented with 0·04 kg t-1 virginiamycin, 0·2 kg t-1 colistin and 3000 mg kg-1 zinc oxide). All groups had five replicates with eight piglets per replicate. On days 7, 21 and 42 of the trial, intestine tissue and digesta samples were collected to determine intestinal morphology, gut microbiota and bacterial metabolite composition, and the expression of genes related to the gut barrier function and inflammatory status. The results showed that the BLS mix decreased the jejunum crypt depth, while increased the ileum villus height and the jejunum and ileum villus height to crypt depth ratio. The BLS mix increased Simpson's diversity index in the gut microbiota and the relative abundances of o_Bacteroidetes and f_Ruminococcaceae, but decreased the relative abundances of Blautia and Clostridium. Dietary BLS mix supplementation also modified the concentration of several bacterial metabolites compared to the control group. In addition, BLS mix upregulated the expression level of E-cadherin in the colon and pro-inflammatory cytokines and TLR-4 in ileum and colon. Lastly, Spearman's rank-order correlation revealed a potential link between alterations in gut microbiota and health parameters of the weaned piglets. CONCLUSION These findings suggest that dietary BLS mix supplementation modifies the gut ecosystem in weaned piglets. The potential advantages of such modifications in terms of intestinal health are discussed. SIGNIFICANCE AND IMPACT OF THE STUDY Weaning is the most important transition period of piglet growth and development. This study showed that dietary supplementation of a probiotic mixture of Bacillus, an effective alternative of antibiotics, was beneficial in improving the intestinal ecosystem of weaned piglets.
Collapse
Affiliation(s)
- X Wang
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Z Tian
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - M A K Azad
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - W Zhang
- Evonik Degussa (China) Co. Ltd, Beijing, China
| | - F Blachier
- AgroParisTech, Université Paris-Saclay, INRAE, UMR PNCA, Paris, France
| | - Z Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - X Kong
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| |
Collapse
|
360
|
Chen J, Vitetta L. Gut Microbiota Metabolites in NAFLD Pathogenesis and Therapeutic Implications. Int J Mol Sci 2020; 21:ijms21155214. [PMID: 32717871 PMCID: PMC7432372 DOI: 10.3390/ijms21155214] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota dysregulation plays a key role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) through its metabolites. Therefore, the restoration of the gut microbiota and supplementation with commensal bacterial metabolites can be of therapeutic benefit against the disease. In this review, we summarize the roles of various bacterial metabolites in the pathogenesis of NAFLD and their therapeutic implications. The gut microbiota dysregulation is a feature of NAFLD, and the signatures of gut microbiota are associated with the severity of the disease through altered bacterial metabolites. Disturbance of bile acid metabolism leads to underactivation of bile acid receptors FXR and TGR5, causal for decreased energy expenditure, increased lipogenesis, increased bile acid synthesis and increased macrophage activity. Decreased production of butyrate results in increased intestinal inflammation, increased gut permeability, endotoxemia and systemic inflammation. Dysregulation of amino acids and choline also contributes to lipid accumulation and to a chronic inflammatory status. In some NAFLD patients, overproduction of ethanol produced by bacteria is responsible for hepatic inflammation. Many approaches including probiotics, prebiotics, synbiotics, faecal microbiome transplantation and a fasting-mimicking diet have been applied to restore the gut microbiota for the improvement of NAFLD.
Collapse
Affiliation(s)
- Jiezhong Chen
- Medlab Clinical, Sydney 2015, Australia
- Correspondence: (J.C.); (L.V.)
| | - Luis Vitetta
- Medlab Clinical, Sydney 2015, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
- Correspondence: (J.C.); (L.V.)
| |
Collapse
|
361
|
Craven L, Rahman A, Nair Parvathy S, Beaton M, Silverman J, Qumosani K, Hramiak I, Hegele R, Joy T, Meddings J, Urquhart B, Harvie R, McKenzie C, Summers K, Reid G, Burton JP, Silverman M. Allogenic Fecal Microbiota Transplantation in Patients With Nonalcoholic Fatty Liver Disease Improves Abnormal Small Intestinal Permeability: A Randomized Control Trial. Am J Gastroenterol 2020; 115:1055-1065. [PMID: 32618656 DOI: 10.14309/ajg.0000000000000661] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Nonalcoholic fatty liver disease (NAFLD) is an obesity-related disorder that is rapidly increasing in incidence and is considered the hepatic manifestation of the metabolic syndrome. The gut microbiome plays a role in metabolism and maintaining gut barrier integrity. Studies have found differences in the microbiota between NAFLD and healthy patients and increased intestinal permeability in patients with NAFLD. Fecal microbiota transplantation (FMT) can be used to alter the gut microbiome. It was hypothesized that an FMT from a thin and healthy donor given to patients with NAFLD would improve insulin resistance (IR), hepatic proton density fat fraction (PDFF), and intestinal permeability. METHODS Twenty-one patients with NAFLD were recruited and randomized in a ratio of 3:1 to either an allogenic (n = 15) or an autologous (n = 6) FMT delivered by using an endoscope to the distal duodenum. IR was calculated by HOMA-IR, hepatic PDFF was measured by MRI, and intestinal permeability was tested using the lactulose:mannitol urine test. Additional markers of metabolic syndrome and the gut microbiota were examined. Patient visits occurred at baseline, 2, 6 weeks, and 6 months post-FMT. RESULTS There were no significant changes in HOMA-IR or hepatic PDFF in patients who received the allogenic or autologous FMT. Allogenic FMT patients with elevated small intestinal permeability (>0.025 lactulose:mannitol, n = 7) at baseline had a significant reduction 6 weeks after allogenic FMT. DISCUSSION FMT did not improve IR as measured by HOMA-IR or hepatic PDFF but did have the potential to reduce small intestinal permeability in patients with NAFLD.
Collapse
Affiliation(s)
- Laura Craven
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Adam Rahman
- Lawson Health Research Institute, London, Ontario, Canada
- Division of Gastroenterology, London Health Sciences, London, Ontario, Canada
| | - Seema Nair Parvathy
- Division of Infectious Disease, St. Joseph's Health Care, London, Ontario, Canada
| | - Melanie Beaton
- Lawson Health Research Institute, London, Ontario, Canada
- Division of Gastroenterology, London Health Sciences, London, Ontario, Canada
| | - Justin Silverman
- Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina, USA
| | - Karim Qumosani
- Lawson Health Research Institute, London, Ontario, Canada
- Division of Gastroenterology, London Health Sciences, London, Ontario, Canada
| | - Irene Hramiak
- Lawson Health Research Institute, London, Ontario, Canada
- Division of Endocrinology, St Joseph's Health Care, London, Ontario, Canada
| | - Rob Hegele
- Lawson Health Research Institute, London, Ontario, Canada
- Division of Endocrinology, St Joseph's Health Care, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Tisha Joy
- Lawson Health Research Institute, London, Ontario, Canada
- Division of Endocrinology, St Joseph's Health Care, London, Ontario, Canada
| | - Jon Meddings
- Department of Medicine, University of Calgary, Alberta, Canada
| | - Brad Urquhart
- Lawson Health Research Institute, London, Ontario, Canada
| | - Ruth Harvie
- The Canadian Centre for Microbiome and Probiotic Research, London, Ontario, Canada
| | - Charles McKenzie
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Kelly Summers
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Gregor Reid
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- The Canadian Centre for Microbiome and Probiotic Research, London, Ontario, Canada
| | - Jeremy P Burton
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- The Canadian Centre for Microbiome and Probiotic Research, London, Ontario, Canada
| | - Michael Silverman
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Division of Infectious Disease, St. Joseph's Health Care, London, Ontario, Canada
| |
Collapse
|
362
|
Marzullo P, Di Renzo L, Pugliese G, De Siena M, Barrea L, Muscogiuri G, Colao A, Savastano S. From obesity through gut microbiota to cardiovascular diseases: a dangerous journey. INTERNATIONAL JOURNAL OF OBESITY SUPPLEMENTS 2020; 10:35-49. [PMID: 32714511 PMCID: PMC7371682 DOI: 10.1038/s41367-020-0017-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The co-existence of humans and gut microbiota started millions of years ago. Until now, a balance gradually developed between gut bacteria and their hosts. It is now recognized that gut microbiota are key to form adequate immune and metabolic functions and, more in general, for the maintenance of good health. Gut microbiota are established before birth under the influence of maternal nutrition and metabolic status, which can impact the future metabolic risk of the offspring in terms of obesity, diabetes, and cardiometabolic disorders during the lifespan. Obesity and diabetes are prone to disrupt the gut microbiota and alter the gut barrier permeability, leading to metabolic endotoxaemia with its detrimental consequences on health. Specific bacterial sequences are now viewed as peculiar signatures of the metabolic syndrome across life stages in each individual, and are linked to pathogenesis of cardiovascular diseases (CVDs) via metabolic products (metabolites) and immune modulation. These mechanisms have been linked, in association with abnormalities in microbial richness and diversity, to an increased risk of developing arterial hypertension, systemic inflammation, nonalcoholic fatty liver disease, coronary artery disease, chronic kidney disease, and heart failure. Emerging strategies for the manipulation of intestinal microbiota represent a promising therapeutic option for the prevention and treatment of CVD especially in individuals prone to CV events.
