351
|
Zhao X, Min X, Wang Z, Chen X, Ge C, Zhao F, Tian H, Chen T, Li J. NR4A3 inhibits the tumor progression of hepatocellular carcinoma by inducing cell cycle G0/G1 phase arrest and upregulation of CDKN2AIP expression. Int J Biol Sci 2024; 20:5850-5867. [PMID: 39664575 PMCID: PMC11628324 DOI: 10.7150/ijbs.95174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 10/19/2024] [Indexed: 12/13/2024] Open
Abstract
Nuclear receptor subfamily 4 group A member 3 (NR4A3) is a member of the orphan nuclear receptor superfamily, and exhibits transcription factor activity by binding to sequence-specific DNA. Considering that the specific mechanism by which NR4A3 regulates gene transcription in HCC (hepatocellular carcinoma) has not yet been elucidated, our study aimed to explore the transcriptional role of NR4A3 in regulating the target gene CDKN2AIP (CDKN2A interacting protein), which will suppress the development of HCC. Our data show that NR4A3 is downregulated in human HCC tissues, and that low expression of NR4A3 is correlated with poor prognosis, indicating that NR4A3 could act as a tumor suppressor gene in HCC. NR4A3 overexpression suppresses cell proliferation, clone formation, cell cycle arrest at G0/G1 phase and tumor growth in vitro and in vivo and promote DNA damage. NR4A3 could directly regulate the expression of CDKN2AIP at the transcriptional level, suggesting that NR4A3 may play a role as a transcription factor in HCC and may serve as a potential biomarker for predicting prognosis for HCC patients.
Collapse
Affiliation(s)
- Xinge Zhao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Xuejie Min
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Zhenyu Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Xiaoxia Chen
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Chao Ge
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Fangyu Zhao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Hua Tian
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Taoyang Chen
- Department of Pathology, Qi Dong Liver Cancer Institute, Qidong 226220, China
| | - Jinjun Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| |
Collapse
|
352
|
Sun M, Li Q, Zou Z, Liu J, Gu Z, Li L. The mechanisms behind heatstroke-induced intestinal damage. Cell Death Discov 2024; 10:455. [PMID: 39468029 PMCID: PMC11519599 DOI: 10.1038/s41420-024-02210-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
With the frequent occurrence of heatwaves, heatstroke (HS) is expected to become one of the main causes of global death. Being a multi-organized disease, HS can result in circulatory disturbance and systemic inflammatory response, with the gastrointestinal tract being one of the primary organs affected. Intestinal damage plays an initiating and promoting role in HS. Multiple pathways result in damage to the integrity of the intestinal epithelial barrier due to heat stress and hypoxia brought on by blood distribution. This usually leads to intestinal leakage as well as the infiltration and metastasis of toxins and pathogenic bacteria in the intestinal cavity, which will eventually cause inflammation in the whole body. A large number of studies have shown that intestinal damage after HS involves the body's stress response, disruption of oxidative balance, disorder of tight junction proteins, massive cell death, and microbial imbalance. Based on these damage mechanisms, protecting the intestinal barrier and regulating the body's inflammatory and immune responses are effective treatment strategies. To better understand the pathophysiology of this complex process, this review aims to outline the potential processes and possible therapeutic strategies for intestinal damage after HS in recent years.
Collapse
Affiliation(s)
- Minshu Sun
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qin Li
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhimin Zou
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Liu
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengtao Gu
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Li Li
- Department of Intensive Care Unit, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
353
|
Tang D, Kang R. NFE2L2 and ferroptosis resistance in cancer therapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:41. [PMID: 39534872 PMCID: PMC11555182 DOI: 10.20517/cdr.2024.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
NFE2-like basic leucine zipper transcription factor 2 (NFE2L2, also known as NRF2), is a key transcription factor in the cellular defense against oxidative stress, playing a crucial role in cancer cell survival and resistance to therapies. This review outlines the current knowledge on the link between NFE2L2 and ferroptosis - a form of regulated cell death characterized by iron-dependent lipid peroxidation - within cancer cells. While NFE2L2 activation can protect normal cells from oxidative damage, its overexpression in cancer cells contributes to drug resistance by upregulating antioxidant defenses and inhibiting ferroptosis. We delve into the molecular pathways of ferroptosis, highlighting the involvement of NFE2L2 and its target genes, such as NQO1, HMOX1, FTH1, FTL, HERC2, SLC40A1, ABCB6, FECH, PIR, MT1G, SLC7A11, GCL, GSS, GSR, GPX4, AIFM2, MGST1, ALDH1A1, ALDH3A1, and G6PD, in ferroptosis resistance. Understanding the delicate balance between NFE2L2's protective and deleterious roles could pave the way for novel therapeutic strategies targeting NFE2L2 to enhance the efficacy of ferroptosis inducers in cancer therapy.
Collapse
Affiliation(s)
- Daolin Tang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TA 75390, USA
| | - Rui Kang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TA 75390, USA
| |
Collapse
|
354
|
Gao N, Liu XY, Chen J, Hu TP, Wang Y, Zhang GQ. Menaquinone-4 Alleviates Sepsis-Associated Acute Lung Injury via Activating SIRT3-p53/SLC7A11 Pathway. J Inflamm Res 2024; 17:7675-7685. [PMID: 39469061 PMCID: PMC11514946 DOI: 10.2147/jir.s486984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
Background Sepsis-associated acute lung injury (SI-ALI) is triggered by various direct or indirect noncardiogenic factors affecting the alveolar epithelium and capillary endothelial cells. Menaquinone-4 (MK-4), a major component of vitamin K, plays a crucial role as an antioxidant by effectively neutralizing reactive oxygen species (ROS) and safeguarding critical biomolecules from oxidative harm within cells. However, the specific mechanisms and clinical implications of MK-4 in SI-ALI are unclear and require further study. Methods Cecal ligation and puncture (CLP) surgery is a commonly used method to induce sepsis in C57BL/6N wild-type mice, and the mice were administered MK-4 at a dosage of 200 mg/kg/day and 3-TYP at 5 mg/kg/day via intraperitoneal injection for 3 days, or erastin (5 mg/kg) 0.5 hours before CLP surgery. The mice were sacrificed 24 hours after CLP surgery, and blood and lung tissue samples were collected. Pathological changes in the lung tissue and oxidative stress levels were detected. The expression levels of Sirt3, acetylated lysine, p53, SLC7A11 ALOX12 and ferroptosis-related proteins were determined. ligation and puncture (CLP). Results In this study, we observed that the lung inflammation was associated with reduced Sirt3 expression and increased acetylated lysine levels. The progression of SI-ALI was mitigated by MK-4 through its role in upregulating Sirt3 expression. MK-4 achieved antioxidant effects by downregulating ROS and inflammatory factor levels. Mechanistically, MK-4 inhibited the p53/SLC7A11 signalling pathway in ferroptosis by inhibiting the acetylation of p53, independent of p53 levels. In addition, MK-4 inhibited ferroptosis independent of GPX4. These findings indicate that MK-4 is a promising novel therapeutic agent for treating SI-ALI and possibly sepsis. Conclusion These experiments revealed that MK-4 acts as a ferroptosis suppressor, increasing the expression of Sirt3, inhibiting the p53/SLC7A11 signalling pathway, and reducing oxidative stress and inflammatory responses, thereby exerting a protective effect against ALI in sepsis.
Collapse
Affiliation(s)
- Nan Gao
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Department of Emergency, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Xiao-Yu Liu
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Department of Emergency, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Jie Chen
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Department of Emergency, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Tian-Peng Hu
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Department of Emergency, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Yu Wang
- Department of Emergency, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
- Graduate School, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Guo-Qiang Zhang
- Department of Emergency, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| |
Collapse
|
355
|
Zhang W, Zheng Z, Wang T, Yang X, Zhao J, Zhong Y, Peng X, Zhou Y. Succinylated Type I Collagen Regulates Ferroptosis to Attenuate Skin Photoaging. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56744-56761. [PMID: 39392263 DOI: 10.1021/acsami.4c11952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
During the process of photoaging in the skin, Succinylated type I collagen has a significant effect on reversing the damage caused by UVB radiation, with the regulation of cellular ferroptosis being one of its important pathophysiological mechanisms. Specifically, Succinylated type I collagen reduces the expression of key cell cycle regulators P16, P21, and P53, as well as the ferroptosis-related factor Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4), induced by UVB radiation in cells and tissues. Meanwhile, it increases the expression of key factors Glutathione Peroxidase 4 (GPX4) and Solute Carrier Family 7 Member 11 (SLC7A11), which inhibit ferroptosis. Additionally, our study also reveals the impact of Succinylated type I collagen on the levels of malondialdehyde (MDA), glutathione (GSH), and reactive oxygen species (ROS) in cells and tissues, directly affecting the cells' ability to cope with oxidative stress. This further suggests that Succinylated type I collagen may improve skin photoaging through various pathways, including regulating ferroptosis, antioxidation, promoting collagen synthesis, protecting the skin barrier, reducing pigmentation, and inhibiting inflammatory responses, contributing to maintaining healthy and youthful skin.
Collapse
Affiliation(s)
- Wenwen Zhang
- Department of Pathophysiology, Guangdong Medical University, Dongguan 523808, China
| | - Zetai Zheng
- Department of Pathophysiology, Guangdong Medical University, Dongguan 523808, China
| | - Tingyu Wang
- Department of Pathophysiology, Guangdong Medical University, Dongguan 523808, China
| | - Xiangjie Yang
- School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jiayi Zhao
- The Second Clinical Medical College of Guangdong Medical University, Dongguan 523808, China
| | - Yuesong Zhong
- The Second Clinical Medical College of Guangdong Medical University, Dongguan 523808, China
| | - Xinsheng Peng
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Yanfang Zhou
- Department of Pathophysiology, Guangdong Medical University, Dongguan 523808, China
- The Second Affiliated Hospital of Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
356
|
Zhang P, Xiong C, Yang D, Li K, Wang Z, Ma F, Liao X, Xie M, Zeng X. Prognostic model based on centrosome-related genes constructed in head and neck squamous cell carcinoma. J Cancer 2024; 15:6531-6544. [PMID: 39668833 PMCID: PMC11632974 DOI: 10.7150/jca.102057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/13/2024] [Indexed: 12/14/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the most common malignant tumor in the epithelium of the head and neck. The role of the centrosome in malignant tumors is crucial. However, research on the centrosome in HNSCC remains largely unexplored. In this study, bioinformatics tools were utilized to analyze the expression and prognostic significance of centrosome-related genes (CRGs). CRGs exhibited a relatively high mutation frequency in HNSCC. Consensus unsupervised clustering analysis based on the expression profiles of CRGs revealed significant associations with clinical features, prognosis and immune microenvironment in HNSCC. Prognostic features were constructed using univariate and LASSO Cox regression, resulting in a centrosome-related model with eleven features. Patients were classified into high-risk and low-risk groups based on median risk scores. External validation using the GSE41613 dataset from the GEO database confirmed the reliability of the centrosome-related model. The model was associated with the prognosis of HNSCC patients, and centrosome-related features could impact tumor prognosis by influencing the tumor immune microenvironment. Finally, qPCR showed that CRGs were highly expressed in tumor tissues. This study developed a novel centrosome-related prognostic model, applicable for predicting the prognosis and immune landscape of HNSCC patients, offering potential targets for future HNSCC treatment.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| | - Chunrong Xiong
- School of Computer Science and Engineering, Yulin Normal University, Yulin, 537000, China
| | - Dunhui Yang
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
- Department of Graduate and Scientific Research, Zunyi Medical University, Zunyi, 563000, China
| | - Kang Li
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
- Department of Graduate and Scientific Research, Zunyi Medical University, Zunyi, 563000, China
| | - Zhen Wang
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| | - Fang Ma
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| | - Xianqin Liao
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| | - Miao Xie
- School of Computer Science and Engineering, Yulin Normal University, Yulin, 537000, China
| | - Xianhai Zeng
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| |
Collapse
|
357
|
Huang K, He Y, Wan H, Ban XX, Chen XY, Hu XM, Wan XX, Lu R, Zhang Q, Xiong K. Bibliometric and visualized analysis on global trends and hotspots of TAK1 in regulated cell death: 1999 to 2024. Front Immunol 2024; 15:1437570. [PMID: 39474417 PMCID: PMC11518718 DOI: 10.3389/fimmu.2024.1437570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/02/2024] [Indexed: 03/07/2025] Open
Abstract
BACKGROUND Regulated cell death (RCD) is a genetically controlled form of cell death that plays an important role in organogenesis, tissue remodeling, and pathogenesis of cancers. Transforming growth factor-beta-activation kinase 1 (TAK1) is a member of the serine/threonine protein kinase family, which can respond to internal and external stimuli and participate in inflammatory responses through multiple signaling pathways and cellular processes. In the last two decades, the regulatory roles of TAK1 at the crossroads of multiple RCD pathways, including apoptosis, necroptosis, pyroptosis, and PANoptosis were revealed by 801 articles retrieved from the Web of Science Core Collection database. To analyze global research trends and hotspots concerning the role of TAK1 in RCD, the bibliometric and visualized analysis were applied in the current study. METHODS The data for this bibliometrics study were retrieved from the Web of Science Core Collection database. The search formula was (TS=(Apoptosis) OR TS=(pyroptosis) OR TS=(Necroptosis) OR TS=(PANoptosis) OR TS=(Autophagy) OR TS=(Ferroptosis) OR TS=(cuproptosis)) AND ((TS=(TAK1)) OR TS=(MAP3K7)). The co-occurrence and co-cited analysis on basic bibliometric parameters were conducted by VOSviewer. The dual-map overlay of journals, citation bursts, keyword timelines, and keyword bursts were analyzed by CiteSpace. RESULTS A total of 801 articles from 46 countries have been included in the analysis. The number of publications demonstrates a consistent increase from 1999 to 2024. The primary research institutions driving this field are Osaka University Notably, the Journal of Biological Chemistry stands out as the most popular journal in this domain. These publications collectively involve contributions from 4663 authors, with Jun Tsuji emerging as a prolific author. Jun Tsuji also gains the highest co-citation frequency. Emerging research hotspots are encapsulated by keywords, including apoptosis, NF-κB, inflammation, autophagy, and TNFα. CONCLUSION This is the first bibliometric and visualized study to analyze the global trends and hotspots of TAK1 in RCD. Based on the analysis of 801 articles, the results provide a retrospective and comprehensive visualized view of the research hotspots and frontiers of TAK1 at the crossroads of multiple RCD signaling pathways and propose ideas for guiding their future investigations in molecular mechanisms and therapeutic strategies in this field.
