351
|
Granai M, Mundo L, Akarca AU, Siciliano MC, Rizvi H, Mancini V, Onyango N, Nyagol J, Abinya NO, Maha I, Margielewska S, Wi W, Bibas M, Piccaluga PP, Quintanilla-Martinez L, Fend F, Lazzi S, Leoncini L, Marafioti T. Immune landscape in Burkitt lymphoma reveals M2-macrophage polarization and correlation between PD-L1 expression and non-canonical EBV latency program. Infect Agent Cancer 2020; 15:28. [PMID: 32391073 PMCID: PMC7201729 DOI: 10.1186/s13027-020-00292-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The Tumor Microenviroment (TME) is a complex milieu that is increasingly recognized as a key factor in multiple stages of disease progression and responses to therapy as well as escape from immune surveillance. However, the precise contribution of specific immune effector and immune suppressor components of the TME in Burkitt lymphoma (BL) remains poorly understood. METHODS In this paper, we applied the computational algorithm CIBERSORT to Gene Expression Profiling (GEP) datasets of 40 BL samples to draw a map of immune and stromal components of TME. Furthermore, by multiple immunohistochemistry (IHC) and multispectral immunofluorescence (IF), we investigated the TME of additional series of 40 BL cases to evaluate the role of the Programmed Death-1 and Programmed Death Ligand-1 (PD-1/PD-L1) immune checkpoint axis. RESULTS Our results indicate that M2 polarized macrophages are the most prominent TME component in BL. In addition, we investigated the correlation between PD-L1 and latent membrane protein-2A (LMP2A) expression on tumour cells, highlighting a subgroup of BL cases characterized by a non-canonical latency program of EBV with an activated PD-L1 pathway. CONCLUSION In conclusion, our study analysed the TME in BL and identified a tolerogenic immune signature highlighting new potential therapeutic targets.
Collapse
Affiliation(s)
- Massimo Granai
- Department of Medical Biotechnology, University of Siena, Siena, Italy
- University Hospital of Tübingen, Institute of Pathology, Tübingen, Germany
| | - Lucia Mundo
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Ayse U. Akarca
- Department of Pathology, University College London, London, UK
| | | | - Hasan Rizvi
- Department of Cellular Pathology, Barts Health NHS Trust, London, UK
| | - Virginia Mancini
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Noel Onyango
- Department of Clinical Medicine and Therapeutics, University of Nairobi, Nairobi, Kenya
| | - Joshua Nyagol
- Department of Human Pathology, University of Nairobi, Nairobi, Kenya
| | | | - Ibrahim Maha
- South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Sandra Margielewska
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK and Durham University, Durham, UK
| | - Wenbin Wi
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK and Durham University, Durham, UK
| | - Michele Bibas
- Clinical Department, National Institute for Infectious Diseases “Lazzaro Spallanzani” I.R.C.C.S, Rome, Italy
| | - Pier Paolo Piccaluga
- Department of Experimental, Diagnostic, and Specialty Medicine Bologna University Medical School, S. Orsola Malpighi Hospital, Bologna and Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | | | - Falko Fend
- University Hospital of Tübingen, Institute of Pathology, Tübingen, Germany
| | - Stefano Lazzi
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Lorenzo Leoncini
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Teresa Marafioti
- Department of Pathology, University College London, London, UK
- Department of Cellular Pathology, University College Hospital, London, London UK
| |
Collapse
|
352
|
β-elemene suppresses the malignant behavior of esophageal cancer cells by regulating the phosphorylation of AKT. Acta Histochem 2020; 122:151538. [PMID: 32183989 DOI: 10.1016/j.acthis.2020.151538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Esophageal cancer is a digestive tract malignancy, ranking sixth among the world's deadliest tumor incidence. However, the pathogenesis of esophageal cancer is complex and the prognosis remains poor. Therefore, in-depth study of the pathogenesis and developing effective treatments are of great value for esophageal cancer. β-elemene is a natural monomeric compound derived from the Chinese herbal Curcuma wenyujin. β-elemene has been reported to have anti-tumor effects and used as an adjunct to clinical therapy for multiple cancers. This study aims to explore the effects of β-elemene on esophageal cancer and its related molecular mechanisms. METHODS TE-1 and KYSE-150 cells were used to evaluate the activity of β-elemene on esophageal cancerin vitro and in vivo. Western blot was performed for protein expression assessment. CCK8 assay and cell cycle analysis were used for proliferation testing. Flow cytometry was performed for apoptosis detection. Wound healing assay was subjected to assess the migration ability. Transwell chamber assay was applied to assess the invasion ability. HE staining, TUNEL staining and immunohistochemical staining were used to evaluate the changes in tumor tissues. RESULTS We found that β-elemene treatment suppressed proliferation, as well as induced apoptosis of esophageal cancer cells. In addition, β-elemene inhibited the migration and invasion ability of esophageal cancer cells. Furthermore, β-elemene exerted its effects against esophageal cancer by specifically regulating AKT signaling, thereby controlling the expression of PD-L1. CONCLUSION β-elemene inhibits proliferation and metastasis of esophageal cancer cells by regulating the phosphorylation of AKT.
Collapse
|
353
|
Xie M, Wei J, Xu J. Inducers, Attractors and Modulators of CD4 + Treg Cells in Non-Small-Cell Lung Cancer. Front Immunol 2020; 11:676. [PMID: 32425930 PMCID: PMC7212357 DOI: 10.3389/fimmu.2020.00676] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/26/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the leading cause of cancer-associated deaths worldwide, with non-small cell-lung cancer (NSCLC) accounting for approximately 80% of cases. Immune escape has been demonstrated to play a key role in the initiation and progression of NSCLC, although the underlying mechanisms are diverse and their puzzling nature is far from being understood. As a critical participant in immune escape, the CD4+ T cell subset of regulatory T (Treg) cells, with their immunosuppressive functions, has been implicated in the occurrence of many types of cancers. Additionally, therapies based on Treg blockade have benefited a portion of cancer patients, including those with NSCLC. Accumulating literature has noted high Treg infiltration in NSCLC tumor tissues, bone marrow, lymph nodes and/or blood; moreover, the tumor milieu is involved in regulating the proliferation, differentiation, recruitment and suppressive functions of Treg cells. Multifarious mechanisms by which CD4+ Treg cells are generated, attracted and modulated in the NSCLC milieu will be discussed in this review.
Collapse
Affiliation(s)
- Mengxiao Xie
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Jia Wei
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Jian Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| |
Collapse
|
354
|
Clinicopathological and genomic correlates of programmed cell death ligand 1 (PD-L1) expression in nonsquamous non-small-cell lung cancer. Ann Oncol 2020; 31:807-814. [PMID: 32171752 DOI: 10.1016/j.annonc.2020.02.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/13/2020] [Accepted: 02/27/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Programmed cell death ligand 1 (PD-L1) tumor proportion score (TPS) is the primary clinically-available biomarker of response to immunotherapy in non-small-cell lung cancer (NSCLC), but factors associated with PD-L1 expression are not well understood. MATERIALS AND METHODS Consecutive nonsquamous NSCLCs with successful PD-L1 assessment and targeted next-generation sequencing were included in this retrospective study. Clinicopathological characteristics, gene mutations, and copy number changes in gene and chromosomal arms were compared among three PD-L1 expression groups: negative (TPS < 1%), low (TPS 1%-49%), and high (TPS ≥ 50%). A Q-value <0.25 was considered significant after multiple comparisons correction. RESULTS A total of 909 nonsquamous NSCLCs were included. High PD-L1 expression compared with low and negative PD-L1 expression was associated with increased tobacco exposure (median pack-years: 25 versus 20 versus 20, respectively; P = 0.01), advanced stage at diagnosis (76% versus 67% versus 61% with advanced stage of disease, respectively; P < 0.001), and higher tumor mutational burden (TMB) (median 12.2 versus 10.6 versus 10.6 mutations/megabase, respectively; P < 0.001). Negative PD-L1 expression when compared with high PD-L1 expression was associated with: mutations in STK11 (19% versus 5%; Q < 0.001), EGFR (22% versus 11%; Q < 0.001), CTNNB1 (4.3% versus 0.4%; Q = 0.04), APC (5% versus 1%; Q = 0.17), and SMARCA4 (9% versus 4%; Q = 0.20); copy number loss of CD274 (PD-L1, 28% versus 6%; Q < 0.001), PDCD1LG2 (PD-L2, 28% versus 6%; Q < 0.001), and JAK2 genes (27% versus 7%; Q < 0.001), loss of chromosomal arm 9p (23% versus 10%; Q = 0.04), and gain of 1q (46% versus 21%; Q < 0.001). High PD-L1 expression compared with negative PD-L1 expression was associated with copy number gain of CD274 (11% versus 3%; Q = 0.01) and PDCD1LG2 (11% versus 3%; Q = 0.01). NSCLCs with CD274 loss, compared with those without loss, had a lower response rate (23% versus 9%; P = 0.006) and shorter progression-free survival (3.3 versus 2.0 months; P = 0.002) on immunotherapy. CONCLUSIONS PD-L1 expression is associated with specific genomic alterations and clinicopathologic characteristics in nonsquamous NSCLC.
Collapse
|
355
|
Concurrent Control of the Kaposi's Sarcoma-Associated Herpesvirus Life Cycle through Chromatin Modulation and Host Hedgehog Signaling: a New Prospect for the Therapeutic Potential of Lipoxin A4. J Virol 2020; 94:JVI.02177-19. [PMID: 32102879 DOI: 10.1128/jvi.02177-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Lipoxin A4 (LXA4) is an endogenous lipid mediator with compelling anti-inflammatory and proresolution properties. Studies done to assess the role of arachidonic acid pathways of the host in Kaposi's sarcoma-associated herpesvirus (KSHV) biology helped discover that KSHV infection hijacks the proinflammatory cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LO) pathways and concurrently reduces anti-inflammatory LXA4 secretion to maintain KSHV latency in infected cells. Treatment of KSHV-infected cells with LXA4 minimizes the activation of inflammatory and proliferative signaling pathways, including the NF-κB, AKT, and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways, but the exact mechanism of action of LXA4 remains unexplored. Here, using mass spectrometry analysis, we identified components from the minichromosome maintenance (MCM) protein and chromatin-remodeling complex SMARCB1 and SMARCC2 to be LXA4-interacting host proteins in KSHV-infected cells. We identified a higher level of nuclear aryl hydrocarbon receptor (AhR) in LXA4-treated KSHV-infected cells than in untreated KSHV-infected cells, which probably facilitates the affinity interaction of the nucleosome complex protein with LXA4. We demonstrate that SMARCB1 regulates both replication and transcription activator (RTA) activity and host hedgehog (hh) signaling in LXA4-treated KSHV-infected cells. Host hedgehog signaling was modulated in an AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR)-S6 kinase-dependent manner in LXA4-treated KSHV-infected cells. Since anti-inflammatory drugs are beneficial as adjuvants to conventional and immune-based therapies, we evaluated the potential of LXA4 treatment in regulating programmed death-ligand 1 (PD-L1) on KSHV-carrying tumor cells. Overall, our study identified LXA4-interacting host factors in KSHV-infected cells, which could help provide an understanding of the mode of action of LXA4 and its therapeutic potential against KSHV.IMPORTANCE The latent-to-lytic switch in KSHV infection is one of the critical events regulated by the major replication and transcription activator KSHV protein called RTA. Chromatin modification of the viral genome determines the phase of the viral life cycle in the host. Here, we report that LXA4 interacts with a host chromatin modulator, especially SMARCB1, which upregulates the KSHV ORF50 promoter. SMARCB1 has also been recognized to be a tumor suppressor protein which controls many tumorigenic events associated with the hedgehog (hh) signaling pathway. We also observed that LXA4 treatment reduces PD-L1 expression and that PD-L1 expression is an important immune evasion strategy used by KSHV for its survival and maintenance in the host. Our study underscores the role of LXA4 in KSHV biology and emphasizes that KSHV is strategic in downregulating LXA4 secretion in the host to establish latency. This study also uncovers the therapeutic potential of LXA4 and its targetable receptor, AhR, in KSHV's pathogenesis.
