351
|
Bæk R, Søndergaard EKL, Varming K, Jørgensen MM. The impact of various preanalytical treatments on the phenotype of small extracellular vesicles in blood analyzed by protein microarray. J Immunol Methods 2016; 438:11-20. [PMID: 27568281 DOI: 10.1016/j.jim.2016.08.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/23/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023]
Abstract
The research field of extracellular vesicles (EVs) is increasing immensely and the potential uses of EVs seem endless. They are found in large numbers in various body fluids, and blood samples may well serve as liquid biopsies. However, these small membrane-derived entities of cellular origin are not straightforward to work with in regard to isolation and characterization. A broad range of relevant preanalytical issues was tested, with a focus on the phenotypic impact of smaller EVs. The influences of the i) blood collection tube used, ii) incubation time before the initial centrifugation, iii) transportation/physical stress, iv) storage temperature and time (short term and long term), v) choice of centrifugation protocol, vi) freeze-thaw cycles, and vii) exosome isolation procedure (ExoQuick™) were examined. To identify the impact of the preanalytical treatments, the relative amounts (detected signal intensities of CD9-, CD63- and/or CD81-positive) and phenotypes of small EVs were analyzed using the multiplexed antibody-based microarray technology, termed the EV Array. The analysis encompassed 15 surface- or surface-related markers, including CD9, CD63, CD81, CD142, and Annexin V. This study revealed that samples collected in different blood collection tubes suffered to varying degrees from the preanalytical treatments tested here. There is no unequivocal answer to the questions asked. However, in general, the period of time and prospective transportation before the initial centrifugation, choice of centrifugation protocol, and storage temperature were observed to have major impacts on the samples. On the contrary, long-term storage and freeze-thawing seemed to not have a critical influence. Hence, there are pros and cons of any choice regarding sample collection and preparation and may very well be analysis dependent. However, to compare samples and results, it is important to ensure that all samples are of the same type and have been handled similarly.
Collapse
Affiliation(s)
- Rikke Bæk
- Department of Clinical Immunology, Part of Extracellular Vesicle Research Center Denmark (EVsearch.dk), Aalborg University Hospital, Aalborg, Denmark.
| | - Evo K L Søndergaard
- Department of Clinical Immunology, Part of Extracellular Vesicle Research Center Denmark (EVsearch.dk), Aalborg University Hospital, Aalborg, Denmark
| | - Kim Varming
- Department of Clinical Immunology, Part of Extracellular Vesicle Research Center Denmark (EVsearch.dk), Aalborg University Hospital, Aalborg, Denmark
| | - Malene M Jørgensen
- Department of Clinical Immunology, Part of Extracellular Vesicle Research Center Denmark (EVsearch.dk), Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
352
|
Zhang Z, Chopp M. Neural Stem Cells and Ischemic Brain. J Stroke 2016; 18:267-272. [PMID: 27488979 PMCID: PMC5066435 DOI: 10.5853/jos.2016.00206] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/13/2016] [Accepted: 05/18/2016] [Indexed: 01/19/2023] Open
Abstract
Stroke activates neural stem cells in the ventricular-subventricular zone (V/SVZ) of the lateral ventricle, which increases neuroblasts and oligodendrocyte progenitor cells (OPCs). Within the ischemic brain, neural stem cells, neuroblasts and OPCs appear to actively communicate with cerebral endothelial cells and other brain parenchymal cells to mediate ischemic brain repair; however, stroke-induced neurogenesis unlikely plays any significant roles in neuronal replacement. In this mini-review, we will discuss recent findings how intercellular communications between stroke-induced neurogenesis and oligodendrogenesis and brain parenchymal cells could potentially facilitate brain repair processes.
Collapse
Affiliation(s)
| | - Michael Chopp
- Henry Ford Hospital, Michigan, United States.,Department of Physics, Oakland University, Rochester, Michigan, United States
| |
Collapse
|
353
|
Maji S, Yan IK, Parasramka M, Mohankumar S, Matsuda A, Patel T. In vitrotoxicology studies of extracellular vesicles. J Appl Toxicol 2016; 37:310-318. [DOI: 10.1002/jat.3362] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Sayantan Maji
- Department of Transplantation and Department of Cancer Biology; Mayo Clinic; Jacksonville FL USA
| | - Irene K. Yan
- Department of Transplantation and Department of Cancer Biology; Mayo Clinic; Jacksonville FL USA
| | - Mansi Parasramka
- Department of Transplantation and Department of Cancer Biology; Mayo Clinic; Jacksonville FL USA
| | - Swathi Mohankumar
- Department of Transplantation and Department of Cancer Biology; Mayo Clinic; Jacksonville FL USA
| | - Akiko Matsuda
- Department of Transplantation and Department of Cancer Biology; Mayo Clinic; Jacksonville FL USA
| | - Tushar Patel
- Department of Transplantation and Department of Cancer Biology; Mayo Clinic; Jacksonville FL USA
| |
Collapse
|
354
|
Abstract
Extracellular vesicles (EVs) released by various cells are small phospholipid membrane-enclosed entities that can carry miRNA. They are now central to research in many fields of biology because they seem to constitute a new system of cell-cell communication. Physical and chemical characteristics of many EVs, as well as their biogenesis pathways, resemble those of retroviruses. Moreover, EVs generated by virus-infected cells can incorporate viral proteins and fragments of viral RNA, being thus indistinguishable from defective (noninfectious) retroviruses. EVs, depending on the proteins and genetic material incorporated in them, play a significant role in viral infection, both facilitating and suppressing it. Deciphering the mechanisms of EV-cell interactions may facilitate the design of EVs that inhibit viral infection and can be used as vehicles for targeted drug delivery.
Collapse
|
355
|
Lamichhane TN, Jeyaram A, Patel DB, Parajuli B, Livingston NK, Arumugasaamy N, Schardt JS, Jay SM. Oncogene Knockdown via Active Loading of Small RNAs into Extracellular Vesicles by Sonication. Cell Mol Bioeng 2016; 9:315-324. [PMID: 27800035 DOI: 10.1007/s12195-016-0457-4] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, have emerged as promising drug delivery vehicles for small RNAs (siRNA and miRNA) due to their natural role in intercellular RNA transport. However, the application of EVs for therapeutic RNA delivery may be limited by loading approaches that can induce cargo aggregation or degradation. Here, we report the use of sonication as a means to actively load functional small RNAs into EVs. Conditions under which EVs could be loaded with small RNAs with minimal detectable aggregation were identified, and EVs loaded with therapeutic siRNA via sonication were observed to be taken up by recipient cells and capable of target mRNA knockdown leading to reduced protein expression. This system was ultimately applied to reduce expression of HER2, an oncogenic receptor tyrosine kinase that critically mediates breast cancer development and progression, and could be extended to other therapeutic targets. These results define important parameters informing the application of sonication as a small RNA loading method for EVs and demonstrate the potential utility of this approach for versatile cancer therapy.
Collapse
Affiliation(s)
- Tek N Lamichhane
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Anjana Jeyaram
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Divya B Patel
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Babita Parajuli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Natalie K Livingston
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Navein Arumugasaamy
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - John S Schardt
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA; Program in Oncology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland, College Park, MD 20742 USA; Program in Molecular and Cell Biology, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
356
|
Kooijmans SAA, Schiffelers RM, Zarovni N, Vago R. Modulation of tissue tropism and biological activity of exosomes and other extracellular vesicles: New nanotools for cancer treatment. Pharmacol Res 2016; 111:487-500. [PMID: 27394168 DOI: 10.1016/j.phrs.2016.07.006] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/24/2016] [Accepted: 07/05/2016] [Indexed: 02/07/2023]
Abstract
Exosomes are naturally secreted nanovesicles that have recently aroused a great interest in the scientific and clinical community for their roles in intercellular communication in almost all physiological and pathological processes. These 30-100nm sized vesicles are released from the cells into the extracellular space and ultimately into biofluids in a tightly regulated way. Their molecular composition reflects their cells of origin, may confer specific cell or tissue tropism and underlines their biological activity. Exosomes and other extracellular vesicles (EVs) carry specific sets of proteins, nucleic acids (DNA, mRNA and regulatory RNAs), lipids and metabolites that represent an appealing source of novel noninvasive markers through biofluid biopsies. Exosome-shuttled molecules maintain their biological activity and are capable of modulating and reprogramming recipient cells. This multi-faceted nature of exosomes hold great promise for improving cancer treatment featuring them as novel diagnostic sensors as well as therapeutic effectors and drug delivery vectors. Natural biological activity including the therapeutic payload and targeting behavior of EVs can be tuned via genetic and chemical engineering. In this review we describe the properties that EVs share with conventional synthetic nanoparticles, including size, liposome-like membrane bilayer with customizable surface, and multifunctional capacity. We also highlight unique characteristics of EVs, which possibly allow them to circumvent some limitations of synthetic nanoparticle systems and facilitate clinical translation. The latter are in particular correlated with their innate stability, ability to cross biological barriers, efficiently deliver bioactive cargos or evade immune recognition. Furthermore, we discuss the potential roles for EVs in diagnostics and theranostics, and highlight the challenges that still need to be overcome before EVs can be applied to routine clinical practice.
Collapse
Affiliation(s)
- Sander A A Kooijmans
- Dept. Clinical Chemistry & Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Raymond M Schiffelers
- Dept. Clinical Chemistry & Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Natasa Zarovni
- HansaBioMed OU Tallinn, Estonia and Exosomics Siena S.p.A, Siena, Italy
| | - Riccardo Vago
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy.
| |
Collapse
|
357
|
Martínez-Ballesta MDC, Pérez-Sánchez H, Moreno DA, Carvajal M. Plant plasma membrane aquaporins in natural vesicles as potential stabilizers and carriers of glucosinolates. Colloids Surf B Biointerfaces 2016; 143:318-326. [DOI: 10.1016/j.colsurfb.2016.03.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 02/02/2023]
|
358
|
Pasquale EB. Exosomes expand the sphere of influence of Eph receptors and ephrins. J Cell Biol 2016; 214:5-7. [PMID: 27354377 PMCID: PMC4932377 DOI: 10.1083/jcb.201606074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 06/15/2016] [Indexed: 12/21/2022] Open
Abstract
Membrane-anchored Eph receptors and ephrins represent a ubiquitous intercellular communication system that typically engages at sites of cell–cell contact to initiate bidirectional signaling. Gong et al. (2016. J. Cell Biol.http://dx.doi.org/10.1083/jcb.201601085) show that cells can deploy the EphB2 receptor on exosomes to activate ephrinB signaling and collapse the growth cones of distant neurons.