Collapse
Affiliation(s)
- Kun Huang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ye He
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
- Changsha Aier Eye Hospital, Changsha, China
| | - Hao Wan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Xiao-Xia Ban
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Xin-Yu Chen
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Xi-Min Hu
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Rui Lu
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, United States
| | - Qi Zhang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States
- Key Laboratory of Emergency and Trauma of Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
| |
Collapse
|
358
|
Mir R, Baba SK, Elfaki I, Algehainy N, Alanazi MA, Altemani FH, Tayeb FJ, Barnawi J, Husain E, Bedaiwi RI, Albalawi IA, Alhujaily M, Mir MM, Almotairi R, Alatwi HE, Albalawi AD. Unlocking the Secrets of Extracellular Vesicles: Orchestrating Tumor Microenvironment Dynamics in Metastasis, Drug Resistance, and Immune Evasion. J Cancer 2024; 15:6383-6415. [PMID: 39513123 PMCID: PMC11540496 DOI: 10.7150/jca.98426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/27/2024] [Indexed: 11/15/2024] Open
Abstract
Extracellular vehicles (EVs) are gaining increasing recognition as central contributors to the intricate landscape of the tumor microenvironment (TME). This manuscript provides an extensive examination of the multifaceted roles played by EVs in shaping the TME, with a particular emphasis on their involvement in metastasis, drug resistance, and immune evasion. Metastasis, the process by which cancer cells disseminate to distant sites, remains a formidable challenge in cancer management. EVs, encompassing exosomes and microvesicles, have emerged as critical participants in this cascade of events. They facilitate the epithelial-to-mesenchymal transition (EMT), foster pre-metastatic niche establishment, and enhance the invasive potential of cancer cells. This manuscript delves into the intricate molecular mechanisms underpinning these processes, underscoring the therapeutic potential of targeting EVs to impede metastasis. Drug resistance represents a persistent impediment to successful cancer treatment. EVs are instrumental in intrinsic and acquired drug resistance, acting as mediators of intercellular communication. They ferry molecules like miRNAs and proteins, which confer resistance to conventional chemotherapy and targeted therapies. This manuscript scrutinizes the diverse strategies employed by EVs in propagating drug resistance while also considering innovative approaches involving EV-based drug delivery systems to counteract this phenomenon. Immune evasion is a hallmark of cancer, and EVs are central in sculpting the immunosuppressive milieu of the TME. Tumor-derived EVs thwart immune responses through various mechanisms, including T cell dysfunction induction, the expansion of regulatory T cells (Tregs), and polarization of macrophages towards an immunosuppressive phenotype. In addition, the manuscript explores the diagnostic potential of EVs as biomarkers and their role as therapeutic agents in immune checkpoint blockade therapies. This manuscript provides a comprehensive overview of EV's pivotal role in mediating intricate interactions within the TME, ultimately influencing cancer progression and therapeutic outcomes. A profound understanding of EV-mediated processes in metastasis, drug resistance, and immune evasion opens up promising avenues for developing innovative therapeutic strategies and identifying valuable biomarkers in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Sadaf Khursheed Baba
- Watson Crick Center for Molecular Medicine, Islamic University of Science and Technology, J & K, India
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad A Alanazi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Faris Jamal Tayeb
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Jameel Barnawi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Eram Husain
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Ruqaiah I Bedaiwi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Muhanad Alhujaily
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Mohammad Muzaffar Mir
- Department of Biochemistry, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Reema Almotairi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Hanan E. Alatwi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | | |
Collapse
|
359
|
Jasim SA, Ahmed AT, Kubaev A, Kyada A, Alshahrani MY, Sharma S, Al-Hetty HRAK, Vashishth R, Chauhan AS, Abosaoda MK. Exosomal microRNA as a key regulator of PI3K/AKT pathways in human tumors. Med Oncol 2024; 41:265. [PMID: 39400677 DOI: 10.1007/s12032-024-02529-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
MicroRNAs (miRNAs) are conserved non-protein-coding RNAs that are naturally present in organisms and can control gene expression by suppressing the translation of mRNA or causing the degradation of mRNA. MicroRNAs are highly concentrated in the PI3K/AKT pathway, and abnormal activation of the PI3K/AKT pathway plays a role in cancer progression. The AKT/PI3K pathway is critical for cellular functions and can be stimulated by cytokines and in normal situations. It is involved in regulating various intracellular signal transduction, including development, differentiation, transcriptional regulation, protein, and synthesis. There is a growing body of evidence indicating that miRNAs, which are abundant in exosomes released by different cells, can control cellular biological activities via modulating the PI3K/AKT pathway, hence influencing cancer progression and drug resistance. This article provides an overview of the latest research progress regarding the function and medical use of the PI3K/AKT pathway and exosomal miRNA/AKT/PI3K axis in the behaviors of cancer cells.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Ramadi, Anbar, Iraq
- Biotechnology Department, College of Applied Science, Fallujah University, Anbar, Iraq
| | - Abdulrahman T Ahmed
- Department of Nursing, Al-Maarif University College, AL-Anbar Governorate, Ramadi, Iraq.
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, 140100, Samarkand, Uzbekistan
| | - Ashishkumar Kyada
- Department of Pharmacy, Faculty of Health Sciences, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Mohammad Y Alshahrani
- King Khalid University, AlQura'a, P.O. Box 960, Abha, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Shilpa Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | | | - Raghav Vashishth
- Department of Surgery, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Ashish Singh Chauhan
- Division of Research and Innovation, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Munther Kadhim Abosaoda
- College of Pharmacy, the Islamic University, Najaf, Iraq
- College of Pharmacy, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
360
|
de Mello AS, Ferguson BS, Shebs-Maurine EL, Giotto FM. MicroRNA Biogenesis, Gene Regulation Mechanisms, and Availability in Foods. Noncoding RNA 2024; 10:52. [PMID: 39452838 PMCID: PMC11510440 DOI: 10.3390/ncrna10050052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that control gene expression by degrading or repressing mRNA translation into proteins. Research recently suggested that food-derived miRNAs are bioavailable and may be absorbed in the gastrointestinal tract (GIT). Since these small RNAs may reach the circulation and organs, possible interactions with host genes will lead to epigenetic effects that alter metabolism. Therefore, from a precision nutrition standpoint, exogenous miRNAs may be essential in modulating health status. This review summarizes the process of miRNA biogenesis, the post-translational mechanisms of gene regulation, and their bioavailability in animal- and plant-derived foods.
Collapse
Affiliation(s)
- Amilton S. de Mello
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno 1664 N. Virginia St. Mail Stop 202, Reno, NV 89557, USA; (E.L.S.-M.); (F.M.G.)
| | - Bradley S. Ferguson
- Department of Nutrition, University of Nevada, 1664 N. Virginia St. Mail Stop 202, Reno, NV 89557, USA;
| | - Erica L. Shebs-Maurine
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno 1664 N. Virginia St. Mail Stop 202, Reno, NV 89557, USA; (E.L.S.-M.); (F.M.G.)
| | - Francine M. Giotto
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno 1664 N. Virginia St. Mail Stop 202, Reno, NV 89557, USA; (E.L.S.-M.); (F.M.G.)
- Department of Animal and Range Sciences, New Mexico State University, Knox Hall 220, MSC 3-I, Las Cruces, NM 88003, USA
| |
Collapse
|
361
|
Guo S, Liu Q, Tan T, Chen X. MiR-24 regulates obstructive pulmonary disease in rats via S100A8. Exp Lung Res 2024; 50:172-183. [PMID: 39390946 DOI: 10.1080/01902148.2024.2411852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 09/05/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024]
Abstract
PURPOSE Chronic obstructive pulmonary disease (COPD) is a persistent inflammatory disorder characterized by minor airway inflammation and emphysema involving various cell types and cytokines. MicroRNAs (miRNAs) have emerged as critical regulators in the pathogenesis of lung diseases. This study investigates the impact of microRNA-24 (miR-24) on airway inflammatory responses in a rat model of COPD. MATERIALS AND METHODS The model was established by combining cigarette smoke exposure and lipopolysaccharide stimulation, and rat lung tissues were transfected with adeno-associated viruses overexpressing miR-24. Pathological changes in the lung were assessed using hematoxylin and eosin staining. Levels of pro-inflammatory cytokines, including tumor necrosis factor-alpha, interleukin-6, and interleukin-8, were measured using enzyme-linked immunosorbent assay. Expression of miR-24 and S100A8 was detected through quantitative reverse transcription PCR, while protein levels of S100A8, Toll-like receptor 4 (TLR4), and myeloid differentiation primary response 88 (MyD88) were assessed using western blotting. Bioinformatics analysis and dual-luciferase reporter assay were performed to determine the relationship between S100A8 and miR-24. RESULTS The results demonstrated the downregulation of miR-24 in rats with COPD, and its overexpression resulted in a significant decrease in S1008 mRNA levels. Additionally, the protein level of S100A8 was significantly increased in the lung tissues of COPD rats. The upregulation of miR-24, however, not only inhibited the protein expression of S100A8, TLR4, and MyD88 in lung tissues but also reduced the release of pro-inflammatory cytokines in the plasma and bronchoalveolar lavage fluid, thereby attenuating inflammatory responses and pathological injuries in the lung. CONCLUSIONS Our data suggest that miR-24 attenuates airway inflammatory responses in COPD by inhibiting the TLR4/MyD88 pathway via targeting S100A8.
Collapse
Affiliation(s)
- Sha Guo
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qin Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Tingting Tan
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiaoju Chen
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
362
|
Qayoom H, Haq BU, Sofi S, Jan N, Jan A, Mir MA. Targeting mutant p53: a key player in breast cancer pathogenesis and beyond. Cell Commun Signal 2024; 22:484. [PMID: 39390510 PMCID: PMC11466041 DOI: 10.1186/s12964-024-01863-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
The p53 mutation is the most common genetic mutation associated with human neoplasia. TP53 missense mutations, which frequently arise early in breast cancer, are present in over thirty percent of breast tumors. In breast cancer, p53 mutations are linked to a more aggressive course of the disease and worse overall survival rates. TP53 mutations are mostly seen in triple-negative breast cancer, a very diverse kind of the disease. The majority of TP53 mutations originate in the replacement of individual amino acids within the p53 protein's core domain, giving rise to a variety of variations referred to as "mutant p53s." In addition to gaining carcinogenic qualities through gain-of-function pathways, these mutants lose the typical tumor-suppressive features of p53 to variable degrees. The gain-of-function impact of stabilized mutant p53 causes tumor-specific dependency and resistance to therapy. P53 is a prospective target for cancer therapy because of its tumor-suppressive qualities and the numerous alterations that it experiences in tumors. Phenotypic abnormalities in breast cancer, notably poorly differentiated basal-like tumors are frequently linked to high-grade tumors. By comparing data from cell and animal models with clinical outcomes in breast cancer, this study investigates the molecular mechanisms that convert gene alterations into the pathogenic consequences of mutant p53's tumorigenic activity. The study delves into current and novel treatment approaches aimed at targeting p53 mutations, taking into account the similarities and differences in p53 regulatory mechanisms between mutant and wild-type forms, as well.
