351
|
Takahashi H, Kato S, Shimizu N, Otoki Y, Ito J, Sakaino M, Sano T, Imagi J, Nakagawa K. Elucidation of Olive Oil Oxidation Mechanisms by Analysis of Triacylglycerol Hydroperoxide Isomers Using LC-MS/MS. Molecules 2022; 27:molecules27165282. [PMID: 36014520 PMCID: PMC9415923 DOI: 10.3390/molecules27165282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
Despite the importance of the insight about the oxidation mechanisms (i.e., radical and singlet oxygen (1O2) oxidation) in extra virgin olive oil (EVOO), the elucidation has been difficult due to its various triacylglycerol molecular species and complex matrix. This study tried to evaluate the mechanisms responsible for EVOO oxidation in our daily use by quantitative determination of triacylglycerol hydroperoxide (TGOOH) isomers using LC-MS/MS. The standards of dioleoyl-(hydroperoxy octadecadienoyl)-triacylglycerol and dioleoyl-(hydroperoxy octadecamonoenoyl)-triacylglycerol, which are the predominant TGOOHs contained in EVOO, were prepared. Subsequently, fresh, thermal-, and photo-oxidized EVOO were analyzed. The obtained results mostly agreed with the previously reported characteristics of the radical and 1O2 oxidation of linoleic acid and oleic acid. This suggests that the methods described in this paper should be valuable in understanding how different factors that determine the quality of EVOO (e.g., olive species, cultivation area, cultivation timing, and extraction methods) contribute to its oxidative stability.
Collapse
Affiliation(s)
- Hayato Takahashi
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Miyagi, Japan
| | - Shunji Kato
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Miyagi, Japan
- J-Oil Mills Innovation Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Miyagi, Japan
| | - Naoki Shimizu
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Miyagi, Japan
| | - Yurika Otoki
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Miyagi, Japan
| | - Junya Ito
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Miyagi, Japan
| | - Masayoshi Sakaino
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Miyagi, Japan
- Food Design Center, J-OIL MILLS, Inc., Yokohama 230-0053, Kanagawa, Japan
| | - Takashi Sano
- Food Design Center, J-OIL MILLS, Inc., Yokohama 230-0053, Kanagawa, Japan
| | - Jun Imagi
- J-Oil Mills Innovation Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Miyagi, Japan
- Food Design Center, J-OIL MILLS, Inc., Yokohama 230-0053, Kanagawa, Japan
| | - Kiyotaka Nakagawa
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Miyagi, Japan
- J-Oil Mills Innovation Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Miyagi, Japan
- Correspondence: ; Fax: +81-22-757-4417
| |
Collapse
|
352
|
Chen Q, Min A, Luo S, He J, Wu R, Lin X, Wang Y, He W, Zhang Y, Lin Y, Li M, Zhang Y, Luo Y, Tang H, Wang X. Metabolomic Analysis Revealed Distinct Physiological Responses of Leaves and Roots to Huanglongbing in a Citrus Rootstock. Int J Mol Sci 2022; 23:ijms23169242. [PMID: 36012507 PMCID: PMC9409271 DOI: 10.3390/ijms23169242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 12/11/2022] Open
Abstract
Huanglongbing (HLB) is an obstinate disease in the citrus industry. No resistant citrus resources were currently available, but various degrees of Huanglongbing tolerance exist in different germplasm. Citrus junos is emerging as one of the popular rootstocks widely used in the citrus production. However, its responses to the HLB causal agent, Candidatus Liberibacter asiaticus (CLas), were still elusive. In the current study, we investigated the physiological, anatomical, and metabolomic responses of a C. junos rootstock ‘Pujiang Xiangcheng’ by a controlled CLas grafting inoculation. The summer flushes and roots were impaired at 15 weeks after inoculation, although typical leaf symptomatic phenotypes were not obvious. The chlorophyll pigments and the photosynthetic rate were compromised. The phloem sieve tubes were still working, despite the fact that the callose was deposited and the starch granules were accumulated in the phloem cells. A wide, targeted metabolomic analysis was carried out to explore the systematic alterations of the metabolites at this early stage of infection in the leaves and root system. The differentially accumulated metabolites in the CLas-affected leaves and roots compared with the mock-inoculation control tissues revealed that distinct responses were obvious. Besides the commonly observed alteration of sugar and amino acids, the active break down of starch in the roots was discovered. The different types of fatty acids were altered in the two tissues, with a more pronounced content decline in the roots. Our results not only provided fundamental knowledge about the response of the C. junos rootstock to the HLB disease, but also presented new insights into the host–pathogen interaction in the early stages.
Collapse
Affiliation(s)
- Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ailing Min
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Shu Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinwei He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Runqin Wu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ximeng Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural Universtiy, Chengdu 611130, China
| | - Wen He
- Institute of Pomology and Olericulture, Sichuan Agricultural Universtiy, Chengdu 611130, China
| | - Yunting Zhang
- Institute of Pomology and Olericulture, Sichuan Agricultural Universtiy, Chengdu 611130, China
| | - Yuanxiu Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural Universtiy, Chengdu 611130, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoru Tang
- Institute of Pomology and Olericulture, Sichuan Agricultural Universtiy, Chengdu 611130, China
- Correspondence: (H.T.); (X.W.)
| | - Xiaorong Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural Universtiy, Chengdu 611130, China
- Correspondence: (H.T.); (X.W.)
| |
Collapse
|
353
|
Blaurock J, Baumann S, Grunewald S, Schiller J, Engel KM. Metabolomics of Human Semen: A Review of Different Analytical Methods to Unravel Biomarkers for Male Fertility Disorders. Int J Mol Sci 2022; 23:ijms23169031. [PMID: 36012302 PMCID: PMC9409482 DOI: 10.3390/ijms23169031] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/01/2022] Open
Abstract
Background: Human life without sperm is not possible. Therefore, it is alarming that the fertilizing ability of human spermatozoa is continuously decreasing. The reasons for that are widely unknown, but there is hope that metabolomics-based investigations may be able to contribute to overcoming this problem. This review summarizes the attempts made so far. Methods: We will discuss liquid chromatography–mass spectrometry (LC-MS), gas chromatography (GC), infrared (IR) and Raman as well as nuclear magnetic resonance (NMR) spectroscopy. Almost all available studies apply one of these methods. Results: Depending on the methodology used, different compounds can be detected, which is (in combination with sophisticated methods of bioinformatics) helpful to estimate the state of the sperm. Often, but not in all cases, there is a correlation with clinical parameters such as the sperm mobility. Conclusions: LC-MS detects the highest number of metabolites and can be considered as the method of choice. Unfortunately, the reproducibility of some studies is poor, and, thus, further improvements of the study designs are needed to overcome this problem. Additionally, a stronger focus on the biochemical consequences of the altered metabolite concentrations is also required.
Collapse
Affiliation(s)
- Janet Blaurock
- Training Center of the European Academy of Andrology (EAA), Dermatology, Venerology and Allergology Clinic, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Sven Baumann
- Faculty of Medicine, Institute of Legal Medicine, Leipzig University, 04103 Leipzig, Germany
| | - Sonja Grunewald
- Training Center of the European Academy of Andrology (EAA), Dermatology, Venerology and Allergology Clinic, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Jürgen Schiller
- Faculty of Medicine, Institute for Medical Physics and Biophysics, Leipzig University, 04107 Leipzig, Germany
| | - Kathrin M. Engel
- Training Center of the European Academy of Andrology (EAA), Dermatology, Venerology and Allergology Clinic, University Hospital Leipzig, 04103 Leipzig, Germany
- Faculty of Medicine, Institute for Medical Physics and Biophysics, Leipzig University, 04107 Leipzig, Germany
- Correspondence:
| |
Collapse
|
354
|
Cui J, Cao J, Zeng S, Ge J, Li P, Li C. Comprehensive evaluation of lipidomics profiles in golden threadfin bream (Nemipterus virgatus) and its by-products using UHPLC-Q-exactive Orbitrap-MS. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
355
|
GOLM1 depletion modifies cellular sphingolipid metabolism and adversely affects cell growth. J Lipid Res 2022; 63:100259. [PMID: 35948172 PMCID: PMC9475319 DOI: 10.1016/j.jlr.2022.100259] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
Golgi membrane protein 1 (GOLM1) is a Golgi-resident type 2 transmembrane protein known to be overexpressed in several cancers, including hepatocellular carcinoma (HCC), as well as in viral infections. However, the role of GOLM1 in lipid metabolism remains enigmatic. In this study, we employed siRNA-mediated GOLM1 depletion in Huh-7 HCC cells to study the role of GOLM1 in lipid metabolism. Mass spectrometric lipidomic analysis in GOLM1 knockdown cells showed an aberrant accumulation of sphingolipids, such as ceramides, hexosylceramides, dihexosylceramides, sphinganine, sphingosine, and ceramide phosphate, along with cholesteryl esters. Furthermore, we observed a reduction in phosphatidylethanolamines and lysophosphatidylethanolamines. In addition, Seahorse extracellular flux analysis indicated a reduction in mitochondrial oxygen consumption rate upon GOLM1 depletion. Finally, alterations in Golgi structure and distribution were observed both by electron microscopy imaging and immunofluorescence microscopy analysis. Importantly, we found that GOLM1 depletion also affected cell proliferation and cell cycle progression in Huh-7 HCC cells. The Golgi structural defects induced by GOLM1 reduction might potentially affect the trafficking of proteins and lipids leading to distorted intracellular lipid homeostasis, which may result in organelle dysfunction and altered cell growth. In conclusion, we demonstrate that GOLM1 depletion affects sphingolipid metabolism, mitochondrial function, Golgi structure, and proliferation of HCC cells.
Collapse
|
356
|
Tobias F, Hummon AB. Lipidomic comparison of 2D and 3D colon cancer cell culture models. JOURNAL OF MASS SPECTROMETRY : JMS 2022; 57:e4880. [PMID: 36028991 PMCID: PMC9526240 DOI: 10.1002/jms.4880] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 06/10/2023]
Abstract
Altered lipid metabolism is one of the hallmarks of cancer. Cellular proliferation and de novo synthesis of lipids are related to cancer progression. In this study, we evaluated the lipidomic profile of two-dimensional (2D) monolayer and multicellular tumor spheroids from the HCT 116 colon carcinoma cell line. We utilized serial trypsinization on the spheroid samples to generate three cellular populations representing the proliferative, quiescent, and necrotic regions of the spheroid. This analysis enabled a comprehensive identification and quantification of lipids produced in each of the spheroid layer and 2D cultures. We show that lipid subclasses associated with lipid droplets form in oxygen-restricted and acidic regions of spheroids and are produced at higher levels than in 2D cultures. Additionally, sphingolipid production, which is implicated in cell death and survival pathways, is higher in spheroids relative to 2D cells. Finally, we show that increased numbers of lipids composed of polyunsaturated fatty acids (PUFAs) are produced in the quiescent and necrotic regions of the spheroid. The lipidomic signature for each region and cell culture type highlights the importance of understanding the spatial aspects of cancer biology. These results provide additional lipid biomarkers in colon cancer cells that can be further studied to target pivotal lipid production pathways.