Collapse
|
356
|
Vito A, El-Sayes N, Mossman K. Hypoxia-Driven Immune Escape in the Tumor Microenvironment. Cells 2020; 9:E992. [PMID: 32316260 PMCID: PMC7227025 DOI: 10.3390/cells9040992] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/05/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment is a complex ecosystem comprised of many different cell types, abnormal vasculature and immunosuppressive cytokines. The irregular growth kinetics with which tumors grow leads to increased oxygen consumption and, in turn, hypoxic conditions. Hypoxia has been associated with poor clinical outcome, increased tumor heterogeneity, emergence of resistant clones and evasion of immune detection. Additionally, hypoxia-driven cell death pathways have traditionally been thought of as tolerogenic processes. However, as researchers working in the field of immunotherapy continue to investigate and unveil new types of immunogenic cell death (ICD), it has become clear that, in some instances, hypoxia may actually induce ICD within a tumor. In this review, we will discuss hypoxia-driven immune escape that drives poor prognostic outcomes, the ability of hypoxia to induce ICD and potential therapeutic targets amongst hypoxia pathways.
Collapse
Affiliation(s)
- Alyssa Vito
- Department of Biochemistry and Biomedical Sciences, McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada; (A.V.); (N.E.-S.)
| | - Nader El-Sayes
- Department of Biochemistry and Biomedical Sciences, McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada; (A.V.); (N.E.-S.)
| | - Karen Mossman
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
357
|
van Elsas MJ, van Hall T, van der Burg SH. Future Challenges in Cancer Resistance to Immunotherapy. Cancers (Basel) 2020; 12:E935. [PMID: 32290124 PMCID: PMC7226490 DOI: 10.3390/cancers12040935] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/20/2022] Open
Abstract
Cancer immunotherapies, including checkpoint inhibitors, adoptive T cell transfer and therapeutic cancer vaccines, have shown promising response rates in clinical trials. Unfortunately, there is an increasing number of patients in which initially regressing tumors start to regrow due to an immunotherapy-driven acquired resistance. Studies on the underlying mechanisms reveal that these can be similar to well-known tumor intrinsic and extrinsic primary resistance factors that precluded the majority of patients from responding to immunotherapy in the first place. Here, we discuss primary and secondary immune resistance and point at strategies to identify potential new mechanisms of immune evasion. Ultimately, this may lead to improved immunotherapy strategies with improved clinical outcomes.
Collapse
Affiliation(s)
| | | | - Sjoerd H. van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2300RC Leiden, The Netherlands; (M.J.v.E.); (T.v.H.)
| |
Collapse
|
358
|
Gu W, Wang L, Wu Y, Liu JP. Undo the brake of tumour immune tolerance with antibodies, peptide mimetics and small molecule compounds targeting PD-1/PD-L1 checkpoint at different locations for acceleration of cytotoxic immunity to cancer cells. Clin Exp Pharmacol Physiol 2020; 46:105-115. [PMID: 30565707 DOI: 10.1111/1440-1681.13056] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 12/31/2022]
Abstract
Recent clinical success of immunotherapy that inhibits the negative immune regulatory pathway programmed cell death protein-1/PD-1 ligand 1 (PD-1/PD-L1) has initiated a new era in the treatment of metastatic cancer. However, greater challenges remain to treat all cancers. The molecular architecture in the immune synapse constituting positive engagements for immune activation and negative checkpoints against immune hyperactivity is regulated dynamically by interaction between proteostasis and tumour microenvironment. This article reviews recent progresses in our understandings of the cellular and molecular mechanisms of the negative checkpoint PD-1/PD-L1 behaviours in immune tolerance of tumourigenesis and metastasis. We provide an overview on PD-L1 gene expression regulation, protein turnover, intra- and extracellular trafficking, exosome-mediated inter-cellular transport, molecular interface peptide mimetics, inhibitory chemical compounds such as metformin, and antibody dynamics. We summarise PD-L1 post-translational modifications including glycosylation, palmitoylation, phosphorylation and ubiquitination, reflecting future research directions and opportunities in identifying tumour-specific signalling targets, their regulatory molecules and pathways for intervention into various types of cancers.
Collapse
Affiliation(s)
- Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
| | - Lihui Wang
- Institute of Ageing Research, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yanheng Wu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Department of Immunology, Monash University Faculty of Medicine, Prahran, Victoria, Australia.,Hudson Institute of Medical Research, and Department of Molecular and Translational Science, Monash University Faculty of Medicine, Clayton, Victoria, Australia
| |
Collapse
|
359
|
Abstract
Germline pathogenic phosphatase and tensin homolog (PTEN) mutations cause PTEN hamartoma tumor syndrome (PHTS), characterized by various benign and malignant tumors of the thyroid, breast, endometrium, and other organs. Patients with PHTS may present with other clinical features such as macrocephaly, intestinal polyposis, cognitive changes, and pathognomonic skin changes. Clinically, deregulation of PTEN function is implicated in other human diseases in addition to many types of human cancer. PTEN is an important phosphatase that counteracts one of the most critical cancer pathways: the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathways. Although PTEN can dephosphorylate lipids and proteins, it also has functions independent of phosphatase activity in normal and pathological states. It is positively and negatively regulated at the transcriptional level as well as posttranslationally by phosphorylation, ubiquitylation, oxidation, and acetylation. Although most of its tumor-suppressor activity is likely to be caused by lipid dephosphorylation at the plasma membrane, PTEN also resides in the cytoplasm and nucleus, and its subcellular distribution is under strict control. In this review, we highlight our current knowledge of PTEN function and recent discoveries in understanding PTEN function regulation and how this can be exploited therapeutically for cancer treatment.
Collapse
Affiliation(s)
- Joanne Ngeow
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798.,Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre, Singapore 169610.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.,Germline High Risk Cancer Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
360
|
Lingling Z, Jiewei L, Li W, Danli Y, Jie Z, Wen L, Dan P, Lei P, Qinghua Z. Molecular regulatory network of PD-1/PD-L1 in non-small cell lung cancer. Pathol Res Pract 2020; 216:152852. [DOI: 10.1016/j.prp.2020.152852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/03/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022]
|
361
|
Cavazzoni A, Digiacomo G, Alfieri R, La Monica S, Fumarola C, Galetti M, Bonelli M, Cretella D, Barili V, Zecca A, Giovannetti E, Fiorentino M, Tiseo M, Petronini PG, Ardizzoni A. Pemetrexed Enhances Membrane PD-L1 Expression and Potentiates T Cell-Mediated Cytotoxicity by Anti-PD-L1 Antibody Therapy in Non-Small-Cell Lung Cancer. Cancers (Basel) 2020; 12:666. [PMID: 32178474 PMCID: PMC7139811 DOI: 10.3390/cancers12030666] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Immunotherapy has significantly changed the treatment landscape for advanced non-small-cell lung cancer (NSCLC) with the introduction of drugs targeting programmed cell death protein-1 (PD-1) and programmed cell death ligand-1 (PD-L1). In particular, the addition of the anti-PD-1 antibody pembrolizumab to platinum-pemetrexed chemotherapy resulted in a significantly improved overall survival in patients with non-squamous NSCLC, regardless of PD-L1 expression. In this preclinical study, we investigated whether chemotherapy can modulate PD-L1 expression in non-squamous NSCLC cell lines, thus potentially affecting immunotherapy efficacy. Among different chemotherapeutic agents tested, only pemetrexed increased PD-L1 levels by activating both mTOR/P70S6K and STAT3 pathways. Moreover, it also induced the secretion of cytokines, such as IFN-γ and IL-2, by activated peripheral blood mononuclear cells PBMCs that further stimulated the expression of PD-L1 on tumor cells, as demonstrated in a co-culture system. The anti-PD-1/PD-L1 therapy enhanced T cell-mediated cytotoxicity of NSCLC cells treated with pemetrexed and expressing high levels of PD-L1 in comparison with untreated cells. These data may explain the positive results obtained with pemetrexed-based chemotherapy combined with pembrolizumab in PD-L1-negative NSCLC and can support pemetrexed as one of the preferable chemotherapy partners for immunochemotherapy combination regimens.
Collapse
Affiliation(s)
- Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.D.); (S.L.M.); (C.F.); (M.B.); (D.C.); (V.B.); (M.T.); (P.G.P.)
| | - Graziana Digiacomo
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.D.); (S.L.M.); (C.F.); (M.B.); (D.C.); (V.B.); (M.T.); (P.G.P.)
| | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.D.); (S.L.M.); (C.F.); (M.B.); (D.C.); (V.B.); (M.T.); (P.G.P.)
| | - Silvia La Monica
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.D.); (S.L.M.); (C.F.); (M.B.); (D.C.); (V.B.); (M.T.); (P.G.P.)
| | - Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.D.); (S.L.M.); (C.F.); (M.B.); (D.C.); (V.B.); (M.T.); (P.G.P.)
| | - Maricla Galetti
- Italian Workers’ Compensation Authority (INAIL) Research Center, 43126 Parma, Italy;
| | - Mara Bonelli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.D.); (S.L.M.); (C.F.); (M.B.); (D.C.); (V.B.); (M.T.); (P.G.P.)
| | - Daniele Cretella
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.D.); (S.L.M.); (C.F.); (M.B.); (D.C.); (V.B.); (M.T.); (P.G.P.)
| | - Valeria Barili
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.D.); (S.L.M.); (C.F.); (M.B.); (D.C.); (V.B.); (M.T.); (P.G.P.)
| | - Alessandra Zecca
- Department of Infectious Diseases and Hepatology, University Hospital of Parma, 43126 Parma, Italy;
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, 1081HV Amsterdam, The Netherlands;
- Fondazione Pisana per la Scienza, San Giuliano Terme, 56017 Pisa, Italy
| | - Michelangelo Fiorentino
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (M.F.); (A.A.)
| | - Marcello Tiseo
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.D.); (S.L.M.); (C.F.); (M.B.); (D.C.); (V.B.); (M.T.); (P.G.P.)
| | - Pier Giorgio Petronini
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.D.); (S.L.M.); (C.F.); (M.B.); (D.C.); (V.B.); (M.T.); (P.G.P.)
| | - Andrea Ardizzoni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (M.F.); (A.A.)