Collapse
Affiliation(s)
- Hina Qayoom
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Burhan Ul Haq
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Shazia Sofi
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Nusrat Jan
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Asma Jan
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Manzoor A Mir
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India.
| |
Collapse
|
363
|
Xia T, Meng L, Xu G, Sun H, Chen H. TRIM33 promotes glycolysis through regulating P53 K48-linked ubiquitination to promote esophageal squamous cell carcinoma growth. Cell Death Dis 2024; 15:740. [PMID: 39389957 PMCID: PMC11467421 DOI: 10.1038/s41419-024-07137-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common fatal malignant tumor of the digestive tract; however, its pathogenic mechanism is unknown and lacks specific molecular diagnosis and treatment. Therefore, it is particularly important to identify new tumor biomarkers to enhance the early diagnosis and molecular-targeted therapy of ESCC. Here, we found that the E3 ubiquitin ligase Tripartitemotif-containing33 (TRIM33) is highly expressed in ESCC tissues and cell lines, and is associated with adverse clinical outcomes. We determined that TRIM33 drives aerobic glycolysis to promote tumor growth in vivo and in vitro. In terms of mechanism, TRIM33 binds to p53 to inhibit its stability and promote the expression of downstream glycolysis target genes GLUT1, HK2, PKM2, and LDHA. In addition, TRIM33 promotes the polyubiquitination of P53 K48-linked and proteasome degradation. Further studies have shown that the K351 site of P53 is the key site mediating the ubiquitination of P53 K48-linked to promote aerobic glycolysis in ESCC and tumor cell growth. Our results reveal that the TRIM33-P53 signal axis regulates glycolysis during ESCC and may provide a new perspective for the diagnosis and treatment of ESCC.
Collapse
Affiliation(s)
- Tian Xia
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Lian Meng
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Guixuan Xu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
- Department of Pathology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Hao Sun
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Hao Chen
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China.
- Department of Critical Care Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, 518052, China.
| |
Collapse
|
364
|
Liang Y, Li J, Li T, Li M, Liao H, Liu Y, Yao Y, Yang L, Lei X. Colorectal cancer cells with high metastatic potential drive metastasis by transmitting exosomal miR-20a-3p through modulating NF1/MAPK pathway. Carcinogenesis 2024; 45:773-785. [PMID: 38829328 DOI: 10.1093/carcin/bgae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/18/2024] [Accepted: 06/01/2024] [Indexed: 06/05/2024] Open
Abstract
Cancer cells exhibit heterogeneous metastatic potential, and high metastatic (HM) subclones can enhance the metastatic potential of low metastatic subclones by transmitting some factors. Exosomal miRNAs play a pivotal role in the crosstalk of heterogeneous metastatic subclones. This study discovered that miR-20a-3p was upregulated in colorectal adenocarcinoma (CRA), correlated with metastasis, and potentially served as a prognostic indicator for CRA. miR-20a-3p could promote the proliferation, migration, and invasion of CRA cells. Interestingly, HM CRA cells could promote malignant phenotypes of low metastatic CRA cells by transmitting exosomal miR-20a-3p. Mechanically, miR-20a-3p could inhibit neurofibromin 1(NF1), thereby activate the rat sarcoma viral oncogene (RAS)-mediated mitogen-activated protein kinases (MAPK) signaling pathway to drive the metastasis of CRA. In summary, our study provided evidence that colorectal cancer cells with HM potential drive metastasis by transmitting exosomal miR-20a-3p through modulating the NF1/MAPK pathway.
Collapse
Affiliation(s)
- Yahang Liang
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Junyu Li
- Department of Orthopedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Tao Li
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Mingming Li
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Hualin Liao
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yang Liu
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yao Yao
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Lingling Yang
- Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Xiong Lei
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|
365
|
Geronikolou S, Pavlopoulou A, Koutelekos I, Kalogirou D, Bacopoulou F, Cokkinos DV. Polycystic Ovary Syndrome and Ferroptosis: Following Ariadne's Thread. Biomedicines 2024; 12:2280. [PMID: 39457593 PMCID: PMC11505293 DOI: 10.3390/biomedicines12102280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Recent literature suggests that ferroptosis (FPT) may be a key player in polycystic ovary syndrome (PCOS) pathogenesis, but the underlying mechanism(s) remain(s) unclear. Aim: Therefore, herein, we made an effort to reproduce the molecular signature of the syndrome by including FPT and exploring novel drug targets for PCOS. Methods: (a) Our previously constructed PCOS interactions molecular network was extended with the addition of FPT-associated genes (interaction score above 0.7) and (b) gene set enrichment analysis was performed so as to detect over-represented KEGG pathways. Results: The updated interactome includes 140 molecules, 20 of which are predicted/novel, with an interaction score of 7.3, and 12 major hubs. Moreover, we identified 16 over-represented KEGG pathways, with FPT being the most overexpressed pathway. The FPT subnetwork is connected with the PCOS network through KDM1A. Conclusions: FPT cell death is involved in PCOS development, as its major hub TP53 was shown to be the most important hub in the whole PCOS interactome, hence representing a prioritized drug target.
Collapse
Affiliation(s)
- Styliani Geronikolou
- Clinical, Translational and Experimental Surgery Research Center, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
- Center for Adolescent Medicine and UNESCO Chair in Adolescent Health Care, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Turkey;
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Izmir, Turkey
| | - Ioannis Koutelekos
- Department of Nursing, School of Health and Care Sciences, University of West Attica, 12243 Athens, Greece;
| | - Dimitrios Kalogirou
- Department of Public and Community Health, School of Public Health, University of West Attica, 11521 Athens, Greece;
| | - Flora Bacopoulou
- Center for Adolescent Medicine and UNESCO Chair in Adolescent Health Care, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Dennis V. Cokkinos
- Clinical, Translational and Experimental Surgery Research Center, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| |
Collapse
|
366
|
Wang Q, Ren Z, Zhao J, Zheng T, Tong L, Liu J, Dai Z, Tang S. Mechanism and Application Prospects of NLRC3 Regulating cGAS-STING Pathway in Lung Cancer Immunotherapy. Int J Med Sci 2024; 21:2613-2622. [PMID: 39439455 PMCID: PMC11492878 DOI: 10.7150/ijms.102328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
NLRC3, a negative regulator, exhibits considerable potential in the realm of lung cancer immunotherapy by virtue of its profound impact on the immune response intensity, primarily through its regulatory effects on the cGAS-STING pathway. The inhibition of NLRC3 has been found to augment the activity of the aforementioned pathway, thereby enhancing the anti-tumor immune response. This comprehensive review endeavors to elucidate the molecular and genetic structures of NLRC3, its role within the immune system, and its interaction with the cGAS-STING pathway, with a particular emphasis on its potential applications in lung cancer immunotherapy. Existing research underscores NLRC3's capacity to mitigate excessive immune responses via the negative regulation of the cGAS-STING pathway, thus underscoring its significant regulatory role in lung cancer immunotherapy. The development of pharmaceutical interventions and gene therapy strategies targeting NLRC3 presents a promising avenue for the creation of novel therapeutic options for individuals afflicted with lung cancer. Nonetheless, the clinical application of these therapies is confronted with both technical and biological challenges. This review aims to provide a theoretical foundation for related research endeavors and delineate future research directions in this field.
Collapse
Affiliation(s)
- Qichao Wang
- Dalian Medical University, Dalian 116044, Liaoning, China
- Department of Medical Oncology, The Fifth People's Hospital of Dalian, Dalian 116021, Liaoning, China
| | - Zhen Ren
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, Liaoning, China
- Central Hospital of Dalian University of Technology, Dalian 116003, Liaoning, China
| | - Jianing Zhao
- Dalian Medical University, Dalian 116044, Liaoning, China
- Central Hospital of Dalian University of Technology, Dalian 116003, Liaoning, China
| | - Tianliang Zheng
- Dalian Medical University, Dalian 116044, Liaoning, China
- Central Hospital of Dalian University of Technology, Dalian 116003, Liaoning, China
| | - Lifei Tong
- Department of Radiotherapy, The Fifth People's Hospital of Dalian, Dalian 116021, Liaoning, China
| | - Jing Liu
- Department of Medical Oncology, The Fifth People's Hospital of Dalian, Dalian 116021, Liaoning, China
| | - Zhaoxia Dai
- Department of Thoracic Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116021, Liaoning, China
| | - Shuhong Tang
- Department of Medical Oncology, The Fifth People's Hospital of Dalian, Dalian 116021, Liaoning, China
| |
Collapse
|
367
|
Zabeti Touchaei A, Norollahi SE, Najafizadeh A, Babaei K, Bakhshalipour E, Vahidi S, Samadani AA. Therapeutic combinations of exosomes alongside cancer stem cells (CSCs) and of CSC-derived exosomes (CSCEXs) in cancer therapy. Cancer Cell Int 2024; 24:334. [PMID: 39369258 PMCID: PMC11453077 DOI: 10.1186/s12935-024-03514-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/22/2024] [Indexed: 10/07/2024] Open
Abstract
Exosomes which are membrane vesicles released by cells have gained significant interest in the field of cancer therapy as a novel means of intercellular communication. Their role in immune activation and their pathophysiological functions in cancer therapy have been recognized. Exosomes carry diverse bioactive components including proteins, mRNA, microRNAs, and bioactive lipids. These molecules have therapeutic potential in promoting tissue regeneration, supporting stem cell activity, preventing cell death, modulating immune responses, and promoting the growth of new blood vessels. However, the precise roles of exosomes derived from mesenchymal stem cells (MSCs) in the treatment of various cancers are still not fully understood. Consequently, cancer stem cells (CSCs) can self-renew and differentiate into various cell types. Understanding the mechanisms that sustain their persistence is crucial for developing effective therapies. Exosomes have recently gained interest as vehicles for intercellular communication between CSCs and non-CSCs, influencing cancer progression and the microenvironment. Research is ongoing on the utilization of exosomes derived from cancer stem cells (CSC-Exosome) for cancer treatment. The composition of extracellular vesicles is influenced by the specific type and condition of the cells from which they are secreted. Circulating exosomes contain stable RNA molecules such as mRNAs, microRNAs, and long non-coding RNAs (lncRNAs). In this review, we will explore the significance of exosomes and their diverse cellular combinations in the context of cancer therapy.
Collapse
Affiliation(s)
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Najafizadeh
- School of Paramedicine Sciences, Guilan University of Medical Sciences, Langarud, Iran
| | - Kosar Babaei
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Elahe Bakhshalipour
- School of Paramedicine Sciences, Guilan University of Medical Sciences, Langarud, Iran
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ali Akbar Samadani
- Neuroscience Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
368
|
Di Y, Zhang X, Wen X, Qin J, Ye L, Wang Y, Song M, Wang Z, He W. MAPK Signaling-Mediated RFNG Phosphorylation and Nuclear Translocation Restrain Oxaliplatin-Induced Apoptosis and Ferroptosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402795. [PMID: 39120977 PMCID: PMC11481204 DOI: 10.1002/advs.202402795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/12/2024] [Indexed: 08/11/2024]
Abstract
Chemotherapy resistance remains a major challenge in the treatment of colorectal cancer (CRC). Therefore, it is crucial to develop novel strategies to sensitize cancer cells to chemotherapy. Here, the fringe family is screened to determine their contribution to chemotherapy resistance in CRC. It is found that RFNG depletion significantly sensitizes cancer cells to oxaliplatin treatment. Mechanistically, chemotherapy-activated MAPK signaling induces ERK to phosphorylate RFNG Ser255 residue. Phosphorylated RFNG S255 (pS255) interacts with the nuclear importin proteins KPNA1/importin-α1 and KPNB1/importin-β1, leading to its translocation into the nucleus where it targets p53 and inhibits its phosphorylation by competitively inhibiting the binding of CHK2 to p53. Consequently, the expression of CDKN1A is decreased and that of SLC7A11 is increased, leading to the inhibition of apoptosis and ferroptosis. In contrast, phosphor-deficient RFNG S225A mutant showed increased apoptosis and ferroptosis, and exhibited a notable response to oxaliplatin chemotherapy both in vitro and in vivo. It is further revealed that patients with low RFNG pS255 exhibited significant sensitivity to oxaliplatin in a patient-derived xenograft (PDX) model. These findings highlight the crosstalk between the MAPK and p53 signaling pathways through RFNG, which mediates oxaliplatin resistance in CRC. Additionally, this study provides guidance for oxaliplatin treatment of CRC patients.