Collapse
Affiliation(s)
- Paolo Marzullo
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Division of General Medicine, IRCCS Istituto Auxologico Italiano, 28923 Piancavallo, Verbania Italy
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00136 Rome, Italy
| | - Gabriella Pugliese
- Unit of Endocrinology, Dipartimento di Medicina Clinica e Chirurgia, Federico II University, 80131 Naples, Italy
| | - Martina De Siena
- Division of Gastroenterology, Fondazione Policlinico Universitario A. Gemelli IRCCS—Università Cattolica del Sacro Cuore, Roma, Italy
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS—Università Cattolica del Sacro Cuore, Roma, Italy
| | - Luigi Barrea
- Unit of Endocrinology, Dipartimento di Medicina Clinica e Chirurgia, Federico II University, 80131 Naples, Italy
| | - Giovanna Muscogiuri
- Unit of Endocrinology, Dipartimento di Medicina Clinica e Chirurgia, Federico II University, 80131 Naples, Italy
| | - Annamaria Colao
- Unit of Endocrinology, Dipartimento di Medicina Clinica e Chirurgia, Federico II University, 80131 Naples, Italy
| | - Silvia Savastano
- Unit of Endocrinology, Dipartimento di Medicina Clinica e Chirurgia, Federico II University, 80131 Naples, Italy
| | - on behalf of Obesity Programs of nutrition, Education, Research and Assessment (OPERA) Group
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Division of General Medicine, IRCCS Istituto Auxologico Italiano, 28923 Piancavallo, Verbania Italy
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00136 Rome, Italy
- Unit of Endocrinology, Dipartimento di Medicina Clinica e Chirurgia, Federico II University, 80131 Naples, Italy
- Division of Gastroenterology, Fondazione Policlinico Universitario A. Gemelli IRCCS—Università Cattolica del Sacro Cuore, Roma, Italy
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS—Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
363
|
Busnelli M, Manzini S, Jablaoui A, Bruneau A, Kriaa A, Philippe C, Arnaboldi F, Colombo A, Ferrari B, Ambrogi F, Maguin E, Rhimi M, Chiesa G, Gérard P. Fat-Shaped Microbiota Affects Lipid Metabolism, Liver Steatosis, and Intestinal Homeostasis in Mice Fed a Low-Protein Diet. Mol Nutr Food Res 2020; 64:e1900835. [PMID: 32579743 DOI: 10.1002/mnfr.201900835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 05/20/2020] [Indexed: 12/19/2022]
Abstract
SCOPE Protein malnutrition is characterized by stunted growth, hepatic steatosis and a damaged gut mucosal architecture. Since high-fat shaped gut microbiota (HFM) has an increased ability in providing nutrients and energy from food to the host, the aim of this study is to determine whether such a microbiota could beneficially impact on the consequences of malnutrition. METHODS AND RESULTS The cecal content of specific pathogen free C57Bl/6J mice fed a high-fat diet or a low-protein diet is transplanted in two groups of germ-free C57Bl/6J recipient mice, which are subsequently fed a low-protein diet for 8 weeks. Body weight gain is comparable between the two groups of microbiota-recipient mice. The HFM led to a worsening of microvesicular steatosis and a decrease of plasma lipids compared to the low-protein shaped microbiota. In the small intestine of mice receiving the HFM, although significant histological differences are not observed, the expression of antimicrobial genes promoting oxidative stress and immune response at the ileal epithelium (Duox2, Duoxa2, Saa1, Ang4, Defa5) is increased. CONCLUSION The transplant of HFM in mice fed a low-protein diet represents a noxious stimulus for the ileal mucosa and impairs hepatic lipoprotein secretion, favoring the occurrence of hepatic microvesicular steatosis.
Collapse
Affiliation(s)
- Marco Busnelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, 20133, Italy
| | - Stefano Manzini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, 20133, Italy
| | - Amin Jablaoui
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, 78350, France
| | - Aurélia Bruneau
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, 78350, France
| | - Aïcha Kriaa
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, 78350, France
| | - Catherine Philippe
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, 78350, France
| | - Francesca Arnaboldi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, 20133, Italy
| | - Alice Colombo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, 20133, Italy
| | - Benedetta Ferrari
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, 20133, Italy
| | - Federico Ambrogi
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milano, 20133, Italy
| | - Emmanuelle Maguin
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, 78350, France
| | - Moez Rhimi
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, 78350, France
| | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, 20133, Italy
| | - Philippe Gérard
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, 78350, France
| |
Collapse
|
364
|
Intestinal Microecology: An Important Target for Chinese Medicine Treatment of Non-alcoholic Fatty Liver Disease. Chin J Integr Med 2020; 26:723-728. [DOI: 10.1007/s11655-020-3268-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 02/08/2023]
|
365
|
Malnick S, Maor Y. The Interplay between Alcoholic Liver Disease, Obesity, and the Metabolic Syndrome. Visc Med 2020; 36:198-205. [PMID: 32775350 PMCID: PMC7383260 DOI: 10.1159/000507233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/11/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Fatty liver may be the result of several factors. The two main contributors are nonalcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD). SUMMARY NAFLD is the hepatic manifestation of the metabolic syndrome (MetS) and is the major cause of chronic liver disease worldwide as a result of the obesity epidemic. ALD is also a common cause of chronic liver disease. Obesity is a major contributory factor to MetS and is also common in individuals who consume large amounts of alcohol. There is a similar hepatic pathology and both can result in severe fibrosis, cirrhosis, and its complications including hepatocellular carcinoma. This review discusses the etiology, pathogenesis, and genetics of both NAFLD and ALD and their interaction. It is necessary to understand this better in order to prevent and treat these important causes of liver disease worldwide. KEY MESSAGE Obesity, MetS, and alcohol consumption are linked to the development and progression of fatty liver disease. The coexistence of these factors in many patients requires a reassessment of many aspects of treatment of fatty liver disease.
Collapse
Affiliation(s)
- Stephen Malnick
- Department of Internal Medicine C, Kaplan Medical Center, Rehovot, Israel
| | - Yaakov Maor
- Institute of Gastroenterology and Hepatology, Kaplan Medical Center, Rehovot, Israel
| |
Collapse
|
366
|
Morissette A, Kropp C, Songpadith JP, Junges Moreira R, Costa J, Mariné-Casadó R, Pilon G, Varin TV, Dudonné S, Boutekrabt L, St-Pierre P, Levy E, Roy D, Desjardins Y, Raymond F, Houde VP, Marette A. Blueberry proanthocyanidins and anthocyanins improve metabolic health through a gut microbiota-dependent mechanism in diet-induced obese mice. Am J Physiol Endocrinol Metab 2020; 318:E965-E980. [PMID: 32228321 DOI: 10.1152/ajpendo.00560.2019] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Blueberry consumption can prevent obesity-linked metabolic diseases, and it has been proposed that the polyphenol content of blueberries may contribute to these effects. Polyphenols have been shown to favorably impact metabolic health, but the role of specific polyphenol classes and whether the gut microbiota is linked to these effects remain unclear. We aimed to evaluate the impact of whole blueberry powder and blueberry polyphenols on the development of obesity and insulin resistance and to determine the potential role of gut microbes in these effects by using fecal microbiota transplantation (FMT). Sixty-eight C57BL/6 male mice were assigned to one of the following diets for 12 wk: balanced diet (Chow); high-fat, high-sucrose diet (HFHS); or HFHS supplemented with whole blueberry powder (BB), anthocyanidin (ANT)-rich extract, or proanthocyanidin (PAC)-rich extract. After 8 wk, mice were housed in metabolic cages, and an oral glucose tolerance test (OGTT) was performed. Sixty germ-free mice fed HFHS diet received FMT from one of the above groups biweekly for 8 wk, followed by an OGTT. PAC-treated mice were leaner than HFHS controls although they had the same energy intake and were more physically active. This observation was reproduced in germ-free mice receiving FMT from PAC-treated mice. PAC- and ANT-treated mice showed improved insulin responses during OGTT, and this finding was also reproduced in germ-free mice following FMT. These results show that blueberry PAC and ANT polyphenols can reduce diet-induced body weight and improve insulin sensitivity and that at least part of these beneficial effects are explained by modulation of the gut microbiota.
Collapse
Affiliation(s)
- Arianne Morissette
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, Hôpital Laval, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Camille Kropp
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, Hôpital Laval, Quebec City, Quebec, Canada
| | - Jean-Philippe Songpadith
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, Hôpital Laval, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Rafael Junges Moreira
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, Hôpital Laval, Quebec City, Quebec, Canada
| | - Janice Costa
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, Hôpital Laval, Quebec City, Quebec, Canada
| | - Roger Mariné-Casadó
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, Hôpital Laval, Quebec City, Quebec, Canada
| | - Geneviève Pilon
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, Hôpital Laval, Quebec City, Quebec, Canada
| | - Thibault V Varin
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Stéphanie Dudonné
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Lemia Boutekrabt
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Philippe St-Pierre
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, Hôpital Laval, Quebec City, Quebec, Canada
| | - Emile Levy
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
- Research Centre, CHU-Sainte-Justine, Montreal, Quebec, Canada
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Denis Roy
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Frédéric Raymond
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Vanessa P Houde
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, Hôpital Laval, Quebec City, Quebec, Canada
| | - André Marette
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, Hôpital Laval, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
367
|
Hoffman JB, Petriello MC, Morris AJ, Mottaleb MA, Sui Y, Zhou C, Deng P, Wang C, Hennig B. Prebiotic inulin consumption reduces dioxin-like PCB 126-mediated hepatotoxicity and gut dysbiosis in hyperlipidemic Ldlr deficient mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114183. [PMID: 32105967 PMCID: PMC7220843 DOI: 10.1016/j.envpol.2020.114183] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/25/2020] [Accepted: 02/11/2020] [Indexed: 05/04/2023]
Abstract
Exposure to some environmental pollutants increases the risk of developing inflammatory disorders such as steatosis and cardiometabolic diseases. Diets high in fermentable fibers such as inulin can modulate the gut microbiota and lessen the severity of pro-inflammatory diseases, especially in individuals with elevated circulating cholesterol. Thus, we aimed to test the hypothesis that hyperlipidemic mice fed a diet enriched with 8% inulin would be protected from the pro-inflammatory toxic effects of PCB 126. Four groups of male Ldlr-/- mice were fed a high cholesterol diet containing 8% inulin or 8% cellulose (control) for 12 weeks. At weeks 2 and 4, mice were exposed to PCB 126 or vehicle (control). PCB 126 exposure induced wasting and impaired glucose tolerance, which were attenuated by inulin consumption. PCB 126 exposure induced hepatic lipid accumulation and increased inflammatory gene expression, which were both decreased by inulin consumption. In addition, inulin feeding decreased atherosclerotic lesion development in the aortic root and modulated the expression of enzymes related to glycolysis. Finally, 16S rRNA sequencing of gut microbial populations showed that PCB 126 modulated multiple microbiota genera (e.g., 3-fold decrease in Allobaculum and 3-fold increase in Coprococcus) which were normalized in inulin fed mice. Overall our data support the hypothesis that a dietary intervention that targets the gut microbiota may be an effective means of attenuating dioxin-like pollutant-mediated diseases.