| |
Collapse
|
362
|
Fujita A, Kan-O K, Tonai K, Yamamoto N, Ogawa T, Fukuyama S, Nakanishi Y, Matsumoto K. Inhibition of PI3Kδ Enhances Poly I:C-Induced Antiviral Responses and Inhibits Replication of Human Metapneumovirus in Murine Lungs and Human Bronchial Epithelial Cells. Front Immunol 2020; 11:432. [PMID: 32218789 PMCID: PMC7079687 DOI: 10.3389/fimmu.2020.00432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/25/2020] [Indexed: 12/20/2022] Open
Abstract
Viral infections of the airway can exacerbate respiratory diseases, such as asthma or chronic obstructive pulmonary disease (COPD), and accelerate disease progression. Phosphoinositide 3-kinase (PI3K)δ, a class 1A PI3K, has been studied as a potential target for achieving anti-oncogenic and anti-inflammatory effects. However, the role of PI3Kδ in antiviral responses is poorly understood. Using a synthetic double-stranded RNA poly I:C and a selective PI3Kδ inhibitor IC87114, we investigated the role of PI3Kδ signaling in poly I:C-induced expression of the T lymphocyte-inhibitory molecule programmed death 1 ligand 1 (PD-L1), inflammatory responses and antiviral interferon (IFN) responses. C57BL/6N mice were treated with IC87114 or vehicle by intratracheal (i.t.) instillation followed by i.t. administration of poly I:C. Poly I:C increased PD-L1 expression on epithelial cells, lymphocytes, macrophages, and neutrophils in the lungs and IC87114 suppressed poly I:C-induced PD-L1 expression on epithelial cells and neutrophils possibly via inhibition of the Akt/mTOR signaling pathway. IC87114 also attenuated poly I:C-induced increases in numbers of total cells, macrophages, neutrophils and lymphocytes, as well as levels of KC, IL-6 and MIP-1β in bronchoalveolar lavage fluid. Gene expression of IFNβ, IFNλ2 and IFN-stimulated genes (ISGs) were upregulated in response to poly I:C and a further increase in gene expression was observed following IC87114 treatment. In addition, IC87114 enhanced poly I:C-induced phosphorylation of IRF3. We assessed the effects of IC87114 on human primary bronchial epithelial cells (PBECs). IC87114 decreased poly I:C-induced PD-L1 expression on PBECs and secretion of IL-6 and IL-8 into culture supernatants. IC87114 further enhanced poly I:C- induced increases in the concentrations of IFNβ and IFNλ1/3 in culture supernatants as well as upregulated gene expression of ISGs in PBECs. Similar results were obtained in PBECs transfected with siRNA targeting the PIK3CD gene encoding PI3K p110δ, and stimulated with poly I:C. In human metapneumovirus (hMPV) infection of PBECs, IC87114 suppressed hMPV-induced PD-L1 expression and reduced viral replication without changing the production levels of IFNβ and IFNλ1/3 in culture supernatants. These data suggest that IC87114 may promote virus elimination and clearance through PD-L1 downregulation and enhanced antiviral IFN responses, preventing prolonged lung inflammation, which exacerbates asthma and COPD.
Collapse
Affiliation(s)
- Akitaka Fujita
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keiko Kan-O
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Endoscopic Diagnostics and Therapeutics, Kyushu University Hospital, Fukuoka, Japan
| | - Ken Tonai
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Norio Yamamoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Ogawa
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoru Fukuyama
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoichi Nakanishi
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichiro Matsumoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
363
|
Iida M, Harari PM, Wheeler DL, Toulany M. Targeting AKT/PKB to improve treatment outcomes for solid tumors. Mutat Res 2020; 819-820:111690. [PMID: 32120136 DOI: 10.1016/j.mrfmmm.2020.111690] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/31/2020] [Accepted: 02/11/2020] [Indexed: 12/16/2022]
Abstract
The serine/threonine kinase AKT, also known as protein kinase B (PKB), is the major substrate to phosphoinositide 3-kinase (PI3K) and consists of three paralogs: AKT1 (PKBα), AKT2 (PKBβ) and AKT3 (PKBγ). The PI3K/AKT pathway is normally activated by binding of ligands to membrane-bound receptor tyrosine kinases (RTKs) as well as downstream to G-protein coupled receptors and integrin-linked kinase. Through multiple downstream substrates, activated AKT controls a wide variety of cellular functions including cell proliferation, survival, metabolism, and angiogenesis in both normal and malignant cells. In human cancers, the PI3K/AKT pathway is most frequently hyperactivated due to mutations and/or overexpression of upstream components. Aberrant expression of RTKs, gain of function mutations in PIK3CA, RAS, PDPK1, and AKT itself, as well as loss of function mutation in AKT phosphatases are genetic lesions that confer hyperactivation of AKT. Activated AKT stimulates DNA repair, e.g. double strand break repair after radiotherapy. Likewise, AKT attenuates chemotherapy-induced apoptosis. These observations suggest that a crucial link exists between AKT and DNA damage. Thus, AKT could be a major predictive marker of conventional cancer therapy, molecularly targeted therapy, and immunotherapy for solid tumors. In this review, we summarize the current understanding by which activated AKT mediates resistance to cancer treatment modalities, i.e. radiotherapy, chemotherapy, and RTK targeted therapy. Next, the effect of AKT on response of tumor cells to RTK targeted strategies will be discussed. Finally, we will provide a brief summary on the clinical trials of AKT inhibitors in combination with radiochemotherapy, RTK targeted therapy, and immunotherapy.
Collapse
Affiliation(s)
- M Iida
- Department of Human Oncology, University of Wisconsin in Madison, Madison, WI, USA.
| | - P M Harari
- Department of Human Oncology, University of Wisconsin in Madison, Madison, WI, USA
| | - D L Wheeler
- Department of Human Oncology, University of Wisconsin in Madison, Madison, WI, USA
| | - M Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany; German Cancer Consortium (DKTK), Partner Site Tuebingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
364
|
Exercise enhances skeletal muscle regeneration by promoting senescence in fibro-adipogenic progenitors. Nat Commun 2020; 11:889. [PMID: 32060352 PMCID: PMC7021787 DOI: 10.1038/s41467-020-14734-x] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 01/29/2020] [Indexed: 12/16/2022] Open
Abstract
Idiopathic inflammatory myopathies cause progressive muscle weakness and degeneration. Since high-dose glucocorticoids might not lead to full recovery of muscle function, physical exercise is also an important intervention, but some exercises exacerbate chronic inflammation and muscle fibrosis. It is unknown how physical exercise can have both beneficial and detrimental effects in chronic myopathy. Here we show that senescence of fibro-adipogenic progenitors (FAPs) in response to exercise-induced muscle damage is needed to establish a state of regenerative inflammation that induces muscle regeneration. In chronic inflammatory myopathy model mice, exercise does not promote FAP senescence or resistance against tumor necrosis factor–mediated apoptosis. Pro-senescent intervention combining exercise and pharmacological AMPK activation reverses FAP apoptosis resistance and improves muscle function and regeneration. Our results demonstrate that the absence of FAP senescence after exercise leads to muscle degeneration with FAP accumulation. FAP-targeted pro-senescent interventions with exercise and pharmacological AMPK activation may constitute a therapeutic strategy for chronic inflammatory myopathy. Some exercises exacerbate chronic inflammation and muscle fibrosis in chronic myopathy. Here, the authors show that senescence of fibro-adipogenic progenitors (FAPs) in response to exercise induces muscle regeneration, and impaired FAP senescence worsens inflammation and fibrosis in chronic myopathy in mice.
Collapse
|
365
|
Arrieta O, Aviles-Salas A, Orozco-Morales M, Hernández-Pedro N, Cardona AF, Cabrera-Miranda L, Barrios-Bernal P, Soca-Chafre G, Cruz-Rico G, Peña-Torres MDL, Moncada-Claudio G, Ramirez-Tirado LA. Association between CD47 expression, clinical characteristics and prognosis in patients with advanced non-small cell lung cancer. Cancer Med 2020; 9:2390-2402. [PMID: 32043750 PMCID: PMC7131854 DOI: 10.1002/cam4.2882] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 12/11/2019] [Accepted: 01/13/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE CD47 is an antiphagocytic molecule that contributes to tumor cell resistance in host immune surveillance. CD47 overexpression correlated with tumor progression and shorter survival in lung cancer. However, the expression and functional significance of CD47 in Non-Small Cell Lung Cancer (NSCLC) has not been completely understood. MATERIALS AND METHODS In this retrospective study, CD47 expression was immunohistochemically examined in tumor biopsies from 169 NSCLC patients. The association of CD47 levels (H-score) with clinicopathological characteristics and survival outcomes was evaluated. RESULTS CD47 protein was detected in 84% of patients with a median expression of 80% (0-100). Tumor CD47 levels above 1% and 50% were found in 84% and 65.7% of patients, respectively. While, median CD47 staining index was 160 (0-300). Patients were divided into two groups according to CD47 expression (high or low), using a cutoff value of 150. High CD47 expression was associated with wood smoke exposure (71.1% vs 28.9%, P = .013) and presence of EGFR (+) mutations (66.7% vs 33.3%, P = .04). Survival analysis carried out in the whole population did not show any association of CD47 expression and survival outcome. However, in patients with EGFR (+) mutations, CD47 expression was associated with higher progression-free survival (PFS) (12.2 vs. 4.4 months, P = .032). When the survival analysis was performed according to CD47 levels (cut off value: 150), both, PFS and overall survival (OS) were shortened in patients with a high expression of CD47 (10.7 vs. NR, P = .156) and (29.2 vs. NR months P = .023), respectively. CONCLUSIONS CD47 overexpression is not a prognostic factor for PFS and OS in NSCLC patients. However, the presence of EGFR mutations and high expression of CD47 were associated with shortened PFS and OS. Coexpression of these markers represents a potential biomarker and characterizes a therapeutic niche for lung cancer.
Collapse
Affiliation(s)
- Oscar Arrieta
- Functional Unit of Thoracic Oncology and Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | | | - Mario Orozco-Morales
- Functional Unit of Thoracic Oncology and Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Norma Hernández-Pedro
- Functional Unit of Thoracic Oncology and Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Andrés F Cardona
- Clinical and Translational Oncology Group, Thoracic Oncology Unit, Clínica del Country, Bogotá, Colombia.,Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia.,Clinical Research and Biology Systems Unit, Universidad el Bosque, Bogotá, Colombia
| | - Luis Cabrera-Miranda
- Functional Unit of Thoracic Oncology and Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Pedro Barrios-Bernal
- Functional Unit of Thoracic Oncology and Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Giovanny Soca-Chafre
- Functional Unit of Thoracic Oncology and Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Graciela Cruz-Rico
- Functional Unit of Thoracic Oncology and Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - María de Lourdes Peña-Torres
- Immunohistochemistry Unit, Department of Pathology, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Guadalupe Moncada-Claudio
- Immunohistochemistry Unit, Department of Pathology, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Laura-Alejandra Ramirez-Tirado
- Functional Unit of Thoracic Oncology and Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| |
Collapse
|
366
|
Wu W, Jing D, Meng Z, Hu B, Zhong B, Deng X, Jin X, Shao Z. FGD1 promotes tumor progression and regulates tumor immune response in osteosarcoma via inhibiting PTEN activity. Am J Cancer Res 2020; 10:2859-2871. [PMID: 32194840 PMCID: PMC7052884 DOI: 10.7150/thno.41279] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/11/2020] [Indexed: 12/26/2022] Open
Abstract
Rationale: Mesenchymal cell-derived osteosarcoma is a rare malignant bone tumor affecting children and adolescents. PTEN down-regulation or function-loss mutation is associated with the aggressive of osteosarcoma. Explicating the regulatory mechanism of PTEN might highlight new targets for improving the survival rate of osteosarcoma patients. Methods: The clinical relevance of FGD1 was examined by the TCGA data set, Western blotting and immunohistochemistry of osteosarcoma microarray slides. Functional assays, such as the MTS assay, colony formation assay and xenografts, were used to determine the biological role of FGD1 in osteosarcoma. The protein-protein interaction between FGD1 and PTEN was detected via co-immunoprecipitation. The relationship between FGD1 and PD-L1 was examined by Western blot analysis, RT-qPCR and immunohistochemistry. Results: In this study, analysis of the TCGA data set of sarcomas revealed that FGD1 was over-expressed with the highest P values. Then, we demonstrated that FGD1 was also abnormally up-regulated in osteosarcoma with unfavorable prognosis. Aberrant expressed FGD1 promoted the osteosarcoma tumor cell proliferation and invasion. Moreover, we found that FGD1 was participated in activating PI3K/AKT signaling pathway by interacting with PTEN. Finally, we showed that FGD1 was capable of regulating the tumor immune response via the PTEN/PD-L1 axis in osteosarcoma. Conclusions: Our data suggested that abnormally over-expressed FGD1 functions as an oncogenic protein to promote osteosarcoma progression through inhibiting PTEN activity and activating PI3K/AKT signaling. Notably, FGD1 increased PD-L1 expression in a PTEN dependent manner and modulated the sensitivity of immune checkpoint-based immunotherapy in osteosarcoma. Thus, FGD1 might be a potential target for improving the survival rate of osteosarcomas.