Collapse
Affiliation(s)
- Yuqin Di
- Molecular Diagnosis and Gene Testing CenterThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Xiang Zhang
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Xiangqiong Wen
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Jiale Qin
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Lvlan Ye
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Youpeng Wang
- Center of Hepato‐Pancreato‐Biliary SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Mei Song
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdong510080China
| | - Ziyang Wang
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
- Center for Translational MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Weiling He
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
- Department of Gastrointestinal SurgeryXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361000China
| |
Collapse
|
369
|
Rodrigues P, Rizaev JA, Hjazi A, Altalbawy FMA, H M, Sharma K, Sharma SK, Mustafa YF, Jawad MA, Zwamel AH. Dual role of microRNA-31 in human cancers; focusing on cancer pathogenesis and signaling pathways. Exp Cell Res 2024; 442:114236. [PMID: 39245198 DOI: 10.1016/j.yexcr.2024.114236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Widespread changes in the expression of microRNAs in cancer result in abnormal gene expression for the miRNAs that control those genes, which in turn causes changes to entire molecular networks and pathways. The frequently altered miR-31, which is found in a wide range of cancers, is one cancer-related miRNA that is particularly intriguing. MiR-31 has a very complicated set of biological functions, and depending on the type of tumor, it may act both as a tumor suppressor and an oncogene. The endogenous expression levels of miR-31 appear to be a key determinant of the phenotype brought on by aberrant expression. Varied expression levels of miR-31 could affect cell growth, metastasis, drug resistance, and other process by several mechanisms like targeting BRCA1-associated protein-1 (BAP1), large tumor suppressor kinase 1 (LATS1) and protein phosphatase 2 (PP2A). This review highlights the current understanding of the genes that miR-31 targets while summarizing the complex expression patterns of miR-31 in human cancers and the diverse phenotypes brought on by altered miR-31 expression.
Collapse
Affiliation(s)
- Paul Rodrigues
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia.
| | - Jasur Alimdjanovich Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia.
| | - Malathi H
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India.
| | - Kirti Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, 140307, Punjab, India.
| | - Satish Kumar Sharma
- Vice Chancellor of Department of Pharmacy (Pharmacology), The Glocal University, Saharanpur, India.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq.
| | | | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq.
| |
Collapse
|
370
|
Zhi SM, Cui Y, Liu Y, Zhang JT, Li XJ, Sheng B, Chen XX, Yan CL, Li W, Mao JN, Yan HY, Jin W. Paeoniflorin suppresses ferroptosis after traumatic brain injury by antagonizing P53 acetylation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155940. [PMID: 39128303 DOI: 10.1016/j.phymed.2024.155940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) could induce multiple forms of cell death, ferroptosis, a novel form of cell death distinct from apoptosis and autophagy, plays an important role in disease progression in TBI. Therapies targeting ferroptosis are beneficial for recovery from TBI. Paeoniflorin (Pae) is a water-soluble monoterpene glycoside and the active ingredient of Paeonia lactiflora pall. It has been shown to exert anti-inflammatory and antioxidant effects. However The effects and mechanisms of paeoniflorin on secondary injury after TBI are unknown. PURPOSE To investigate the mechanism by which Pae regulates ferroptosis after TBI. METHODS The TBI mouse model and cortical primary neurons were utilized to study the protective effect of paeoniflorin on the brain tissue after TBI. The neuronal cell ferroptosis model was established by treating cortical primary neurons with erastin. Liproxstatin-1(Lip-1) was used as a positive control drug. Immunofluorescence staining, Nissl staining, biochemical analyses, pharmacological analyses, and western blot were used to evaluate the effects of paeoniflorin on TBI. RESULTS Pae significantly ameliorated neuronal damage after TBI, inhibited mitochondrial damage, increased glutathione peroxidase 4 (GPX4) activity, decreased malondialdehyde (MDA) production, restored neurological function and inhibited cerebral edema. Pae promotes the degradation of P53 in the form of proteasome, promotes its ubiquitination, and reduces the stability of P53 by inhibiting its acetylation, thus alleviating the P53-mediated inhibition of cystine/glutamate antiporter solute carrier family 7 member 11 (SLC7A11) by P53. CONCLUSION Pae inhibits ferroptosis by promoting P53 ubiquitination out of the nucleus, inhibiting P53 acetylation, and modulating the SLC7A11-GPX4 pathway.
Collapse
Affiliation(s)
- Si-Min Zhi
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yue Cui
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yang Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Jia-Tong Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiao-Jian Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Bin Sheng
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiang-Xin Chen
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Chao-Long Yan
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China; Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Jian-Nan Mao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Hui-Ying Yan
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Wei Jin
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China; Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
371
|
Liu X, Peng Y, Chen R, Zhou Y, Zou X, Xia M, Wu X, Yu M. Transcriptomic analysis reveals transcription factors implicated in radon-induced lung carcinogenesis. Toxicol Res (Camb) 2024; 13:tfae161. [PMID: 39371682 PMCID: PMC11447380 DOI: 10.1093/toxres/tfae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024] Open
Abstract
Background Radon, a potent carcinogen, is a significant catalyst for lung cancer development. However, the molecular mechanisms triggering radon-induced lung cancer remain elusive. Methods Utilizing a radon exposure concentration of 20,000 Bq/m3 for 20 min/session, malignant transformation was induced in human bronchial epithelial cells (BEAS-2B). Results Radon-exposed cells derived from passage 25 (BEAS-2B-Rn) exhibited enhanced proliferation and increased colony formation. Analysis of differential gene expression (DEG) through transcription factors revealed 663 up-regulated and 894 down-regulated genes in radon-exposed cells. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed significant alterations in the malignant transformation pathway of cells, including those related to cancer and the PI3K/AKT signaling pathway. A PPI network analysis indicated a significant association of oncogenes, such as CCND1, KIT, and GATA3, with lung cancer among differentially expressed genes. In addition, the stability of the housekeeping gene was determined through RT-qPCR analysis, which also confirmed the results of transcriptome analysis. Conclusions The results suggest that transcription factors may play a pivotal role in conferring a survival advantage to radon-exposed cells. This is achieved by malignant transformation of human bronchial epithelial cells into lung carcinogenesis cell phenotypes.
Collapse
Affiliation(s)
- Xing Liu
- School of public health, Yangzhou University, No. 136, Jiangyang Middle Road, Hanjiang District, Yangzhou 225009, China
| | - Yuting Peng
- School of public health, Yangzhou University, No. 136, Jiangyang Middle Road, Hanjiang District, Yangzhou 225009, China
| | - Ruobing Chen
- School of public health, Yangzhou University, No. 136, Jiangyang Middle Road, Hanjiang District, Yangzhou 225009, China
| | - Yueyue Zhou
- School of public health, Yangzhou University, No. 136, Jiangyang Middle Road, Hanjiang District, Yangzhou 225009, China
| | - Xihuan Zou
- School of public health, Yangzhou University, No. 136, Jiangyang Middle Road, Hanjiang District, Yangzhou 225009, China
| | - Mingzhu Xia
- School of public health, Yangzhou University, No. 136, Jiangyang Middle Road, Hanjiang District, Yangzhou 225009, China
| | - Xinyi Wu
- School of public health, Yangzhou University, No. 136, Jiangyang Middle Road, Hanjiang District, Yangzhou 225009, China
| | - Meng Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, No. 368, hanjiang Middle Road, Hanjiang District, Yangzhou 225009, China
| |
Collapse
|
372
|
Zhang Y, Zhang X, Kai T, Zhang L, Li A. Lycium ruthenicum Murray derived exosome-like nanovesicles inhibit Aβ-induced apoptosis in PC12 cells via MAPK and PI3K/AKT signaling pathways. Int J Biol Macromol 2024; 277:134309. [PMID: 39089544 DOI: 10.1016/j.ijbiomac.2024.134309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/21/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Plant-derived exosome-like nanovesicles (ELNs) are nano-sized vesicles extracted from edible plants. Lycium ruthenicum Murray (LRM) has been gaining increasing attention due to its nutritional and medicinal value, but the ELNs in LRM has not been reported. In this study, LRM-ELNs were obtained, and the proteins, lipids, microRNAs (miRNAs) and active components in LRM tissues and LRM-ELNs was analyzed by LC-MS/MS, LC-MS, high-throughput sequencing techniques, and physical and chemical analysis. LRM-ELNs can be uptaken by PC12 cells through macropinocytosis and caveolin-mediated endocytosis primarily. Transcriptomic and western blot experiments indicate that LRM-ELNs can inhibit Aβ-induced apoptosis in PC12 cells through the MAPK and PI3K/AKT signaling pathways, with miRNAs playing a crucial role. These results indicate that LRM-ELNs have the protection effect on PC12 cells and can be considered as dietary supplements for alleviating neurodegenerative diseases.
Collapse
Affiliation(s)
- Yadan Zhang
- College of Food Science and Engineering, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaoyu Zhang
- College of Food Science and Engineering, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Central South University of Forestry and Technology, Changsha 410004, China
| | - Tianhan Kai
- Xiang Ya School of Public Health, Central South University, Changsha 410078, China
| | - Lin Zhang
- College of Food Science and Engineering, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Anping Li
- College of Food Science and Engineering, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
373
|
Zhang Y, Xie J. Targeting non-coding RNAs as a promising biomarker in peritoneal metastasis: Background, mechanism, and therapeutic approach. Biomed Pharmacother 2024; 179:117294. [PMID: 39226726 DOI: 10.1016/j.biopha.2024.117294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024] Open
Abstract
Peritoneal metastasis (PM) pathophysiology is complex and not fully understood. PM, originating from gastrointestinal (GI) cancer, is a condition that significantly worsens patient prognosis due to its complex nature and limited treatment options. The non-coding RNAs (ncRNAs) have been shown to play pivotal roles in cancer biology, influencing tumorigenesis, progression, metastasis, and therapeutic resistance. Increasing evidence has demonstrated the regulatory functions of different classes of ncRNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in PM. Identifying biomarkers for early detection of PM is a crucial step towards improving patient outcomes, and how ncRNA profiles correlate with survival rates, response to therapy, and recurrence risks have raised much attention in recent years. Additionally, exploring innovative therapeutic approaches utilizing ncRNAs, such as targeted therapy and gene silencing, may offer new horizons in treating this dire condition. Recent advances in systemic treatments and the development of novel loco-regional therapies have opened doors to multimodal treatment approaches. Radical surgeries combined with hyperthermic intraperitoneal chemotherapy (HIPEC) have shown promising results, leading to extended patient survival. Current research is focused on the molecular characterization of PM, which is crucial for early detection and developing future therapeutic strategies. By summarizing the latest findings, this study underscores the transformative potential of ncRNAs in enhancing the diagnosis, prognosis, and treatment of PM in GI cancer, paving the way for more personalized and effective clinical strategies.
Collapse
Affiliation(s)
- Yiping Zhang
- School of Life Sciences, Fudan University, Shanghai 200438, China; Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai 201501, China.
| | - Jun Xie
- School of Life Sciences, Fudan University, Shanghai 200438, China; Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai 201501, China.
| |
Collapse
|
374
|
Ji H, Qiao O, Zhang Y, Wang W, Han X, Zhang X, Liu C, Gao W. Dual targeting of wild-type p53 and gut microbiota by Magnolol represses key metabolic process and kills CRC cells. Phytother Res 2024; 38:4982-4998. [PMID: 37326338 DOI: 10.1002/ptr.7924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/06/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Cancer cells consume considerable glucose quantities and majorly employ glycolysis for ATP generation. This metabolic signature (the Warburg effect) allows cancer cells to channel glucose to biosynthesis to support and maintain their dramatic growth along with proliferation. Currently, our understanding of the metabolic and mechanistic implications of the Warburg effect along with its relationship with biosynthesis remains unclear. Herein, we illustrate that the tumor repressor p53 mediate Magnolol (MAG) triggers colon cancer cell apoptosis. And MAG regulates the glycolytic and oxidative phosphorylation steps through transcriptional modulation of its downstream genes TP53-induced glycolysis modulator and biosynthesis of cytochrome c oxidase, attenuating cell proliferation and tumor growth in vivo and in vitro. Meanwhile, we show that MAG cooperates with its own intestinal microflora characteristic metabolites to repress tumors, especially remarkably declined kynurenine (Kyn)/tryptophan (Trp) ratio. Besides, strong relationships of MAG influenced genes, microbiota, as well as metabolites, were explored. Therefore, we established that p53-microbiota-metabolites function as a mechanism, which enable therapy approaches against metabolism-implicated colorectal cancer, in particular MAG as a prospective candidate for treating colorectal cancer.
