351
|
Huxley VH, Kemp SS, Schramm C, Sieveking S, Bingaman S, Yu Y, Zaniletti I, Stockard K, Wang J. Sex differences influencing micro- and macrovascular endothelial phenotype in vitro. J Physiol 2018; 596:3929-3949. [PMID: 29885204 DOI: 10.1113/jp276048] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/30/2018] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS Endothelial dysfunction is an early hallmark of multiple disease states that also display sex differences with respect to age of onset, frequency and severity. Results of in vivo studies of basal and stimulated microvascular barrier function revealed sex differences that are difficult to ascribe to specific cells or environmental factors. The present study evaluated endothelial cells (EC) isolated from macro- and/or microvessels of reproductively mature rats under the controlled conditions of low-passage culture aiming to test the assumption that EC phenotype would be sex independent. The primary finding was that EC, regardless of where they are derived, retain a sex-bias in low-passage culture, independent of varying levels of reproductive hormones. The implications of the present study include the fallacy of expecting a universal set of mechanisms derived from study of EC from one sex and/or one vascular origin to apply uniformly to all EC under unstimulated conditions, and no less in disease. ABSTRACT Vascular endothelial cells (EC) are heterogeneous with respect to phenotype, reflecting at least the organ of origin, location within the vascular network and physical forces. As an independent influence on EC functions in health or aetiology, susceptibility, and progression of dysfunction in numerous disease states, sex has been largely ignored. The present study focussed on EC isolated from aorta (macrovascular) and skeletal muscle vessels (microvascular) of age-matched male and female rats under identical conditions of short-term (passage 4) culture. We tested the hypothesis that genomic sex would not influence endothelial growth, wound healing, morphology, lactate production, or messenger RNA and protein expression of key proteins (sex hormone receptors for androgen and oestrogens α and β; platelet endothelial cell adhesion molecule-1 and vascular endothelial cadherin mediating barrier function; αv β3 and N-cadherin influencing matrix interactions; intracellular adhesion molecule-1 and vascular cell adhesion molecule-1 mediating EC/white cell adhesion). The hypothesis was rejected because the EC origin (macro- vs. microvessel) and sex influenced multiple phenotypic characteristics. Statistical model analysis of EC growth demonstrated an hierarchy of variable importance, recapitulated for other phenotypic characteristics, with predictions assuming EC homogeneity < sex < vessel origin < sex and vessel origin. Furthermore, patterns of EC mRNA expression by vessel origin and by sex did not predict protein expression. Overall, the present study demonstrated that accurate assessment of sex-linked EC dysfunction first requires an understanding of EC function by position in the vascular tree and by sex. The results from a single EC tissue source/species/sex cannot provide universal insight into the mechanisms regulating in vivo endothelial function in health, and no less in disease.
Collapse
Affiliation(s)
- Virginia H Huxley
- National Center for Gender Physiology, University of Missouri-Columbia, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, MO, USA.,Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO, USA
| | - Scott S Kemp
- National Center for Gender Physiology, University of Missouri-Columbia, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, MO, USA
| | - Christine Schramm
- National Center for Gender Physiology, University of Missouri-Columbia, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, MO, USA
| | - Steve Sieveking
- National Center for Gender Physiology, University of Missouri-Columbia, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, MO, USA
| | - Susan Bingaman
- National Center for Gender Physiology, University of Missouri-Columbia, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, MO, USA
| | - Yang Yu
- National Center for Gender Physiology, University of Missouri-Columbia, Columbia, MO, USA
| | - Isabella Zaniletti
- Department of Statistics, University of Missouri-Columbia, Columbia, MO, USA
| | - Kevin Stockard
- National Center for Gender Physiology, University of Missouri-Columbia, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, MO, USA
| | - Jianjie Wang
- National Center for Gender Physiology, University of Missouri-Columbia, Columbia, MO, USA.,Department of Biomedical Sciences, Missouri State University, Springfield, MO, USA
| |
Collapse
|
352
|
Statz S, Sabal G, Walborn A, Williams M, Hoppensteadt D, Mosier M, Rondina M, Fareed J. Angiopoietin 2 Levels in the Risk Stratification and Mortality Outcome Prediction of Sepsis-Associated Coagulopathy. Clin Appl Thromb Hemost 2018; 24:1223-1233. [PMID: 29996658 PMCID: PMC6714761 DOI: 10.1177/1076029618786029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
It has been well established that angiopoietin 2 (Ang-2), a glycoprotein involved in activation of the endothelium, plays an integral role in the pathophysiology of sepsis and many other inflammatory conditions. However, the role of Ang-2 in sepsis-associated coagulopathy (SAC) specifically has not been defined. The aim of this study was to measure Ang-2 plasma levels in patients with sepsis and suspected disseminated intravascular coagulation (DIC) in order to demonstrate its predictive value in SAC severity determination and 28-day mortality outcome. Plasma samples were collected from 102 patients with sepsis and suspected DIC at intensive care unit (ICU) admission. The Ang-2 plasma levels were quantified using a sandwich enzyme-linked immunosorbent assay method. The International Society on Thrombosis and Haemostasis DIC scoring system was used to compare the accuracy of Ang-2 levels versus clinical illness severity scores in predicting SAC severity. Mean Ang-2 levels in patients with sepsis and DIC were significantly higher in comparison to healthy controls (P < 0.0001), and median Ang-2 levels showed a downward trend over time (P = 0.0008). Baseline Ang-2 levels and clinical illness severity scores were higher with increasing severity of disease, and Ang-2 was a better predictor of DIC severity than clinical illness scores. This study demonstrates that Ang-2 levels are significantly upregulated in SAC, and this biomarker can be used to risk stratify patients with sepsis into non-overt DIC and overt DIC. Furthermore, the Ang-2 level at ICU admission in a patient with sepsis and suspected DIC may provide a predictive biomarker for mortality outcome.
Collapse
Affiliation(s)
- Stephen Statz
- 1 Hemostasis and Thrombosis Laboratories, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Giselle Sabal
- 1 Hemostasis and Thrombosis Laboratories, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Amanda Walborn
- 1 Hemostasis and Thrombosis Laboratories, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | | | | | - Michael Mosier
- 4 Department of General Surgery, Surgical and Burn Specialists at Emanuel, Portland, OR, USA
| | - Matthew Rondina
- 5 Department of Internal Medicine, University of Utah Hospital, Salt Lake City, UT, USA
| | - Jawed Fareed
- 3 Department of Pathology, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
353
|
Endothelial Cell Aging: How miRNAs Contribute? J Clin Med 2018; 7:jcm7070170. [PMID: 29996516 PMCID: PMC6068727 DOI: 10.3390/jcm7070170] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
Abstract
Endothelial cells (ECs) form monolayers and line the interior surfaces of blood vessels in the entire body. In most mammalian systems, the capacity of endothelial cells to divide is limited and endothelial cells are prone to be senescent. Aging of ECs and resultant endothelial dysfunction lead to a variety of vascular diseases such as atherosclerosis, diabetes mellites, hypertension, and ischemic injury. However, the mechanism by which ECs get old and become senescent and the impact of endothelial senescence on the vascular function are not fully understood. Recent research has unveiled the crucial roles of miRNAs, which are small non-coding RNAs, in regulating endothelial cellular functions, including nitric oxide production, vascular inflammation, and anti-thromboformation. In this review, how senescent-related miRNAs are involved in controlling the functions of ECs will be discussed.
Collapse
|
354
|
Marcu R, Choi YJ, Xue J, Fortin CL, Wang Y, Nagao RJ, Xu J, MacDonald JW, Bammler TK, Murry CE, Muczynski K, Stevens KR, Himmelfarb J, Schwartz SM, Zheng Y. Human Organ-Specific Endothelial Cell Heterogeneity. iScience 2018; 4:20-35. [PMID: 30240741 PMCID: PMC6147238 DOI: 10.1016/j.isci.2018.05.003] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 04/24/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022] Open
Abstract
The endothelium first forms in the blood islands in the extra-embryonic yolk sac and then throughout the embryo to establish circulatory networks that further acquire organ-specific properties during development to support diverse organ functions. Here, we investigated the properties of endothelial cells (ECs), isolated from four human major organs-the heart, lung, liver, and kidneys-in individual fetal tissues at three months' gestation, at gene expression, and at cellular function levels. We showed that organ-specific ECs have distinct expression patterns of gene clusters, which support their specific organ development and functions. These ECs displayed distinct barrier properties, angiogenic potential, and metabolic rate and support specific organ functions. Our findings showed the link between human EC heterogeneity and organ development and can be exploited therapeutically to contribute in organ regeneration, disease modeling, as well as guiding differentiation of tissue-specific ECs from human pluripotent stem cells.
Collapse
Affiliation(s)
- Raluca Marcu
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Yoon Jung Choi
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jun Xue
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Chelsea L Fortin
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Yuliang Wang
- Department of Computer Science & Engineering, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Ryan J Nagao
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jin Xu
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - James W MacDonald
- Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Theo K Bammler
- Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Charles E Murry
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Department of Pathology, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Kelly R Stevens
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Department of Pathology, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Jonathan Himmelfarb
- Department of Medicine, University of Washington, Seattle, WA, USA; Kidney Research Institute, University of Washington, Seattle, WA, USA
| | | | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Kidney Research Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
355
|
Khan OF, Kowalski PS, Doloff JC, Tsosie JK, Bakthavatchalu V, Winn CB, Haupt J, Jamiel M, Langer R, Anderson DG. Endothelial siRNA delivery in nonhuman primates using ionizable low-molecular weight polymeric nanoparticles. SCIENCE ADVANCES 2018; 4:eaar8409. [PMID: 29963629 PMCID: PMC6021147 DOI: 10.1126/sciadv.aar8409] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/18/2018] [Indexed: 05/19/2023]
Abstract
Dysfunctional endothelial cells contribute to the pathophysiology of many diseases, including vascular disease, stroke, hypertension, atherosclerosis, organ failure, diabetes, retinopathy, and cancer. Toward the goal of creating a new RNA-based therapy to correct aberrant endothelial cell gene expression in humans, efficient gene silencing in the endothelium of nonhuman primates was achieved by delivering small interfering RNA (siRNA) with 7C1, a low-molecular weight, ionizable polymer that forms nanoparticles. After a single intravenous administration of 1 mg of siRNA per kilogram of animal, 7C1 nanoparticles delivering Tie2 siRNA caused Tie2 mRNA levels to decrease by approximately 80% in the endothelium of the lung. Significant decreases in Tie2 mRNA were also found in the heart, retina, kidney, pancreas, and bone. Blood chemistry and liver function analysis before and after treatment all showed protein and enzyme concentrations within the normal reference ranges. Furthermore, after controlling for siRNA-specific effects, no significant increases in inflammatory cytokine concentrations were found in the serum. Similarly, no gross lesions or significant underlying pathologies were observed after histological examination of nonhuman primate tissues. This study is the first demonstration of endothelial gene silencing in multiple nonhuman primate organs using systemically administered siRNA nanoparticles and highlights the potential of this approach for the treatment of disease in humans.
Collapse
Affiliation(s)
- Omar F. Khan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Piotr S. Kowalski
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Joshua C. Doloff
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Jonathan K. Tsosie
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Vasudevan Bakthavatchalu
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 02139
| | - Caroline Bodi Winn
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 02139
| | - Jennifer Haupt
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 02139
| | - Morgan Jamiel
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 02139
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Division of Health Science Technology, Massachusetts Institute of Technology, MA 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel G. Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Division of Health Science Technology, Massachusetts Institute of Technology, MA 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Corresponding author.
| |
Collapse
|
356
|
Merna N, Wong AK, Barahona V, Llanos P, Kunar B, Palikuqi B, Ginsberg M, Rafii S, Rabbany SY. Laminar shear stress modulates endothelial luminal surface stiffness in a tissue-specific manner. Microcirculation 2018; 25:e12455. [PMID: 29665185 DOI: 10.1111/micc.12455] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/09/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Endothelial cells form vascular beds in all organs and are exposed to a range of mechanical forces that regulate cellular phenotype. We sought to determine the role of endothelial luminal surface stiffness in tissue-specific mechanotransduction of laminar shear stress in microvascular mouse cells and the role of arachidonic acid in mediating this response. METHODS Microvascular mouse endothelial cells were subjected to laminar shear stress at 4 dynes/cm2 for 12 hours in parallel plate flow chambers that enabled real-time optical microscopy and atomic force microscopy measurements of cell stiffness. RESULTS Lung endothelial cells aligned parallel to flow, while cardiac endothelial cells did not. This rapid alignment was accompanied by increased cell stiffness. The addition of arachidonic acid to cardiac endothelial cells increased alignment and stiffness in response to shear stress. Inhibition of arachidonic acid in lung endothelial cells and embryonic stem cell-derived endothelial cells prevented cellular alignment and decreased cell stiffness. CONCLUSIONS Our findings suggest that increased endothelial luminal surface stiffness in microvascular cells may facilitate mechanotransduction and alignment in response to laminar shear stress. Furthermore, the arachidonic acid pathway may mediate this tissue-specific process. An improved understanding of this response will aid in the treatment of organ-specific vascular disease.