Collapse
Affiliation(s)
- Elena B Pasquale
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| |
Collapse
|
359
|
Paladini L, Fabris L, Bottai G, Raschioni C, Calin GA, Santarpia L. Targeting microRNAs as key modulators of tumor immune response. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:103. [PMID: 27349385 PMCID: PMC4924278 DOI: 10.1186/s13046-016-0375-2] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/13/2016] [Indexed: 02/08/2023]
Abstract
The role of immune response is emerging as a key factor in the complex multistep process of cancer. Tumor microenvironment contains different types of immune cells, which contribute to regulate the fine balance between anti and protumor signals. In this context, mechanisms of crosstalk between cancer and immune cells remain to be extensively elucidated. Interestingly, microRNAs (miRNAs) have been demonstrated to function as crucial regulators of immune response in both physiological and pathological conditions. Specifically, different miRNAs have been reported to have a role in controlling the development and the functions of tumor-associated immune cells. This review aims to describe the most important miRNAs acting as critical modulators of immune response in the context of different solid tumors. In particular, we discuss recent studies that have demonstrated the existence of miRNA-mediated mechanisms regulating the recruitment and the activation status of specific tumor-associated immune cells in the tumor microenvironment. Moreover, various miRNAs have been found to target key cancer-related immune pathways, which concur to mediate the secretion of immunosuppressive or immunostimulating factors by cancer or immune cells. Modalities of miRNA exchange and miRNA-based delivery strategies are also discussed. Based on these findings, the modulation of individual or multiple miRNAs has the potential to enhance or inhibit specific immune subpopulations supporting antitumor immune responses, thus contributing to negatively affect tumorigenesis. New miRNA-based strategies can be developed for more effective immunotherapeutic interventions in cancer.
Collapse
Affiliation(s)
- Laura Paladini
- Oncology Experimental Therapeutics Unit, IRCCS Humanitas Clinical and Research Institute, Rozzano-Milan, Italy
| | - Linda Fabris
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Giulia Bottai
- Oncology Experimental Therapeutics Unit, IRCCS Humanitas Clinical and Research Institute, Rozzano-Milan, Italy
| | - Carlotta Raschioni
- Oncology Experimental Therapeutics Unit, IRCCS Humanitas Clinical and Research Institute, Rozzano-Milan, Italy
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Libero Santarpia
- Oncology Experimental Therapeutics Unit, IRCCS Humanitas Clinical and Research Institute, Rozzano-Milan, Italy.
| |
Collapse
|
360
|
Exosomes: novel implications in diagnosis and treatment of gastrointestinal cancer. Langenbecks Arch Surg 2016; 401:1097-1110. [PMID: 27342853 DOI: 10.1007/s00423-016-1468-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/16/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Amongst all cancer subtypes, gastrointestinal tumours are responsible for most cancer-related deaths. In most of the cases, the limitation of the prognosis of patients with malignant gastrointestinal tumours can be attributed to delayed diagnosis of the disease. In the last decade, secondary prevention strategies, in particular tumour screenings, have been identified to significantly improve the identification of patients with early-stage disease, leading to more effective therapeutic interventions. Therefore, new screening methods and further innovative treatment approaches may lead to an increase in progression-free and overall survival rates. PURPOSE Exosomes are small microvesicles with a size of 50-150 nm. They are formed in the endosomal system of many different cell types, where they are packed with nucleotides and proteins from the parental cell. After their release into the extracellular space, exosomes can deliver their cargo into recipient cells. By this mechanism, tumour cells can recruit and manipulate the adjacent and systemic microenvironment in order to support invasion and dissemination. Cancer-derived exosomes in the blood may provide detailed information about the tumour biology of each individual patient. Moreover, tumour-derived exosomes can be used as targetable factors and drug delivery agents in clinical practice. CONCLUSION In this review, we summarise new aspects about novel implications in the diagnosis and treatment of gastrointestinal cancer and show how circulating exosomes have come into the spotlight of research as a high potential source of 'liquid biopsies'.
Collapse
|
361
|
Montaner-Tarbes S, Borrás FE, Montoya M, Fraile L, Del Portillo HA. Serum-derived exosomes from non-viremic animals previously exposed to the porcine respiratory and reproductive virus contain antigenic viral proteins. Vet Res 2016; 47:59. [PMID: 27246926 PMCID: PMC4888503 DOI: 10.1186/s13567-016-0345-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 05/10/2016] [Indexed: 01/19/2023] Open
Abstract
PRRSV is the etiological agent of one of the most important swine diseases with a significant economic burden worldwide and limitations in vaccinology. Exosomes are 30-100 nm vesicles of endocytic origin. Remarkably, immunizations with exosomes containing antigens from tumors or pathogens are capable of eliciting protective immune responses, albeit variably, in cancer and infectious diseases. Here we describe the isolation, molecular composition and immunogenicity of serum-derived exosomes from naïve animals, from PRRSV viremic animals and from animals previously PRRSV infected but already free of viruses (non viremic). Exosomes were isolated through size exclusion chromatography and characterized by different methodologies. Exosome-enriched fractions from naïve and natural infected animals contained classical tetraspanin exosomal markers (CD63 and CD81) and high concentrations of particles in the size-range of exosomes as detected by nanoparticle tracking analysis and cryo-TEM. NanoLC-MS/MS was used to identify viral antigens associated to exosomes. PRRSV-proteins were detected in serum samples from only viremic animals and from animals previously infected already free of viruses (non-viremic), but not in controls. Moreover, immune sera from pigs previously exposed to PRRSV specifically reacted against exosomes purified from non-viremic pig sera in a dose-dependent manner, a reactivity not detected when naïve sera was used in the assay. To facilitate future studies, a scaling-up process was implemented. To the best of our knowledge, this is the first molecular characterization of serum-derived exosomes from naïve pigs and pigs actively or previously infected with PRRSV. The presence of antigenic viral proteins in serum-derived exosomes free of virus, suggest their use as a novel vaccine approach against PRRSV.
Collapse
Affiliation(s)
- Sergio Montaner-Tarbes
- Departamento de Producción Animal, ETSEA, Universidad de Lleida, Avenida Alcalde Rovira Roure 191, Lleida, Spain.,Innovex Therapeutics SL, Badalona, Spain
| | - Francesc E Borrás
- Innovex Therapeutics SL, Badalona, Spain.,IVECAT Group, Germans Trias i Pujol Health Science Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain
| | - Maria Montoya
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| | - Lorenzo Fraile
- Departamento de Producción Animal, ETSEA, Universidad de Lleida, Avenida Alcalde Rovira Roure 191, Lleida, Spain.
| | - Hernando A Del Portillo
- Innovex Therapeutics SL, Badalona, Spain. .,ICREA at ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, 08036, Barcelona, Spain. .,ICREA at Institut d'Investigació Germans Trias i Pujol, Can Ruti Campus, 08916, Badalona, Spain.
| |
Collapse
|
362
|
Xie H, Wang Z, Zhang L, Lei Q, Zhao A, Wang H, Li Q, Chen Z, Zhang W. Development of an angiogenesis-promoting microvesicle-alginate-polycaprolactone composite graft for bone tissue engineering applications. PeerJ 2016; 4:e2040. [PMID: 27231660 PMCID: PMC4878377 DOI: 10.7717/peerj.2040] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/25/2016] [Indexed: 12/21/2022] Open
Abstract
One of the major challenges of bone tissue engineering applications is to construct a fully vascularized implant that can adapt to hypoxic environments in vivo. The incorporation of proangiogenic factors into scaffolds is a widely accepted method of achieving this goal. Recently, the proangiogenic potential of mesenchymal stem cell-derived microvesicles (MSC-MVs) has been confirmed in several studies. In the present study, we incorporated MSC-MVs into alginate-polycaprolactone (PCL) constructs that had previously been developed for bone tissue engineering applications, with the aim of promoting angiogenesis and bone regeneration. MSC-MVs were first isolated from the supernatant of rat bone marrow-derived MSCs and characterized by scanning electron microscopic, confocal microscopic, and flow cytometric analyses. The proangiogenic potential of MSC-MVs was demonstrated by the stimulation of tube formation of human umbilical vein endothelial cells in vitro. MSC-MVs and osteodifferentiated MSCs were then encapsulated with alginate and seeded onto porous three-dimensional printed PCL scaffolds. When combined with osteodifferentiated MSCs, the MV-alginate-PCL constructs enhanced vessel formation and tissue-engineered bone regeneration in a nude mouse subcutaneous bone formation model, as demonstrated by micro-computed tomographic, histological, and immunohistochemical analyses. This MV-alginate-PCL construct may offer a novel, proangiogenic, and cost-effective option for bone tissue engineering.
Collapse
Affiliation(s)
- Hui Xie
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenxing Wang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Liming Zhang
- Department of Hematology, the Central Hospital of Jingzhou, Jingzhou Hubei, China
| | - Qian Lei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aiqi Zhao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongxiang Wang
- Department of Hematology, the Central Hospital of Wuhan, Wuhan, China
| | - Qiubai Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhichao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - WenJie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
363
|
Alshiekh A, Clausén M, Elmroth SKC. Kinetics of cisplatin binding to short r(GG) containing miRNA mimics - influence of Na(+)versus K(+), temperature and hydrophobicity on reactivity. Dalton Trans 2016; 44:12623-32. [PMID: 26079627 DOI: 10.1039/c5dt00663e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nucleic acids are well recognized targets for platinum-based anticancer drugs, with RNA and DNA being kinetically comparable. In the case of RNA, previous studies have shown that the reaction between small duplex RNAs (dsRNAs) and monoaquated cisplatin (cis-Pt(NH3)2Cl(OH2)(+), ) can be followed by the metal induced hyperchromicity occurring directly after addition of to e.g. microRNA mimics. In the present study, we have used this approach to compare thermal stability and reactivity between intracellularly- and extracellularly relevant salt concentration (CNa(+) and CK(+)ca. 0.1 M), and also as a function of increased hydrophobicity (10% v/v EtOH). In addition, reactivity was studied as a function of temperature in the interval ca. 5-20 °C below the respective dsRNA melting temperatures (Tms). Four different 13- to 20-mer dsRNAs with two different central sequence motifs were used as targets containing either a central r(GG)·r(CC)- or r(GG)·r(UAU)-sequence. The reactions exhibited half-lives in the minute- to hour range at 38 °C in the presence of excess in the μM range. Further, a linear dependence was found between C and the observed pseudo-first-order rate constants. The resulting apparent second-order rate constants were significantly larger for the lower melting r(GG)·r(UAU)-containing sequences compared with that of the fully complementary ones; the higher and lower reactivities represented by RNA-1-3 and RNA-1-1 with k2,appca. 30 and 8 M(-1) s(-1) respectively at CNa(+) = 122 mM. For all RNAs a common small, but significant, trend was observed with increased reactivity in the presence of K(+) compared with Na(+), and decreased reactivity in the presence of EtOH. Finally, the temperature dependence of k2,app was evaluated using the Eyring equation. The retrieved activation parameters reveal positive values for both ΔH(≠) and ΔS(≠) for all dsRNAs, in the range ca. 23-34 kcal mol(-1) and 22-57 cal K(-1) mol(-1) respectively. These values indicate solvational effects to be important for the rate determining step of the reaction, and thus in support of a structural change of the dsRNA to take place in parallel with the adduct formation step.