Collapse
|
367
|
Sarlak S, Lalou C, Amoedo ND, Rossignol R. Metabolic reprogramming by tobacco-specific nitrosamines (TSNAs) in cancer. Semin Cell Dev Biol 2020; 98:154-166. [PMID: 31699542 DOI: 10.1016/j.semcdb.2019.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 08/25/2019] [Accepted: 09/02/2019] [Indexed: 12/21/2022]
Abstract
Metabolic reprogramming is a hallmark of cancer and the link between oncogenes activation, tumor supressors inactivation and bioenergetics modulation is well established. However, numerous carcinogenic environmental factors are responsible for early cancer initiation and their impact on metabolic reprogramming just starts to be deciphered. For instance, it was recently shown that UVB irradiation triggers metabolic reprogramming at the pre-cancer stage with implication for skin cancer detection and therapy. These observations foster the need to study the early changes in tissue metabolism following exposure to other carcinogenic events. According to the International Agency for Research on Cancer (IARC), tobacco smoke is a major class I-carcinogenic environmental factor that contains different carcinogens, but little is known on the impact of tobacco smoke on tissue metabolism and its participation to cancer initiation. In particular, tobacco-specific nitrosamines (TSNAs) play a central role in tobacco-smoke mediated cancer initiation. Here we describe the recent advances that have led to a new hypothesis regarding the link between nitrosamines signaling and metabolic reprogramming in cancer.
Collapse
Affiliation(s)
- Saharnaz Sarlak
- INSERM U1211, 33000 Bordeaux, France; Bordeaux University, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Claude Lalou
- INSERM U1211, 33000 Bordeaux, France; Bordeaux University, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Nivea Dias Amoedo
- CELLOMET, Functional Genomics Center (CGFB), 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Rodrigue Rossignol
- INSERM U1211, 33000 Bordeaux, France; Bordeaux University, 146 rue Léo Saignat, 33000 Bordeaux, France; CELLOMET, Functional Genomics Center (CGFB), 146 rue Léo Saignat, 33000 Bordeaux, France.
| |
Collapse
|
368
|
NDAT suppresses pro-inflammatory gene expression to enhance resveratrol-induced anti-proliferation in oral cancer cells. Food Chem Toxicol 2020; 136:111092. [DOI: 10.1016/j.fct.2019.111092] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/25/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022]
|
369
|
Ren D, Hua Y, Yu B, Ye X, He Z, Li C, Wang J, Mo Y, Wei X, Chen Y, Zhou Y, Liao Q, Wang H, Xiang B, Zhou M, Li X, Li G, Li Y, Zeng Z, Xiong W. Predictive biomarkers and mechanisms underlying resistance to PD1/PD-L1 blockade cancer immunotherapy. Mol Cancer 2020; 19:19. [PMID: 32000802 PMCID: PMC6993488 DOI: 10.1186/s12943-020-1144-6] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/20/2020] [Indexed: 02/08/2023] Open
Abstract
Immune checkpoint blockade targeting PD-1/PD-L1 has promising therapeutic efficacy in a variety of tumors, but resistance during treatment is a major issue. In this review, we describe the utility of PD-L1 expression levels, mutation burden, immune cell infiltration, and immune cell function for predicting the efficacy of PD-1/PD-L1 blockade therapy. Furthermore, we explore the mechanisms underlying immunotherapy resistance caused by PD-L1 expression on tumor cells, T cell dysfunction, and T cell exhaustion. Based on these mechanisms, we propose combination therapeutic strategies. We emphasize the importance of patient-specific treatment plans to reduce the economic burden and prolong the life of patients. The predictive indicators, resistance mechanisms, and combination therapies described in this review provide a basis for improved precision medicine.
Collapse
Affiliation(s)
- Daixi Ren
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuze Hua
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Boyao Yu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Ye
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ziheng He
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Chunwei Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jie Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xiaoxu Wei
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yunhua Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yujuan Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
370
|
Wang QW, Liu HJ, Zhao Z, Zhang Y, Wang Z, Jiang T, Bao ZS. Prognostic Correlation of Autophagy-Related Gene Expression-Based Risk Signature in Patients with Glioblastoma. Onco Targets Ther 2020; 13:95-107. [PMID: 32021258 PMCID: PMC6954841 DOI: 10.2147/ott.s238332] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Purpose Autophagy plays a vital role in cancer initiation, malignant progression, and resistance to treatment; however, autophagy-related gene sets have rarely been analyzed in glioblastoma. The purpose of this study was to evaluate the prognostic significance of autophagy-related genes in patients with glioblastoma. Patients and methods Here, we collected whole transcriptome expression data from the Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) datasets to explore the relationship between autophagy-related gene expression and glioblastoma prognosis. R language was the primary analysis and drawing tool. Results We screened 531 autophagy-related genes and identified 14 associated with overall survival in data from 986 patients with glioblastoma. Patients could be clustered into two groups (high and low risk) using expression data from the 14 associated genes, based on significant differences in clinicopathology and prognosis. Next, we constructed a signature based on the 14 genes and found that most patients designated high risk using our gene signature were IDH wild-type, MGMT promoter non-methylated, and likely to have more malignant tumor subtypes (including classical and mesenchymal subtypes). Survival analysis indicated that patients in the high-risk group had dramatically shorter overall survival compared with their low-risk counterparts. Cox regression analysis further confirmed the independent prognostic value of our 14 gene signature. Moreover, functional and ESTIMATE analyses revealed enrichment of immune and inflammatory responses in the high-risk group. Conclusion In this study, we identified a novel autophagy-related signature for the prediction of prognosis in patients with glioblastoma.
Collapse
Affiliation(s)
- Qiang-Wei Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People's Republic of China
| | - Han-Jie Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People's Republic of China
| | - Zheng Zhao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People's Republic of China
| | - Ying Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People's Republic of China
| | - Zheng Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People's Republic of China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China
| | - Zhao-Shi Bao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China.,Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| |
Collapse
|
371
|
Translational Landscape of mTOR Signaling in Integrating Cues Between Cancer and Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:69-80. [PMID: 32030685 DOI: 10.1007/978-3-030-35582-1_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mammalian target of rapamycin (mTOR) represents a critical hub for the regulation of different processes in both normal and tumor cells. Furthermore, it is now well established the role of mTOR in integrating and shaping different environmental paracrine and autocrine stimuli in tumor microenvironment (TME) constituents. Recently, further efforts have been employed to understand how the mTOR signal transduction mechanisms modulate the sensitivity and resistance to targeted therapies, also for its involvement of mTOR also in modulating angiogenesis and tumor immunity. Indeed, interest in mTOR targeting was increased to improve immune response against cancer and to develop new long-term efficacy strategies, as demonstrated by clinical success of mTOR and immune checkpoint inhibitor combinations. In this chapter, we will describe the role of mTOR in modulating TME elements and the implication in its targeting as a great promise in clinical trials.
Collapse
|
372
|
Ai L, Xu A, Xu J. Roles of PD-1/PD-L1 Pathway: Signaling, Cancer, and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:33-59. [PMID: 32185706 DOI: 10.1007/978-981-15-3266-5_3] [Citation(s) in RCA: 299] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Immunotherapies that target PD-1/PD-L1 axis have shown unprecedented success in a wide variety of human cancers. PD-1 is one of the key coinhibitory receptors expressed on T cells upon T cell activation. After engagement with its ligands, mainly PD-L1, PD-1 is activated and recruits the phosphatase SHP-2 in proximity to T cell receptor (TCR) and CD28 signaling. This event results in dephosphorylation and attenuation of key molecules in TCR and CD28 pathway, leading to inhibition of T cell proliferation, activation, cytokine production, altered metabolism and cytotoxic T lymphocytes (CTLs) killer functions, and eventual death of activated T cells. Bodies evolve coinhibitory pathways controlling T cell response magnitude and duration to limit tissue damage and maintain self-tolerance. However, tumor cells hijack these inhibitory pathways to escape host immune surveillance by overexpression of PD-L1. This provides the scientific rationale for clinical application of immune checkpoint inhibitors in oncology. The aberrantly high expression of PD-L1 in tumor microenvironment (TME) can be attributable to the "primary" activation of multiple oncogenic signaling and the "secondary" induction by inflammatory factors such as IFN-γ. Clinically, antibodies targeting PD-1/PD-L1 reinvigorate the "exhausted" T cells in TME and show remarkable objective response and durable remission with acceptable toxicity profile in large numbers of tumors such as melanoma, lymphoma, and mismatch-repair deficient tumors. Nevertheless, most patients are still refractory to anti-PD-1/PD-L1 therapy. Identifying the predictive biomarkers and design rational PD-1-based combination therapy become the priorities in cancer immunotherapy. PD-L1 expression, cytotoxic T lymphocytes infiltration, and tumor mutation burden (TMB) are generally considered as the most important factors affecting the effectiveness of PD-1/PD-L1 blockade. The revolution in cancer immunotherapy achieved by PD-1/PD-L1 blockade offers the paradigm for scientific translation from bench to bedside. The next decades will without doubt witness the renaissance of immunotherapy.
Collapse
Affiliation(s)
- Luoyan Ai
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Antao Xu
- Department of Rheumatology, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200001, China
| | - Jie Xu
- Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
373
|
Mechanisms of Resistance to Checkpoint Blockade Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:83-117. [PMID: 32185708 DOI: 10.1007/978-981-15-3266-5_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Immune checkpoint blockades (ICBs), as a major breakthrough in cancer immunotherapy, target CTLA-4 and the PD-1/PD-L1 axis and reinvigorate anti-tumor activities by disrupting co-inhibitory T-cell signaling. With unprecedented performance in clinical trials, ICBs have been approved by FDA for the treatment of malignancies such as melanoma, non-small-cell lung cancer, colorectal cancer, and hepatocellular carcinoma. However, while ICBs are revolutionizing therapeutic algorithms for cancers, the frequently observed innate, adaptive or acquired drug resistance remains an inevitable obstacle to a durable antitumor activity, thus leading to non-response or tumor relapse. Researches have shown that resistance could occur at each stage of the tumor's immune responses. From the current understanding, the molecular mechanisms for the resistance of ICB can be categorized into the following aspects: 1. Tumor-derived mechanism, 2. T cell-based mechanism, and 3. Tumor microenvironment-determined resistance. In order to overcome resistance, potential therapeutic strategies include enhancing antigen procession and presentation, reinforcing the activity and infiltration of T cells, and destroying immunosuppression microenvironment. In future, determining the driving factors behind ICB resistance by tools of precision medicine may maximize clinical benefits from ICBs. Moreover, efforts in individualized dosing, intermittent administration and/or combinatory regimens have opened new directions for overcoming ICB resistance.
Collapse
|
374
|
Overview of Basic Immunology and Clinical Application. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1244:1-36. [PMID: 32301008 DOI: 10.1007/978-3-030-41008-7_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tumor exists as a complex network of structures with an ability to evolve and evade the host immune surveillance mechanism. The immune milieu which includes macrophages, dendritic cells, natural killer cells, neutrophils, mast cells, B cells, and T cells are found in the core, the invasive margin, or the adjacent stromal or lymphoid component of the tumor. The immune infiltrate is heterogeneous and varies within a patient and between patients of the same tumor histology. The location, density, functionality, and cross-talk between the immune cells in the tumor microenvironment influence the nature of immune response, prognosis, and treatment outcomes in cancer patients. Therefore, an understanding of the characteristics of the immune cells and their role in tumor immune surveillance is of paramount importance to identify immune targets and to develop novel immune therapeutics in the war against cancer. In this chapter, we provide an overview of the individual components of the human immune system and the translational relevance of predictive biomarkers.