Collapse
Affiliation(s)
- Nick Merna
- Bioengineering Program, Fred DeMatteis School of Engineering and Applied Science, Hofstra University, Hempstead, NY, USA
| | - Andrew K Wong
- Bioengineering Program, Fred DeMatteis School of Engineering and Applied Science, Hofstra University, Hempstead, NY, USA
| | - Victor Barahona
- Bioengineering Program, Fred DeMatteis School of Engineering and Applied Science, Hofstra University, Hempstead, NY, USA
| | - Pierre Llanos
- Bioengineering Program, Fred DeMatteis School of Engineering and Applied Science, Hofstra University, Hempstead, NY, USA
| | - Balvir Kunar
- Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, USA
| | - Brisa Palikuqi
- Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, USA
| | | | - Shahin Rafii
- Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, USA
| | - Sina Y Rabbany
- Bioengineering Program, Fred DeMatteis School of Engineering and Applied Science, Hofstra University, Hempstead, NY, USA.,Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
357
|
Hwangbo C, Wu J, Papangeli I, Adachi T, Sharma B, Park S, Zhao L, Ju H, Go GW, Cui G, Inayathullah M, Job JK, Rajadas J, Kwei SL, Li MO, Morrison AR, Quertermous T, Mani A, Red-Horse K, Chun HJ. Endothelial APLNR regulates tissue fatty acid uptake and is essential for apelin's glucose-lowering effects. Sci Transl Med 2018; 9:9/407/eaad4000. [PMID: 28904225 DOI: 10.1126/scitranslmed.aad4000] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 01/30/2017] [Accepted: 08/10/2017] [Indexed: 12/15/2022]
Abstract
Treatment of type 2 diabetes mellitus continues to pose an important clinical challenge, with most existing therapies lacking demonstrable ability to improve cardiovascular outcomes. The atheroprotective peptide apelin (APLN) enhances glucose utilization and improves insulin sensitivity. However, the mechanism of these effects remains poorly defined. We demonstrate that the expression of APLNR (APJ/AGTRL1), the only known receptor for apelin, is predominantly restricted to the endothelial cells (ECs) of multiple adult metabolic organs, including skeletal muscle and adipose tissue. Conditional endothelial-specific deletion of Aplnr (AplnrECKO ) resulted in markedly impaired glucose utilization and abrogation of apelin-induced glucose lowering. Furthermore, we identified inactivation of Forkhead box protein O1 (FOXO1) and inhibition of endothelial expression of fatty acid (FA) binding protein 4 (FABP4) as key downstream signaling targets of apelin/APLNR signaling. Both the Apln-/- and AplnrECKO mice demonstrated increased endothelial FABP4 expression and excess tissue FA accumulation, whereas concurrent endothelial Foxo1 deletion or pharmacologic FABP4 inhibition rescued the excess FA accumulation phenotype of the Apln-/- mice. The impaired glucose utilization in the AplnrECKO mice was associated with excess FA accumulation in the skeletal muscle. Treatment of these mice with an FABP4 inhibitor abrogated these metabolic phenotypes. These findings provide mechanistic insights that could greatly expand the therapeutic repertoire for type 2 diabetes and related metabolic disorders.
Collapse
Affiliation(s)
- Cheol Hwangbo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Jingxia Wu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Irinna Papangeli
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Takaomi Adachi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Bikram Sharma
- Department of Biology, Stanford University, Stanford, CA 94304, USA
| | - Saejeong Park
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Lina Zhao
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Hyekyung Ju
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Gwang-Woong Go
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Guoliang Cui
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Mohammed Inayathullah
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Stanford, CA 94304, USA
| | - Judith K Job
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Stanford, CA 94304, USA
| | - Jayakumar Rajadas
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Stanford, CA 94304, USA
| | - Stephanie L Kwei
- Section of Plastic and Reconstructive Surgery, Yale School of Medicine, New Haven, CT 06511, USA
| | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alan R Morrison
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Thomas Quertermous
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94304, USA
| | - Arya Mani
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA 94304, USA
| | - Hyung J Chun
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
358
|
Smyth LCD, Rustenhoven J, Park TIH, Schweder P, Jansson D, Heppner PA, O'Carroll SJ, Mee EW, Faull RLM, Curtis M, Dragunow M. Unique and shared inflammatory profiles of human brain endothelia and pericytes. J Neuroinflammation 2018; 15:138. [PMID: 29751771 PMCID: PMC5948925 DOI: 10.1186/s12974-018-1167-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/18/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Pericytes and endothelial cells are critical cellular components of the blood-brain barrier (BBB) and play an important role in neuroinflammation. To date, the majority of inflammation-related studies in endothelia and pericytes have been carried out using immortalised cell lines or non-human-derived cells. Whether these are representative of primary human cells is unclear and systematic comparisons of the inflammatory responses of primary human brain-derived pericytes and endothelia has yet to be performed. METHODS To study the effects of neuroinflammation at the BBB, primary brain endothelial cells and pericytes were isolated from human biopsy tissue. Culture purity was examined using qPCR and immunocytochemistry. Electrical cell-substrate impedance sensing (ECIS) was used to determine the barrier properties of endothelial and pericyte cultures. Using immunocytochemistry, cytometric bead array, and ECIS, we compared the responses of endothelia and pericytes to a panel of inflammatory stimuli (IL-1β, TNFα, LPS, IFN-γ, TGF-β1, IL-6, and IL-4). Secretome analysis was performed to identify unique secretions of endothelia and pericytes in response to IL-1β. RESULTS Endothelial cells were pure, moderately proliferative, retained the expression of BBB-related junctional proteins and transporters, and generated robust TEER. Both endothelia and pericytes have the same pattern of transcription factor activation in response to inflammatory stimuli but respond differently at the secretion level. Secretome analysis confirmed that endothelia and pericytes have overlapping but distinct secretome profiles in response to IL-1β. We identified several cell-type specific responses, including G-CSF and GM-CSF (endothelial-specific), and IGFBP2 and IGFBP3 (pericyte-specific). Finally, we demonstrated that direct addition of IL-1β, TNFα, LPS, and IL-4 contributed to the loss of endothelial barrier integrity in vitro. CONCLUSIONS Here, we identify important cell-type differences in the inflammatory response of brain pericytes and endothelia and provide, for the first time, a comprehensive profile of the secretions of primary human brain endothelia and pericytes which has implications for understanding how inflammation affects the cerebrovasculature.
Collapse
Affiliation(s)
- Leon C D Smyth
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.,Centre for Brain Research, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Justin Rustenhoven
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.,Centre for Brain Research, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Thomas I-H Park
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.,Centre for Brain Research, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.,Department of Anatomy and Medical Imaging, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Patrick Schweder
- Centre for Brain Research, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.,Auckland City Hospital, Auckland, 1023, New Zealand
| | - Deidre Jansson
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.,Centre for Brain Research, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Peter A Heppner
- Centre for Brain Research, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.,Auckland City Hospital, Auckland, 1023, New Zealand
| | - Simon J O'Carroll
- Centre for Brain Research, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.,Department of Anatomy and Medical Imaging, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Edward W Mee
- Centre for Brain Research, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.,Auckland City Hospital, Auckland, 1023, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.,Department of Anatomy and Medical Imaging, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Maurice Curtis
- Centre for Brain Research, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.,Department of Anatomy and Medical Imaging, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Mike Dragunow
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand. .,Centre for Brain Research, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
359
|
Rienks M, Carai P, van Teeffelen J, Eskens B, Verhesen W, Hemmeryckx B, Johnson DM, van Leeuwen R, Jones EA, Heymans S, Papageorgiou AP. SPARC preserves endothelial glycocalyx integrity, and protects against adverse cardiac inflammation and injury during viral myocarditis. Matrix Biol 2018; 74:21-34. [PMID: 29730504 DOI: 10.1016/j.matbio.2018.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/29/2018] [Accepted: 04/30/2018] [Indexed: 12/24/2022]
Abstract
Myocardial damage as a consequence of cardiotropic viruses leads to a broad variety of clinical presentations and is still a complicated condition to diagnose and treat. Whereas the extracellular matrix protein Secreted Protein Acidic and Rich in Cysteine or SPARC has been implicated in hypertensive and ischemic heart disease by modulating collagen production and cross-linking, its role in cardiac inflammation and endothelial function is yet unknown. Absence of SPARC in mice resulted in increased cardiac inflammation and mortality, and reduced cardiac systolic function upon coxsackievirus-B3 induced myocarditis. Intra-vital microscopic imaging of the microvasculature of the cremaster muscle combined with electron microscopic imaging of the microvasculature of the cardiac muscle uncovered the significance of SPARC in maintaining endothelial glycocalyx integrity and subsequent barrier properties to stop inflammation. Moreover, systemic administration of recombinant SPARC restored the endothelial glycocalyx and consequently reversed the increase in inflammation and mortality observed in SPARC KO mice in response to viral exposure. Reducing the glycocalyx in vivo by systemic administration of hyaluronidase, an enzyme that degrades the endothelial glycocalyx, mimicked the barrier defects found in SPARC KO mice, which could be restored by subsequent administration of recombinant SPARC. In conclusion, the secreted glycoprotein SPARC protects against adverse cardiac inflammation and mortality by improving the glycocalyx function and resulting endothelial barrier function during viral myocarditis.
Collapse
Affiliation(s)
- Marieke Rienks
- Cardiovascular Department, King's College London, United Kingdom; Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, The Netherlands.
| | - Paolo Carai
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, The Netherlands
| | | | - Bart Eskens
- Department of Physiology, Maastricht University, The Netherlands
| | - Wouter Verhesen
- Cardiovascular Department, King's College London, United Kingdom
| | - Bianca Hemmeryckx
- Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU, Leuven, Belgium
| | - Daniel M Johnson
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, The Netherlands
| | - Rick van Leeuwen
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, The Netherlands
| | - Elizabeth A Jones
- Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU, Leuven, Belgium
| | - Stephane Heymans
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, The Netherlands; Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU, Leuven, Belgium; Netherlands Heart Institute, ICIN, Utrecht, The Netherlands
| | - Anna-Pia Papageorgiou
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, The Netherlands; Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU, Leuven, Belgium
| |
Collapse
|
360
|
Guo L, Tong D, Yu M, Zhang Y, Li T, Wang C, Zhou P, Jin J, Li B, Liu Y, Liu R, Novakovic VA, Dong Z, Tian Y, Kou J, Bi Y, Zhou J, Shi J. Phosphatidylserine-exposing cells contribute to the hypercoagulable state in patients with multiple myeloma. Int J Oncol 2018; 52:1981-1990. [PMID: 29620266 DOI: 10.3892/ijo.2018.4354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/06/2018] [Indexed: 11/06/2022] Open
Abstract
Multiple myeloma (MM) is characterized by an increased incidence of thromboembolic events, particularly when treated with immunomodulatory drugs (IMiDs) in combination with dexamethasone. The optimal prophylactic strategy to prevent the hypercoagulable state of patients with MM is still debated. The aim of the current study was to investigate the definitive role of phosphatidylserine (PS) in supporting procoagulant activity (PCA) in patients with MM. Patients with MM (n=20) and healthy subjects (n=15) were recruited for the present study. PS analyses were performed by flow cytometry and confocal microscopy. The PCA was evaluated by clotting time, purified coagulation complex assays and fibrin production assays. The percentage of PS+ blood cells was significantly higher in patients with MM than in healthy subjects. Additionally, the patient serum induced more PS exposure on endothelial cells (ECs) in vitro than serum from healthy subjects. Isolated blood cells from patients with MM and ECs cultured with patient serum in vitro demonstrated significantly shortened coagulation time, greatly intrinsic/extrinsic factor Xa generation and increased thrombin formation. In addition, the levels of PS+ erythrocytes, platelets, leukocytes, and ECs incubated with IMiDs and dexamethasone were higher than with IMiDs alone. The findings support the hypothesis that increased PS exposure on blood cells and ECs participates in the hypercoagulable state in patients with MM. Thus, blocking PS may be a novel therapeutic target for the prevention of thrombosis in these patients.
