351
|
Hasso S, Chan J. Chemical Approaches to Angiogenesis in Development and Regeneration. Methods Cell Biol 2011; 101:181-95. [DOI: 10.1016/b978-0-12-387036-0.00008-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
352
|
Cai C, Zhao Y, Tong X, Fu S, Li Y, Wu Y, Li X, Lou Z. Crystallization and preliminary X-ray analysis of the vWA domain of human anthrax toxin receptor 1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:64-7. [PMID: 21206026 PMCID: PMC3079974 DOI: 10.1107/s1744309110043770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 10/27/2010] [Indexed: 11/10/2022]
Abstract
The Gram-positive spore-forming bacterium Bacillus anthracis causes anthrax by secreting anthrax toxin, which consists of protective antigen (PA), lethal factor and oedema factor. Binding of PA to receptors triggers the multi-step process of anthrax toxin entry into target cells. Two distinct cellular receptors, ANTXR1 (also known as tumour endothelial marker 8; TEM8) and ANTXR2 (also known as capillary morphogenesis protein 2; CMG2), for anthrax toxin have been identified. Although the crystal structure of the extracellular von Willebrand factor A (vWA) domain of CMG2 has been reported, the difference between the vWA domains of TEM8 and CMG2 remains unclear because there are no structural data for the TEM8 vWA domain. In this report, the TEM8 vWA domain was expressed, purified and crystallized. X-ray diffraction data were collected to 1.8 Å resolution from a single crystal, which belonged to space group P1 with unit-cell parameters a=65.9, b=66.1, c=74.4 Å, α=63.7, β=88.2, γ=59.9°.
Collapse
Affiliation(s)
- Chenguang Cai
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dongdajie, Fengtai, Beijing 100071, People’s Republic of China
| | - Ying Zhao
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Xiaohang Tong
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, People’s Republic of China
| | - Sheng Fu
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, People’s Republic of China
| | - Yuanyuan Li
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, People’s Republic of China
| | - Yang Wu
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, People’s Republic of China
| | - Xumei Li
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, People’s Republic of China
| | - Zhiyong Lou
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
353
|
Jesus S, Borges O. Recent Developments in the Nasal Immunization against Anthrax. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/wjv.2011.13008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
354
|
Arciniega JL, Domínguez-Castillo RI. Development and validation of serological methods for human vaccine potency testing: Case study of an anthrax vaccine. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.provac.2011.10.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
355
|
Fieldhouse RJ, Turgeon Z, White D, Merrill AR. Cholera- and anthrax-like toxins are among several new ADP-ribosyltransferases. PLoS Comput Biol 2010; 6:e1001029. [PMID: 21170356 PMCID: PMC3000352 DOI: 10.1371/journal.pcbi.1001029] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 11/10/2010] [Indexed: 11/19/2022] Open
Abstract
Chelt, a cholera-like toxin from Vibrio cholerae, and Certhrax, an anthrax-like toxin from Bacillus cereus, are among six new bacterial protein toxins we identified and characterized using in silico and cell-based techniques. We also uncovered medically relevant toxins from Mycobacterium avium and Enterococcus faecalis. We found agriculturally relevant toxins in Photorhabdus luminescens and Vibrio splendidus. These toxins belong to the ADP-ribosyltransferase family that has conserved structure despite low sequence identity. Therefore, our search for new toxins combined fold recognition with rules for filtering sequences--including a primary sequence pattern--to reduce reliance on sequence identity and identify toxins using structure. We used computers to build models and analyzed each new toxin to understand features including: structure, secretion, cell entry, activation, NAD+ substrate binding, intracellular target binding and the reaction mechanism. We confirmed activity using a yeast growth test. In this era where an expanding protein structure library complements abundant protein sequence data--and we need high-throughput validation--our approach provides insight into the newest toxin ADP-ribosyltransferases.
Collapse
Affiliation(s)
- Robert J. Fieldhouse
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Zachari Turgeon
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Dawn White
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - A. Rod Merrill
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
356
|
Díaz-Moscoso A, Méndez-Ardoy A, Ortega-Caballero F, Benito JM, Ortiz Mellet C, Defaye J, Robinson TM, Yohannes A, Karginov VA, García Fernández JM. Symmetry Complementarity-Guided Design of Anthrax Toxin Inhibitors Based on β-Cyclodextrin: Synthesis and Relative Activities of Face-Selective Functionalized Polycationic Clusters. ChemMedChem 2010; 6:181-92. [DOI: 10.1002/cmdc.201000419] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
357
|
Barth H. Exploring the role of host cell chaperones/PPIases during cellular up-take of bacterial ADP-ribosylating toxins as basis for novel pharmacological strategies to protect mammalian cells against these virulence factors. Naunyn Schmiedebergs Arch Pharmacol 2010; 383:237-45. [PMID: 21120455 DOI: 10.1007/s00210-010-0581-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 11/10/2010] [Indexed: 01/31/2023]
Abstract
Bacterial exotoxins exploit protein transport pathways of their mammalian target cells to deliver their enzymatic active moieties into the cytosol. There, they modify their specific substrate molecules resulting in cell damage and the clinical symptoms characteristic for each individual toxin. We have investigated the cellular uptake of the binary actin ADP-ribosylating C2 toxin from Clostridium botulinum and the binary lethal toxin from Bacillus anthracis, a metalloprotease. Both toxins are composed of a binding/translocation component and a separate enzyme component. During cellular uptake, the binding/translocation components form pores in membranes of acidified endosomes, and the enzyme components translocate as unfolded proteins through the pores into the cytosol. We found by using specific pharmacological inhibitors that the host cell chaperone Hsp90 and the peptidyl-prolyl cis/trans isomerase cyclophilin A are crucial for membrane translocation of the enzyme component of the C2 toxin but not of the lethal toxin, although the structures of the binding/translocation components and the overall uptake mechanisms of both toxins are widely comparable. In conclusion, the new findings imply that Hsp90 and cyclophilin function selectively in promoting translocation of certain bacterial toxins depending on the enzyme domains of the individual toxins. The targeted pharmacological inhibition of individual host cell chaperones/PPIases prevents uptake of certain bacterial exotoxins into the cytosol of mammalian cells and thus protects cells from intoxication. Such substances could represent attractive lead substances for development of novel therapeutics to prevent toxic effects during infection with toxin-producing bacteria.
Collapse
Affiliation(s)
- Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
358
|
Jiao GS, Kim S, Moayeri M, Cregar-Hernandez L, McKasson L, Margosiak SA, Leppla SH, Johnson AT. Antidotes to anthrax lethal factor intoxication. Part 1: Discovery of potent lethal factor inhibitors with in vivo efficacy. Bioorg Med Chem Lett 2010; 20:6850-3. [PMID: 20864339 PMCID: PMC2965585 DOI: 10.1016/j.bmcl.2010.08.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/10/2010] [Accepted: 08/12/2010] [Indexed: 10/19/2022]
Abstract
Sub-nanomolar small molecule inhibitors of anthrax lethal factor have been identified using SAR and Merck L915 (4) as a model compound. One of these compounds (16) provided 100% protection in a rat lethal toxin model of anthrax disease.
Collapse
|
359
|
Lang AE, Schmidt G, Sheets JJ, Aktories K. Targeting of the actin cytoskeleton by insecticidal toxins from Photorhabdus luminescens. Naunyn Schmiedebergs Arch Pharmacol 2010; 383:227-35. [PMID: 21072628 DOI: 10.1007/s00210-010-0579-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 10/27/2010] [Indexed: 10/18/2022]
Abstract
Photorhabdus luminescens produces several types of protein toxins, which are essential for participation in a trilateral symbiosis with nematodes and insects. The nematodes, carrying the bacteria, invade insect larvae and release the bacteria, which kill the insects with their toxins. Recently, the molecular mechanisms of the toxin complexes PTC3 and PTC5 have been elucidated. The biologically active components of the toxin complexes are ADP-ribosyltransferases, which modify actin and Rho GTPases, respectively. The actions of the toxins are described and compared with other bacterial protein toxins acting on the cytoskeleton.
Collapse
Affiliation(s)
- Alexander E Lang
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| | | | | | | |
Collapse
|
360
|
Sweeney DA, Cui X, Solomon SB, Vitberg DA, Migone TS, Scher D, Danner RL, Natanson C, Subramanian GM, Eichacker PQ. Anthrax lethal and edema toxins produce different patterns of cardiovascular and renal dysfunction and synergistically decrease survival in canines. J Infect Dis 2010; 202:1885-96. [PMID: 21067373 DOI: 10.1086/657408] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND High mortality in the 2001 US and recent European anthrax outbreaks suggests that better understanding of the effects of the toxins produced by this bacterium is needed to improve treatment. METHODS AND RESULTS Here, 24-h edema (ETx) and lethal (LeTx) toxin infusions were investigated for 96 hin sedated canines receiving mechanical ventilation. The initial study compared similarly lethal doses of ETx (n=8) or LeTx (n=15) alone. ETx was 24 times less lethal than LeTx, and the median time to death in nonsurvivors (n=6 and n=9, respectively) was shorter with ETx (42 vs 67 h; P=.04). Compared with controls(n=9), both toxins decreased arterial and central venous pressures and systemic vascular resistance and increased heart rate, cardiac index, blood urea nitrogen (BUN) level, creatinine (Cr) concentration, BUN:Cr ratio, and hepatic transaminase levels (P ≤ .05 for toxin effect or time interaction). However, ETx stimulated early diuresis,reduced serum sodium levels, and had more pronounced vasodilatory effects, compared with LeTx, as reflected by greater or earlier central venous pressures, systemic vascular resistance, and changes in the BUN:Cr ratio(P ≤ .01). LeTx progressively decreased the left ventricular ejection fraction (P ≤ .002). In a subsequent study, a lethal dose of LeTx with an equimolar nonlethal ETx dose (n=8) increased mortality, compared with LeTx alone (n=8; P= .05). CONCLUSION Shock with ETx or LeTx may require differing supportive therapies, whereas toxin antagonists should likely target both toxins.