Collapse
Affiliation(s)
- Fernando Tobias
- Department of Chemistry and BiochemistryThe Ohio State UniversityColumbusOhioUSA
| | - Amanda B. Hummon
- Department of Chemistry and BiochemistryThe Ohio State UniversityColumbusOhioUSA
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
357
|
Dawczynski C, Plagge J, Jahreis G, Liebisch G, Höring M, Seeliger C, Ecker J. Dietary PUFA Preferably Modify Ethanolamine-Containing Glycerophospholipids of the Human Plasma Lipidome. Nutrients 2022; 14:nu14153055. [PMID: 35893909 PMCID: PMC9332067 DOI: 10.3390/nu14153055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/10/2022] Open
Abstract
The content of polyunsaturated fatty acids (PUFA) in complex lipids essentially influences their physicochemical properties and has been linked to health and disease. To investigate the incorporation of dietary PUFA in the human plasma lipidome, we quantified glycerophospholipids (GPL), sphingolipids, and sterols using electrospray ionization coupled to tandem mass spectrometry of plasma samples obtained from a dietary intervention study. Healthy individuals received foods supplemented with different vegetable oils rich in PUFA. These included sunflower, linseed, echium, and microalgae oil as sources of linoleic acid (LA; FA 18:2 n-6), alpha-linolenic acid (ALA; FA 18:3 n-3), stearidonic acid (SDA; FA 18:4 n-3), and docosahexaenoic acid (DHA; FA 22:6 n-3). While LA and ALA did not influence the species profiles of GPL, sphingolipid, and cholesteryl ester drastically, SDA and DHA were integrated primarily in ethanolamine-containing GPL. This significantly altered phosphatidylethanolamine and plasmalogen species composition, especially those with 38-40 carbons and 6 double bonds. We speculate that diets enriched with highly unsaturated FA more efficiently alter plasma GPL acyl chain composition than those containing primarily di- and tri-unsaturated FA, most likely because of their more pronounced deviation of FA composition from typical western diets.
Collapse
Affiliation(s)
- Christine Dawczynski
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (C.D.); (G.J.)
| | - Johannes Plagge
- Research Group Lipid Metabolism, ZIEL Institute for Food & Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; (J.P.); (C.S.)
| | - Gerhard Jahreis
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (C.D.); (G.J.)
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany; (G.L.); (M.H.)
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany; (G.L.); (M.H.)
| | - Claudine Seeliger
- Research Group Lipid Metabolism, ZIEL Institute for Food & Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; (J.P.); (C.S.)
| | - Josef Ecker
- Research Group Lipid Metabolism, ZIEL Institute for Food & Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; (J.P.); (C.S.)
- Correspondence:
| |
Collapse
|
358
|
Ishibashi Y. Functions and applications of glycolipid-hydrolyzing microbial glycosidases. Biosci Biotechnol Biochem 2022; 86:974-984. [PMID: 35675217 DOI: 10.1093/bbb/zbac089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/29/2022] [Indexed: 11/13/2022]
Abstract
Glycolipids are important components of cell membranes in several organisms. The major glycolipids in mammals are glycosphingolipids (GSLs), which are composed of ceramides. In mammals, GSLs are degraded stepwise from the non-reducing end of the oligosaccharides via exo-type glycosidases. However, endoglycoceramidase (EGCase), an endo-type glycosidase found in actinomycetes, is a unique enzyme that directly acts on the glycosidic linkage between oligosaccharides and ceramides to generate intact oligosaccharides and ceramides. Three molecular species of EGCase, namely EGCase I, EGCase II, and endogalactosylceramidase, have been identified based on their substrate specificity. EGCrP1 and EGCrP2, which are homologs of EGCase in pathogenic fungi, were identified as the first fungal glucosylceramide- and sterylglucoside-hydrolyzing glycosidases, respectively. These enzymes are promising targets for antifungal drugs against pathogenic fungi. This review describes the functions and properties of these microbial glycolipid-degrading enzymes, the molecular basis of their differential substrate specificity, and their applications.
Collapse
Affiliation(s)
- Yohei Ishibashi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, Japan
| |
Collapse
|
359
|
Pieles O, Höring M, Adel S, Reichert TE, Liebisch G, Morsczeck C. Energy Metabolism and Lipidome Are Highly Regulated during Osteogenic Differentiation of Dental Follicle Cells. Stem Cells Int 2022; 2022:3674931. [PMID: 35903407 PMCID: PMC9315453 DOI: 10.1155/2022/3674931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/14/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Dental follicle cells (DFCs) are stem/progenitor cells of the periodontium and give rise to alveolar osteoblasts. However, understanding of the molecular mechanisms of osteogenic differentiation, which is required for cell-based therapies, is delimited. This study is aimed at analyzing the energy metabolism during the osteogenic differentiation of DFCs. Human DFCs were cultured, and osteogenic differentiation was induced by either dexamethasone or bone morphogenetic protein 2 (BMP2). Previous microarray data were reanalyzed to examine pathways that are regulated after osteogenic induction. Expression and activity of metabolic markers were evaluated by western blot analysis and specific assays, relative amount of mitochondrial DNA was measured by real-time quantitative polymerase chain reaction, the oxidative state of cells was determined by a glutathione assay, and the lipidome of cells was analyzed via mass spectrometry (MS). Moreover, osteogenic markers were analyzed after the inhibition of fatty acid synthesis by 5-(tetradecyloxy)-2-furoic acid or C75. Pathway enrichment analysis of microarray data revealed that carbon metabolism was amongst the top regulated pathways after osteogenic induction in DFCs. Further analysis showed that enzymes involved in glycolysis, citric acid cycle, mitochondrial activity, and lipid metabolism are differentially expressed during differentiation, with most markers upregulated and more markedly after induction with dexamethasone compared to BMP2. Moreover, the cellular state was more oxidized, and mitochondrial DNA was distinctly upregulated during the second half of differentiation. Besides, MS of the lipidome revealed higher lipid concentrations after osteogenic induction, with a preference for species with lower numbers of C-atoms and double bonds, which indicates a de novo synthesis of lipids. Concordantly, inhibition of fatty acid synthesis impeded the osteogenic differentiation of DFCs. This study demonstrates that energy metabolism is highly regulated during osteogenic differentiation of DFCs including changes in the lipidome suggesting enhanced de novo synthesis of lipids, which are required for the differentiation process.
Collapse
Affiliation(s)
- Oliver Pieles
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Sadiyeh Adel
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Torsten E. Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
360
|
Yu EA, Alemán JO, Hoover DR, Shi Q, Verano M, Anastos K, Tien PC, Sharma A, Kardashian A, Cohen MH, Golub ET, Michel KG, Gustafson DR, Glesby MJ. Plasma metabolomic analysis indicates flavonoids and sorbic acid are associated with incident diabetes: A nested case-control study among Women's Interagency HIV Study participants. PLoS One 2022; 17:e0271207. [PMID: 35802662 PMCID: PMC9269977 DOI: 10.1371/journal.pone.0271207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 06/26/2022] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION Lifestyle improvements are key modifiable risk factors for Type 2 diabetes mellitus (DM) however specific influences of biologically active dietary metabolites remain unclear. Our objective was to compare non-targeted plasma metabolomic profiles of women with versus without confirmed incident DM. We focused on three lipid classes (fatty acyls, prenol lipids, polyketides). MATERIALS AND METHODS Fifty DM cases and 100 individually matched control participants (80% with human immunodeficiency virus [HIV]) were enrolled in a case-control study nested within the Women's Interagency HIV Study. Stored blood samples (1-2 years prior to DM diagnosis among cases; at the corresponding timepoint among matched controls) were assayed in triplicate for metabolomics. Time-of-flight liquid chromatography mass spectrometry with dual electrospray ionization modes was utilized. We considered 743 metabolomic features in a two-stage feature selection approach with conditional logistic regression models that accounted for matching strata. RESULTS Seven features differed by DM case status (all false discovery rate-adjusted q<0.05). Three flavonoids (two flavanones, one isoflavone) were respectively associated with lower odds of DM (all q<0.05), and sorbic acid was associated with greater odds of DM (all q<0.05). CONCLUSION Flavonoids were associated with lower odds of incident DM while sorbic acid was associated with greater odds of incident DM.
Collapse
Affiliation(s)
- Elaine A. Yu
- Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - José O. Alemán
- Laboratory of Translational Obesity Research, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Donald R. Hoover
- Department of Statistics and Biostatistics, Institute for Health, Health Care Policy and Aging Research, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Qiuhu Shi
- New York Medical College, Valhalla, New York, United States of America
| | - Michael Verano
- Laboratory of Translational Obesity Research, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Kathryn Anastos
- Montefiore Medical Center, Bronx, New York, United States of America
| | - Phyllis C. Tien
- University of California, San Francisco, California, United States of America
- Department of Veterans Affairs Medical Center, San Francisco, California, United States of America
| | - Anjali Sharma
- Montefiore Medical Center, Bronx, New York, United States of America
| | - Ani Kardashian
- University of Southern California, Los Angeles, California, United States of America
| | - Mardge H. Cohen
- Cook County Health & Hospitals System and Rush University, Chicago, Illinois, United States of America
| | - Elizabeth T. Golub
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Katherine G. Michel
- Georgetown University School of Medicine, District of Columbia, United States of America
| | - Deborah R. Gustafson
- State University of New York Downstate Health Sciences University, New York, New York, United States of America
| | - Marshall J. Glesby
- Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
361
|
Rudolph M, Wang Y, Simolka T, Huc-Claustre E, Dai L, Grotenbreg G, Besra GS, Shevchenko A, Shevchenko A, Zeissig S. Sortase A-Cleavable CD1d Identifies Sphingomyelins as Major Class of CD1d-Associated Lipids. Front Immunol 2022; 13:897873. [PMID: 35874748 PMCID: PMC9301999 DOI: 10.3389/fimmu.2022.897873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022] Open
Abstract
CD1d is an atypical MHC class I molecule which binds endogenous and exogenous lipids and can activate natural killer T (NKT) cells through the presentation of lipid antigens. CD1d surveys different cellular compartments including the secretory and the endolysosomal pathway and broadly binds lipids through its two hydrophobic pockets. Purification of the transmembrane protein CD1d for the analysis of bound lipids is technically challenging as the use of detergents releases CD1d-bound lipids. To address these challenges, we have developed a novel approach based on Sortase A-dependent enzymatic release of CD1d at the cell surface of live mammalian cells, which allows for single step release and affinity tagging of CD1d for shotgun lipidomics. Using this system, we demonstrate that CD1d carrying the Sortase A recognition motif shows unimpaired subcellular trafficking through the secretory and endolysosomal pathway and is able to load lipids in these compartments and present them to NKT cells. Comprehensive shotgun lipidomics demonstrated that the spectrum and abundance of CD1d-associated lipids is not representative of the total cellular lipidome but rather characterized by preferential binding to long chain sphingolipids and glycerophospholipids. As such, sphingomyelin species recently identified as critical negative regulators of NKT cell activation, represented the vast majority of endogenous CD1d-associated lipids. Moreover, we observed that inhibition of endolysosomal trafficking of CD1d surprisingly did not affect the spectrum of CD1d-bound lipids, suggesting that the majority of endogenous CD1d-associated lipids load onto CD1d in the secretory rather than the endolysosomal pathway. In conclusion, we present a novel system for the analysis of CD1d-bound lipids in mammalian cells and provide new insight into the spectrum of CD1d-associated lipids, with important functional implications for NKT cell activation.