Collapse
|
375
|
Kobayashi Y, Lim SO, Yamaguchi H. Oncogenic signaling pathways associated with immune evasion and resistance to immune checkpoint inhibitors in cancer. Semin Cancer Biol 2019; 65:51-64. [PMID: 31874279 DOI: 10.1016/j.semcancer.2019.11.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/03/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors (ICIs) are novel class of anti-cancer drugs that exhibit significant therapeutic effects even in patients with advanced-stage cancer. However, the efficacy of ICIs is limited due to resistance. Therefore, appropriate biomarkers to select patients who are likely to respond to these drugs as well as combination therapy to overcome the resistance are urgently necessary. Cancer is caused by various genetic alterations that lead to abnormalities in oncogenic signaling pathways. The aberrant oncogenic signaling pathways serve as not only prognostic and predictive biomarkers, but also targets for molecularly targeted therapy. Growing evidence shows that the aberrant oncogenic signaling pathways in cancer cells facilitate the resistance to ICIs by modulating the regulation of immune checkpoint and cancer immune surveillance. Indeed, it has been demonstrated that some molecular targeted therapies significantly improve the efficacy of ICIs in preclinical and clinical studies. In this review, we highlighted several oncogenic signaling pathways including receptor tyrosine kinases (RTKs), MAPK, PI3K-AKT-mTOR, JAK-STAT, Hippo, and Wnt pathways, and summarized the recent findings of the mechanisms underlying the regulation of cancer immunity and the ICI resistance induced by these aberrant oncogenic signaling pathways in cancer cells. Moreover, we discussed potential combination therapies with ICIs and molecularly targeted drugs to overcome the resistance and increase the efficacy of ICIs.
Collapse
Affiliation(s)
- Yoshie Kobayashi
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Seung-Oe Lim
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Hirohito Yamaguchi
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
| |
Collapse
|
376
|
Zhi X, Li W, Wang S, Wang J. [Advances in the Influence of EGFR Mutation on the PD-L1 Expression in Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2019; 22:779-785. [PMID: 31874674 PMCID: PMC6935036 DOI: 10.3779/j.issn.1009-3419.2019.12.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
近年来,有关程序性死亡受体1(programmed death-1, PD-1)及其配体(programmed death-1 ligand, PD-L1)抑制剂的研究取得突破性进展,迅速改变着非小细胞肺癌(non-small cell lung cancer, NSCLC)的治疗模式。但表皮生长因子受体(epidermal growth factor receptor, EGFR)突变患者应用PD-1/PD-L1抑制剂的治疗效果并不理想。既往研究显示,肿瘤细胞PD-L1表达率与免疫抑制剂治疗效果存在相关性。但目前EGFR突变对PD-L1表达的影响并不能达成一致。我们将对相关研究进行总结,以期对基础研究或临床治疗有所帮助。
Collapse
Affiliation(s)
- Xiaoyu Zhi
- Department of Medical Oncology, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Weiwei Li
- Department of Medical Oncology, the Hospital of 81st Group Army PLA, Zhangjiakou 075000, China
| | - Shaowei Wang
- Key Laboratory of Cancer Center, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Jinliang Wang
- Department of Medical Oncology, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
377
|
Rodriguez-Pascual J, Ayuso-Sacido A, Belda-Iniesta C. Drug resistance in cancer immunotherapy: new strategies to improve checkpoint inhibitor therapies. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:980-993. [PMID: 35582274 PMCID: PMC9019209 DOI: 10.20517/cdr.2019.61] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/05/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
Abstract
Recent advances in pharmacological immune modulation against tumor cells has dramatically changed the paradigm of cancer treatment. Checkpoint inhibitor therapy is a form of cancer immunotherapy already in clinical setting but also under active basic and clinical investigation. Nevertheless, some patients are primary unresponsive or develop ulterior resistance to these family of drugs. This review aims to update the basic molecular mechanism of resistance as well as the current strategies for checkpoint inhibitor selection in order to propose new approaches to individualize the use of these novel therapies.
Collapse
|
378
|
Prince GMSH, Yang TY, Lin H, Chen MC. Mechanistic insight of cyclin-dependent kinase 5 in modulating lung cancer growth. CHINESE J PHYSIOL 2019; 62:231-240. [PMID: 31793458 DOI: 10.4103/cjp.cjp_67_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Lung harbors the growth of primary and secondary tumors. Even though numerous factors regulate the complex signal transduction and cytoskeletal remodeling toward the progression of lung cancer, cyclin-dependent kinase 5 (Cdk5), a previously known kinase in the central nervous system, has raised much attention in the recent years. Patients with aberrant Cdk5 expression also lead to poor survival. Cdk5 has already been employed in various cellular processes which shape the fate of cancer. In lung cancer, Cdk5 mainly regulates tumor suppressor genes, carcinogenesis, cytoskeletal remodeling, and immune checkpoints. Inhibiting Cdk5 by using drugs, siRNA or CRISP-Cas9 system has rendered crucial therapeutic advantage in the combat against lung cancer. Thus, the relation of Cdk5 to lung cancer needs to be addressed in detail. In this review, we will discuss various cellular events modulated by Cdk5 and we will go further into their underlying mechanism in lung cancer.
Collapse
Affiliation(s)
| | - Tsung-Ying Yang
- Department of Internal Medicine, Division of Chest Medicine, Taichung Veterans General Hospital, Taichung; Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ho Lin
- Department of Life Sciences; Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Mei-Chih Chen
- Department of Nursing, Asia University; Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
379
|
Kang JH, Jung MY, Choudhury M, Leof EB. Transforming growth factor beta induces fibroblasts to express and release the immunomodulatory protein PD-L1 into extracellular vesicles. FASEB J 2019; 34:2213-2226. [PMID: 31907984 DOI: 10.1096/fj.201902354r] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 01/14/2023]
Abstract
Transforming growth factor-beta (TGFβ) is an enigmatic protein with various roles in healthy tissue homeostasis/development as well as the development or progression of cancer, wound healing, fibrotic disorders, and immune modulation, to name a few. As TGFβ is causal to various fibroproliferative disorders featuring localized or systemic tissue/organ fibrosis as well as the activated stroma observed in various malignancies, characterizing the pathways and players mediating its action is fundamental. In the current study, we found that TGFβ induces the expression of the immunoinhibitory molecule Programed death-ligand 1 (PD-L1) in human and murine fibroblasts in a Smad2/3- and YAP/TAZ-dependent manner. Furthermore, PD-L1 knockdown decreased the TGFβ-dependent induction of extracellular matrix proteins, including collagen Iα1 (colIα1) and alpha-smooth muscle actin (α-SMA), and cell migration/wound healing. In addition to an endogenous role for PD-L1 in profibrotic TGFβ signaling, TGFβ stimulated-human lung fibroblast-derived PD-L1 into extracellular vesicles (EVs) capable of inhibiting T cell proliferation in response to T cell receptor stimulation and mediating fibroblast cell migration. These findings provide new insights and potential targets for a variety of fibrotic and malignant diseases.
Collapse
Affiliation(s)
- Jeong-Han Kang
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Mi-Yeon Jung
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Malay Choudhury
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Edward B Leof
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
380
|
Ansari RE, Craze ML, Althobiti M, Alfarsi L, Ellis IO, Rakha EA, Green AR. Enhanced glutamine uptake influences composition of immune cell infiltrates in breast cancer. Br J Cancer 2019; 122:94-101. [PMID: 31819174 PMCID: PMC6964696 DOI: 10.1038/s41416-019-0626-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/08/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023] Open
Abstract
Background Cancer cells must alter their metabolism to support proliferation. Immune evasion also plays a role in supporting tumour progression. This study aimed to find whether enhanced glutamine uptake in breast cancer (BC) can derive the existence of specific immune cell subtypes, including the subsequent impact on patient outcome. Methods SLC1A5, SLC7A5, SLC3A2 and immune cell markers CD3, CD8, FOXP3, CD20 and CD68, in addition to PD1 and PDL1, were assessed by using immunohistochemistry on TMAs constructed from a large BC cohort (n = 803). Patients were stratified based on SLC protein expression into accredited clusters and correlated with immune cell infiltrates and patient outcome. The effect of transient siRNA knockdown of SLC7A5 and SLC1A5 on PDL1 expression was evaluated in MDA-MB-231 cells. Results High SLCs were significantly associated with PDL1 and PD1 +, FOXP3 +, CD68 + and CD20 + cells (p < 0.001). Triple negative (TN), HER2 + and luminal B tumours showed variable associations between SLCs and immune cell types (p ≤ 0.04). The expression of SLCs and PDL1, PD1 +, FOXP3 + and CD68 + cells was associated with poor patient outcome (p < 0.001). Knockdown of SLC7A5 significantly reduced PDL1 expression. Conclusion This study provides data that altered glutamine pathways in BC that appears to play a role in deriving specific subtypes of immune cell infiltrates, which either support or counteract its progression.
Collapse
Affiliation(s)
- Rokaya El Ansari
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK.,Department of Pathology, Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Madeleine L Craze
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Maryam Althobiti
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK.,Department of Clinical Laboratory Science, College of Applied Medical Science, Shaqra University 33, Shaqra, 11961, Saudi Arabia
| | - Lutfi Alfarsi
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Ian O Ellis
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK.
| |
Collapse
|
381
|
Wang Z, Liu W, Wang C, Li Y, Ai Z. Acetylcholine promotes the self-renewal and immune escape of CD133+ thyroid cancer cells through activation of CD133-Akt pathway. Cancer Lett 2019; 471:116-124. [PMID: 31830559 DOI: 10.1016/j.canlet.2019.12.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023]
Abstract
Nerves infiltrate the tumor microenvironment and stimulate the growth of cancer cells through the secretion of neurotransmitters. However, the contributions of nerves to the self-renewal capacity of cancer stem cells (CSCs) remain largely unknown. In this study, we found that CD133+ cancer cells were responsible for the initiation of thyroid cancer. Neurons were juxtaposed with CD133+ cells in thyroid cancer tissues. Acetylcholine, one of the most abundant neurotransmitters, promoted CD133 Y828 phosphorylation, and subsequently increased the interaction between CD133 and PI3K regulatory subunit p85, resulting in the activation of the PI3K-Akt pathway. Acetylcholine increased the self-renewal ability of CD133+ thyroid cancer cells through activation of CD133-Akt pathway. Furthermore, acetylcholine promoted the expression of the immune regulator PD-L1 through the activation of the CD133-Akt pathway, resulting in the resistance of CD133+ thyroid cancer cells to CD8+ T cells. However, acetylcholine receptor antagonist 4-DAMP blocked the positive effects of acetylcholine on the self-renewal and immune escape of CD133+ thyroid cancer cells. Taken together, these data suggest that acetylcholine increases the self-renewal and immune escape abilities of CD133+ thyroid cancer cells through the activation of the CD133-Akt pathway.
Collapse
Affiliation(s)
- Zhenglin Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Cong Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yinan Li
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Zhilong Ai
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
382
|
Basis of PD1/PD-L1 Therapies. J Clin Med 2019; 8:jcm8122168. [PMID: 31817953 PMCID: PMC6947170 DOI: 10.3390/jcm8122168] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
It is obvious that tumor cells have developed a number of strategies to escape immune surveillance including an altered expression of various immune checkpoints, such as the programmed death-1 receptor (PD-1) and its ligands PD-L1 and PD-L2. The interaction between PD-1 and PD-L1 results in an activation of self-tolerance pathways in both immune cells as well as tumor cells. Thus, these molecules represent excellent targets for T cell-based immunotherapies. However, the efficacy of therapies using checkpoint inhibitors is variable and only a limited number of patients receive a long-term response, while others develop resistances. Therefore, a better insight into the constitutive expression levels and their control as well as the predictive and prognostic value of PD-1/PD-L1, which are controversially discussed due to the methodological assessment, the dynamic and time-related variable expression of these molecules, is urgently required. In this review, the current knowledge of the PD-L1 and PD-1 genes, their expression in immune and tumor cells, the underlying molecular mechanisms of their regulation and their association with clinical parameters and therapy responses are summarized.