Collapse
Affiliation(s)
- Daniel A Sweeney
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
361
|
Kintzer AF, Sterling HJ, Tang II, Williams ER, Krantz BA. Anthrax toxin receptor drives protective antigen oligomerization and stabilizes the heptameric and octameric oligomer by a similar mechanism. PLoS One 2010; 5:e13888. [PMID: 21079738 PMCID: PMC2975657 DOI: 10.1371/journal.pone.0013888] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 10/18/2010] [Indexed: 11/21/2022] Open
Abstract
Background Anthrax toxin is comprised of protective antigen (PA), lethal factor (LF), and edema factor (EF). These proteins are individually nontoxic; however, when PA assembles with LF and EF, it produces lethal toxin and edema toxin, respectively. Assembly occurs either on cell surfaces or in plasma. In each milieu, PA assembles into a mixture of heptameric and octameric complexes that bind LF and EF. While octameric PA is the predominant form identified in plasma under physiological conditions (pH 7.4, 37°C), heptameric PA is more prevalent on cell surfaces. The difference between these two environments is that the anthrax toxin receptor (ANTXR) binds to PA on cell surfaces. It is known that the extracellular ANTXR domain serves to stabilize toxin complexes containing the PA heptamer by preventing premature PA channel formation—a process that inactivates the toxin. The role of ANTXR in PA oligomerization and in the stabilization of toxin complexes containing octameric PA are not understood. Methodology Using a fluorescence assembly assay, we show that the extracellular ANTXR domain drives PA oligomerization. Moreover, a dimeric ANTXR construct increases the extent of and accelerates the rate of PA assembly relative to a monomeric ANTXR construct. Mass spectrometry analysis shows that heptameric and octameric PA oligomers bind a full stoichiometric complement of ANTXR domains. Electron microscopy and circular dichroism studies reveal that the two different PA oligomers are equally stabilized by ANTXR interactions. Conclusions We propose that PA oligomerization is driven by dimeric ANTXR complexes on cell surfaces. Through their interaction with the ANTXR, toxin complexes containing heptameric and octameric PA oligomers are similarly stabilized. Considering both the relative instability of the PA heptamer and extracellular assembly pathway identified in plasma, we propose a means to regulate the development of toxin gradients around sites of infection during anthrax pathogenesis.
Collapse
Affiliation(s)
- Alexander F. Kintzer
- Department of Chemistry, University of California, Berkeley, California, United States of America
| | - Harry J. Sterling
- Department of Chemistry, University of California, Berkeley, California, United States of America
| | - Iok I. Tang
- Department of Chemistry, University of California, Berkeley, California, United States of America
| | - Evan R. Williams
- Department of Chemistry, University of California, Berkeley, California, United States of America
- California Institute for Quantitative Biomedical Research (QB3), University of California, Berkeley, California, United States of America
| | - Bryan A. Krantz
- Department of Chemistry, University of California, Berkeley, California, United States of America
- California Institute for Quantitative Biomedical Research (QB3), University of California, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
362
|
Brown BK, Cox J, Gillis A, VanCott TC, Marovich M, Milazzo M, Antonille TS, Wieczorek L, McKee KT, Metcalfe K, Mallory RM, Birx D, Polonis VR, Robb ML. Phase I study of safety and immunogenicity of an Escherichia coli-derived recombinant protective antigen (rPA) vaccine to prevent anthrax in adults. PLoS One 2010; 5:e13849. [PMID: 21079762 PMCID: PMC2974626 DOI: 10.1371/journal.pone.0013849] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 10/10/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The fatal disease caused by Bacillus anthracis is preventable with a prophylactic vaccine. The currently available anthrax vaccine requires a lengthy immunization schedule, and simpler and more immunogenic options for protection against anthrax are a priority for development. In this report we describe a phase I clinical trial testing the safety and immunogenicity of an anthrax vaccine using recombinant Escherichia coli-derived, B. anthracis protective antigen (rPA). METHODOLOGY/PRINCIPAL FINDINGS A total of 73 healthy adults ages 18-40 were enrolled and 67 received 2 injections separated by 4 weeks of either buffered saline placebo, or rPA formulated with or without 704 µg/ml Alhydrogel® adjuvant in increasing doses (5, 25, 50, 100 µg) of rPA. Participants were followed for one year and safety and immunologic data were assessed. Tenderness and warmth were the most common post-injection site reactions. No serious adverse events related to the vaccine were observed. The most robust humoral immune responses were observed in subjects receiving 50 µg of rPA formulated with Alhydrogel® with a geometric mean concentration of anti-rPA IgG antibodies of 283 µg/ml and a toxin neutralizing geometric 50% reciprocal geometric mean titer of 1061. The highest lymphoproliferative peak cellular response (median Lymphocyte Stimulation Index of 29) was observed in the group receiving 25 µg Alhydrogel®-formulated rPA. CONCLUSIONS/SIGNIFICANCE The vaccine was safe, well tolerated and stimulated a robust humoral and cellular response after two doses. TRIAL REGISTRATION ClinicalTrials.gov NCT00057525.
Collapse
Affiliation(s)
- Bruce K. Brown
- United States Military HIV Research Program, Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Josephine Cox
- United States Military HIV Research Program, Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Anita Gillis
- United States Military HIV Research Program, Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Thomas C. VanCott
- United States Military HIV Research Program, Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Mary Marovich
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Rockville, Maryland, United States of America
| | - Mark Milazzo
- United States Military HIV Research Program, Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Tanya Santelli Antonille
- United States Military HIV Research Program, Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Lindsay Wieczorek
- United States Military HIV Research Program, Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Kelly T. McKee
- DynPort Vaccine Company LLC, Frederick, Maryland, United States of America
| | - Karen Metcalfe
- DynPort Vaccine Company LLC, Frederick, Maryland, United States of America
| | - Raburn M. Mallory
- DynPort Vaccine Company LLC, Frederick, Maryland, United States of America
| | - Deborah Birx
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Rockville, Maryland, United States of America
| | - Victoria R. Polonis
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Rockville, Maryland, United States of America
| | - Merlin L. Robb
- United States Military HIV Research Program, Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| |
Collapse
|
363
|
Dmochewitz L, Lillich M, Kaiser E, Jennings LD, Lang AE, Buchner J, Fischer G, Aktories K, Collier RJ, Barth H. Role of CypA and Hsp90 in membrane translocation mediated by anthrax protective antigen. Cell Microbiol 2010; 13:359-73. [PMID: 20946244 DOI: 10.1111/j.1462-5822.2010.01539.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacillus anthracis lethal toxin consists of the protective antigen (PA) and the metalloprotease lethal factor (LF). During cellular uptake PA forms pores in membranes of endosomes, and unfolded LF translocates through the pores into the cytosol. We have investigated whether host cell chaperones facilitate translocation of LF and the fusion protein LF(N)DTA. LF(N) mediates uptake of LF(N)DTA into the cytosol, where DTA, the catalytic domain of diphtheria toxin, ADP-ribosylates elongation factor-2, allowing for detection of small amounts of translocated LF(N)DTA. Cyclosporin A, which inhibits peptidyl-prolyl cis/trans isomerase activity of cyclophilins, and radicicol, which inhibits Hsp90 activity, prevented uptake of LF(N)DTA into the cytosol of CHO-K1 cells and protected cells from intoxication by LF(N)DTA/PA. Both inhibitors, as well as an antibody against cyclophilin A blocked the release of active LF(N)DTA from endosomal vesicles into the cytosol in vitro. In contrast, the inhibitors did not inhibit cellular uptake of LF. In vitro, cyclophilin A and Hsp90 bound to LF(N)DTA and DTA but not to LF, implying that DTA determines this interaction. In conclusion, cyclophilin A and Hsp90 facilitate translocation of LF(N)DTA, but not of LF, across endosomal membranes, and thus they function selectively in promoting translocation of certain proteins, but not of others.
Collapse
Affiliation(s)
- Lydia Dmochewitz
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
364
|
Structural basis for the unfolding of anthrax lethal factor by protective antigen oligomers. Nat Struct Mol Biol 2010; 17:1383-90. [PMID: 21037566 PMCID: PMC3133606 DOI: 10.1038/nsmb.1923] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 09/07/2010] [Indexed: 01/07/2023]
Abstract
The protein transporter anthrax lethal toxin is composed of protective antigen (PA), a transmembrane translocase, and lethal factor (LF), a cytotoxic enzyme. After its assembly into holotoxin complexes, PA forms an oligomeric channel that unfolds LF and translocates it into the host cell. We report the crystal structure of the core of a lethal toxin complex to 3.1-Å resolution; the structure contains a PA octamer bound to four LF PA-binding domains (LF(N)). The first α-helix and β-strand of each LF(N) unfold and dock into a deep amphipathic cleft on the surface of the PA octamer, which we call the α clamp. The α clamp possesses nonspecific polypeptide binding activity and is functionally relevant to efficient holotoxin assembly, PA octamer formation, and LF unfolding and translocation. This structure provides insight into the mechanism of translocation-coupled protein unfolding.