Collapse
Affiliation(s)
- Maren Rudolph
- Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Yuting Wang
- Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Theresa Simolka
- Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Emilie Huc-Claustre
- Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Lingyun Dai
- Department of Geriatrics, First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People’s Hospital), Shenzhen, China
| | | | | | - Anna Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sebastian Zeissig
- Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
- *Correspondence: Sebastian Zeissig,
| |
Collapse
|
362
|
Eichelmann F, Sellem L, Wittenbecher C, Jäger S, Kuxhaus O, Prada M, Cuadrat R, Jackson KG, Lovegrove JA, Schulze MB. Deep Lipidomics in Human Plasma: Cardiometabolic Disease Risk and Effect of Dietary Fat Modulation. Circulation 2022; 146:21-35. [PMID: 35422138 PMCID: PMC9241667 DOI: 10.1161/circulationaha.121.056805] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND In blood and tissues, dietary and endogenously generated fatty acids (FAs) occur in free form or as part of complex lipid molecules that collectively represent the lipidome of the respective tissue. We assessed associations of plasma lipids derived from high-resolution lipidomics with incident cardiometabolic diseases and subsequently tested if the identified risk-associated lipids were sensitive to dietary fat modification. METHODS The EPIC Potsdam cohort study (European Prospective Investigation into Cancer and Nutrition) comprises 27 548 participants recruited within an age range of 35 to 65 years from the general population around Potsdam, Germany. We generated 2 disease-specific case cohorts on the basis of a fixed random subsample (n=1262) and all respective cohort-wide identified incident primary cardiovascular disease (composite of fatal and nonfatal myocardial infarction and stroke; n=551) and type 2 diabetes (n=775) cases. We estimated the associations of baseline plasma concentrations of 282 class-specific FA abundances (calculated from 940 distinct molecular species across 15 lipid classes) with the outcomes in multivariable-adjusted Cox models. We tested the effect of an isoenergetic dietary fat modification on risk-associated lipids in the DIVAS randomized controlled trial (Dietary Intervention and Vascular Function; n=113). Participants consumed either a diet rich in saturated FAs (control), monounsaturated FAs, or a mixture of monounsaturated and n-6 polyunsaturated FAs for 16 weeks. RESULTS Sixty-nine lipids associated (false discovery rate<0.05) with at least 1 outcome (both, 8; only cardiovascular disease, 49; only type 2 diabetes, 12). In brief, several monoacylglycerols and FA16:0 and FA18:0 in diacylglycerols were associated with both outcomes; cholesteryl esters, free fatty acids, and sphingolipids were largely cardiovascular disease specific; and several (glycero)phospholipids were type 2 diabetes specific. In addition, 19 risk-associated lipids were affected (false discovery rate<0.05) by the diets rich in unsaturated dietary FAs compared with the saturated fat diet (17 in a direction consistent with a potential beneficial effect on long-term cardiometabolic risk). For example, the monounsaturated FA-rich diet decreased diacylglycerol(FA16:0) by 0.4 (95% CI, 0.5-0.3) SD units and increased triacylglycerol(FA22:1) by 0.5 (95% CI, 0.4-0.7) SD units. CONCLUSIONS We identified several lipids associated with cardiometabolic disease risk. A subset was beneficially altered by a dietary fat intervention that supports the substitution of dietary saturated FAs with unsaturated FAs as a potential tool for primary disease prevention.
Collapse
Affiliation(s)
- Fabian Eichelmann
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal (F.E., C.W., S.J., O.K., M.P., R.C., M.B.S.).,German Center for Diabetes Research (DZD), Neuherberg (F.E., S.J., O.K., M.P., R.C., M.B.S.)
| | - Laury Sellem
- Hugh Sinclair Unit of Human Nutrition, and Institute for Cardiovascular and Metabolic Research, Department of Food and Nutritional Science, University of Reading, United Kingdom (L.S., K.G.J., J.A.L.)
| | - Clemens Wittenbecher
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal (F.E., C.W., S.J., O.K., M.P., R.C., M.B.S.).,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA (C.W.)
| | - Susanne Jäger
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal (F.E., C.W., S.J., O.K., M.P., R.C., M.B.S.).,German Center for Diabetes Research (DZD), Neuherberg (F.E., S.J., O.K., M.P., R.C., M.B.S.)
| | - Olga Kuxhaus
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal (F.E., C.W., S.J., O.K., M.P., R.C., M.B.S.).,German Center for Diabetes Research (DZD), Neuherberg (F.E., S.J., O.K., M.P., R.C., M.B.S.)
| | - Marcela Prada
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal (F.E., C.W., S.J., O.K., M.P., R.C., M.B.S.).,German Center for Diabetes Research (DZD), Neuherberg (F.E., S.J., O.K., M.P., R.C., M.B.S.)
| | - Rafael Cuadrat
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal (F.E., C.W., S.J., O.K., M.P., R.C., M.B.S.).,German Center for Diabetes Research (DZD), Neuherberg (F.E., S.J., O.K., M.P., R.C., M.B.S.)
| | - Kim G. Jackson
- Hugh Sinclair Unit of Human Nutrition, and Institute for Cardiovascular and Metabolic Research, Department of Food and Nutritional Science, University of Reading, United Kingdom (L.S., K.G.J., J.A.L.)
| | - Julie A. Lovegrove
- Hugh Sinclair Unit of Human Nutrition, and Institute for Cardiovascular and Metabolic Research, Department of Food and Nutritional Science, University of Reading, United Kingdom (L.S., K.G.J., J.A.L.)
| | - Matthias B. Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal (F.E., C.W., S.J., O.K., M.P., R.C., M.B.S.).,German Center for Diabetes Research (DZD), Neuherberg (F.E., S.J., O.K., M.P., R.C., M.B.S.).,Institute of Nutritional Science, University of Potsdam, Germany (M.B.S.)
| |
Collapse
|
363
|
Moreira AS, Gonçalves J, Conde TA, Couto D, Melo T, Maia IB, Pereira H, Silva J, Domingues MR, Nunes C. Chrysotila pseudoroscoffensis as a source of high-value polar lipids with antioxidant activity: A lipidomic approach. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
364
|
Olshansky G, Giles C, Salim A, Meikle PJ. Challenges and opportunities for prevention and removal of unwanted variation in lipidomic studies. Prog Lipid Res 2022; 87:101177. [PMID: 35780914 DOI: 10.1016/j.plipres.2022.101177] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/19/2022] [Accepted: 06/26/2022] [Indexed: 10/17/2022]
Abstract
Large 'omics studies are of particular interest to population and clinical research as they allow elucidation of biological pathways that are often out of reach of other methodologies. Typically, these information rich datasets are produced from multiple coordinated profiling studies that may include lipidomics, metabolomics, proteomics or other strategies to generate high dimensional data. In lipidomics, the generation of such data presents a series of unique technological and logistical challenges; to maximize the power (number of samples) and coverage (number of analytes) of the dataset while minimizing the sources of unwanted variation. Technological advances in analytical platforms, as well as computational approaches, have led to improvement of data quality - especially with regard to instrumental variation. In the small scale, it is possible to control systematic bias from beginning to end. However, as the size and complexity of datasets grow, it is inevitable that unwanted variation arises from multiple sources, some potentially unknown and out of the investigators control. Increases in cohort sizes and complexity has led to new challenges in sample collection, handling, storage, and preparation stages. If not considered and dealt with appropriately, this unwanted variation may undermine the quality of the data and reliability of any subsequent analysis. Here we review the various experimental phases where unwanted variation may be introduced and review general strategies and approaches to handle this variation, specifically addressing issues relevant to lipidomics studies.
Collapse
Affiliation(s)
- Gavriel Olshansky
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia
| | - Corey Giles
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia
| | - Agus Salim
- Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC 3010, Australia; School of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Peter J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia; Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
365
|
Mixotrophy in a Local Strain of Nannochloropsis granulata for Renewable High-Value Biomass Production on the West Coast of Sweden. Mar Drugs 2022; 20:md20070424. [PMID: 35877717 PMCID: PMC9316773 DOI: 10.3390/md20070424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
A local strain of Nannochloropsis granulata (Ng) has been reported as the most productive microalgal strain in terms of both biomass yield and lipid content when cultivated in photobioreactors that simulate the light and temperature conditions during the summer on the west coast of Sweden. To further increase the biomass and the biotechnological potential of this strain in these conditions, mixotrophic growth (i.e., the simultaneous use of photosynthesis and respiration) with glycerol as an external carbon source was investigated in this study and compared with phototrophic growth that made use of air enriched with 1-2% CO2. The addition of either glycerol or CO2-enriched air stimulated the growth of Ng and theproduction of high-value long-chain polyunsaturated fatty acids (EPA) as well as the carotenoid canthaxanthin. Bioassays in human prostate cell lines indicated the highest antitumoral activity for Ng extracts and fractions from mixotrophic conditions. Metabolomics detected betaine lipids specifically in the bioactive fractions, suggesting their involvement in the observed antitumoral effect. Genes related to autophagy were found to be upregulated by the most bioactive fraction, suggesting a possible therapeutic target against prostate cancer progression. Taken together, our results suggest that the local Ng strain can be cultivated mixotrophically in summer conditions on the west coast of Sweden for the production of high-value biomass containing antiproliferative compounds, carotenoids, and EPA.
Collapse
|
366
|
Hoffmann N, Mayer G, Has C, Kopczynski D, Al Machot F, Schwudke D, Ahrends R, Marcus K, Eisenacher M, Turewicz M. A Current Encyclopedia of Bioinformatics Tools, Data Formats and Resources for Mass Spectrometry Lipidomics. Metabolites 2022; 12:584. [PMID: 35888710 PMCID: PMC9319858 DOI: 10.3390/metabo12070584] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 12/13/2022] Open
Abstract
Mass spectrometry is a widely used technology to identify and quantify biomolecules such as lipids, metabolites and proteins necessary for biomedical research. In this study, we catalogued freely available software tools, libraries, databases, repositories and resources that support lipidomics data analysis and determined the scope of currently used analytical technologies. Because of the tremendous importance of data interoperability, we assessed the support of standardized data formats in mass spectrometric (MS)-based lipidomics workflows. We included tools in our comparison that support targeted as well as untargeted analysis using direct infusion/shotgun (DI-MS), liquid chromatography-mass spectrometry, ion mobility or MS imaging approaches on MS1 and potentially higher MS levels. As a result, we determined that the Human Proteome Organization-Proteomics Standards Initiative standard data formats, mzML and mzTab-M, are already supported by a substantial number of recent software tools. We further discuss how mzTab-M can serve as a bridge between data acquisition and lipid bioinformatics tools for interpretation, capturing their output and transmitting rich annotated data for downstream processing. However, we identified several challenges of currently available tools and standards. Potential areas for improvement were: adaptation of common nomenclature and standardized reporting to enable high throughput lipidomics and improve its data handling. Finally, we suggest specific areas where tools and repositories need to improve to become FAIRer.
Collapse
Affiliation(s)
- Nils Hoffmann
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences (IBG-5), 52425 Jülich, Germany
| | - Gerhard Mayer
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany;
| | - Canan Has
- Biological Mass Spectrometry, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany;
- University Hospital Carl Gustav Carus, 01307 Dresden, Germany
- CENTOGENE GmbH, 18055 Rostock, Germany
| | - Dominik Kopczynski
- Department of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria; (D.K.); (R.A.)
| | - Fadi Al Machot
- Faculty of Science and Technology, Norwegian University for Life Science (NMBU), 1433 Ås, Norway;
| | - Dominik Schwudke
- Bioanalytical Chemistry, Forschungszentrum Borstel, Leibniz Lung Center, 23845 Borstel, Germany;
- Airway Research Center North, German Center for Lung Research (DZL), 23845 Borstel, Germany
- German Center for Infection Research (DZIF), TTU Tuberculosis, 23845 Borstel, Germany
| | - Robert Ahrends
- Department of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria; (D.K.); (R.A.)
| | - Katrin Marcus
- Center for Protein Diagnostics (ProDi), Medical Proteome Analysis, Ruhr University Bochum, 44801 Bochum, Germany; (K.M.); (M.E.)
| | - Martin Eisenacher
- Center for Protein Diagnostics (ProDi), Medical Proteome Analysis, Ruhr University Bochum, 44801 Bochum, Germany; (K.M.); (M.E.)