Collapse
|
383
|
Combing the Cancer Genome for Novel Kinase Drivers and New Therapeutic Targets. Cancers (Basel) 2019; 11:cancers11121972. [PMID: 31817861 PMCID: PMC6966563 DOI: 10.3390/cancers11121972] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022] Open
Abstract
Protein kinases are critical regulators of signaling cascades that control cellular proliferation, growth, survival, metabolism, migration, and invasion. Deregulation of kinase activity can lead to aberrant regulation of biological processes and to the onset of diseases, including cancer. In this review, we focus on oncogenic kinases and the signaling pathways they regulate that underpin tumor development. We highlight genomic biomarker-based precision medicine intervention strategies that match kinase inhibitors alone or in combination to mutationally activated kinase drivers, as well as progress towards implementation of these treatment strategies in the clinic. We also discuss the challenges for identification of novel protein kinase cancer drivers in the genomic era.
Collapse
|
384
|
Zhu L, Li Y, Xie X, Zhou X, Gu M, Jie Z, Ko CJ, Gao T, Hernandez BE, Cheng X, Sun SC. TBKBP1 and TBK1 form a growth factor signalling axis mediating immunosuppression and tumourigenesis. Nat Cell Biol 2019; 21:1604-1614. [PMID: 31792381 PMCID: PMC6901116 DOI: 10.1038/s41556-019-0429-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
The kinase TBK1 responds to microbial stimuli and mediates type I interferon (IFN-I) induction. We show that TBK1 is also a central mediator of growth factor signaling; this function relies on a specific adaptor, TBK-binding protein 1 (TBKBP1). TBKBP1 recruits TBK1 to PKCθ via a scaffold protein, Card10, which allows PKCθ to phosphorylate TBK1 at serine-716, a crucial step for TBK1 activation by growth factors but not by innate immune stimuli. While the TBK1/TBKBP1 signaling axis is dispensable for IFN-I induction, it mediates mTORC1 activation and oncogenesis. Lung epithelial cell-conditional deletion of either TBK1 or TBKBP1 inhibits tumorigenesis in a mouse model of lung cancer. In addition to promoting tumor growth, the TBK1/TBKBP1 axis facilitates tumor-mediated immunosuppression by a mechanism involving induction of the checkpoint molecule PD-L1 and stimulation of glycolysis. These findings suggest a PKCθ-TBKBP1-TBK1 growth factor signaling axis mediating both tumor growth and immunosuppression.
Collapse
Affiliation(s)
- Lele Zhu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yanchuan Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoping Xie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meidi Gu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zuliang Jie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chun-Jung Ko
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tianxiao Gao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Blanca E Hernandez
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
385
|
Yang Q, Jiang W, Hou P. Emerging role of PI3K/AKT in tumor-related epigenetic regulation. Semin Cancer Biol 2019; 59:112-124. [DOI: 10.1016/j.semcancer.2019.04.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/14/2019] [Accepted: 04/01/2019] [Indexed: 01/23/2023]
|
386
|
Cioccoloni G, Aquino A, Notarnicola M, Caruso MG, Bonmassar E, Zonfrillo M, Caporali S, Faraoni I, Villivà C, Fuggetta MP, Franzese O. Fatty acid synthase inhibitor orlistat impairs cell growth and down-regulates PD-L1 expression of a human T-cell leukemia line. J Chemother 2019; 32:30-40. [PMID: 31775585 DOI: 10.1080/1120009x.2019.1694761] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fatty Acid Synthase (FASN) is responsible for the de novo synthesis of fatty acids, which are involved in the preservation of biological membrane structure, energy storage and assembly of factors involved in signal transduction. FASN plays a critical role in supporting tumor cell growth, thus representing a potential target for anti-cancer therapies. Moreover, this enzyme has been recently associated with increased PD-L1 expression, suggesting a role for fatty acids in the impairment of the immune response in the tumor microenvironment. Orlistat, a tetrahydrolipstatin used for the treatment of obesity, has been reported to reduce FASN activity, while inducing a sensible reduction of the growth potential in different cancer models. We have analyzed the effect of orlistat on different features involved in the tumor cell biology of the T-ALL Jurkat cell line. In particular, we have observed that orlistat inhibits Jurkat cell growth and induces a perturbation of cell cycle along with a decline of FASN activity and protein levels. Moreover, the drug produces a remarkable impairment of PD-L1 expression. These findings suggest that orlistat interferes with different mechanisms involved in the control of tumor cell growth and can potentially contribute to decrease the tumor-associated immune-pathogenesis.
Collapse
Affiliation(s)
- Giorgia Cioccoloni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Angelo Aquino
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute for Digestive Diseases S. de Bellis, Bari, Italy
| | - Maria Gabriella Caruso
- Laboratory of Nutritional Biochemistry, National Institute for Digestive Diseases S. de Bellis, Bari, Italy
| | - Enzo Bonmassar
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Institute of Translational Pharmacology, National Council of Research, Rome, Italy
| | - Manuela Zonfrillo
- Institute of Translational Pharmacology, National Council of Research, Rome, Italy
| | - Simona Caporali
- Laboratory of Molecular Oncology, IDI-IRCCS Rome, Rome, Italy
| | - Isabella Faraoni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Cristina Villivà
- Institute of Translational Pharmacology, National Council of Research, Rome, Italy
| | - Maria Pia Fuggetta
- Institute of Translational Pharmacology, National Council of Research, Rome, Italy
| | - Ornella Franzese
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
387
|
London NR, Rooper LM, Bishop JA, Xu H, Bernhardt LJ, Ishii M, Hann CL, Taube JM, Izumchenko E, Gaykalova DA, Gallia GL. Expression of Programmed Cell Death Ligand 1 and Associated Lymphocyte Infiltration in Olfactory Neuroblastoma. World Neurosurg 2019; 135:e187-e193. [PMID: 31785431 DOI: 10.1016/j.wneu.2019.11.112] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Programmed cell death ligand 1 (PD-L1) is a transmembrane glycoprotein that interacts with the receptor programmed cell death 1 (PD-1) to suppress T-cell activation, reduce adjacent tissue damage, and promote tolerance to self-antigens. Tumors may express PD-L1 as a mechanism to evade immune detection. Recent clinical trials have demonstrated the efficacy of PD-L1/PD-1 antagonists through activation of tumor-infiltrated CD8+ T cells. The aim of this study was to determine the expression pattern of PD-L1 and PD-1 in olfactory neuroblastoma (ONB) tumor cells and to determine the presence of PD-1+ and CD8+ lymphocytes in the ONB immune microenvironment. METHODS Immunohistochemistry for expression of PD-L1, PD-1, and CD8 was performed on paraffin-embedded ONB tissue. RESULTS Of the 10 primary site ONB samples, 4 demonstrated positive PD-L1 expression. Of PD-L1+ tumors, the 2 highest expressing samples were found to contain PD-1+ tumor cells. Of the 4 available metastatic samples, all of which arose from PD-L1- primary site ONB, 3 were positive for PD-L1 and contained PD-1+ tumor cells. PD-L1+ primary and metastatic tumors also demonstrated increased PD-1+ infiltrating lymphocytes in the tumor and stroma (11.6- and 4.62-fold increase) compared with PD-L1- samples (P < 0.05 and P = 0.068 respectively). PD-L1+ specimens demonstrated increased CD8+ lymphocytes in the tumor and stroma (7.46- and 2.14-fold increase) compared with PD-L1- tumors (P < 0.05 for both). CONCLUSIONS These data demonstrate that a proportion of ONB primary and metastatic tumors express PD-L1 and possess an associated tumor and stromal infiltrate of PD-1+ and CD8+ lymphocytes.
Collapse
Affiliation(s)
- Nyall R London
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa M Rooper
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Justin A Bishop
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Haiying Xu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lydia J Bernhardt
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Masaru Ishii
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christine L Hann
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Janis M Taube
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Evgeny Izumchenko
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daria A Gaykalova
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gary L Gallia
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
388
|
Yang L, Li A, Lei Q, Zhang Y. Tumor-intrinsic signaling pathways: key roles in the regulation of the immunosuppressive tumor microenvironment. J Hematol Oncol 2019; 12:125. [PMID: 31775797 PMCID: PMC6880373 DOI: 10.1186/s13045-019-0804-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/02/2019] [Indexed: 12/17/2022] Open
Abstract
Immunotherapy is a currently popular treatment strategy for cancer patients. Although recent developments in cancer immunotherapy have had significant clinical impact, only a subset of patients exhibits clinical response. Therefore, understanding the molecular mechanisms of immunotherapy resistance is necessary. The mechanisms of immune escape appear to consist of two distinct tumor characteristics: a decrease in effective immunocyte infiltration and function and the accumulation of immunosuppressive cells in the tumor microenvironment. Several host-derived factors may also contribute to immune escape. Moreover, inter-patient heterogeneity predominantly results from differences in somatic mutations between cancers, which has led to the hypothesis that differential activation of specific tumor-intrinsic pathways may explain the phenomenon of immune exclusion in a subset of cancers. Increasing evidence has also shown that tumor-intrinsic signaling plays a key role in regulating the immunosuppressive tumor microenvironment and tumor immune escape. Therefore, understanding the mechanisms underlying immune avoidance mediated by tumor-intrinsic signaling may help identify new therapeutic targets for expanding the efficacy of cancer immunotherapies.
Collapse
Affiliation(s)
- Li Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, 450052, People's Republic of China
| | - Aitian Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, 450052, People's Republic of China
| | - Qingyang Lei
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, 450052, People's Republic of China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, 450052, People's Republic of China.
| |
Collapse
|
389
|
Kong T, Ahn R, Yang K, Zhu X, Fu Z, Morin G, Bramley R, Cliffe NC, Xue Y, Kuasne H, Li Q, Jung S, Gonzalez AV, Camilleri-Broet S, Guiot MC, Park M, Ursini-Siegel J, Huang S. CD44 Promotes PD-L1 Expression and Its Tumor-Intrinsic Function in Breast and Lung Cancers. Cancer Res 2019; 80:444-457. [PMID: 31722999 DOI: 10.1158/0008-5472.can-19-1108] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/18/2019] [Accepted: 11/08/2019] [Indexed: 11/16/2022]
Abstract
The PD-L1 (CD274) immune-checkpoint ligand is often upregulated in cancers to inhibit T cells and elicit immunosuppression. Independent of this activity, PD-L1 has recently been shown to also exert a cancer cell-intrinsic function promoting tumorigenesis. Here, we establish this tumor-intrinsic role of PD-L1 in triple-negative breast cancer (TNBC) and non-small cell lung cancer (NSCLC). Using FACS-assisted shRNA screens, we identified the cell-surface adhesion receptor CD44 as a key positive regulator of PD-L1 expression in these cancers. Mechanistically, CD44 activated PD-L1 transcription in part through its cleaved intracytoplasmic domain (ICD), which bound to a regulatory region of the PD-L1 locus containing a consensus CD44-ICD binding site. Supporting this genetic interaction, CD44 positively correlated with PD-L1 expression at the mRNA and protein levels in primary tumor samples of TNBC and NSCLC patients. These data provide a novel basis for CD44 as a critical therapeutic target to suppress PD-L1 tumor-intrinsic function. SIGNIFICANCE: CD44 is a potential target to suppress PD-L1 function in TNBC. This finding has the potential to open a new area of therapy for TNBC.