Collapse
|
365
|
Toxin-based therapeutic approaches. Toxins (Basel) 2010; 2:2519-83. [PMID: 22069564 PMCID: PMC3153180 DOI: 10.3390/toxins2112519] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 10/25/2010] [Accepted: 10/26/2010] [Indexed: 01/08/2023] Open
Abstract
Protein toxins confer a defense against predation/grazing or a superior pathogenic competence upon the producing organism. Such toxins have been perfected through evolution in poisonous animals/plants and pathogenic bacteria. Over the past five decades, a lot of effort has been invested in studying their mechanism of action, the way they contribute to pathogenicity and in the development of antidotes that neutralize their action. In parallel, many research groups turned to explore the pharmaceutical potential of such toxins when they are used to efficiently impair essential cellular processes and/or damage the integrity of their target cells. The following review summarizes major advances in the field of toxin based therapeutics and offers a comprehensive description of the mode of action of each applied toxin.
Collapse
|
366
|
MyD88-dependent signaling protects against anthrax lethal toxin-induced impairment of intestinal barrier function. Infect Immun 2010; 79:118-24. [PMID: 20974827 DOI: 10.1128/iai.00963-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
MyD88-deficient mice were previously shown to have increased susceptibility to Bacillus anthracis infection relative to wild-type animals. To determine the mechanism by which MyD88 protects against B. anthracis infection, knockout mice were challenged with nonencapsulated, toxigenic B. anthracis or with anthrax toxins. MyD88-deficient mice had increased susceptibility to B. anthracis and anthrax lethal toxin but not to edema toxin. Lethal toxin alone induced marked multifocal intestinal ulcers in the knockout animals, compromising the intestinal epithelial barrier. The resulting enteric bacterial leakage in the knockout animals led to peritonitis and septicemia. Focal ulcers and erosion were also found in MyD88-heterozygous control mice but with far lower incidence and severity. B. anthracis infection also induced a similar enteric bacterial septicemia in MyD88-deficient mice but not in heterozygous controls. We show that lethal toxin and B. anthracis challenge induce bacteremia as a result of intestinal damage in MyD88-deficient mice. These results suggest that loss of the intestinal epithelial barrier and enteric bacterial septicemia may contribute to sensitizing MyD88-deficient mice to B. anthracis and that MyD88 plays a protective role against lethal toxin-induced impairment of intestinal barrier.
Collapse
|
367
|
Duverger A, Carré JM, Jee J, Leppla SH, Cormet-Boyaka E, Tang WJ, Tomé D, Boyaka PN. Contributions of edema factor and protective antigen to the induction of protective immunity by Bacillus anthracis edema toxin as an intranasal adjuvant. THE JOURNAL OF IMMUNOLOGY 2010; 185:5943-52. [PMID: 20952678 DOI: 10.4049/jimmunol.0902795] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have shown that intranasal coapplication of Bacillus anthracis protective Ag (PA) together with a B. anthracis edema factor (EF) mutant having reduced adenylate cyclase activity (i.e., EF-S414N) enhances anti-PA Ab responses, but also acts as a mucosal adjuvant for coadministered unrelated Ags. To elucidate the role of edema toxin (EdTx) components in its adjuvanticity, we examined how a PA mutant lacking the ability to bind EF (PA-U7) or another mutant that allows the cellular uptake of EF, but fails to efficiently mediate its translocation into the cytosol (PA-dFF), would affect EdTx-induced adaptive immunity. Native EdTx promotes costimulatory molecule expression by macrophages and B lymphocytes, and a broad spectrum of cytokine responses by cervical lymph node cells in vitro. These effects were reduced or abrogated when cells were treated with EF plus PA-dFF, or PA-U7 instead of PA. We also intranasally immunized groups of mice with a recombinant fusion protein of Yersinia pestis F1 and LcrV Ags (F1-V) together with EdTx variants consisting of wild-type or mutants PA and EF. Analysis of serum and mucosal Ab responses against F1-V or EdTx components (i.e., PA and EF) revealed no adjuvant activity in mice that received PA-U7 instead of PA. In contrast, coimmunization with PA-dFF enhanced serum Ab responses. Finally, immunization with native PA and an EF mutant lacking adenylate cyclase activity (EF-K346R) failed to enhance Ab responses. In summary, a fully functional PA and a minimum of adenylate cyclase activity are needed for EdTx to act as a mucosal adjuvant.
Collapse
Affiliation(s)
- Alexandra Duverger
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
368
|
Zornetta I, Brandi L, Janowiak B, Dal Molin F, Tonello F, Collier RJ, Montecucco C. Imaging the cell entry of the anthrax oedema and lethal toxins with fluorescent protein chimeras. Cell Microbiol 2010; 12:1435-45. [PMID: 20438574 DOI: 10.1111/j.1462-5822.2010.01480.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To investigate the cell entry and intracellular trafficking of anthrax oedema factor (EF) and lethal factor (LF), they were C-terminally fused to the enhanced green fluorescent protein (EGFP) and monomeric Cherry (mCherry) fluorescent proteins. Both chimeras bound to the surface of BHK cells treated with protective antigen (PA) in a patchy mode. Binding was followed by rapid internalization, and the two anthrax factors were found to traffic along the same endocytic route and with identical kinetics, indicating that their intracellular path is essentially dictated by PA. Colocalization studies indicated that anthrax toxins enter caveolin-1 containing compartments and then endosomes marked by phoshatidylinositol 3-phoshate and Rab5, but not by early endosome antigen 1 and transferrin. After 40 min, both EF and LF chimeras were observed to localize within late compartments. Eventually, LF and EF appeared in the cytosol with a time-course consistent with translocation from late endosomes. Only the EGFP derivatives reached the cytosol because they are translocated by the PA channel, while the mCherry derivatives are not. This difference is attributed to a higher resistance of mCherry to unfolding. After translocation, LF disperses in the cytosol, while EF localizes on the cytosolic face of late endosomes.
Collapse
Affiliation(s)
- Irene Zornetta
- Dipartimento di Scienze Biomediche dell'Università di Padova and Istituto di Neuroscienze del CNR, Via G. Colombo 3, 35100 Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
369
|
Constitutive MEK1 activation rescues anthrax lethal toxin-induced vascular effects in vivo. Infect Immun 2010; 78:5043-53. [PMID: 20855511 DOI: 10.1128/iai.00604-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anthrax lethal toxin (LT) increases vascular leakage in a number of mammalian models and in human anthrax disease. Using a zebrafish model, we determined that vascular delivery of LT increased permeability, which was phenocopied by treatment with a selective chemical inhibitor of MEK1 and MEK2 (also known as mitogen-activated protein kinase [MAPK] kinase, MEK, or MKK). Here we investigate further the role of MEK1/phospho-ERK (pERK) in the action of LT. Overexpression of wild-type zebrafish MEK1 at high levels did not induce detrimental effects. However, a constitutively activated version, MEK1(S219D,S223D) (MEK1DD), induced early defects in embryonic development that correlated with increased ERK/MAPK phosphorylation. To bypass these early developmental defects and to provide a genetic tool for examining the action of lethal factor (LF), we generated inducible transgenic zebrafish lines expressing either wild-type or activated MEK1 under the control of a heat shock promoter. Remarkably, induction of MEK1DD transgene expression prior to LT delivery prevented vascular damage, while the wild-type MEK1 line did not. In the presence of both LT and MEK1DD transgene expression, cardiovascular development and function proceeded normally in most embryos. The resistance to microsphere leakage in transgenic animals demonstrated a protective role against LT-induced vascular permeability. A consistent increase in ERK phosphorylation among LT-resistant MEK1DD transgenic animals provided additional confirmation of transgene activation. These findings provide a novel genetic approach to examine mechanism of action of LT in vivo through one of its known targets. This approach may be generally applied to investigate additional pathogen-host interactions and to provide mechanistic insights into host signaling pathways affected by pathogen entry.
Collapse
|
370
|
Ramey JD, Villareal VA, Ng C, Ward SC, Xiong JP, Clubb RT, Bradley KA. Anthrax toxin receptor 1/tumor endothelial marker 8: mutation of conserved inserted domain residues overrides cytosolic control of protective antigen binding. Biochemistry 2010; 49:7403-10. [PMID: 20690680 DOI: 10.1021/bi100887w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Anthrax toxin receptor 1 (ANTXR1)/tumor endothelial marker 8 (TEM8) is one of two known proteinaceous cell surface anthrax toxin receptors. A metal ion dependent adhesion site (MIDAS) present in the integrin-like inserted (I) domain of ANTXR1 mediates the binding of the anthrax toxin subunit, protective antigen (PA). Here we provide evidence that single point mutations in the I domain can override regulation of ANTXR1 ligand-binding activity mediated by intracellular signals. A previously reported MIDAS mutant of ANTXR1 (T118A) was found to retain normal metal ion binding and secondary structure but failed to bind PA, consistent with a locked inactive state. Conversely, mutation of a conserved I domain phenylalanine residue to a tryptophan (F205W) increased the proportion of cell-surface ANTXR1 that bound PA, consistent with a locked active state. Interestingly, the K(D) and total amount of PA bound by the isolated ANTXR1 I domain were not affected by the F205W mutation, indicating that ANTXR1 is preferentially found in the active state in the absence of inside-out signaling. Circular dichroism (CD) spectroscopy and (1)H-(15)N heteronuclear single-quantum coherence (HSQC) nuclear magnetic resonance (NMR) revealed that structural changes between T118A, F205W, and WT I domains were minor despite a greater than 10(3)-fold difference in their abilities to bind toxin. Regulation of toxin binding has important implications for the design of toxin inhibitors and for the targeting of ANTXR1 for antitumor therapies.
