351
|
Dike CS, Orish CN, Nwokocha CR, Sikoki FD, Babatunde BB, Frazzoli C, Orisakwe OE. Phytowaste as nutraceuticals in boosting public health. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00260-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractThe utilization of bioactive constituent of peels and seeds provide an effective, environment friendly and inexpensive therapy for different forms of human disease, and the production, improvement and documentation of novel nutraceuticals. This review systematically presents findings and further understanding of the reported benefits and therapeutic applications of peel and seed extracts on innovative cell culture and animal studies, as well as phased clinical human trial research. The extracts of seed and peels were reported to possess high quantities of bioactive substances with antioxidative, antidiabetic, hepatorenal protective, antithyroidal, anti-inflammatory, antibacterial, cardiovascular protective, neuro-protective effects, anticancer and wound healing activities. Therapeutic activities of the bioactive substances of peel and seed extracts include elevation of Superoxide dismutase (SOD), GSH-Px, t-GPx, Catalase and GST activities, with the suppression of MDA levels, hydroperoxide generation and lipid peroxidized products, the extracts also regulate inflammatory mediators and cytokines as they are reported to suppress the secretion of inflammatory cytokines, which include; IL-1β, PGE2, TGF-β and TNF-α and induces apoptosis and cell differentiation. This review revealed the therapeutic importance and best utilization of peels and seed extracts of fruits and vegetables.
Collapse
|
352
|
Antidiabetic and hypotensive effect of Cnidoscolus aconitifolius (Mill) I.M Johnst leaves extracts. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01093-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
353
|
Efficacy of Thai Plant Extracts for Antibacterial and Anti-Biofilm Activities against Pathogenic Bacteria. Antibiotics (Basel) 2021; 10:antibiotics10121470. [PMID: 34943682 PMCID: PMC8698553 DOI: 10.3390/antibiotics10121470] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 11/17/2022] Open
Abstract
The emergence of drug-resistant bacteria has impacted the outcome of current therapeutics as a threat to global healthcare; novel medicines are urgently needed. Thirteen medicinal plants were collected in Northeastern Thailand, and their crude ethanolic extracts were evaluated for antibacterial activities against Staphylococcus aureus ATCC25923 and Escherichia coli ATCC25922 using the broth micro-dilution method. Piper betle leaf ethanolic extract showed optimal activity against both representative bacterial strains. Activity was also observed against clinical isolates of methicillin-resistant S. aureus (MRSA) and E. coli, with minimal inhibitory concentration (MIC) ranging from 0.31 mg/mL to 2.5 mg/mL and minimal bactericidal concentration (MBC) ranging from 0.62 mg/mL to 2.5 mg/mL. A time-kill study revealed that the extract activity was time- and dose-dependent, and also bactericidal on the tested bacteria. P. betle extract inhibited biofilm formation and promoted biofilm eradication in both S. aureus and E. coli. 4-Allyl-1,2-diacetoxybenzene and eugenol were identified as the most abundant compounds in the extract and may play major roles in the anti-bacterial and anti-biofilm activity. Results suggest that ethanolic P. betle leaf extract shows promise as an alternative method for the prevention of bacterial diseases.
Collapse
|
354
|
Hemachandra GHTK, Thuvaragan S, Sanmugarajah V. Pharmacological screening of Eryngium foetidum Linn – A Review. BORNEO JOURNAL OF PHARMACY 2021. [DOI: 10.33084/bjop.v4i4.2377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Eryngium foetidum L. (Family Apiaceae) is a biennial herb, and it is used as a culinary herb and spice across the different countries of the world, including Sri Lanka, India, Bangladesh, Malaysia, Singapore, etc. due to its high aroma quality. Also, it is used to treat several ailments, such as respiratory diseases, gastrointestinal ailments, and skin diseases among different indigenous populations for its medicinal properties. Based on ethnomedical evidence, many studies have been conducted to identify the phytoconstituents, underlying mechanisms, and related pharmacological effects of different parts of this plant. This study reviewed the current state of findings related to the Pharmacological activities of E. foetidum. Based on this review, this plant is widely used for ethnomedical and culinary purposes. Pharmacological screening of the plant revealed that it had different activities such as anti-inflammatory, antioxidant, antimicrobial, anthelminthic, anticonvulsant, anticancer, antidiabetic, antimalarial, larvicidal, and hepatoprotective activities. This review further promised that potential new chemical entities could be elicited from the phytoconstituents of E. foetidum.
Collapse
|
355
|
A metabolomics approach to evaluate the effect of lyophilization versus oven drying on the chemical composition of plant extracts. Sci Rep 2021; 11:22679. [PMID: 34811431 PMCID: PMC8608909 DOI: 10.1038/s41598-021-02158-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/10/2021] [Indexed: 12/22/2022] Open
Abstract
Lyophilization is the “gold standard” for drying plant extracts, which is important in preserving their quality and extending their shelf-life. Compared to other methods of drying plant extracts, lyophilization is costlier due to equipment, material and operational expenses. An alternative method is post-extraction oven-drying, but the effects of this process on extract quality are unknown. In this study, crude extracts from Arthrocnemum macrostachyum shoots were compared using three post-extraction drying methods (lyophilization and oven drying at 40 and 60 °C) and two extraction solvents (water and aqueous 50% ethanol). Untargeted metabolomics coupled with chemometrics analysis revealed that post extraction oven-drying resulted in the loss of up to 27% of molecular features when compared to lyophilization in water extracts only. In contrast, only 3% of molecular features were lost in aqueous 50% ethanol extracts when subjected to oven drying. That is to say, ethanol used as a solvent has a stabilizing effect on metabolites and enhances their resistance to thermal transformation in the oven. Collectively, oven-drying of extracts was as effective as lyophilization in preserving metabolites in extracts only when 50% ethanol was used as a solvent. The results presented in this paper demonstrate the value of selecting solvent-appropriate post-extraction drying methods.
Collapse
|
356
|
Zhuo Y, Yang L, Li D, Zhang L, Zhang Q, Zhang S, Li C, Cui L, Hao J, Li J, Wang X. Syringaresinol Resisted Sepsis-Induced Acute Lung Injury by Suppressing Pyroptosis Via the Oestrogen Receptor-β Signalling Pathway. Inflammation 2021; 45:824-837. [PMID: 34807349 DOI: 10.1007/s10753-021-01587-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/08/2021] [Accepted: 10/23/2021] [Indexed: 11/28/2022]
Abstract
Acute lung injury (ALI) is a common lung disease characterized by severe acute inflammatory lung injury in patients with sepsis. Syringaresinol (SYR) has been reported to have anti-apoptotic and anti-inflammatory effects, but whether it could prevent pyroptosis to improve sepsis-induced ALI remains unclear. The purpose of this work was to examine the impact of SYR on sepsis-induced ALI and investigate the underlying mechanisms. The ALI model was induced by caecal ligation and puncture (CLP) in C57BL/6 mice, structural damage in the lung tissues was determined using haematoxylin and eosin (HE) staining, and the levels of related inflammatory cytokines and macrophage polarization were examined by enzyme-linked immunosorbent assays (ELISAs) and flow cytometry, respectively. The activation of the NLRP3 inflammasome and the protein levels of TLR4, NF-κB and MAPKs was measured by western blotting. The results demonstrated that SYR pretreatment significantly reduced lung tissue histological damage, inhibited the production of proinflammatory cytokines and albumin in bronchoalveolar lavage fluid (BALF), and decreased myeloperoxidase (MPO) levels, thereby alleviating lung tissue injury. Meanwhile, septic mice treated with SYR displayed a higher survival rate and lower percentage of M1 macrophages in the BALF and spleen than septic mice. In addition, lung tissues from the CLP + SYR group exhibited downregulated protein expression of NLRP3, ASC, GSDMD caspase-1 p20 and TLR4, along with decreased phosphorylated levels of NF-κB, ERK, JNK and P38, indicating that SYR administration effectively prevented CLP-induced pyroptosis in the lung. SYR also suppressed LPS-induced pyroptosis in RAW 264.7 cells by inhibiting the activation of the NLRP3 inflammasome, which was abolished by an oestrogen receptor-β (ERβ) antagonist (PHTPP). In conclusion, SYR exerted protective effects on CLP-induced ALI via the oestrogen receptor-β signalling pathway.
Collapse
Affiliation(s)
- Yuzhen Zhuo
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Lei Yang
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Dihua Li
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Lanqiu Zhang
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Qi Zhang
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Shukun Zhang
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Caixia Li
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Lihua Cui
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Jian Hao
- Department of Orthopaedics, Shenzhen Pingle Orthopaedics Hospital, Shenzhen, 518010, China
| | - Jiarui Li
- Department of Nephrology, Tianjin Nankai Hospital, Tianjin, 300100, China.
| | - Ximo Wang
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China. .,Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin, 300100, China.
| |
Collapse
|
357
|
Abstract
The excess level of reactive oxygen species (ROS) disturbs the oxidative balance leading to oxidative stress, which, in turn, causes diabetes mellites, cancer, and cardiovascular diseases. These effects of ROS and oxidative stress can be balanced by dietary antioxidants. In recent years, there has been an increasing trend in the use of herbal products for personal and beauty care. The Apiaceae (previously Umbelliferae) family is a good source of antioxidants, predominantly phenolic compounds, therefore, widely used in the pharmaceutical, cosmetic, cosmeceutical, flavor, and perfumery industries. These natural antioxidants include polyphenolic acids, flavonoids, carotenoids, tocopherols, and ascorbic acids, and exhibit a wide range of biological effects, including anti-inflammatory, anti-aging, anti-atherosclerosis, and anticancer. This review discusses the Apiaceae family plants as an important source of antioxidants their therapeutic value and the use in cosmetics.
Collapse
|
358
|
Jeevitha M, Ravi PV, Subramaniyam V, Pichumani M, Sripathi SK. Exploring the phyto- and physicochemical evaluation, fluorescence characteristics, and antioxidant activities of Acacia ferruginea Dc: an endangered medicinal plant. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00375-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Herbal plants are potent in curing various ailments of ancient times as they have comparatively lesser side effects. The demands for natural drugs, mostly from plant sources, are increasing over the past few decades. Because of their potent antioxidant activity, Acacia species are used to treat a variety of diseases. One of the species Acacia ferruginea, an endangered medicinal plant, is widely used in the traditional medicine system, and it is considered that standardization would be beneficial. The present study investigates the physicochemical parameters, preliminary phytochemical screening, trace metals by SEM–EDS, and fluorescence properties of various extracts (non-polar to polar) of leaf and bark parts. Standard spectrophotometric methods (UV–Vis, FT-IR, fluorescence spectroscopy) are employed to analyze the functional groups, and the DPPH and total antioxidant methods are used to assess antioxidant potential.