Collapse
Affiliation(s)
- Li Guo
- Department of Hematology, The First Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Dongxia Tong
- Department of Hematology, The First Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Muxin Yu
- Department of Hematology, The First Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yan Zhang
- Department of Hematology, The First Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Tao Li
- Department of Hematology, The First Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Chunxu Wang
- Department of Hematology, The First Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Peng Zhou
- Department of Neurosurgery, The Second Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jiaqi Jin
- Department of Neurosurgery, The Second Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Baorong Li
- Department of Stomatology, The First Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yingmiao Liu
- Department of Stomatology, The First Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ruipeng Liu
- Department of Cardiology, The Second Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Valerie A Novakovic
- Department of Research and Surgery, VA Boston Healthcare System, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02132, USA
| | - Zengxiang Dong
- Department of Cardiology, The First Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ye Tian
- Department of Cardiology, The First Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Junjie Kou
- Department of Cardiology, The Second Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yayan Bi
- Department of Cardiology, The First Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jin Zhou
- Department of Hematology, The First Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jialan Shi
- Department of Hematology, The First Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
361
|
Bogorad MI, DeStefano J, Wong AD, Searson PC. Tissue-engineered 3D microvessel and capillary network models for the study of vascular phenomena. Microcirculation 2018; 24. [PMID: 28164421 DOI: 10.1111/micc.12360] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/29/2017] [Indexed: 12/13/2022]
Abstract
Advances in tissue engineering, cell biology, microfabrication, and microfluidics have led to the development of a wide range of vascular models. Here, we review platforms based on templated microvessel fabrication to generate increasingly complex vascular models of (i) the tumor microenvironment, (ii) occluded microvessels, and (iii) perfused capillary networks. We outline fabrication guidelines and demonstrate a number of experimental methods for probing vascular function such as permeability measurements, tumor cell intravasation, flow characterization, and endothelial cell morphology and proliferation.
Collapse
Affiliation(s)
- Max I Bogorad
- Institute for Nanobiotechnology (INBT), Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jackson DeStefano
- Institute for Nanobiotechnology (INBT), Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew D Wong
- Institute for Nanobiotechnology (INBT), Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter C Searson
- Institute for Nanobiotechnology (INBT), Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
362
|
Klein D. iPSCs-based generation of vascular cells: reprogramming approaches and applications. Cell Mol Life Sci 2018; 75:1411-1433. [PMID: 29243171 PMCID: PMC5852192 DOI: 10.1007/s00018-017-2730-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 12/15/2022]
Abstract
Recent advances in the field of induced pluripotent stem cells (iPSCs) research have opened a new avenue for stem cell-based generation of vascular cells. Based on their growth and differentiation potential, human iPSCs constitute a well-characterized, generally unlimited cell source for the mass generation of lineage- and patient-specific vascular cells without any ethical concerns. Human iPSCs-derived vascular cells are perfectly suited for vascular disease modeling studies because patient-derived iPSCs possess the disease-causing mutation, which might be decisive for full expression of the disease phenotype. The application of vascular cells for autologous cell replacement therapy or vascular engineering derived from immune-compatible iPSCs possesses huge clinical potential, but the large-scale production of vascular-specific lineages for regenerative cell therapies depends on well-defined, highly reproducible culture and differentiation conditions. This review will focus on the different strategies to derive vascular cells from human iPSCs and their applications in regenerative therapy, disease modeling and drug discovery approaches.
Collapse
Affiliation(s)
- Diana Klein
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Virchowstr. 173, 45122, Essen, Germany.
| |
Collapse
|
363
|
D'Souza SS, Kumar A, Slukvin II. Functional Heterogeneity of Endothelial Cells Derived from Human Pluripotent Stem Cells. Stem Cells Dev 2018; 27:524-533. [PMID: 29583085 DOI: 10.1089/scd.2017.0238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Specification of endothelial cells (ECs) into arterial, venous, and lymphatic cells is a crucial process of vascular development, and expanding our knowledge about EC specification from human pluripotent stem cells (hPSCs) will aid the design of optimal strategies for producing desired types of ECs for therapies. In our prior studies, we revealed that hPSC-derived VE-cadherin(V)+CD31+CD34+ ECs are heterogeneous and include at least three major subsets with distinct hemogenic properties: V+CD43/235a-CD73- hemogenic endothelial progenitors (HEPs), V+CD43loCD235a+73- angiogenic hematopoietic progenitors (AHPs), and V+CD43/235a-73+ non-HEPs. In this study, using angiogenesis assays, we demonstrated that ECs within these subsets have distinct endothelial colony- and tube-forming properties, proliferative and migratory properties, and endothelial nitric oxide synthase and inflammatory cytokine production potentials. Culture of isolated subsets in arterial, venous, and lymphatic conditions revealed that AHPs are skewed toward lymphatic, HEPs toward arterial, and non-HEPs toward venous differentiation in vitro. These findings suggest that selection and enhancement of production of a particular EC subset may aid in generating desirable EC populations with arterial, venous, or lymphatic properties from hPSCs.
Collapse
Affiliation(s)
- Saritha S D'Souza
- 1 Wisconsin National Primate Research Center, University of Wisconsin , Madison, Wisconsin
| | - Akhilesh Kumar
- 1 Wisconsin National Primate Research Center, University of Wisconsin , Madison, Wisconsin
| | - Igor I Slukvin
- 1 Wisconsin National Primate Research Center, University of Wisconsin , Madison, Wisconsin.,2 Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin , Madison, Wisconsin.,3 Department of Pathology and Laboratory Medicine, University of Wisconsin Medical School , Madison, Wisconsin
| |
Collapse
|
364
|
Paunovska K, Sago CD, Monaco CM, Hudson WH, Castro MG, Rudoltz TG, Kalathoor S, Vanover DA, Santangelo PJ, Ahmed R, Bryksin AV, Dahlman JE. A Direct Comparison of in Vitro and in Vivo Nucleic Acid Delivery Mediated by Hundreds of Nanoparticles Reveals a Weak Correlation. NANO LETTERS 2018; 18:2148-2157. [PMID: 29489381 PMCID: PMC6054134 DOI: 10.1021/acs.nanolett.8b00432] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Endothelial cells and macrophages play active roles in disease and as a result are important targets for nucleic acid therapies. While thousands of chemically distinct lipid nanoparticles (LNPs) can be synthesized to deliver nucleic acids, studying more than a few LNPs in vivo is challenging. As a result, it is difficult to understand how nanoparticles target these cells in vivo. Using high throughput LNP barcoding, we quantified how well LNPs delivered DNA barcodes to endothelial cells and macrophages in vitro, as well as endothelial cells and macrophages isolated from the lung, heart, and bone marrow in vivo. We focused on two fundamental questions in drug delivery. First, does in vitro LNP delivery predict in vivo LNP delivery? By comparing how 281 LNPs delivered barcodes to endothelial cells and macrophages in vitro and in vivo, we found in vitro delivery did not predict in vivo delivery. Second, does LNP delivery change within the microenvironment of a tissue? We quantified how 85 LNPs delivered barcodes to eight splenic cell populations, and found that cell types derived from myeloid progenitors tended to be targeted by similar LNPs, relative to cell types derived from lymphoid progenitors. These data demonstrate that barcoded LNPs can elucidate fundamental questions about in vivo nanoparticle delivery.
Collapse
Affiliation(s)
- Kalina Paunovska
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University School of Medicine , Atlanta , Georgia 30332 , United States
| | - Cory D Sago
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University School of Medicine , Atlanta , Georgia 30332 , United States
| | - Christopher M Monaco
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University School of Medicine , Atlanta , Georgia 30332 , United States
- School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - William H Hudson
- Emory Vaccine Center and Department of Microbiology and Immunology , Emory University School of Medicine , Atlanta , Georgia 30317 , United States
| | - Marielena Gamboa Castro
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University School of Medicine , Atlanta , Georgia 30332 , United States
| | - Tobi G Rudoltz
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University School of Medicine , Atlanta , Georgia 30332 , United States
| | - Sujay Kalathoor
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University School of Medicine , Atlanta , Georgia 30332 , United States
| | - Daryll A Vanover
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University School of Medicine , Atlanta , Georgia 30332 , United States
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University School of Medicine , Atlanta , Georgia 30332 , United States
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology , Emory University School of Medicine , Atlanta , Georgia 30317 , United States
| | - Anton V Bryksin
- Parker H. Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University School of Medicine , Atlanta , Georgia 30332 , United States
| |
Collapse
|
365
|
Origins of Portal Hypertension in Nonalcoholic Fatty Liver Disease. Dig Dis Sci 2018; 63:563-576. [PMID: 29368124 DOI: 10.1007/s10620-017-4903-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) advanced to cirrhosis is often complicated by clinically significant portal hypertension, which is primarily caused by increased intrahepatic vascular resistance. Liver fibrosis has been identified as a critical determinant of this process. However, there is evidence that portal venous pressure may begin to rise in the earliest stages of NAFLD when fibrosis is far less advanced or absent. The biological and clinical significance of these early changes in sinusoidal homeostasis remains unclear. Experimental and human observations indicate that sinusoidal space restriction due to hepatocellular lipid accumulation and ballooning may impair sinusoidal flow and generate shear stress, increasingly disrupting sinusoidal microcirculation. Sinusoidal endothelial cells, hepatic stellate cells, and Kupffer cells are key partners of hepatocytes affected by NAFLD in promoting endothelial dysfunction through enhanced contractility, capillarization, adhesion and entrapment of blood cells, extracellular matrix deposition, and neovascularization. These biomechanical and rheological changes are aggravated by a dysfunctional gut-liver axis and splanchnic vasoregulation, culminating in fibrosis and clinically significant portal hypertension. We may speculate that increased portal venous pressure is an essential element of the pathogenesis across the entire spectrum of NAFLD. Improved methods of noninvasive portal venous pressure monitoring will hopefully give new insights into the pathobiology of NAFLD and help efforts to identify patients at increased risk for adverse outcomes. In addition, novel drug candidates targeting reversible components of aberrant sinusoidal circulation may prevent progression in NAFLD.
Collapse
|
366
|
Cho JG, Lee A, Chang W, Lee MS, Kim J. Endothelial to Mesenchymal Transition Represents a Key Link in the Interaction between Inflammation and Endothelial Dysfunction. Front Immunol 2018. [PMID: 29515588 PMCID: PMC5826197 DOI: 10.3389/fimmu.2018.00294] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Endothelial cells that line the inner walls of blood vessels are in direct contact with blood and display remarkable heterogeneity in their response to exogenous stimuli. These ECs have unique location-dependent properties determined by the corresponding vascular beds and play an important role in regulating the homeostasis of the vascular system. Evidence suggests that vascular endothelial cells exposed to various environments undergo dynamic phenotypic switching, a key biological program in the context of endothelial heterogeneity, but that might result in EC dysfunction and, in turn, cause a variety of human diseases. Emerging studies show the importance of endothelial to mesenchymal transition (EndMT) in endothelial dysfunction during inflammation. EndMT is a complex biological process in which ECs lose their endothelial characteristics, acquire mesenchymal phenotypes, and express mesenchymal cell markers, such as alpha smooth muscle actin and fibroblast-specific protein 1. EndMT is induced by inflammatory responses, leading to pathological states, including tissue fibrosis, pulmonary arterial hypertension, and atherosclerosis, via dysfunction of the vascular system. Although the mechanisms associated with inflammation-induced EndMT have been identified, unraveling the specific role of this phenotypic switching in vascular dysfunction remains a challenge. Here, we review the current understanding on the interactions between inflammatory processes, EndMT, and endothelial dysfunction, with a focus on the mechanisms that regulate essential signaling pathways. Identification of such mechanisms will guide future research and could provide novel therapeutic targets for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Jin Gu Cho
- Division of Biological Sciences, Sookmyung Women's University, Seoul, South Korea
| | - Aram Lee
- Division of Biological Sciences, Sookmyung Women's University, Seoul, South Korea
| | - Woochul Chang
- Department of Biology Education, College of Education, Pusan National University, Busan, South Korea
| | - Myeong-Sok Lee
- Division of Biological Sciences, Sookmyung Women's University, Seoul, South Korea
| | - Jongmin Kim
- Division of Biological Sciences, Sookmyung Women's University, Seoul, South Korea
| |
Collapse
|
367
|
Panariti A, Baglole CJ, Sanchez V, Eidelman DH, Hussain S, Olivenstein R, Martin JG, Hamid Q. Interleukin-17A and vascular remodelling in severe asthma; lack of evidence for a direct role. Clin Exp Allergy 2018; 48:365-378. [PMID: 29337379 DOI: 10.1111/cea.13093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/10/2017] [Accepted: 12/11/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Bronchial vascular remodelling may contribute to the severity of airway narrowing through mucosal congestion. Interleukin (IL)-17A is associated with the most severe asthmatic phenotype but whether it might contribute to vascular remodelling is uncertain. OBJECTIVE To assess vascular remodelling in severe asthma and whether IL-17A directly or indirectly may cause endothelial cell activation and angiogenesis. METHODS Bronchial vascularization was quantified in asthmatic subjects, COPD and healthy subjects together with the number of IL-17A+ cells as well as the concentration of angiogenic factors in the sputum. The effect of IL-17A on in vitro angiogenesis, cell migration and endothelial permeability was assessed directly on primary human lung microvascular endothelial cells (HMVEC-L) or indirectly with conditioned medium derived from normal bronchial epithelial cells (NHBEC), fibroblasts (NHBF) and airway smooth muscle cells (ASMC) after IL-17A stimulation. RESULTS Severe asthmatics have increased vascularity compared to the other groups, which correlates positively with the concentrations of angiogenic factors in sputum. Interestingly, we demonstrated that increased bronchial vascularity correlates positively with the number of subepithelial IL-17A+ cells. However IL-17A had no direct effect on HMVEC-L function but it enhanced endothelial tube formation and cell migration through the production of angiogenic factors by NHBE and ASMC. CONCLUSIONS & CLINICAL RELEVANCE Our results shed light on the role of IL-17A in vascular remodelling, most likely through stimulating the synthesis of other angiogenic factors. Knowledge of these pathways may aid in the identification of new therapeutic targets.