Collapse
Affiliation(s)
- Jessie B Hoffman
- Superfund Research Center, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, USA
| | - Michael C Petriello
- Superfund Research Center, University of Kentucky, Lexington, KY, USA; Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA; Lexington Veterans Affairs Medical Center, Lexington, KY, USA
| | - Andrew J Morris
- Superfund Research Center, University of Kentucky, Lexington, KY, USA; Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA; Lexington Veterans Affairs Medical Center, Lexington, KY, USA
| | - M Abdul Mottaleb
- Superfund Research Center, University of Kentucky, Lexington, KY, USA; Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA; Lexington Veterans Affairs Medical Center, Lexington, KY, USA
| | - Yipeng Sui
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, USA
| | - Changcheng Zhou
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, USA
| | - Pan Deng
- Superfund Research Center, University of Kentucky, Lexington, KY, USA; Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Chunyan Wang
- Superfund Research Center, University of Kentucky, Lexington, KY, USA; Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Bernhard Hennig
- Superfund Research Center, University of Kentucky, Lexington, KY, USA; Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
368
|
Anti-inflammatory properties and gut microbiota modulation of an alkali-soluble polysaccharide from purple sweet potato in DSS-induced colitis mice. Int J Biol Macromol 2020; 153:708-722. [DOI: 10.1016/j.ijbiomac.2020.03.053] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
|
369
|
Jian C, Luukkonen P, Sädevirta S, Yki-Järvinen H, Salonen A. Impact of short-term overfeeding of saturated or unsaturated fat or sugars on the gut microbiota in relation to liver fat in obese and overweight adults. Clin Nutr 2020; 40:207-216. [PMID: 32536582 DOI: 10.1016/j.clnu.2020.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUNDS & AIMS Intestinal microbiota may be causally involved in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). We aimed to study the effect of short-term overfeeding on human gut microbiota in relation to baseline and overfeeding-induced liver steatosis. We also asked whether the baseline microbiota composition is associated to the overfeeding-induced increase in liver fat. METHODS In a randomized trial, 38 overweight and obese subjects were assigned to consume an excess of 1000 kcal/day of diets rich in either saturated fat, unsaturated fat, or simple sugars for 3 weeks. Fasting blood samples and 1H-MR spectroscopy were used for extensive clinical phenotyping as previously reported (PMID: 29844096). Fecal samples were collected for the analysis of the gut microbiota using 16S rRNA amplicon sequencing, imputed metagenomics and qPCR. Microbiota results were correlated with dietary intakes and clinical measurements before and during overfeeding. RESULTS The overall community structure of the microbiota remained highly stable and personalized during overfeeding based on between-sample Bray-Curtis dissimilarity, but the relative abundances of individual taxa were altered in a diet-specific manner: overfeeding saturated fat increased Proteobacteria, while unsaturated fat increased butyrate producers. Sugar overfeeding increased Lactococcus and Escherichia coli. Imputed functions of the gut microbiota were not affected by overfeeding. Several taxa affected by overfeeding significantly correlated with the changes in host metabolic markers. The baseline levels of proteobacterial family Desulfovibrionaceae, and especially genus Bilophila, were significantly associated to overfeeding-induced liver fat increase independently of the diet arm. In general, limited overlap was observed between the overfeeding-induced microbiota changes and the liver fat-associated microbiota features at baseline. CONCLUSIONS Our work indicates that the human gut microbiota is resilient to short-term overfeeding on community level, but specific taxa are altered on diet composition-dependent manner. Generalizable microbiota signatures directly associated with liver steatosis could not be identified. Instead, the carriage of Bilophila was identified as a potential novel risk factor for diet-induced liver steatosis in humans. Clinical trial registry number: NCT02133144 listed on NIH website: ClinicalTrials.gov.
Collapse
Affiliation(s)
- Ching Jian
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Panu Luukkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Sanja Sädevirta
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Hannele Yki-Järvinen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
370
|
Katsarou A, Moustakas II, Pyrina I, Lembessis P, Koutsilieris M, Chatzigeorgiou A. Metabolic inflammation as an instigator of fibrosis during non-alcoholic fatty liver disease. World J Gastroenterol 2020; 26:1993-2011. [PMID: 32536770 PMCID: PMC7267690 DOI: 10.3748/wjg.v26.i17.1993] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/09/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive storage of fatty acids in the form of triglycerides in hepatocytes. It is most prevalent in western countries and includes a wide range of clinical and histopathological findings, namely from simple steatosis to steatohepatitis and fibrosis, which may lead to cirrhosis and hepatocellular cancer. The key event for the transition from steatosis to fibrosis is the activation of quiescent hepatic stellate cells (qHSC) and their differentiation to myofibroblasts. Pattern recognition receptors (PRRs), expressed by a plethora of immune cells, serve as essential components of the innate immune system whose function is to stimulate phagocytosis and mediate inflammation upon binding to them of various molecules released from damaged, apoptotic and necrotic cells. The activation of PRRs on hepatocytes, Kupffer cells, the resident macrophages of the liver, and other immune cells results in the production of proinflammatory cytokines and chemokines, as well as profibrotic factors in the liver microenvironment leading to qHSC activation and subsequent fibrogenesis. Thus, elucidation of the inflammatory pathways associated with the pathogenesis and progression of NAFLD may lead to a better understanding of its pathophysiology and new therapeutic approaches.
Collapse
Affiliation(s)
- Angeliki Katsarou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
- 251 Hellenic Airforce General Hospital, Athens 11525, Greece
| | - Ioannis I Moustakas
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Iryna Pyrina
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden 01307, Germany
| | - Panagiotis Lembessis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden 01307, Germany.
| |
Collapse
|
371
|
Chen R, Liu B, Wang X, Chen K, Zhang K, Zhang L, Fei C, Wang C, Yingchun L, Xue F, Gu F, Wang M. Effects of polysaccharide from Pueraria lobata on gut microbiota in mice. Int J Biol Macromol 2020; 158:S0141-8130(20)33067-1. [PMID: 32387359 DOI: 10.1016/j.ijbiomac.2020.04.201] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
Polysaccharide was derived from Pueraria lobata (PPL) which was considered as one of the traditional Chinese medicinal and edible herbs. In the present study, PPL was administered in equal doses (12.5 mg/kg) to both normal mice and antibiotic-associated diarrhea (AAD) mice for two weeks, and was evaluated in terms of body weight, organ indices, gut structure, gut microbiota and short chain fatty acids. The results showed that normal mice treated with PPL not only reduced the isovaleric acid concentration (P < 0.05), but also significantly increased the abundance of beneficial bacteria, involving Oscillospira and Anaerotruncus (P < 0.05). In addition, PPL could relieve colonic pathological changes and gut microbiota dysbiosis caused by AAD. It indicated that PPL was a potential functional food ingredient by modulating gut microbiota.
Collapse
Affiliation(s)
- Rong Chen
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Bo Liu
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Xiaoyang Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Kai Chen
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Keyu Zhang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Lifang Zhang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Chenzhong Fei
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Chunmei Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Liu Yingchun
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Feiqun Xue
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Feng Gu
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Mi Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China.
| |
Collapse
|
372
|
Le transfert de microbiote fécal : quel potentiel thérapeutique dans le traitement des maladies métaboliques ? NUTR CLIN METAB 2020. [DOI: 10.1016/j.nupar.2019.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
373
|
Haifer C, Kelly CR, Paramsothy S, Andresen D, Papanicolas LE, McKew GL, Borody TJ, Kamm M, Costello SP, Andrews JM, Begun J, Chan HT, Connor S, Ghaly S, Johnson PD, Lemberg DA, Paramsothy R, Redmond A, Sheorey H, van der Poorten D, Leong RW. Australian consensus statements for the regulation, production and use of faecal microbiota transplantation in clinical practice. Gut 2020; 69:801-810. [PMID: 32047093 DOI: 10.1136/gutjnl-2019-320260] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/17/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Faecal microbiota transplantation (FMT) has proved to be an extremely effective treatment for recurrent Clostridioides difficile infection, and there is interest in its potential application in other gastrointestinal and systemic diseases. However, the recent death and episode of septicaemia following FMT highlights the need for further appraisal and guidelines on donor evaluation, production standards, treatment facilities and acceptable clinical indications. DESIGN For these consensus statements, a 24-member multidisciplinary working group voted online and then convened in-person, using a modified Delphi approach to formulate and refine a series of recommendations based on best evidence and expert opinion. Invitations to participate were directed to Australian experts, with an international delegate assisting the development. The following issues regarding the use of FMT in clinical practice were addressed: donor selection and screening, clinical indications, requirements of FMT centres and future directions. Evidence was rated using the GRADE (Grading of Recommendations Assessment, Development and Evaluation) system. RESULTS Consensus was reached on 27 statements to provide guidance on best practice in FMT. These include: (1) minimum standards for donor screening with recommended clinical selection criteria, blood and stool testing; (2) accepted routes of administration; (3) clinical indications; (4) minimum standards for FMT production and requirements for treatment facilities acknowledging distinction between single-site centres (eg, hospital-based) and stool banks; and (5) recommendations on future research and product development. CONCLUSIONS These FMT consensus statements provide comprehensive recommendations around the production and use of FMT in clinical practice with relevance to clinicians, researchers and policy makers.