Collapse
Affiliation(s)
- Jordan D Ramey
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
371
|
Wimalasena DS, Janowiak BE, Lovell S, Miyagi M, Sun J, Zhou H, Hajduch J, Pooput C, Kirk KL, Battaile KP, Bann JG. Evidence that histidine protonation of receptor-bound anthrax protective antigen is a trigger for pore formation. Biochemistry 2010; 49:6973-83. [PMID: 20672855 PMCID: PMC2924283 DOI: 10.1021/bi100647z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The protective antigen (PA) component of the anthrax toxin forms pores within the low pH environment of host endosomes through mechanisms that are poorly understood. It has been proposed that pore formation is dependent on histidine protonation. In previous work, we biosynthetically incorporated 2-fluorohistidine (2-FHis), an isosteric analogue of histidine with a significantly reduced pK(a) ( approximately 1), into PA and showed that the pH-dependent conversion from the soluble prepore to a pore was unchanged. However, we also observed that 2-FHisPA was nonfunctional in the ability to mediate cytotoxicity of CHO-K1 cells by LF(N)-DTA and was defective in translocation through planar lipid bilayers. Here, we show that the defect in cytotoxicity is due to both a defect in translocation and, when bound to the host cellular receptor, an inability to undergo low pH-induced pore formation. Combining X-ray crystallography with hydrogen-deuterium (H-D) exchange mass spectrometry, our studies lead to a model in which hydrogen bonds to the histidine ring are strengthened by receptor binding. The combination of both fluorination and receptor binding is sufficient to block low pH-induced pore formation.
Collapse
Affiliation(s)
| | - Blythe E. Janowiak
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Scott Lovell
- Del Shankel Structural Biology Center, The University of Kansas, Lawrence, Kansas 66047
| | - Masaru Miyagi
- Case Center for Proteomics and Bioinformatics, Department of Pharmacology, Department of Ophthalmology and Visual Sciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4988
| | - Jianjun Sun
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Haiying Zhou
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, USA
| | - Jan Hajduch
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, USA
| | - Chaya Pooput
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, USA
| | - Kenneth L. Kirk
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, USA
| | - Kevin P. Battaile
- IMCA-CAT, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Bldg 435A, Argonne, IL 60439, USA
| | - James G. Bann
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, USA
| |
Collapse
|
372
|
A chimeric protein that functions as both an anthrax dual-target antitoxin and a trivalent vaccine. Antimicrob Agents Chemother 2010; 54:4750-7. [PMID: 20713663 DOI: 10.1128/aac.00640-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Effective measures for the prophylaxis and treatment of anthrax are still required for counteracting the threat posed by inhalation anthrax. In this study, we first demonstrated that the chimeric protein LFn-PA, created by fusing the protective antigen (PA)-binding domain of lethal factor (LFn) to PA, retained the functions of the respective molecules. On the basis of this observation, we attempted to develop an antitoxin that targets the binding of lethal factor (LF) and/or edema factor (EF) to PA and the transportation of LF/EF. Therefore, we replaced PA in LFn-PA with a dominant-negative inhibitory PA (DPA), i.e., PA(F427D). In in vitro models of anthrax intoxication, the LFn-DPA chimera showed 3-fold and 2-fold higher potencies than DPA in protecting sensitive cells against anthrax lethal toxin (LeTx) and edema toxin (EdTx), respectively. In animal models, LFn-DPA exhibited strong potency in rescuing mice from lethal challenge with LeTx. We also evaluated the immunogenicity and immunoprotective efficacy of LFn-DPA as an anthrax vaccine candidate. In comparison with recombinant PA, LFn-DPA induced significantly higher levels of the anti-PA immune response. Moreover, LFn-DPA elicited an anti-LF antibody response that could cross-react with EF. Mice immunized with LFn-DPA tolerated a LeTx challenge that was 5 times its 50% lethal dose. Thus, LFn-DPA represents a highly effective trivalent vaccine candidate for both preexposure and postexposure vaccination. Overall, we have developed a novel and dually functional reagent for the prophylaxis and treatment of anthrax.
Collapse
|
373
|
Newman ZL, Crown D, Leppla SH, Moayeri M. Anthrax lethal toxin activates the inflammasome in sensitive rat macrophages. Biochem Biophys Res Commun 2010; 398:785-9. [PMID: 20638366 DOI: 10.1016/j.bbrc.2010.07.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 07/13/2010] [Indexed: 11/29/2022]
Abstract
Anthrax lethal toxin (LT) is an important virulence factor for Bacillus anthracis. In mice, LT lyses macrophages from certain inbred strains in less than 2h by activating the Nlrp1b inflammasome and caspase-1, while macrophages from other strains remain resistant to the toxin's effects. We analyzed LT effects in toxin-sensitive and resistant rat macrophages to test if a similar pathway was involved in rat macrophage death. LT activates caspase-1 in rat macrophages from strains harboring LT-sensitive macrophages in a manner similar to that in toxin-sensitive murine macrophages. This activation of caspase-1 is dependent on proteasome activity, and sensitive macrophages are protected from LT's lytic effects by lactacystin. Proteasome inhibition also delayed the death of rats in response to LT, confirming our previous data implicating the rat Nlrp1 inflammasome in animal death. Quinidine, caspase-1 inhibitors, the cathepsin B inhibitor CA-074Me, and heat shock also protected rat macrophages from LT toxicity. These data support the existence of an active functioning LT-responsive Nlrp1 inflammasome in rat macrophages. The activation of the rat Nlrp1 inflammasome is required for LT-mediated rat macrophage lysis and contributes to animal death.
Collapse
Affiliation(s)
- Zachary L Newman
- Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, Building 33, Room 1W20B, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
374
|
Abstract
Large bacterial protein toxins autotranslocate functional effector domains to the eukaryotic cell cytosol, resulting in alterations to cellular functions that ultimately benefit the infecting pathogen. Among these toxins, the clostridial glucosylating toxins (CGTs) produced by Gram-positive bacteria and the multifunctional-autoprocessing RTX (MARTX) toxins of Gram-negative bacteria have distinct mechanisms for effector translocation, but a shared mechanism of post-translocation autoprocessing that releases these functional domains from the large holotoxins. These toxins carry an embedded cysteine protease domain (CPD) that is activated for autoprocessing by binding inositol hexakisphosphate (InsP6), a molecule found exclusively in eukaryotic cells. Thus, InsP6-induced autoprocessing represents a unique mechanism for toxin effector delivery specifically within the target cell. This review summarizes recent studies of the structural and molecular events for activation of autoprocessing for both CGT and MARTX toxins, demonstrating both similar and potentially distinct aspects of autoprocessing among the toxins that utilize this method of activation and effector delivery.
Collapse
|
375
|
Bouzianas DG. Current and future medical approaches to combat the anthrax threat. J Med Chem 2010; 53:4305-31. [PMID: 20102155 DOI: 10.1021/jm901024b] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dimitrios G Bouzianas
- Laboratory of Molecular Endocrinology, Division of Endocrinology and Metabolism, AHEPA University Hospital, 1 S. Kyriakidi Street, P.C. 54636, Thessaloniki, Macedonia, Greece.
| |
Collapse
|
376
|
Gawlik K, Remacle AG, Shiryaev SA, Golubkov VS, Ouyang M, Wang Y, Strongin AY. A femtomol range FRET biosensor reports exceedingly low levels of cell surface furin: implications for the processing of anthrax protective antigen. PLoS One 2010; 5:e11305. [PMID: 20585585 PMCID: PMC2892035 DOI: 10.1371/journal.pone.0011305] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 06/06/2010] [Indexed: 11/28/2022] Open
Abstract
Furin, a specialized endoproteinase, transforms proproteins into biologically active proteins. Furin function is important for normal cells and also in multiple pathologies including malignancy and anthrax. Furin is believed to cycle between the Golgi compartment and the cell surface. Processing of anthrax protective antigen-83 (PA83) by the cells is considered thus far as evidence for the presence of substantial levels of cell-surface furin. To monitor furin, we designed a cleavage-activated FRET biosensor in which the Enhanced Cyan and Yellow Fluorescent Proteins were linked by the peptide sequence SNSRKKR / STSAGP derived from anthrax PA83. Both because of the sensitivity and selectivity of the anthrax sequence to furin proteolysis and the FRET-based detection, the biosensor recorded the femtomolar levels of furin in the in vitro reactions and cell-based assays. Using the biosensor that was cell-impermeable because of its size and also by other relevant methods, we determined that exceedingly low levels, if any, of cell-surface furin are present in the intact cells and in the cells with the enforced furin overexpression. This observation was in a sharp contrast with the existing concepts about the furin presentation on cell surfaces and anthrax disease mechanism. We next demonstrated using cell-based tests that PA83, in fact, was processed by furin in the extracellular milieu and that only then the resulting PA63 bound the anthrax toxin cell-surface receptors. We also determined that the biosensor, but not the conventional peptide substrates, allowed continuous monitoring of furin activity in cancer cell extracts. Our results suggest that there are no physiologically-relevant levels of cell-surface furin and, accordingly, that the mechanisms of anthrax should be re-investigated. In addition, the availability of the biosensor is a foundation for non-invasive monitoring of furin activity in cancer cells. Conceptually, the biosensor we developed may serve as a prototype for other proteinase-activated biosensors.