Collapse
Affiliation(s)
- Haixia Ji
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, China
- School of Chemistry and Chemical Engineering, Tianjin University, Tianjin, China
| | - Ou Qiao
- School of Chemistry and Chemical Engineering, Tianjin University, Tianjin, China
| | - Yi Zhang
- School of Chemistry and Chemical Engineering, Tianjin University, Tianjin, China
| | - Wenzhe Wang
- School of Chemistry and Chemical Engineering, Tianjin University, Tianjin, China
| | - Xiaoyin Han
- School of Chemistry and Chemical Engineering, Tianjin University, Tianjin, China
| | - Xinyu Zhang
- School of Chemistry and Chemical Engineering, Tianjin University, Tianjin, China
| | - Changxiao Liu
- School of Chemistry and Chemical Engineering, Tianjin University, Tianjin, China
| | - Wenyuan Gao
- School of Chemistry and Chemical Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
375
|
Song Y, Zhou D, Zhang P, Zhu N, Guo R, Wang T, Zhuang F, Sun D. Heparanase accelerates the angiogenesis and inhibits the ferroptosis of p53-mutant non-small cell cancers in VEGF-dependent manner. Cytotechnology 2024; 76:503-517. [PMID: 39188651 PMCID: PMC11344742 DOI: 10.1007/s10616-024-00632-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/17/2024] [Indexed: 08/28/2024] Open
Abstract
The aim of this study is to explore the effects and specific mechanisms of heparanase on angiogenesis and iron deficiency anemia in TP53 mutant cancer. For this purpose, we conducted in vitro cell experiments and in vivo animal experiments respectively. In this study, we first analyzed the differential expression of heparanase in TP53 wild-type and mutant cells, and analyzed its effects on iron removal and angiogenesis in two types of CALU-1 and NCI-H358 cells. Secondly, we validated whether the mechanism of action of heparanase on TP53 mutant cells for iron removal and angiogenesis is related to VEGF. We applied the iron removal agonist erastin and VEGF inhibitor bevacizumab in both in vitro and in vivo experiments to validate the relationship between heparanase and VEGF in the mechanisms of iron removal and angiogenesis. The experimental results show that heparanase is highly expressed in TP53 mutated cancer cells, and has anti-ferroptosis and pro-angiogenic effects. Our experiment also confirmed that the effect of heparanase on TP53 mutant cancer's iron removal and angiogenesis is related to VEGF. In short, heparanase is highly expressed in p53 mutated lung cancer, and the mechanism of ferroptosis tolerance to TP53 mutated cancer is related to VEGF.
Collapse
Affiliation(s)
- Yaobo Song
- Department of Medical Oncology, Yantaishan Hospital, Yantai, China
| | - Dongmei Zhou
- Department of Medical Oncology, Yantaishan Hospital, Yantai, China
| | - Ping Zhang
- Department of Medical Oncology, Yantaishan Hospital, Yantai, China
| | - Na Zhu
- Department of Medical Oncology, Yantaishan Hospital, Yantai, China
| | - Ruijuan Guo
- Department of Medical Oncology, Yantaishan Hospital, Yantai, China
| | - Tian Wang
- Department of Medical Oncology, Yantaishan Hospital, Yantai, China
| | - Feifei Zhuang
- Department of Medical Oncology, Yantaishan Hospital, Yantai, China
| | - Dengjun Sun
- Department of Medical Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai, 264000 Shandong Province China
| |
Collapse
|
376
|
Zhou X, Lin L. Mechanisms and therapeutic target of anti-tumour treatment-related Ferroptosis: How to improve cancer therapy? Biomed Pharmacother 2024; 179:117323. [PMID: 39208665 DOI: 10.1016/j.biopha.2024.117323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Recently, increased attention has been focused on the regulatory mechanism and potential clinical application of ferroptosis in cancer cells, especially therapy-related ferroptosis. However, the mechanism of treatment-related ferroptosis and the application prospects and strategies for future treatment still require further clarification. This review highlights the molecular relationships between different clinical antitumour drugs, including commonly used chemotherapy drugs, radiation therapy and vitamins, and ferroptosis. This review also proposes strategies for future treatments that involve ferroptosis, with an aim to develop a new strategy for the transformative potential of the emerging field of ferroptosis to improve cancer therapy.
Collapse
Affiliation(s)
- Xiangyu Zhou
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Lin Lin
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
377
|
Elsakka EGE, Midan HM, Abulsoud AI, Fathi D, Abdelmaksoud NM, Abdel Mageed SS, Zaki MB, Abd-Elmawla MA, Rizk NI, Elrebehy MA, Abdelghany TM, Elesawy AE, Shahin RK, El Tabaa MM, Mohammed OA, Abdel-Reheim MA, Elballal MS, Doghish AS. Emerging insights: miRNA modulation of ferroptosis pathways in lung cancer. Exp Cell Res 2024; 442:114272. [PMID: 39362302 DOI: 10.1016/j.yexcr.2024.114272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/26/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
The newly discovered programmed iron-dependent necrosis, ferroptosis, is a novel pathway that is controlled by iron-dependent lipid peroxidation and cellular redox changes. It can be triggered intrinsically by low antioxidant enzyme activity or extrinsically by blocking amino acid transporters or activating iron transporters. The induction of ferroptosis involves the activation of specific proteins, suppression of transporters, and increased endoplasmic reticulum (ER) stress (a condition in which the ER, a crucial organelle involved in protein folding and processing, becomes overwhelmed by an accumulation of misfolded or unfolded proteins. This situation disrupts the normal functioning of the ER, leading to a cellular stress response known as the unfolded protein response), leading to lipid peroxidation byproduct accumulation and toxic reactive oxygen species (ROS), which are highly reactive molecules derived from diatomic oxygen and include various forms such as superoxide (O₂⁻), hydroxyl radicals (•OH), and hydrogen peroxide (H₂O₂). Ferroptosis is closely associated with signaling molecules in lung cancer, including epidermal growth factor receptor (EGFR), mitogen-activated protein kinase (MAPK), hypoxia-inducible factor 1-alpha (HIF-1α), and P53, and is regulated by epigenetic factors such as microRNAs (miRNAs). miRNAs are small non-coding RNA molecules that regulate gene expression by binding to target messenger RNAs (mRNAs), leading to translational repression or degradation. Several miRNAs have been found to modulate ferroptosis by targeting key genes involved in iron metabolism, lipid peroxidation, and antioxidant defense pathways. The research on ferroptosis has expanded to target its role in lung cancer treatment and resistance prevention. This review encapsulates the significance of ferroptosis in lung cancer. Understanding the mechanisms and implications of ferroptosis in lung cancer cells may lead to targeted therapies exploiting cancer cell vulnerabilities to ferroptosis Also, improving treatment outcomes, and overcoming resistance.
Collapse
Affiliation(s)
- Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Nourhan M Abdelmaksoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020, El Salam, 11785, Cairo, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang, Republic of Korea
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| |
Collapse
|
378
|
Doosti Z, Ebrahimi SO, Ghahfarokhi MS, Reiisi S. Synergistic effects of miR-143 with miR-99a inhibited cell proliferation and induced apoptosis in breast cancer. Biotechnol Appl Biochem 2024; 71:993-1004. [PMID: 38689536 DOI: 10.1002/bab.2592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Breast cancer (BC) is the most common cancer type and the fifth leading cause of cancer-related deaths. The primary goals of BC treatment are to remove the tumor and prevent metastasis. Despite advances in BC treatment, more effective therapies are required. miRNAs can regulate many targets involved in biological processes and tumor progression; these molecules have emerged as a promising cancer treatment strategy. In the present study, we investigated the effects of miR-99a and miR-143 in single expression plasmids for BC inhibition. In this study, the precursor structure of miRNAs in the expression vector pEGFP-N1 entered single and double states, and MCF7 and T47D cells were transfected. The miRNAs expression level after transfection was then measured using qPCR. The MultiMiR package was used to obtain predicted and validated miRNA targets. MTT assay, qRT-PCR, migration test, and flow cytometry were used to assess the effect of miRNA and gene modulation. The qPCR results revealed that miRNA constructs were significantly expressed after the transfection of both cell lines. The biological function of miRNAs showed that upregulation of miR-99a and miR-143 in any of the two selected BC cells inhibited their proliferation and migration rate, significantly inducing apoptosis (p < 0.01). Also, miR-99a/miR-143 co-treatment has a synergistic anticancer effect in cancer cells via Akt1 and CDK6 targeting. These findings suggest that miR-99a/miR-143 plays synergistic regulatory roles in BC, possibly via a shared signaling pathway, providing a therapeutic strategy for BC treatment.
Collapse
Affiliation(s)
- Zahra Doosti
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Syed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | | | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
379
|
Wen Y, Liu Y, Liu W, Liu W, Dong J, Liu Q, Yu Z, Ren H, Hao H. Ferroptosis: a potential target for acute lung injury. Inflamm Res 2024; 73:1615-1629. [PMID: 39152299 DOI: 10.1007/s00011-024-01919-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/09/2024] [Accepted: 07/10/2024] [Indexed: 08/19/2024] Open
Abstract
Acute lung injury (ALI) is caused by a variety of intrapulmonary and extrapulmonary factors and is associated with high morbidity and mortality. Oxidative stress is an important part of the pathological mechanism of ALI. Ferroptosis is a mode of programmed cell death distinguished from others and characterized by iron-dependent lipid peroxidation. This article reviews the metabolic regulation of ferroptosis, its role in the pathogenesis of ALI, and the use of ferroptosis as a therapeutic target regarding the pharmacological treatment of ALI.
Collapse
Affiliation(s)
- Yuqi Wen
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yang Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Weihong Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Wenli Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Jinyan Dong
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Qingkuo Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Zhen Yu
- Jinan Family Planning Service Center, Jinan, 250014, China
| | - Hongsheng Ren
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250014, China.
| | - Hao Hao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
380
|
Eftekhar Z, Aghaei M, Saki N. DNA damage repair in megakaryopoiesis: molecular and clinical aspects. Expert Rev Hematol 2024; 17:705-712. [PMID: 39117495 DOI: 10.1080/17474086.2024.2391102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024]
Abstract
INTRODUCTION Endogenous DNA damage is a significant factor in the damage of hematopoietic cells. Megakaryopoiesis is one of the pathways of hematopoiesis that ends with the production of platelets and plays the most crucial role in hemostasis. Despite the presence of efficient DNA repair mechanisms, some endogenous lesions can lead to mutagenic alterations, disruption of pathways of hematopoiesis including megakaryopoiesis and potentially result in human diseases. AREAS COVERED The complex regulation of DNA repair mechanisms plays a central role in maintaining genomic integrity during megakaryopoiesis and influences platelet production efficiency and quality. Moreover, anomalies in DNA repair processes are involved in several diseases associated with megakaryopoiesis, including myeloproliferative disorders and thrombocytopenia. EXPERT OPINION In the era of personalized medicine, diagnosing diseases related to megakaryopoiesis can only be made with a complete assessment of their molecular aspects to provide physicians with critical molecular data for patient management and to identify the subset of patients who could benefit from targeted therapy.
Collapse
Affiliation(s)
- Zeinab Eftekhar
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Aghaei
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
381
|
Feng F, Luo R, Mu D, Cai Q. Ferroptosis and Pyroptosis in Epilepsy. Mol Neurobiol 2024; 61:7354-7368. [PMID: 38383919 DOI: 10.1007/s12035-024-04018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024]
Abstract
Epilepsy is sudden, recurrent, and transient central nervous system dysfunction caused by abnormal discharge of neurons in the brain. Ferroptosis and pyroptosis are newly discovered ways of programmed cell death. One of the characteristics of ferroptosis is the oxidative stress generated by lipid peroxides. Similarly, pyroptosis has unique pro-inflammatory properties. As both oxidative stress and neuroinflammation are significant contributors to the pathogenesis of epilepsy, increasing evidence shows that ferroptosis and pyroptosis are closely related to epilepsy. This article reviews the current comprehension of ferroptosis and pyroptosis and elucidates potential mechanisms by which ferroptosis and pyroptosis may contribute to epilepsy. In addition, we also highlight the possible interactions between ferroptosis and pyroptosis because they reportedly coexist in many diseases, and increasing studies have demonstrated the convergence of pathways between the two. This is of great significance for explaining the occurrence and development of epilepsy and provides a new therapeutic perspective for the treatment of epilepsy.
Collapse
Affiliation(s)
- Fan Feng
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Department of Pediatrics, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatrics, Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Rong Luo
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Department of Pediatrics, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatrics, Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Department of Pediatrics, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatrics, Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Qianyun Cai
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Pediatrics, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, Sichuan, China.