- Faculty of Medicine, Medizinisches Proteom-Center, Ruhr University Bochum, 44801 Bochum, Germany
| | - Michael Turewicz
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, 85764 Neuherberg, Germany
| |
Collapse
|
367
|
da Silva KM, Iturrospe E, van den Boom R, van de Lavoir M, Robeyns R, Vergauwen L, Knapen D, Cuykx M, Covaci A, van Nuijs ALN. Lipidomics profiling of zebrafish liver through untargeted liquid chromatography-high resolution mass spectrometry. J Sep Sci 2022; 45:2935-2945. [PMID: 35716100 DOI: 10.1002/jssc.202200214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022]
Abstract
Lipidomics analysis of zebrafish tissues has shown promising results to understand disease-related outcomes of exposure to toxic substances at molecular level. However, knowledge about their lipidome is limited, as most untargeted studies only identify the lipids that are statistically significant in their setup. In this work, liquid chromatography-high resolution mass spectrometry was used to study different aspects of the analytical workflow, i.e., extraction solvents (methanol/chloroform/water (3/2/2, v/v/v), methanol/dichloromethane/water (2/3/2, v/v/v) and methanol/methyl-tert-butyl ether/water (3/10/2.5, v/v/v), instrumental response, and strategies used for lipid annotation. The number of high-quality features (relative standard deviation of the intensity values ≤ 10% in the range 103 -107 counts) was affected by the dilution of lipid extracts, indicating that it is an important parameter for developing untargeted methods. The workflows used allowed the selection of a dilution factor to annotate 712 lipid species (507 bulk lipids) in zebrafish liver using four software (LipidMatch, LipidHunter, MS-DIAL and Lipostar). Retention time mapping was a valuable tool to filter lipid annotations obtained from automatic software annotations. The lipid profiling of zebrafish livers will help in a better understanding of the true constitution of their lipidome at the species level, as well as in the use of zebrafish in toxicological studies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Katyeny Manuela da Silva
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Elias Iturrospe
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium.,Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Campus Jette, Vrije Universiteit Brussels, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Rik van den Boom
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Maria van de Lavoir
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Rani Robeyns
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Matthias Cuykx
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium.,Department of Laboratory Medicine AZ Turnhout, Rubenslaan 166, Turnhout, 2300, Belgium
| | - Adrian Covaci
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Alexander L N van Nuijs
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| |
Collapse
|
368
|
Dennis EA. Outtakes from My Journey through the World of LIPID MAPS. Molecules 2022; 27:3885. [PMID: 35745008 PMCID: PMC9228998 DOI: 10.3390/molecules27123885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
My laboratory's research on lipids has focused on phospholipases and lipidomics and in many ways has evolved in parallel to the evolution of the lipid field over the past half century. I have reviewed our research elsewhere. Herein, I describe the "side stories" or "outtakes" that parallel the main story that focuses on our laboratory's research. I will emphasize the importance of community activities and describe how I came to initiate and lead the international effort on the Lipid Metabolites and Pathways Strategy (LIPID MAPS). Several of these side activities had a significant effect on discoveries in my laboratory research and its evolution as well as contributing significantly to the development of the LIPID MAPS initiative. These included experience and influences from serving as Editor-in-Chief of the Journal of Lipid Research and Chair and President of the Keystone Symposia on Cell and Molecular Biology as well as other experiences in organizing lipid conferences, teaching on lipid structure and mechanism, and earlier formative administrative and leadership experiences. The relevant influences are summarized herein.
Collapse
Affiliation(s)
- Edward A. Dennis
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093-0601, USA;
- Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla, CA 92093-0601, USA
| |
Collapse
|
369
|
Ahonen MA, Höring M, Nguyen VD, Qadri S, Taskinen JH, Nagaraj M, Wabitsch M, Fischer-Posovszky P, Zhou Y, Liebisch G, Haridas PAN, Yki-Järvinen H, Olkkonen VM. Insulin-inducible THRSP maintains mitochondrial function and regulates sphingolipid metabolism in human adipocytes. Mol Med 2022; 28:68. [PMID: 35715726 PMCID: PMC9204892 DOI: 10.1186/s10020-022-00496-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/08/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Thyroid hormone responsive protein (THRSP) is a lipogenic nuclear protein that is highly expressed in murine adipose tissue, but its role in humans remains unknown. METHODS We characterized the insulin regulation of THRSP in vivo in human adipose tissue biopsies and in vitro in Simpson-Golabi-Behmel syndrome (SGBS) adipocytes. To this end, we measured whole-body insulin sensitivity using the euglycemic insulin clamp technique in 36 subjects [age 40 ± 9 years, body mass index (BMI) 27.3 ± 5.0 kg/m2]. Adipose tissue biopsies were obtained at baseline and after 180 and 360 min of euglycemic hyperinsulinemia for measurement of THRSP mRNA concentrations. To identify functions affected by THRSP, we performed a transcriptomic analysis of THRSP-silenced SGBS adipocytes. Mitochondrial function was assessed by measuring mitochondrial respiration as well as oxidation and uptake of radiolabeled oleate and glucose. Lipid composition in THRSP silencing was studied by lipidomic analysis. RESULTS We found insulin to increase THRSP mRNA expression 5- and 8-fold after 180 and 360 min of in vivo euglycemic hyperinsulinemia. This induction was impaired in insulin-resistant subjects, and THRSP expression was closely correlated with whole-body insulin sensitivity. In vitro, insulin increased both THRSP mRNA and protein concentrations in SGBS adipocytes in a phosphoinositide 3-kinase (PI3K)-dependent manner. A transcriptomic analysis of THRSP-silenced adipocytes showed alterations in mitochondrial functions and pathways of lipid metabolism, which were corroborated by significantly impaired mitochondrial respiration and fatty acid oxidation. A lipidomic analysis revealed decreased hexosylceramide concentrations, supported by the transcript concentrations of enzymes regulating sphingolipid metabolism. CONCLUSIONS THRSP is regulated by insulin both in vivo in human adipose tissue and in vitro in adipocytes, and its expression is downregulated by insulin resistance. As THRSP silencing decreases mitochondrial respiration and fatty acid oxidation, its downregulation in human adipose tissue could contribute to mitochondrial dysfunction. Furthermore, disturbed sphingolipid metabolism could add to metabolic dysfunction in obese adipose tissue.
Collapse
Affiliation(s)
- Maria A Ahonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290, Helsinki, Finland.,Doctoral Programme in Clinical Research, University of Helsinki, Helsinki, Finland
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Van Dien Nguyen
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Sami Qadri
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290, Helsinki, Finland.,Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Juuso H Taskinen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Meghana Nagaraj
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Martin Wabitsch
- Systems Immunity University Research Institute, and Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Pamela Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - You Zhou
- Systems Immunity University Research Institute, and Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - P A Nidhina Haridas
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Hannele Yki-Järvinen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290, Helsinki, Finland.,Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290, Helsinki, Finland. .,Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
370
|
Quiñones J, Díaz R, Beltrán JF, Velazquez L, Cancino D, Muñoz E, Dantagnan P, Hernández A, Sepúlveda N, Farías JG. Analysis of Muscle Lipidome in Juvenile Rainbow Trout Fed Rapeseed Oil and Cochayuyo Meal. Biomolecules 2022; 12:biom12060805. [PMID: 35740930 PMCID: PMC9221170 DOI: 10.3390/biom12060805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
This study aimed to analyze the effects on the lipidome of juvenile Oncorhynchus mykiss muscle fed 90% Brassica napus “rapeseed” oil and different amounts of Durvillaea antarctica “Cochayuyo” meal (1.5, 3 and 6%) as a replacement for cellulose. The analysis allowed for the identification of 329 lipids, mainly represented by phospholipids and fatty esters. The inclusion of Brassica napus oil significantly increased the levels of C18:2 species and fatty esters of hydroxylated fatty acids, which could play a bioactive role in human health. One of the most abundant lipids in all fillets was Phosphatidylcholine 33:6, which, according to the literature, could be considered a biomarker for the identification of Oncorhynchus mykiss. In all experimental diets, the species Phosphatidylethanolamine 15:1-18:24 showed four-fold higher levels than the control; increments of n-3- and n-6-rich phospholipids were also observed. Diets containing Durvillaea antarctica meal did not generate more significant variation in fish muscle phospholipids relative to the muscle of the rapeseed-oil-only group. These lipid species consist of medium- and long-chain fatty acids with different degrees of unsaturation. Still, it appears that the rapeseed oil masks the lipid contribution of the meal, possibly due to the low levels of total lipids in the macroalgae.
Collapse
Affiliation(s)
- John Quiñones
- Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco 4780000, Chile
| | - Rommy Díaz
- Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco 4780000, Chile
| | - Jorge F Beltrán
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4780000, Chile
| | - Lidiana Velazquez
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Universidad de La Frontera, Temuco 4780000, Chile
| | - David Cancino
- Escuela de Medicina Veterinaria, Facultad de Ciencias, Universidad Mayor, Temuco 4780000, Chile
| | - Erwin Muñoz
- Programa de Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco 4780000, Chile
| | - Patricio Dantagnan
- Núcleo de Investigación de Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile
| | - Adrián Hernández
- Núcleo de Investigación de Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile
| | - Néstor Sepúlveda
- Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco 4780000, Chile
- Centro de Tecnología e Innovación de la Carne, Universidad de La Frontera, Temuco 4780000, Chile
| | - Jorge G Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
371
|
Abreu S, Héron S, Solgadi A, Prost B, Dalloux-Chioccioli J, Kermarrec A, Meynier A, Bertrand-Michel J, Tchapla A, Chaminade P. Rapid assessment of fatty acyls chains of phospholipids and plasmalogens by atmospheric pressure chemical ionization in positive mode and high-resolution mass spectrometry using in-source generated monoacylglycerol like fragments intensities. J Chromatogr A 2022; 1673:463093. [DOI: 10.1016/j.chroma.2022.463093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
|
372
|
Saud Z, Tyrrell VJ, Zaragkoulias A, Protty MB, Statkute E, Rubina A, Bentley K, White DA, Rodrigues PDS, Murphy RC, Köfeler H, Griffiths WJ, Alvarez-Jarreta J, Brown RW, Newcombe RG, Heyman J, Pritchard M, Mcleod RW, Arya A, Lynch CA, Owens D, Jenkins PV, Buurma NJ, O'Donnell VB, Thomas DW, Stanton RJ. The SARS-CoV2 envelope differs from host cells, exposes procoagulant lipids, and is disrupted in vivo by oral rinses. J Lipid Res 2022; 63:100208. [PMID: 35436499 PMCID: PMC9010312 DOI: 10.1016/j.jlr.2022.100208] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
The lipid envelope of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an essential component of the virus; however, its molecular composition is undetermined. Addressing this knowledge gap could support the design of antiviral agents as well as further our understanding of viral-host protein interactions, infectivity, pathogenicity, and innate immune system clearance. Lipidomics revealed that the virus envelope comprised mainly phospholipids (PLs), with some cholesterol and sphingolipids, and with cholesterol/phospholipid ratio similar to lysosomes. Unlike cellular membranes, procoagulant amino-PLs were present on the external side of the viral envelope at levels exceeding those on activated platelets. Accordingly, virions directly promoted blood coagulation. To investigate whether these differences could enable selective targeting of the viral envelope in vivo, we tested whether oral rinses containing lipid-disrupting chemicals could reduce infectivity. Products containing PL-disrupting surfactants (such as cetylpyridinium chloride) met European virucidal standards in vitro; however, components that altered the critical micelle concentration reduced efficacy, and products containing essential oils, povidone-iodine, or chlorhexidine were ineffective. This result was recapitulated in vivo, where a 30-s oral rinse with cetylpyridinium chloride mouthwash eliminated live virus in the oral cavity of patients with coronavirus disease 19 for at least 1 h, whereas povidone-iodine and saline mouthwashes were ineffective. We conclude that the SARS-CoV-2 lipid envelope i) is distinct from the host plasma membrane, which may enable design of selective antiviral approaches; ii) contains exposed phosphatidylethanolamine and phosphatidylserine, which may influence thrombosis, pathogenicity, and inflammation; and iii) can be selectively targeted in vivo by specific oral rinses.