Collapse
Affiliation(s)
- Katarzyna Gawlik
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Albert G. Remacle
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Sergey A. Shiryaev
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Vladislav S. Golubkov
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Mingxing Ouyang
- Department of Bioengineering and the Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - Yingxiao Wang
- Department of Bioengineering and the Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - Alex Y. Strongin
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| |
Collapse
|
377
|
The structure of tumor endothelial marker 8 (TEM8) extracellular domain and implications for its receptor function for recognizing anthrax toxin. PLoS One 2010; 5:e11203. [PMID: 20585457 PMCID: PMC2887854 DOI: 10.1371/journal.pone.0011203] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 05/20/2010] [Indexed: 12/02/2022] Open
Abstract
Anthrax toxin, which is released from the Gram-positive bacterium Bacillus anthracis, is composed of three proteins: protective antigen (PA), lethal factor (LF), and edema factor (EF). PA binds a receptor on the surface of the target cell and further assembles into a homo-heptameric pore through which EF and LF translocate into the cytosol. Two distinct cellular receptors for anthrax toxin, TEM8/ANTXR1 and CMG2/ANTXR2, have been identified, and it is known that their extracellular domains bind PA with low and high affinities, respectively. Here, we report the crystal structure of the TEM8 extracellular vWA domain at 1.7 Å resolution. The overall structure has a typical integrin fold and is similar to that of the previously published CMG2 structure. In addition, using structure-based mutagenesis, we demonstrate that the putative interface region of TEM8 with PA (consisting of residues 56, 57, and 154–160) is responsible for the PA-binding affinity differences between the two receptors. In particular, Leu56 was shown to be a key factor for the lower affinity of TEM8 towards PA compared with CMG2. Because of its high affinity for PA and low expression in normal tissues, an isolated extracellular vWA domain of the L56A TEM8 variant may serve as a potent antitoxin and a potential therapeutic treatment for anthrax infection. Moreover, as TEM8 is often over-expressed in tumor cells, our TEM8 crystal structure may provide new insights into how to design PA mutants that preferentially target tumor cells.
Collapse
|
378
|
Collier RJ. Microbiology. Salmonella's safety catch. Science 2010; 328:981-2. [PMID: 20489009 DOI: 10.1126/science.1190758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- R John Collier
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
379
|
Yu XJ, McGourty K, Liu M, Unsworth KE, Holden DW. pH sensing by intracellular Salmonella induces effector translocation. Science 2010; 328:1040-3. [PMID: 20395475 PMCID: PMC6485629 DOI: 10.1126/science.1189000] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Salmonella enterica is an important intracellular bacterial pathogen of humans and animals. It replicates within host-cell vacuoles by delivering virulence (effector) proteins through a vacuolar membrane pore made by the Salmonella pathogenicity island 2 (SPI-2) type III secretion system (T3SS). T3SS assembly follows vacuole acidification, but when bacteria are grown at low pH, effector secretion is negligible. We found that effector secretion was activated at low pH from mutant strains lacking a complex of SPI-2-encoded proteins SsaM, SpiC, and SsaL. Exposure of wild-type bacteria to pH 7.2 after growth at pH 5.0 caused dissociation and degradation of SsaM/SpiC/SsaL complexes and effector secretion. In infected cells, loss of the pH 7.2 signal through acidification of host-cell cytosol prevented complex degradation and effector translocation. Thus, intravacuolar Salmonella senses host cytosolic pH, resulting in the degradation of regulatory complex proteins and effector translocation.
Collapse
Affiliation(s)
- Xiu-Jun Yu
- Section of Microbiology, Centre for Molecular Microbiology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Kieran McGourty
- Section of Microbiology, Centre for Molecular Microbiology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Mei Liu
- Section of Microbiology, Centre for Molecular Microbiology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | | | - David W. Holden
- Section of Microbiology, Centre for Molecular Microbiology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| |
Collapse
|
380
|
Susceptibility to anthrax lethal toxin-induced rat death is controlled by a single chromosome 10 locus that includes rNlrp1. PLoS Pathog 2010; 6:e1000906. [PMID: 20502689 PMCID: PMC2873920 DOI: 10.1371/journal.ppat.1000906] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 04/12/2010] [Indexed: 01/04/2023] Open
Abstract
Anthrax lethal toxin (LT) is a bipartite protease-containing toxin and a key virulence determinant of Bacillus anthracis. In mice, LT causes the rapid lysis of macrophages isolated from certain inbred strains, but the correlation between murine macrophage sensitivity and mouse strain susceptibility to toxin challenge is poor. In rats, LT induces a rapid death in as little as 37 minutes through unknown mechanisms. We used a recombinant inbred (RI) rat panel of 19 strains generated from LT-sensitive and LT-resistant progenitors to map LT sensitivity in rats to a locus on chromosome 10 that includes the inflammasome NOD-like receptor (NLR) sensor, Nlrp1. This gene is the closest rat homolog of mouse Nlrp1b, which was previously shown to control murine macrophage sensitivity to LT. An absolute correlation between in vitro macrophage sensitivity to LT-induced lysis and animal susceptibility to the toxin was found for the 19 RI strains and 12 additional rat strains. Sequencing Nlrp1 from these strains identified five polymorphic alleles. Polymorphisms within the N-terminal 100 amino acids of the Nlrp1 protein were perfectly correlated with LT sensitivity. These data suggest that toxin-mediated lethality in rats as well as macrophage sensitivity in this animal model are controlled by a single locus on chromosome 10 that is likely to be the inflammasome NLR sensor, Nlrp1. Inflammasomes are multiprotein cytoplasmic complexes that respond to a variety of danger signals by activating the host innate immune response. The sensor components of these complexes are NLR (NOD-like receptor) proteins. In this report, a recombinant inbred rat strain collection was used to genetically map anthrax lethal toxin (LT) susceptibility to a limited region of chromosome 10 containing one such sensor, Nlrp1. Similar to its mouse ortholog, Nlrp1b, which controls murine macrophage sensitivity to this toxin, the locus containing rat Nlrp1 was shown to control macrophage sensitivity to anthrax LT. However, unlike the situation in mice, where multiple genetic loci influence animal susceptibility to LT, the single chromosome 10 locus alone appears to control the rapid anthrax LT-induced death, which can occur in as little as 37 minutes. Sequencing of Nlrp1 from 12 rat strains identified polymorphisms which correlated perfectly with animal sensitivity to toxin. These polymorphisms were within the N-terminal 100-amino acid portion of Nlrp1, in an area of unknown function, which suggests that the N-terminus of rodent Nlrp1 could be an important functional domain.
Collapse
|
381
|
Bromberg-White J, Lee CS, Duesbery N. Consequences and utility of the zinc-dependent metalloprotease activity of anthrax lethal toxin. Toxins (Basel) 2010; 2:1038-53. [PMID: 22069624 PMCID: PMC3153234 DOI: 10.3390/toxins2051038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 04/29/2010] [Accepted: 05/05/2010] [Indexed: 01/13/2023] Open
Abstract
Anthrax is caused by the gram-positive bacterium Bacillus anthracis. The pathogenesis of this disease is dependent on the presence of two binary toxins, edema toxin (EdTx) and lethal toxin (LeTx). LeTx, the major virulence factor contributing to anthrax, contains the effector moiety lethal factor (LF), a zinc-dependent metalloprotease specific for targeting mitogen-activated protein kinase kinases. This review will focus on the protease-specific activity and function of LF, and will include a discussion on the implications and consequences of this activity, both in terms of anthrax disease, and how this activity can be exploited to gain insight into other pathologic conditions.
Collapse
Affiliation(s)
- Jennifer Bromberg-White
- Laboratory of Cancer and Developmental Cell Biology, The Van Andel Research Institute, 333 Bostwick NE Grand Rapids, MI, 49503, USA; (J.B.-W.); (C.-S.L.)
| | - Chih-Shia Lee
- Laboratory of Cancer and Developmental Cell Biology, The Van Andel Research Institute, 333 Bostwick NE Grand Rapids, MI, 49503, USA; (J.B.-W.); (C.-S.L.)
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing MI 48824, USA
| | - Nicholas Duesbery
- Laboratory of Cancer and Developmental Cell Biology, The Van Andel Research Institute, 333 Bostwick NE Grand Rapids, MI, 49503, USA; (J.B.-W.); (C.-S.L.)
- Author to whom correspondence should be addressed; ; Tel.: 616-234-5258; Fax: 616-234-5259
| |
Collapse
|
382
|
Kintzer AF, Sterling HJ, Tang II, Abdul-Gader A, Miles AJ, Wallace BA, Williams ER, Krantz BA. Role of the protective antigen octamer in the molecular mechanism of anthrax lethal toxin stabilization in plasma. J Mol Biol 2010; 399:741-58. [PMID: 20433851 DOI: 10.1016/j.jmb.2010.04.041] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 04/20/2010] [Accepted: 04/22/2010] [Indexed: 01/03/2023]
Abstract
Anthrax is caused by strains of Bacillus anthracis that produce two key virulence factors, anthrax toxin (Atx) and a poly-gamma-D-glutamic acid capsule. Atx is comprised of three proteins: protective antigen (PA) and two enzymes, lethal factor (LF) and edema factor (EF). To disrupt cell function, these components must assemble into holotoxin complexes, which contain either a ring-shaped homooctameric or homoheptameric PA oligomer bound to multiple copies of LF and/or EF, producing lethal toxin (LT), edema toxin, or mixtures thereof. Once a host cell endocytoses these complexes, PA converts into a membrane-inserted channel that translocates LF and EF into the cytosol. LT can assemble on host cell surfaces or extracellularly in plasma. We show that, under physiological conditions in bovine plasma, LT complexes containing heptameric PA aggregate and inactivate more readily than LT complexes containing octameric PA. LT complexes containing octameric PA possess enhanced stability, channel-forming activity, and macrophage cytotoxicity relative to those containing heptameric PA. Under physiological conditions, multiple biophysical probes reveal that heptameric PA can prematurely adopt the channel conformation, but octameric PA complexes remain in their soluble prechannel configuration, which allows them to resist aggregation and inactivation. We conclude that PA may form an octameric oligomeric state as a means to produce a more stable and active LT complex that could circulate freely in the blood.