- Department of Pediatrics, Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
382
|
Zhang H, Liu X, Li J, Meng J, Huang W, Su X, Zhang X, Gao G, Wang X, Su H, Zhang F, Zhang T. ING5 inhibits aerobic glycolysis of lung cancer cells by promoting TIE1-mediated phosphorylation of pyruvate dehydrogenase kinase 1 at Y163. Front Med 2024; 18:878-895. [PMID: 39269568 DOI: 10.1007/s11684-024-1057-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/04/2023] [Indexed: 09/15/2024]
Abstract
Aerobic glycolysis is critical for tumor growth and metastasis. Previously, we have found that the overexpression of the inhibitor of growth 5 (ING5) inhibits lung cancer aggressiveness and epithelial-mesenchymal transition (EMT). However, whether ING5 regulates lung cancer metabolism reprogramming remains unknown. Here, by quantitative proteomics, we showed that ING5 differentially regulates protein phosphorylation and identified a new site (Y163) of the key glycolytic enzyme PDK1 whose phosphorylation was upregulated 13.847-fold. By clinical study, decreased p-PDK1Y163 was observed in lung cancer tissues and correlated with poor survival. p-PDK1Y163 represents the negative regulatory mechanism of PDK1 by causing PDHA1 dephosphorylation and activation, leading to switching from glycolysis to oxidative phosphorylation, with increasing oxygen consumption and decreasing lactate production. These effects could be impaired by PDK1Y163F mutation, which also impaired the inhibitory effects of ING5 on cancer cell EMT and invasiveness. Mouse xenograft models confirmed the indispensable role of p-PDK1Y163 in ING5-inhibited tumor growth and metastasis. By siRNA screening, ING5-upregulated TIE1 was identified as the upstream tyrosine protein kinase targeting PDK1Y163. TIE1 knockdown induced the dephosphorylation of PDK1Y163 and increased the migration and invasion of lung cancer cells. Collectively, ING5 overexpression-upregulated TIE1 phosphorylates PDK1Y163, which is critical for the inhibition of aerobic glycolysis and invasiveness of lung cancer cells.
Collapse
Affiliation(s)
- Haihua Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Xinli Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710038, China
| | - Junqiang Li
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Jin Meng
- Department of Pharmacy, the Medical Security Centre, Chinese PLA General Hospital, Beijing, 100091, China
| | - Wan Huang
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, 710038, China
| | - Xuan Su
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Xutao Zhang
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710038, China
| | - Guizhou Gao
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Xiaodong Wang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Haichuan Su
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| | - Feng Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710038, China.
| | - Tao Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
383
|
Zhong S, Wang Z, Yang J, Jiang D, Wang K. Ferroptosis-related oxaliplatin resistance in multiple cancers: Potential roles and therapeutic Implications. Heliyon 2024; 10:e37613. [PMID: 39309838 PMCID: PMC11414570 DOI: 10.1016/j.heliyon.2024.e37613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Oxaliplatin (OXA)-based therapy is effective in the treatment of multiple cancers. However, primary or acquired OXA resistance remains an emerging challenge for its clinical application. Ferroptosis is an iron-dependent mode of cell death that has been demonstrated to play an essential role in the chemoresistance of many drugs, including OXA. In particular, dysregulation of SLC7A11-GPX4, one of the major antioxidant systems of ferroptosis, was found in the OXA resistance of colorectal cancer (CRC) and hepatocellular carcinoma (HCC). In addition, Nrf2, the upstream regulator of GPX4 and many other antioxidant factors, is also involved in the OXA resistance of CRC and HCC. Inhibition of SLC7A11-GPX4 or Nrf2 by genetic deletion of pharmaceutical inhibition could significantly reverse OXA resistance. Long noncoding RNA (lncRNA) also participates in chemoresistance and ferroptosis of cancer cells. Specifically, LINC01134 promotes the recruitment of Nrf2 to the promoter of GPX4, thereby exerting transcriptional regulation of GPX4, which eventually increases the OXA sensitivity of HCC through upregulation of ferroptosis. On the other hand, a novel lncRNA DACT3-AS1 sensitizes gastric cancer cells to OXA through miR-181a-5p/sirtuin 1(SIRT1)-mediated ferroptosis. Therapies based on ferroptosis or a combination of OXA and ferroptosis enhancers could provide new therapeutic insights to overcome OXA resistance. In the present review, we present the current understanding of ferroptosis-related OXA resistance, highlight ferroptosis pathogenesis in OXA chemoresistance, and summarize available therapies that target OXA resistance by enhancing ferroptosis.
Collapse
Affiliation(s)
- Sijia Zhong
- Department of Gastrointestinal Surgery, the First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Zihan Wang
- Department of Oral Implantology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, 110122, China
| | - Jiaxi Yang
- Department of Gastrointestinal Surgery, the First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Di Jiang
- China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, China
| | - Kewei Wang
- Department of Gastrointestinal Surgery, the First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| |
Collapse
|
384
|
Hua Y, Hua WJ, Feng CC, Zhu QW. N 6-methyladenosine modification of SLC38A7 promotes cell migration, invasion, oxidative phosphorylation, and mitochondrial function in gastric cancer. J Biol Chem 2024; 300:107843. [PMID: 39357829 PMCID: PMC11555334 DOI: 10.1016/j.jbc.2024.107843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/28/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024] Open
Abstract
Solute carrier (SLC) 38 family, responsible for trans-membrane transport of neutral amino acids, plays a role in the proliferation, invasion, and metastasis of cancer cells, but its role in gastric cancer (GC) progression remains unclear. This study aimed to explore the biological effects of SLC38A7 and its regulatory mechanisms in GC. RNA expression data, tumor tissue specimens, and GC cell lines were used for bioinformatics and experimental analyses. Cell Counting Kit-8 assay, wound healing assay, and Transwell invasion assay were used to evaluate cell viability, migration, and invasion, respectively. Oxidative phosphorylation, mitochondrial membrane potential, and expression of the critical proteins in the mitochondrial respiratory chain were assayed using extracellular flux analysis, flow cytometry, and Western blot, respectively. RNA immunoprecipitation assay was used to explore the mechanisms of N6-methyladenosine (m6A) methylation. SLC38A7 was upregulated in GC tissue and cell lines. SLC38A7 silencing suppressed cell viability, migration, invasion, oxidative phosphorylation, and mitochondrial function in cancer cells. SLC38A7 overexpression had the opposite biological effects. Interactions between SLC38A7 and methyltransferase like 3 (METTL3) or insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) were detected. SLC38A7 mRNA stability was maintained by METTL3-IGF2BP2 axis in an m6A-dependent manner. Our results suggest that SLC38A7, stabilized by METTL3 and IGF2BP2-mediated m6A methylation, enhances cell viability, migration, invasion, oxidative phosphorylation, and mitochondrial function in GC, highlighting its role as a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Yi Hua
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Wei-Jun Hua
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Cun-Cheng Feng
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Qiu-Wei Zhu
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China.
| |
Collapse
|
385
|
Wang M, Xu Z, Wang Z, Xu X, Sun Y. Analysis of the mechanism of berberine against stomach carcinoma based on network pharmacology and experimental validation. Transl Cancer Res 2024; 13:4593-4607. [PMID: 39430861 PMCID: PMC11483340 DOI: 10.21037/tcr-24-668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/14/2024] [Indexed: 10/22/2024]
Abstract
Background Although the therapeutic effects of berberine have received some attention in recent years, its potential mechanisms underlying its action against stomach carcinoma (SC) remain unclear. In this study, we aimed to elucidate the mechanisms underlying the effects of berberine against SC using a network pharmacology and experimental verification approach. Methods Several publicly available databases were used to collect the targets of berberine and SC. Protein-protein interaction (PPI) network, enrichment analyses and molecular docking were performed based on the potential targets of berberine against SC. The potential clinical significance and prognostic value of the targets were predicted by using nomogram and receiver operating characteristic (ROC) analyses. Then the viability and apoptosis of SC cells treated with berberine were determined. Moreover, reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP) measurements and western blot assay were carried out to validate the predicted mechanisms. Results Seventy-six potential targets of berberine against SC were identified. The construction of PPI network enabled the identification of hub targets, such as AKT1, TP53, IL6, JUN and MAPK1. Enrichment analyses showed that berberine was involved in apoptosis, mitophagy, ROS metabolic process, AMPK and MAPK signaling pathway. The expression levels of hub targets also contributed to the clinical prognosis of patients with SC. Molecular docking revealed the possible patterns of direct interaction between berberine and target proteins, including AMPK, TP53 and MAPK1. Experimental results showed that berberine reduced SC cell viability, promoted apoptosis and ROS generation, and contributed to reductions in MMP and ATP levels. Western blot assay demonstrated that berberine increased AMPK and TP53 expression, while decreased phosphorylated-MAPK3/1 expression. Conclusions We elucidated the potential action mechanisms of berberine against SC using a network pharmacology approach. Some predicted mechanisms underlying the anti-SC effects were verified based on experimental approaches. Our findings provide a meaningful foundation for berberine as a cellular apoptosis-inducing and energy metabolism-regulating agent against SC. However, in vivo experiments and clinical studies need to be further carried out. Moreover, it is necessary to study the potential negative effects of berberine thoroughly.
Collapse
Affiliation(s)
- Meng Wang
- Department of Traditional Chinese Medicine Oncology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
- Traditional Chinese Medicine Oncology Teaching and Research Office, Department of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Zeyu Xu
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziyang Wang
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaowan Xu
- Department of Traditional Chinese Medicine Oncology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
- Traditional Chinese Medicine Oncology Teaching and Research Office, Department of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Yongning Sun
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
386
|
Guo H, Zhang L, Su H, Yang J, Lei J, Li X, Zhang S, Zhang X. Exploring tumor microenvironment in molecular subtyping and prognostic signatures in ovarian cancer and identification of SH2D1A as a key regulator of ovarian cancer carcinogenesis. Heliyon 2024; 10:e38014. [PMID: 39347397 PMCID: PMC11437944 DOI: 10.1016/j.heliyon.2024.e38014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction A deadly gynecological cancer, ovarian cancer (OV), has a poor prognosis because of late-stage diagnosis and few targeted therapies. Addressing the tumor microenvironment (TME) in solid tumors has shown promise since it is crucial in promoting cancer progression. Methods We obtained bulk RNA-seq data from TCGA-OV, GSE26712, GSE102073, and ICGC cohorts, as well as scRNA-seq data from EMTAB8107, GSE118828, GSE130000, and GSE154600 cohorts using the TISCH2 database. The ConsensusClusterPlus package was used to cluster the OV tumor tissues hierarchically to determine two molecularly different groups (C1 and C2). A total of ten different types of machine learning techniques with 101 combinations were used for prognostic model construction. Using eight TME algorithms integrated into the IOBR R package, the bulk RNA-seq dataset was analyzed. For in vitro experiments, OVCAR3 and SKOV3, two OV cell lines, were used. The migratory potential of the ovarian cancer cells was assessed using Transwell assay, while proliferation was assessed using CCK8 assay. Results Based on TME-related gene set expression, two distinct molecular subgroups (C1 and C2) were identified through consensus clustering, with C1 showing higher TME activity. Further analysis indicated that C1 had increased cancer-associated fibroblasts (CAFs), M1 macrophages, and CD8+ T cells, suggesting a more activated and pro-inflammatory TME. Drug sensitivity analysis revealed that 5-Fluorouracil might be beneficial to C1 patients. Functional differences between C1 and C2 were identified, including cell adhesion, mononuclear cell differentiation, and leukocyte migration. A machine learning model was developed to create a TME-related prognostic signature, demonstrating strong prognostic capabilities across multiple datasets. High-risk patients showed a more immune-suppressive TME and higher tumor stemness. ScRNA-seq disclosed a highly activated TME-related signature in OV. Cancer cell lines had significantly higher SH2D1A mRNA expression than normal ovarian epithelial cells. We observed that SH2D1A knockdown in 2 ovarian cancer cell lines (OVCAR3 and SKOV3) reduced migration and proliferation through a series of in-vitro experiments. Conclusion TME-associated genes were efficient in ovarian cancer molecular subtyping. A TME-based prognosis model was constructed for vigorous prognostic stratification efficacy across multiple datasets. Moreover, we identified a pivotal role of SH2D1A in promoting proliferation and migration in ovarian cancer.