Collapse
Affiliation(s)
- Craig Haifer
- The University of Sydney, Sydney, New South Wales, Australia
- St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Colleen R Kelly
- Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Sudarshan Paramsothy
- The University of Sydney, Sydney, New South Wales, Australia
- Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| | - David Andresen
- The University of Sydney, Sydney, New South Wales, Australia
- St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Lito E Papanicolas
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Genevieve L McKew
- The University of Sydney, Sydney, New South Wales, Australia
- Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| | - Thomas J Borody
- Centre for Digestive Diseases, Sydney, New South Wales, Australia
| | - Michael Kamm
- St Vincent's Hospital, Melbourne, Victoria, Australia
- The University of Melbourne, Melbourne, Victoria, Australia
| | - Samuel P Costello
- The Queen Elizabeth Hospital, Woodville, South Australia, Australia
- BiomeBank, Adelaide, South Australia, Australia
| | - Jane M Andrews
- Royal Adelaide Hospital, Adelaide, South Australia, Australia
- The University of Adelaide, Adelaide, South Australia, Australia
| | - Jakob Begun
- The University of Queensland, Brisbane, Queensland, Australia
- Mater Hospital Brisbane, Brisbane, Queensland, Australia
| | | | - Susan Connor
- Liverpool Hospital, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Simon Ghaly
- St Vincent's Hospital, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Paul Dr Johnson
- The University of Melbourne, Melbourne, Victoria, Australia
- Austin Hospital, Melbourne, Victoria, Australia
| | - Daniel A Lemberg
- University of New South Wales, Sydney, New South Wales, Australia
- Sydney Children's Hospital Randwick, Randwick, New South Wales, Australia
| | | | - Andrew Redmond
- The University of Queensland, Brisbane, Queensland, Australia
- Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | | | - David van der Poorten
- The University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Sydney, New South Wales, Australia
| | - Rupert W Leong
- The University of Sydney, Sydney, New South Wales, Australia
- Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
374
|
Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nat Rev Gastroenterol Hepatol 2020; 17:279-297. [PMID: 32152478 DOI: 10.1038/s41575-020-0269-9] [Citation(s) in RCA: 637] [Impact Index Per Article: 127.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
Gut microbiota dysbiosis has been repeatedly observed in obesity and type 2 diabetes mellitus, two metabolic diseases strongly intertwined with non-alcoholic fatty liver disease (NAFLD). Animal studies have demonstrated a potential causal role of gut microbiota in NAFLD. Human studies have started to describe microbiota alterations in NAFLD and have found a few consistent microbiome signatures discriminating healthy individuals from those with NAFLD, non-alcoholic steatohepatitis or cirrhosis. However, patients with NAFLD often present with obesity and/or insulin resistance and type 2 diabetes mellitus, and these metabolic confounding factors for dysbiosis have not always been considered. Patients with different NAFLD severity stages often present with heterogeneous lesions and variable demographic characteristics (including age, sex and ethnicity), which are known to affect the gut microbiome and have been overlooked in most studies. Finally, multiple gut microbiome sequencing tools and NAFLD diagnostic methods have been used across studies that could account for discrepant microbiome signatures. This Review provides a broad insight into microbiome signatures for human NAFLD and explores issues with disentangling these signatures from underlying metabolic disorders. More advanced metagenomics and multi-omics studies using system biology approaches are needed to improve microbiome biomarkers.
Collapse
|
375
|
Cassard AM, Houron C, Ciocan D. Microbiote intestinal et stéatopathie métabolique. NUTR CLIN METAB 2020. [DOI: 10.1016/j.nupar.2019.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
376
|
Aron-Wisnewsky J, Warmbrunn MV, Nieuwdorp M, Clément K. Nonalcoholic Fatty Liver Disease: Modulating Gut Microbiota to Improve Severity? Gastroenterology 2020; 158:1881-1898. [PMID: 32044317 DOI: 10.1053/j.gastro.2020.01.049] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
Gut microbiota plays a role in the pathophysiology of metabolic diseases, which include nonalcoholic fatty liver diseases, through the gut-liver axis. To date, clinical guidelines recommend a weight loss goal of 7%-10% to improve features of nonalcoholic fatty liver diseases. Because this target is not easily achieved by all patients, alternative therapeutic options are currently being evaluated. This review focuses on therapeutics that aim to modulate the gut microbiota and the gut-liver axis. We discuss how probiotics, prebiotics, synbiotic, fecal microbiota transfer, polyphenols, specific diets, and exercise interventions have been found to modify gut microbiota signatures; improve nonalcoholic fatty liver disease outcomes; and detail, when available, the different mechanisms by which these beneficial outcomes might occur. Apart from probiotics that have already been tested in human randomized controlled trials, most of these potential therapeutics have been studied in animals. Their efficacy still warrants confirmation in humans using appropriate design.
Collapse
Affiliation(s)
- Judith Aron-Wisnewsky
- Sorbonne Université, INSERM, UMRS U1269, Nutriomics Research Unit, Paris, France; Nutrition Department, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Centre de Recherche en Nutrition Humaine d'Ile de France, Paris, France; Department of Vascular Medicine, University of Amsterdam Medical Center, Amsterdam, The Netherlands.
| | - Moritz V Warmbrunn
- Department of Vascular Medicine, University of Amsterdam Medical Center, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, University of Amsterdam Medical Center, Amsterdam, The Netherlands; Department of Internal Medicine, University of Amsterdam Medical Center, Free University, Amsterdam, The Netherlands
| | - Karine Clément
- Sorbonne Université, INSERM, UMRS U1269, Nutriomics Research Unit, Paris, France; Nutrition Department, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Centre de Recherche en Nutrition Humaine d'Ile de France, Paris, France.
| |
Collapse
|
377
|
Ciocan D, Cassard AM. [Intestinal bacteria involved in nutritional liver disease killed by phagotherapy: a new therapeutic target]. Med Sci (Paris) 2020; 36:310-312. [PMID: 32356701 DOI: 10.1051/medsci/2020052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Dragos Ciocan
- Université Paris-Saclay, Inserm, Inflammation, microbiome et immunosurveillance, 92140 Clamart, France - AP-HP, Service d'hépato-gastroentérologie et nutrition, Hôpital Antoine-Béclère, 157 rue de la Porte de Trivaux, 92140 Clamart, France
| | - Anne-Marie Cassard
- Université Paris-Saclay, Inserm, Inflammation, microbiome et immunosurveillance, 92140 Clamart, France
| |
Collapse
|
378
|
Wang F, Cui Q, Zeng Y, Chen P. [Gut microbiota-an important contributor to liver diseases]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:595-600. [PMID: 32895142 DOI: 10.12122/j.issn.1673-4254.2020.04.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Gut microbiota constitute a complicated but manifold ecosystem, in which specific symbiotic relationships are formed among various bacteria. To maintain a steady state, the gastrointestinal tract and the liver form a close anatomical and functional two-way, interconnected network through the portal circulation. "Gut-liver axis" plays a key role in the pathogenesis of liver diseases. Accumulating evidence indicates that gut microbiota can influence the liver pathophysiology directly or indirectly via a variety of signal pathways. In a pathological state where an ecological imbalance occurs at the compositional and functional levels, gut microbes would interact with the host immune system and other type of cells to cause liver steatosis, inflammation and fibrosis, which in turn give rise to the development of such liver diseases as alcoholic liver disease, nonalcoholic fatty liver disease, primary sclerosing cholangitis, and acute liver failure, to name a few. Studies have shown that microorganisms, such as prebiotics and probiotics, can improve the prognosis of certain diseases, which open a new era of treating liver diseases with bacteria. There are many unknowns and hidden values in the gut microbiome. To explore the pathophysiological mechanism of various complex diseases and develop scientific and effective clinical treatment strategies, efforts should be made to obtain insights into how certain intestinal microbiota participates in the occurrence and progression of liver diseases. As the connection between gut microbiota and liver diseases at both the acute and chronic phases was not elaborated in previously published review articles, herein we discuss the association between gut microbiota and both acute and chronic liver injury. The anatomical structure of the liver enables it to form a close network with the gut microbiota, which is an important mediator in the regulation of the hepatic physiological and pathological functions.
Collapse
Affiliation(s)
- Fangzhao Wang
- Department of Pathophysiology, College of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qianru Cui
- Department of Pathophysiology, College of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yunong Zeng
- Department of Pathophysiology, College of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Chen
- Department of Pathophysiology, College of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
379
|
Nistal E, Sáenz de Miera LE, Ballesteros Pomar M, Sánchez-Campos S, García-Mediavilla MV, Álvarez-Cuenllas B, Linares P, Olcoz JL, Arias-Loste MT, García-Lobo JM, Crespo J, González-Gallego J, Jorquera Plaza F. An altered fecal microbiota profile in patients with non-alcoholic fatty liver disease (NAFLD) associated with obesity. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2020; 111:275-282. [PMID: 30810328 DOI: 10.17235/reed.2019.6068/2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
INTRODUCTION increasing evidence suggests a role of intestinal dysbiosis in obesity and non-alcoholic fatty liver disease (NAFLD). The advances in recent years with regard to the role of the gut microbiota raise the potential utility of new therapeutic approaches based on the modification of the microbiome. OBJECTIVE the aim of this study was to compare the bacterial communities in obese patients with or without NAFLD to those of healthy controls. PATIENTS AND METHODS the fecal microbiota composition of 20 healthy adults, 36 obese patients with NAFLD and 17 obese patients without NAFLD was determined by 16S ribosomal RNA sequencing using the Illumina MiSeq system. RESULTS the results highlighted significant differences in the phylum Firmicutes between patients with and without NAFLD, which was a determining factor of the disease and supported its possible role as a marker of NAFLD. At the genus level, the relative abundance of Blautia, Alkaliphilus, Flavobacterium and Akkermansia was reduced in obese patients, both with or without NAFLD, compared to healthy controls. Furthermore, the number of sequences from the genus Streptococcus was significantly higher in patients with NAFLD in comparison with individuals without the disease, constituting another possible marker. Comparison of bacterial communities at the genus level by a principal coordinate analysis indicated that the bacterial communities of patients with NAFLD were dispersed and did not form a group. CONCLUSION in conclusion, these results indicate the role of intestinal dysbiosis in the development of NAFLD associated with obesity. There was a differential microbiota profile between obese patients, with and without NAFLD. Thus, supporting gut microbiota modulation as a therapeutic alternative for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Esther Nistal
- Instituto de Biomedicina, Universidad de León, España
| | | | | | | | | | | | - Pedro Linares
- aparato digestivo, Complejo asistencial universitario de León
| | | | | | | | - Javier Crespo
- Servicio de Aparato Digestivo, Hospital Universitario Marqués de Valdecilla, Santander
| | | | | |
Collapse
|
380
|
Chen HT, Huang HL, Li YQ, Xu HM, Zhou YJ. Therapeutic advances in non-alcoholic fatty liver disease: A microbiota-centered view. World J Gastroenterol 2020; 26:1901-1911. [PMID: 32390701 PMCID: PMC7201149 DOI: 10.3748/wjg.v26.i16.1901] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/26/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent metabolic disorder with steadily increasing incidence rates worldwide, especially in the West. There are no drugs available at present to treat NAFLD, and the primary therapeutic options include weight loss and the combination of healthy diet and exercise. Therefore, novel interventions are required that can target the underlying risk factors. Gut microbiota is an "invisible organ" of the human body and vital for normal metabolism and immuno-modulation. The number and diversity of microbes differ across the gastrointestinal tract from the mouth to the anus, and is most abundant in the intestine. Since dysregulated gut microbiota is an underlying pathological factor of NAFLD, it is a viable therapeutic target that can be modulated by antibiotics, probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and microbial metabolites. In this review, we summarize the most recent advances in gut microbiota-targeted therapies against NAFLD in clinical and experimental studies, and critically evaluate novel targets and strategies for treating NAFLD.