Results
The ethyl acetate extract of leaves and ethanol extract of the bark are found to be the highest in yield, 16.32% and 2.54%. Results reveal that the total ash percentage and moisture content are of bark and the water-soluble ash of leaves is higher (10.3 ± 0.85, 7.6 ± 0.34, 3.22 ± 0.24%). The bark polar extract contained more macro-elements such as Na, K, Mg, Ca, S, and Cl. Phytochemical analysis reveals the polar extracts of leaves and bark show saponins, flavonoids, steroids, phenolic compounds, and non-polar extracts show mild positive. The total alkaloids, phenolics, and terpenoids (1.58 ± 0.08%; 0.56 ± 0.11; 0.75 ± 0.15) are found to be higher in A. ferruginea leaves. The FT-IR result shows the presence of alkanes, alkenes, aromatic compounds, aldehydes, phenolics and does not contain any toxic substances since there is no peak observed in the region between 2220 and 2260 cm−1. The in vitro antioxidant activity of the species demonstrated that both the leaf and bark parts have prominent antioxidant properties.
Conclusions
The results obtained from the preliminary standardization of A. ferruginea are very helpful in the determination of the quality and purity of the crude drug. The refurbished findings of A. ferruginea are promising, and further research is important to identify the bioactive compounds, thereby developing nutritional supplements and medications through therapeutic compound isolation.
Graphical Abstract
Collapse
|
359
|
Nemo R, Bacha K. Natural preservative‐based shelf‐life enhancement of borde: A traditional Ethiopian low alcoholic beverage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Reda Nemo
- Department of Biology College of Natural Sciences Jimma University Jimma Ethiopia
- Biology Department Dambi Dollo College of Teachers Education Dambi Dollo Ethiopia
| | - Ketema Bacha
- Department of Biology College of Natural Sciences Jimma University Jimma Ethiopia
| |
Collapse
|
360
|
Comparative assessment of the foliar micromorphology, phytochemicals and elemental composition of two cultivars of Persea americana Mill leaves. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e01034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
361
|
Krstanoski L, Kosharkoska‐Spasovska F, Marikj‐Stoilkova I, Dimitrova‐Shumkovska J. Screening of total thiosulfinates and hydrogen sulfide levels in garlic specimens cultivated in different environmental conditions. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ljupcho Krstanoski
- Faculty of Natural Sciences and Mathematics Department of Biochemistry and Physiology Institute of Biology Ss. Cyril and Methodius University Skopje Republic of North Macedonia
| | - Frosina Kosharkoska‐Spasovska
- Faculty of Natural Sciences and Mathematics Department of Biochemistry and Physiology Institute of Biology Ss. Cyril and Methodius University Skopje Republic of North Macedonia
| | - Ivana Marikj‐Stoilkova
- Faculty of Natural Sciences and Mathematics Department of Biochemistry and Physiology Institute of Biology Ss. Cyril and Methodius University Skopje Republic of North Macedonia
| | - Jasmina Dimitrova‐Shumkovska
- Faculty of Natural Sciences and Mathematics Department of Biochemistry and Physiology Institute of Biology Ss. Cyril and Methodius University Skopje Republic of North Macedonia
| |
Collapse
|
362
|
Shaikh WA, Chakraborty S, Owens G, Islam RU. A review of the phytochemical mediated synthesis of AgNP (silver nanoparticle): the wonder particle of the past decade. APPLIED NANOSCIENCE 2021; 11:2625-2660. [PMID: 34745812 PMCID: PMC8556825 DOI: 10.1007/s13204-021-02135-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/25/2021] [Indexed: 11/21/2022]
Abstract
Silver nanoparticle (AgNP) has been one of the most commonly used nanoparticles since the past decade for a wide range of applications, including environmental, agricultural, and medical fields, due to their unique physicochemical properties and ease of synthesis. Though chemical and physical methods of fabricating AgNPs have been quite popular, they posed various environmental problems. As a result, the bioinspired route of AgNP synthesis emerged as the preferred pathway for synthesis. This review focuses extensively on the biosynthesis of AgNP-mediated through different plant species worldwide in the past 10 years. The most popularly utilized application areas have been highlighted with their in-depth mechanistic approach in this review, along with the discussion on the different phytochemicals playing an important role in the bio-reduction of silver ions. In addition to this, the environmental factors which govern their synthesis and stability have been reviewed. The paper systematically analyses the trend of research on AgNP biosynthesis throughout the world through bibliometric analysis. Apart from this, the feasibility analysis of the plant-mediated synthesis of nanoparticles and their applications have been intrigued considering the perspectives of engineering, economic, and environmental limitations. Thus, the review is not only a comprehensive summary of the achievements and current status of plant-mediated biosynthesis but also provides insight into emerging future research frontier. Supplementary Information The online version contains supplementary material available at 10.1007/s13204-021-02135-5.
Collapse
Affiliation(s)
- Wasim Akram Shaikh
- Environmental Engineering Laboratory, Department of Civil and Environmental Engineering, Birla Institute of Technology, Ranchi, Mesra, Jharkhand 835215 India
| | - Sukalyan Chakraborty
- Environmental Engineering Laboratory, Department of Civil and Environmental Engineering, Birla Institute of Technology, Ranchi, Mesra, Jharkhand 835215 India
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, 5095 Australia
| | - Rafique Ul Islam
- Department of Chemistry, School of Physical and Material Sciences, Mahatma Gandhi Central University, East Champaran, Motihari, Bihar 845401 India
| |
Collapse
|
363
|
Khan F, Kang MG, Jo DM, Chandika P, Jung WK, Kang HW, Kim YM. Phloroglucinol-Gold and -Zinc Oxide Nanoparticles: Antibiofilm and Antivirulence Activities towards Pseudomonasaeruginosa PAO1. Mar Drugs 2021; 19:601. [PMID: 34822472 PMCID: PMC8624799 DOI: 10.3390/md19110601] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022] Open
Abstract
With the advancement of nanotechnology, several nanoparticles have been synthesized as antimicrobial agents by utilizing biologically derived materials. In most cases, the materials used for the synthesis of nanoparticles from natural sources are extracts. Natural extracts contain a wide range of bioactive components, making it difficult to pinpoint the exact component responsible for nanoparticle synthesis. Furthermore, the bioactive component present in the extract changes according to numerous environmental factors. As a result, the current work intended to synthesize gold (AuNPs) and zinc oxide (ZnONPs) nanoparticles using pure phloroglucinol (PG). The synthesized PG-AuNPs and PG-ZnONPs were characterized using a UV-Vis absorption spectrophotometer, FTIR, DLS, FE-TEM, zeta potential, EDS, and energy-dispersive X-ray diffraction. The characterized PG-AuNPs and PG-ZnONPs have been employed to combat the pathogenesis of Pseudomonas aeruginosa. P. aeruginosa is recognized as one of the most prevalent pathogens responsible for the common cause of nosocomial infection in humans. Antimicrobial resistance in P. aeruginosa has been linked to the development of recalcitrant phenotypic characteristics, such as biofilm, which has been identified as one of the major obstacles to antimicrobial therapy. Furthermore, P. aeruginosa generates various virulence factors that are a major cause of chronic infection. These PG-AuNPs and PG-ZnONPs significantly inhibit early stage biofilm and eradicate mature biofilm. Furthermore, these NPs reduce P. aeruginosa virulence factors such as pyoverdine, pyocyanin, protease, rhamnolipid, and hemolytic capabilities. In addition, these NPs significantly reduce P. aeruginosa swarming, swimming, and twitching motility. PG-AuNPs and PG-ZnONPs can be used as control agents for infections caused by the biofilm-forming human pathogenic bacterium P. aeruginosa.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea; (F.K.); (W.-K.J.)
| | - Min-Gyun Kang
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea; (M.-G.K.); (D.-M.J.)
| | - Du-Min Jo
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea; (M.-G.K.); (D.-M.J.)
| | - Pathum Chandika
- Department of Biomedical Engineering and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea;
| | - Won-Kyo Jung
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea; (F.K.); (W.-K.J.)
- Department of Biomedical Engineering and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea;
| | - Hyun Wook Kang
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Korea;
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea; (F.K.); (W.-K.J.)
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea; (M.-G.K.); (D.-M.J.)
| |
Collapse
|
364
|
Ethnopharmacological survey and antibacterial activity of medicinal plant extracts used against bacterial enteritis in rabbits. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-021-00615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractBacterial enteritis is one of the diseases negatively affecting the rabbit farming industry. Communities across the globe are using medicinal plants as an alternative treatment against many diseases in rabbits. This study aimed at identifying medicinal plants used by local farmers in Cameroon and evaluate their antibacterial activity alone and in combination with oxytetracycline against some bacterial causative agents of diarrhoea in rabbits. The ethnopharmacological survey was performed in Cameroon’s Western and Central regions, where breeders were interviewed about their knowledge on the medicinal plants and plant parts often used to cure rabbit diseases, the methods of preparation and the route of administration. Plants were collected, and extracts were prepared by decoction, infusion and maceration using distilled water. The antibacterial activity of extracts and combinations was evaluated against enteropathogenic Escherichia coli, Salmonella enterica and Clostridium perfringens (WAL-14572 HM-310) using the microdilution and checkerboard methods. From the survey, fifteen medicinal plants belonging to nine families, with Asteraceae being the most represented, were identified as currently used to treat diarrhoea in rabbits. Bidens pilosa and Psidium guajava were the most mentioned medicinal plant species with 24 and 17 citations, respectively. Leaves were the most commonly used plant parts, and maceration in water was the primary preparation method of remedies administered orally. Out of the forty-five extracts prepared, only six from Tithonia diversifolia (TdlM, TdlI, TdlD) and Psidium guajava (PglM, PglI, PglD) exhibited potency with MIC values ranging from 1.25 to 5 mg/mL. The combination of infusion extract from leaves of Tithonia diversifolia (TdlI) and decoction extract from Psidium guajava (PglD) exhibited synergistic interaction (FICI = 0.312; 0.281; 0.265), while oxytetracycline in combination with decoction extract from leaves of Psidium guajava (PglD) exhibited a synergistic interaction (FICI = 0.5). The phytochemical screening of the six extracts revealed polyphenols, glycosides, saponins, terpenoids, anthraquinones, tannins and flavonoids. The antibacterial activity of extracts from medicinal plants P. guajava and T. diversifolia demonstrated in the present study supports the use of these plants by farmers of the targeted localities to treat diarrhoea in rabbits.