Collapse
Affiliation(s)
- A Panariti
- Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, QC, Canada
| | - C J Baglole
- Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, QC, Canada
| | - V Sanchez
- Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, QC, Canada
| | - D H Eidelman
- Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, QC, Canada
| | - S Hussain
- Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, QC, Canada
| | - R Olivenstein
- Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, QC, Canada
| | - J G Martin
- Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, QC, Canada
| | - Q Hamid
- Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, QC, Canada
| |
Collapse
|
368
|
Jang JY, Choi SY, Park I, Park DY, Choe K, Kim P, Kim YK, Lee BJ, Hirashima M, Kubota Y, Park JW, Cheng SY, Nagy A, Park YJ, Alitalo K, Shong M, Koh GY. VEGFR2 but not VEGFR3 governs integrity and remodeling of thyroid angiofollicular unit in normal state and during goitrogenesis. EMBO Mol Med 2018; 9:750-769. [PMID: 28438786 PMCID: PMC5452036 DOI: 10.15252/emmm.201607341] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Thyroid gland vasculature has a distinguishable characteristic of endothelial fenestrae, a critical component for proper molecular transport. However, the signaling pathway that critically governs the maintenance of thyroid vascular integrity, including endothelial fenestrae, is poorly understood. Here, we found profound and distinct expression of follicular epithelial VEGF‐A and vascular VEGFR2 that were precisely regulated by circulating thyrotropin, while there were no meaningful expression of angiopoietin–Tie2 system in the thyroid gland. Our genetic depletion experiments revealed that VEGFR2, but not VEGFR3, is indispensable for maintenance of thyroid vascular integrity. Notably, blockade of VEGF‐A or VEGFR2 not only abrogated vascular remodeling but also inhibited follicular hypertrophy, which led to the reduction of thyroid weights during goitrogenesis. Importantly, VEGFR2 blockade alone was sufficient to cause a reduction of endothelial fenestrae with decreases in thyrotropin‐responsive genes in goitrogen‐fed thyroids. Collectively, these findings establish follicular VEGF‐A–vascular VEGFR2 axis as a main regulator for thyrotropin‐dependent thyroid angiofollicular remodeling and goitrogenesis.
Collapse
Affiliation(s)
- Jeon Yeob Jang
- Center for Vascular Research, Institute of Basic Science (IBS), Daejeon, Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.,Department of Otorhinolaryngology-Head and Neck Surgery and Biomedical Research Institute, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Korea
| | - Sung Yong Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Intae Park
- Center for Vascular Research, Institute of Basic Science (IBS), Daejeon, Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Do Young Park
- Center for Vascular Research, Institute of Basic Science (IBS), Daejeon, Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Kibaek Choe
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Young Keum Kim
- Department of Pathology, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Korea
| | - Byung-Joo Lee
- Department of Otorhinolaryngology-Head and Neck Surgery and Biomedical Research Institute, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Korea
| | - Masanori Hirashima
- Department of Physiology and Cell Biology Graduate School of Medicine Kobe University, Kobe, Japan
| | - Yoshiaki Kubota
- Department of Vascular Biology, The Sakaguchi Laboratory, School of Medicine, Keio University, Shinjuku-ku Tokyo, Japan
| | - Jeong-Won Park
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Gou Young Koh
- Center for Vascular Research, Institute of Basic Science (IBS), Daejeon, Korea .,Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
369
|
Modarres HP, Janmaleki M, Novin M, Saliba J, El-Hajj F, RezayatiCharan M, Seyfoori A, Sadabadi H, Vandal M, Nguyen MD, Hasan A, Sanati-Nezhad A. In vitro models and systems for evaluating the dynamics of drug delivery to the healthy and diseased brain. J Control Release 2018; 273:108-130. [PMID: 29378233 DOI: 10.1016/j.jconrel.2018.01.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/12/2022]
Abstract
The blood-brain barrier (BBB) plays a crucial role in maintaining brain homeostasis and transport of drugs to the brain. The conventional animal and Transwell BBB models along with emerging microfluidic-based BBB-on-chip systems have provided fundamental functionalities of the BBB and facilitated the testing of drug delivery to the brain tissue. However, developing biomimetic and predictive BBB models capable of reasonably mimicking essential characteristics of the BBB functions is still a challenge. In addition, detailed analysis of the dynamics of drug delivery to the healthy or diseased brain requires not only biomimetic BBB tissue models but also new systems capable of monitoring the BBB microenvironment and dynamics of barrier function and delivery mechanisms. This review provides a comprehensive overview of recent advances in microengineering of BBB models with different functional complexity and mimicking capability of healthy and diseased states. It also discusses new technologies that can make the next generation of biomimetic human BBBs containing integrated biosensors for real-time monitoring the tissue microenvironment and barrier function and correlating it with the dynamics of drug delivery. Such integrated system addresses important brain drug delivery questions related to the treatment of brain diseases. We further discuss how the combination of in vitro BBB systems, computational models and nanotechnology supports for characterization of the dynamics of drug delivery to the brain.
Collapse
Affiliation(s)
- Hassan Pezeshgi Modarres
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada
| | - Mohsen Janmaleki
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada
| | - Mana Novin
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada
| | - John Saliba
- Biomedical Engineering, Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Fatima El-Hajj
- Biomedical Engineering, Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Mahdi RezayatiCharan
- Breast Cancer Research Center (BCRC), ACECR, Tehran, Iran; School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Amir Seyfoori
- Breast Cancer Research Center (BCRC), ACECR, Tehran, Iran; School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hamid Sadabadi
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada
| | - Milène Vandal
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Minh Dang Nguyen
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Anwarul Hasan
- Biomedical Engineering, Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, 2713, Qatar
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada.
| |
Collapse
|
370
|
Cheung TS, Dazzi F. Mesenchymal-myeloid interaction in the regulation of immunity. Semin Immunol 2018; 35:59-68. [PMID: 29395680 DOI: 10.1016/j.smim.2018.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 12/13/2022]
Abstract
Several studies have demonstrated how different cell types of mesenchymal and myeloid origin can independently exhibit immunoregulatory activities. In response to inflammatory cues, they transcribe a molecular repertoire that restores the tissue microenvironment to what it was before the injury. There is accumulating evidence that stromal and myeloid-derived cells do not act independently but that the establishment of a cross-talk between them is a fundamental requirement. Stromal cells, prompted by inflammatory molecules, orchestrate and initiate myeloid cell recruitment and their functional reprogramming. Once instructed, myeloid cells effect the anti-inflammatory activity or, if alternatively required, enhance immune responses. The cross-talk plays a fundamental role in tissue homeostasis, not only to regulate inflammation, but also to promote tissue regeneration and cancer progression.
Collapse
Affiliation(s)
- Tik Shing Cheung
- School of Cancer and Pharmacological Sciences and KHP Cancer Research UK Centre, King's College London, London, United Kingdom
| | - Francesco Dazzi
- School of Cancer and Pharmacological Sciences and KHP Cancer Research UK Centre, King's College London, London, United Kingdom.
| |
Collapse
|
371
|
Duran CL, Abbey CA, Bayless KJ. Establishment of a three-dimensional model to study human uterine angiogenesis. Mol Hum Reprod 2018; 24:74-93. [PMID: 29329415 PMCID: PMC6454809 DOI: 10.1093/molehr/gax064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/25/2017] [Accepted: 12/19/2017] [Indexed: 01/29/2023] Open
Abstract
STUDY QUESTION Can primary human uterine microvascular endothelial cells (UtMVECs) be used as a model to study uterine angiogenic responses in vitro that are relevant in pregnancy? SUMMARY ANSWER UtMVECs demonstrated angiogenic responses when stimulated with proangiogenic factors, including sphingosine 1-phosphate (S1P), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), physiological levels of wall shear stress (WSS), human chorionic gonadotropin (hCG) and various combinations of estrogen and progesterone. WHAT IS KNOWN ALREADY During sprouting angiogenesis, signaling from growth factors and cytokines induces a monolayer of quiescent endothelial cells (ECs) lining the vasculature to degrade the extracellular matrix and invade the surrounding tissue to form new capillaries. During pregnancy and the female reproductive cycle, the uterine endothelium becomes activated and undergoes sprouting angiogenesis to increase the size and number of blood vessels in the endometrium. STUDY DESIGN, SIZE, DURATION The study was designed to examine the angiogenic potential of primary human UtMVECs using the well-characterized human umbilical vein EC (HUVEC) line as a control to compare angiogenic potential. ECs were seeded onto three-dimensional (3D) collagen matrices, supplemented with known proangiogenic stimuli relevant to pregnancy and allowed to invade for 24 h. Sprouting responses were analyzed using manual and automated methods for quantification. PARTICIPANTS/MATERIALS, SETTING, METHODS RT-PCR, Western blot analysis and immunostaining were used to characterize UtMVECs. Angiogenic responses were examined using 3D invasion assays. Western blotting was used to confirm signaling responses after proangiogenic lipid, pharmacological inhibitor, and recombinant lentiviral treatments. All experiments were repeated at least three times. MAIN RESULTS AND THE ROLE OF CHANCE After ensuring that UtMVECs expressed the proper endothelial markers, we found that UtMVECs invade 3D collagen matrices dose-dependently in response to known proangiogenic stimuli (e.g. S1P, VEGF, bFGF, hCG, estrogen, progesterone and WSS) present during early pregnancy. Invasion responses were positively correlated with phosphorylation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) and p42/p44 mitogen-activated protein kinase (ERK). Inhibition of these second messengers significantly impaired sprouting (P < 0.01). Gene silencing of membrane type 1-matrix metalloproteinase using multiple approaches completely abrogated sprouting (P < 0.001). Finally, UtMVECs displayed a unique ability to undergo sprouting in response to hCG, and combined estrogen and progesterone treatment. LARGE SCALE DATA Not applicable. LIMITATIONS, REASONS FOR CAUTION The study of uterine angiogenesis in vitro has limitations and any findings many not fully represent the in vivo state. However, these experiments do provide evidence for the ability of UtMVECs to be used in functional sprouting assays in a 3D environment, stimulated by physiological factors that are produced locally within the uterus during early pregnancy. WIDER IMPLICATIONS OF THE FINDINGS We show that UtMVECs can be used reliably to investigate how growth factors, hormones, lipids and other factors, such as flow, affect angiogenesis in the uterus. STUDY FUNDING/COMPETING INTERESTS This work was supported by NIH award HL095786 to K.J.B. The authors have no conflicts of interest.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, TX 77843-1114, USA
- Interdisciplinary Program in Genetics, Texas A&M University, Mail Stop 2128, College Station, TX 77843, USA
| | - Colette A Abbey
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, TX 77843-1114, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, TX 77843-1114, USA
- Interdisciplinary Program in Genetics, Texas A&M University, Mail Stop 2128, College Station, TX 77843, USA
- Interdisciplinary Faculty of Reproductive Biology, Texas A&M University, Mail Stop 2471, College Station, TX 77843, USA
| |
Collapse
|
372
|
Katt ME, Wong AD, Searson PC. Dissemination from a Solid Tumor: Examining the Multiple Parallel Pathways. Trends Cancer 2018; 4:20-37. [PMID: 29413419 PMCID: PMC5806201 DOI: 10.1016/j.trecan.2017.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 12/23/2022]
Abstract
Metastasis can be generalized as a linear sequence of events whereby halting one or more steps in the cascade may reduce tumor cell dissemination and ultimately improve patient outcomes. However, metastasis is a complex process with multiple parallel mechanisms of dissemination. Clinical strategies focus on removing the primary tumor and/or treating distant metastases through chemo- or immunotherapies. Successful strategies for blocking metastasis will need to address the parallel mechanisms of dissemination and identify common bottlenecks. Here, we review the current understanding of common dissemination pathways for tumors. Understanding the complexities of metastasis will guide the design of new therapies that halt dissemination.