Collapse
Affiliation(s)
- Alak Alshiekh
- Biochemistry and Structural Biology, KILU, Lund University, PO Box 124, SE-221 00 Lund, Sweden.
| | | | | |
Collapse
|
364
|
Berger CT, Hess C. Neglected for too long? - CD8+ Tregs release NOX2-loaded vesicles to inhibit CD4+ T cells. J Clin Invest 2016; 126:1646-8. [PMID: 27088803 DOI: 10.1172/jci87429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Tregs are critical for control of self-reactive T cells that escape thymic selection and end up in the periphery. Treg subsets suppress effector T cell populations through the secretion of immunosuppressive molecules and inhibitory cytokines as well as cell contact-dependent mechanisms. In this issue of the JCI, Wen and colleagues describe another mechanism by which Tregs suppress effector T cell populations. Specifically, the authors reveal that CD8+ T cells in close contact with target T cells release NADPH oxidase 2-containing microvesicles that inhibit TCR activation by elevating ROS and thereby reducing phosphorylation of the TCR-associated kinase ZAP70. Together, the results of this study provide important insight into CD8+ Treg function and into the development of autoimmunity in older individuals.
Collapse
|
365
|
Abreu SC, Weiss DJ, Rocco PRM. Extracellular vesicles derived from mesenchymal stromal cells: a therapeutic option in respiratory diseases? Stem Cell Res Ther 2016; 7:53. [PMID: 27075363 PMCID: PMC4831172 DOI: 10.1186/s13287-016-0317-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) are plasma membrane-bound fragments released from several cell types, including mesenchymal stromal cells (MSCs), constitutively or under stimulation. EVs derived from MSCs and other cell types transfer molecules (such as DNA, proteins/peptides, mRNA, microRNA, and lipids) and/or organelles with reparative and anti-inflammatory properties to recipient cells. The paracrine anti-inflammatory effects promoted by MSC-derived EVs have attracted significant interest in the regenerative medicine field, including for potential use in lung injuries. In the present review, we describe the characteristics, biological activities, and mechanisms of action of MSC-derived EVs. We also review the therapeutic potential of EVs as reported in relevant preclinical models of acute and chronic respiratory diseases, such as pneumonia, acute respiratory distress syndrome, asthma, and pulmonary arterial hypertension. Finally, we discuss possible approaches for potentiating the therapeutic effects of MSC-derived EVs so as to enable use of this therapy in clinical practice.
Collapse
Affiliation(s)
- Soraia C Abreu
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Daniel J Weiss
- Department of Medicine, Vermont Lung Center, College of Medicine, University of Vermont, 89 Beaumont Ave Given, Burlington, VT, 05405, USA
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
366
|
Rosas LE, Elgamal OA, Mo X, Phelps MA, Schmittgen TD, Papenfuss TL. In vitro immunotoxicity assessment of culture-derived extracellular vesicles in human monocytes. J Immunotoxicol 2016; 13:652-65. [PMID: 27075513 DOI: 10.3109/1547691x.2016.1148089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The potential to engineer extracellular vesicles (EV) that target specific cells and deliver a therapeutic payload has propelled a growing interest in their development as promising therapeutics. These EV are often produced from cultured cells. Very little is known about the interaction of cell culture-derived EV with cells of the immune system and their potential immunomodulatory effects. The present study evaluated potential immunotoxic effects of HEK293T-derived EV on the human monocytic cell lines THP-1 and U937. Incubation of cells with different doses of EV for 16-24 h was followed by assessment of cytotoxicity and cell function by flow cytometry. Changes in cell functionality were evaluated by the capacity of cells to phagocytize fluorescent microspheres. In addition, the internalization of labeled EV in THP-1 and U937 cells was evaluated. Exposure to EV did not affect the viability of THP-1 or U937 cells. Although lower doses of the EV increased phagocytic capacity in both cell lines, phagocytic efficiency of individual cells was not affected by EV exposure at any of the doses evaluated. This study also demonstrated that THP-1 and U937 monocytic cells are highly permissive to EV entry in a dose-response manner. These results suggest that, although HEK293T-derived EV are efficiently internalized by human monocytic cells, they do not exert a cytotoxic effect or alter phagocytic efficiency on the cell lines evaluated.
Collapse
Affiliation(s)
- Lucia E Rosas
- a Department of Veterinary Biosciences , Ohio State University , Columbus , OH , USA
| | - Ola A Elgamal
- b College of Pharmacy , Ohio State University , Columbus , OH , USA
| | - Xiaokui Mo
- c Center for Biostatistics , Ohio State University , Columbus , OH , USA
| | - Mitch A Phelps
- b College of Pharmacy , Ohio State University , Columbus , OH , USA
| | | | - Tracey L Papenfuss
- a Department of Veterinary Biosciences , Ohio State University , Columbus , OH , USA
| |
Collapse
|
367
|
Abstract
Tumor cells actively produce, release, and utilize exosomes to promote tumor growth. Mechanisms through which tumor-derived exosomes subserve the tumor are under intense investigation. These exosomes are information carriers, conveying molecular and genetic messages from tumor cells to normal or other abnormal cells residing at close or distant sites. Tumor-derived exosomes are found in all body fluids. Upon contact with target cells, they alter phenotypic and functional attributes of recipients, reprogramming them into active contributors to angiogenesis, thrombosis, metastasis, and immunosuppression. Exosomes produced by tumors carry cargos that in part mimic contents of parent cells and are of potential interest as noninvasive biomarkers of cancer. Their role in inhibiting the host antitumor responses and in mediating drug resistance is important for cancer therapy. Tumor-derived exosomes may interfere with cancer immunotherapy, but they also could serve as adjuvants and antigenic components of antitumor vaccines. Their biological roles in cancer development or progression as well as cancer therapy suggest that tumor-derived exosomes are critical components of oncogenic transformation.
Collapse
Affiliation(s)
- Theresa L Whiteside
- University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States.
| |
Collapse
|
368
|
Hall J, Prabhakar S, Balaj L, Lai CP, Cerione RA, Breakefield XO. Delivery of Therapeutic Proteins via Extracellular Vesicles: Review and Potential Treatments for Parkinson's Disease, Glioma, and Schwannoma. Cell Mol Neurobiol 2016; 36:417-27. [PMID: 27017608 PMCID: PMC4860146 DOI: 10.1007/s10571-015-0309-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/20/2015] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles present an attractive delivery vehicle for therapeutic proteins. They intrinsically contain many proteins which can provide information to other cells. Advantages include reduced immune reactivity, especially if derived from the same host, stability in biologic fluids, and ability to target uptake. Those from mesenchymal stem cells appear to be intrinsically therapeutic, while those from cancer cells promote tumor progression. Therapeutic proteins can be loaded into vesicles by overexpression in the donor cell, with oligomerization and membrane sequences increasing their loading. Examples of protein delivery for therapeutic benefit in pre-clinical models include delivery of: catalase for Parkinson's disease to reduce oxidative stress and thus help neurons to survive; prodrug activating enzymes which can convert a prodrug which crosses the blood-brain barrier into a toxic chemotherapeutic drug for schwannomas and gliomas; and the apoptosis-inducing enzyme, caspase-1 under a Schwann cell specific promoter for schwannoma. This therapeutic delivery strategy is novel and being explored for a number of diseases.
Collapse
Affiliation(s)
- Justin Hall
- Departments of Chemistry and Chemical Biology and Molecular Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Shilpa Prabhakar
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Leonora Balaj
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Charles P Lai
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, 02114, USA
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Richard A Cerione
- Departments of Chemistry and Chemical Biology and Molecular Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Xandra O Breakefield
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, 02114, USA.
- Molecular Neurogenetics Unit, Massachusetts General Hospital-East, 13th Street, Building 149, Charlestown, MA, 02129, USA.
| |
Collapse
|
369
|
Abstract
Stroke is one of the leading causes of death and disability worldwide. Stroke recovery is orchestrated by a set of highly interactive processes that involve the neurovascular unit and neural stem cells. Emerging data suggest that exosomes play an important role in intercellular communication by transferring exosomal protein and RNA cargo between source and target cells in the brain. Here, we review these advances and their impact on promoting coupled brain remodeling processes after stroke. The use of exosomes for therapeutic applications in stroke is also highlighted.
Collapse
Affiliation(s)
- Zheng Gang Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
370
|
Wang J, Barr MM. Ciliary Extracellular Vesicles: Txt Msg Organelles. Cell Mol Neurobiol 2016; 36:449-57. [PMID: 26983828 PMCID: PMC4886304 DOI: 10.1007/s10571-016-0345-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 02/08/2016] [Indexed: 01/12/2023]
Abstract
Cilia are sensory organelles that protrude from cell surfaces to monitor the surrounding environment. In addition to its role as sensory receiver, the cilium also releases extracellular vesicles (EVs). The release of sub-micron sized EVs is a conserved form of intercellular communication used by all three kingdoms of life. These extracellular organelles play important roles in both short and long range signaling between donor and target cells and may coordinate systemic responses within an organism in normal and diseased states. EV shedding from ciliated cells and EV-cilia interactions are evolutionarily conserved phenomena, yet remarkably little is known about the relationship between the cilia and EVs and the fundamental biology of EVs. Studies in the model organisms Chlamydomonas and Caenorhabditis elegans have begun to shed light on ciliary EVs. Chlamydomonas EVs are shed from tips of flagella and are bioactive. Caenorhabditis elegans EVs are shed and released by ciliated sensory neurons in an intraflagellar transport-dependent manner. Caenorhabditis elegans EVs play a role in modulating animal-to-animal communication, and this EV bioactivity is dependent on EV cargo content. Some ciliary pathologies, or ciliopathies, are associated with abnormal EV shedding or with abnormal cilia-EV interactions. Until the 21st century, both cilia and EVs were ignored as vestigial or cellular junk. As research interest in these two organelles continues to gain momentum, we envision a new field of cell biology emerging. Here, we propose that the cilium is a dedicated organelle for EV biogenesis and EV reception. We will also discuss possible mechanisms by which EVs exert bioactivity and explain how what is learned in model organisms regarding EV biogenesis and function may provide insight to human ciliopathies.