Collapse
Affiliation(s)
- Tim Kong
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Ryuhjin Ahn
- Lady Davis Institute for Medical Research, Montréal, Quebec, Canada.,Department of Experimental Medicine, McGill University, Montréal, Quebec, Canada
| | - Kangning Yang
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Xianbing Zhu
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Zheng Fu
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Geneviève Morin
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Rachel Bramley
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Nikki C Cliffe
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Yibo Xue
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Hellen Kuasne
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Qinghao Li
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Sungmi Jung
- Department of Pathology, Glen Site, McGill University Health Centre Montreal, Quebec, Canada
| | - Anne V Gonzalez
- Department of Medicine, Division of Respiratory Medicine, McGill University Health Centre, Montreal Chest Institute, Montreal, Quebec, Canada
| | - Sophie Camilleri-Broet
- Department of Pathology, Glen Site, McGill University Health Centre Montreal, Quebec, Canada
| | - Marie-Christine Guiot
- Departments of Pathology, Montreal Neurological Hospital/Institute, McGill University Health Centre, Montreal, Quebec, Canada
| | - Morag Park
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Josie Ursini-Siegel
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada. .,Lady Davis Institute for Medical Research, Montréal, Quebec, Canada.,Department of Experimental Medicine, McGill University, Montréal, Quebec, Canada.,Department of Oncology, McGill University, Montréal, Quebec, Canada
| | - Sidong Huang
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada. .,Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
390
|
Programmed Death Ligand 1 Indicates Pre-Existing Adaptive Immune Response by Tumor-Infiltrating CD8 + T Cells in Non-Small Cell Lung Cancer. Int J Mol Sci 2019; 20:ijms20205138. [PMID: 31627272 PMCID: PMC6829548 DOI: 10.3390/ijms20205138] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/15/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Aberrant expression of programmed death ligand 1 (PD-L1) on tumor cells impedes antitumor immunity and instigates immune evasion. The remarkable efficacy of immune checkpoint blockade has been confirmed in various solid tumors. However, the correlation between PD-L1 expression and host immunological landscape remains of considerable controversy in non-small cell lung cancer (NSCLC). In the present study, PD-L1 expression and CD8+ tumor-infiltrating lymphocyte (TIL) infiltration levels were determined by immunohistochemistry (IHC) in tumor sections of 138 NSCLC patients. The expression level of PD-L1 was positively correlated with the abundance of CD8 + TILs (p < 0.0001). Furthermore, no constitutive expression of PD-L1 was observed in the majority of six NSCLC cell lines detected by Western blot; but exposure to interferon-γ (IFN-γ), a primary cytokine secreted by activated CD8+ T cells, prominently increased PD-L1 expression. Notably, a significantly positive association was determined within PD-L1, CD8 and IFN-γ gene expression by qRT-PCR, which was corroborated by RNA-sequencing from TCGA lung cancer dataset. These findings demonstrate that PD-L1 expression indicates an adaptive immune resistance mechanism adopted by tumor cells in the aversion of immunogenic destruction by CD8+ TILs. Both higher expression of PD-L1 and infiltration of CD8+ TILs were correlated with superior prognosis (p = 0.044 for PD-L1; p = 0.002 for CD8). Moreover, Cox multivariate regression analysis showed that the combination of PD-L1 and CD8 were independent prognostic factors, which was more accurate in prediction of prognosis in NSCLC than individually. Finally, we found that IFN-γ induced the upregulation of PD-L1 in NSCLC cells, mainly through the JAK/STAT1 signaling pathway. In conclusion, PD-L1 expression is mainly induced by activated CD8+ TILs via IFN-γ in the immune milieu and indicates pre-existing adaptive immune response in NSCLC.
Collapse
|
391
|
Jiang Y, Zhan H. Communication between EMT and PD-L1 signaling: New insights into tumor immune evasion. Cancer Lett 2019; 468:72-81. [PMID: 31605776 DOI: 10.1016/j.canlet.2019.10.013] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/17/2019] [Accepted: 10/04/2019] [Indexed: 12/21/2022]
Abstract
Immune checkpoint blockage has been considered a breakthrough in cancer treatment, achieving encouraging anti-tumor effects in some advanced solid malignancies. However, low response rate and therapeutic resistance represent significant challenges in this field. In addition to its typical role in embryonic development and tissue fibrosis, epithelial-mesenchymal transition (EMT) plays a pivotal role in tumor immunosuppression and immune evasion. Previous studies revealed that EMT is associated with activation of different immune checkpoint molecules, including PD-L1. EMT-induced immune escape promotes cancer progression and may also provide a platform for discovery of novel therapeutic approaches and predictive biomarkers for checkpoint inhibitor therapeutic response. Here, we summarize recent findings focused on EMT-induced immune suppression and evasion in the tumor microenvironment (TME). EMT transcription factors (EMT-TFs), immune cells, cell plasticity and their regulatory role in the immune response are thoroughly reviewed. Bidirectional regulation between EMT and PD-L1 signaling is discussed in terms of cancer immune escape and possible combined therapies. Additionally, we investigated the value of preclinical or clinical trials using EMT targeted therapy combined with PD-L1 inhibitors. This review may help to further understand the role of EMT and PD-L1 signaling in cancer immune evasion. Meanwhile, additional molecular mechanistic studies and clinical trials are urgently needed.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Hanxiang Zhan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China.
| |
Collapse
|
392
|
Page DB, Bear H, Prabhakaran S, Gatti-Mays ME, Thomas A, Cobain E, McArthur H, Balko JM, Gameiro SR, Nanda R, Gulley JL, Kalinsky K, White J, Litton J, Chmura SJ, Polley MY, Vincent B, Cescon DW, Disis ML, Sparano JA, Mittendorf EA, Adams S. Two may be better than one: PD-1/PD-L1 blockade combination approaches in metastatic breast cancer. NPJ Breast Cancer 2019; 5:34. [PMID: 31602395 PMCID: PMC6783471 DOI: 10.1038/s41523-019-0130-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/05/2019] [Indexed: 01/07/2023] Open
Abstract
Antibodies blocking programmed death 1 (anti-PD-1) or its ligand (anti-PD-L1) are associated with modest response rates as monotherapy in metastatic breast cancer, but are generally well tolerated and capable of generating dramatic and durable benefit in a minority of patients. Anti-PD-1/L1 antibodies are also safe when administered in combination with a variety of systemic therapies (chemotherapy, targeted therapies), as well as with radiotherapy. We summarize preclinical, translational, and preliminary clinical data in support of combination approaches with anti-PD-1/L1 in metastatic breast cancer, focusing on potential mechanisms of synergy, and considerations for clinical practice and future investigation.
Collapse
Affiliation(s)
- David B. Page
- Providence Cancer Institute; Earle A. Chiles Research Institute, Portland, OR USA
| | - Harry Bear
- Division of Surgical Oncology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA USA
| | - Sangeetha Prabhakaran
- Department of Surgery, Division of Surgery, University of New Mexico; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM USA
| | | | - Alexandra Thomas
- Wake Forest University School of Medicine, Winston-Salem, NC USA
| | | | | | - Justin M. Balko
- Department of Medicine and Breast Cancer Research Program, Vanderbilt University Medical Center, Nashville, TN USA
| | - Sofia R. Gameiro
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, MD USA
| | - Rita Nanda
- The University of Chicago, Chicago, IL USA
| | - James L. Gulley
- Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | | | - Julia White
- Ohio State Wexner Medical Center, Columbus, OH USA
| | | | | | | | | | - David W. Cescon
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON Canada
| | | | - Joseph A. Sparano
- Department of Medical Oncology, Montefiore Medical Center, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY USA
| | - Elizabeth A. Mittendorf
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital; Breast Oncology Program, Dana-Farber/Brigham and Women’s Cancer Center, Boston, MA USA
| | - Sylvia Adams
- Perlmutter Cancer Center, NYU School of Medicine, New York, NY USA
| |
Collapse
|
393
|
Hsu JM, Li CW, Lai YJ, Hung MC. Posttranslational Modifications of PD-L1 and Their Applications in Cancer Therapy. Cancer Res 2019; 78:6349-6353. [PMID: 30442814 DOI: 10.1158/0008-5472.can-18-1892] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/01/2018] [Accepted: 09/13/2018] [Indexed: 12/19/2022]
Abstract
Posttranslational modifications (PTM) of PD-L1 have emerged as important regulatory mechanisms that modulate immunosuppression in patients with cancer. In exposure to inflammatory cytokines, cancer cells and antigen-presenting cells, such as macrophages and dendritic cells, express PD-L1 to inhibit the activity of effector T cells through PD-1 engagement. Recent studies suggested that glycosylation, phosphorylation, ubiquitination, sumoylation, and acetylation play important roles in the regulation of PD-L1 protein stability and translocation and protein-protein interactions. Aberrant alterations of PTMs directly influence PD-L1-mediated immune resistance. On the basis of the newly identified regulatory signaling pathways of PD-L1 PTMs, researchers have investigated the cancer therapeutic potential of natural food compounds, small-molecule inhibitors, and mAbs by targeting PD-L1 PTMs. Results of these preclinical studies demonstrated that targeting PTMs of PD-L1 yields promising antitumor effects and that clinical translation of these therapeutic strategies is warranted. Cancer Res; 78(22); 6349-53. ©2018 AACR.
Collapse
Affiliation(s)
- Jung-Mao Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chia-Wei Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yun-Ju Lai
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Center for Molecular Medicine and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
394
|
Kondoh N, Mizuno-Kamiya M, Umemura N, Takayama E, Kawaki H, Mitsudo K, Muramatsu Y, Sumitomo S. Immunomodulatory aspects in the progression and treatment of oral malignancy. JAPANESE DENTAL SCIENCE REVIEW 2019; 55:113-120. [PMID: 31660091 PMCID: PMC6806653 DOI: 10.1016/j.jdsr.2019.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 12/28/2022] Open
Abstract
Inflammation substantially affects the risk of oral malignancy. Pro-inflammatory cytokine, interferon (IFN)-γ, confers anti-tumor activity using several different mechanisms. Conversely, higher expression of interleukin (IL)-17 is associated with worse prognosis. Monocyte chemotactic protein (MCP)-1 correlates positively with poor long-term survival of head and neck squamous cell carcinoma (HNSCC) patients. IL-1α affects cancer associated fibroblasts and macrophages, and promote several malignant phenotypes including immune suppression. Some anti-inflammatory cytokines, including IL-10 and transforming growth factor (TGF)-β, relate to pro-tumoral activities. Among immune checkpoint modulators, programmed death (PD-)1 and PD-ligand (L)1 facilitate oral squamous cell carcinoma (OSCC) cell evasion from immune surveillance, and the expression status of these has a prognostic value. OSCCs contain tumor associated macrophages (TAMs) as major stromal cells of their tumor microenvironment. Among the two distinctive states, M2 macrophages support tumor invasion, metastasis and immune suppression. Crosstalk between TAMs and OSCC or cancer-associated fibroblasts (CAF) plays an important role in the progression of OSCC. Clinical trials with blocking antibodies against IL-1α or melanoma-associated antigens have been reported as therapeutic approaches against OSCCs. The most promising approach activating antitumor immunity is the blockade of PD-1/PD-L1 axis. Manipulating the polarization of pro-tumorigenic macrophages has been reported as a novel therapeutic approach.