Collapse
Affiliation(s)
- Zack Saud
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Victoria J Tyrrell
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Andreas Zaragkoulias
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Majd B Protty
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Evelina Statkute
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Anzelika Rubina
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kirsten Bentley
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Daniel A White
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, CO, USA
| | - Harald Köfeler
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria
| | | | - Jorge Alvarez-Jarreta
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Richard William Brown
- ENT Department, Betsi Cadwaladr University Health Board, Wrexham Maelor Hospital, Wrexham, United Kingdom
| | - Robert G Newcombe
- Division of Population Medicine, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - James Heyman
- Division of Surgery, Cardiff and Vale University Health Board, Cardiff, United Kingdom
| | - Manon Pritchard
- Advanced Therapies Group, School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Robert Wj Mcleod
- Division of Surgery, Cardiff and Vale University Health Board, Cardiff, United Kingdom
| | - Arvind Arya
- ENT Department, Betsi Cadwaladr University Health Board, Wrexham Maelor Hospital, Wrexham, United Kingdom
| | - Ceri-Ann Lynch
- Anaesthetics and Critical Care Directorate, Cwm Taf University Health Board, Royal Glamorgan Hospital, Llantrisant, United Kingdom
| | - David Owens
- Division of Surgery, Cardiff and Vale University Health Board, Cardiff, United Kingdom
| | - P Vince Jenkins
- Haemostasis Diagnosis and Research, University Hospital Wales, Cardiff, United Kingdom
| | - Niklaas J Buurma
- Physical Organic Chemistry Centre, School of Chemistry, Cardiff University, Cardiff, United Kingdom
| | - Valerie B O'Donnell
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| | - David W Thomas
- Advanced Therapies Group, School of Dentistry, Cardiff University, Cardiff, United Kingdom.
| | - Richard J Stanton
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
373
|
Maria Pellegrino R, Ianni F, Blasi F, Angelini P, Emiliani C, Venanzoni R, Cossignani L. Lipidomic profiling of Pleurotus ostreatus by LC/MS Q-TOF analysis. Food Res Int 2022; 156:111335. [DOI: 10.1016/j.foodres.2022.111335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/27/2022]
|
374
|
Anh NH, Yoon YC, Min YJ, Long NP, Jung CW, Kim SJ, Kim SW, Lee EG, Wang D, Wang X, Kwon SW. Caenorhabditis elegans deep lipidome profiling by using integrative mass spectrometry acquisitions reveals significantly altered lipid networks. J Pharm Anal 2022; 12:743-754. [PMID: 36320604 PMCID: PMC9615529 DOI: 10.1016/j.jpha.2022.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
Lipidomics coverage improvement is essential for functional lipid and pathway construction. A powerful approach to discovering organism lipidome is to combine various data acquisitions, such as full scan mass spectrometry (full MS), data-dependent acquisition (DDA), and data-independent acquisition (DIA). Caenorhabditis elegans (C. elegans) is a useful model for discovering toxic-induced metabolism, high-throughput drug screening, and a variety of human disease pathways. To determine the lipidome of C. elegans and investigate lipid disruption from the molecular level to the system biology level, we used integrative data acquisition. The methyl-tert-butyl ether method was used to extract L4 stage C. elegans after exposure to triclosan (TCS), perfluorooctanoic acid, and nanopolystyrene (nPS). Full MS, DDA, and DIA integrations were performed to comprehensively profile the C. elegans lipidome by Q-Exactive Plus MS. All annotated lipids were then analyzed using lipid ontology and pathway analysis. We annotated up to 940 lipids from 20 lipid classes involved in various functions and pathways. The biological investigations revealed that when C. elegans were exposed to nPS, lipid droplets were disrupted, whereas plasma membrane-functionalized lipids were likely to be changed in the TCS treatment group. The nPS treatment caused a significant disruption in lipid storage. Triacylglycerol, glycerophospholipid, and ether class lipids were those primarily hindered by toxicants. Finally, toxicant exposure frequently involved numerous lipid-related pathways, including the phosphoinositide 3-kinase/protein kinase B pathway. In conclusion, an integrative data acquisition strategy was used to characterize the C. elegans lipidome, providing valuable biological insights into hypothesis generation and validation. Multiple data acquisitions were used to profile the lipidome of C. elegans. 940 detected lipids of 20 main classes involved in various pathways. Relevant hypotheses were generated using high-coverable lipidomics and pathways analysis.
Collapse
|
375
|
Velenosi TJ, Ben-Yakov G, Podszun MC, Hercun J, Etzion O, Yang S, Nadal C, Haynes-Williams V, Huang WCA, Gonzalez-Hodar L, Brychta RJ, Takahashi S, Akkaraju V, Krausz KW, Walter M, Cai H, Walter PJ, Muniyappa R, Chen KY, Gonzalez FJ, Rotman Y. Postprandial Plasma Lipidomics Reveal Specific Alteration of Hepatic-derived Diacylglycerols in Nonalcoholic Fatty Liver Disease. Gastroenterology 2022; 162:1990-2003. [PMID: 35283114 PMCID: PMC9117487 DOI: 10.1053/j.gastro.2022.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS Hepatic energy metabolism is a dynamic process modulated by multiple stimuli. In nonalcoholic fatty liver disease (NAFLD), human studies typically focus on the static fasting state. We hypothesized that unique postprandial alterations in hepatic lipid metabolism are present in NAFLD. METHODS In a prospective clinical study, 37 patients with NAFLD and 10 healthy control subjects ingested a standardized liquid meal with pre- and postprandial blood sampling. Postprandial plasma lipid kinetics were characterized at the molecular lipid species level by untargeted lipidomics, cluster analysis, and lipid particle isolation, then confirmed in a mouse model. RESULTS There was a specific increase of multiple plasma diacylglycerol (DAG) species at 4 hours postprandially in patients with NAFLD but not in controls. This was replicated in a nonalcoholic steatohepatitis mouse model, where postprandial DAGs increased in plasma and concomitantly decreased in the liver. The increase in plasma DAGs appears early in the disease course, is dissociated from NAFLD severity and obesity, and correlates with postprandial insulin levels. Immunocapture isolation of very low density lipoprotein in human samples and stable isotope tracer studies in mice revealed that elevated postprandial plasma DAGs reflect hepatic secretion of endogenous, rather than meal-derived lipids. CONCLUSIONS We identified a selective insulin-related increase in hepatic secretion of endogenously derived DAGs after a mixed meal as a unique feature of NAFLD. DAGs are known to be lipotoxic and associated with atherosclerosis. Although it is still unknown whether the increased exposure to hepatic DAGs contributes to extrahepatic manifestations and cardiovascular risk in NAFLD, our study highlights the importance of extending NAFLD research beyond the fasting state.
Collapse
Affiliation(s)
- Thomas J. Velenosi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH)
| | - Gil Ben-Yakov
- Liver & Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH,Liver Diseases Branch, NIDDK, NIH
| | - Maren C. Podszun
- Liver & Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH,Liver Diseases Branch, NIDDK, NIH
| | | | | | | | | | | | | | - Lila Gonzalez-Hodar
- Liver & Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH,Liver Diseases Branch, NIDDK, NIH
| | | | - Shogo Takahashi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH)
| | - Vikas Akkaraju
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH)
| | - Kristopher W. Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH)
| | | | - Hongyi Cai
- Clinical Mass Spectrometry Core, NIDDK, NIH
| | | | | | - Kong Y. Chen
- Diabetes, Endocrinology and Obesity Branch, NIDDK, NIH
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH)
| | - Yaron Rotman
- Liver and Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland; Liver Diseases Branch, NIDDK, NIH, Bethesda, Maryland.
| |
Collapse
|
376
|
Insight into the Impact of Oxidative Stress on the Barrier Properties of Lipid Bilayer Models. Int J Mol Sci 2022; 23:ijms23115932. [PMID: 35682621 PMCID: PMC9180489 DOI: 10.3390/ijms23115932] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/10/2022] Open
Abstract
As a new field of oxidative stress-based therapy, cold physical plasma is a promising tool for several biomedical applications due to its potential to create a broad diversity of reactive oxygen and nitrogen species (RONS). Although proposed, the impact of plasma-derived RONS on the cell membrane lipids and properties is not fully understood. For this purpose, the changes in the lipid bilayer functionality under oxidative stress generated by an argon plasma jet (kINPen) were investigated by electrochemical techniques. In addition, liquid chromatography-tandem mass spectrometry was employed to analyze the plasma-induced modifications on the model lipids. Various asymmetric bilayers mimicking the structure and properties of the erythrocyte cell membrane were transferred onto a gold electrode surface by Langmuir-Blodgett/Langmuir-Schaefer deposition techniques. A strong impact of cholesterol on membrane permeabilization by plasma-derived species was revealed. Moreover, the maintenance of the barrier properties is influenced by the chemical composition of the head group. Mainly the head group size and its hydrogen bonding capacities are relevant, and phosphatidylcholines are significantly more susceptible than phosphatidylserines and other lipid classes, underlining the high relevance of this lipid class in membrane dynamics and cell physiology.
Collapse
|
377
|
Kuerschner L, Thiele C. Tracing Lipid Metabolism by Alkyne Lipids and Mass Spectrometry: The State of the Art. Front Mol Biosci 2022; 9:880559. [PMID: 35669564 PMCID: PMC9163959 DOI: 10.3389/fmolb.2022.880559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/19/2022] [Indexed: 01/22/2023] Open
Abstract
Lipid tracing studies are a key method to gain a better understanding of the complex metabolic network lipids are involved in. In recent years, alkyne lipid tracers and mass spectrometry have been developed as powerful tools for such studies. This study aims to review the present standing of the underlying technique, highlight major findings the strategy allowed for, summarize its advantages, and discuss some limitations. In addition, an outlook on future developments is given.
Collapse
|
378
|
Passarelli MN, McDonald JG, Thompson BM, Arega EA, Palys TJ, Rees JR, Barry EL, Baron JA. Association of demographic and health characteristics with circulating oxysterol concentrations. J Clin Lipidol 2022; 16:345-355. [PMID: 35461764 PMCID: PMC10882644 DOI: 10.1016/j.jacl.2022.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 11/22/2022]
Abstract
BACKGOUND Circulating oxysterols, cholesterol metabolites with important signaling functions, are increasingly being recognized as candidate biomarkers for several diseases, but associations with demographic and health characteristics remain poorly described. OBJECTIVE This study aims to characterize associations of major circulating oxysterols with sex, age, race/ethnicity, body mass index (BMI), lifestyle factors, and use of common medications. METHODS We measured plasma concentrations of 27-hydroxycholesterol (27-OHC), 25-hydroxycholesterol (25-OHC), 24(S)-hydroxycholesterol (24(S)-OHC), 7ɑ-hydroxycholesterol (7ɑ-OHC), and 4β-hydroxycholesterol (4β-OHC) from 1,440 participants of a completed clinical trial for the chemoprevention of colorectal adenomas. Adjusted percent difference in means were calculated using linear regression. RESULTS Women had 18% (95% CI, 14%, 22%) lower 27-OHC and 21% (15%, 27%) higher 4β-OHC than men. Blacks had 15% (7%, 23%) higher 4β-OHC than Non-Hispanic Whites, and Asian or Pacific Islanders had 19% (2%, 35%) higher 7ɑ-OHC than Non-Hispanic Whites. Individuals of BMI ≥35 kg/m2 had 33% (25%, 41%) lower 4β-OHC than those <25 kg/m2. Current smokers had 15% (5%, 24%) higher 7ɑ-OHC than never smokers, and daily alcohol drinkers had 17% (10%, 24%) higher 7ɑ-OHC than never drinkers. Statin use was associated with lower concentrations of all 5 oxysterols. Differences in mean <15% were found for characteristics such as age, total dietary energy intake, physical activity, diabetes, and anti-inflammatory drug use. CONCLUSION Circulating oxysterols are uniquely associated with multiple demographic and health characteristics.
Collapse
Affiliation(s)
- Michael N Passarelli
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| | - Jeffrey G McDonald
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bonne M Thompson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Enat A Arega
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Thomas J Palys
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Judy R Rees
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Elizabeth L Barry
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - John A Baron
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
379
|
Zhang W, Jian R, Zhao J, Liu Y, Xia Y. Deep-lipidotyping by mass spectrometry: recent technical advances and applications. J Lipid Res 2022; 63:100219. [PMID: 35489417 PMCID: PMC9213770 DOI: 10.1016/j.jlr.2022.100219] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/18/2022] Open
Abstract
In-depth structural characterization of lipids is an essential component of lipidomics. There has been a rapid expansion of mass spectrometry methods that are capable of resolving lipid isomers at various structural levels over the past decade. These developments finally make deep-lipidotyping possible, which provides new means to study lipid metabolism and discover new lipid biomarkers. In this review, we discuss recent advancements in tandem mass spectrometry (MS/MS) methods for identification of complex lipids beyond the species (known headgroup information) and molecular species (known chain composition) levels. These include identification at the levels of carbon-carbon double bond (C=C) location and sn-position as well as characterization of acyl chain modifications. We also discuss the integration of isomer-resolving MS/MS methods with different lipid analysis workflows and their applications in lipidomics. The results showcase the distinct capabilities of deep-lipidotyping in untangling the metabolism of individual isomers and sensitive phenotyping by using relative fractional quantitation of the isomers.