Collapse
Affiliation(s)
- Juan Wang
- Department of Genetics and The Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ, 08854, USA
| | - Maureen M Barr
- Department of Genetics and The Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
371
|
Xu R, Greening DW, Zhu HJ, Takahashi N, Simpson RJ. Extracellular vesicle isolation and characterization: toward clinical application. J Clin Invest 2016; 126:1152-62. [PMID: 27035807 DOI: 10.1172/jci81129] [Citation(s) in RCA: 659] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Two broad categories of extracellular vesicles (EVs), exosomes and shed microvesicles (sMVs), which differ in size distribution as well as protein and RNA profiles, have been described. EVs are known to play key roles in cell-cell communication, acting proximally as well as systemically. This Review discusses the nature of EV subtypes, strategies for isolating EVs from both cell-culture media and body fluids, and procedures for quantifying EVs. We also discuss proteins selectively enriched in exosomes and sMVs that have the potential for use as markers to discriminate between EV subtypes, as well as various applications of EVs in clinical diagnosis.
Collapse
|
372
|
D'Asti E, Chennakrishnaiah S, Lee TH, Rak J. Extracellular Vesicles in Brain Tumor Progression. Cell Mol Neurobiol 2016; 36:383-407. [PMID: 26993504 PMCID: PMC11482376 DOI: 10.1007/s10571-015-0296-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/24/2015] [Indexed: 12/18/2022]
Abstract
Brain tumors can be viewed as multicellular 'ecosystems' with increasingly recognized cellular complexity and systemic impact. While the emerging diversity of malignant disease entities affecting brain tissues is often described in reference to their signature alterations within the cellular genome and epigenome, arguably these cell-intrinsic changes can be regarded as hardwired adaptations to a variety of cell-extrinsic microenvironmental circumstances. Conversely, oncogenic events influence the microenvironment through their impact on the cellular secretome, including emission of membranous structures known as extracellular vesicles (EVs). EVs serve as unique carriers of bioactive lipids, secretable and non-secretable proteins, mRNA, non-coding RNA, and DNA and constitute pathway(s) of extracellular exit of molecules into the intercellular space, biofluids, and blood. EVs are also highly heterogeneous as reflected in their nomenclature (exosomes, microvesicles, microparticles) attempting to capture their diverse origin, as well as structural, molecular, and functional properties. While EVs may act as a mechanism of molecular expulsion, their non-random uptake by heterologous cellular recipients defines their unique roles in the intercellular communication, horizontal molecular transfer, and biological activity. In the central nervous system, EVs have been implicated as mediators of homeostasis and repair, while in cancer they may act as regulators of cell growth, clonogenicity, angiogenesis, thrombosis, and reciprocal tumor-stromal interactions. EVs produced by specific brain tumor cell types may contain the corresponding oncogenic drivers, such as epidermal growth factor receptor variant III (EGFRvIII) in glioblastoma (and hence are often referred to as 'oncosomes'). Through this mechanism, mutant oncoproteins and nucleic acids may be transferred horizontally between cellular populations altering their individual and collective phenotypes. Oncogenic pathways also impact the emission rates, types, cargo, and biogenesis of EVs, as reflected by preliminary analyses pointing to differences in profiles of EV-regulating genes (vesiculome) between molecular subtypes of glioblastoma, and in other brain tumors. Molecular regulators of vesiculation can also act as oncogenes. These intimate connections suggest the context-specific roles of different EV subsets in the progression of specific brain tumors. Advanced efforts are underway to capture these events through the use of EVs circulating in biofluids as biomarker reservoirs and to guide diagnostic and therapeutic decisions.
Collapse
Affiliation(s)
- Esterina D'Asti
- RI MUHC, Montreal Children's Hospital, McGill University, 1001 Decarie Blvd, E M1 2244, Montreal, QC, H4A 3J1, Canada
| | - Shilpa Chennakrishnaiah
- RI MUHC, Montreal Children's Hospital, McGill University, 1001 Decarie Blvd, E M1 2244, Montreal, QC, H4A 3J1, Canada
| | - Tae Hoon Lee
- RI MUHC, Montreal Children's Hospital, McGill University, 1001 Decarie Blvd, E M1 2244, Montreal, QC, H4A 3J1, Canada
| | - Janusz Rak
- RI MUHC, Montreal Children's Hospital, McGill University, 1001 Decarie Blvd, E M1 2244, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
373
|
Berrondo C, Osinski T, Beckham CJ. Bladder cancer exosomes: Getting the message across. World J Clin Urol 2016; 5:18-23. [DOI: 10.5410/wjcu.v5.i1.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/13/2015] [Accepted: 01/07/2016] [Indexed: 02/06/2023] Open
Abstract
Bladder cancer is the seventh most common cancer in men and the seventeenth most common in women. It is also the most expensive cancer to treat over the lifetime of a patient, partially due to the necessity of frequent cystoscopy to monitor for tumor recurrence. There have also been no new developments for the treatment of bladder cancer in the last several decades. Exosomes are small, secreted, membrane-bound vesicles representative of the donor cell. Increasing understanding of the role of exosomes in cancer biology has inspired interest in their potential use as a non-invasive diagnostic tool, prognostic markers and/or indicator of recurrence of bladder cancer, and even for use in the treatment of bladder cancer. Exosomes can be readily isolated from urine. Several groups have already demonstrated differences in the protein and micro RNA content of exosomes in bladder cancer patients compared to normal healthy volunteers. Furthermore, cancer cell-derived exosomes mediate tumor progression through the delivery of their biologically active content to recipient cells. Exosomes may be useful for the delivery of targeted molecules for the treatment of bladder cancer.
Collapse
|
374
|
Kooijmans SAA, Aleza CG, Roffler SR, van Solinge WW, Vader P, Schiffelers RM. Display of GPI-anchored anti-EGFR nanobodies on extracellular vesicles promotes tumour cell targeting. J Extracell Vesicles 2016; 5:31053. [PMID: 26979463 PMCID: PMC4793259 DOI: 10.3402/jev.v5.31053] [Citation(s) in RCA: 297] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 12/27/2022] Open
Abstract
Background Extracellular vesicles (EVs) are attractive candidate drug delivery systems due to their ability to functionally transport biological cargo to recipient cells. However, the apparent lack of target cell specificity of exogenously administered EVs limits their therapeutic applicability. In this study, we propose a novel method to equip EVs with targeting properties, in order to improve their interaction with tumour cells. Methods EV producing cells were transfected with vectors encoding for anti-epidermal growth factor receptor (EGFR) nanobodies, which served as targeting ligands for tumour cells, fused to glycosylphosphatidylinositol (GPI) anchor signal peptides derived from decay-accelerating factor (DAF). EVs were isolated using ultrafiltration/size-exclusion liquid chromatography and characterized using western blotting, Nanoparticle Tracking Analysis, and electron microscopy. EV–tumour cell interactions were analyzed under static conditions using flow cytometry and under flow conditions using a live-cell fluorescence microscopy-coupled perfusion system. Results EV analysis showed that GPI-linked nanobodies were successfully displayed on EV surfaces and were highly enriched in EVs compared with parent cells. Display of GPI-linked nanobodies on EVs did not alter general EV characteristics (i.e. morphology, size distribution and protein marker expression), but greatly improved EV binding to tumour cells dependent on EGFR density under static conditions. Moreover, nanobody-displaying EVs showed a significantly improved cell association to EGFR-expressing tumour cells under flow conditions. Conclusions We show that nanobodies can be anchored on the surface of EVs via GPI, which alters their cell targeting behaviour. Furthermore, this study highlights GPI-anchoring as a new tool in the EV toolbox, which may be applied for EV display of a variety of proteins, such as antibodies, reporter proteins and signaling molecules.
Collapse
Affiliation(s)
- Sander A A Kooijmans
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Clara Gómez Aleza
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wouter W van Solinge
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pieter Vader
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Raymond M Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands;
| |
Collapse
|
375
|
Mesenchymal Stem Cell-Derived Microvesicles Support Ex Vivo Expansion of Cord Blood-Derived CD34(+) Cells. Stem Cells Int 2016; 2016:6493241. [PMID: 27042183 PMCID: PMC4799819 DOI: 10.1155/2016/6493241] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/17/2016] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are known to support the characteristic properties of hematopoietic stem and progenitor cells (HSPCs) in the bone marrow hematopoietic microenvironment. MSCs are used in coculture systems as a feeder layer for the ex vivo expansion of umbilical cord blood (CB) to increase the relatively low number of HSPCs in CB. Findings increasingly suggest that MSC-derived microvesicles (MSC-MVs) play an important role in the biological functions of their parent cells. We speculate that MSC-MVs may recapitulate the hematopoiesis-supporting effects of their parent cells. In the current study, we found MSC-MVs containing microRNAs that are involved in the regulation of hematopoiesis. We also demonstrated that MSC-MVs could improve the expansion of CB-derived mononuclear cells and CD34+ cells and generate a greater number of primitive progenitor cells in vitro. Additionally, when MSC-MVs were added to the CB-MSC coculture system, they could improve the hematopoiesis-supporting effects of MSCs. These findings highlight the role of MSC-MVs in the ex vivo expansion of CB, which may offer a promising therapeutic approach in CB transplantation.