Collapse
Affiliation(s)
- Hui-Ting Chen
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, Guangdong Province, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong Province, China
| | - Hong-Li Huang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, Guangdong Province, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong Province, China
| | - Yong-Qiang Li
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, Guangdong Province, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong Province, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, Guangdong Province, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong Province, China
| | - Yong-Jian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, Guangdong Province, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong Province, China
| |
Collapse
|
381
|
Jin M, Lai Y, Zhao P, Shen Q, Su W, Yin Y, Zhang W. Effects of peptidoglycan on the development of steatohepatitis. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158595. [DOI: 10.1016/j.bbalip.2019.158595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/16/2019] [Accepted: 12/22/2019] [Indexed: 12/14/2022]
|
382
|
Yin X, Liao W, Li Q, Zhang H, Liu Z, Zheng X, Zheng L, Feng X. Interactions between resveratrol and gut microbiota affect the development of hepatic steatosis: A fecal microbiota transplantation study in high-fat diet mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103883] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
383
|
Philips CA, Augustine P, Yerol PK, Ramesh GN, Ahamed R, Rajesh S, George T, Kumbar S. Modulating the Intestinal Microbiota: Therapeutic Opportunities in Liver Disease. J Clin Transl Hepatol 2020; 8:87-99. [PMID: 32274349 PMCID: PMC7132020 DOI: 10.14218/jcth.2019.00035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/11/2019] [Accepted: 10/27/2019] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota has been demonstrated to have a significant impact on the initiation, progression and development of complications associated with multiple liver diseases. Notably, nonalcoholic fatty liver diseases, including nonalcoholic steatohepatitis and cirrhosis, severe alcoholic hepatitis, primary sclerosing cholangitis and hepatic encephalopathy, have strong links to dysbiosis - or a pathobiological change in the microbiota. In this review, we provide clear and concise discussions on the human gut microbiota, methods of identifying gut microbiota and its functionality, liver diseases that are affected by the gut microbiota, including novel associations under research, and provide current evidence on the modulation of gut microbiota and its effects on specific liver disease conditions.
Collapse
Affiliation(s)
- Cyriac Abby Philips
- The Liver Unit, Monarch Liver Lab and Division of Gastroenterology, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, Kerala, India
| | - Philip Augustine
- The Liver Unit, Monarch Liver Lab and Division of Gastroenterology, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, Kerala, India
| | - Praveen Kumar Yerol
- Department of Gastroenterology, State Government Medical College, Thrissur, Kerala, India
| | | | - Rizwan Ahamed
- The Liver Unit, Monarch Liver Lab and Division of Gastroenterology, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, Kerala, India
| | - Sasidharan Rajesh
- The Liver Unit, Monarch Liver Lab and Division of Gastroenterology, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, Kerala, India
| | - Tom George
- The Liver Unit, Monarch Liver Lab and Division of Gastroenterology, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, Kerala, India
| | - Sandeep Kumbar
- The Liver Unit, Monarch Liver Lab and Division of Gastroenterology, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, Kerala, India
| |
Collapse
|
384
|
Li L, Su Y, Li F, Wang Y, Ma Z, Li Z, Su J. The effects of daily fasting hours on shaping gut microbiota in mice. BMC Microbiol 2020; 20:65. [PMID: 32209070 PMCID: PMC7092480 DOI: 10.1186/s12866-020-01754-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/13/2020] [Indexed: 02/06/2023] Open
Abstract
Background It has recently been reported that intermittent fasting shapes the gut microbiota to benefit health, but this effect may be influenced to the exact fasting protocols. The purpose of this study was to assess the effects of different daily fasting hours on shaping the gut microbiota in mice. Healthy C57BL/6 J male mice were subjected to 12, 16 or 20 h fasting per day for 1 month, and then fed ad libitum for an extended month. Gut microbiota was analyzed by 16S rRNA gene-based sequencing and food intake was recorded as well. Results We found that cumulative food intake was not changed in the group with 12 h daily fasting, but significantly decreased in the 16 and 20 h fasting groups. The composition of gut microbiota was altered by all these types of intermittent fasting. At genus level, 16 h fasting led to increased level of Akkermansia and decreased level of Alistipes, but these effects disappeared after the cessation of fasting. No taxonomic differences were identified in the other two groups. Conclusions These data indicated that intermittent fasting shapes gut microbiota in healthy mice, and the length of daily fasting interval may influence the outcome of intermittent fasting.
Collapse
Affiliation(s)
- Linghao Li
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Yuxin Su
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Fanglin Li
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Yueying Wang
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Zhongren Ma
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Zhuo Li
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Junhong Su
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, No.727 South Jingming Rd., Chenggong District, Kunming, China. .,Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
385
|
Cortés-Martín A, Iglesias-Aguirre CE, Meoro A, Selma MV, Espín JC. There is No Distinctive Gut Microbiota Signature in the Metabolic Syndrome: Contribution of Cardiovascular Disease Risk Factors and Associated Medication. Microorganisms 2020; 8:microorganisms8030416. [PMID: 32183480 PMCID: PMC7143903 DOI: 10.3390/microorganisms8030416] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/09/2020] [Accepted: 03/14/2020] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota (GM) has attracted attention as a new target to combat several diseases, including metabolic syndrome (MetS), a pathological condition with many factors (diabetes, obesity, dyslipidemia, hypertension, etc.) that increase cardiovascular disease (CVD) risk. However, the existence of a characteristic taxonomic signature associated with obesity-related metabolic dysfunctions is under debate. To investigate the contribution of the CVD risk factors and(or) their associated drug treatments in the composition and functionality of GM in MetS patients, we compared the GM of obese individuals (n = 69) vs. MetS patients (n = 50), as well as within patients, depending on their treatments. We also explored associations between medication, GM, clinical variables, endotoxemia, and short-chain fatty acids. Poly-drug treatments, conventional in MetS patients, prevented the accurate association between medication and GM profiles. Our results highlight the heterogeneity of taxonomic signatures in MetS patients, which mainly depend on the CVD risk factors. Hypertension and(or) its associated medication was the primary trait involved in the shaping of GM, with an overabundance of lipopolysaccharide-producing microbial groups from the Proteobacteria phylum. In the context of precision medicine, our results highlight that targeting GM to prevent and(or) treat MetS should consider MetS patients more individually, according to their CVD risk factors and associated medication.
Collapse
Affiliation(s)
- Adrián Cortés-Martín
- Laboratory of Food & Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain; (A.C.-M.); (C.E.I.-A.); (M.V.S.)
| | - Carlos E. Iglesias-Aguirre
- Laboratory of Food & Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain; (A.C.-M.); (C.E.I.-A.); (M.V.S.)
| | - Amparo Meoro
- Service of Endocrinology, Reina Sofía University Hospital, Avda. Intendente Jorge Palacios s/n, 30003 Murcia, Spain;
| | - María Victoria Selma
- Laboratory of Food & Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain; (A.C.-M.); (C.E.I.-A.); (M.V.S.)
| | - Juan Carlos Espín
- Laboratory of Food & Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain; (A.C.-M.); (C.E.I.-A.); (M.V.S.)
- Correspondence:
| |
Collapse
|
386
|
Yu EW, Gao L, Stastka P, Cheney MC, Mahabamunuge J, Torres Soto M, Ford CB, Bryant JA, Henn MR, Hohmann EL. Fecal microbiota transplantation for the improvement of metabolism in obesity: The FMT-TRIM double-blind placebo-controlled pilot trial. PLoS Med 2020; 17:e1003051. [PMID: 32150549 PMCID: PMC7062239 DOI: 10.1371/journal.pmed.1003051] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND There is intense interest about whether modulating gut microbiota can impact systemic metabolism. We investigated the safety of weekly oral fecal microbiota transplantation (FMT) capsules from healthy lean donors and their ability to alter gut microbiota and improve metabolic outcomes in patients with obesity. METHODS AND FINDINGS FMT-TRIM was a 12-week double-blind randomized placebo-controlled pilot trial of oral FMT capsules performed at a single US academic medical center. Between August 2016 and April 2018, we randomized 24 adults with obesity and mild-moderate insulin resistance (homeostatic model assessment of insulin resistance [HOMA-IR] between 2.0 and 8.0) to weekly healthy lean donor FMT versus placebo capsules for 6 weeks. The primary outcome, assessed by intention to treat, was change in insulin sensitivity between 0 and 6 weeks as measured by hyperinsulinemic euglycemic clamps. Additional metabolic parameters were evaluated at 0, 6, and 12 weeks, including HbA1c, body weight, body composition by dual-energy X-ray absorptiometry, and resting energy expenditure by indirect calorimetry. Fecal samples were serially collected and evaluated via 16S V4 rRNA sequencing. Our study population was 71% female, with an average baseline BMI of 38.8 ± 6.7 kg/m2 and 41.3 ± 5.1 kg/m2 in the FMT and placebo groups, respectively. There were no statistically significant improvements in insulin sensitivity in the FMT group compared to the placebo group (+5% ± 12% in FMT group versus -3% ± 32% in placebo group, mean difference 9%, 95% CI -5% to 28%, p = 0.16). There were no statistically significant differences between groups for most of the other secondary metabolic outcomes, including HOMA-IR (mean difference 0.2, 95% CI -0.9 to 0.9, p = 0.96) and body composition (lean mass mean difference -0.1 kg, 95% CI -1.9 to 1.6 kg, p = 0.87; fat mass mean difference 1.2 kg, 95% CI -0.6 to 3.0 kg, p = 0.18), over the 12-week study. We observed variable engraftment of donor bacterial groups among FMT recipients, which persisted throughout the 12-week study. There were no significant differences in adverse events (AEs) (10 versus 5, p = 0.09), and no serious AEs related to FMT. Limitations of this pilot study are the small sample size, inclusion of participants with relatively mild insulin resistance, and lack of concurrent dietary intervention. CONCLUSIONS Weekly administration of FMT capsules in adults with obesity results in gut microbiota engraftment in most recipients for at least 12 weeks. Despite engraftment, we did not observe clinically significant metabolic effects during the study. TRIAL REGISTRATION ClinicalTrials.gov NCT02530385.