Collapse
|
365
|
Kopilakkal R, Chanda K, Balamurali MM. Hepatoprotective and Antioxidant Capacity of Clerodendrum paniculatum Flower Extracts against Carbon Tetrachloride-Induced Hepatotoxicity in Rats. ACS OMEGA 2021; 6:26489-26498. [PMID: 34661004 PMCID: PMC8515580 DOI: 10.1021/acsomega.1c03722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/16/2021] [Indexed: 05/11/2023]
Abstract
The aim of the presented work involves the isolation, characterization, and evaluation of hepatoprotective potential of Clerodendrum paniculatum flower extracts. For this purpose, petroleum ether, chloroform, ethyl acetate, alcohol, and water extracts of C. paniculatum flower were screened for the flavonoid and phenolic content and quantified. Various antioxidant activity assays including 2,2'-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO) radical scavenging, 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and reducing ability were carried out. Of the above methods, the alcoholic extract exhibited high antioxidant potential and was selected further for the hepatoprotective evaluations. Hepatoprotective evaluation of the alcoholic extract was carried out for carbon tetrachloride (CCl4)-intoxicated model systems. Enzymes associated with liver functions were estimated, and histopathological evaluations were carried out to monitor the liver architecture. Prominently, reduced levels of various associated enzymes along with increased protein content were observed when the liver specimen was pretreated with the extract. Moreover, the liver architecture was almost comparable to that of the normal control group. The column chromatographic analysis of the extract revealed 13 fractions to possess high phenolics and flavonoid contents. The best two fractions were identified for in vitro hepatoprotective evaluation in the goat liver model. Furthermore, the GC-MS analyses of the fractions were carried out followed by a library search, to identify the constituents responsible for the hepatoprotective activity which revealed the presence of four major constituents-pilocarpine, glyceric acid, pangamic acid, and gallic acid. An in vitro hepatoprotective study of the isolated fractions showed better activity compared to the whole alcoholic extract, and the results were comparable to the normal group taken as a control. The investigations with an in vitro model suggest that the isolated fraction with rich flavonoid content showed better hepatoprotective activity. GC-MS analysis of the fractions that displayed good hepatoprotective activity suggested the presence of pilocarpine, glyceric acid, pangamic acid, and gallic acid, while HPTLC analysis revealed the presence of quercetin.
Collapse
Affiliation(s)
- Remya Kopilakkal
- Department
of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014 Tamil Nadu, India
| | - Kaushik Chanda
- Department
of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014 Tamil Nadu, India
| | - Musuvathi Motilal Balamurali
- Division
of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Vandalur−Kelambakkam Road, Chennai, 600 127 Tamil Nadu, India
| |
Collapse
|
366
|
A Review of Ethnoveterinary Knowledge, Biological Activities and Secondary Metabolites of Medicinal Woody Plants Used for Managing Animal Health in South Africa. Vet Sci 2021; 8:vetsci8100228. [PMID: 34679058 PMCID: PMC8537377 DOI: 10.3390/vetsci8100228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
Globally, the use of ethnoveterinary medicine as remedies for animal health among different ethnic groups justify the need for a systematic exploration to enhance their potential. In addition, the increasing popularity and utilisation of woody plants remain common in traditional medicine, which may be attributed to their inherent benefits. The current review was aimed at analysing ethnoveterinary surveys, biological activities, and secondary metabolites/phytochemical profiles of the woody plants of South Africa. Eligible literature (period: 2000 to 2020) were retrieved from different databases such as Google Scholar, PubMed, Sabinet, and Science Direct. Based on the inclusion and exclusion criteria, 20 ethnoveterinary surveys were eligible and were subjected to further analysis. We identified 104 woody plant species from 44 plant families that are used in the treatment of different diseases in animals, particularly cattle (70%) and goats (20%). The most mentioned (with six citations) woody plants were Terminalia sericea Burch. ex DC and Ziziphus mucronata Willd., which were followed by plants with five (Cussonia spicata Thunb., Pterocarpus angolensis DC and Vachellia karroo (Hayne) Banfi & Galasso) or four (Acokanthera oppositifolia (Lam.) Codd, Cassia abbreviata Oliv., and Strychnos henningsii Gilg) individual mentions. The most dominant families were Fabaceae (19%), Apocynaceae (5.8%), Rubiaceae (5.8%), Anacardiaceae (4.8%), Combretaceae (4.8%), Euphorbiaceae (4.8%), Malvaceae (4.8%), Rhamnaceae (4.8%), and Celastraceae (3.8%). Bark (33%), leaves (29%), and roots (19%) were the plant parts dominantly used to prepare remedies for ethnoveterinary medicine. An estimated 20% of woody plants have been screened for antimicrobial, anthelmintic, antioxidant, and cytotoxicity effects. Phytochemical profiles established a rich pool of valuable secondary metabolites (phenolic, flavonoids and condensed tannins) that may be responsible for the exerted biological activities. Overall, the significant portion of woody plants lacking empirical evidence on their biological effects indicates a major knowledge gap that requires more research efforts.
Collapse
|
367
|
Yonbawi AR, Abdallah HM, Alkhilaiwi FA, Koshak AE, Heard CM. Anti-Proliferative, Cytotoxic and Antioxidant Properties of the Methanolic Extracts of Five Saudi Arabian Flora with Folkloric Medicinal Use: Aizoon canariense, Citrullus colocynthis, Maerua crassifolia, Rhazya stricta and Tribulus macropterus. PLANTS 2021; 10:plants10102073. [PMID: 34685882 PMCID: PMC8540380 DOI: 10.3390/plants10102073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022]
Abstract
Saudi Arabian flora have a history of use as folklore remedies, although such properties have yet to be explored rigorously, and the safety of such remedies should be assessed. This study determined the anti-proliferative, cytotoxic, and antioxidant properties of extracts of the following five plants indigenous to Saudi Arabia: Aizoon canariense, Citrullus colocynthis, Maerua crassifolia, Rhazya stricta, and Tribulus macropterus. The aerial parts of the five plants were collected from various locations of the western and northern regions of Saudi Arabia and used to prepare methanolic extracts. Three approaches were used to determine the proliferation and cytotoxicity effects using HaCaT cells: MTT, FACS, and confocal microscopy. Meanwhile, two approaches were used to study the antioxidant potential: DPPH (acellular) and RosGlo (cellular, using HaCaT cells). C. colocynthis possessed anti-proliferative activity against HaCaT cells, showing a significant decrease in cell proliferation from 24 h onwards, while R. stricta showed significant inhibition of cell growth at 120 and 168 h. The IC50 values were determined for both plant extracts for C. colocynthis, with 17.32 and 16.91 µg/mL after five and seven days of treatment, respectively, and for R. stricta, with 175 and 105.3 µg/mL after five and seven days of treatment. R. stricta and M. crassifolia exhibited the highest capacities for scavenging the DPPH radical with IC50 values of 335 and 448 µg/mL, respectively. The subsequent ROS-Glo H2O2 assay confirmed these findings. The R. stricta and M. crassifolia extracts showed potent antioxidant activity in both acellular and cellular models. The C. colocynthis extract also demonstrated significant anti-proliferation and cytotoxic activity, as did the R. stricta extract. These properties support their usage in folk medicine and also indicate a further potential for development for holistic medicinal use or as sources of new active compounds.
Collapse
Affiliation(s)
- Ahmed R. Yonbawi
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK;
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (F.A.A.); (A.E.K.)
| | - Hossam M. Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (F.A.A.); (A.E.K.)
| | - Faris A. Alkhilaiwi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (F.A.A.); (A.E.K.)
| | - Abdulrahman E. Koshak
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (F.A.A.); (A.E.K.)
| | - Charles M. Heard
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK;
- Correspondence:
| |
Collapse
|
368
|
Evaluation of Bioactive Metabolites and Antioxidant-Rich Extracts of Amaranths with Possible Role in Pancreatic Lipase Interaction: In Silico and In Vitro Studies. Metabolites 2021; 11:metabo11100676. [PMID: 34677391 PMCID: PMC8539516 DOI: 10.3390/metabo11100676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Fat/carbohydrate-rich diet consumption or elevated secretion of pancreatic lipase (PL) in pancreatic injury results in increased fat digestion and storage. Several metabolites in plant-based diets can help achieve the requirements of nutrition and fitness together. Presently, nutritional metabolites from Amaranthus tricolor, A. viridis, and Achyranthes aspera were assessed and predicted for daily intake. The volatile-metabolite profiling of their extracts using GC-MS revealed various antioxidant and bioactive components. The implication of these specialized components and antioxidant-rich extracts (EC50 free radical scavenging: 34.1 ± 1.5 to 166.3 ± 14.2 µg/mL; FRAP values: 12.1 ± 1.0 to 34.0 ± 2.0 µg Trolox Equivalent/mg) in lipolysis regulation by means of interaction with PL was checked by in silico docking (Betahistine and vitamins: ΔGbind -2.3 to -4.4 kcal/mol) and in vitro fluorescence quenching. Out of the various compounds and extracts tested, Betahistine, ATRA and AVLA showed better quenching the PL fluorescence. The identification of potential extracts as source of functional components contributing to nutrition and fat regulation can be improved through such study.