Collapse
|
376
|
Zhao JY, Chen G, Gu YP, Cui R, Zhang ZL, Yu ZL, Tang B, Zhao YF, Pang DW. Ultrasmall Magnetically Engineered Ag2Se Quantum Dots for Instant Efficient Labeling and Whole-Body High-Resolution Multimodal Real-Time Tracking of Cell-Derived Microvesicles. J Am Chem Soc 2016; 138:1893-903. [DOI: 10.1021/jacs.5b10340] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jing-Ya Zhao
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, State
Key Laboratory of Virology, The Institute for Advanced Studies, and
Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Gang Chen
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, State
Key Laboratory of Virology, The Institute for Advanced Studies, and
Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
- Key
Laboratory of Oral Biomedicine (Ministry of Education) and Department
of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Yi-Ping Gu
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, State
Key Laboratory of Virology, The Institute for Advanced Studies, and
Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Ran Cui
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, State
Key Laboratory of Virology, The Institute for Advanced Studies, and
Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhi-Ling Zhang
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, State
Key Laboratory of Virology, The Institute for Advanced Studies, and
Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Zi-Li Yu
- Key
Laboratory of Oral Biomedicine (Ministry of Education) and Department
of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Bo Tang
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, State
Key Laboratory of Virology, The Institute for Advanced Studies, and
Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Yi-Fang Zhao
- Key
Laboratory of Oral Biomedicine (Ministry of Education) and Department
of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Dai-Wen Pang
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, State
Key Laboratory of Virology, The Institute for Advanced Studies, and
Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
377
|
Xie L, Mao M, Zhou L, Jiang B. Spheroid Mesenchymal Stem Cells and Mesenchymal Stem Cell-Derived Microvesicles: Two Potential Therapeutic Strategies. Stem Cells Dev 2016; 25:203-13. [PMID: 26575103 DOI: 10.1089/scd.2015.0278] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Lili Xie
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mao Mao
- Departments of Ophthalmology and Anatomy, Institute for Human Genetics, UCSF School of Medicine, San Francisco, California
| | - Liang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bing Jiang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
378
|
Kooijmans S, Fliervoet L, van der Meel R, Fens M, Heijnen H, van Bergen en Henegouwen P, Vader P, Schiffelers R. PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time. J Control Release 2016; 224:77-85. [DOI: 10.1016/j.jconrel.2016.01.009] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 12/30/2022]
|
379
|
|
380
|
Vituret C, Gallay K, Confort MP, Ftaich N, Matei CI, Archer F, Ronfort C, Mornex JF, Chanson M, Di Pietro A, Boulanger P, Hong SS. Transfer of the Cystic Fibrosis Transmembrane Conductance Regulator to Human Cystic Fibrosis Cells Mediated by Extracellular Vesicles. Hum Gene Ther 2016; 27:166-83. [DOI: 10.1089/hum.2015.144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Cyrielle Vituret
- Viral Infections & Comparative Pathology, UMR-754 UCBL-INRA-EPHE, Université Lyon 1, Lyon Cedex 07, France
- Institut de Biologie et Chimie des Protéines, Unité BMSSI, UMR 5086 CNRS-Université Lyon 1, Lyon Cedex 07, France
| | - Kathy Gallay
- Viral Infections & Comparative Pathology, UMR-754 UCBL-INRA-EPHE, Université Lyon 1, Lyon Cedex 07, France
| | - Marie-Pierre Confort
- Viral Infections & Comparative Pathology, UMR-754 UCBL-INRA-EPHE, Université Lyon 1, Lyon Cedex 07, France
| | - Najate Ftaich
- Viral Infections & Comparative Pathology, UMR-754 UCBL-INRA-EPHE, Université Lyon 1, Lyon Cedex 07, France
| | - Constantin I. Matei
- Centre Technologique des Microstructures, Université Claude Bernard—Lyon, Villeurbanne, France
| | - Fabienne Archer
- Viral Infections & Comparative Pathology, UMR-754 UCBL-INRA-EPHE, Université Lyon 1, Lyon Cedex 07, France
| | - Corinne Ronfort
- Viral Infections & Comparative Pathology, UMR-754 UCBL-INRA-EPHE, Université Lyon 1, Lyon Cedex 07, France
| | - Jean-François Mornex
- Viral Infections & Comparative Pathology, UMR-754 UCBL-INRA-EPHE, Université Lyon 1, Lyon Cedex 07, France
| | - Marc Chanson
- Département de Physiologie Cellulaire & Métabolisme, Centre Médical Universitaire, Geneva, Switzerland
| | - Attilio Di Pietro
- Institut de Biologie et Chimie des Protéines, Unité BMSSI, UMR 5086 CNRS-Université Lyon 1, Lyon Cedex 07, France
| | - Pierre Boulanger
- Viral Infections & Comparative Pathology, UMR-754 UCBL-INRA-EPHE, Université Lyon 1, Lyon Cedex 07, France
| | - Saw See Hong
- Viral Infections & Comparative Pathology, UMR-754 UCBL-INRA-EPHE, Université Lyon 1, Lyon Cedex 07, France
- Institut National de la Santé et de la Recherche Médicale, Paris, France
| |
Collapse
|
381
|
Abstract
INTRODUCTION Application of regenerative medicine strategies for repair of organs/tissue impacted by chronic disease is an active subject for product development. Such methodologies emphasize the role of stem cells as the active biological ingredient. However, recent developments in elucidating mechanisms of action of these therapies have focused on the role of paracrine, 'action-at-a-distance' modus operandi in mediating the ability to catalyze regenerative outcomes without significant site-specific engraftment. A salient component of this secreted regenerative milieu are exosomes: 40-100 nm intraluminal vesicles that mediate transfer of proteins and nucleic acids across cellular boundaries. AREAS COVERED Here, we synthesize recent studies from PubMed and Google Scholar highlighting how cell-based therapeutics and cosmeceutics are transitioning towards the secretome generally and exosomes specifically as a principal modulator of regenerative outcomes. EXPERT OPINION Exosomes contribute to organ development and mediate regenerative outcomes in injury and disease that recapitulate observed bioactivity of stem cell populations. Encapsulation of the active biological ingredients of regeneration within non-living exosome carriers may offer process, manufacturing and regulatory advantages over stem cell-based therapies.
Collapse
|
382
|
Bátiz LF, Castro MA, Burgos PV, Velásquez ZD, Muñoz RI, Lafourcade CA, Troncoso-Escudero P, Wyneken U. Exosomes as Novel Regulators of Adult Neurogenic Niches. Front Cell Neurosci 2016; 9:501. [PMID: 26834560 PMCID: PMC4717294 DOI: 10.3389/fncel.2015.00501] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 12/14/2015] [Indexed: 01/09/2023] Open
Abstract
Adult neurogenesis has been convincingly demonstrated in two regions of the mammalian brain: the sub-granular zone (SGZ) of the dentate gyrus (DG) in the hippocampus, and the sub-ventricular zone (SVZ) of the lateral ventricles (LV). SGZ newborn neurons are destined to the granular cell layer (GCL) of the DG, while new neurons from the SVZ neurons migrate rostrally into the olfactory bulb (OB). The process of adult neurogenesis persists throughout life and is supported by a pool of neural stem cells (NSCs), which reside in a unique and specialized microenvironment known as "neurogenic niche". Neurogenic niches are structured by a complex organization of different cell types, including the NSC-neuron lineage, glial cells and vascular cells. Thus, cell-to-cell communication plays a key role in the dynamic modulation of homeostasis and plasticity of the adult neurogenic process. Specific cell-cell contacts and extracellular signals originated locally provide the necessary support and regulate the balance between self-renewal and differentiation of NSCs. Furthermore, extracellular signals originated at distant locations, including other brain regions or systemic organs, may reach the niche through the cerebrospinal fluid (CSF) or the vasculature and influence its nature. The role of several secreted molecules, such as cytokines, growth factors, neurotransmitters, and hormones, in the biology of adult NSCs, has been systematically addressed. Interestingly, in addition to these well-recognized signals, a novel type of intercellular messengers has been identified recently: the extracellular vesicles (EVs). EVs, and particularly exosomes, are implicated in the transfer of mRNAs, microRNAs (miRNAs), proteins and lipids between cells and thus are able to modify the function of recipient cells. Exosomes appear to play a significant role in different stem cell niches such as the mesenchymal stem cell niche, cancer stem cell niche and pre-metastatic niche; however, their roles in adult neurogenic niches remain virtually unexplored. This review focuses on the current knowledge regarding the functional relationship between cellular and extracellular components of the adult SVZ and SGZ neurogenic niches, and the growing evidence that supports the potential role of exosomes in the physiology and pathology of adult neurogenesis.
Collapse
Affiliation(s)
- Luis Federico Bátiz
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Program for Cell Biology and Microscopy, Universidad Austral de ChileValdivia, Chile; Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de ChileValdivia, Chile
| | - Maite A Castro
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Program for Cell Biology and Microscopy, Universidad Austral de ChileValdivia, Chile; Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de ChileValdivia, Chile
| | - Patricia V Burgos
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Program for Cell Biology and Microscopy, Universidad Austral de ChileValdivia, Chile; Instituto de Fisiología, Facultad de Medicina, Universidad Austral de ChileValdivia, Chile
| | - Zahady D Velásquez
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de ChileValdivia, Chile
| | - Rosa I Muñoz
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de ChileValdivia, Chile
| | - Carlos A Lafourcade
- Laboratorio de Neurociencias, Facultad de Medicina, Universidad de Los Andes Santiago, Chile
| | - Paulina Troncoso-Escudero
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de ChileValdivia, Chile
| | - Ursula Wyneken
- Laboratorio de Neurociencias, Facultad de Medicina, Universidad de Los Andes Santiago, Chile
| |
Collapse
|
383
|
A new approach to follow a single extracellular vesicle-cell interaction using optical tweezers. Biotechniques 2016; 60:35-41. [PMID: 26757810 DOI: 10.2144/000114371] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/29/2015] [Indexed: 11/23/2022] Open
Abstract
Extracellular vesicles (EVs) are spherical membrane structures released by most cells. These highly conserved mediators of intercellular communication carry proteins, lipids, and nucleic acids, and transfer these cellular components between cells by different mechanisms, such as endocytosis, macropinocytosis, or fusion. However, the temporal and spatial dynamics of vesicle-cell interactions still remain largely unexplored. Here we used optical tweezers to drive single EVs produced by microglial cells onto the surface of astrocytes or microglia in primary culture. By visualizing single EV-cell contacts, we observed that microglial vesicles displayed different motilities on the surface of astrocytes compared with microglia. After contact, EVs positioned on astrocytes displayed some minor oscillatory motion around the point of adhesion, while vesicles dragged to microglia displayed quite regular directional movement on the plasma membrane. Both the adhesion and motion of vesicles on glial cells were strongly reduced by cloaking phosphatidylserine (PS) residues, which are externalized on the vesicle membrane and act as determinants for vesicle recognition by target cells. These data identify optical manipulation as a powerful tool to monitor in vitro vesicle-cell dynamics with high temporal and spatial resolution and to determine in a quantitative manner the contribution of surface receptors/extracellular protein ligands to the contact.
Collapse
|
384
|
Choi H, Lee YS, Hwang DW, Lee DS. Translational radionanomedicine: a clinical perspective. EUROPEAN JOURNAL OF NANOMEDICINE 2016. [DOI: 10.1515/ejnm-2015-0052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractMany nanomaterials were developed for the anticipated in vivo theranostic use exploiting their unique characteristics as a multifunctional platform. Nevertheless, only a few nanomaterials are under investigation for human use, most of which have not entered clinical trials yet. Radionanomedicine, a convergent discipline of radiotracer technology and use of nanomaterials in vivo, can facilitate clinical nanomedicine because of its advantages of radionuclide imaging and internal radiation therapy. In this review, we focuse on how radionanomedicine would impact profoundly on clinical translation of nanomaterial theranostics. Up-to-date advances and future challenges are critically reviewed regarding the issues of how to radiolabel and engineer radionanomaterials, in vivo behavior tracing of radionanomaterials and then the desired clinical radiation dosimetry. Radiolabeled extracellular vesicles were further discussed as endogenous nanomaterials radiolabeled for possible clinical use.