Collapse
Affiliation(s)
- Elaine W. Yu
- Endocrine Unit, Division of Endocrinology and Metabolism, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Liu Gao
- Endocrine Unit, Division of Endocrinology and Metabolism, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Petr Stastka
- Endocrine Unit, Division of Endocrinology and Metabolism, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Michael C. Cheney
- Endocrine Unit, Division of Endocrinology and Metabolism, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jasmin Mahabamunuge
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Mariam Torres Soto
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | | | - Jessica A. Bryant
- Seres Therapeutics, Cambridge, Massachusetts, United States of America
| | - Matthew R. Henn
- Seres Therapeutics, Cambridge, Massachusetts, United States of America
| | - Elizabeth L. Hohmann
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
387
|
Targeting the gut microbiota with resveratrol: a demonstration of novel evidence for the management of hepatic steatosis. J Nutr Biochem 2020; 81:108363. [PMID: 32388250 DOI: 10.1016/j.jnutbio.2020.108363] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/14/2020] [Accepted: 02/21/2020] [Indexed: 12/17/2022]
Abstract
Resveratrol is a natural polyphenol that has been reported to reduce the risk of obesity and nonalcoholic fatty liver disease (NAFLD). Recent evidence has demonstrated that the gut microbiota plays an important role in the protection against NAFLD and other metabolic diseases. The present study aimed to investigate the relationship between the gut microbiota and the beneficial effects of resveratrol on the amelioration of NAFLD in mice. We observed marked decreases in body weight and liver steatosis and improved insulin resistance in high-fat diet (HFD)-fed mice treated with resveratrol. Furthermore, we found that resveratrol treatment alleviated NAFLD in HFD-fed mice by improving the intestinal microenvironment, including gut barrier function and gut microbiota composition. On the one hand, resveratrol improved gut intestinal barrier integrity through the repair of intestinal mucosal morphology and increased the expression of physical barrier- and physiochemical barrier-related factors in HFD-fed mice. On the other hand, in HFD-fed mice, resveratrol supplementation modulated the gut bacterial composition. The resveratrol-induced gut microbiota was characterized by a decreased abundance of harmful bacteria, including Desulfovibrio, Lachnospiraceae_NK4A316_group and Alistipes, as well as an increased abundance of short-chain fatty acid (SCFA)-producing bacteria, such as Allobaculum, Bacteroides and Blautia. Moreover, transplantation of the HFDR-microbiota into HFD-fed mice sufficiently decreased body weight, liver steatosis and low-grade inflammation and improved hepatic lipid metabolism. Collectively, resveratrol would provide a potentially dietary intervention strategy against NAFLD through modulating the intestinal microenvironment.
Collapse
|
388
|
Kanda T, Goto T, Hirotsu Y, Masuzaki R, Moriyama M, Omata M. Molecular Mechanisms: Connections between Nonalcoholic Fatty Liver Disease, Steatohepatitis and Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:1525. [PMID: 32102237 PMCID: PMC7073210 DOI: 10.3390/ijms21041525] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/22/2020] [Accepted: 02/22/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), including nonalcoholic steatohepatitis (NASH), causes hepatic fibrosis, cirrhosis and hepatocellular carcinoma (HCC). The patatin-like phospholipase-3 (PNPLA3) I148M sequence variant is one of the strongest genetic determinants of NAFLD/NASH. PNPLA3 is an independent risk factor for HCC among patients with NASH. The obesity epidemic is closely associated with the rising prevalence and severity of NAFLD/NASH. Furthermore, metabolic syndrome exacerbates the course of NAFLD/NASH. These factors are able to induce apoptosis and activate immune and inflammatory pathways, resulting in the development of hepatic fibrosis and NASH, leading to progression toward HCC. Small intestinal bacterial overgrowth (SIBO), destruction of the intestinal mucosa barrier function and a high-fat diet all seem to exacerbate the development of hepatic fibrosis and NASH, leading to HCC in patients with NAFLD/NASH. Thus, the intestinal microbiota may play a role in the development of NAFLD/NASH. In this review, we describe recent advances in our knowledge of the molecular mechanisms contributing to the development of hepatic fibrosis and HCC in patients with NAFLD/NASH.
Collapse
Affiliation(s)
- Tatsuo Kanda
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan; (T.K.); (R.M.); (M.M.)
| | - Taichiro Goto
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi 400-8506, Japan
| | - Yosuke Hirotsu
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi 400-8506, Japan; (Y.H.); (M.O.)
| | - Ryota Masuzaki
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan; (T.K.); (R.M.); (M.M.)
| | - Mitsuhiko Moriyama
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan; (T.K.); (R.M.); (M.M.)
| | - Masao Omata
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi 400-8506, Japan; (Y.H.); (M.O.)
- The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
389
|
Fouladi F, Brooks AE, Fodor AA, Carroll IM, Bulik-Sullivan EC, Tsilimigras MCB, Sioda M, Steffen KJ. The Role of the Gut Microbiota in Sustained Weight Loss Following Roux-en-Y Gastric Bypass Surgery. Obes Surg 2020; 29:1259-1267. [PMID: 30604078 DOI: 10.1007/s11695-018-03653-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The aim of the study was to investigate the role of the gut microbiota in weight regain or suboptimal weight loss following Roux-en-Y gastric bypass (RYGB). MATERIALS AND METHODS The gut microbiota composition in post-RYGB patients who experienced successful weight loss (SWL, n = 6), post-RYGB patients who experienced poor weight loss (PWL, n = 6), and non-surgical controls (NSC, n = 6) who were age- and BMI-matched to the SWL group (NSC, n = 6) were characterized through 16S rRNA gene sequencing. To further investigate the impact of the gut microbiota on weight profile, human fecal samples were transplanted into antibiotic-treated mice. RESULTS Orders of Micrococcales and Lactobacillales were enriched in SWL and PWL groups compared to the NSC group. No significant difference was observed in the gut microbiota composition between PWL and SWL patients. However, transfer of the gut microbiota from human patients into antibiotic-treated mice resulted in significantly greater weight gain in PWL recipient mice compared to SWL recipient mice. A few genera that were effectively transferred from humans to mice were associated with weight gain in mice. Among them, Barnesiella was significantly higher in PWL recipient mice compared to SWL and NSC recipient mice. CONCLUSION These results indicate that the gut microbiota are at least functionally, if not compositionally, different between PWL and SWL patients. Some taxa may contribute to weight gain after surgery. Future studies will need to determine the molecular mechanisms behind the effects of the gut bacteria on weight regain after RYGB.
Collapse
Affiliation(s)
- Farnaz Fouladi
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Road, Charlotte, NC, 28223, USA.
| | - Amanda E Brooks
- Department of Pharmaceutical Sciences, North Dakota State University, 1401 Albrecht Blvd, Fargo, ND, 58102, USA
| | - Anthony A Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Road, Charlotte, NC, 28223, USA
| | - Ian M Carroll
- Department of Nutrition, School of Medicine, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC, 27599, USA
- Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina at Chapel Hill, 130 Mason Farm Rd., Chapel Hill, NC, 27599, USA
| | - Emily C Bulik-Sullivan
- Department of Nutrition, School of Medicine, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC, 27599, USA
| | - Matthew C B Tsilimigras
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Road, Charlotte, NC, 28223, USA
| | - Michael Sioda
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Road, Charlotte, NC, 28223, USA
| | - Kristine J Steffen
- Department of Pharmaceutical Sciences, North Dakota State University, 1401 Albrecht Blvd, Fargo, ND, 58102, USA
- Center for Biobehavioral Research/Sanford Research, 120 8th St. S., Fargo, ND, 58103, USA
| |
Collapse
|
390
|
Naudon L, François A, Mariadassou M, Monnoye M, Philippe C, Bruneau A, Dussauze M, Rué O, Rabot S, Meunier N. First step of odorant detection in the olfactory epithelium and olfactory preferences differ according to the microbiota profile in mice. Behav Brain Res 2020; 384:112549. [PMID: 32050097 DOI: 10.1016/j.bbr.2020.112549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/16/2020] [Accepted: 02/08/2020] [Indexed: 02/09/2023]
Abstract
We have previously provided the first evidence that the microbiota modulates the physiology of the olfactory epithelium using germfree mice. The extent to which changes to the olfactory system depend on the microbiota is still unknown. In the present work, we explored if different microbiota would differentially impact olfaction. We therefore studied the olfactory function of three groups of mice of the same genetic background, whose parents had been conventionalized before mating with microbiota from three different mouse strains. Caecal short chain fatty acids profiles and 16S rRNA gene sequencing ascertained that gut microbiota differed between the three groups. We then used a behavioural test to measure the attractiveness of various odorants and observed that the three groups of mice differed in their attraction towards odorants. Their olfactory epithelium properties, including electrophysiological responses recorded by electro-olfactograms and expression of genes related to the olfactory transduction pathway, also showed several differences. Overall, our data demonstrate that differences in gut microbiota profiles are associated with differences in olfactory preferences and in olfactory epithelium functioning.