Collapse
|
369
|
Zareen S, Khan SN, Adnan M, Haleem S, Ali R, Alnomasy SF. Antiplasmodial potential of Eucalyptus obliqua leaf methanolic extract against Plasmodium vivax: An in vitro study. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Malaria is an intraerythrocytic parasitic disease caused by the genus Plasmodium of which Plasmodium vivax and Plasmodium falciparum are the major species. The high cost and associated side effects of antimalarial drugs triggered research about medicinal plants to develop alternative and low-cost drugs with lesser side effects. Therefore, this study was designed to investigate the antiplasmodial activity of the Eucalyptus obliqua L’Hér. leaf extract against P. vivax and its phytochemicals in in vitro. The methanolic extract of E. obliqua was prepared and different concentrations of the crude extract and phytochemicals were used against P. vivax. The methanolic extract of E. obliqua showed profound antiplasmodial activity (LD50 0.084 mg/mL; 80.04%) at 0.1 mg/mL concentration after 24 h. Alkaloids, flavonoids, saponins, and tannins were found in the E. obliqua methanolic extract. Only alkaloids at the concentration (0.1 mg/mL) exhibited 60.93% inhibition of P. vivax. The methanolic extract of E. obliqua exhibits antiplasmodial activity in vitro. However, in vivo efficacy is an important aspect in the testing of medicinal plants against parasitic infections and should be evaluated in future.
Collapse
Affiliation(s)
- Shehzad Zareen
- Department of Zoology, Faculty of Biological Sciences, Kohat University of Science and Technology , Kohat-26000 , Khyber Pakhtunkhwa , Pakistan
| | - Shahid Niaz Khan
- Department of Zoology, Faculty of Biological Sciences, Kohat University of Science and Technology , Kohat-26000 , Khyber Pakhtunkhwa , Pakistan
| | - Muhammad Adnan
- Department of Botanical and Environmental Sciences, Faculty of Biological Sciences, Kohat University of Science and Technology , Kohat-26000 , Khyber Pakhtunkhwa , Pakistan
| | - Sumbal Haleem
- Department of Zoology, Faculty of Biological Sciences, Kohat University of Science and Technology , Kohat-26000 , Khyber Pakhtunkhwa , Pakistan
| | - Rehman Ali
- Department of Zoology, Faculty of Biological Sciences, Kohat University of Science and Technology , Kohat-26000 , Khyber Pakhtunkhwa , Pakistan
| | - Sultan F. Alnomasy
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences in Al-Quwayiyah, Shaqra University , Riyadh , Saudi Arabia
| |
Collapse
|
370
|
Blahovec J, Kouřím P, Lebovka N. Volumetric Shrinkage and Poisson ‘s Ratio of Carrot Treated by Pulse Electric Fields. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02711-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
371
|
Haris NIN, Sobri S, Yusof YA, Kassim NK. Innovative Method for Longer Effective Corrosion Inhibition Time: Controlled Release Oil Palm Empty Fruit Bunch Hemicellulose Inhibitor Tablet. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5657. [PMID: 34640054 PMCID: PMC8510072 DOI: 10.3390/ma14195657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023]
Abstract
This study aims to develop a controlled release oil palm empty fruit bunch hemicellulose (EFB-H) inhibitor tablet for mild steel in 1 M HCl. As plant extracts tend to deteriorate at longer immersion time, limiting its industrial applicability, we attempted to lengthen the inhibition time by forming a controlled release inhibitor tablet. Electrochemical methods (potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS)) were employed to investigate the efficiency and mechanism of the inhibition. An optimum dosage and immersion time was determined via Response Surface Methodology (RSM). EFB-H tablet was formulated using D-optimal mixture design, and its anticorrosion action at extended immersion time was compared with EFB-H powder. PDP measurement revealed that EFB-H is a mixed type inhibitor. RSM optimization unveiled that the optimum point for a maximum inhibition efficiency (87.11%) was at 0.33 g of EFB-H and 120 h of immersion time. Tablet T3 with EFB-H to gum Arabic to hydroxypropyl methylcellulose ratio of 66:0:34 portrayed the best tensile strength (0.243 MPa), disintegration time (152 min) and dissolution behavior. EFB-H tablet exhibited a longer-lasting inhibition effect than powder, which was 360 h as compared to 120 h for powder. Overall, EFB-H tablet has been successfully developed, and its enhanced effective inhibition time has been experimentally proven.
Collapse
Affiliation(s)
| | - Shafreeza Sobri
- Institute of Advanced Technology, Universiti Putra Malaysia, Selangor 43400, Malaysia;
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Selangor 43400, Malaysia
| | - Yus Aniza Yusof
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Selangor 43400, Malaysia;
| | - Nur Kartinee Kassim
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Selangor 43400, Malaysia;
| |
Collapse
|
372
|
Vaou N, Stavropoulou E, Voidarou C, Tsigalou C, Bezirtzoglou E. Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms 2021; 9:microorganisms9102041. [PMID: 34683362 PMCID: PMC8541629 DOI: 10.3390/microorganisms9102041] [Citation(s) in RCA: 259] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/17/2022] Open
Abstract
The increasing incidence of drug- resistant pathogens raises an urgent need to identify and isolate new bioactive compounds from medicinal plants using standardized modern analytical procedures. Medicinal plant-derived compounds could provide novel straightforward approaches against pathogenic bacteria. This review explores the antimicrobial activity of plant-derived components, their possible mechanisms of action, as well as their chemical potential. The focus is put on the current challenges and future perspectives surrounding medicinal plants antimicrobial activity. There are some inherent challenges regarding medicinal plant extracts and their antimicrobial efficacy. Appropriate and optimized extraction methodology plant species dependent leads to upgraded and selective extracted compounds. Antimicrobial susceptibility tests for the determination of the antimicrobial activity of plant extracts may show variations in obtained results. Moreover, there are several difficulties and problems that need to be overcome for the development of new antimicrobials from plant extracts, while efforts have been made to enhance the antimicrobial activity of chemical compounds. Research on the mechanisms of action, interplay with other substances, and the pharmacokinetic and/or pharmacodynamic profile of the medicinal plant extracts should be given high priority to characterize them as potential antimicrobial agents.
Collapse
Affiliation(s)
- Natalia Vaou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
- Correspondence: (N.V.); (E.S.)
| | - Elisavet Stavropoulou
- Department of Infectious Diseases, Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon, 1011 Lausanne, Switzerland
- Correspondence: (N.V.); (E.S.)
| | - Chrysa Voidarou
- Department of Agriculture, University of Ioannina, 47132 Arta, Greece;
| | - Christina Tsigalou
- Laboratory of Microbiology, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
| |
Collapse
|
373
|
Wang X, Wang A, Li Y, Xu Y, Wei Q, Wang J, Lin F, Gong D, Liu F, Wang Y, Peng L, Li J. A Novel Banana Mutant " RF 1" ( Musa spp. ABB, Pisang Awak Subgroup) for Improved Agronomic Traits and Enhanced Cold Tolerance and Disease Resistance. FRONTIERS IN PLANT SCIENCE 2021; 12:730718. [PMID: 34630479 PMCID: PMC8496975 DOI: 10.3389/fpls.2021.730718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Banana is a major fruit crop grown in tropical and subtropical regions worldwide. Among cultivars, "FenJiao, FJ" (Musa spp. ABB, Pisang Awak subgroup) is a popular variety of bananas, due to its better sugar-acid blend and relatively small fruit shape. However, because the traditional FJ variety grows relatively high in height, it is vulnerable to lodging and unsuitable for harvesting. In this study, we sought desirable banana mutants by carrying out ethyl methanesulfonate (EMS) mutagenesis with the FJ cultivar. After the FJ shoot tips had been treated with 0.8% (v/v) EMS for 4 h, we obtained a stably inherited mutant, here called "ReFen 1" (RF1), and also observed a semi-dwarfing phenotype. Compared with the wild type (FJ), this RF1 mutant featured consistently improved agronomic traits during 5-year field experiments conducted in three distinct locations in China. Notably, the RF1 plants showed significantly enhanced cold tolerance and Sigatoka disease resistance, mainly due to a substantially increased soluble content of sugar and greater starch accumulation along with reduced cellulose deposition. Therefore, this study not only demonstrated how a powerful genetic strategy can be used in fruit crop breeding but also provided insight into the identification of novel genes for agronomic trait improvement in bananas and beyond.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Anbang Wang
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yujia Li
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yi Xu
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Qing Wei
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jiashui Wang
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Fei Lin
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Deyong Gong
- The Fruit Tree Research Center, Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Xinyi, China
| | - Fei Liu
- Biomass and Bioenergy Research Centre, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanting Wang
- Biomass and Bioenergy Research Centre, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liangcai Peng
- Biomass and Bioenergy Research Centre, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jingyang Li
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Biomass and Bioenergy Research Centre, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
374
|
Yellurkar ML, Singh V, Sai Prasanna V, Das P, Nanjappan S, Velayutham R, Arumugam S. Evaluation of a natural compound extracted from Dolichandrone atrovirens as a novel antioxidant agent using Caenorhabditis elegans. PLoS One 2021; 16:e0257702. [PMID: 34551009 PMCID: PMC8457486 DOI: 10.1371/journal.pone.0257702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022] Open
Abstract
The compound methyl cinnamoyl catalpol (DAM-1) was isolated from the methanol extract of Dolichandrone atrovirens. Studies have already reported the antioxidant activity of Dolichandrone atrovirens bark extract, but till date the antioxidant activity of the isolated compound DAM-1, remains unexplored. The endogenous process of reactive oxygen species generation which leads to various degenerative diseases, can be broken down using these exogenous moieties from plant origin, herein this study we sought to evaluate the antioxidant potential of the DAM-1 compound using Caenorhabditis elegans (C. elegans), which is the primary model to study the antioxidant activity of compounds. Cytotoxicity assay results showed that DAM-1 treatment in the concentration of 10, 25 and 50 μg/ml has shown 100%, 91%, and 50% survival respectively with overall p<0.0001 (treatment v/s control group). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide-Formazan (MTT) assay results showed that treatment had better survival rates than the control group at different time intervals i.e. 48 h, and 72 h with p<0.01. Mechanosensation (behavioral study) as well as in vivo study results showed that at 0 h, 10 μg/ml of DAM-1 treatment showed a better anti-oxidative activity than the control group, 25 and 50 μg/ml of DAM-1 treated groups with p<0.001 but at 2.5 h incubation with 10, 25, 50 μg/ml of DAM-1 showed an increased anti-oxidative activity than the control group with p<0.001. Thermoresistance assay confirmed that the treatment group had more survival than control group with p<0.001. Absorption study of DAM-1 in C. elegans has shown that the absorption of the drug increases up to 180 mins with a slight decrease after 360 mins and then constant absorption up to 1440 mins. This study paves the way towards the initiative to explore the pharmacological role of DAM-1 in various oxidative stress mediated diseases at molecular levels and the absorption study points out its potential role which could be utilized in the metabolomics and proteomics analysis of this compound in other studies.