Collapse
|
385
|
Ragni E, Lommel M, Moro M, Crosti M, Lavazza C, Parazzi V, Saredi S, Strahl S, Lazzari L. Protein O-mannosylation is crucial for human mesencyhmal stem cells fate. Cell Mol Life Sci 2016; 73:445-58. [PMID: 26245304 PMCID: PMC11108538 DOI: 10.1007/s00018-015-2007-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 10/23/2022]
Abstract
Human mesenchymal stem cells (MSC) are promising cell types in the field of regenerative medicine. Although many pathways have been dissected in the effort to better understand and characterize MSC potential, the impact of protein N- or O-glycosylation has been neglected. Deficient protein O-mannosylation is a pathomechanism underlying severe congenital muscular dystrophies (CMD) that start to develop at the embryonic developmental stage and progress in the adult, often in tissues where MSC exert their function. Here we show that O-mannosylation genes, many of which are putative or verified glycosyltransferases (GTs), are expressed in a similar pattern in MSC from adipose tissue, bone marrow, and umbilical cord blood and that their expression levels are retained constant during mesengenic differentiation. Inhibition of the first players of the enzymatic cascade, POMT1/2, resulted in complete abolishment of chondrogenesis and alterations of adipogenic and osteogenic potential together with a lethal effect during myogenic induction. Since to date, no therapy for CMD is available, we explored the possibility of using MSC extracellular vesicles (EVs) as molecular source of functional GTs mRNA. All MSC secrete POMT1 mRNA-containing EVs that are able to efficiently fuse with myoblasts which are among the most affected cells by CMD. Intriguingly, in a pomt1 patient myoblast line EVs were able to partially revert O-mannosylation deficiency and contribute to a morphology recovery. Altogether, these results emphasize the crucial role of protein O-mannosylation in stem cell fate and properties and open the possibility of using MSC vesicles as a novel therapeutic approach to CMD.
Collapse
Affiliation(s)
- E Ragni
- Cell Factory, Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - M Lommel
- Centre for Organismal Studies, Cell Chemistry and Center for Molecular Biology, University of Heidelberg, 69120, Heidelberg, Germany
| | - M Moro
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), Milan, Italy
| | - M Crosti
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), Milan, Italy
| | - C Lavazza
- Cell Factory, Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - V Parazzi
- Cell Factory, Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - S Saredi
- Division of Neuromuscular Diseases and Neuroimmunology, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - S Strahl
- Centre for Organismal Studies, Cell Chemistry and Center for Molecular Biology, University of Heidelberg, 69120, Heidelberg, Germany
| | - L Lazzari
- Cell Factory, Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
386
|
Chromatographically isolated CD63+CD81+ extracellular vesicles from mesenchymal stromal cells rescue cognitive impairments after TBI. Proc Natl Acad Sci U S A 2015; 113:170-5. [PMID: 26699510 DOI: 10.1073/pnas.1522297113] [Citation(s) in RCA: 348] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) secreted by cells present an attractive strategy for developing new therapies, but progress in the field is limited by several issues: The quality of the EVs varies with the type and physiological status of the producer cells; protocols used to isolate the EVs are difficult to scale up; and assays for efficacy are difficult to develop. In the present report, we have addressed these issues by using human mesenchymal stem/stromal cells (MSCs) that produce EVs when incubated in a protein-free medium, preselecting the preparations of MSCs with a biomarker for their potency in modulating inflammation, incubating the cells in a chemically defined protein-free medium that provided a stable environment, isolating the EVs with a scalable chromatographic procedure, and developing an in vivo assay for efficacy of the cells in suppressing neuroinflammation after traumatic brain injury (TBI) in mice. In addition, we demonstrate that i.v. infusion of the isolated EVs shortly after induction of TBI rescued pattern separation and spatial learning impairments 1 mo later.
Collapse
|
387
|
The Dichotomy of Tumor Exosomes (TEX) in Cancer Immunity: Is It All in the ConTEXt? Vaccines (Basel) 2015; 3:1019-51. [PMID: 26694473 PMCID: PMC4693230 DOI: 10.3390/vaccines3041019] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/24/2015] [Accepted: 12/05/2015] [Indexed: 02/06/2023] Open
Abstract
Exosomes are virus-sized nanoparticles (30–130 nm) formed intracellularly as intravesicular bodies/intralumenal vesicles within maturing endosomes (“multivesicular bodies”, MVBs). If MVBs fuse with the cell’s plasma membrane, the interior vesicles may be released extracellularly, and are termed “exosomes”. The protein cargo of exosomes consists of cytosolic, membrane, and extracellular proteins, along with membrane-derived lipids, and an extraordinary variety of nucleic acids. As such, exosomes reflect the status and identity of the parent cell, and are considered as tiny cellular surrogates. Because of this closely entwined relationship between exosome content and the source/status of the parental cell, conceivably exosomes could be used as vaccines against various pathologies, as they contain antigens associated with a given disease, e.g., cancer. Tumor-derived exosomes (TEX) have been shown to be potent anticancer vaccines in animal models, driving antigen-specific T and B cell responses, but much recent literature concerning TEX strongly places the vesicles as powerfully immunosuppressive. This dichotomy suggests that the context in which the immune system encounters TEX is critical in determining immune stimulation versus immunosuppression. Here, we review literature on both sides of this immune coin, and suggest that it may be time to revisit the concept of TEX as anticancer vaccines in clinical settings.
Collapse
|
388
|
Cheng Y, Schorey JS. Targeting soluble proteins to exosomes using a ubiquitin tag. Biotechnol Bioeng 2015; 113:1315-24. [PMID: 26574179 DOI: 10.1002/bit.25884] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/21/2015] [Accepted: 11/10/2015] [Indexed: 02/06/2023]
Abstract
As "natural" antigen carriers in the body, exosomes are potential vaccine vectors. A number of animal studies indicate that antigen-containing exosomes can induce a specific immune response which can protect against tumor progression or various infections. Exosomes that carry the protective antigens can be purified from cells that release them including tumor cells, dendritic cells, and macrophages. However, this strategy is restricted to proteins that are naturally targeted to exosomes and is therefore limited in the number of antigens present within exosomes. Therefore, with the goal of developing an exosome-based vaccine that is more flexible in its antigen composition and has the potential to be scalable, we have developed a new approach where recombinant soluble proteins can be packaged into exosomes and released from a transformed cell line. In this study, we determined that a C-terminal fusion of ubiquitin to EGFP, tumor antigenic protein nHer2 and Mycobacterium tuberculosis proteins Ag85B and ESAT6 served as an efficient delivery sequence into exosomes when expressed in a human embryonic kidney (HEK 293) cell line, a cell line widely used in industrial recombinant protein production. Two stably transgenic HEK293 cell lines were generated using a retroviral vector to express the Ag85B-ESAT6 fusion protein either alone or tagged at the C-terminus with ubiquitin. Both transformants released exosomes containing the fusion proteins. However, the concentration of Ag85B and ESAT6 in exosomes was increased approximately 10-fold when they were coupled to ubiquitin. Moreover, when the exosomes were used for immunization, there was a direct correlation between the amount of fusion protein within the exosomes and the number of Ag85B and ESAT6 specific INFɣ-secreting T lymphocytes in the lung and spleen. This suggests that exosomes containing recombinant antigen can be used to elicit a T cell response. In summary our data indicates that a ubiquitin-based exosomal protein delivery strategy could represent a unique approach to generate antigen-specific exosomes with the potential to be used as novel vaccines. Biotechnol. Bioeng. 2016;113: 1315-1324. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yong Cheng
- Department of Biological Sciences, Eck Institute for Global Health, Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, 46556
| | - Jeffery S Schorey
- Department of Biological Sciences, Eck Institute for Global Health, Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, 46556.
| |
Collapse
|
389
|
Fuster-Matanzo A, Gessler F, Leonardi T, Iraci N, Pluchino S. Acellular approaches for regenerative medicine: on the verge of clinical trials with extracellular membrane vesicles? Stem Cell Res Ther 2015; 6:227. [PMID: 26631254 PMCID: PMC4668616 DOI: 10.1186/s13287-015-0232-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous population of naturally occurring secreted small vesicles, with distinct biophysical properties and different functions both in physiology and under pathological conditions. In recent years, a number of studies have demonstrated that EVs might hold remarkable potential in regenerative medicine by acting as therapeutically promising nanodrugs. Understanding their final impact on the biology of specific target cells as well as clarification of their overall therapeutic impact remains a matter of intense debate. Here we review the key principles of EVs in physiological and pathological conditions with a specific highlight on the most recently described mechanisms regulating some of the EV-mediated effects. First, we describe the current debates and the upcoming research on EVs as potential novel therapeutics in regenerative medicine, either as unmodified agents or as functionalized small carriers for targeted drug delivery. Moreover, we address a number of safety aspects and regulatory limitations related to the novel nature of EV-mediated therapeutic applications. Despite the emerging possibilities of EV treatments, these issues need to be overcome in order to allow their safe and successful application in future explorative clinical studies.
Collapse
Affiliation(s)
- Almudena Fuster-Matanzo
- Department of Clinical Neurosciences; Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Clifford Allbutt Building-Cambridge Biosciences Campus, Hills Road, Cambridge, CB2 0PY, UK.
| | - Florian Gessler
- Department of Clinical Neurosciences; Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Clifford Allbutt Building-Cambridge Biosciences Campus, Hills Road, Cambridge, CB2 0PY, UK.
| | - Tommaso Leonardi
- Department of Clinical Neurosciences; Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Clifford Allbutt Building-Cambridge Biosciences Campus, Hills Road, Cambridge, CB2 0PY, UK.
- The EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| | - Nunzio Iraci
- Department of Clinical Neurosciences; Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Clifford Allbutt Building-Cambridge Biosciences Campus, Hills Road, Cambridge, CB2 0PY, UK.
| | - Stefano Pluchino
- Department of Clinical Neurosciences; Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Clifford Allbutt Building-Cambridge Biosciences Campus, Hills Road, Cambridge, CB2 0PY, UK.
| |
Collapse
|
390
|
Livshts MA, Khomyakova E, Evtushenko EG, Lazarev VN, Kulemin NA, Semina SE, Generozov EV, Govorun VM. Isolation of exosomes by differential centrifugation: Theoretical analysis of a commonly used protocol. Sci Rep 2015; 5:17319. [PMID: 26616523 PMCID: PMC4663484 DOI: 10.1038/srep17319] [Citation(s) in RCA: 442] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/28/2015] [Indexed: 12/12/2022] Open
Abstract
Exosomes, small (40-100 nm) extracellular membranous vesicles, attract enormous research interest because they are carriers of disease markers and a prospective delivery system for therapeutic agents. Differential centrifugation, the prevalent method of exosome isolation, frequently produces dissimilar and improper results because of the faulty practice of using a common centrifugation protocol with different rotors. Moreover, as recommended by suppliers, adjusting the centrifugation duration according to rotor K-factors does not work for "fixed-angle" rotors. For both types of rotors--"swinging bucket" and "fixed-angle"--we express the theoretically expected proportion of pelleted vesicles of a given size and the "cut-off" size of completely sedimented vesicles as dependent on the centrifugation force and duration and the sedimentation path-lengths. The proper centrifugation conditions can be selected using relatively simple theoretical estimates of the "cut-off" sizes of vesicles. Experimental verification on exosomes isolated from HT29 cell culture supernatant confirmed the main theoretical statements. Measured by the nanoparticle tracking analysis (NTA) technique, the concentration and size distribution of the vesicles after centrifugation agree with those theoretically expected. To simplify this "cut-off"-size-based adjustment of centrifugation protocol for any rotor, we developed a web-calculator.