Collapse
Affiliation(s)
- Moriah E Katt
- Institute for Nanobiotechnology, 100 Croft Hall, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; These authors contributed equally
| | - Andrew D Wong
- Institute for Nanobiotechnology, 100 Croft Hall, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; These authors contributed equally
| | - Peter C Searson
- Institute for Nanobiotechnology, 100 Croft Hall, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
373
|
Palladino SP, Helton ES, Jain P, Dong C, Crowley MR, Crossman DK, Ubogu EE. The Human Blood-Nerve Barrier Transcriptome. Sci Rep 2017; 7:17477. [PMID: 29234067 PMCID: PMC5727190 DOI: 10.1038/s41598-017-17475-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/24/2017] [Indexed: 01/16/2023] Open
Abstract
The blood-nerve barrier (BNB), formed by tight junction-forming microvessels within peripheral nerve endoneurium, exists to regulate its internal microenvironment essential for effective axonal signal transduction. Relatively little is known about the unique human BNB molecular composition. Such knowledge is crucial to comprehend the relationships between the systemic circulation and peripheral nerves in health, adaptations to intrinsic or extrinsic perturbations and alterations that may result in disease. We performed RNA-sequencing on cultured early- and late-passage adult primary human endoneurial endothelial cells and laser-capture microdissected endoneurial microvessels from four cryopreserved normal adult human sural nerves referenced to the Genome Reference Consortium Human Reference 37 genome browser, using predefined criteria guided by known transcript or protein expression in vitro and in situ. We identified 12881 common transcripts associated by 125 independent biological networks, defined as the normal adult BNB transcriptome, including a comprehensive array of transporters and specialized intercellular junctional complex components. These identified transcripts and their interacting networks provide insights into peripheral nerve microvascular morphogenesis, restrictive barrier formation, influx and efflux transporters with relevance to understanding peripheral nerve homeostasis and pharmacology, including targeted drug delivery and the mediators of leukocyte trafficking in peripheral nerves during normal immunosurveillance.
Collapse
Affiliation(s)
- Steven P Palladino
- Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294-0017, United States of America
| | - E Scott Helton
- Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294-0017, United States of America
| | - Preti Jain
- Heflin Center for Genomic Science, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294-0024, United States of America
| | - Chaoling Dong
- Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294-0017, United States of America
| | - Michael R Crowley
- Heflin Center for Genomic Science, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294-0024, United States of America
| | - David K Crossman
- Heflin Center for Genomic Science, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294-0024, United States of America
| | - Eroboghene E Ubogu
- Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294-0017, United States of America.
| |
Collapse
|
374
|
A generic whole body physiologically based pharmacokinetic model for therapeutic proteins in PK-Sim. J Pharmacokinet Pharmacodyn 2017; 45:235-257. [PMID: 29234936 PMCID: PMC5845054 DOI: 10.1007/s10928-017-9559-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 12/05/2017] [Indexed: 12/24/2022]
Abstract
Proteins are an increasingly important class of drugs used as therapeutic as well as diagnostic agents. A generic physiologically based pharmacokinetic (PBPK) model was developed in order to represent at whole body level the fundamental mechanisms driving the distribution and clearance of large molecules like therapeutic proteins. The model was built as an extension of the PK-Sim model for small molecules incorporating (i) the two-pore formalism for drug extravasation from blood plasma to interstitial space, (ii) lymph flow, (iii) endosomal clearance and (iv) protection from endosomal clearance by neonatal Fc receptor (FcRn) mediated recycling as especially relevant for antibodies. For model development and evaluation, PK data was used for compounds with a wide range of solute radii. The model supports the integration of knowledge gained during all development phases of therapeutic proteins, enables translation from pre-clinical species to human and allows predictions of tissue concentration profiles which are of relevance for the analysis of on-target pharmacodynamic effects as well as off-target toxicity. The current implementation of the model replaces the generic protein PBPK model available in PK-Sim since version 4.2 and becomes part of the Open Systems Pharmacology Suite.
Collapse
|
375
|
Loryan I, Hoppe E, Hansen K, Held F, Kless A, Linz K, Marossek V, Nolte B, Ratcliffe P, Saunders D, Terlinden R, Wegert A, Welbers A, Will O, Hammarlund-Udenaes M. Quantitative Assessment of Drug Delivery to Tissues and Association with Phospholipidosis: A Case Study with Two Structurally Related Diamines in Development. Mol Pharm 2017; 14:4362-4373. [PMID: 29099189 DOI: 10.1021/acs.molpharmaceut.7b00480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Drug induced phospholipidosis (PLD) may be observed in the preclinical phase of drug development and pose strategic questions. As lysosomes have a central role in pathogenesis of PLD, assessment of lysosomal concentrations is important for understanding the pharmacokinetic basis of PLD manifestation and forecast of potential clinical appearance. Herein we present a systematic approach to provide insight into tissue-specific PLD by evaluation of unbound intracellular and lysosomal (reflecting acidic organelles) concentrations of two structurally related diprotic amines, GRT1 and GRT2. Their intratissue distribution was assessed using brain and lung slice assays. GRT1 induced PLD both in vitro and in vivo. GRT1 showed a high intracellular accumulation that was more pronounced in the lung, but did not cause cerebral PLD due to its effective efflux at the blood-brain barrier. Compared to GRT1, GRT2 revealed higher interstitial fluid concentrations in lung and brain, but more than 30-fold lower lysosomal trapping capacity. No signs of PLD were seen with GRT2. The different profile of GRT2 relative to GRT1 is due to a structural change resulting in a reduced basicity of one amino group. Hence, by distinct chemical modifications, undesired lysosomal trapping can be separated from desired drug delivery into different organs. In summary, assessment of intracellular unbound concentrations was instrumental in delineating the intercompound and intertissue differences in PLD induction in vivo and could be applied for identification of potential lysosomotropic compounds in drug development.
Collapse
Affiliation(s)
- Irena Loryan
- Translational PKPD Group, Department of Pharmaceutical Biosciences, Associate member of SciLifeLab, Uppsala University , 751 24 Uppsala, Sweden
| | | | | | - Felix Held
- Fraunhofer-Chalmers Centre, Chalmers Science Park , 412 88 Gothenburg, Sweden.,Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg , 412 96 Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | - Olaf Will
- Grünenthal GmbH , 52099 Aachen, Germany
| | - Margareta Hammarlund-Udenaes
- Translational PKPD Group, Department of Pharmaceutical Biosciences, Associate member of SciLifeLab, Uppsala University , 751 24 Uppsala, Sweden
| |
Collapse
|
376
|
Cerveró J, Segura V, Macías A, Gavira J, Montes R, Hermida J. Atrial fibrillation in pigs induces left atrial endocardial transcriptional remodelling. Thromb Haemost 2017; 108:742-9. [DOI: 10.1160/th12-05-0285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/21/2012] [Indexed: 11/05/2022]
Abstract
SummaryThe leading cause of cardioembolic stroke is atrial fibrillation (AF), which predisposes to atrial thrombus formation. Although rheological alterations promote a hypercoagulable environment, as yet undefined factors contribute to thrombogenesis. The role of the endocardium has barely been explored. To approach this topic, rapid atrial pacing (RAP) was applied in four pigs to mimic A F. Left and right endocardial cells were isolated separately and their gene expression pattern was compared with that of four control pigs. The AF-characteristic rhythm disorders and endothelial nitric oxide synthase down-regulation were successfully reproduced, and validated RAP to mimic A F. A change was observed in the transcriptomic endocardial profile after RAP: the expression of 364 genes was significantly altered (p<0.01), 29 of them having passed the B>0 criteria. The left atrial endocardium [325 genes (7 genes, B>0)] was largely responsible for such alterations. Blood coagulation, blood vessel morphogenesis and inflammatory response are among the most significant altered functions, and help to explain the activation of coagulation observed after RAP: D-dimer, 0.49 (1.63) vs. 0.23 (0.24) mg/l [median (interquartile range)] in controls, p=0.02. Furthermore, three genes directly related to thrombotic processes were differentially expressed after RAP: FGL2 [fold change (FC)=0.85; p=0.007], APLP2 (FC=-0.47; p=0.005) and ADAMTS-18 (FC=-0.69; p=0.004). We demonstrate for the first time that AF induces a global expression change in the left atrial endocardium associated with an activation of blood coagulation. The nature of some of the altered functions and genes provides clues to identify new therapeutic targets.
Collapse
|
377
|
Fung KYY, Fairn GD, Lee WL. Transcellular vesicular transport in epithelial and endothelial cells: Challenges and opportunities. Traffic 2017; 19:5-18. [PMID: 28985008 DOI: 10.1111/tra.12533] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 12/31/2022]
Abstract
Vesicle-mediated transcellular transport or simply "transcytosis" is a cellular process used to shuttle macromolecules such as lipoproteins, antibodies, and albumin from one surface of a polarized cell to the other. This mechanism is in contrast to the transit of small molecules such as anions, cations and amino acids that occur via uptake, diffusion through the cytosol and release and is also distinct from paracellular leak between cells. Importantly, transcytosis has evolved as a process to selectively move macromolecules between 2 neighboring yet unique microenvironments within a multicellular organism. Examples include the movement of lipoproteins out of the circulatory system and into tissues and the delivery of immunoglobulins to mucosal surfaces. Regardless of whether the transport is conducted by endothelial or epithelial cells, the process often involves receptor-mediated uptake of a ligand into an endocytic vesicle, regulated transit of the carrier through the cytoplasm and release of the cargo via an exocytic event. While transcytosis has been examined in detail in epithelial cells, for both historical and technical reasons, the process is less understood in endothelial cells. Here, we spotlight aspects of epithelial transcytosis including recent findings and review the comparative dearth of knowledge regarding the process in endothelial cells highlighting the opportunity for further study.
Collapse
Affiliation(s)
- Karen Y Y Fung
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Gregory D Fairn
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery & Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Institute for Biomedical Engineering and Science Technology (iBEST), Ryerson University and St Michael's Hospital, Toronto, Ontario, Canada
| | - Warren L Lee
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.,Institute for Biomedical Engineering and Science Technology (iBEST), Ryerson University and St Michael's Hospital, Toronto, Ontario, Canada.,Departments of Medicine, Laboratory Medicine and Pathobiology,& Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
378
|
Urner S, Kelly-Goss M, Peirce SM, Lammert E. Mechanotransduction in Blood and Lymphatic Vascular Development and Disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 81:155-208. [PMID: 29310798 DOI: 10.1016/bs.apha.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The blood and lymphatic vasculatures are hierarchical networks of vessels, which constantly transport fluids and, therefore, are exposed to a variety of mechanical forces. Considering the role of mechanotransduction is key for fully understanding how these vascular systems develop, function, and how vascular pathologies evolve. During embryonic development, for example, initiation of blood flow is essential for early vascular remodeling, and increased interstitial fluid pressure as well as initiation of lymph flow is needed for proper development and maturation of the lymphatic vasculature. In this review, we introduce specific mechanical forces that affect both the blood and lymphatic vasculatures, including longitudinal and circumferential stretch, as well as shear stress. In addition, we provide an overview of the role of mechanotransduction during atherosclerosis and secondary lymphedema, which both trigger tissue fibrosis.
Collapse
Affiliation(s)
- Sofia Urner
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Molly Kelly-Goss
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
379
|
Peng WH, Wang JL, Ren Y, Gao YX, Li G, Wang Y. Inhibitory effects of PGA1 and TRI on the apoptosis of cardiac microvascular endothelial cells of rats. Exp Ther Med 2017; 14:4288-4292. [PMID: 29104642 PMCID: PMC5658712 DOI: 10.3892/etm.2017.5079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/04/2017] [Indexed: 11/06/2022] Open
Abstract
The present study investigated the protective effects and molecular mechanism of prostaglandin A1 (PGA1) and triptolide (TRI) on apoptosis of cardiac microvascular endothelial cells (CMVECs) in rats. CMVECs of rats were isolated and then cultured. MTT method was used to select and establish a cell hypoxia reoxygenation cell model. The cells were divided into four groups: Normoxia control group (C, normal oxygen), hypoxia reoxygenation group (H/R, hypoxia for 12 h/reoxygenation for 6 h), PGA1 group (H/R+PGA1) and TRI group (H/R+TRI). The growth of cells in each of the group was observed. B-cell lymphoma 2 (Bcl-2) mRNA expression in CMVECs and expression of Bcl-2 mRNA after PGA1 and TRI treatment were determined by RT-PCR. Cell apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay. Bcl-2 mRNA decreased significantly after hypoxia stimulation of CMVECs of rats. The expression of Bcl-2 mRNA was significantly higher in comparison to hypoxia stimulation group after treatment with PGA1 and TRI (P<0.01). The elevated effect of PGA1 on Bcl-2 mRNA was stronger than that of the TRI group (P<0.05). The number of CMVECs reduced significantly after hypoxia. By contrast, DNA fragmentation and the number of endothelial cell apoptosis were increased significantly. However, Bcl-2 mRNA expression decreased significantly, after PGA1 and TRI treatments. Furthermore, the number of apoptotic cells reduced and Bcl-2 mRNA expression increased (P<0.01). PGA1 and TRI significantly upregulated the expression of Bcl-2 mRNA, inhibited the activation of CMVECs and were able to achieve the protective effect on apoptosis of CMVECs in hypoxia-oxygenated rats.