Collapse
Affiliation(s)
- Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, P. R. China
| | - Ruijun Jian
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Jing Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yikun Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, P. R. China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
380
|
Validation of a multiplexed and targeted lipidomics assay for accurate quantification of lipidomes. J Lipid Res 2022; 63:100218. [PMID: 35489416 PMCID: PMC9168725 DOI: 10.1016/j.jlr.2022.100218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022] Open
Abstract
A major challenge of lipidomics is to determine and quantify the precise content of complex lipidomes to the exact lipid molecular species. Often, multiple methods are needed to achieve sufficient lipidomic coverage to make these determinations. Multiplexed targeted assays offer a practical alternative to enable quantitative lipidomics amenable to quality control standards within a scalable platform. Herein, we developed a multiplexed normal phase liquid chromatography-hydrophilic interaction chromatography multiple reaction monitoring method that quantifies lipid molecular species across over 20 lipid classes spanning wide polarities in a single 20-min run. Analytical challenges such as in-source fragmentation, isomer separations, and concentration dynamics were addressed to ensure confidence in selectivity, quantification, and reproducibility. Utilizing multiple MS/MS product ions per lipid species not only improved the confidence of lipid identification but also enabled the determination of relative abundances of positional isomers in samples. Lipid class-based calibration curves were applied to interpolate lipid concentrations and guide sample dilution. Analytical validation was performed following FDA Bioanalytical Method Validation Guidance for Industry. We report repeatable and robust quantitation of 900 lipid species measured in NIST-SRM-1950 plasma, with over 700 lipids achieving inter-assay variability below 25%. To demonstrate proof of concept for biomarker discovery, we analyzed plasma from mice treated with a glucosylceramide synthase inhibitor, benzoxazole 1. We observed expected reductions in glucosylceramide levels in treated animals but, more notably, identified novel lipid biomarker candidates from the plasma lipidome. These data highlight the utility of this qualified lipidomic platform for enabling biological discovery.
Collapse
|
381
|
Koch J, Watschinger K, Werner ER, Keller MA. Tricky Isomers—The Evolution of Analytical Strategies to Characterize Plasmalogens and Plasmanyl Ether Lipids. Front Cell Dev Biol 2022; 10:864716. [PMID: 35573699 PMCID: PMC9092451 DOI: 10.3389/fcell.2022.864716] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
Typically, glycerophospholipids are represented with two esterified fatty acids. However, by up to 20%, a significant proportion of this lipid class carries an ether-linked fatty alcohol side chain at the sn-1 position, generally referred to as ether lipids, which shape their specific physicochemical properties. Among those, plasmalogens represent a distinct subgroup characterized by an sn-1 vinyl-ether double bond. The total loss of ether lipids in severe peroxisomal defects such as rhizomelic chondrodysplasia punctata indicates their crucial contribution to diverse cellular functions. An aberrant ether lipid metabolism has also been reported in multifactorial conditions including Alzheimer’s disease. Understanding the underlying pathological implications is hampered by the still unclear exact functional spectrum of ether lipids, especially in regard to the differentiation between the individual contributions of plasmalogens (plasmenyl lipids) and their non-vinyl-ether lipid (plasmanyl) counterparts. A primary reason for this is that exact identification and quantification of plasmalogens and other ether lipids poses a challenging and usually labor-intensive task. Diverse analytical methods for the detection of plasmalogens have been developed. Liquid chromatography–tandem mass spectrometry is increasingly used to resolve complex lipid mixtures, and with optimized parameters and specialized fragmentation strategies, discrimination between ethers and plasmalogens is feasible. In this review, we recapitulate historic and current methodologies for the recognition and quantification of these important lipids and will discuss developments in this field that can contribute to the characterization of plasmalogens in high structural detail.
Collapse
Affiliation(s)
- Jakob Koch
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Ernst R. Werner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus A. Keller
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
- *Correspondence: Markus A. Keller,
| |
Collapse
|
382
|
Kopczynski D, Hoffmann N, Peng B, Liebisch G, Spener F, Ahrends R. Goslin 2.0 Implements the Recent Lipid Shorthand Nomenclature for MS-Derived Lipid Structures. Anal Chem 2022; 94:6097-6101. [PMID: 35404045 PMCID: PMC9047418 DOI: 10.1021/acs.analchem.1c05430] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/21/2022] [Indexed: 01/10/2023]
Abstract
Goslin is the first grammar-based computational library for the recognition/parsing and normalization of lipid names following the hierarchical lipid shorthand nomenclature. The new version Goslin 2.0 implements the latest nomenclature and adds an additional grammar to recognize systematic IUPAC-IUB fatty acyl names as stored, e.g., in the LIPID MAPS database and is perfectly suited to update lipid names in LIPID MAPS or HMDB databases to the latest nomenclature. Goslin 2.0 is available as a standalone web application with a REST API as well as C++, C#, Java, Python 3, and R libraries. Importantly, it can be easily included in lipidomics tools and scripts providing direct access to translation functions. All implementations are open source.
Collapse
Affiliation(s)
- Dominik Kopczynski
- Institute
of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Nils Hoffmann
- Center
for Biotechnology (CeBiTec), Bielefeld University, 33594 Bielefeld, Germany
| | - Bing Peng
- Division
of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Gerhard Liebisch
- Institute
of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93053 Regensburg, Germany
| | - Friedrich Spener
- Department
of Molecular Biosciences, University of
Graz, 8010 Graz, Austria
- Division
of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8036 Graz, Austria
| | - Robert Ahrends
- Institute
of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
383
|
Dong H, Zhao X, Cai M, Gu H, E H, Li X, Zhang Y, Lu H, Zhou C. Metabolomics Analysis of Morchella sp. From Different Geographical Origins of China Using UPLC-Q-TOF-MS. Front Nutr 2022; 9:865531. [PMID: 35449541 PMCID: PMC9016275 DOI: 10.3389/fnut.2022.865531] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/14/2022] [Indexed: 01/08/2023] Open
Abstract
The morel mushroom (Morchella sp.) is reputed as one of the most highly-prized edible fungi with mounting cultivated area as well as commercial popularity in China. To date, optimized methods specific for quality evaluation and constituent analysis of Morchella sp. are still non-available, impeding the healthy and sustainable development of this industry. Herein, an untargeted UPLC-Q-TOF-MS-based metabolomics approach was performed to characterize the metabolite profiles of morel samples from four distinct geographical origins of China, viz. Gansu, Guizhou, Liaoning, and Henan province. A total of 32 significantly different metabolites assigned to lipids (19), organic acids (9), amino acids (3), and ketones (1) were identified to distinguish the geographic-segregation samples amenable to multivariate analysis. These metabolites may serve as molecular markers indicative of specific regions. More importantly, the lipid, protein and amino acid metabolism were responsible for geographic differences as revealed by KEGG pathway enrichment analysis. Collectively, this study not only pioneered high-throughput methodology to evaluate quality of Morchella sp. and distinguish geographical origins in a sensitive, rapid and efficient manner, but also shed light on the potential link between physiochemical variation and geological origins from a metabolic perspective, which may be conducive to the advancement of edible fungi industry and establishment of food traceability system.
Collapse
Affiliation(s)
- Hui Dong
- Laboratory of Agro-Food Quality and Safety Risk Assessment (Shanghai), Institute of Agro-Food Quality Standard and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiaoyan Zhao
- Laboratory of Agro-Food Quality and Safety Risk Assessment (Shanghai), Institute of Agro-Food Quality Standard and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Min Cai
- Shanghai Engineering Research Center of Low-Carbon Agriculture (SERCLA), Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Science, Shanghai, China
| | - Haotian Gu
- Shanghai Engineering Research Center of Low-Carbon Agriculture (SERCLA), Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Science, Shanghai, China
| | - Hengchao E
- Laboratory of Agro-Food Quality and Safety Risk Assessment (Shanghai), Institute of Agro-Food Quality Standard and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiaobei Li
- Laboratory of Agro-Food Quality and Safety Risk Assessment (Shanghai), Institute of Agro-Food Quality Standard and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yanmei Zhang
- Laboratory of Agro-Food Quality and Safety Risk Assessment (Shanghai), Institute of Agro-Food Quality Standard and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Huan Lu
- National Research Center of Edible Fungi Biotechnology and Engineering, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Changyan Zhou
- Laboratory of Agro-Food Quality and Safety Risk Assessment (Shanghai), Institute of Agro-Food Quality Standard and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
384
|
Specific Changes in Arabidopsis thaliana Rosette Lipids during Freezing Can Be Associated with Freezing Tolerance. Metabolites 2022; 12:metabo12050385. [PMID: 35629889 PMCID: PMC9145600 DOI: 10.3390/metabo12050385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 01/21/2023] Open
Abstract
While the roles of a few specific lipids in plant freezing tolerance are understood, the effect of many plant lipids remains to be determined. Acclimation of plants to non-freezing cold before exposure to freezing temperatures improves the outcome of plants, compared to plants exposed to freezing without acclimation. Arabidopsis thaliana plants were subjected to one of three treatments: (1) "control", i.e., growth at 21 °C, (2) "non-acclimated", i.e., 3 days at 21 °C, 2 h at -8 °C, and 24 h recovery at 21 °C, and (3) "acclimated", i.e., 3 days at 4 °C, 2 h at -8 °C, and 24 h recovery at 21 °C. Plants were harvested at seven time points during the treatments, and lipid levels were measured by direct-infusion electrospray ionization tandem mass spectrometry. Ion leakage was measured at the same time points. To examine the function of lipid species in relation to freezing tolerance, the lipid levels in plants immediately following the freezing treatment were correlated with the outcome, i.e., ion leakage 24-h post-freezing. Based on the correlations, hypotheses about the functions of specific lipids were generated. Additionally, analysis of the lipid levels in plants with mutations in genes encoding patatin-like phospholipases, lipoxygenases, and 12-oxophytodienoic acid reductase 3 (opr3), under the same treatments as the wild-type plants, identified only the opr3-2 mutant as having major lipid compositional differences compared to wild-type plants.
Collapse
|
385
|
Karnati S, Guntas G, Rajendran R, Shityakov S, Höring M, Liebisch G, Kosanovic D, Ergün S, Nagai M, Förster CY. Quantitative Lipidomic Analysis of Takotsubo Syndrome Patients' Serum. Front Cardiovasc Med 2022; 9:797154. [PMID: 35514439 PMCID: PMC9062978 DOI: 10.3389/fcvm.2022.797154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Takotsubo syndrome (TTS), also known as the transient left ventricular apical ballooning syndrome, is in contemporary times known as novel acute cardiac syndrome. It is characterized by transient left ventricular apical akinesis and hyperkinesis of the basal left ventricular portions. Although the precise etiology of TTS is unknown, events like the sudden release of stress hormones, such as the catecholamines and the increased inflammatory status might be plausible causes leading to the cardiovascular pathologies. Recent studies have highlighted that an imbalance in lipid accumulation might promote a deviant immune response as observed in TTS. However, there is no information on comprehensive profiling of serum lipids of TTS patients. Therefore, we investigated a detailed quantitative lipid analysis of TTS patients using ES-MSI. Our results showed significant differences in the majority of lipid species composition in the TTS patients compared to the control group. Furthermore, the computational analyses presented was able to link the altered lipids to the pro-inflammatory cytokines and disseminate possible mechanistic pathways involving TNFα and IL-6. Taken together, our study provides an extensive quantitative lipidome of TTS patients, which may provide a valuable Pre-diagnostic tool. This would facilitate the elucidation of the underlying mechanisms of the disease and to prevent the development of TTS in the future.