Collapse
Affiliation(s)
- Manoj Limbraj Yellurkar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, (NIPER) Kolkata, Kolkata, West Bengal, India
| | - Vibhavana Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, (NIPER) Kolkata, Kolkata, West Bengal, India
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, (NIPER) Hajipur, Hajipur, Bihar, India
| | - Vani Sai Prasanna
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, (NIPER) Kolkata, Kolkata, West Bengal, India
| | - Pamelika Das
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, (NIPER) Kolkata, Kolkata, West Bengal, India
| | - Satheeshkumar Nanjappan
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, (NIPER) Kolkata, Kolkata, West Bengal, India
| | - Ravichandiran Velayutham
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, (NIPER) Kolkata, Kolkata, West Bengal, India
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, (NIPER) Hajipur, Hajipur, Bihar, India
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, (NIPER) Kolkata, Kolkata, West Bengal, India
| | - Somasundaram Arumugam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, (NIPER) Kolkata, Kolkata, West Bengal, India
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, (NIPER) Hajipur, Hajipur, Bihar, India
| |
Collapse
|
375
|
Emon NU, Rudra S, Alam S, Haidar IKA, Paul S, Richi FT, Shahriar S, Sayeed MA, Tumpa NI, Ganguly A. Chemical, biological and protein-receptor binding profiling of Bauhinia scandens L. stems provide new insights into the management of pain, inflammation, pyrexia and thrombosis. Biomed Pharmacother 2021; 143:112185. [PMID: 34543985 DOI: 10.1016/j.biopha.2021.112185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 01/06/2023] Open
Abstract
Bauhinia scandens L. (Family, Fabaceae) is a medicinal plant used for conventional and societal medication in Ayurveda. The present study has been conducted to screen the chemical, pharmacological and biochemical potentiality of the methanol extracts of B. scandens stems (MEBS) along with its related fractions including carbon tetrachloride (CTBS), di-chloromethane (DMBS) and n-butanol (BTBS). UPLC-QTOF-MS has been implemented to analyze the chemical compounds of the methanol extracts of Bauhinia scandens stems. Additionally, antinociceptive and anti-inflammatory effects were performed by following the acetic acid-induced writhing test and formalin-mediated paw licking test in the mice model. The antipyretic investigation was performed by Brewer Yeast induced pyrexia method. The clot lysis method was implemented to screen the thrombolytic activity in human serum. Besides, the in silico study was performed for the five selected chemical compounds of Bauhinia scandens, found by UPLC-QTOF-MS By using Discover Studio 2020, UCSF Chimera, PyRx autodock vina and online tools. The MEBS and its fractions exhibited remarkable inhibition in dose dependant manner in the antinociceptive and antiinflammatory investigations. The antipyretic results of MEBS and DMBS were close to the standard drug indomethacin. Investigation of the thrombolytic effect of MEBS, CTBS, DMBS, and BTBS revealed notable clot-lytic potentials. Besides, the phenolic compounds of the plant extracts revealed strong binding affinity to the COX-1, COX-2, mPGES-1 and plasminogen activator enzymes. To recapitulate, based on the research work, Bauhinia scandens L. stem and its phytochemicals can be considered as prospective wellsprings for novel drug development and discovery by future researchers.
Collapse
Affiliation(s)
- Nazim Uddin Emon
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chattogram 4318, Bangladesh
| | - Sajib Rudra
- Department of Botany, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Safaet Alam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh.
| | | | - Susmita Paul
- Department of Botany, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Fahmida Tasnim Richi
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Saimon Shahriar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohammed Aktar Sayeed
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chattogram 4318, Bangladesh.
| | - Nadia Islam Tumpa
- Department of Microbiology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Amlan Ganguly
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh.
| |
Collapse
|
376
|
Effect of particle size on phytochemical composition and antioxidant properties of Sargassum cristaefolium ethanol extract. Sci Rep 2021; 11:17876. [PMID: 34504117 PMCID: PMC8429668 DOI: 10.1038/s41598-021-95769-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
Sample particle size is an important parameter in the solid-liquid extraction system of natural products for obtaining their bioactive compounds. This study evaluates the effect of sample particle size on the phytochemical composition and antioxidant activity of brown macroalgae Sargassum cristaefolium. The crude ethanol extract was extracted from dried powders of S.cristeafolium with various particle sizes (> 4000 µm, > 250 µm, > 125 µm, > 45 µm, and < 45 µm). The ethanolic extracts of S.cristaefolium were analysed for Total Phenolic Content (TPC), Total Flavonoid Content (TFC), phenolic compound concentration and antioxidant activities. The extract yield and phytochemical composition were more abundant in smaller particle sizes. Furthermore, the TPC (14.19 ± 2.08 mg GAE/g extract to 43.27 ± 2.56 mg GAE/g extract) and TFC (9.6 ± 1.8 mg QE/g extract to 70.27 ± 3.59 mg QE/g extract) values also significantly increased as particle sizes decreased. In addition, phenolic compounds epicatechin (EC), epicatechin gallate (ECG), epigallocatechin (EGC), and Epigallocatechin gallate (EGCG) concentration were frequently increased in samples of smaller particle sizes based on two-way ANOVA and Tukey's multiple comparison analysis. These results correlate with the significantly stronger antioxidant activity in samples with smaller particle sizes. The smallest particle size (< 45 µm) demonstrated the strongest antioxidant activity based on DPPH, ABTS, hydroxyl assay and FRAP. In addition, ramp function graph evaluates the desired particle size for maximum phytochemical composition and antioxidant activity is 44 µm. In conclusion, current results show the importance of particle size reduction of macroalgae samples to increase the effectivity of its biological activity.
Collapse
|
377
|
Su C, Li H, Chen B, Li C, Zhang C, Xu L, Lan M, Shen Y. Pharmacological effects of Pugionium cornutum (L.) Gaertn. extracts on gastrointestinal motility are partially mediated by quercetin. BMC Complement Med Ther 2021; 21:223. [PMID: 34479558 PMCID: PMC8417984 DOI: 10.1186/s12906-021-03395-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The majority of global population suffer from various functional gastrointestinal disorders. Pugionium cornutum (L.) Gaertn. (PCG) is used to relieve indigestive symptoms in traditional Chinese medicine. However, little is known about the effects of bioactive components from PCG extracts on gastrointestinal motility. METHODS Crude ethanol extract of PCG (EEP) was prepared from Pugionium cornutum (L.) Gaertn. Different solvents were used to prepare fine extracts from EEP, including water extract of PCG (WEP), petroleum ether extract of PCG (PEEP), dichloromethane extract of PCG (DEP) and ethyl acetate extract of PCG (EAEP). Smooth muscle cell model and colonic smooth muscle stripe model were used to test the bioactive effects and mechanisms of different PCG extracts on contraction and relaxation. Diverse chromatographic methods were used to identify bioactive substances from PCG extracts. RESULTS EEP was found to promote the relaxation of gastric smooth muscle cell and inhibit the contraction of colonic smooth muscle strip. Among the fractions of EEP, EAEP mainly mediated the relaxation effect by stimulating intracellular calcium influx. Further evidences revealed that EAEP was antagonistic to acetylcholine. In addition, COX and NO-GC-PKC pathways may be also involved in EAEP-mediated relaxation effect. Quercetin was identified as a bioactive compound from PCG extract for the relaxation effect. CONCLUSION Our research supports the notion that PCG extracts promote relaxation and inhibits contraction of gastrointestinal smooth muscle at least partially through the effect from quercetin.
Collapse
Affiliation(s)
- Chencan Su
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, 229 North Taibai Avenue, Xi'an, 710127, Shaanxi, China
| | - Haoyu Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, 229 North Taibai Avenue, Xi'an, 710127, Shaanxi, China.,College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Bang Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, 229 North Taibai Avenue, Xi'an, 710127, Shaanxi, China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, 229 North Taibai Avenue, Xi'an, 710127, Shaanxi, China.
| | - Chunxiao Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, 229 North Taibai Avenue, Xi'an, 710127, Shaanxi, China
| | - Long Xu
- Shaanxi Provincial Academy of Environmental Science, Xi'an, 710061, Shaanxi, China
| | - Mei Lan
- Digestive Internal Medicine Department, Shaoxing Paojiang Hospital, Shaoxing, 312000, Zhejiang, China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, 229 North Taibai Avenue, Xi'an, 710127, Shaanxi, China.
| |
Collapse
|
378
|
Alnomasy S, Al-Awsi GRL, Raziani Y, Albalawi AE, Alanazi AD, Niazi M, Mahmoudvand H. Systematic review on medicinal plants used for the treatment of Giardia infection. Saudi J Biol Sci 2021; 28:5391-5402. [PMID: 34466120 PMCID: PMC8381067 DOI: 10.1016/j.sjbs.2021.05.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/30/2022] Open
Abstract
Background However, broad adoption of herbal remedies for giardiasis is at present hampered by uncertain findings of investigation not always sufficiently powered. This study was aimed at systematically reviewing the existing literature in herbal medicines to treat giardiasis. Methods This review was carried out 06- PRISMA guideline and registered in the CAMARADES-NC3Rs Preclinical Systematic Review and Meta-Analysis Facility (SyRF) database. The search was performed in five databases which are Scopus, PubMed, Web of Science, EMBASE, and Google Scholar without time limitation for all published articles (in vitro, in vivo, and clinical studies). The searched words and terms were: “Giardia”, “giardiasis”, “extract”, “essential oil”, “herbal medicines”, “anti-Giardia”, “In vitro”, “In vivo”, “clinical trial” etc. Results Out of 1585 papers, 40 papers including 28 in vitro (70.0%), 7 in vivo (17.5%), 2 in vitro/ in vivo (5.0%), and 3 clinical trials (7.5%) up to 2020, met the inclusion criteria for discussion in this systematic review. The most widely used medicinal plants against Giardia infection belong to the family Lamiaceae (30.0%) followed by Asteraceae (13.5%), Apiaceae (10.5%). The most common parts used in the studies were aerial parts (45.0%) followed by leaves (27.4%) and seeds (7.5%). The aqueous extract (30.0%), essential oil (25.4%) and hydroalcholic and methanolic (10.5%) were considered as the desired approaches of herbal extraction, respectively. Conclusion The current review showed that the plant-based anti-Giardia agents are very promising as an alternative and complementary resource for treating giardiasis since had low significant toxicity. However, more studies are required to elucidate this conclusion, especially in clinical systems.