Collapse
Affiliation(s)
- Hongrui Guo
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - liwen Zhang
- Department of Gynecology, The Children's Hospital of Shanxi, Taiyuan, 030001, China
| | - Huancheng Su
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jiaolin Yang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jing Lei
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaoli Li
- Department of Gynecology, The Children's Hospital of Shanxi, Taiyuan, 030001, China
| | - Sanyuan Zhang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xinglin Zhang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
387
|
Huang D, Tu Z, Karnoub AE, Wei W, Rezaeian AH. Busulfan Chemotherapy Downregulates TAF7/TNF-α Signaling in Male Germ Cell Dysfunction. Biomedicines 2024; 12:2220. [PMID: 39457533 PMCID: PMC11504710 DOI: 10.3390/biomedicines12102220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/07/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Busulfan is an FDA-approved alkylating drug used in the chemotherapy of advanced acute myeloid leukemia. The precise mechanisms by which Busulfan kills spermatogonia stem cells (SSCs) are not yet completely understood. Methods: Using a murine model, we evaluated Busulfan-induced apoptosis and DNA damage signaling between testis and ovary tissues. We executed RT-qPCR, analyzed single-nuclei RNA sequencing data and performed in situ hybridization for the localization of the gene expression in the tissues. Results: The results indicate that, in contrast to female germ cells, haploid male germ cells undergo significant apoptosis following Busulfan chemotherapy. Moreover, a gene enrichment analysis revealed that reactive oxygen species may activate the inflammatory response in part through the TNF-α/NF-κB signaling pathway. Interestingly, in the testis, the mRNA levels of TNF-α and TAF7 (TATA box-binding protein-associated factor 7) are downregulated, and testosterone levels suppressed. Mechanistically, the promoter of TNF-α has a conserved motif for binding TAF7, which is necessary for its transcriptional activation and may require further in-depth study. We next analyzed the tumorigenic function of TAF7 and revealed that it is highly overexpressed in several types of human cancers, particularly testicular germ cell tumors, and associated with poor patient survival. Therefore, we executed in situ hybridization and single-nuclei RNA sequencing, finding that less TAF7 mRNA is present in SSCs after chemotherapy. Conclusions: Thus, our data indicate a possible function of TAF7 in the regulation of SSCs and spermatogenesis following downregulation by Busulfan. These findings may account for the therapeutic effects of Busulfan and underlie its potential impact on cancer chemotherapy prognosis.
Collapse
Affiliation(s)
| | | | | | | | - Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
388
|
He C, Li Q, Wu W, Liu K, Li X, Zheng H, Lai Y. Ferroptosis-associated genes and compounds in renal cell carcinoma. Front Immunol 2024; 15:1473203. [PMID: 39399506 PMCID: PMC11466770 DOI: 10.3389/fimmu.2024.1473203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
As the main type of renal cell carcinoma (RCC), clear cell RCC (ccRCC) is often associated with the deletion or mutation of the von Hippel Lindau (VHL) gene, enhancement of glucose and lipid metabolism, and heterogeneity of the tumor microenvironment. VHL alterations in RCC cells lead to the activation of hypoxia-inducible factors and their downstream target vascular endothelial growth factor, and to the reprogramming of multiple cell death pathways and metabolic weakness, including ferroptosis, which are associated with targeted therapy or immunotherapy. The changes in biological metabolites (e.g., iron and lipids) support ferroptosis as a potential therapeutic strategy for RCC, while iron metabolism and ferroptosis regulation have been examined as anti-RCC agents in numerous studies, and various ferroptosis-related molecules have been shown to be related to the metastasis and prognosis of ccRCC. For example, glutathione peroxidase 4 and glutaminase inhibitors can inhibit pyrimidine synthesis and increase reactive oxygen species levels in VHL-deficient RCC cells. In addition, the release of damage-associated molecular patterns by tumor cells undergoing ferroptosis also mediates antitumor immunity, and immune therapy can synergize with targeted therapy or radiotherapy through ferroptosis. However, Inducing ferroptosis not only suppresses cancer, but also promotes cancer development due to its potential negative effects on anti-cancer immunity. Therefore, ferroptosis and various tumor microenviroment-related molecules may co-occur during the development and treatment of RCC, and further understanding of the interactions, core targets, and related drugs of ferroptosis may provide new combination drug strategies for RCC treatment. Here we summarize the key genes and compounds on ferroptosis and RCC in order to envision future treatment strategies and to provide sufficient information for overcoming RCC resistance through ferroptosis.
Collapse
Affiliation(s)
- Chengwu He
- Department of Urology, Shenzhen Shockwave Lithotripsy Research Institute, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Qingyi Li
- Department of Urology, Shenzhen Shockwave Lithotripsy Research Institute, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Weijia Wu
- Department of Urology, Shenzhen Shockwave Lithotripsy Research Institute, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Ke Liu
- Department of Urology, Shenzhen Shockwave Lithotripsy Research Institute, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xingwen Li
- Tibet Future Biomedicine Company Limited, Golmud, Qinghai, China
| | - Hanxiong Zheng
- Department of Urology, Shenzhen Shockwave Lithotripsy Research Institute, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yongchang Lai
- Department of Pharmaceutical Management, School of Medical Business, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
389
|
Haroun E, Lim SH, Dutta D. GBT1118, a Voxelotor Analog, Ameliorates Hepatopathy in Sickle Cell Disease. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1581. [PMID: 39459368 PMCID: PMC11509622 DOI: 10.3390/medicina60101581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: In sickle cell disease (SCD), hepatopathy is a cumulative consequence of ischemia/reperfusion (I/R) injury from a vaso-occlusive crisis, tissue inflammation, and iron overload due to blood transfusion. Hepatopathy is a major contributing factor of shortened life span in SCD patients. We hypothesized that the voxelotor, a hemoglobin allosteric modifier, ameliorates sickle hepatopathy. Materials and Methods: Townes SCD mice and their controls were treated with either chow containing GBT1118, a voxelotor analog, or normal chow. We evaluated inflammation, fibrosis, apoptosis and ferroptosis in their livers using qPCR, ELISA, histology, and immunohistochemistry. Results: GBT1118 treatment resulted in reduced hemolysis, iron overload and inflammation in the liver of SCD mice. There were significant reductions in the liver enzyme levels and bile acids. Furthermore, GBT1118-treated mice exhibited reduced apoptosis, necrosis, and fibrosis. Increased ferroptosis as evident from elevated 4-hydroxynonenal (4-HNE) staining, malondialdehyde (MDA) levels, and expression of Ptgs2 and Slc7a11 mRNAs, were also significantly reduced after GBT1118 treatment. To explain the increased ferroptosis, we evaluated iron homeostasis markers in livers. SCD mice showed decreased expression of heme oxygenase-1, ferritin, hepcidin, and ferroportin mRNA levels. GBT1118 treatment significantly increased expressions of these genes. Conclusions: Our results suggest GBT1118 treatment in SCD confers the amelioration of sickle hepatopathy by reducing inflammation, fibrosis, apoptosis, iron overload and ferroptosis.
Collapse
Affiliation(s)
| | | | - Dibyendu Dutta
- Division of Hematology and Oncology, Department of Medicine, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; (E.H.); (S.H.L.)
| |
Collapse
|
390
|
Bhat AA, Afzal M, Moglad E, Thapa R, Ali H, Almalki WH, Kazmi I, Alzarea SI, Gupta G, Subramaniyan V. lncRNAs as prognostic markers and therapeutic targets in cuproptosis-mediated cancer. Clin Exp Med 2024; 24:226. [PMID: 39325172 PMCID: PMC11427524 DOI: 10.1007/s10238-024-01491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as crucial regulators in various cellular processes, including cancer progression and stress response. Recent studies have demonstrated that copper accumulation induces a unique form of cell death known as cuproptosis, with lncRNAs playing a key role in regulating cuproptosis-associated pathways. These lncRNAs may trigger cell-specific responses to copper stress, presenting new opportunities as prognostic markers and therapeutic targets. This paper delves into the role of lncRNAs in cuproptosis-mediated cancer, underscoring their potential as biomarkers and targets for innovative therapeutic strategies. A thorough review of scientific literature was conducted, utilizing databases such as PubMed, Google Scholar, and ScienceDirect, with search terms like 'lncRNAs,' 'cuproptosis,' and 'cancer.' Studies were selected based on their relevance to lncRNA regulation of cuproptosis pathways and their implications for cancer prognosis and treatment. The review highlights the significant contribution of lncRNAs in regulating cuproptosis-related genes and pathways, impacting copper metabolism, mitochondrial stress responses, and apoptotic signaling. Specific lncRNAs are potential prognostic markers in breast, lung, liver, ovarian, pancreatic, and gastric cancers. The objective of this article is to explore the role of lncRNAs as potential prognostic markers and therapeutic targets in cancers mediated by cuproptosis.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al Kharj, Saudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
391
|
Hernández-Carralero E, Quinet G, Freire R. ATXN3: a multifunctional protein involved in the polyglutamine disease spinocerebellar ataxia type 3. Expert Rev Mol Med 2024; 26:e19. [PMID: 39320846 PMCID: PMC11440613 DOI: 10.1017/erm.2024.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/24/2024] [Accepted: 03/15/2024] [Indexed: 09/26/2024]
Abstract
ATXN3 is a ubiquitin hydrolase (or deubiquitinase, DUB), product of the ATXN3 gene, ubiquitously expressed in various cell types including peripheral and neuronal tissues and involved in several cellular pathways. Importantly, the expansion of the CAG trinucleotides within the ATXN3 gene leads to an expanded polyglutamine domain in the encoded protein, which has been associated with the onset of the spinocerebellar ataxia type 3, also known as Machado-Joseph disease, the most common dominantly inherited ataxia worldwide. ATXN3 has therefore been under intensive investigation for decades. In this review, we summarize the main functions of ATXN3 in proteostasis, DNA repair and transcriptional regulation, as well as the emerging role in regulating chromatin structure. The mentioned molecular functions of ATXN3 are also reviewed in the context of the pathological expanded form of ATXN3.
Collapse
Affiliation(s)
- Esperanza Hernández-Carralero
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Grégoire Quinet
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
| | - Raimundo Freire
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Faculty of Health Sciences, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
392
|
Wang J, Zhuang H, Yang X, Guo Z, Zhou K, Liu N, An Y, Chen Y, Zhang Z, Wang M, Chen J, Li C, Chang X. Exploring the Mechanism of Ferroptosis Induction by Sappanone A in Cancer: Insights into the Mitochondrial Dysfunction Mediated by NRF2/xCT/GPX4 Axis. Int J Biol Sci 2024; 20:5145-5161. [PMID: 39430236 PMCID: PMC11488586 DOI: 10.7150/ijbs.96748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/21/2024] [Indexed: 10/22/2024] Open
Abstract
Non-small cell lung cancer (NSCLC), a major subtype of lung cancer, encompasses squamous cell carcinoma, adenocarcinoma, and large cell carcinoma. Compared to small cell lung cancer, NSCLC cells grow and divide more slowly, and their metastasis occurs at a later stage. Currently, chemotherapy is the primary treatment for this disease. Sappanone A (SA) is a flavonoid compound extracted from the plant Caesalpinia sappan, known for its antitumor, redox-regulating, and anti-inflammatory properties. Recent studies have investigated the interaction of SA with mitochondrial pathways in regulating cell death through the Nrf-2/GPX-4/xCT axis. This study specifically explores the mechanism by which SA affects mitochondrial morphology and structure through the regulation of mitophagy and mitochondrial biogenesis in tumor cells. The study primarily utilizes second-generation transcriptomic sequencing data and molecular docking techniques to elucidate the role of SA in regulating programmed cell death in tumor cells. The omics results indicate that SA treatment significantly targets genes involved in oxidative phosphorylation, mitophagy, mitochondrial dynamics, and oxidative stress. Further findings confirmed that the Nrf-2/GPX4/xCT pathway serves as a crucial target of SA in the treatment of NSCLC. Knockdown of Nrf-2 (si-Nrf-2) and Nrf-2 overexpression (ad-Nrf-2) were shown to modulate the therapeutic efficacy of SA to varying degrees. Additionally, modifications to the GPX4/xCT genes significantly affected the regulatory effects of SA on mitochondrial autophagy, biogenesis, and energy metabolism. These regulatory mechanisms may be mediated through the caspase pathway and ferroptosis-related signaling. Molecular biology experiments have demonstrated that SA intervention further inhibits the phosphorylation of FUNDC1 at Tyr18 and downregulates TOM20 expression. SA treatment was found to reduce the expression of PGC1α, Nrf-1, and Tfam, resulting in a decrease in mitochondrial respiration and energy metabolism. Overexpression of Nrf-2 was shown to counteract the regulatory effects of SA on mitophagy and mitochondrial biogenesis. Confocal microscopy experiments further revealed that SA treatment increases mitochondrial fragmentation, subsequently inducing mitochondrial pathway-mediated programmed cell death. However, genetic modification of the Nrf-2/GPX4/xCT pathway significantly altered the regulatory effects of SA on tumor cells. In conclusion, SA has been identified as a promising therapeutic agent for NSCLC. The mitochondrial pathway-mediated apoptosis and ferroptosis may represent key mechanisms in regulating tumor cell death. Targeting the Nrf-2/GPX-4/xCT axis offers a novel therapeutic approach for maintaining mitochondrial homeostasis within the cellular microenvironment.