Collapse
Affiliation(s)
- Mikhail A. Livshts
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32, Vavilova str., Moscow, 119991, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., Dolgoprudny, 141700, Russia
| | - Elena Khomyakova
- Fededal Research and Clinical Center of Physical-Chemical Medicine, 1a, Malaya Pirogovskaya str, Moscow, 119435, Russia
| | - Evgeniy G. Evtushenko
- Faculty of Chemistry, Lomonosov Moscow State University, 1/73, Leninskie gory, Moscow, 119991, Russia
| | - Vassili N. Lazarev
- Fededal Research and Clinical Center of Physical-Chemical Medicine, 1a, Malaya Pirogovskaya str, Moscow, 119435, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., Dolgoprudny, 141700, Russia
| | - Nikolay A. Kulemin
- Fededal Research and Clinical Center of Physical-Chemical Medicine, 1a, Malaya Pirogovskaya str, Moscow, 119435, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., Dolgoprudny, 141700, Russia
| | - Svetlana E. Semina
- Research Institute of Carcinogenesis, N. N. Blokhin Russian Cancer Research Center, 24 Kashirskoye Shosse, Moscow, 115478, Russia
| | - Edward V. Generozov
- Fededal Research and Clinical Center of Physical-Chemical Medicine, 1a, Malaya Pirogovskaya str, Moscow, 119435, Russia
| | - Vadim M. Govorun
- Fededal Research and Clinical Center of Physical-Chemical Medicine, 1a, Malaya Pirogovskaya str, Moscow, 119435, Russia
| |
Collapse
|
391
|
Abstract
Exosomes are membrane-bound, intercellular communication shuttles that are defined by their endocytic origin and size range of 30–140 nm. Secreted by nearly all mammalian cell types and present in myriad bodily fluids, exosomes confer messages between cells, proximal and distal, by transporting biofunctional cargo in the form of proteins, nucleic acids, and lipids. They play a vital role in cellular signaling in both normal physiology and disease states, particularly cancer. Exosomes are powerful progenitors in altering target cell phenotypes, particularly in tumorigenesis and cancer progression, with the ability to alter tumor microenvironments and to assist in establishing the pre-metastatic niche. Many aspects of exosomes present them as novel means to identify cancer biomarkers for early detection and therapeutic targets, and using intrinsic and engineered characteristics of exosomes as therapeutic devices to ameliorate the progression of the disease. This review outlines some of the recent and major findings with regard to exosomes in cancer, and their utilization as therapeutic tools.
Collapse
|
392
|
Ruiz M, Cosenza S, Maumus M, Jorgensen C, Noël D. Therapeutic application of mesenchymal stem cells in osteoarthritis. Expert Opin Biol Ther 2015; 16:33-42. [PMID: 26413975 DOI: 10.1517/14712598.2016.1093108] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Osteoarthritis (OA) is a degenerative disease characterized by cartilage degradation and subchondral bone alterations. This disease represents a global public health problem whose prevalence is rapidly growing with the increasing aging of the population. With the discovery of mesenchymal stem cells (MSC) as possible therapeutic agents, their potential for repairing cartilage damage in OA is under investigation. AREAS COVERED Characterization of MSCs and their functional properties are mentioned with an insight into their trophic function and secretory profile. We present a special focus on the types of extracellular vesicles (EVs) that are produced by MSCs and their role in the paracrine activity of MSCs. We then discuss the therapeutic approaches that have been evaluated in pre-clinical models of OA and the results coming out from the clinical trials in patients with OA. EXPERT OPINION MSC-based therapy seems a promising approach for the treatment of patients with OA. Further research is still needed to demonstrate their efficacy in clinical trials using controlled, prospective studies. However, the emergence of MSC-derived EVs as possible therapeutic agents could be an alternative to cell-based therapy.
Collapse
Affiliation(s)
- Maxime Ruiz
- a 1 Inserm, U1183, CHRU Saint Eloi, Hôpital Saint-Eloi , 80 avenue Augustin Fliche, Montpellier, F-34295, France +33 4 67 33 04 73 ; +33 4 67 33 01 13 ; .,b 2 Université Montpellier, UFR de Médecine , Montpellier, F-34000, France
| | - Stella Cosenza
- a 1 Inserm, U1183, CHRU Saint Eloi, Hôpital Saint-Eloi , 80 avenue Augustin Fliche, Montpellier, F-34295, France +33 4 67 33 04 73 ; +33 4 67 33 01 13 ; .,b 2 Université Montpellier, UFR de Médecine , Montpellier, F-34000, France
| | - Marie Maumus
- a 1 Inserm, U1183, CHRU Saint Eloi, Hôpital Saint-Eloi , 80 avenue Augustin Fliche, Montpellier, F-34295, France +33 4 67 33 04 73 ; +33 4 67 33 01 13 ; .,b 2 Université Montpellier, UFR de Médecine , Montpellier, F-34000, France
| | - Christian Jorgensen
- a 1 Inserm, U1183, CHRU Saint Eloi, Hôpital Saint-Eloi , 80 avenue Augustin Fliche, Montpellier, F-34295, France +33 4 67 33 04 73 ; +33 4 67 33 01 13 ; .,b 2 Université Montpellier, UFR de Médecine , Montpellier, F-34000, France.,c 3 Hôpital Lapeyronie, Service d'immuno-Rhumatologie , Montpellier, F-34295, France
| | - Danièle Noël
- a 1 Inserm, U1183, CHRU Saint Eloi, Hôpital Saint-Eloi , 80 avenue Augustin Fliche, Montpellier, F-34295, France +33 4 67 33 04 73 ; +33 4 67 33 01 13 ; .,b 2 Université Montpellier, UFR de Médecine , Montpellier, F-34000, France.,c 3 Hôpital Lapeyronie, Service d'immuno-Rhumatologie , Montpellier, F-34295, France
| |
Collapse
|
393
|
Lamichhane TN, Raiker RS, Jay SM. Exogenous DNA Loading into Extracellular Vesicles via Electroporation is Size-Dependent and Enables Limited Gene Delivery. Mol Pharm 2015; 12:3650-7. [PMID: 26376343 DOI: 10.1021/acs.molpharmaceut.5b00364] [Citation(s) in RCA: 284] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Extracellular vesicles (EVs) hold immense promise for utilization as biotherapeutics and drug delivery vehicles due to their nature as biological nanoparticles that facilitate intercellular molecular transport. Specifically, EVs have been identified as natural carriers of nucleic acids, sparking interest in their use for gene therapy and RNA interference applications. So far, small RNAs (siRNA and miRNA) have been successfully loaded into EVs for a variety of delivery applications, but the potential use of EVs for DNA delivery has scarcely been explored. Here, we report that exogenous linear DNA can be associated with EVs via electroporation in quantities sufficient to yield an average of hundreds of DNA molecules per vesicle. We determined that loading efficiency and capacity of DNA in EVs is dependent on DNA size, with linear DNA molecules less than 1000 bp in length being more efficiently associated with EVs compared to larger linear DNAs and plasmid DNAs using this approach. We further showed that EV size is also determinant with regard to DNA loading, as larger microvesicles encapsulated more linear and plasmid DNA than smaller, exosome-like EVs. Additionally, we confirmed the ability of EVs to transfer foreign DNA loaded via electroporation into recipient cells, although functional gene delivery was not observed. These results establish critical parameters that inform the potential use of EVs for gene therapy and, in agreement with other recent results, suggest that substantial barriers must be overcome to establish EVs as broadly applicable DNA delivery vehicles.
Collapse
Affiliation(s)
- Tek N Lamichhane
- Fischell Department of Bioengineering, ‡Program in Oncology, Marlene and Stewart Greenebaum Cancer Center, and §Program in Molecular and Cell Biology, University of Maryland , College Park, Maryland 20742, United States
| | - Rahul S Raiker
- Fischell Department of Bioengineering, ‡Program in Oncology, Marlene and Stewart Greenebaum Cancer Center, and §Program in Molecular and Cell Biology, University of Maryland , College Park, Maryland 20742, United States
| | - Steven M Jay
- Fischell Department of Bioengineering, ‡Program in Oncology, Marlene and Stewart Greenebaum Cancer Center, and §Program in Molecular and Cell Biology, University of Maryland , College Park, Maryland 20742, United States
| |
Collapse
|
394
|
Garapaty A, Champion JA. Biomimetic and synthetic interfaces to tune immune responses. Biointerphases 2015; 10:030801. [PMID: 26178262 PMCID: PMC4506308 DOI: 10.1116/1.4922798] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/06/2015] [Accepted: 06/10/2015] [Indexed: 01/05/2023] Open
Abstract
Organisms depend upon complex intercellular communication to initiate, maintain, or suppress immune responses during infection or disease. Communication occurs not only between different types of immune cells, but also between immune cells and nonimmune cells or pathogenic entities. It can occur directly at the cell-cell contact interface, or indirectly through secreted signals that bind cell surface molecules. Though secreted signals can be soluble, they can also be particulate in nature and direct communication at the cell-particle interface. Secreted extracellular vesicles are an example of native particulate communication, while viruses are examples of foreign particulates. Inspired by communication at natural immunological interfaces, biomimetic materials and designer molecules have been developed to mimic and direct the type of immune response. This review describes the ways in which native, biomimetic, and designer materials can mediate immune responses. Examples include extracellular vesicles, particles that mimic immune cells or pathogens, and hybrid designer molecules with multiple signaling functions, engineered to target and bind immune cell surface molecules. Interactions between these materials and immune cells are leading to increased understanding of natural immune communication and function, as well as development of immune therapeutics for the treatment of infection, cancer, and autoimmune disease.