Collapse
Affiliation(s)
- Nobuo Kondoh
- Department of Oral Biochemistry, Division of Oral Structure, Function and Development, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Masako Mizuno-Kamiya
- Chemistry Laboratory, Department of Business Administration, Asahi University School of Business Administration, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Naoki Umemura
- Department of Oral Biochemistry, Division of Oral Structure, Function and Development, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Eiji Takayama
- Department of Oral Biochemistry, Division of Oral Structure, Function and Development, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Harumi Kawaki
- Department of Oral Biochemistry, Division of Oral Structure, Function and Development, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Kenji Mitsudo
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Yasunori Muramatsu
- Department of Oral and Maxillofacial Surgery, Division of Oral Pathogenesis and Disease Control, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Shinichiro Sumitomo
- Department of Oral and Maxillofacial Surgery, Division of Oral Pathogenesis and Disease Control, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| |
Collapse
|
395
|
Li S, Jiang Z, Li Y, Xu Y. Prognostic significance of minichromosome maintenance mRNA expression in human lung adenocarcinoma. Oncol Rep 2019; 42:2279-2292. [PMID: 31545501 PMCID: PMC6826304 DOI: 10.3892/or.2019.7330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022] Open
Abstract
The minichromosome maintenance (MCM) gene family plays an essential role in DNA replication and cell cycle progression. However, MCM gene expression has not been well-studied in lung adenocarcinoma (LUAD). In the present study, the expression, prognostic value and functions of MCMs in LUAD were investigated using several databases and bioinformatic tools, including Oncomine, GEPIA, cBioPortal, CancerSEA and Kaplan-Meier plotter. It was demonstrated that the mRNA expression of MCM2, MCM4 and MCM10 were significantly increased in patients with LUAD. High mRNA expression of MCM2-5, MCM8 and MCM10 were associated with poor overall survival and progression-free survival. High MCM4 expression was associated with adverse post-progression survival. In addition, the Human Protein Atlas database showed that MCM protein expression was consistent with the mRNA expression. These results demonstrate that MCM2, MCM4 and MCM10 are potential prognostic markers and therapeutic targets for LUAD.
Collapse
Affiliation(s)
- Shu Li
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Zhou Jiang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, P.R. China
| | - Yang Xu
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
396
|
Mörchen B, Shkura O, Stoll R, Helfrich I. Targeting the "undruggable" RAS - new strategies - new hope? CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:813-826. [PMID: 35582595 PMCID: PMC8992515 DOI: 10.20517/cdr.2019.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/25/2019] [Accepted: 06/04/2019] [Indexed: 06/15/2023]
Abstract
K-RAS is the most frequently mutated oncogene in solid tumors, such as pancreatic, colon or lung cancer. The GTPase K-RAS can either be in an active (GTP-loaded) or inactive (GDP-loaded) form. In its active form K-RAS forwards signals from growth factors, cytokines or hormones to the nucleus, regulating essential pathways, such as cell proliferation and differentiation. In turn, activating somatic mutations of this proto-oncogene deregulate the complex interplay between GAP (GTPase-activating) - and GEF (Guanine nucleotide exchange factor) - proteins, driving neoplastic transformation. Due to a rather shallow surface, K-RAS lacks proper binding pockets for small molecules, hindering drug development over the past thirty years. This review summarizes recent progress in the development of low molecular antagonists and further shows insights of a newly described interaction between mutant K-RAS signaling and PD-L1 induced immunosuppression, giving new hope for future treatments of K-RAS mutated cancer.
Collapse
Affiliation(s)
- Britta Mörchen
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, University Duisburg-Essen, West German Cancer Center, Essen 45147, Germany
- German Cancer Consortium (DKTK) partner site Düsseldorf/Essen, Essen 45147, Germany
| | - Oleksandr Shkura
- Biomolecular NMR, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Bochum D-44780, Germany
| | - Raphael Stoll
- Biomolecular NMR, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Bochum D-44780, Germany
- Both authors contribute equally
| | - Iris Helfrich
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, University Duisburg-Essen, West German Cancer Center, Essen 45147, Germany
- German Cancer Consortium (DKTK) partner site Düsseldorf/Essen, Essen 45147, Germany
- Both authors contribute equally
| |
Collapse
|
397
|
Cretella D, Digiacomo G, Giovannetti E, Cavazzoni A. PTEN Alterations as a Potential Mechanism for Tumor Cell Escape from PD-1/PD-L1 Inhibition. Cancers (Basel) 2019; 11:1318. [PMID: 31500143 PMCID: PMC6770107 DOI: 10.3390/cancers11091318] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022] Open
Abstract
The recent approval of immune checkpoint inhibitors drastically changed the standard treatments in many advanced cancer patients, but molecular changes within the tumor can prevent the activity of immunotherapy drugs. Thus, the introduction of the inhibitors of the immune checkpoint programmed death-1/programmed death ligand-1 (PD-1/PD-L1), should prompt deeper studies on resistance mechanisms, which can be caused by oncogenic mutations detected in cancer cells. PTEN, a tumor suppressor gene, dephosphorylates the lipid signaling intermediate PIP3 with inhibition of AKT activity, one of the main effectors of the PI3K signaling axis. As a consequence of genetic or epigenetic aberrations, PTEN expression is often altered, with increased activation of PI3K axis. Interestingly, some data confirmed that loss of PTEN expression modified the pattern of cytokine secretion creating an immune-suppressive microenvironment with increase of immune cell populations that can promote tumor progression. Moreover, PTEN loss may be ascribed to reduction of tumor infiltrating lymphocytes (TILs), which can explain the absence of activity of immune checkpoint inhibitors. This review describes the role of PTEN loss as a mechanism responsible for resistance to anti PD-1/PD-L1 treatment. Moreover, combinatorial strategies between PD-1/PD-L1 inhibitors and PI3K/AKT targeting drugs are proposed as a new strategy to overcome resistance to immune checkpoint inhibition.
Collapse
Affiliation(s)
- Daniele Cretella
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Graziana Digiacomo
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081HV Amsterdam, The Netherlands.
- Fondazione Pisana per la Scienza, 56017 Pisa, Italy.
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
398
|
Cisplatin contributes to programmed death-ligand 1 expression in bladder cancer through ERK1/2-AP-1 signaling pathway. Biosci Rep 2019; 39:BSR20190362. [PMID: 31341011 PMCID: PMC6783655 DOI: 10.1042/bsr20190362] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 06/18/2019] [Accepted: 06/28/2019] [Indexed: 11/24/2022] Open
Abstract
Bladder cancer (BC) is the second most common urologic malignancy and the ninth most common malignancy worldwide. Surgical resection is the mainstay of treatment for patients with early-stage disease, whereas therapeutic options are limited for patients with advanced-stage or residual BC. Programmed cell death ligand-1 (PD-L1) is an important target for immunotherapy. It is known that PD-L1 is overexpressed in BC; a clinical trial involving PD-L1 immune checkpoint inhibitors in advanced BC is ongoing. In the present study, we used Western blot and quantitative real-time PCR (qPCR) to define the expression level of PD-L1 after cisplatin treatment in BC-derived cell lines. The signal activation was also evaluated by Western blot in BC-derived cell lines. We found that chemotherapeutic drug cisplatin can induce PD-L1 but not PD-L2 expression in BC-derived cell lines. Furthermore, the expression level of PD-L1 was increased in a dose- and time-dependent manner after cisplatin treatment. The cisplatin-induced PD-L1 expression is mainly mediated by ERK1/2 but not Akt/mTOR signal pathway. Moreover, we found that cisplatin activates transcription factor activator protein-1 (AP-1) to regulate PD-L1 expression. The chemotherapy drug such as cisplatin may trigger resistance of BC through PD-L1 up-regulation. The present study suggests that PD-L1 antibody should be used concomitantly with chemotherapy in the setting of advanced and metastatic BC.
Collapse
|
399
|
Wang N, Song L, Xu Y, Zhang L, Wu Y, Guo J, Ji W, Li L, Zhao J, Zhang X, Zhan L. Loss of Scribble confers cisplatin resistance during NSCLC chemotherapy via Nox2/ROS and Nrf2/PD-L1 signaling. EBioMedicine 2019; 47:65-77. [PMID: 31495720 PMCID: PMC6796531 DOI: 10.1016/j.ebiom.2019.08.057] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/26/2022] Open
Abstract
Background Cisplatin resistance remains a major clinical obstacle to the successful treatment of non-small cell lung cancer (NSCLC). Scribble contributes to ROS-induced inflammation and cisplatin-elevated toxic reactive oxygen species (ROS) promotes cell death. However, it is unknown whether and how Scribble is involved in the cisplatin-related cell death and the underlying mechanism of Scribble in response to chemotherapies and in the process of oxidative stress in NSCLC. Methods We used two independent cohorts of NSCLC samples derived from patients treated with platinum-containing chemotherapy and xenograft modeling in vivo. We analyzed the correlation between Scribble and Nox2 or Nrf2/PD-L1 both in vivo and in vitro, and explored the role of Scribble in cisplatin-induced ROS and apoptosis. Findings Clinical analysis revealed that Scribble expression positively correlated with clinical outcomes and chemotherapeutic sensitivity in NSCLC patients. Scribble protected Nox2 protein from proteasomal degradation. Scribble knockdown induced cisplatin resistance by blocking Nox2/ROS and apoptosis in LRR domain-dependent manner. In addition, low levels of Scribble correlated with high levels of PD-L1 via activation of Nrf2 transcription in vivo and in vitro. Interpretations Our study revealed that polarity protein Scribble increased cisplatin-induced ROS generation and is beneficial to chemotherapeutic outcomes in NSCLC. Although Scribble deficiency tends to lead to cisplatin resistance by Nox2/ROS and Nrf2/PD-L1, it is still possible that Scribble deficiency-induced PD-L1 may yield benefits in immunotherapy. Fund National Key R&D Program of China, Strategic Priority Research Program of the Chinese Academy of Sciences, National Natural Science Foundation of China, China Postdoctoral Science Foundation.
Collapse
Affiliation(s)
- Na Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lele Song
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Yi Xu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Longfu Zhang
- Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yanjun Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jingyu Guo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weiwei Ji
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Li
- Department of Biology, Chemistry and Environmental Studies, Molloy College, New York 11571, USA
| | - Jingya Zhao
- Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xin Zhang
- Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Lixing Zhan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
400
|
Wang Y, Li JJ, Ba HJ, Wang KF, Wen XZ, Li DD, Zhu XF, Zhang XS. Down Regulation of c-FLIP L Enhance PD-1 Blockade Efficacy in B16 Melanoma. Front Oncol 2019; 9:857. [PMID: 31552181 PMCID: PMC6738195 DOI: 10.3389/fonc.2019.00857] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/20/2019] [Indexed: 12/28/2022] Open
Abstract
Immune checkpoint blockade of programmed cell death protein 1 (PD-1) had an impressive long-lasting effect in a portion of advanced-stage melanoma patients, however, this therapy failed to induce responses in several patients; how to increase the objective response rate is very important. Cellular FLICE-inhibitory protein (c-FLIP) could inhibit apoptosis directly at the death-inducing signaling complex of death receptors and is also considered to be the main cause of immune escape. The overexpression of c-FLIPL occurs frequently in melanoma and its expression is associated with the prognosis. We found that the level of c-FLIPL expression was associated with the PD-1 blockade response rate in melanoma patients. Thus, we performed this research to investigate how c-FLIPL regulates immunotherapy in melanoma. We demonstrate that down regulation of c-FLIPL enhances the PD-1 blockade efficacy in B16 melanoma tumor model. Down regulation of c-FLIPL could increase the tumor apoptosis and enhance the antitumor response of T cells in the lymphocyte tumor cells co-culture system. Moreover, knockdown of c-FLIPL could decrease the expression of PD-L1 and recruit more effector T cells in the tumor microenvironment. Our results may provide a new combined therapeutic target for further improving the efficacy of PD-1 blockade in melanoma.
Collapse
Affiliation(s)
- Yao Wang
- Biotherapy Center, Sun Yat-sen University Cancer Center, Guangzhou, China.,Medical Oncology Department, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jing-Jing Li
- Biotherapy Center, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hong-Jun Ba
- Pediatric Cardiology Department, Heart Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ke-Feng Wang
- Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xi-Zhi Wen
- Biotherapy Center, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dan-Dan Li
- Biotherapy Center, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Feng Zhu
- Biotherapy Center, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Shi Zhang
- Biotherapy Center, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|