Collapse
Affiliation(s)
- Sultan Alnomasy
- Medical Laboratories Department, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | | | - Yosra Raziani
- College of Medicine, Department of Nursing, Komar University of Science and Technology, Sulaymaniyah, Kurdistan Region, Iraq
| | | | - Abdullah D Alanazi
- Department of Biological Sciences, Faculty of Science and Humanities, Shaqra University, P.O. Box 1040, Ad-Dawadimi 11911, Saudi Arabia
| | - Massumeh Niazi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hossein Mahmoudvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
379
|
Vegetable phytochemicals: An update on extraction and analysis techniques. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
380
|
Jared Owiti Y. Efficacy of a simply resting box baited with crude fruit and leaf ethanol extracts of Phytolaccadodecandra (L' Herit) in capturing and killing of indoor mosquitoes (Diptera: Culicidae) at Korando, Western Kenya. Saudi J Biol Sci 2021; 28:5221-5228. [PMID: 34466100 PMCID: PMC8380997 DOI: 10.1016/j.sjbs.2021.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 11/23/2022] Open
Abstract
Effective capture and elimination of indoor resting mosquito population is important in the fight against mosquito borne diseases. This study aimed at evaluating the efficacy of a simply resting box baited with crude fruit and leaf ethanol extracts of Phytolacca dodecandra in attracting and killing indoor mosquitoes at Korando, Western Kenya. The study was conducted in three phases: pre-intervention, intervention and post intervention. Simple resting boxes made from galvanized wire frame measuring 30 cm × 30 cm × 30 cm, covered in blue and black tunic in and out and lined with carton boards were used. The boxes were baited with socks with strong human odour and 80 ml/100mls (e/w) solution of either crude ethanol fruit or leaf extracts of P. dodecandra, ethanol leaf extracts of Azadiracta indica or Deltamethrin. Deltamethrin and Azadiracta indica were used as positive and water as negative control. The treatments were applied at the intervention phase only. The boxes were left overnight in the houses and mosquitoes collected by 6.30 h. It was observed that more Culicines than Anopheline were captured irrespective of phase or treatment used. Mosquito densities reduced with phase of activity. P. dodecandra leaf extracts killed more mosquitoes than fruit or A. indica leaf extracts though the number were less than that of Deltamethrin or WHO threshold of >80% mortality. In conclusion, the simple resting boxes were effective in collecting and killing indoor mosquitoes though lethality did not matched the WHO threshold. With improved structural set up and use of pure extracts of P. dodecandra, the resting boxes can serve as effective tools for capture, elimination and management of mosquito borne diseases.
Collapse
Affiliation(s)
- Yugi Jared Owiti
- School of Science and Technology, University of Kabianga, P. O. Box 20230-20300, Kericho, Kenya
| |
Collapse
|
381
|
Irvani Z, Mehrbani M, Farzin H, Majidi B, Mohammadi A, Toroghi R, Motevasselian M. Cytotoxic Effect of Biebersteinia multifida Alcoholic Extracts on MCF-7, HeLa, and A2780 Cell Lines. ARCHIVES OF RAZI INSTITUTE 2021; 76:609-619. [PMID: 34824753 PMCID: PMC8605833 DOI: 10.22092/ari.2020.351952.1545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/14/2020] [Indexed: 01/24/2023]
Abstract
Conventional cancer treatments are costly and have different serious side effects for patients. Natural herbal treatments are widely accepted among people because of their minimal side effects, although there is little scientific knowledge about them. One of these remedies utilizes the root of Biebersteinia multifidi that has been used for years in Iran to treat different chronic genital diseases. The current study examined the effects of methanolic and ethanolic extracts of B. multifida (induction of necrosis and apoptosis) on breast cancer (MCF-7), ovarian cancer (A2780), and human cervix cancer (HeLa) cell lines in comparison with normal breast cells. These effects were determined to be morphological alterations in cell light microscopy, by flow cytometry (staining with annexin V and propidium iodide), and by measuring live cells and inhibition concentrations by MTT assay. IC50 of B. multifida on the MCF-7 cell line (methanolic extract) was 400 µg/ml and for A2780 was 250 µg/ml. The IC50 amount of B. multifida on the MCF-7 cell line (ethanolic extract) was 750 µg/ml and 1500 for A2780. Results demonstrated that apoptosis and necrosis occurred in MCF-7 and A2780 following the addition of ethanolic and methanolic extracts of B. multifida to the medium. These findings confirmed the anti-cancer effects of mehthanolic extracts of Biebersteinia multifida root and its safety for normal cells; thus, it can be applied in cancer therapy as a novel medication.
Collapse
Affiliation(s)
- Z Irvani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran,
Department of Traditional Medicine, Faculty of Traditional Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - M Mehrbani
- Department of Traditional Medicine, Faculty of Traditional Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - H Farzin
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - B Majidi
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - A Mohammadi
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - R Toroghi
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - M Motevasselian
- Herbal and Traditional Medicines Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
382
|
Effect of Yucca baccata butanolic extract on the shelf life of chicken and development of an antimicrobial packaging for beef. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
383
|
Khameneh B, Eskin NAM, Iranshahy M, Fazly Bazzaz BS. Phytochemicals: A Promising Weapon in the Arsenal against Antibiotic-Resistant Bacteria. Antibiotics (Basel) 2021; 10:1044. [PMID: 34572626 PMCID: PMC8472480 DOI: 10.3390/antibiotics10091044] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
The extensive usage of antibiotics and the rapid emergence of antimicrobial-resistant microbes (AMR) are becoming important global public health issues. Many solutions to these problems have been proposed, including developing alternative compounds with antimicrobial activities, managing existing antimicrobials, and rapidly detecting AMR pathogens. Among all of them, employing alternative compounds such as phytochemicals alone or in combination with other antibacterial agents appears to be both an effective and safe strategy for battling against these pathogens. The present review summarizes the scientific evidence on the biochemical, pharmacological, and clinical aspects of phytochemicals used to treat microbial pathogenesis. A wide range of commercial products are currently available on the market. Their well-documented clinical efficacy suggests that phytomedicines are valuable sources of new types of antimicrobial agents for future use. Innovative approaches and methodologies for identifying plant-derived products effective against AMR are also proposed in this review.
Collapse
Affiliation(s)
- Bahman Khameneh
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran;
| | - N. A. Michael Eskin
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran;
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| |
Collapse
|
384
|
Uberti F, Ruga S, Farghali M, Galla R, Molinari C. A Combination of α-Lipoic Acid (ALA) and Palmitoylethanolamide (PEA) Blocks Endotoxin-Induced Oxidative Stress and Cytokine Storm: A Possible Intervention for COVID-19. J Diet Suppl 2021; 20:133-155. [PMID: 34405764 DOI: 10.1080/19390211.2021.1966152] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The global scientific community is striving to understand the pathophysiological mechanisms and develop effective therapeutic strategies for COVID-19. Despite overwhelming data, there is limited knowledge about the molecular mechanisms involved in the prominent cytokine storm syndrome and multiple organ failure and fatality in COVID-19 cases. The aim of this work is to investigate the possible role of of α-lipoic acid (ALA) and palmitoylethanolamide (PEA), in countering the mechanisms in overproduction of reactive oxygen species (ROS), and inflammatory cytokines. An in vitro model of lipopolysaccharide (LPS)-stimulated human epithelial lung cells that mimics the pathogen-associated molecular pattern and reproduces the cell signaling pathways in cytokine storm syndrome has been used. In this model of acute lung injury, the combination effects of ALAPEA, administered before and after LPS injury, were investigated. Our data demonstrated that a combination of 50 µM ALA + 5 µM PEA can reduce ROS and nitric oxide (NO) levels modulating the major cytokines involved on COVID-19 infection when administered either before or after LPS-induced damage. The best outcome was observed when administered after LPS, thus reinforcing the hypothesis that ALA combined with PEA to modulate the key point of cytokine storm syndrome. This work supports for the first time that the combination of ALA with PEA may represent a novel intervention strategy to counteract inflammatory damage related to COVID-19 by restoring the cascade activation of the immune response and acting as a powerful antioxidant.
Collapse
Affiliation(s)
- Francesca Uberti
- Laboratory Physiology, Department of Translational Medicine, UPO, Novara, Italy
| | - Sara Ruga
- Laboratory Physiology, Department of Translational Medicine, UPO, Novara, Italy
| | - Mahitab Farghali
- Laboratory Physiology, Department of Translational Medicine, UPO, Novara, Italy
| | - Rebecca Galla
- Laboratory Physiology, Department of Translational Medicine, UPO, Novara, Italy
| | - Claudio Molinari
- Laboratory Physiology, Department of Translational Medicine, UPO, Novara, Italy
| |
Collapse
|
385
|
Vohra K, Mehta M, Garg V, Dua K, Dureja H. Formulation, Characterisation and In vitro Cytotoxic Effect of Lens culinaris Medikus Seeds Extract Loaded Chitosan Microspheres. Curr Mol Pharmacol 2021; 14:448-457. [PMID: 33568042 DOI: 10.2174/1874467214666210210124739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The aim of present study was to formulate chitosan microspheres loaded with ethanolic extract of Lens culinaris Medikus (L.culinaris) seeds (ME) and to explore its anticancer potential against lung cancer (A549) cell line. METHODS Central composite design was applied to prepare and optimise the chitosan microspheres. The prepared microspheres were evaluated for its physicochemical characterisation, in vitro drug release and anti-cancer potential in vitro. RESULTS L.culinaris loaded chitosan microspheres were prepared successfully with suitable particle size, entrapment efficiency and drug release. The developed ME were spherical shaped with the particle size of 2.08 μm. The drug entrapment efficiency and cumulative drug release was found 1.58±0.02% and 81.95±0.35%, respectively. Differential scanning calorimetry studies revealed no interaction between drugs and polymers used. The cytotoxic effect of the optimised formulation revealed a significant response as compared to the ethanolic extract of L.culinaris seeds (IC50: 22.56 μg/ml vs. 63.58 μg/ml), which was comparable to that of reference drug, doxorubicin (22 μg/ml). These observations demonstrate that the optimised microspheres are effective against lung cancer (A549) cells. CONCLUSION The significant cytotoxic response of the developed microspheres may be attributed due to its low particle size, high entrapment efficiency and prolonged drug release profile.