Collapse
|
383
|
Hesse WR, Freedman KJ, Yi DK, Ahn CW, Kim M. Bacterial nanofluidic structures for medicine and engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:895-909. [PMID: 20397205 DOI: 10.1002/smll.200901576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Bacteria are microscopic, single-celled organisms that utilize a variety of nanofluidic structures. One of the best known and widely used nanofluidic structures that are derived from bacteria is the alpha-hemolysin pore. This pore, which self-assembles in lipid bilayers, has been used for a wide variety of sensing applications, most notably, DNA sensing. Synthetic pores drilled in a wide variety of materials, such as silicon nitride and polymers have been developed that use inspiration from the alpha-hemolysin pore. Higher-aspect-ratio nanofluidic structures, akin to nanotubes, are also synthesized by bacteria. Examples of such structures include those that are associated with bacterial transport apparatus, such as pili, and are used by bacteria to facilitate the transfer of genetic material from one bacterium to another. Flagella, and its associated structures, such as the rod and hook, are also tubular nanostructures, through which the protein, flagellin, travels to assemble the flagellum. Genetic engineering allows for the creation of modified bacterial nanopores and nanotubes that can be used for a variety of medical and engineering purposes.
Collapse
Affiliation(s)
- William R Hesse
- Department of Mechanical Engineering and Mechanics Drexel University 3141 Chestnut St., Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
384
|
Sloat BR, Sandoval MA, Cui Z. Towards preserving the immunogenicity of protein antigens carried by nanoparticles while avoiding the cold chain. Int J Pharm 2010; 393:197-202. [PMID: 20416366 DOI: 10.1016/j.ijpharm.2010.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 04/01/2010] [Accepted: 04/03/2010] [Indexed: 11/28/2022]
Abstract
Nanoparticles are an attractive vaccine carrier with potent adjuvant activity. Data from our previous studies showed that immunization of mice with lecithin/glyceryl monostearate-based nanoparticles with protein antigens conjugated onto their surface induced a strong, quick, and long-lasting antigen-specific immune response. In the present study, we evaluated the feasibility of preserving the immunogenicity of protein antigens carried by nanoparticles without refrigeration using these antigen-conjugated nanoparticles as a model. The nanoparticles were lyophilized, and the immunogenicity of the antigens was evaluated in a mouse model using bovine serum albumin or the Bacillus anthracis protective antigen protein as model antigens. With proper excipients, the nanoparticles can be lyophilized while maintaining the immunogenicity of the antigens. Moreover, the immunogenicity of the model antigen conjugated onto the nanoparticles was undamaged after a relatively extended period of storage at room temperature or under accelerated conditions (37 degrees C) when the nanoparticles were lyophilized with 5% mannitol plus 1% polyvinylpyrrolidone. To our knowledge, the present study represents an early attempt to preserve the immunogenicity of the protein antigens carried by nanoparticles without refrigeration.
Collapse
Affiliation(s)
- Brian R Sloat
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, United States
| | | | | |
Collapse
|
385
|
Pentelute BL, Barker AP, Janowiak BE, Kent SBH, Collier RJ. A semisynthesis platform for investigating structure-function relationships in the N-terminal domain of the anthrax Lethal Factor. ACS Chem Biol 2010; 5:359-64. [PMID: 20180595 DOI: 10.1021/cb100003r] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many bacterial toxins act by covalently altering molecular targets within the cytosol of mammalian cells and therefore must transport their catalytic moieties across a membrane. The Protective-Antigen (PA) moiety of anthrax toxin forms multimeric pores that transport the two enzymatic moieties, the Lethal Factor (LF) and the Edema Factor, across the endosomal membrane to the cytosol. The homologous PA-binding domains of these enzymes contain N-terminal segments of highly charged amino acids that are believed to enter the pore and initiate N- to C-terminal translocation. Here we describe a semisynthesis platform that allows chemical control of this segment in LF(N), the PA-binding domain of LF. Semisynthetic LF(N) was prepared in milligram quantities by native chemical ligation of synthetic LF(N)(14-28)alphathioester with recombinant N29C-LF(N)(29-263) and compared with two variants containing alterations in residues 14-28 of the N-terminal region. The properties of the variants in blocking ion conductance through the PA pore and translocating across planar phospholipid bilayers in response to a pH gradient were consistent with current concepts of the mechanism of polypeptide translocation through the pore. The semisynthesis platform thus makes new analytical approaches available to investigate the interaction of the pore with its substrates.
Collapse
Affiliation(s)
- Brad L. Pentelute
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Adam P. Barker
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Blythe E. Janowiak
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | | - R. John Collier
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
386
|
Gu J, Faundez V, Werner E. Endosomal recycling regulates Anthrax Toxin Receptor 1/Tumor Endothelial Marker 8-dependent cell spreading. Exp Cell Res 2010; 316:1946-57. [PMID: 20382142 DOI: 10.1016/j.yexcr.2010.03.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 03/30/2010] [Accepted: 03/31/2010] [Indexed: 11/26/2022]
Abstract
Mechanisms for receptor-mediated anthrax toxin internalization and delivery to the cytosol are well understood. However, far less is known about the fate followed by anthrax toxin receptors prior and after cell exposure to the toxin. We report that Anthrax Toxin Receptor 1/Tumor Endothelial Marker 8 (TEM8) localized at steady state in Rab11a-positive and transferrin receptor-containing recycling endosomes. TEM8 followed a slow constitutive recycling route of approximately 30min as determined by pulsed surface biotinylation and chase experiments. A Rab11a dominant negative mutant and Myosin Vb tail expression impaired TEM8 recycling by sequestering TEM8 in intracellular compartments. Sequestration of TEM8 in intracellular compartments with monensin coincided with increased TEM8 association with a multi-protein complex isolated with antibodies against transferrin receptor. Addition of the cell-binding component of anthrax toxin, Protective Antigen, reduced TEM8 half-life from 7 to 3 hours, without preventing receptor recycling. Pharmacological and molecular perturbation of recycling endosome function using monensin, dominant negative Rab11a, or myosin Vb tail, reduced PA binding efficiency and TEM8-dependent cell spreading on PA-coated surfaces without affecting toxin delivery to the cytosol. These results indicate that the intracellular fate of TEM8 differentially affect its cell adhesion and cell intoxication functions.
Collapse
Affiliation(s)
- Jingsheng Gu
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
387
|
Soluble expression and purification of the anthrax protective antigen in E. coli and identification of a novel dominant-negative mutant N435C. Appl Microbiol Biotechnol 2010; 87:609-16. [PMID: 20213183 DOI: 10.1007/s00253-010-2495-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/03/2010] [Accepted: 02/03/2010] [Indexed: 10/19/2022]
Abstract
The anthrax toxin is an AB-type bacterium toxin composed of the protective antigen (PA) as the cell-binding B component, and the lethal factor (LF) and edema toxin (EF) as the catalytic A components. The PA component is a key factor in anthrax-related research and recombinant PA can be produced in general in Escherichia coli. However, such recombinant PA always forms inclusion bodies in the cytoplasm of E. coli, making difficult the procedure of its purification. In this study, we found that the solubility of recombinant PA was dramatically enhanced by fusion with glutathione S-transferase (GST) and an induction of its expression at 28 degrees C. The PA was purified to high homogeneity and a yield of 3 mg protein was obtained from 1 l culture by an affinity-chromatography approach. Moreover, we expressed and purified three PA mutants, I394C, A396C, and N435C, which were impaired in expression in previous study. Among them, a novel mutant N435C which conferred dominant-negative inhibitory activity on PA was identified. This new mutant may be useful in designing new antitoxin for anthrax prophylaxis and therapy.
Collapse
|
388
|
Ingram RJ, Metan G, Maillere B, Doganay M, Ozkul Y, Kim LU, Baillie L, Dyson H, Williamson ED, Chu KK, Ascough S, Moore S, Huwar TB, Robinson JH, Sriskandan S, Altmann DM. Natural exposure to cutaneous anthrax gives long-lasting T cell immunity encompassing infection-specific epitopes. THE JOURNAL OF IMMUNOLOGY 2010; 184:3814-21. [PMID: 20208010 DOI: 10.4049/jimmunol.0901581] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There has been a long history of defining T cell epitopes to track viral immunity and to design rational vaccines, yet few data of this type exist for bacterial infections. Bacillus anthracis, the causative agent of anthrax, is both an endemic pathogen in many regions and a potential biological warfare threat. T cell immunity in naturally infected anthrax patients has not previously been characterized, which is surprising given concern about the ability of anthrax toxins to subvert or ablate adaptive immunity. We investigated CD4 T cell responses in patients from the Kayseri region of Turkey who were previously infected with cutaneous anthrax. Responses to B. anthracis protective Ag and lethal factor (LF) were investigated at the protein, domain, and epitope level. Several years after antibiotic-treated anthrax infection, strong T cell memory was detectable, with no evidence of the expected impairment in specific immunity. Although serological responses to existing anthrax vaccines focus primarily on protective Ag, the major target of T cell immunity in infected individuals and anthrax-vaccinated donors was LF, notably domain IV. Some of these anthrax epitopes showed broad binding to several HLA class alleles, but others were more constrained in their HLA binding patterns. Of specific CD4 T cell epitopes targeted within LF domain IV, one is preferentially seen in the context of bacterial infection, as opposed to vaccination, suggesting that studies of this type will be important in understanding how the human immune system confronts serious bacterial infection.