Collapse
Affiliation(s)
- Laurent Naudon
- Université Paris-Saclay, INRAE, AgroParisTech, CNRS, Micalis Institute, 78350, Jouy-en-Josas, France.
| | - Adrien François
- Université Paris-Saclay, UVSQ, INRAE, NBO, 78350, Jouy-en-Josas, F-78350, France
| | | | - Magali Monnoye
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Catherine Philippe
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Aurélia Bruneau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Marie Dussauze
- Université Paris-Saclay, UVSQ, INRAE, NBO, 78350, Jouy-en-Josas, F-78350, France
| | - Olivier Rué
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France
| | - Sylvie Rabot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Nicolas Meunier
- Université Paris-Saclay, UVSQ, INRAE, NBO, 78350, Jouy-en-Josas, F-78350, France
| |
Collapse
|
391
|
Endotoxin Producers Overgrowing in Human Gut Microbiota as the Causative Agents for Nonalcoholic Fatty Liver Disease. mBio 2020; 11:mBio.03263-19. [PMID: 32019793 PMCID: PMC7002352 DOI: 10.1128/mbio.03263-19] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent studies have reported a link between gut microbiota and nonalcoholic fatty liver disease (NAFLD), showing that germfree (GF) mice do not develop metabolic syndromes, including NAFLD. However, the specific bacterial species causing NAFLD, as well as their molecular cross talk with the host for driving liver disease, remain elusive. Here, we found that nonvirulent endotoxin-producing strains of pathogenic species overgrowing in obese human gut can act as causative agents for induction of NAFLD and related metabolic disorders. The cross talk between endotoxin from these specific producers and the host’s TLR4 receptor is the most upstream and essential molecular event for inducing all phenotypes in NAFLD and related metabolic disorders. These nonvirulent endotoxin-producing strains of gut pathogenic species overgrowing in human gut may collectively become a predictive biomarker or serve as a novel therapeutic target for NAFLD and related metabolic disorders. Gut microbiota-derived endotoxin has been linked to human nonalcoholic fatty liver disease (NAFLD), but the specific causative agents and their molecular mechanisms remain elusive. In this study, we investigated whether bacterial strains of endotoxin-producing pathogenic species overgrowing in obese human gut can work as causative agents for NAFLD. We further assessed the role of lipopolysaccharide (LPS)-Toll-like receptor 4 (TLR4) cross talk in this pathogenicity. Nonvirulent strains of Gram-negative pathobionts were isolated from obese human gut and monoassociated with C57BL/6J germfree (GF) mice fed a high-fat diet (HFD). Deletion of waaG in the bacterial endotoxin synthetic pathway and knockout of TLR4 in GF mice were used to further study the underlying mechanism for a causal relationship between these strains and the development of NAFLD. Three endotoxin-producing strains, Enterobacter cloacae B29, Escherichia coli PY102, and Klebsiella pneumoniae A7, overgrowing in the gut of morbidly obese volunteers with severe fatty liver, induced NAFLD when monoassociated with GF mice on HFD, while HFD alone did not induce the disease in GF mice. The commensal Bacteroides thetaiotaomicron (ATCC 29148), whose endotoxin activity was markedly lower than that of Enterobacteriaceae strains, did not induce NAFLD in GF mice. B29 lost its proinflammatory properties and NAFLD-inducing capacity upon deletion of the waaG gene. Moreover, E. cloacae B29 did not induce NAFLD in TLR4-deficient GF mice. These nonvirulent endotoxin-producing strains in pathobiont species overgrowing in human gut may work as causative agents, with LPS-TLR4 cross talk as the most upstream and essential molecular event for NAFLD.
Collapse
|
392
|
Sáyago-Ayerdi SG, Zamora-Gasga VM, Venema K. Changes in gut microbiota in predigested Hibiscus sabdariffa L calyces and Agave (Agave tequilana weber) fructans assessed in a dynamic in vitro model (TIM-2) of the human colon. Food Res Int 2020; 132:109036. [PMID: 32331660 DOI: 10.1016/j.foodres.2020.109036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 01/22/2023]
Abstract
Hibiscus sabdariffa (Hb) calyces are a source of dietary fiber (DF) and phenolic compounds. Agave fructans (AF) and oligofructans (OF) are considered as soluble DF. The aim of the study was to investigate changes in gut microbiota upon feeding predigested Hb, AF, OF or Mix (Hb/AF) to a dynamic, validated in vitro model of the human colon (TIM-2), using sequencing of the V3-V4 regions of the 16S rRNA gene. A pooled human fecal microbiota was used. Production of short-chain fatty acids (SCFAs), branched-chain fatty acids (BSCFAs) and ammonia was also assessed. Samples were taken after 0, 24, 48 and 72 h. Principal component (PC) analysis of fermentation metabolites and relative abundance of genera was carried out, and extracted factors were based on eigenvalues >1.0 and explained >60% of variance. Fermentation of samples resulted in different SCFAS concentrations. The highest butyric acid production was on AF and OF, while the molar ratio of SCFAS on Hb was 63:18:18 for acetic, propionic and butyric acid, respectively. BSCFAS were also produced upon feeding the studied substrates, but in much lower concentrations. About 45 bacteria genera were identified and 10 of these were the most abundant changing during the fermentation time, amongst which a high relative abundance in Bifidobacterium, Bacteroides and Catenibacterium, that changed during the fermentation time depending of substrate. Hb feeding after 48 h led to Bifidobacterium being the most abundant genus. Two PCs were identified: after 24 h of fermentation PC1 was highly influenced by Bifidobacterium and Prevotella, which was related with Hb and SIEM feeding. Evaluation of the changes in metabolites and gut microbiota composition during colonic fermentation in a validated in vitro model provides a complete and reliable view of the potential prebiotic effect of different dietary fibers.
Collapse
Affiliation(s)
- Sonia G Sáyago-Ayerdi
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico No 2595, Col. Lagos del Country CP, 63175 Tepic, Nayarit, Mexico.
| | - Victor M Zamora-Gasga
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico No 2595, Col. Lagos del Country CP, 63175 Tepic, Nayarit, Mexico
| | - Koen Venema
- Maastricht University - Campus Venlo, Centre for Healthy Eating & Food Innovation, St. Jansweg 20, 5928 RC Venlo, the Netherlands.
| |
Collapse
|
393
|
Ma Q, Li Y, Wang J, Li P, Duan Y, Dai H, An Y, Cheng L, Wang T, Wang C, Wang T, Zhao B. Investigation of gut microbiome changes in type 1 diabetic mellitus rats based on high-throughput sequencing. Biomed Pharmacother 2020; 124:109873. [PMID: 31986412 DOI: 10.1016/j.biopha.2020.109873] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/03/2020] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
The incidence of type 1 diabetes mellitus (T1DM) is increasing year by year, gut microbiota is considered to be closely related to the occurrence and development of T1DM in recent years. In this study, Sprague Dawley (SD) rats were intraperitoneally injected with 75mg/kg streptozotocin to establish T1DM model, fecal samples were collected and DNA were extracted, 16S rRNA microbial gene clone library were constructed, and lastly high-throughput sequencing and bioinformatics analysis were performed. The results showed that the abundances of pathogenic bacteria such as Ruminococcaceae, Shigella, Enterococcus, Streptococcus, Rothia and Alistipes associated with infection and inflammation in T1DM rats were up-regulated, while the abundances of beneficial bacteria such as Lactobacillus, Faecalitalea, Butyricicoccus and Allobaculum were reduced. Among them, Butyricicoccus and Allobaculum protect intestinal barrier function by producing short-chain fatty acids. This study suggests that intestinal inflammation and reduction of short chain fatty acids (SCFAs) caused by the imbalance of gut microbiota are crucial to the pathogenesis of T1DM.
Collapse
MESH Headings
- Animals
- Bacteria/isolation & purification
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/microbiology
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/microbiology
- Diabetes Mellitus, Type 1/physiopathology
- Fatty Acids, Volatile/metabolism
- Gastrointestinal Microbiome
- High-Throughput Nucleotide Sequencing
- Inflammation/genetics
- Inflammation/microbiology
- Inflammation/pathology
- Male
- RNA, Ribosomal, 16S
- Rats
- Rats, Sprague-Dawley
- Streptozocin
Collapse
Affiliation(s)
- Quantao Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, China
| | - Yaqi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, China
| | - Jingkang Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, China
| | - Pengfei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, China
| | - Yuhui Duan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, China
| | - Hongyu Dai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, China
| | - Yongcheng An
- School of Life Sciences, Beijing University of Chinese Medicine, Intersection of Yang-Guang South Street and Bai-Yang East Road, Fang-Shan District, Beijing, 102488, China
| | - Long Cheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, China
| | - Tieshan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, China
| | - Chunguo Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, China.
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, China.
| |
Collapse
|
394
|
Safari Z, Bruneau A, Monnoye M, Mariadassou M, Philippe C, Zatloukal K, Gérard P. Murine Genetic Background Overcomes Gut Microbiota Changes to Explain Metabolic Response to High-Fat Diet. Nutrients 2020; 12:E287. [PMID: 31973214 PMCID: PMC7071469 DOI: 10.3390/nu12020287] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 12/23/2022] Open
Abstract
Interactions of diet, gut microbiota, and host genetics play essential roles in the development of metabolic diseases. A/J and C57BL/6J (C57) are two mouse strains known to display different susceptibilities to metabolic disorders. In this context, we analyzed gut microbiota composition in A/J and C57 mice, and assessed its responses to high-fat diet (HFD) and antibiotic (AB) treatment. We also exchanged the gut microbiota between the two strains following AB treatment to evaluate its impact on the metabolism. We showed that A/J and C57 mice have different microbiome structure and composition at baseline. Moreover, A/J and C57 microbiomes responded differently to HFD and AB treatments. Exchange of the gut microbiota between the two strains was successful as recipients' microbiota resembled donor-strain microbiota. Seven weeks after inoculation, the differences between recipients persisted and were still closer from the donor-strain microbiota. Despite effective microbiota transplants, the response to HFD was not markedly modified in C57 and A/J mice. Particularly, body weight gain and glucose intolerance in response to HFD remained different in the two mouse strains whatever the changes in microbiome composition. This indicated that genetic background has a much stronger impact on metabolic responses to HFD than gut microbiome composition.
Collapse
Affiliation(s)
- Zahra Safari
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (Z.S.); (A.B.); (M.M.); (C.P.)
- Institute of Pathology, Medical University of Graz, Graz 8010, Austria
| | - Aurélia Bruneau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (Z.S.); (A.B.); (M.M.); (C.P.)
| | - Magali Monnoye
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (Z.S.); (A.B.); (M.M.); (C.P.)
| | | | - Catherine Philippe
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (Z.S.); (A.B.); (M.M.); (C.P.)
| | - Kurt Zatloukal
- Institute of Pathology, Medical University of Graz, Graz 8010, Austria
| | - Philippe Gérard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (Z.S.); (A.B.); (M.M.); (C.P.)
| |
Collapse
|
395
|
Abstract
Advances in our understanding of how the gut microbiota contributes to human health and diseases have expanded our insight into how microbial composition and function affect the human host. Heart failure is associated with splanchnic circulation congestion, leading to bowel wall oedema and impaired intestinal barrier function. This situation is thought to heighten the overall inflammatory state via increased bacterial translocation and the presence of bacterial products in the systemic blood circulation. Several metabolites produced by gut microorganisms from dietary metabolism have been linked to pathologies such as atherosclerosis, hypertension, heart failure, chronic kidney disease, obesity, and type 2 diabetes mellitus. These findings suggest that the gut microbiome functions like an endocrine organ by generating bioactive metabolites that can directly or indirectly affect host physiology. In this Review, we discuss several newly discovered gut microbial metabolic pathways, including the production of trimethylamine and trimethylamine N-oxide, short-chain fatty acids, and secondary bile acids, that seem to participate in the development and progression of cardiovascular diseases, including heart failure. We also discuss the gut microbiome as a novel therapeutic target for the treatment of cardiovascular disease, and potential strategies for targeting intestinal microbial processes.