Collapse
Affiliation(s)
- Srikanth Karnati
- University of Würzburg, Institute of Anatomy and Cell Biology, Würzburg, Germany
- *Correspondence: Srikanth Karnati
| | - Gulcan Guntas
- Department of Biochemistry, Medical Faculty, Atilim University, Ankara, Turkey
| | - Ranjithkumar Rajendran
- Experimental Neurology, Department of Neurology, Justus Liebig University, Giessen, Germany
| | - Sergey Shityakov
- Infochemistry Scientific Center, Laboratory of Chemoinformatics, ITMO University, Saint-Petersburg, Russia
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Djuro Kosanovic
- Department of Pulmonology, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Süleyman Ergün
- University of Würzburg, Institute of Anatomy and Cell Biology, Würzburg, Germany
| | - Michiaki Nagai
- Hiroshima City Asa Hospital, Department of Cardiology, Hiroshima, Japan
| | - Carola Y. Förster
- University of Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Würzburg, Germany
- Carola Y. Förster
| |
Collapse
|
386
|
TRACES: A Lightweight Browser for Liquid Chromatography-Multiple Reaction Monitoring-Mass Spectrometry Chromatograms. Metabolites 2022; 12:metabo12040354. [PMID: 35448541 PMCID: PMC9027295 DOI: 10.3390/metabo12040354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/28/2022] Open
Abstract
In targeted metabolomic analysis using liquid chromatography–multiple reaction monitoring–mass spectrometry (LC-MRM-MS), hundreds of MRMs are performed in a single run, yielding a large dataset containing thousands of chromatographic peaks. Automation tools for processing large MRM datasets have been reported, but a visual review of chromatograms is still critical, as real samples with biological matrices often cause complex chromatographic patterns owing to non-specific, insufficiently separated, isomeric, and isotopic components. Herein, we report the development of new software, TRACES, a lightweight chromatogram browser for MRM-based targeted LC-MS analysis. TRACES provides rapid access to all MRM chromatograms in a dataset, allowing users to start ad hoc data browsing without preparations such as loading compound libraries. As a special function of the software, we implemented a chromatogram-level deisotoping function that facilitates the identification of regions potentially affected by isotopic signals. Using MRM libraries containing precursor and product formulae, the algorithm reveals all possible isotopic interferences in the dataset and generates deisotoped chromatograms. To validate the deisotoping function in real applications, we analyzed mouse tissue phospholipids in which isotopic interference by molecules with different fatty-acyl unsaturation levels is known. TRACES successfully removed isotopic signals within the MRM chromatograms, helping users avoid inappropriate regions for integration.
Collapse
|
387
|
Lin Q, Li P, Jian R, Xia Y. Localization of Intrachain Modifications in Bacterial Lipids Via Radical-Directed Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:714-721. [PMID: 35195000 DOI: 10.1021/jasms.2c00011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Intrachain modifications of membrane glycerophospholipids (GPLs) due to formation of the carbon-carbon double bond (C═C), cyclopropane ring, and methyl branching are crucial for bacterial membrane homeostasis. Conventional collision-induced dissociation (CID) of even-electron ions of GPL favors charge-directed fragmentation channels, and thus little structurally informative fragments can be detected for locating intrachain modifications. In this study, we report a radical-directed dissociation (RDD) approach for characterization of the intrachain modifications within phosphoethanolamines (PEs), a major lipid component in bacterial membrane. In this method, a radical precursor that can produce benzyl or pyridine methyl radical upon low-energy CID at high efficiency is conjugated onto the amine group of PEs. The carbon-centered radical ions subsequently initiate RDD along the fatty acyl chain, producing fragment patterns key to the assignment and localization of intrachain modifications including C═C, cyclopropane rings, and methyl branching. Besides intrachain fragmentation, RDD on the glycerol backbone produces fatty acyl loss as radicals, allowing one to identify the fatty acyl chain composition of PE. Moreover, RDD of lyso-PEs produces radical losses for distinguishing the sn-isomers. The above RDD approach has been incorporated onto a liquid chromatography-mass spectrometry workflow and applied for the analysis of lipid extracts from Escherichia coli and Bacillus subtilis.
Collapse
Affiliation(s)
- Qiaohong Lin
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 10084, China
| | - Pengyun Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Ruijun Jian
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 10084, China
| | - Yu Xia
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 10084, China
| |
Collapse
|
388
|
Enuh BM, Aytar Çelik P. Insight into the biotechnology potential of Alicyclobacillus tolerans from whole genome sequence analysis and genome-scale metabolic network modeling. J Microbiol Methods 2022; 197:106459. [PMID: 35395336 DOI: 10.1016/j.mimet.2022.106459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 12/27/2022]
Abstract
Extremophilic bacteria have numerous uncovered biotechnological potentials. Acidophilic bacteria are important iron oxidizers that are valuable in bioleaching and in studying extreme environments on earth and in space. Despite their obvious potential, little is known about the genetic traits that underpin their metabolic functions, which are equally poorly understood from a mechanistic perspective. Novel bioinformatics and computational biology pipelines can be used to analyze whole genomes to obtain insights into the phenotypic potential of organisms as well as develop a mathematical model representation of metabolism. Whole-genome sequence analysis and a genome-scale metabolic network model was curated for an iron-oxidizing bacterium initially isolated from an acid mine drainage in Turkey, previously identified as Alicyclobacillus tolerans. The genome contained a high proportion of genes for energy generation from carbohydrates, amino acids synthesis and conversion, nucleic acid metabolism and repair which contribute to robust adaption to their extreme environments. Several candidate genes for pyrite metabolism, iron uptake, regulation and storage, as well as genes for resistance to important heavy metals were annotated. A curated genome-scale metabolic network analysis accurately predicted facultative anaerobic growth, heterotrophic characteristics, and growth on a wide variety of carbon sources. This is the first in-depth in silico analysis of A. tolerans to the best of our knowledge which is expected to lay the groundwork for future research and drive innovations in environmental microbiology and biotechnological applications. The genomic data and mechanistic framework will have applications in biomining, synthetic geomicrobiology on earth, as well as for space exploration and settlement.
Collapse
Affiliation(s)
- Blaise Manga Enuh
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Pınar Aytar Çelik
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey; Environmental Protection and Control Program, Eskişehir Osmangazi University, Eskişehir 26110, Turkey.
| |
Collapse
|
389
|
Silva ACR, Garrett R, Rezende CM, Meckelmann SW. Lipid Characterization of Arabica and Robusta Coffee Beans by Liquid Chromatography-Ion Mobility-Mass Spectrometry. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
390
|
Bednařík A, Prysiazhnyi V, Bezdeková D, Soltwisch J, Dreisewerd K, Preisler J. Mass Spectrometry Imaging Techniques Enabling Visualization of Lipid Isomers in Biological Tissues. Anal Chem 2022; 94:4889-4900. [PMID: 35303408 DOI: 10.1021/acs.analchem.1c05108] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This Feature focuses on a review of recent developments in mass spectrometry imaging (MSI) of lipid isomers in biological tissues. The tandem MS techniques utilizing online and offline chemical derivatization procedures, ion activation techniques such as ozone-induced dissociation (OzID), ultraviolet photodissociation (UVPD), or electron-induced dissociation (EID), and other techniques such as coupling of ion mobility with MSI are discussed. The importance of resolving lipid isomers in diseases is highlighted.
Collapse
Affiliation(s)
- Antonín Bednařík
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Vadym Prysiazhnyi
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Dominika Bezdeková
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Jens Soltwisch
- Institute of Hygiene, University of Münster, 48149 Münster, Germany
| | - Klaus Dreisewerd
- Institute of Hygiene, University of Münster, 48149 Münster, Germany
| | - Jan Preisler
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
391
|
Abundant circulating lipids — a new opportunity for NSCLC detection? Nat Rev Clin Oncol 2022; 19:361-362. [DOI: 10.1038/s41571-022-00621-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2022] [Indexed: 11/09/2022]
|
392
|
Kontogianni VG, Gerothanassis IP. Analytical and Structural Tools of Lipid Hydroperoxides: Present State and Future Perspectives. Molecules 2022; 27:2139. [PMID: 35408537 PMCID: PMC9000705 DOI: 10.3390/molecules27072139] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022] Open
Abstract
Mono- and polyunsaturated lipids are particularly susceptible to peroxidation, which results in the formation of lipid hydroperoxides (LOOHs) as primary nonradical-reaction products. LOOHs may undergo degradation to various products that have been implicated in vital biological reactions, and thus in the pathogenesis of various diseases. The structure elucidation and qualitative and quantitative analysis of lipid hydroperoxides are therefore of great importance. The objectives of the present review are to provide a critical analysis of various methods that have been widely applied, and more specifically on volumetric methods, applications of UV-visible, infrared, Raman/surface-enhanced Raman, fluorescence and chemiluminescence spectroscopies, chromatographic methods, hyphenated MS techniques, NMR and chromatographic methods, NMR spectroscopy in mixture analysis, structural investigations based on quantum chemical calculations of NMR parameters, applications in living cells, and metabolomics. Emphasis will be given to analytical and structural methods that can contribute significantly to the molecular basis of the chemical process involved in the formation of lipid hydroperoxides without the need for the isolation of the individual components. Furthermore, future developments in the field will be discussed.
Collapse
Affiliation(s)
- Vassiliki G. Kontogianni
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece
| | - Ioannis P. Gerothanassis
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
393
|
Characterization of Constituents with Potential Anti-Inflammatory Activity in Chinese Lonicera Species by UHPLC-HRMS Based Metabolite Profiling. Metabolites 2022; 12:metabo12040288. [PMID: 35448474 PMCID: PMC9027581 DOI: 10.3390/metabo12040288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 01/02/2023] Open
Abstract
This study centered on detecting potentially anti-inflammatory active constituents in ethanolic extracts of Chinese Lonicera species by taking an UHPLC-HRMS-based metabolite profiling approach. Extracts from eight different Lonicera species were subjected to both UHPLC-HRMS analysis and to pharmacological testing in three different cellular inflammation-related assays. Compounds exhibiting high correlations in orthogonal projections to latent structures discriminant analysis (OPLS-DA) of pharmacological and MS data served as potentially activity-related candidates. Of these candidates, 65 were tentatively or unambiguously annotated. 7-Hydroxy-5,3′,4′,5′-tetramethoxyflavone and three bioflavonoids, as well as three C32- and one C34-acetylated polyhydroxy fatty acid, were isolated from Lonicera hypoglauca leaves for the first time, and their structures were fully or partially elucidated. Of the potentially active candidate compounds, 15 were subsequently subjected to pharmacological testing. Their activities could be experimentally verified in part, emphasizing the relevance of Lonicera species as a source of anti-inflammatory active constituents. However, some compounds also impaired the cell viability. Overall, the approach was found useful to narrow down the number of potentially bioactive constituents in the complex extracts investigated. In the future, the application of more refined concepts, such as extract prefractionation combined with bio-chemometrics, may help to further enhance the reliability of candidate selection.
Collapse
|
394
|
Alves E, Rey F, Melo T, Barros MP, Domingues P, Domingues R. Bioprospecting Bioactive Polar Lipids from Olive (Olea europaea cv. Galega vulgar) Fruit Seeds: LC-HR-MS/MS Fingerprinting and Sub-Geographic Comparison. Foods 2022; 11:foods11070951. [PMID: 35407039 PMCID: PMC8997722 DOI: 10.3390/foods11070951] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/03/2022] [Accepted: 03/21/2022] [Indexed: 11/19/2022] Open
Abstract
Olive seeds have been considered as a new nutritionally healthy food supplement. They are rich in monounsaturated n-9 and essential polyunsaturated n-6 lipids. However, little is known about their polar lipids, potentially bioactive and chemical identity markers for olive pulp and oil. This work aimed to identify the polar lipidome of olive seeds to find possible bioactive compounds and markers of geographic origin, by studying samples from six Portuguese sub-regions. Polar lipids were obtained by solid/liquid extraction, NH2-solid-phase extraction, and identified by hydrophilic interaction liquid chromatography (HILIC)-HR-ESI-MS and MS/MS. Ninety-four compounds were identified, including phospholipids, glycolipids, sphingolipids, and acyl sterol glycosides, several of which bear polyunsaturated fatty acids. Multivariate statistical analysis found unique profiles within each sub-region and markers of geographic identity, primarily phosphatidylcholines, phosphatidylethanolamines, and lysophosphatidylethanolamines. Therefore, polar lipid signatures should be further investigated, to assess their bioactivity, nutritional value, and chemical identity for valuing olive seeds and their oil.