Collapse
Affiliation(s)
- Rebecca J Ingram
- Department of Infectious Diseases and Immunity, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
389
|
Abrami L, Bischofberger M, Kunz B, Groux R, van der Goot FG. Endocytosis of the anthrax toxin is mediated by clathrin, actin and unconventional adaptors. PLoS Pathog 2010; 6:e1000792. [PMID: 20221438 PMCID: PMC2832758 DOI: 10.1371/journal.ppat.1000792] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 01/26/2010] [Indexed: 11/21/2022] Open
Abstract
The anthrax toxin is a tripartite toxin, where the two enzymatic subunits require the third subunit, the protective antigen (PA), to interact with cells and be escorted to their cytoplasmic targets. PA binds to cells via one of two receptors, TEM8 and CMG2. Interestingly, the toxin times and triggers its own endocytosis, in particular through the heptamerization of PA. Here we show that PA triggers the ubiquitination of its receptors in a β-arrestin-dependent manner and that this step is required for clathrin-mediated endocytosis. In addition, we find that endocytosis is dependent on the heterotetrameric adaptor AP-1 but not the more conventional AP-2. Finally, we show that endocytosis of PA is strongly dependent on actin. Unexpectedly, actin was also found to be essential for efficient heptamerization of PA, but only when bound to one of its 2 receptors, TEM8, due to the active organization of TEM8 into actin-dependent domains. Endocytic pathways are highly modular systems. Here we identify some of the key players that allow efficient heptamerization of PA and subsequent ubiquitin-dependent, clathrin-mediated endocytosis of the anthrax toxin. Bacillus anthracis is the bacterium responsible for the anthrax disease. Its virulence is mainly due to 2 factors, the anthrax toxin and the anti-phagocytic capsule. This toxin is composed of three independent polypeptide chains. Two of these have enzymatic activity and are responsible for the effects of the toxin. The third has no activity but is absolutely required to bring the 2 enzymatic subunits into the cell where they act. If one blocks entry into the cells, one blocks the effects of these toxins, which is why it is important to understand how the toxin enters into the cell at the molecular level. Here we identified various molecules that are involved in efficiently bringing the toxin into the cell. First, we found that the actin cytoskeleton plays an important role in organizing one of the two anthrax toxin receptors at the cell surface. Second, we found a cytosolic protein, β-arrestin, that is required to modify the intracellular part of the toxin receptor, to allow uptake. Finally, we directly show, for the first time, that anthrax toxin uptake is mediated by the so-called clathrin-dependent pathway, a very modular entry pathway, but that the toxin utilizes this pathway in an unconventional way.
Collapse
Affiliation(s)
- Laurence Abrami
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
| | - Mirko Bischofberger
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
| | - Béatrice Kunz
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
| | - Romain Groux
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
| | - F. Gisou van der Goot
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
390
|
Functional characterization of an extended binding component of the actin-ADP-ribosylating C2 toxin detected in Clostridium botulinum strain (C) 2300. Infect Immun 2010; 78:1468-74. [PMID: 20145093 DOI: 10.1128/iai.01351-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium botulinum C2 toxin consists of the binding component C2II and the enzyme component C2I, which ADP-ribosylates G-actin of eukaryotic cells. Trypsin-activated C2II (C2IIa) forms heptamers that mediate cell binding and translocation of C2I from acidic endosomes into the cytosol of target cells. By genome sequencing of C. botulinum strain (C) 2300, we found that C2II from this strain carries a C-terminal extension of 129 amino acids, unlike its homologous counterparts from strains (C) 203U28, (C) 468, and (D) 1873. This extension shows a high similarity to the C-terminal receptor-binding domain of C2II and is presumably the result of a duplication of this domain. The C2II extension facilitates the binding to cell surface receptors, which leads to an increased intoxication efficiency compared to that of C2II proteins from other C. botulinum strains.
Collapse
|
391
|
Three-dimensional structure of the anthrax toxin pore inserted into lipid nanodiscs and lipid vesicles. Proc Natl Acad Sci U S A 2010; 107:3453-7. [PMID: 20142512 DOI: 10.1073/pnas.1000100107] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A major goal in understanding the pathogenesis of the anthrax bacillus is to determine how the protective antigen (PA) pore mediates translocation of the enzymatic components of anthrax toxin across membranes. To obtain structural insights into this mechanism, we constructed PA-pore membrane complexes and visualized them by using negative-stain electron microscopy. Two populations of PA pores were visualized in membranes, vesicle-inserted and nanodisc-inserted, allowing us to reconstruct two virtually identical PA-pore structures at 22-A resolution. Reconstruction of a domain 4-truncated PA pore inserted into nanodiscs showed that this domain does not significantly influence pore structure. Normal mode flexible fitting of the x-ray crystallographic coordinates of the PA prepore indicated that a prominent flange observed within the pore lumen is formed by the convergence of mobile loops carrying Phe427, a residue known to catalyze protein translocation. Our results have identified the location of a crucial functional element of the PA pore and documented the value of combining nanodisc technology with electron microscopy to examine the structures of membrane-interactive proteins.
Collapse
|
392
|
Janowiak BE, Fischer A, Collier RJ. Effects of introducing a single charged residue into the phenylalanine clamp of multimeric anthrax protective antigen. J Biol Chem 2010; 285:8130-7. [PMID: 20061382 DOI: 10.1074/jbc.m109.093195] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multimeric pores formed in the endosomal membrane by the Protective Antigen moiety of anthrax toxin translocate the enzymatic moieties of the toxin to the cytosolic compartment of mammalian cells. There is evidence that the side chains of the Phe(427) residues come into close proximity with one another in the lumen of the pore and form a structure, termed the Phe clamp, that catalyzes the translocation process. In this report we describe the effects of replacing Phe(427) in a single subunit of the predominantly heptameric pore with a basic or an acidic amino acid. Incorporating any charged residue at this position inhibited cytotoxicity >or=1,000-fold in our standard assay and caused strong inhibition of translocation in a planar phospholipid bilayer system. His and Glu were the most strongly inhibitory residues, ablating both cytotoxicity and translocation. Basic residues at position 427 prevented the Phe clamp from interacting with a translocation substrate to form a seal against the passage of ions and accelerated dissociation of the substrate from the pore. Acidic residues, in contrast, allowed the seal to form and the substrate to remain firmly bound, but blocked its passage, perhaps via electrostatic interactions with the positively charged N-terminal segment. Our findings are discussed in relation to the role of the Phe clamp in a Brownian ratchet model of translocation.
Collapse
Affiliation(s)
- Blythe E Janowiak
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
393
|
Alfano RW, Leppla SH, Liu S, Bugge TH, Ortiz JM, Lairmore TC, Duesbery NS, Mitchell IC, Nwariaku F, Frankel AE. Inhibition of tumor angiogenesis by the matrix metalloproteinase-activated anthrax lethal toxin in an orthotopic model of anaplastic thyroid carcinoma. Mol Cancer Ther 2010; 9:190-201. [PMID: 20053778 DOI: 10.1158/1535-7163.mct-09-0694] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Patients with anaplastic thyroid carcinoma (ATC) typically succumb to their disease months after diagnosis despite aggressive therapy. A large percentage of ATCs have been shown to harbor the V600E B-Raf point mutation, leading to the constitutive activation of the mitogen-activated protein kinase pathway. ATC invasion, metastasis, and angiogenesis are in part dependent on the gelatinase class of matrix metalloproteinases (MMP). The explicit targeting of these two tumor markers may provide a novel therapeutic strategy for the treatment of ATC. The MMP-activated anthrax lethal toxin (LeTx), a novel recombinant protein toxin combination, shows potent mitogen-activated protein kinase pathway inhibition in gelatinase-expressing V600E B-Raf tumor cells in vitro. However, preliminary in vivo studies showed that the MMP-activated LeTx also exhibited dramatic antitumor activity against xenografts that did not show significant antiproliferative responses to the LeTx in vitro. Here, we show that the MMP-activated LeTx inhibits orthotopic ATC xenograft progression in both toxin-sensitive and toxin-resistant ATC cells via reduced endothelial cell recruitment and subsequent tumor vascularization. This in turn translates to an improved long-term survival that is comparable with that produced by the multikinase inhibitor sorafenib. Our results also indicate that therapy with the MMP-activated LeTx is extremely effective against advanced tumors with well-established vascular networks. Taken together, these results suggest that the MMP-activated LeTx-mediated endothelial cell targeting is the primary in vivo antitumor mechanism of this novel toxin. Therefore, the MMP-activated LeTx could be used not only in the clinical management of V600E B-Raf ATC but potentially in any solid tumor.
Collapse
Affiliation(s)
- Randall W Alfano
- Cancer Research Institute, Scott and White Memorial Hospital, Temple, Texas 76502, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
394
|
Anthrax toxin triggers the activation of src-like kinases to mediate its own uptake. Proc Natl Acad Sci U S A 2010; 107:1420-4. [PMID: 20080640 DOI: 10.1073/pnas.0910782107] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AB-type toxins, like other bacterial toxins, are notably opportunistic molecules. They rely on target cell receptors to reach the appropriate location within the target cell where translocation of their enzymatic subunits occurs. The anthrax toxin, however, times its own uptake, suggesting that toxin binding triggers specific signaling events. Here we show that the anthrax toxin triggers tyrosine phosphorylation of its own receptors, capillary morphogenesis gene 2 and tumor endothelial marker 8, which are not endowed with intrinsic kinase activity. This is required for efficient toxin uptake because endocytosis of the mutant receptor lacking the cytoplasmic tyrosine residues is strongly delayed. Phosphorylation of the receptors was dependent on src-like kinases, which where activated upon toxin binding. Importantly, src-dependent phosphorylation of the receptor was required for its subsequent ubiquitination, which in turn was required for clathrin-mediated endocytosis. Consistently, we found that uptake of the anthrax toxin and processing of the lethal factor substrate MEK1 are inhibited by silencing of src and fyn, as well as in src and fyn knockout cells.