Collapse
Affiliation(s)
- Wen-Hua Peng
- Department of Cardiology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Jia-Li Wang
- Department of Cardiology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Yan Ren
- Department of Cardiology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Yan-Xiang Gao
- Department of Cardiology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Geng Li
- Department of Cardiology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Yong Wang
- Department of Cardiology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| |
Collapse
|
380
|
Reinhard NR, Mastop M, Yin T, Wu Y, Bosma EK, Gadella TWJ, Goedhart J, Hordijk PL. The balance between Gα i-Cdc42/Rac and Gα 12/ 13-RhoA pathways determines endothelial barrier regulation by sphingosine-1-phosphate. Mol Biol Cell 2017; 28:3371-3382. [PMID: 28954861 PMCID: PMC5687037 DOI: 10.1091/mbc.e17-03-0136] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 09/14/2017] [Accepted: 09/19/2017] [Indexed: 01/18/2023] Open
Abstract
The bioactive sphingosine-1-phosphatephosphate (S1P) is present in plasma, bound to carrier proteins, and involved in many physiological processes, including angiogenesis, inflammatory responses, and vascular stabilization. S1P can bind to several G-protein-coupled receptors (GPCRs) activating a number of different signaling networks. At present, the dynamics and relative importance of signaling events activated immediately downstream of GPCR activation are unclear. To examine these, we used a set of fluorescence resonance energy transfer-based biosensors for different RhoGTPases (Rac1, RhoA/B/C, and Cdc42) as well as for heterotrimeric G-proteins in a series of live-cell imaging experiments in primary human endothelial cells. These experiments were accompanied by biochemical GTPase activity assays and transendothelial resistance measurements. We show that S1P promotes cell spreading and endothelial barrier function through S1PR1-Gαi-Rac1 and S1PR1-Gαi-Cdc42 pathways. In parallel, a S1PR2-Gα12/13-RhoA pathway is activated that can induce cell contraction and loss of barrier function, but only if Gαi-mediated signaling is suppressed. Our results suggest that Gαq activity is not involved in S1P-mediated regulation of barrier integrity. Moreover, we show that early activation of RhoA by S1P inactivates Rac1 but not Cdc42, and vice versa. Together, our data show that the rapid S1P-induced increase in endothelial integrity is mediated by a S1PR1-Gαi-Cdc42 pathway.
Collapse
Affiliation(s)
- Nathalie R Reinhard
- van Leeuwenhoek Centre for Advanced Microscopy, Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, Netherlands
- Molecular Cell Biology and
- University of Amsterdam Academic Medical Centre-Landsteiner Laboratory, Sanquin Research, 1066 CX Amsterdam, Netherlands
| | - Marieke Mastop
- van Leeuwenhoek Centre for Advanced Microscopy, Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, Netherlands
| | - Taofei Yin
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030
| | - Yi Wu
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030
| | - Esmeralda K Bosma
- van Leeuwenhoek Centre for Advanced Microscopy, Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, Netherlands
| | - Theodorus W J Gadella
- van Leeuwenhoek Centre for Advanced Microscopy, Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, Netherlands
| | - Joachim Goedhart
- van Leeuwenhoek Centre for Advanced Microscopy, Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, Netherlands
| | - Peter L Hordijk
- van Leeuwenhoek Centre for Advanced Microscopy, Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, Netherlands
- Molecular Cell Biology and
- University of Amsterdam Academic Medical Centre-Landsteiner Laboratory, Sanquin Research, 1066 CX Amsterdam, Netherlands
- Department of Physiology, Free University Medical Center, 1081 HZ Amsterdam, Netherlands
| |
Collapse
|
381
|
Azevedo PO, Lousado L, Paiva AE, Andreotti JP, Santos GSP, Sena IFG, Prazeres PHDM, Filev R, Mintz A, Birbrair A. Endothelial cells maintain neural stem cells quiescent in their niche. Neuroscience 2017; 363:62-65. [PMID: 28893649 PMCID: PMC6089873 DOI: 10.1016/j.neuroscience.2017.08.059] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 08/24/2017] [Accepted: 08/31/2017] [Indexed: 01/02/2023]
Abstract
Niches are specialized microenvironments that regulate stem cells' activity. The neural stem cell (NSC) niche defines a zone in which NSCs are retained and produce new cells of the nervous system throughout life. Understanding the signaling mechanisms by which the niche controls the NSC fate is crucial for the success of clinical applications. In a recent study, Sato and colleagues, by using state-of-the-art techniques, including sophisticated in vivo lineage-tracing technologies, provide evidence that endothelial amyloid precursor protein (APP) is an important component of the NSC niche. Strikingly, depletion of APP increased NSC proliferation in the subventricular zone, indicating that endothelial cells negatively regulate NSCs' growth. The emerging knowledge from this research will be important for the treatment of several neurological diseases.
Collapse
Affiliation(s)
- Patrick O Azevedo
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiza Lousado
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana E Paiva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Julia P Andreotti
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Isadora F G Sena
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro H D M Prazeres
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Renato Filev
- Laboratory of Neurobiology, Federal University of São Paulo, SP, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
382
|
Paiva AE, Lousado L, Almeida VM, Andreotti JP, Santos GSP, Azevedo PO, Sena IFG, Prazeres PHDM, Borges IT, Azevedo V, Mintz A, Birbrair A. Endothelial Cells as Precursors for Osteoblasts in the Metastatic Prostate Cancer Bone. Neoplasia 2017; 19:928-931. [PMID: 28957694 PMCID: PMC5619995 DOI: 10.1016/j.neo.2017.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/20/2017] [Accepted: 08/22/2017] [Indexed: 01/27/2023]
Abstract
Prostate cancer cells metastasize to the bones, causing ectopic bone formation, which results in fractures and pain. The cellular mechanisms underlying new bone production are unknown. In a recent study, Lin and colleagues, by using state-of-the-art techniques, including prostate cancer mouse models in combination with sophisticated in vivo lineage-tracing technologies, revealed that endothelial cells form osteoblasts induced by prostate cancer metastasis in the bone. Strikingly, genetic deletion of osteorix protein from endothelial cells affected prostate cancer-induced osteogenesis in vivo. Deciphering the osteoblasts origin in the bone microenvironment may result in the development of promising new molecular targets for prostate cancer therapy.
Collapse
Affiliation(s)
- Ana E Paiva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiza Lousado
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Viviani M Almeida
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Julia P Andreotti
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Patrick O Azevedo
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Isadora F G Sena
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro H D M Prazeres
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Isabella T Borges
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vasco Azevedo
- Department of General Biology of Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
383
|
Fung KY, Wang C, Nyegaard S, Heit B, Fairn GD, Lee WL. SR-BI Mediated Transcytosis of HDL in Brain Microvascular Endothelial Cells Is Independent of Caveolin, Clathrin, and PDZK1. Front Physiol 2017; 8:841. [PMID: 29163190 PMCID: PMC5670330 DOI: 10.3389/fphys.2017.00841] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/09/2017] [Indexed: 01/19/2023] Open
Abstract
The vascular endothelium supplying the brain exhibits very low paracellular and transcellular permeability and is a major constituent of the blood-brain barrier. High-density lipoprotein (HDL) crosses the blood-brain barrier by transcytosis, but technical limitations have made it difficult to elucidate its regulation. Using a combination of spinning-disc confocal and total internal reflection fluorescence microscopy, we examined the uptake and transcytosis of HDL by human primary brain microvascular endothelial cell monolayers. Using these approaches, we report that HDL internalization requires dynamin but not clathrin heavy chain and that its internalization and transcytosis are saturable. Internalized HDL partially co-localized with the scavenger receptor BI (SR-BI) and knockdown of SR-BI significantly attenuated HDL internalization. However, we observed that the adaptor protein PDZK1—which is critical to HDL-SR-BI signaling in other tissues—is not required for HDL uptake in these cells. Additionally, while these cells express caveolin, the abundance of caveolae in this tissue is negligible and we find that SR-BI and caveolin do not co-fractionate. Furthermore, direct silencing of caveolin-1 had no impact on the uptake of HDL. Finally, inhibition of endothelial nitric oxide synthase increased HDL internalization while increasing nitric oxide levels had no impact. Together, these data indicate that SR-BI-mediated transcytosis in brain microvascular endothelial cells is distinct from uptake and signaling pathways described for this receptor in other cell types.
Collapse
Affiliation(s)
- Karen Y Fung
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Center for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Changsen Wang
- Keenan Research Center for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Steffen Nyegaard
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, Centre for Human Immunology, University of Western Ontario, London, ON, Canada
| | - Gregory D Fairn
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Center for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Department of Surgery, University of Toronto, ON, Canada
| | - Warren L Lee
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Center for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Departments of Medicine and Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| |
Collapse
|
384
|
Yang H, Yu PK, Cringle SJ, Sun X, Yu DY. Microvascular Network and Its Endothelial Cells in the Human Iris. Curr Eye Res 2017; 43:67-76. [DOI: 10.1080/02713683.2017.1379544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hongfang Yang
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia
- Physiology and Pharmacology Centre, Lions Eye Institute, The University of Western Australia, Perth, Australia
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Paula K Yu
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia
- Physiology and Pharmacology Centre, Lions Eye Institute, The University of Western Australia, Perth, Australia
| | - Stephen J Cringle
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia
- Physiology and Pharmacology Centre, Lions Eye Institute, The University of Western Australia, Perth, Australia
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health (Fudan University), and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai China
| | - Dao-Yi Yu
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia
- Physiology and Pharmacology Centre, Lions Eye Institute, The University of Western Australia, Perth, Australia
| |
Collapse
|
385
|
Activation and inflammation of the venous endothelium in vein graft disease. Atherosclerosis 2017; 265:266-274. [PMID: 28865843 DOI: 10.1016/j.atherosclerosis.2017.08.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/19/2017] [Accepted: 08/23/2017] [Indexed: 01/13/2023]
Abstract
The long saphenous vein is the most commonly used conduit in coronary artery bypass graft (CABG) surgery when bypassing multiple diseased arteries; however, its use is complicated by the development of vascular inflammation, intimal hyperplasia and accelerated atherosclerosis leading to compromised graft efficacy. Despite refinement of surgical techniques to improve graft patency, late vein graft failure remains a significant problem. Moreover, there is a lack of pharmacological interventions proven to be effective in the treatment of late vein graft failure. A greater understanding of the molecular nature of the disease and the interactions between endothelial and smooth muscle cells as a result of alterations in local haemodynamics may assist with designing future beneficial pharmacological interventions. Venous endothelial cells (ECs) are physiologically adapted to chronic low shear stress; however, once the graft is implanted into the arterial circulation, they become suddenly exposed to acute high levels of shear stress. A small number of in vitro and ex vivo studies have demonstrated that acute high shear stress is associated with the activation of a pro-inflammatory profile in saphenous vein ECs, which may be mediated by mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signalling pathways. The impact of acute changes in shear stress on venous ECs and the role of ECs in the development of intimal hyperplasia remains incomplete and is the subject of this review.
Collapse
|
386
|
Baselet B, Azimzadeh O, Erbeldinger N, Bakshi MV, Dettmering T, Janssen A, Ktitareva S, Lowe DJ, Michaux A, Quintens R, Raj K, Durante M, Fournier C, Benotmane MA, Baatout S, Sonveaux P, Tapio S, Aerts A. Differential Impact of Single-Dose Fe Ion and X-Ray Irradiation on Endothelial Cell Transcriptomic and Proteomic Responses. Front Pharmacol 2017; 8:570. [PMID: 28993729 PMCID: PMC5622284 DOI: 10.3389/fphar.2017.00570] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/09/2017] [Indexed: 12/12/2022] Open
Abstract
Background and Purpose: Radiotherapy is an essential tool for cancer treatment. In order to spare normal tissues and to reduce the risk of normal tissue complications, particle therapy is a method of choice. Although a large part of healthy tissues can be spared due to improved depth dose characteristics, little is known about the biological and molecular mechanisms altered after particle irradiation in healthy tissues. Elucidation of these effects is also required in the context of long term space flights, as particle radiation is the main contributor to the radiation effects observed in space. Endothelial cells (EC), forming the inner layer of all vascular structures, are especially sensitive to irradiation and, if damaged, contribute to radiation-induced cardiovascular disease. Materials and Methods: Transcriptomics, proteomics and cytokine analyses were used to compare the response of ECs irradiated or not with a single 2 Gy dose of X-rays or Fe ions measured one and 7 days post-irradiation. To support the observed inflammatory effects, monocyte adhesion on ECs was also assessed. Results: Experimental data indicate time- and radiation quality-dependent changes of the EC response to irradiation. The irradiation impact was more pronounced and longer lasting for Fe ions than for X-rays. Both radiation qualities decreased the expression of genes involved in cell-cell adhesion and enhanced the expression of proteins involved in caveolar mediated endocytosis signaling. Endothelial inflammation and adhesiveness were increased with X-rays, but decreased after Fe ion exposure. Conclusions: Fe ions induce pro-atherosclerotic processes in ECs that are different in nature and kinetics than those induced by X-rays, highlighting radiation quality-dependent differences which can be linked to the induction and progression of cardiovascular diseases (CVD). Our findings give a better understanding of the underlying processes triggered by particle irradiation in ECs, a crucial aspect for the development of protective measures for cancer patients undergoing particle therapy and for astronauts in space.