Collapse
Affiliation(s)
- Eliana Alves
- Mass Spectrometry Centre, LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (F.R.); (T.M.); (P.D.); (R.D.)
- Correspondence:
| | - Felisa Rey
- Mass Spectrometry Centre, LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (F.R.); (T.M.); (P.D.); (R.D.)
- ECOMARE & CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (F.R.); (T.M.); (P.D.); (R.D.)
- ECOMARE & CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Madalena P. Barros
- Cooperativa de Olivicultores de Nelas, C.R.L., Zona Industrial de Nelas, 3520-095 Nelas, Portugal;
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (F.R.); (T.M.); (P.D.); (R.D.)
| | - Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (F.R.); (T.M.); (P.D.); (R.D.)
- ECOMARE & CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
395
|
Predictive Modeling of Alzheimer's and Parkinson's Disease Using Metabolomic and Lipidomic Profiles from Cerebrospinal Fluid. Metabolites 2022; 12:metabo12040277. [PMID: 35448464 PMCID: PMC9029812 DOI: 10.3390/metabo12040277] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, metabolomics has been used as a powerful tool to better understand the physiology of neurodegenerative diseases and identify potential biomarkers for progression. We used targeted and untargeted aqueous, and lipidomic profiles of the metabolome from human cerebrospinal fluid to build multivariate predictive models distinguishing patients with Alzheimer's disease (AD), Parkinson's disease (PD), and healthy age-matched controls. We emphasize several statistical challenges associated with metabolomic studies where the number of measured metabolites far exceeds sample size. We found strong separation in the metabolome between PD and controls, as well as between PD and AD, with weaker separation between AD and controls. Consistent with existing literature, we found alanine, kynurenine, tryptophan, and serine to be associated with PD classification against controls, while alanine, creatine, and long chain ceramides were associated with AD classification against controls. We conducted a univariate pathway analysis of untargeted and targeted metabolite profiles and find that vitamin E and urea cycle metabolism pathways are associated with PD, while the aspartate/asparagine and c21-steroid hormone biosynthesis pathways are associated with AD. We also found that the amount of metabolite missingness varied by phenotype, highlighting the importance of examining missing data in future metabolomic studies.
Collapse
|
396
|
Tsurumoto T, Fujikawa Y, Onoda Y, Ochi Y, Ohta D, Okazawa A. Transcriptome and metabolome analyses revealed that narrowband 280 and 310 nm UV-B induce distinctive responses in Arabidopsis. Sci Rep 2022; 12:4319. [PMID: 35279697 PMCID: PMC8918342 DOI: 10.1038/s41598-022-08331-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 02/28/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractIn plants, the UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8) perceives UV-B and induces UV-B responses. UVR8 absorbs a range of UV-B (260–335 nm). However, the responsiveness of plants to each UV-B wavelength has not been intensively studied so far. Here, we performed transcriptome and metabolome analyses of Arabidopsis using UV light emitting diodes (LEDs) with peak wavelengths of 280 and 310 nm to investigate the differences in the wavelength-specific UV-B responses. Irradiation with both UV-LEDs induced gene expression of the transcription factor ELONGATED HYPOCOTYL 5 (HY5), which has a central role in the UVR8 signaling pathway. However, the overall transcriptomic and metabolic responses to 280 and 310 nm UV-LED irradiation were different. Most of the known UV-B-responsive genes, such as defense-related genes, responded only to 280 nm UV-LED irradiation. Lipids, polyamines and organic acids were the metabolites most affected by 280 nm UV-LED irradiation, whereas the effect of 310 nm UV-LED irradiation on the metabolome was considerably less. Enzymatic genes involved in the phenylpropanoid pathway upstream in anthocyanin biosynthesis were up-regulated only by 280 nm UV-LED irradiation. These results revealed that the responsivenesses of Arabidopsis to 280 and 310 nm UV-B were significantly different, suggesting that UV-B signaling is mediated by more complex pathways than the current model.
Collapse
|
397
|
Edney MK, Kotowska AM, Spanu M, Trindade GF, Wilmot E, Reid J, Barker J, Aylott JW, Shard AG, Alexander MR, Snape CE, Scurr DJ. Molecular Formula Prediction for Chemical Filtering of 3D OrbiSIMS Datasets. Anal Chem 2022; 94:4703-4711. [PMID: 35276049 PMCID: PMC8943605 DOI: 10.1021/acs.analchem.1c04898] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Modern mass spectrometry
techniques produce a wealth of spectral
data, and although this is an advantage in terms of the richness of
the information available, the volume and complexity of data can prevent
a thorough interpretation to reach useful conclusions. Application
of molecular formula prediction (MFP) to produce annotated lists of
ions that have been filtered by their elemental composition and considering
structural double bond equivalence are widely used on high resolving
power mass spectrometry datasets. However, this has not been applied
to secondary ion mass spectrometry data. Here, we apply this data
interpretation approach to 3D OrbiSIMS datasets, testing it for a
series of increasingly complex samples. In an organic on inorganic
sample, we successfully annotated the organic contaminant overlayer
separately from the substrate. In a more challenging purely organic
human serum sample we filtered out both proteins and lipids based
on elemental compositions, 226 different lipids were identified and
validated using existing databases, and we assigned amino acid sequences
of abundant serum proteins including albumin, fibronectin, and transferrin.
Finally, we tested the approach on depth profile data from layered
carbonaceous engine deposits and annotated previously unidentified
lubricating oil species. Application of an unsupervised machine learning
method on filtered ions after performing MFP from this sample uniquely
separated depth profiles of species, which were not observed when
performing the method on the entire dataset. Overall, the chemical
filtering approach using MFP has great potential in enabling full
interpretation of complex 3D OrbiSIMS datasets from a plethora of
material types.
Collapse
Affiliation(s)
- Max K Edney
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Anna M Kotowska
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Matteo Spanu
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Gustavo F Trindade
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.,National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, U.K
| | - Edward Wilmot
- Innospec Ltd., Oil Sites Road, Ellesmere Port, Cheshire CH65 4EY, U.K
| | - Jacqueline Reid
- Innospec Ltd., Oil Sites Road, Ellesmere Port, Cheshire CH65 4EY, U.K
| | - Jim Barker
- Innospec Ltd., Oil Sites Road, Ellesmere Port, Cheshire CH65 4EY, U.K
| | - Jonathan W Aylott
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Alexander G Shard
- National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, U.K
| | | | - Colin E Snape
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, U.K
| | - David J Scurr
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|
398
|
Gao F, Tom E, Skowronska-Krawczyk D. Dynamic Progress in Technological Advances to Study Lipids in Aging: Challenges and Future Directions. FRONTIERS IN AGING 2022; 3:851073. [PMID: 35821837 PMCID: PMC9261449 DOI: 10.3389/fragi.2022.851073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/23/2022] [Indexed: 11/29/2022]
Abstract
Lipids participate in all cellular processes. Diverse methods have been developed to investigate lipid composition and distribution in biological samples to understand the effect of lipids across an organism’s lifespan. Here, we summarize the advanced techniques for studying lipids, including mass spectrometry-based lipidomics, lipid imaging, chemical-based lipid analysis and lipid engineering and their advantages. We further discuss the limitation of the current methods to gain an in-depth knowledge of the role of lipids in aging, and the possibility of lipid-based therapy in aging-related diseases.
Collapse
Affiliation(s)
- Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
| | - Emily Tom
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
- *Correspondence: Dorota Skowronska-Krawczyk,
| |
Collapse
|
399
|
Jakop U, Müller K, Müller P, Neuhauser S, Callealta Rodríguez I, Grunewald S, Schiller J, Engel KM. Seminal lipid profiling and antioxidant capacity: A species comparison. PLoS One 2022; 17:e0264675. [PMID: 35259184 PMCID: PMC8903242 DOI: 10.1371/journal.pone.0264675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/15/2022] [Indexed: 11/18/2022] Open
Abstract
On their way to the oocyte, sperm cells are subjected to oxidative stress, which may trigger the oxidation of phospholipids (PL). Applying MALDI-TOF MS, HPTLC and ESI-IT MS, we comparatively analyzed the PL compositions of semen and blood of species differing in their reproductive systems and types of nutrition (bull, boar, stallion, lion and man) with regard to the sensitivity to oxidation as well as the accumulation of harmful lyso-PL (LPL), transient products of lipid oxidation. In addition, the protective capacity of seminal fluid (SF) was also examined. The PL composition of erythrocytes and blood plasma is similar across the species, while pronounced differences exist for sperm and SF. Since the blood function is largely conserved across mammalian species, but the reproductive systems may vary in many aspects, the obtained results suggest that the PL composition is not determined by the type of nutrition, but by the relatedness of species and by functional requirements of cell membranes such as fluidity. Sperm motion and fertilization of oocytes require a rather flexible membrane, which is accomplished by significant moieties of unsaturated fatty acyl residues in sperm lipids of most species, but implies a higher risk of oxidation. Due to a high content of plasmalogens (alkenyl ether lipids), bull sperm are most susceptible to oxidation. Our data indicate that bull sperm possess the most effective protective power in SF. Obviously, a co-evolution of PL composition and protective mechanisms has occurred in semen and is related to the reproductive characteristics. Although the protective capacity in human SF seems well developed, we recorded the most pronounced individual contaminations with LPL in human semen. Probably, massive oxidative challenges related to lifestyle factors interfere with natural conditions.
Collapse
Affiliation(s)
- Ulrike Jakop
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Institute for Reproduction of Farm Animals Schönow e. V., Bernau, Germany
| | - Karin Müller
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Peter Müller
- Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | - Sonja Grunewald
- Department of Dermatology, Training Center of the European Academy of Andrology, University of Leipzig, Leipzig, Germany
| | - Jurgen Schiller
- Department of Dermatology, Training Center of the European Academy of Andrology, University of Leipzig, Leipzig, Germany
| | - Kathrin M. Engel
- Department of Dermatology, Training Center of the European Academy of Andrology, University of Leipzig, Leipzig, Germany
- Faculty of Medicine, Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
- * E-mail:
| |
Collapse
|
400
|
Pellegrino RM, Giulietti M, Alabed HBR, Buratta S, Urbanelli L, Piva F, Emiliani C. LipidOne: user-friendly lipidomic data analysis tool for a deeper interpretation in a systems biology scenario. Bioinformatics 2022; 38:1767-1769. [PMID: 34971364 DOI: 10.1093/bioinformatics/btab867] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/27/2021] [Accepted: 12/27/2021] [Indexed: 02/03/2023] Open
Abstract
SUMMARY LC/MS-based analysis techniques combined with specialized lipid tool allow for the qualitative and quantitative determination of thousands of lipid molecules. Some recent bioinformatics tools have been developed to study changes in the lipid profile in case-control experiments and correlate these changes to different enzyme activity or gene expression. However, the existing tools have the limitation to treat only the assembled lipid molecules. In reality, each individual molecule can be considered as an assembly of smaller parts, often called building blocks. These are the result of a myriad of biochemical synthesis and transformation processes that, from a systems biology perspective, should not be ignored. Here, we present LipidOne, a new lipidomic tool which highlights all qualitative and quantitative changes in lipid building blocks both among all detected lipid classes and among experimental groups. Thanks to LipidOne, even differences in lipid building blocks can now be linked to the activity of specific classes of enzymes, transcripts and genes. AVAILABILITY AND IMPLEMENTATION LipidOne software is freely available at www.dcbb.unipg.it/LipidOne and https://github.com/matteogiulietti/LipidOne. CONTACT roberto.pellegrino@unipg.it. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Matteo Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60020 Ancona, Italy
| | - Husam B R Alabed
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60020 Ancona, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy
| |
Collapse
|