Collapse
Affiliation(s)
- Anusha Garapaty
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, Georgia 30332
| | - Julie A Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, Georgia 30332
| |
Collapse
|
395
|
Laurent LC, Abdel-Mageed AB, Adelson PD, Arango J, Balaj L, Breakefield X, Carlson E, Carter BS, Majem B, Chen CC, Cocucci E, Danielson K, Courtright A, Das S, Abd Elmageed ZY, Enderle D, Ezrin A, Ferrer M, Freedman J, Galas D, Gandhi R, Huentelman MJ, Van Keuren-Jensen K, Kalani Y, Kim Y, Krichevsky AM, Lai C, Lal-Nag M, Laurent CD, Leonardo T, Li F, Malenica I, Mondal D, Nejad P, Patel T, Raffai RL, Rubio R, Skog J, Spetzler R, Sun J, Tanriverdi K, Vickers K, Wang L, Wang Y, Wei Z, Weiner HL, Wong D, Yan IK, Yeri A, Gould S. Meeting report: discussions and preliminary findings on extracellular RNA measurement methods from laboratories in the NIH Extracellular RNA Communication Consortium. J Extracell Vesicles 2015; 4:26533. [PMID: 26320937 PMCID: PMC4553263 DOI: 10.3402/jev.v4.26533] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 04/17/2015] [Accepted: 05/03/2015] [Indexed: 01/14/2023] Open
Abstract
Extracellular RNAs (exRNAs) have been identified in all tested biofluids and have been associated with a variety of extracellular vesicles, ribonucleoprotein complexes and lipoprotein complexes. Much of the interest in exRNAs lies in the fact that they may serve as signalling molecules between cells, their potential to serve as biomarkers for prediction and diagnosis of disease and the possibility that exRNAs or the extracellular particles that carry them might be used for therapeutic purposes. Among the most significant bottlenecks to progress in this field is the lack of robust and standardized methods for collection and processing of biofluids, separation of different types of exRNA-containing particles and isolation and analysis of exRNAs. The Sample and Assay Standards Working Group of the Extracellular RNA Communication Consortium is a group of laboratories funded by the U.S. National Institutes of Health to develop such methods. In our first joint endeavour, we held a series of conference calls and in-person meetings to survey the methods used among our members, placed them in the context of the current literature and used our findings to identify areas in which the identification of robust methodologies would promote rapid advancements in the exRNA field.
Collapse
Affiliation(s)
- Louise C Laurent
- Division of Maternal Fetal Medicine, Department of Reproductive Medicine, University of California San Diego, San Diego, CA, USA.,Sanford Consortium for Regenerative Medicine, San Diego, CA, USA;
| | - Asim B Abdel-Mageed
- Department of Urology, Tulane University, School of Medicine, New Orleans, LA, USA
| | | | | | - Leonora Balaj
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA.,Program in Neuroscience, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Xandra Breakefield
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA.,Program in Neuroscience, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth Carlson
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Bob S Carter
- Center for Theoretical and Applied Neuro-Oncology, Division of Neurosurgery, University of California San Diego, San Diego, CA, USA
| | - Blanca Majem
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - Clark C Chen
- Center for Theoretical and Applied Neuro-Oncology, Division of Neurosurgery, University of California San Diego, San Diego, CA, USA
| | - Emanuele Cocucci
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kirsty Danielson
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Amanda Courtright
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Saumya Das
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD, USA
| | - Jane Freedman
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - David Galas
- Pacific Northwest Diabetes Research Institute, Seattle, WA, USA.,Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Roopali Gandhi
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Yong Kim
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - Anna M Krichevsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charles Lai
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA.,Program in Neuroscience, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Madhu Lal-Nag
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD, USA
| | - Clara D Laurent
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Trevor Leonardo
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Feng Li
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - Ivana Malenica
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Debasis Mondal
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Parham Nejad
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic Florida, Jacksonville, FL, USA.,Department of Cancer Biology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Robert L Raffai
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA.,Department of Veteran's Affairs, San Francisco, CA, USA
| | - Renee Rubio
- Center for Cancer Computational Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | | | | | - Jie Sun
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - Kahraman Tanriverdi
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Kasey Vickers
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Liang Wang
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yaoyu Wang
- Center for Cancer Computational Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Zhiyun Wei
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Howard L Weiner
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David Wong
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - Irene K Yan
- Department of Cancer Biology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Ashish Yeri
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Stephen Gould
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
396
|
Extracellular Vesicles from MSC Modulate the Immune Response to Renal Allografts in a MHC Disparate Rat Model. Stem Cells Int 2015; 2015:486141. [PMID: 26351463 PMCID: PMC4550760 DOI: 10.1155/2015/486141] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/02/2015] [Indexed: 12/13/2022] Open
Abstract
Application of mesenchymal stromal cells (MSC) has been proposed for solid organ transplantation based on their potent immunomodulatory effects. Since side effects from the injection of large cells cannot be excluded, the hypothesis rises that extracellular vesicles (EV) may cause immunomodulatory effects comparable to MSC without additional side effects. We used MSC-derived EV in a rat renal transplant model for acute rejection. We analysed peripheral blood leukocytes (PBL), kidney function, graft infiltrating cells, cytokines in the graft, and alloantibody development in animals without (allo) and with EV application (allo EV). There was no difference in kidney function and in the PBL subpopulation including Tregs between allo and allo EV. In the grafts T- and B-cell numbers were significantly higher and NK-cells lower in the allo EV kidneys compared to allo. TNF-α transcription was lower in allo EV grafts compared to allo; there was no difference regarding IL-10 and in the development of alloantibodies. In conclusion, the different cell infiltrates and cytokine transcription suggest distinct immunomodulatory properties of EV in allotransplantation. While the increased T- and B-cells in the allo EV grafts may represent a missing or negative effect on the adaptive immune system, EV seem to influence the innate immune system in a contrary fashion.
Collapse
|
397
|
Bandala C, Cortés-Algara AL, Mejía-Barradas CM, Ilizaliturri-Flores I, Dominguez-Rubio R, Bazán-Méndez CI, Floriano-Sánchez E, Luna-Arias JP, Anaya-Ruiz M, Lara-Padilla E. Botulinum neurotoxin type A inhibits synaptic vesicle 2 expression in breast cancer cell lines. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:8411-8418. [PMID: 26339411 PMCID: PMC4555739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 06/29/2015] [Indexed: 06/05/2023]
Abstract
AIM It is known that botulinum neurotoxin type A (BoNTA) improves some kinds of cancer (e.g. prostate) and that synaptic vesicle glycoprotein 2 (SV2) is the molecular target of this neurotoxin. Besides having potential therapeutic value, this glycoprotein has recently been proposed as a molecular marker for several types of cancer. Although the mechanisms of cancer development and the improvement found with botulinum treatment are not well understood, the formation of the botulinum-SV2 complex may influence the presence and distribution of SV2 and the function of vesicles. To date, there are no reports on the possible effect of botulinum on breast cancer of unknown causes, which have a great impact on women's health. Thus we determined the presence of SV2 in three breast cancer cell lines and the alterations found with botulinum application. MATERIALS AND METHODS With and without adding 10 units of botulinum, SV2 protein expression was determined by optical densitometry in T47D, MDA-MB-231 and MDA-MB-453 cell lines and the distribution of SV2 was observed with immunochemistry (hematoxylin staining). RESULTS The SV2 protein was abundant in the cancer cells herein tested, and maximally so in T47D. In all three cancer cell lines botulinum diminished SV2 expression, which was found mostly in the cell periphery. CONCLUSION SV2 could be a molecular marker in breast cancer. Its expression and distribution is regulated by botulinum, suggesting an interesting control mechanism for SV2 expression and a possible alternative therapy. Further studies are needed in this sense.
Collapse
Affiliation(s)
| | - A L Cortés-Algara
- Laboratory of Molecular Oncology and Oxidative Stress, Medical School, IPN Mexico
| | - C M Mejía-Barradas
- Laboratory of Molecular Oncology and Oxidative Stress, Medical School, IPN Mexico
| | | | | | | | | | | | - M Anaya-Ruiz
- Laboratory of Cell Biology CIBIOR, IMSS Puebla, Mexico
| | - E Lara-Padilla
- Laboratory of Molecular Oncology and Oxidative Stress, Medical School, IPN Mexico
| |
Collapse
|
398
|
Miller IV, Grunewald TGP. Tumour-derived exosomes: Tiny envelopes for big stories. Biol Cell 2015; 107:287-305. [PMID: 25923825 DOI: 10.1111/boc.201400095] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/24/2015] [Indexed: 12/14/2022]
Abstract
The discovery of exosomes, which are small, 30-100 nm sized extracellular vesicles that are released by virtual all cells, has initiated a rapidly expanding and vibrant research field. Current investigations are mainly directed toward the role of exosomes in intercellular communication and their potential value as biomarkers for a broad set of diseases. By horizontal transfer of molecular information such as micro RNAs, messenger RNAs or proteins, as well as by receptor-cell interactions, exosomes are capable to mediate the reprogramming of surrounding cells. Herein, we review how especially cancer cells take advantage of this mechanism to influence their microenvironment in favour of immune escape, therapy resistance, tumour growth and metastasis. Moreover, we provide a comprehensive microarray analysis (n > 1970) to study the expression patterns of genes known to be intimately involved in exosome biogenesis across 26 different cancer entities and a normal tissue atlas. Consistent with the elevated production of exosomes observed in cancer patient plasma, we found a significant overexpression especially of RAB27A, CHMP4C and SYTL4 in the corresponding cancer entities as compared to matched normal tissues. Finally, we discuss the immune-modulatory and anti-tumorigenic functions of exosomes as well as innovative approaches to specifically target the exosomal circuits in experimental cancer therapy.
Collapse
Affiliation(s)
- Isabella V Miller
- Department of Medicine II, Würzburg University Medical Centre, Würzburg, 97080, Germany
| | - Thomas G P Grunewald
- Laboratory for Paediatric Sarcoma Biology, Institute for Pathology of the LMU Munich, Munich, 80337, Germany
| |
Collapse
|
399
|
Simpson RJ. Editorial: Extracellular vesicles: a paradigm shift in how we think about cell-cell communication. Semin Cell Dev Biol 2015; 40:1-3. [PMID: 25976596 DOI: 10.1016/j.semcdb.2015.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Richard J Simpson
- La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
400
|
Abstract
Information exchange executed by extracellular vesicles, including exosomes, is a newly described form of intercellular communication important in the development and physiology of neural systems. These vesicles can be released from cells, are packed with information including signaling proteins and both coding and regulatory RNAs, and can be taken up by target cells, thereby facilitating the transfer of multilevel information. Recent studies demonstrate their critical role in physiological processes, including nerve regeneration, synaptic function, and behavior. These vesicles also have a sinister role in the propagation of toxic amyloid proteins in neurodegenerative conditions, including prion diseases and Alzheimer's and Parkinson's diseases, in inducing neuroinflammation by exchange of information between the neurons and glia, as well as in aiding tumor progression in the brain by subversion of normal cells. This article provides a summary of topics covered in a symposium and is not meant to be a comprehensive review of the subject.
Collapse
|