Collapse
Affiliation(s)
- Bjorn Baselet
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN)Mol, Belgium.,Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique, Université catholique de LouvainBrussels, Belgium
| | - Omid Azimzadeh
- Institute of Radiation Biology, Helmholtz Zentrum Munich, German Research Center for Environmental HealthMunich, Germany
| | - Nadine Erbeldinger
- GSI Helmholtz Centre for Heavy Ion ResearchDarmstadt, Germany.,Technical University DarmstadtDarmstadt, Germany
| | - Mayur V Bakshi
- Institute of Radiation Biology, Helmholtz Zentrum Munich, German Research Center for Environmental HealthMunich, Germany
| | - Till Dettmering
- GSI Helmholtz Centre for Heavy Ion ResearchDarmstadt, Germany
| | - Ann Janssen
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN)Mol, Belgium
| | | | - Donna J Lowe
- Department of Radiation Effects, Centre for Radiation, Chemical and Environmental Hazards, Public Health EnglandDidcot, United Kingdom
| | - Arlette Michaux
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN)Mol, Belgium
| | - Roel Quintens
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN)Mol, Belgium
| | - Kenneth Raj
- Department of Radiation Effects, Centre for Radiation, Chemical and Environmental Hazards, Public Health EnglandDidcot, United Kingdom
| | - Marco Durante
- GSI Helmholtz Centre for Heavy Ion ResearchDarmstadt, Germany.,Technical University DarmstadtDarmstadt, Germany
| | | | - Mohammed A Benotmane
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN)Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN)Mol, Belgium.,Department of Molecular Biotechnology, Ghent UniversityGhent, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique, Université catholique de LouvainBrussels, Belgium
| | - Soile Tapio
- Institute of Radiation Biology, Helmholtz Zentrum Munich, German Research Center for Environmental HealthMunich, Germany
| | - An Aerts
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN)Mol, Belgium
| |
Collapse
|
387
|
Endothelial insulin receptors differentially control insulin signaling kinetics in peripheral tissues and brain of mice. Proc Natl Acad Sci U S A 2017; 114:E8478-E8487. [PMID: 28923931 DOI: 10.1073/pnas.1710625114] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Insulin receptors (IRs) on endothelial cells may have a role in the regulation of transport of circulating insulin to its target tissues; however, how this impacts on insulin action in vivo is unclear. Using mice with endothelial-specific inactivation of the IR gene (EndoIRKO), we find that in response to systemic insulin stimulation, loss of endothelial IRs caused delayed onset of insulin signaling in skeletal muscle, brown fat, hypothalamus, hippocampus, and prefrontal cortex but not in liver or olfactory bulb. At the level of the brain, the delay of insulin signaling was associated with decreased levels of hypothalamic proopiomelanocortin, leading to increased food intake and obesity accompanied with hyperinsulinemia and hyperleptinemia. The loss of endothelial IRs also resulted in a delay in the acute hypoglycemic effect of systemic insulin administration and impaired glucose tolerance. In high-fat diet-treated mice, knockout of the endothelial IRs accelerated development of systemic insulin resistance but not food intake and obesity. Thus, IRs on endothelial cells have an important role in transendothelial insulin delivery in vivo which differentially regulates the kinetics of insulin signaling and insulin action in peripheral target tissues and different brain regions. Loss of this function predisposes animals to systemic insulin resistance, overeating, and obesity.
Collapse
|
388
|
Yamazaki Y, Kanekiyo T. Blood-Brain Barrier Dysfunction and the Pathogenesis of Alzheimer's Disease. Int J Mol Sci 2017; 18:ijms18091965. [PMID: 28902142 PMCID: PMC5618614 DOI: 10.3390/ijms18091965] [Citation(s) in RCA: 286] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 01/22/2023] Open
Abstract
Brain capillary endothelial cells form the blood-brain barrier (BBB), which is covered with basement membranes and is also surrounded by pericytes and astrocyte end-feet in the neurovascular unit. The BBB tightly regulates the molecular exchange between the blood flow and brain parenchyma, thereby regulating the homeostasis of the central nervous system (CNS). Thus, dysfunction of the BBB is likely involved in the pathogenesis of several neurological diseases, including Alzheimer’s disease (AD). While amyloid-β (Aβ) deposition and neurofibrillary tangle formation in the brain are central pathological hallmarks in AD, cerebrovascular lesions and BBB alteration have also been shown to frequently coexist. Although further clinical studies should clarify whether BBB disruption is a specific feature of AD pathogenesis, increasing evidence indicates that each component of the neurovascular unit is significantly affected in the presence of AD-related pathologies in animal models and human patients. Conversely, since some portions of Aβ are eliminated along the neurovascular unit and across the BBB, disturbing the pathways may result in exacerbated Aβ accumulation in the brain. Thus, current evidence suggests that BBB dysfunction may causatively and consequently contribute to AD pathogenesis, forming a vicious cycle between brain Aβ accumulation and neurovascular unit impairments during disease progression.
Collapse
Affiliation(s)
- Yu Yamazaki
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
389
|
Houben AJHM, Martens RJH, Stehouwer CDA. Assessing Microvascular Function in Humans from a Chronic Disease Perspective. J Am Soc Nephrol 2017; 28:3461-3472. [PMID: 28904002 DOI: 10.1681/asn.2017020157] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Microvascular dysfunction (MVD) is considered a crucial pathway in the development and progression of cardiometabolic and renal disease and is associated with increased cardiovascular mortality. MVD often coexists with or even precedes macrovascular disease, possibly due to shared mechanisms of vascular damage, such as inflammatory processes and oxidative stress. One of the first events in MVD is endothelial dysfunction. With the use of different physiologic or pharmacologic stimuli, endothelium-dependent (micro)vascular reactivity can be studied. This reactivity depends on the balance between various mediators, including nitric oxide, endothelin, and prostanoids, among others. The measurement of microvascular (endothelial) function is important to understand the pathophysiologic mechanisms that contribute to MVD and the role of MVD in the development and progression of cardiometabolic/renal disease. Here, we review a selection of direct, noninvasive techniques for measuring human microcirculation, with a focus on methods, interpretation, and limitations from the perspective of chronic cardiometabolic and renal disease.
Collapse
Affiliation(s)
- Alfons J H M Houben
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands; and .,CARIM School for Cardiovascular Diseases and
| | - Remy J H Martens
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands; and.,School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands; and.,CARIM School for Cardiovascular Diseases and
| |
Collapse
|
390
|
Hansen NW, Hansen AJ, Sams A. The endothelial border to health: Mechanistic evidence of the hyperglycemic culprit of inflammatory disease acceleration. IUBMB Life 2017; 69:148-161. [PMID: 28230336 DOI: 10.1002/iub.1610] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/21/2017] [Indexed: 02/06/2023]
Abstract
The endothelial cell (EC) layer constitutes a barrier that controls movements of fluid, solutes and cells between blood and tissue. Further, the endothelial layer regulates vascular tone and directs local humoral and cellular inflammatory processes. The strategic position makes it an important player for maintenance of health and for development of a number of diseases. Endothelial dysfunction is known to be an important component of type 2 diabetes, but is also assumed to be involved in many other diseases, for example, rheumatoid arthritis, inflammatory bowel disease, asthma, and cardiovascular diseases. We here suggest that the EC plays a pivotal role in disease pathophysiology through initiation, potentiation, and maintenance of several inflammatory mechanisms. Our contention is based on the observation that hyperglycemia-intermittent or sustained, local or systemic-is a major culprit for several endothelial dysfunctions. There is also mounting epidemiological evidence that dietary intake of refined sugars is important for the development of a number of diseases beyond obesity and type 2 diabetes. Various diseases involving inflammatory and immunological components are accelerated by hyperglycemic events because the endothelium transduces "high glucose" signaling into significant pathophysiological phenomena leading to reduced endothelial barrier function, compromised vascular tone regulation and inflammation (e.g., cytokine secretion and RAGE activation). In addition, endothelial extracellular proteins form epitopes for potential specific antibody formation upon interactions with reducing sugars. This paper reviews the endothelial metabolism, biology, inflammatory processes, physical barrier functions, and summarizes evidence that although stochastic in nature, endothelial responses to hyperglycemia are major contributors to disease pathophysiology. We present molecular and mechanistic evidence that both biological and physical barriers, protein function, specific immunity, and inflammatory processes are compromised by hyperglycemic events and thus, hyperglycemic events alone should be considered risk factors for numerous human diseases. © 2017 IUBMB Life, 69(3):148-161, 2017.
Collapse
Affiliation(s)
- Nina Waerling Hansen
- Department of Endocrinology (Diabetes and Metabolism), Rigshospitalet, Copenhagen, Denmark
| | - Anker Jon Hansen
- Center for Basic and Translational Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Anette Sams
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
391
|
Giacomelli E, Bellin M, Sala L, van Meer BJ, Tertoolen LGJ, Orlova VV, Mummery CL. Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells. Development 2017; 144:1008-1017. [PMID: 28279973 PMCID: PMC5358113 DOI: 10.1242/dev.143438] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/29/2016] [Indexed: 12/14/2022]
Abstract
Cardiomyocytes and endothelial cells in the heart are in close proximity and in constant dialogue. Endothelium regulates the size of the heart, supplies oxygen to the myocardium and secretes factors that support cardiomyocyte function. Robust and predictive cardiac disease models that faithfully recapitulate native human physiology in vitro would therefore ideally incorporate this cardiomyocyte-endothelium crosstalk. Here, we have generated and characterized human cardiac microtissues in vitro that integrate both cell types in complex 3D structures. We established conditions for simultaneous differentiation of cardiomyocytes and endothelial cells from human pluripotent stem cells following initial cardiac mesoderm induction. The endothelial cells expressed cardiac markers that were also present in primary cardiac microvasculature, suggesting cardiac endothelium identity. These cell populations were further enriched based on surface markers expression, then recombined allowing development of beating 3D structures termed cardiac microtissues. This in vitro model was robustly reproducible in both embryonic and induced pluripotent stem cells. It thus represents an advanced human stem cell-based platform for cardiovascular disease modelling and testing of relevant drugs. Summary: Co-differentiation of endothelial cells and cardiomyocytes from human pluripotent stem cells provides a cardiac microtissue model with potential applications for disease modelling and drug discovery.
Collapse
Affiliation(s)
- Elisa Giacomelli
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333ZC, The Netherlands
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333ZC, The Netherlands
| | - Luca Sala
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333ZC, The Netherlands
| | - Berend J van Meer
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333ZC, The Netherlands
| | - Leon G J Tertoolen
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333ZC, The Netherlands
| | - Valeria V Orlova
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333ZC, The Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333ZC, The Netherlands .,Department of Applied Stem Cell Technologies, University of Twente, Enschede 7500AE, The Netherlands
| |
Collapse
|
392
|
Abstract
In addition to their conventional role as a conduit system for gases, nutrients, waste products or cells, blood vessels in the skeletal system play active roles in controlling multiple aspects of bone formation and provide niches for hematopoietic stem cells that reside within the bone marrow. In addition, recent studies have highlighted roles for blood vessels during bone healing. Here, we provide an overview of the architecture of the bone vasculature and discuss how blood vessels form within bone, how their formation is modulated, and how they function during development and fracture repair.
Collapse
Affiliation(s)
- Kishor K Sivaraj
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis and University of Münster, Faculty of Medicine, Münster D-48149, Germany
| | - Ralf H Adams
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis and University of Münster, Faculty of Medicine, Münster D-48149, Germany
| |
Collapse
|
393
|
Olsavszky V, Ulbrich F, Singh S, Diett M, Sticht C, Schmid CD, Zierow J, Wohlfeil SA, Schledzewski K, Dooley S, Gaitantzi H, Breitkopf-Heinlein K, Géraud C, Goerdt S, Koch PS. GATA4 and LMO3 balance angiocrine signaling and autocrine inflammatory activation by BMP2 in liver sinusoidal endothelial cells. Gene 2017; 627:491-499. [DOI: 10.1016/j.gene.2017.06.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/12/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022]
|
394
|
Schlegel F, Appler M, Halling M, Smit FE, Mohr FW, Dhein S, Dohmen PM. Reprogramming Bone Marrow Stem Cells to Functional Endothelial Cells in a Mini Pig Animal Model. Med Sci Monit Basic Res 2017; 23:285-294. [PMID: 28814711 PMCID: PMC5572781 DOI: 10.12659/msmbr.905081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background The aims of this study were to compare the morphological, biochemical, and functional properties of reprogrammed bone marrow stem cell (BMSC)-derived arterial endothelial cells (AECs) and venous endothelial cells (VECs), following adenosine triphosphate (ATP)-stimulation in a mini pig animal model. Material/Methods Bone marrow aspiration was performed in six adult mini pigs. Harvested mononuclear cells were isolated, cultured, and treated with vascular endothelial growth factor (VEGF) (16 μg/ml). Transformed cells were characterized using immunofluorescence staining for CD31 and von Willebrandt factor (vWF) and expression of endothelial nitric oxide synthase (eNOS). Cell release of nitric oxide (cNO) was measured using spectrophotometry. Matrigel assays were used to investigate angiogenesis in transformed BMSCs. Results Reprogrammed BMSCs in culture showed a typical cobblestone-like pattern of growth. Immunofluorescence staining was positive for CD31 and vWF expression. Expression of eNOS, using immunofluorescence staining and Western blot, showed no difference between the reprogrammed BMSCs and VECs. Spectrophotometric examination following stimulation with 10mmol/l ATP, showed comparable cNO release for reprogrammed BMSCs (10.87±1.76 pmol/106 cells/min) and VECs (13.23±2.16 pmol/106 cells/min), but reduced cNO release for AECS (3.44±0.75 pmol/106 cells/min). Matrigel assay for angiogenesis showed vascular tube formation of differentiated BMSC endothelial cells (grade 3.25). BMSCs cultured without VEGF did not demonstrate vascular tube formation. Conclusions The findings of this study showed that eNOS expression and release of NO could be used to show that BMSCs can be reprogrammed to functional VECs and AECs.