Collapse
Affiliation(s)
- Kripi Vohra
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Vandana Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
386
|
Lohtander T, Grande R, Österberg M, Laaksonen P, Arola S. Bioactive Films from Willow Bark Extract and Nanocellulose Double Network Hydrogels. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.708170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In nature, the protection of sensitive components from external threats relies on the combination of physical barriers and bioactive secondary metabolites. Polyphenols and phenols are active molecules that protect organisms from physical and chemical threats such as UV irradiation and oxidative stress. The utilization of biopolymers and natural bioactive phenolic components as protective coating layers in packaging solutions would enable easier recyclability of materials and greener production process compared with the current plastic-based products. Herein, we produce a fully wood-based double network material with tunable bioactive and optical properties consisting of nanocellulose and willow bark extract. Willow bark extract, embedded in nanocellulose, was cross-linked into a polymeric nanoparticle network using either UV irradiation or enzymatic means. Based on rheological analysis, atomic force microscopy, antioxidant activity, and transmittance measurements, the cross-linking resulted in a double network gel with enhanced rheological properties that could be casted into optically active films with good antioxidant properties and tunable oxygen barrier properties. The purely biobased, sustainably produced, bioactive material described here broadens the utilization perspectives for wood-based biomass, especially wood-bark extractives. This material has potential in applications where biodegradability, UV shielding, and antioxidant properties of hydrogels or thin films are needed, for example in medical, pharmaceutical, food, and feed applications, but also as a functional barrier coating in packaging materials as the hydrogel properties are transferred to the casted and dried films.
Collapse
|
387
|
A Critical Review on Pulsed Electric Field: A Novel Technology for the Extraction of Phytoconstituents. Molecules 2021; 26:molecules26164893. [PMID: 34443475 PMCID: PMC8400384 DOI: 10.3390/molecules26164893] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Different parts of a plant (seeds, fruits, flower, leaves, stem, and roots) contain numerous biologically active compounds called “phytoconstituents” that consist of phenolics, minerals, amino acids, and vitamins. The conventional techniques applied to extract these phytoconstituents have several drawbacks including poor performance, low yields, more solvent use, long processing time, and thermally degrading by-products. In contrast, modern and advanced extraction nonthermal technologies such as pulsed electric field (PEF) assist in easier and efficient identification, characterization, and analysis of bioactive ingredients. Other advantages of PEF include cost-efficacy, less time, and solvent consumption with improved yields. This review covers the applications of PEF to obtain bioactive components, essential oils, proteins, pectin, and other important materials from various parts of the plant. Numerous studies compiled in the current evaluation concluded PEF as the best solution to extract phytoconstituents used in the food and pharmaceutical industries. PEF-assisted extraction leads to a higher yield, utilizes less solvents and energy, and it saves a lot of time compared to traditional extraction methods. PEF extraction design should be safe and efficient enough to prevent the degradation of phytoconstituents and oils.
Collapse
|
388
|
Palmieri S, Maggio F, Pellegrini M, Ricci A, Serio A, Paparella A, Lo Sterzo C. Effect of the Distillation Time on the Chemical Composition, Antioxidant Potential and Antimicrobial Activity of Essential Oils from Different Cannabis sativa L. Cultivars. Molecules 2021; 26:4770. [PMID: 34443356 PMCID: PMC8399774 DOI: 10.3390/molecules26164770] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 12/22/2022] Open
Abstract
Within the unavoidable variability of various origins in the characteristics of essential oils, the aim of this study was to evaluate the effect of the distillation time on the chemical composition and biological activity of Cannabis sativa essential oils (EOs). The dry inflorescences came from Carmagnola, Kompolti, Futura 75, Gran Sasso Kush and Carmagnola Lemon varieties from Abruzzo region (Central Italy), the last two being new cultivar here described for the first time. EOs were collected at 2 h and 4 h of distillation; GC/MS technique was applied to characterize their volatile fraction. The EOs were evaluated for total polyphenol content (TPC), antioxidant capacity (AOC) and antimicrobial activity against food-borne pathogens and spoilage bacteria. The time of distillation particularly influenced EOs chemical composition, extracting more or less terpenic components, but generally enriching with minor sesquiterpenes and cannabidiol. A logical response in ratio of time was observed for antioxidant potential, being the essential oils at 4 h of distillation more active than those distilled for 2 h, and particularly Futura 75. Conversely, except for Futura 75, the effect of time on the antimicrobial activity was variable and requires further investigations; nevertheless, the inhibitory activity of all EOs against Pseudomonas fluorescens P34 was an interesting result.
Collapse
Affiliation(s)
| | | | | | - Antonella Ricci
- Faculty of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100 Teramo, Italy; (S.P.); (F.M.); (M.P.); (A.P.); (C.L.S.)
| | - Annalisa Serio
- Faculty of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100 Teramo, Italy; (S.P.); (F.M.); (M.P.); (A.P.); (C.L.S.)
| | | | | |
Collapse
|
389
|
ICP-MS based analysis of mineral elements composition during fruit development in Capsicum germplasm. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
390
|
Penha CB, Santos VDP, Speranza P, Kurozawa LE. Plant-based beverages: Ecofriendly technologies in the production process. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
391
|
R S, Krishna J, Sankaranarayanan M, Antony U. Enhancement of fructan extraction from garlic and fructooligosaccharide purification using an activated charcoal column. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
392
|
Castañeda‐Ruelas GM, Ibarra‐Medina RK, Niño‐Medina G, Mora‐Rochín S, Montes‐Ávila J, Cuevas‐Rodríguez EO, Jiménez‐Edeza M. Phenolic extract from nejayote flour: Bioactive properties and its potential use as an antimicrobial agent of alginate‐based edible coatings. Cereal Chem 2021. [DOI: 10.1002/cche.10467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gloria M. Castañeda‐Ruelas
- Programa de Posgrado Integral en Biotecnología Facultad de Ciencias Químico‐Biológicas Universidad Autónoma de Sinaloa Culiacán México
| | - R. Karely Ibarra‐Medina
- Programa de Posgrado Integral en Biotecnología Facultad de Ciencias Químico‐Biológicas Universidad Autónoma de Sinaloa Culiacán México
| | - Guillermo Niño‐Medina
- Facultad de Agronomía Universidad Autónoma de Nuevo Leon San Nicolas de los Garza Mexico
| | - Saraid Mora‐Rochín
- Programa de Posgrado Integral en Biotecnología Facultad de Ciencias Químico‐Biológicas Universidad Autónoma de Sinaloa Culiacán México
| | - Julio Montes‐Ávila
- Programa de Posgrado Integral en Biotecnología Facultad de Ciencias Químico‐Biológicas Universidad Autónoma de Sinaloa Culiacán México
| | - Edith O. Cuevas‐Rodríguez
- Programa de Posgrado Integral en Biotecnología Facultad de Ciencias Químico‐Biológicas Universidad Autónoma de Sinaloa Culiacán México
| | - Maribel Jiménez‐Edeza
- Programa de Posgrado Integral en Biotecnología Facultad de Ciencias Químico‐Biológicas Universidad Autónoma de Sinaloa Culiacán México
| |
Collapse
|
393
|
Bhattacharya T, Dey PS, Akter R, Kabir MT, Rahman MH, Rauf A. Effect of natural leaf extracts as phytomedicine in curing geriatrics. Exp Gerontol 2021; 150:111352. [PMID: 33894308 DOI: 10.1016/j.exger.2021.111352] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/22/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022]
Abstract
Old age is viewed as an unavoidable, undesirable, and problem-ridden phase of life. As people age, they become more susceptible to disease and disability due to various factors like low immunity, decreased functionality of cells, DNA damage, higher incidence of inflammation, etc. Healthy aging is very important. The nutrition and health of the elderly is often neglected. Nutritional interventions could play an important part in the prevention of degenerative conditions of the elderly and an improvement of their quality of life. The medicinal properties of plants are always believed for its therapeutic effect and its efficiency in treating many without adverse effects. The role of phytomedicine in aging is very crucial as it possesses important bioactive compounds and constituents (such as polyphenols, flavonoids, phenolic acids, and others) which are considered to provide anti-aging properties as well as helps in reducing age-associated problems. Some natural leaves such as Moringa oleifera, curry leaves, guava leaves, green tea, olive leaves, Ginkgo biloba, thankuni leaves, grape leaves, vasaka leaves, and kulekhara leaves are found to have therapeutic effects against diseases like cancer, diabetes, immunosuppression, hepatic damage, and neurodegenerative disorders. Hence, this review aims at understanding the effectiveness of these natural products in curing the geriatric population and the mechanism by which the therapeutic effects are exerted by them.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- School of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062, China; Department of Science & Engineering, Novel Global Community Educational Foundation, NSW, Australia
| | - Protity Shuvra Dey
- Department of Food Science & Nutrition Management, J.D.Birla Institute, Kolkata, West Bengal, India
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka-1100, Bangladesh
| | - Md Tanvir Kabir
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh.
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar 23430 KPK, Pakistan
| |
Collapse
|
394
|
Extraction of Phenolic Compounds from Fresh Apple Pomace by Different Non-Conventional Techniques. Molecules 2021; 26:molecules26144272. [PMID: 34299545 PMCID: PMC8307736 DOI: 10.3390/molecules26144272] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022] Open
Abstract
Red Delicious apple pomace was produced at laboratory scale with a domestic blender and different non-conventional extraction techniques were performed to isolate phenolic compounds, such as ultrasound-assisted extraction (UAE), ultraturrax extraction (UTE), accelerated solvent extraction (ASE) and pulsed electric field (PEF) extraction pre-treatment. Total phenolic content (TPC) was determined by Folin-Ciocalteu assay. Phloridzin, the main phenolic compound in apples, was determined by chromatographic analysis Q-TOF-LC/MS. The results obtained with these techniques were compared in order to identify the most efficient method to recover polyphenols. The highest value of TPC (1062.92 ± 59.80 µg GAE/g fresh apple pomace) was obtained when UAE was performed with EtOH:H2O (50:50, v/v), while ASE with EtOH:H2O (30:70, v/v) at 40 °C and 50% of flush was the most efficient technique in the recovery of phloridzin. The concentration of the main phenolic compounds ranged from 385.84 to 650.56 µg/g fresh apple pomace. The obtained results confirm that apple pomace represents an interesti-ng by-product, due to the presence of phenolic compounds. In particular, phloridzin could be considered a biomarker to determine the quality of numerous apple products. Therefore, this research could be a good starting point to develop a value-added product such as a functional food or nutraceutical.