Collapse
|
395
|
Vernier G, Wang J, Jennings LD, Sun J, Fischer A, Song L, Collier RJ. Solubilization and characterization of the anthrax toxin pore in detergent micelles. Protein Sci 2009; 18:1882-95. [PMID: 19609933 DOI: 10.1002/pro.199] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Proteolytically activated Protective Antigen (PA) moiety of anthrax toxin self-associates to form a heptameric ring-shaped oligomer (the prepore). Acidic pH within the endosome converts the prepore to a pore that serves as a passageway for the toxin's enzymatic moieties to cross the endosomal membrane. Prepore is stable in solution under mildly basic conditions, and lowering the pH promotes a conformational transition to an insoluble pore-like state. N-tetradecylphosphocholine (FOS14) was the only detergent among 110 tested that prevented aggregation without dissociating the multimer into its constituent subunits. FOS14 maintained the heptamers as monodisperse, insertion-competent 440-kDa particles, which formed channels in planar phospholipid bilayers with the same unitary conductance and ability to translocate a model substrate protein as channels formed in the absence of detergent. Electron paramagnetic resonance analysis detected pore-like conformational changes within PA on solubilization with FOS14, and electron micrograph images of FOS14-solubilized pore showed an extended, mushroom-shaped structure. Circular dichroïsm measurements revealed an increase in alpha helix and a decrease in beta structure in pore formation. Spectral changes caused by a deletion mutation support the hypothesis that the 2beta2-2beta3 loop transforms into the transmembrane segment of the beta-barrel stem of the pore. Changes caused by selected point mutations indicate that the transition to alpha structure is dependent on residues of the luminal 2beta11-2beta12 loop that are known to affect pore formation. Stabilizing the PA pore in solution with FOS14 may facilitate further structural analysis and a more detailed understanding of the folding pathway by which the pore is formed.
Collapse
Affiliation(s)
- Gregory Vernier
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
396
|
Hu H, Leppla SH. Anthrax toxin uptake by primary immune cells as determined with a lethal factor-beta-lactamase fusion protein. PLoS One 2009; 4:e7946. [PMID: 19956758 PMCID: PMC2775957 DOI: 10.1371/journal.pone.0007946] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 10/27/2009] [Indexed: 12/28/2022] Open
Abstract
Background To initiate infection, Bacillus anthracis needs to overcome the host innate immune system. Anthrax toxin, a major virulence factor of B. anthracis, impairs both the innate and adaptive immune systems and is important in the establishment of anthrax infections. Methodology/Principal Findings To measure the ability of anthrax toxin to target immune cells, studies were performed using a fusion of the anthrax toxin lethal factor (LF) N-terminal domain (LFn, aa 1–254) with β-lactamase (LFnBLA). This protein reports on the ability of the anthrax toxin protective antigen (PA) to mediate LF delivery into cells. Primary immune cells prepared from mouse spleens were used in conjunction with flow cytometry to assess cleavage and resulting FRET disruption of a fluorescent β-lactamase substrate, CCF2/AM. In spleen cell suspensions, the macrophages, dendritic cells, and B cells showed about 75% FRET disruption of CCF2/AM due to cleavage by the PA–delivered LFnBLA. LFnBLA delivery into CD4+ and CD8+ T cells was lower, with 40% FRET disruption. When the analyses were done on purified samples of individual cell types, similar results were obtained, with T cells again having lower LFnBLA delivery than macrophages, dendritic cells, and B cells. Relative expression levels of the toxin receptors CMG2 and TEM8 on these cells were determined by real-time PCR. Expression of CMG2 was about 1.5-fold higher in CD8+ cells than in CD4+ and B cells, and 2.5-fold higher than in macrophages. Conclusions/Significance Anthrax toxin entry and activity differs among immune cells. Macrophages, dendritic cells, and B cells displayed higher LFnBLA activity than CD4+ and CD8+ T cells in both spleen cell suspension and the purified samples of individual cell types. Expression of anthrax toxin receptor CMG2 is higher in CD4+ and CD8+ T cells, which is not correlated to the intracellular LFnBLA activity.
Collapse
Affiliation(s)
- Haijing Hu
- Bacterial Toxins and Therapeutics Section, Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stephen H. Leppla
- Bacterial Toxins and Therapeutics Section, Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
397
|
Lethal factor unfolding is the most force-dependent step of anthrax toxin translocation. Proc Natl Acad Sci U S A 2009; 106:21555-60. [PMID: 19926859 DOI: 10.1073/pnas.0905880106] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cellular compartmentalization requires machinery capable of translocating polypeptides across membranes. In many cases, transported proteins must first be unfolded by means of the proton motive force and/or ATP hydrolysis. Anthrax toxin, which is composed of a channel-forming protein and two substrate proteins, is an attractive model system to study translocation-coupled unfolding, because the applied driving force can be externally controlled and translocation can be monitored directly by using electrophysiology. By controlling the driving force and introducing destabilizing point mutations in the substrate, we identified the barriers in the transport pathway, determined which barrier corresponds to protein unfolding, and mapped how the substrate protein unfolds during translocation. In contrast to previous studies, we find that the protein's structure next to the signal tag is not rate-limiting to unfolding. Instead, a more extensive part of the structure, the amino-terminal beta-sheet subdomain, must disassemble to cross the unfolding barrier. We also find that unfolding is catalyzed by the channel's phenylalanine-clamp active site. We propose a broad molecular mechanism for translocation-coupled unfolding, which is applicable to both soluble and membrane-embedded unfolding machines.
Collapse
|
398
|
Averette KM, Pratt MR, Yang Y, Bassilian S, Whitelegge JP, Loo JA, Muir TW, Bradley KA. Anthrax lethal toxin induced lysosomal membrane permeabilization and cytosolic cathepsin release is Nlrp1b/Nalp1b-dependent. PLoS One 2009; 4:e7913. [PMID: 19924255 PMCID: PMC2775945 DOI: 10.1371/journal.pone.0007913] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 10/18/2009] [Indexed: 12/15/2022] Open
Abstract
NOD-like receptors (NLRs) are a group of cytoplasmic molecules that recognize microbial invasion or 'danger signals'. Activation of NLRs can induce rapid caspase-1 dependent cell death termed pyroptosis, or a caspase-1 independent cell death termed pyronecrosis. Bacillus anthracis lethal toxin (LT), is recognized by a subset of alleles of the NLR protein Nlrp1b, resulting in pyroptotic cell death of macrophages and dendritic cells. Here we show that LT induces lysosomal membrane permeabilization (LMP). The presentation of LMP requires expression of an LT-responsive allele of Nlrp1b, and is blocked by proteasome inhibitors and heat shock, both of which prevent LT-mediated pyroptosis. Further the lysosomal protease cathepsin B is released into the cell cytosol and cathepsin inhibitors block LT-mediated cell death. These data reveal a role for lysosomal membrane permeabilization in the cellular response to bacterial pathogens and demonstrate a shared requirement for cytosolic relocalization of cathepsins in pyroptosis and pyronecrosis.
Collapse
Affiliation(s)
- Kathleen M. Averette
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Matthew R. Pratt
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, New York, New York, United States of America
| | - Yanan Yang
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Sara Bassilian
- The Pasarow Mass Spectrometry Laboratory, The NPI-Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Julian P. Whitelegge
- The Pasarow Mass Spectrometry Laboratory, The NPI-Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tom W. Muir
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, New York, New York, United States of America
| | - Kenneth A. Bradley
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
399
|
Ngai S, Batty S, Liao KC, Mogridge J. An anthrax lethal factor mutant that is defective at causing pyroptosis retains proapoptotic activity. FEBS J 2009; 277:119-27. [PMID: 19922472 DOI: 10.1111/j.1742-4658.2009.07458.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Anthrax lethal toxin triggers death in some cell types, such as macrophages, and causes a variety of cellular dysfunctions in others. Collectively, these effects dampen the innate and adaptive immune systems to allow Bacillus anthracis to survive and proliferate in the mammalian host. The diverse effects caused by the toxin have in part been attributed to its interference with signaling pathways in target cells. Lethal factor (LF) is the proteolytic component of the toxin, and cleaves six members of the mitogen-activated protein kinase kinase family after being delivered to the cytosol by the cell-binding component of the toxin, protective antigen. The effect of cleaving these mitogen-activated protein kinase kinases is to interfere with extracellular signal-related kinase (ERK), p38 and c-Jun N-terminal kinase signaling. Here, we characterized an LF mutant, LF-K518E/E682G, that was defective at causing pyroptosis in RAW 264.7 cells and at activating the Nlrp1b inflammasome in a heterologous expression system. LF-K518E/E682G did not exhibit an overall impairment of function, however, because it was able to downregulate the ERK pathway, but not the p38 or c-Jun N-terminal kinase pathways. Furthermore, LF-K518E/E682G efficiently killed melanoma cells, which were shown previously to undergo apoptosis in response to lethal toxin or to pharmacological inhibition of the ERK pathway. Our results suggest that LF-K518E/E682G is defective at cleaving a substrate involved in the activation of the Nlrp1b inflammasome.
Collapse
Affiliation(s)
- Stephanie Ngai
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
400
|
Garlick KM, Mogridge J. Direct interaction between anthrax toxin receptor 1 and the actin cytoskeleton. Biochemistry 2009; 48:10577-81. [PMID: 19817382 DOI: 10.1021/bi9015296] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The protective antigen component of anthrax toxin binds the I domain of the anthrax toxin receptors, ANTXR1 and ANTXR2, in a manner akin to how integrins bind their ligands. The I domains of integrins and ANTXR1 both have high- and low-affinity conformations, and the cytosolic tails of these receptors associate with the actin cytoskeleton. The association of ANTXR1 with the cytoskeleton correlates with weakened binding to PA, although a mechanistic explanation for this observation is lacking. Here, we identified a segment in the cytoplasmic tail of ANTXR1 required for its association with the cytoskeleton. We synthesized a 60-mer peptide based on this segment and demonstrated a direct interaction between the peptide and beta-actin, indicating that in contrast to integrins, ANTXR1 does not use an adaptor to bind the cytoskeleton. This peptide orders actin filaments into arrays, demonstrating an actin bundling activity that is novel for a membrane protein.
Collapse
Affiliation(s)
- Kristopher M Garlick
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|