Collapse
Affiliation(s)
- Franziska Schlegel
- Department of Cardiac Surgery, Leipzig Heart Center, University of Leipzig, Leipzig, Germany
| | - Marco Appler
- Department of Cardiac Surgery, Heart Center Rostock, University of Rostock, Rostock, Germany
| | - Michelle Halling
- Department of Cardiac Surgery, Leipzig Heart Center, University of Leipzig, Leipzig, Germany
| | - Francis Edwin Smit
- Department of Cardiothoracic Surgery, Faculty of Health Science, University of the Free State, Bloemfontein, South Africa
| | - Friedrich-Wilhelm Mohr
- Department of Cardiac Surgery, Leipzig Heart Center, University of Leipzig, Leipzig, Germany
| | - Stefan Dhein
- Department of Cardiac Surgery, Leipzig Heart Center, University of Leipzig, Leipzig, Germany
| | - Pascal Maria Dohmen
- Department of Cardiac Surgery, Leipzig Heart Center, University of Leipzig, Leipzig, Germany.,Department of Cardiac Surgery, Heart Center Rostock, University of Rostock, Rostock, Germany.,Department of Cardiothoracic Surgery, Faculty of Health Science, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
395
|
Li M, Qian M, Xu J. Vascular Endothelial Regulation of Obesity-Associated Insulin Resistance. Front Cardiovasc Med 2017; 4:51. [PMID: 28848738 PMCID: PMC5552760 DOI: 10.3389/fcvm.2017.00051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/27/2017] [Indexed: 12/24/2022] Open
Abstract
Obesity is a worldwide epidemic that predisposes individuals to metabolic complications, such as type 2 diabetes mellitus and non-alcoholic fatty liver disease, all of which are related to an imbalance between food intake and energy expenditure. Identification of the pathogenic molecular mechanisms and effective therapeutic approaches are urgently needed. A well-accepted paradigm is that crosstalk between organs/tissues contributes to diseases. Endothelial dysfunction characterizes metabolic disorders and the related vascular complications. Over the past two decades, overwhelming studies have focused on mechanisms that lead to endothelial dysfunction. New investigations, however, have begun to appreciate the opposite direction of the crosstalk: endothelial regulation of metabolism, although the underlying mechanisms remain to be elucidated. This review summarizes the evidence that supports the concept of endothelial regulation of obesity and the associated insulin resistance in fat, liver, and skeletal muscles, the classic targets of insulin. Outstanding questions and future research directions are highlighted. Identification of the mechanisms of vascular endothelial regulation of metabolism may offer strategies for prevention and treatment of obesity and the related metabolic complications.
Collapse
Affiliation(s)
- Manna Li
- Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Ming Qian
- Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jian Xu
- Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
396
|
Augustin HG, Koh GY. Organotypic vasculature: From descriptive heterogeneity to functional pathophysiology. Science 2017; 357:science.aal2379. [DOI: 10.1126/science.aal2379] [Citation(s) in RCA: 351] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
397
|
Roumenina LT, Rayes J, Frimat M, Fremeaux-Bacchi V. Endothelial cells: source, barrier, and target of defensive mediators. Immunol Rev 2017; 274:307-329. [PMID: 27782324 DOI: 10.1111/imr.12479] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endothelium is strategically located at the interface between blood and interstitial tissues, placing thus endothelial cell as a key player in vascular homeostasis. Endothelial cells are in a dynamic equilibrium with their environment and constitute concomitantly a source, a barrier, and a target of defensive mediators. This review will discuss the recent advances in our understanding of the complex crosstalk between the endothelium, the complement system and the hemostasis in health and in disease. The first part will provide a general introduction on endothelial cells heterogeneity and on the physiologic role of the complement and hemostatic systems. The second part will analyze the interplay between complement, hemostasis and endothelial cells in physiological conditions and their alterations in diseases. Particular focus will be made on the prototypes of thrombotic microangiopathic disorders, resulting from complement or hemostasis dysregulation-mediated endothelial damage: atypical hemolytic uremic syndrome and thrombotic thrombocytopenic purpura. Novel aspects of the pathophysiology of the thrombotic microangiopathies will be discussed.
Collapse
Affiliation(s)
- Lubka T Roumenina
- INSERM UMRS 1138, Cordeliers Research Center, Université Pierre et Marie Curie (UPMC-Paris-6) and Université Paris Descartes Sorbonne Paris-Cité, Paris, France.
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Marie Frimat
- INSERM UMR 995, Lille, France.,Nephrology Department, CHU Lille, Lille, France
| | - Veronique Fremeaux-Bacchi
- INSERM UMRS 1138, Cordeliers Research Center, Université Pierre et Marie Curie (UPMC-Paris-6) and Université Paris Descartes Sorbonne Paris-Cité, Paris, France.,Assistance Publique - Hôpitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
398
|
Carcamo-Orive I, Huang NF, Quertermous T, Knowles JW. Induced Pluripotent Stem Cell-Derived Endothelial Cells in Insulin Resistance and Metabolic Syndrome. Arterioscler Thromb Vasc Biol 2017; 37:2038-2042. [PMID: 28729365 DOI: 10.1161/atvbaha.117.309291] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023]
Abstract
Insulin resistance leads to a number of metabolic and cellular abnormalities including endothelial dysfunction that increase the risk of vascular disease. Although it has been particularly challenging to study the genetic determinants that predispose to abnormal function of the endothelium in insulin-resistant states, the possibility of deriving endothelial cells from induced pluripotent stem cells generated from individuals with detailed clinical phenotyping, including accurate measurements of insulin resistance accompanied by multilevel omic data (eg, genetic and genomic characterization), has opened new avenues to study this relationship. Unfortunately, several technical barriers have hampered these efforts. In the present review, we summarize the current status of induced pluripotent stem cell-derived endothelial cells for modeling endothelial dysfunction associated with insulin resistance and discuss the challenges to overcoming these limitations.
Collapse
Affiliation(s)
- Ivan Carcamo-Orive
- From the Department of Medicine and Cardiovascular Institute (I.C.-O., T.Q., J.W.K.) and Department of Cardiothoracic Surgery and Cardiovascular Institute (N.F.H.), Stanford University School of Medicine, CA; and Veterans Affairs Palo Alto Health Care System, CA (N.F.H.).
| | - Ngan F Huang
- From the Department of Medicine and Cardiovascular Institute (I.C.-O., T.Q., J.W.K.) and Department of Cardiothoracic Surgery and Cardiovascular Institute (N.F.H.), Stanford University School of Medicine, CA; and Veterans Affairs Palo Alto Health Care System, CA (N.F.H.)
| | - Thomas Quertermous
- From the Department of Medicine and Cardiovascular Institute (I.C.-O., T.Q., J.W.K.) and Department of Cardiothoracic Surgery and Cardiovascular Institute (N.F.H.), Stanford University School of Medicine, CA; and Veterans Affairs Palo Alto Health Care System, CA (N.F.H.)
| | - Joshua W Knowles
- From the Department of Medicine and Cardiovascular Institute (I.C.-O., T.Q., J.W.K.) and Department of Cardiothoracic Surgery and Cardiovascular Institute (N.F.H.), Stanford University School of Medicine, CA; and Veterans Affairs Palo Alto Health Care System, CA (N.F.H.)
| |
Collapse
|
399
|
Hupe M, Li MX, Kneitz S, Davydova D, Yokota C, Kele J, Hot B, Stenman JM, Gessler M. Gene expression profiles of brain endothelial cells during embryonic development at bulk and single-cell levels. Sci Signal 2017; 10:10/487/eaag2476. [PMID: 28698213 DOI: 10.1126/scisignal.aag2476] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The blood-brain barrier is a dynamic interface that separates the brain from the circulatory system, and it is formed by highly specialized endothelial cells. To explore the molecular mechanisms defining the unique nature of vascular development and differentiation in the brain, we generated high-resolution gene expression profiles of mouse embryonic brain endothelial cells using translating ribosome affinity purification and single-cell RNA sequencing. We compared the brain vascular translatome with the vascular translatomes of other organs and analyzed the vascular translatomes of the brain at different time points during embryonic development. Because canonical Wnt signaling is implicated in the formation of the blood-brain barrier, we also compared the brain endothelial translatome of wild-type mice with that of mice lacking the transcriptional cofactor β-catenin (Ctnnb1). Our analysis revealed extensive molecular changes during the embryonic development of the brain endothelium. We identified genes encoding brain endothelium-specific transcription factors (Foxf2, Foxl2, Foxq1, Lef1, Ppard, Zfp551, and Zic3) that are associated with maturation of the blood-brain barrier and act downstream of the Wnt-β-catenin signaling pathway. Profiling of individual brain endothelial cells revealed substantial heterogeneity in the population. Nevertheless, the high abundance of Foxf2, Foxq1, Ppard, or Zic3 transcripts correlated with the increased expression of genes encoding markers of brain endothelial cell differentiation. Expression of Foxf2 and Zic3 in human umbilical vein endothelial cells induced the production of blood-brain barrier differentiation markers. This comprehensive data set may help to improve the engineering of in vitro blood-brain barrier models.
Collapse
Affiliation(s)
- Mike Hupe
- Ludwig Institute for Cancer Research Ltd., Box 240, Stockholm SE-171 77, Sweden. .,Developmental Biochemistry, Theodor Boveri Institute (Biocenter), University of Wuerzburg, Wuerzburg D-97074, Germany
| | - Minerva Xueting Li
- Ludwig Institute for Cancer Research Ltd., Box 240, Stockholm SE-171 77, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Susanne Kneitz
- Physiological Chemistry, Theodor Boveri Institute (Biocenter), University of Wuerzburg, Wuerzburg D-97074, Germany
| | - Daria Davydova
- Institute for Clinical Neurobiology, University of Wuerzburg, Wuerzburg D-97078, Germany
| | - Chika Yokota
- Ludwig Institute for Cancer Research Ltd., Box 240, Stockholm SE-171 77, Sweden
| | - Julianna Kele
- Ludwig Institute for Cancer Research Ltd., Box 240, Stockholm SE-171 77, Sweden
| | - Belma Hot
- Ludwig Institute for Cancer Research Ltd., Box 240, Stockholm SE-171 77, Sweden
| | - Jan M Stenman
- Ludwig Institute for Cancer Research Ltd., Box 240, Stockholm SE-171 77, Sweden
| | - Manfred Gessler
- Developmental Biochemistry, Theodor Boveri Institute (Biocenter), University of Wuerzburg, Wuerzburg D-97074, Germany.,Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg D-97074, Germany
| |
Collapse
|
400
|
Greven J, Pfeifer R, Zhi Q, Pape HC. Update on the role of endothelial cells in trauma. Eur J Trauma Emerg Surg 2017; 44:667-677. [PMID: 28674817 DOI: 10.1007/s00068-017-0812-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 06/21/2017] [Indexed: 12/23/2022]
Abstract
PURPOSE This review gives an overview of physiological processes, mainly regarding vascular endothelial cells and their important role in hemostasis, information processing, and communication during trauma. An insight is given into molecules and cells involved in the first innate immune response through to the behavior of endothelial cells in developing trauma. The goal of this review is to show the overlap of crucial factors related to the endothelium and the development of trauma. METHODS A systemic literature search was performed using Google scholar and PubMed. RESULTS The results of the literature search showed that the endothelium, especially the vascular endothelium, is involved in various cellular and subcellular pathways of activation, suppression, and transfer of information. A variety of molecules and cells are orchestrated, subsequently the endothelium gets in contact with a traumatizing event. CONCLUSION The endothelium is one of the first barriers that comes into contact with exo- and endogenous trauma-related signals and is a pivotal point in activating subsequent pathways and cascades by transfer of information.
Collapse
Affiliation(s)
- J Greven
- Department of Trauma and Reconstructive Surgery, University of Aachen Medical Center, Pauwelsstr 30, 52074, Aachen, Germany.
| | - R Pfeifer
- Department for Traumatology, University of Zürich Medical Center, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Q Zhi
- Department of Trauma and Reconstructive Surgery, University of Aachen Medical Center, Pauwelsstr 30, 52074, Aachen, Germany
| | - H C Pape
- Department for Traumatology, University of Zürich Medical Center, Rämistrasse 100, 8091, Zurich, Switzerland
| |
Collapse
|