Collapse
Affiliation(s)
- W H Wilson Tang
- Center for Microbiome & Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. .,Department for Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. .,Center for Clinical Genomics, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA. .,Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA. .,Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA.
| | - Daniel Y Li
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA
| | - Stanley L Hazen
- Center for Microbiome & Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department for Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA.,Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
396
|
Shavandi A, Saeedi P, Gérard P, Jalalvandi E, Cannella D, Bekhit AED. The role of microbiota in tissue repair and regeneration. J Tissue Eng Regen Med 2020; 14:539-555. [PMID: 31845514 DOI: 10.1002/term.3009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/15/2019] [Accepted: 10/28/2019] [Indexed: 12/22/2022]
Abstract
A comprehensive understanding of the human body endogenous microbiota is essential for acquiring an insight into the involvement of microbiota in tissue healing and regeneration process in order to enable development of biomaterials with a better integration with human body environment. Biomaterials used for biomedical applications are normally germ-free, and the human body as the host of the biomaterials is not germ-free. The complexity and role of the body microbiota in tissue healing/regeneration have been underestimated historically. Traditionally, studies aiming at the development of novel biomaterials had focused on the effects of environment within the target tissue, neglecting the signals generated from the microbiota and their impact on tissue regeneration. The significance of the human body microbiota in relation to metabolism, immune system, and consequently tissue regeneration has been recently realised and is a growing research field. This review summarises recent findings on the role of microbiota and mechanisms involved in tissue healing and regeneration, in particular skin, liver, bone, and nervous system regrowth and regeneration highlighting the potential new roles of microbiota for development of a new generation of biomaterials.
Collapse
Affiliation(s)
- Amin Shavandi
- BioMatter-BTL, École interfacultaire de Bioingénieurs (EIB), Université Libre de Brussels, Brussels, Belgium
| | - Pouya Saeedi
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Philippe Gérard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Esmat Jalalvandi
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - David Cannella
- PhotoBioCatalysis Unit - BTL - École interfacultaire de Bioingénieurs (EIB), Université Libre de Brussels, Brussels, Belgium
| | | |
Collapse
|
397
|
Gong Y, Xia W, Wen X, Lyu W, Xiao Y, Yang H, Zou X. Early inoculation with caecal fermentation broth alters small intestine morphology, gene expression of tight junction proteins in the ileum, and the caecal metabolomic profiling of broilers. J Anim Sci Biotechnol 2020; 11:8. [PMID: 31956411 PMCID: PMC6961334 DOI: 10.1186/s40104-019-0410-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/01/2019] [Indexed: 02/07/2023] Open
Abstract
Background The establishment of stable microbiota in early life is beneficial to the individual. Changes in the intestinal environment during early life play a crucial role in modulating the gut microbiota. Therefore, early intervention to change the intestinal environment can be regarded as a new regulation strategy for the growth and health of poultry. However, the effects of intestinal environmental changes on host physiology and metabolism are rarely reported. This study was conducted to investigate the effects of early inoculation with caecal fermentation broth on small intestine morphology, gene expression of tight junction proteins in the ileum, and cecum microbial metabolism of broilers. Results Our data showed that early inoculation with caecal fermentation broth could improve intestine morphology. The small intestine villus height was significantly increased (P < 0.05) in the intervened broilers compared to the control group, especially on day 28. A similar result was observed in the ratio of villus height to crypt depth (P < 0.05). Meanwhile, we found early inoculation significantly increased (P < 0.05) the expression levels of zonula occludens-1 (ZO1) on days 14 and 28, claudin-1 (CLDN1) on day 28, whereas the gene expression of claudin-2 (CLDN2) was significantly decreased (P < 0.05) on days 14 and 28. Gas chromatography time-of-flight/mass spectrometry (GC-TOF/MS) technology was further implemented to systematically evaluate the microbial metabolite profiles. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) displayed a distinct trend towards separation between the fermentation broth group (F group) and the control group (C group). The differentially expressed metabolites were identified, and they were mainly functionally enriched in beta-alanine metabolism and biosynthesis of unsaturated fatty acids. In addition, 1,3-diaminopropane was selected as a key biomarker that responded to early inoculation with caecal fermentation broth. Conclusions These results provide insight into intestinal metabolomics and confirm that early inoculation with caecal fermentation broth can be used as a potential strategy to improve intestinal health of broilers.
Collapse
Affiliation(s)
- Yujie Gong
- 1State Key Laboratory for Quality and Safety of Agro-products, Institute of Quality and Standards for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Wenrui Xia
- 1State Key Laboratory for Quality and Safety of Agro-products, Institute of Quality and Standards for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Xueting Wen
- 2Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Sciences Institute, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou, 310058 China
| | - Wentao Lyu
- 2Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Sciences Institute, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou, 310058 China
| | - Yingping Xiao
- 2Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Sciences Institute, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou, 310058 China
| | - Hua Yang
- 2Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Sciences Institute, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou, 310058 China
| | - Xiaoting Zou
- 1State Key Laboratory for Quality and Safety of Agro-products, Institute of Quality and Standards for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| |
Collapse
|
398
|
Quesada-Vázquez S, Aragonès G, Del Bas JM, Escoté X. Diet, Gut Microbiota and Non-Alcoholic Fatty Liver Disease: Three Parts of the Same Axis. Cells 2020; 9:E176. [PMID: 31936799 PMCID: PMC7016763 DOI: 10.3390/cells9010176] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 01/30/2023] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is the most common liver disease in the world. NAFLD is principally characterized by an excessive fat accumulation in the hepatocytes. Diet is considered as one of the main drivers to modulate the composition of gut microbiota, which participate in different processes, affecting human metabolism. A disruption in the homeostasis of gut microbiota may lead to dysbiosis, which is commonly reflected by a reduction of the beneficial species and an increment in pathogenic microbiota. Gut and liver are in close relation due to the anatomical and functional interactions led by the portal vein, thus altered intestinal microbiota might affect liver functions, promoting inflammation, insulin resistance and steatosis, which is translated into NAFLD. This review will highlight the association between diet, gut microbiota and liver, and how this axis may promote the development of NAFLD progression, discussing potential mechanisms and alterations due to the dysbiosis of gut microbiota. Finally, it will revise the variations in gut microbiota composition in NAFLD, and it will focus in specific species, which directly affect NAFLD progression.
Collapse
Affiliation(s)
- Sergio Quesada-Vázquez
- Unitat de Nutrició i Salut, Centre Tecnològic de Catalunya, Eurecat, 43204 Reus, Spain; (S.Q.-V.); (J.M.D.B.)
| | - Gerard Aragonès
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Nutrigenomics Research Group, 43007 Tarragona, Spain;
| | - Josep M Del Bas
- Unitat de Nutrició i Salut, Centre Tecnològic de Catalunya, Eurecat, 43204 Reus, Spain; (S.Q.-V.); (J.M.D.B.)
| | - Xavier Escoté
- Unitat de Nutrició i Salut, Centre Tecnològic de Catalunya, Eurecat, 43204 Reus, Spain; (S.Q.-V.); (J.M.D.B.)
| |
Collapse
|
399
|
Ren Z, Chen X, Hong L, Zhao X, Cui G, Li A, Liu Y, Zhou L, Sun R, Shen S, Li J, Lou J, Zhou H, Wang J, Xu G, Yu Z, Song Y, Chen X. Nanoparticle Conjugation of Ginsenoside Rg3 Inhibits Hepatocellular Carcinoma Development and Metastasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905233. [PMID: 31814271 DOI: 10.1002/smll.201905233] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/11/2019] [Indexed: 05/25/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. The prognosis of HCC remains very poor; thus, an effective treatment remains urgent. Herein, a type of nanomedicine is developed by conjugating Fe@Fe3 O4 nanoparticles with ginsenoside Rg3 (NpRg3), which achieves an excellent coupling effect. In the dimethylnitrosamine-induced HCC model, NpRg3 application significantly prolongs the survival of HCC mice. Further research indicates that NpRg3 application significantly inhibits HCC development and eliminates HCC metastasis to the lung. Notably, NpRg3 application delays HCC-induced ileocecal morphology and gut microbial alterations more than 12 weeks during HCC progression. NpRg3 administration elevates the abundance of Bacteroidetes and Verrucomicrobia, but decreases Firmicutes. Twenty-nine predicted microbial gene functions are enriched, while seven gene functions are reduced after NpRg3 administration. Moreover, the metabolomics profile presents a significant progression during HCC development, but NpRg3 administration corrects tumor-dominant metabolomics. NpRg3 administration decreases 3-indolepropionic acid and urea, but elevates free fatty acids. Importantly, NpRg3 application remodels the unbalanced correlation networks between gut microbiota and metabolism during HCC therapy. In conclusion, nanoparticle conjugation of ginsenoside Rg3 inhibits HCC development and metastasis via the remodeling of unbalanced gut microbiota and metabolism in vivo, providing an antitumor therapy strategy.
Collapse
Affiliation(s)
- Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xinmei Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Liangjie Hong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| | - Xiaoxiong Zhao
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, Center for Modern Physics Technology, Science and Technology University of Beijing, Beijing, 100083, China
| | - Guangying Cui
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ang Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yang Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Ranran Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shen Shen
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Juan Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jiamin Lou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Heqi Zhou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Junmei Wang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, Center for Modern Physics Technology, Science and Technology University of Beijing, Beijing, 100083, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zujiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yujun Song
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, Center for Modern Physics Technology, Science and Technology University of Beijing, Beijing, 100083, China
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Xinhua Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| |
Collapse
|
400
|
Miele L, Biolato M, Conte C, Mangiola F, Liguori A, Gasbarrini A, Grieco A. Etiopathogenesis of NAFLD: Diet, Gut, and NASH. NON-ALCOHOLIC FATTY LIVER DISEASE 2020:73-95. [DOI: 10.1007/978-3-319-95828-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|