Collapse
|
395
|
Muñiz-Ramirez A, Garcia-Campoy AH, Pérez Gutiérrez RM, Garcia Báez EV, Mota Flores JM. Evaluation of the Antidiabetic and Antihyperlipidemic Activity of Spondias purpurea Seeds in a Diabetic Zebrafish Model. PLANTS (BASEL, SWITZERLAND) 2021; 10:1417. [PMID: 34371620 PMCID: PMC8309283 DOI: 10.3390/plants10071417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 05/05/2023]
Abstract
Diabetes mellitus (DM) is a serious chronic degenerative disease characterized by high levels of glucose in the blood. It is associated with an absolute or relative deficiency in the production and/or action of insulin. Some of the complications associated with DM are heart disease, retinopathy, kidney disease, and neuropathy; therefore, new natural alternatives are being sought to control the disease. In this work, we evaluate the antidiabetic effect of Spondias purpurea seed methanol extract (CSM) in vitro and in a glucose-induced diabetic zebrafish model. CSM is capable of lowering blood glucose and cholesterol levels, as well as forming advanced glycation end-products, while not presenting toxic effects at the concentrations evaluated. These data show that CSM has a promising antidiabetic effect and may be useful in reducing some of the pathologies associated with diabetes mellitus.
Collapse
Affiliation(s)
- Alethia Muñiz-Ramirez
- CONACYT-IPICYT/CIIDZA, Camino a la Presa de San José 2055, Colonia, Lomas 4 Sección, San Luis Potosí CP 78216, Mexico
| | - Abraham Heriberto Garcia-Campoy
- Laboratorio de Investigación de Productos Naturales, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Ciudad de México CP 07708, Mexico; (R.M.P.G.); (J.M.M.F.)
| | - Rosa Martha Pérez Gutiérrez
- Laboratorio de Investigación de Productos Naturales, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Ciudad de México CP 07708, Mexico; (R.M.P.G.); (J.M.M.F.)
| | - Efrén Venancio Garcia Báez
- Laboratorio de Química Supramolecular y Nanociencias, Instituto Politécnico Nacional, Acueducto S/N, Barrio la laguna Ticomán, Ciudad de México CP 07340, Mexico;
| | - José María Mota Flores
- Laboratorio de Investigación de Productos Naturales, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Ciudad de México CP 07708, Mexico; (R.M.P.G.); (J.M.M.F.)
| |
Collapse
|
396
|
Intraspecific Variation of Phytochemicals, Antioxidant, and Antibacterial Activities of Different Solvent Extracts of Albizia coriaria Leaves from Some Agroecological Zones of Uganda. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2335454. [PMID: 34221068 PMCID: PMC8221850 DOI: 10.1155/2021/2335454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022]
Abstract
Albizia coriaria Welw ex. Oliver is a customary African medicinal plant, which has a long history of utilization in the management of oxidative stress-induced and bacterial diseases. However, there is no report on the phytochemicals, antioxidant, and antibacterial activities of its leaves. The aim of this study was therefore to compare the phytochemicals, antioxidant, and antibacterial potential of A. coriaria leaves from Jinja, Kole, and Mbarara districts of Uganda. Shade-dried leaf samples were ground into powder and successively extracted with ethyl acetate, ethanol, and distilled water. Phytochemical screening indicated the presence of alkaloids, phenols, saponins, flavonoids, cardiac glycosides, tannins, and terpenes as the major secondary metabolites in the extracts. Total phenolic and flavonoid contents and total in vitro antioxidant activity were found to be the highest for ethanolic extracts, with the highest contents (101.72 ± 0.22 mg GAE/g DW; 13.23 ± 0.03 mg QE/g DW) and antioxidant potential (IC50 = 18.65 ± 0.06 mg/mL) being for leaves from Mbarara district. Antibacterial activity of the extracts determined by agar disc diffusion method revealed that ethanolic extracts had higher antibacterial activities with mean zones of inhibition of 6.00 ± 1.73 to 10.00 ± 1.73 mm, 5.00 ± 1.00 to 12.30 ± 1.53 mm, 17.00 ± 0.00 to 25.00 ± 2.65 mm, and 9.00 ± 1.73 to 16.00 ± 1.73 mm for Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella typhi, respectively. Ethyl acetate extracts of A. coriaria leaves from Kole and Mbarara had lower antibacterial activities, while aqueous extracts and ethyl acetate extract of leaves from Jinja showed no antibacterial activity. The current study for the first time established that A. coriaria leaves possess therapeutic phytochemicals with significant in vitro antioxidant and antibacterial activities, which lend credence to their use in traditional management of oxidative stress-induced conditions and bacterial diseases in Uganda. Structural elucidation of the responsible pure compounds for the observed bioactivities as well as toxicity studies of the extracts is recommended.
Collapse
|
397
|
Comparative Analysis of Universal Protein Extraction Methodologies for Screening of Lipase Activity from Agricultural Products. Catalysts 2021. [DOI: 10.3390/catal11070816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Protein extraction techniques are absolutely required for the research of biological catalysts. The present study compared four universal protein extraction methodologies (ammonium sulfate precipitation, TCA/acetone precipitation, and two commercial kits) to provide practical information on protein extraction in order to discover a novel lipase in agricultural products. Yields of protein extraction from 24 domestic agricultural products and their specific activities were evaluated and compared with each other. TCA/acetone precipitation showed a relatively higher extraction yield (on average, 3.41 ± 1.08 mg protein/0.1 g sample) in crude protein extraction, whereas the Pierce™ Plant Total Protein Extraction Kit showed the highest specific lipase activity on average in both spectrophotometric (266.61 ± 235.78 μU/mg protein) and fluorometric (41.52 ± 32.63 μU/mg protein) assays. Our results suggest that commercial kits for the rapid extraction of soluble functional proteins would be a better choice than conventional precipitation techniques to perform the high-throughput screening of enzyme activity from plant sources. Finally, several agricultural products such as cordyceps, pepper, bracken, and hemp, all of which exhibited an excellent specific lipase activity, were proposed as promising candidates for a source of novel lipases.
Collapse
|
398
|
García-Martínez DJ, Arroyo-Hernández M, Posada-Ayala M, Santos C. The High Content of Quercetin and Catechin in Airen Grape Juice Supports Its Application in Functional Food Production. Foods 2021; 10:foods10071532. [PMID: 34359402 PMCID: PMC8306294 DOI: 10.3390/foods10071532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/15/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Ensuring healthy lives and well-being constitutes one of the Sustainable Development Goals of the UN 2030 agenda. Consequently, research into how natural products may promote health is essential for the new generation of nutraceuticals and functional foods that are in high demand today. Grape juice is a natural foodstuff composed of water, sugars, minerals, vitamins and a wide array of polyphenols. Polyphenols are bioactive compounds of great interest due to their antioxidant properties and benefits to health, supporting antimicrobial, anti-aging, and anticarcinogenic activity. The majority of grape juice produced in the world is used for the production of wine, although a small part is used in the food industry, mainly in baby food and sports drinks. The aim of this work is to determine the polyphenol content in the natural and concentrated juice of Airen grapes, the main white grape variety produced in Spain. For this, fresh juices from five grape varietals (Airen, Sauvignon Blanc, Gewürztraminer, Verdejo and Tempranillo) and concentrated Airen juice were analyzed and compared. Results showed similar contents of phenolic acids and stilbenes in all grape varietals studied, although the Airen variety demonstrated a higher concentration of two flavonoids: quercetin and catechin. It can be concluded that the grape juice concentration process negatively affects the stability of these compounds, causing a reduction in the polyphenol content that ranges between 54–71%, with the exception of quercetin and catechin.
Collapse
|
399
|
Arooj M, Imran S, Inam‐ur‐Raheem M, Rajoka MSR, Sameen A, Siddique R, Sahar A, Tariq S, Riaz A, Hussain A, Siddeeg A, Aadil RM. Lotus seeds ( Nelumbinis semen) as an emerging therapeutic seed: A comprehensive review. Food Sci Nutr 2021; 9:3971-3987. [PMID: 34262752 PMCID: PMC8269573 DOI: 10.1002/fsn3.2313] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/22/2022] Open
Abstract
Nelumbinis semen is commonly known as lotus seeds that have been used as a vegetable, functional food, and medicine for 7,000 years. These are low caloric, a rich source of multiple nutrients and bioactive constituents, which make it a unique therapeutic food. N. semen plays an important part in the physiological functions of the body. Nowadays, people are more conscious about their health and desire to treat disease naturally with minimal side effects. So, functional foods are getting popularity due to a wide range of essential constituents, which are associated to decrease the risk of chronic diseases. These bioactive compounds from seeds are involved in anti-adipogenic, antioxidant, antitumor, cardiovascular, hepato-protective, anti-inflammatory, anti-fertility, anti-microbial, anti-viral, hypoglycemic, etc. Moreover, the relationship between functional compounds along with their mechanism of action in the body, their extraction from the seeds for further research would be of great interest.
Collapse
Affiliation(s)
- Muzalfa Arooj
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Saira Imran
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Muhammad Inam‐ur‐Raheem
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | | | - Aysha Sameen
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Rabia Siddique
- Department of ChemistryGovernment College UniversityFaisalabadPakistan
| | - Amna Sahar
- Department of Food EngineeringUniversity of AgricultureFaisalabadPakistan
| | - Shiza Tariq
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Ayesha Riaz
- Institute of Home SciencesUniversity of AgricultureFaisalabadPakistan
| | - Abid Hussain
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina
| | - Azhari Siddeeg
- Department of Food Engineering and TechnologyFaculty of Engineering and TechnologyUniversity of GeziraWad MedaniSudan
| | - Rana Muhammad Aadil
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| |
Collapse
|
400
|
Manivannan V, Johnson MAA, Almeida RS, Coutinho HD. Chemical profiling of Tectaria paradoxa (Fee.) Sledge and Bolbitis appendiculata (Willd.) K. Iwats using UHPLC. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|