Collapse
Affiliation(s)
- Junyan Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Haowen Zhuang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xiaocui Yang
- The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, 110032, China
| | - Zhijiang Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Kainan Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Nanyang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang An
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110032, China
| | - Ye Chen
- Xianning Medical College, Hubei University of Science & Technology, Xianning, 437000, China
| | - Zhongzheng Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Mengyuan Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jinhong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Chun Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
393
|
Guo Z, Tian Y, Liu N, Chen Y, Chen X, Yuan G, Chang A, Chang X, Wu J, Zhou H. Mitochondrial Stress as a Central Player in the Pathogenesis of Hypoxia-Related Myocardial Dysfunction: New Insights. Int J Med Sci 2024; 21:2502-2509. [PMID: 39439461 PMCID: PMC11492880 DOI: 10.7150/ijms.99359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Hypoxic injury is a critical pathological factor in the development of various cardiovascular diseases, such as congenital heart disease, myocardial infarction, and heart failure. Mitochondrial quality control is essential for protecting cardiomyocytes from hypoxic damage. Under hypoxic conditions, disruptions in mitochondrial homeostasis result in excessive reactive oxygen species (ROS) production, imbalances in mitochondrial dynamics, and initiate pathological processes including oxidative stress, inflammatory responses, and apoptosis. Targeted interventions to enhance mitochondrial quality control, such as coenzyme Q10 and statins, have shown promise in mitigating hypoxia-induced mitochondrial dysfunction. These treatments offer potential therapeutic strategies for hypoxia-related cardiovascular diseases by regulating mitochondrial fission and fusion, restoring mitochondrial biogenesis, reducing ROS production, and promoting mitophagy.
Collapse
Affiliation(s)
- Zhijiang Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yingjie Tian
- Beijing University of Chinese Medicine, Beijing, 100028, China
| | - Nanyang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ye Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaohan Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Guoxing Yuan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - An Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jie Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
394
|
Chang X, Wu D, Gao X, Lin J, Tan Y, Wang J, Zhu H, Zhou H. BuyangHuanwu Decoction alleviates Endothelial Cell Apoptosis and Coronary Microvascular Dysfunction via Regulation of the MAPKK4/p38 Signaling Axis. Int J Med Sci 2024; 21:2464-2479. [PMID: 39439466 PMCID: PMC11492876 DOI: 10.7150/ijms.98183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/03/2024] [Indexed: 10/25/2024] Open
Abstract
MAPKK4 has been implicated in the pathological mechanisms underlying myocardial and vascular injury, specifically influencing endothelial cell damage and programmed cell death via subcellular pathways. Nevertheless, the regulatory role of MAPKK4 in coronary microvascular injury following myocardial infarction remains unconfirmed, and the exploration of targeted mitochondrial protective therapeutic agents remains unaddressed. In light of this gap, we established a MAPKK4 gene-modified mouse model of ischemia-reperfusion injury and employed Buyang Huanwu decoction (BYHW), a traditional cardiovascular therapeutic formula, to assess its efficacy in treating coronary microvascular injury post-ischemia-reperfusion. The study aimed to elucidate the mechanism by which BYHW mitigates coronary microvascular injury induced by ischemia-reperfusion through the attenuation of endothelial cell apoptosis. Experimental outcomes revealed that high-dose BYHW significantly ameliorated coronary microvascular injury post-ischemia-reperfusion, restoring the structural integrity of the coronary microvasculature and reducing inflammation and oxidative stress. Contrarily, in transgenic mice overexpressing MAPKK4, BYHW intervention failed to attenuate microvascular inflammation and oxidative stress. To further investigate, we simulated hypoxia/reoxygenation injury in vascular endothelial cells using a MAPKK4-related cellular gene modification model. The results indicated that BYHW attenuates inflammatory damage and enhances the viability of vascular endothelial cells following hypoxic stress, inhibiting apoptosis via the mitochondrial pathway. However, overexpression of MAPKK4/p38 negated the therapeutic effects of BYHW, showing no impact on endothelial cell apoptosis and oxidative stress under hypoxic conditions. Molecular interaction studies confirmed that the active components of BYHW, Astragaloside IV and Ligustrazine, interact with the MAPKK4/P38 axis. In vitro experiments further suggested that the interaction between MAPKK4 and P38 play a crucial role in the ability of BYHW to inhibit apoptosis in coronary microvascular endothelial cells. Therapeutically, MAPKK4 may potentiate the apoptotic pathway in microvascular endothelial cells by modulating downstream P38 expression and phosphorylation, thereby exacerbating ischemia-reperfusion-induced coronary microvascular endothelial injury. From an in vivo perspective, the transgenic overexpression of MAPKK4 and P38 inhibited the microvascular protective effects of BYHW. These findings collectively underscore the significance of the MAPKK4-P38 axis in the protection of coronary microvascular endothelial cells.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Dan Wu
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xin Gao
- Outpatient Department of the Sixth Medical Center of the PLA General Hospital, China
| | - Jianguo Lin
- The First Affliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Tan
- Beijing University of Chinese Medicine, Beijing, 100028, China
| | - Junyan Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Hang Zhu
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
395
|
Deng Q, Lv R, Zou T. The effects of the ketogenic diet on cancer treatment: a narrative review. Eur J Cancer Prev 2024:00008469-990000000-00175. [PMID: 39365252 DOI: 10.1097/cej.0000000000000918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Despite significant advances in therapy, cancer remains the top cause of death in parts of the globe. For many types of cancer, the typical treatment is a combination of surgery, chemotherapy, and radiotherapy. However, this conventional treatment is not successful on its own. As a consequence, innovative approaches that improve treatment efficacy are urgently needed. The ketogenic diet is a high-fat, moderate protein, and low-carbohydrate diet that appears to sensitize most cancers to conventional therapies by exploiting cancer cells' altered metabolism, making it an effective adjuvant cancer treatment alternative. This diet could decrease glucose metabolism while enhancing lipid metabolism, interfering with the Warburg effect, and inhibiting tumor cell proliferation. The anticancer impact of ketogenic diet has been established in numerous animal trials and clinical investigations on a wide range of tumor types, including glioblastoma, pancreatic cancer, head and neck cancer, breast cancer, invasive rectal cancer, ovarian cancer, and endometrial cancer. In this review, we discussed the various types of ketogenic diets, the mechanism of action for ketogenic diet as a cancer therapy, and the data gathered from continuing preclinical and clinical studies, intending to establish a solid theoretical foundation for future research.
Collapse
Affiliation(s)
- Qingxuan Deng
- Dongguan Key Laboratory of Environmental Medicine, Institute of Medical Systems Biology, School of Public Health
| | - Ruyue Lv
- Dongguan Key Laboratory of Environmental Medicine, Institute of Medical Systems Biology, School of Public Health
| | - Tangbin Zou
- Dongguan Key Laboratory of Environmental Medicine, Institute of Medical Systems Biology, School of Public Health
- Dongguan Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| |
Collapse
|
396
|
Xu K, Wei G, Qi W, Ye C, Liu Y, Wang S, Yang F, Tang J. CircPOLA2 sensitizes non-small cell lung cancer cells to ferroptosis and suppresses tumorigenesis via the Merlin-YAP signaling pathway. iScience 2024; 27:110832. [PMID: 39310771 PMCID: PMC11416675 DOI: 10.1016/j.isci.2024.110832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/14/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
Circular RNAs (circRNAs) have been implicated in the tumorigenesis of non-small cell lung cancer (NSCLC). Ferroptosis is considered a mechanism to suppress tumorigenesis. Herein, we identified a downregulated circRNA, circPOLA2 (hsa_circ_0004291), in NSCLC tissues and found that it was correlated with advanced clinical stage in patients. Nuclear-cytoplasmic fractionation assays and FISH assays confirmed that circPOLA2 was predominantly localized in the cytoplasm. Overexpression of circPOLA2 promoted lipid peroxidation and ferroptosis in NSCLC cells, thereby inhibiting cell proliferation and migration, while knockdown of circPOLA2 exerted the opposite effects. Mechanistically, circPOLA2 interacted with Merlin, a critical regulator of the Hippo pathway, and restricted Merlin phosphorylation at S518, leading to the activation of the Hippo pathway. In addition, circPOLA2 enhanced ferroptosis in NSCLC cells by activating the Hippo pathway. Together, circPOLA2 sensitizes cells to ferroptosis and suppresses tumorigenesis in NSCLC by facilitating Merlin-mediated activation of the Hippo signaling pathway.
Collapse
Affiliation(s)
- Kaiying Xu
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, People's Republic of China
| | - Guangxia Wei
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, People's Republic of China
| | - Wanghong Qi
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, People's Republic of China
| | - Chunlin Ye
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, People's Republic of China
| | - Yangyang Liu
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, People's Republic of China
| | - Shijiang Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, People's Republic of China
| | - Feng Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, People's Republic of China
| | - Jian Tang
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, People's Republic of China
- National Regional Center for Respiratory Medicine, China Japan Friendship Jiangxi Hospital, Nanchang 330000, People's Republic of China
| |
Collapse
|
397
|
Yadav V, Singh T, Sharma D, Garg VK, Chakraborty P, Ghatak S, Satapathy SR. Unraveling the Regulatory Role of HuR/microRNA Axis in Colorectal Cancer Tumorigenesis. Cancers (Basel) 2024; 16:3183. [PMID: 39335155 PMCID: PMC11430344 DOI: 10.3390/cancers16183183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Colorectal cancer (CRC) remains a significant global health burden with high incidence and mortality. MicroRNAs (miRNAs) are small non-protein coding transcripts, conserved throughout evolution, with an important role in CRC tumorigenesis, and are either upregulated or downregulated in various cancers. RNA-binding proteins (RBPs) are known as essential regulators of miRNA activity. Human antigen R (HuR) is a prominent RBP known to drive tumorigenesis with a pivotal role in CRC. In this review, we discuss the regulatory role of the HuR/miRNA axis in CRC. Interestingly, miRNAs can directly target HuR, altering its expression and activity. However, HuR can also stabilize or degrade miRNAs, forming complex feedback loops that either activate or block CRC-associated signaling pathways. Dysregulation of the HuR/miRNA axis contributes to CRC initiation and progression. Additionally, HuR-miRNA regulation by other small non-coding RNAs, circular RNA (circRNAs), or long-non-coding RNAs (lncRNAs) is also explored here. Understanding this HuR-miRNA interplay could reveal novel biomarkers with better diagnostic or prognostic accuracy.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Lund University, 221 00 Malmö, Sweden;
| | - Tejveer Singh
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, University of Delhi, New Delhi 110021, India; (T.S.); (D.S.)
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS-DRDO), New Delhi 110054, India
| | - Deepika Sharma
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, University of Delhi, New Delhi 110021, India; (T.S.); (D.S.)
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, Chandigarh University, Gharuan, Mohali 140413, Punjab, India;
| | - Payel Chakraborty
- Amity Institute of Biotechnology, Amity University Kolkata, Kolkata 700135, West Bengal, India; (P.C.); (S.G.)
| | - Souvik Ghatak
- Amity Institute of Biotechnology, Amity University Kolkata, Kolkata 700135, West Bengal, India; (P.C.); (S.G.)
| | - Shakti Ranjan Satapathy
- Department of Translational Medicine, Clinical Research Centre, Lund University, 221 00 Malmö, Sweden;
| |
Collapse
|
398
|
Xu W, Sang S, Wang J, Guo S, Zhang X, Zhou H, Chen Y. Identification of telomere-related lncRNAs and immunological analysis in ovarian cancer. Front Immunol 2024; 15:1452946. [PMID: 39355254 PMCID: PMC11442270 DOI: 10.3389/fimmu.2024.1452946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/26/2024] [Indexed: 10/03/2024] Open
Abstract
Background Ovarian cancer (OC) is a global malignancy characterized by metastatic invasiveness and recurrence. Long non-coding RNAs (lncRNAs) and Telomeres are closely connected with several cancers, but their potential as practical prognostic markers in OC is less well-defined. Methods Relevant mRNA and clinical data for OC were sourced from The Cancer Genome Atlas (TCGA) database. The telomere-related lncRNAs (TRLs) prognostic model was established by univariate/LASSO/multivariate regression analyses. The effectiveness of the TRLs model was evaluated and measured via the nomogram. Additionally, immune infiltration, tumor mutational load (TMB), and drug sensitivity were evaluated. We validated the expression levels of prognostic genes. Subsequently, PTPRD-AS1 knockdown was utilized to perform the CCK8 assay, colony formation assay, transwell assay, and wound healing assay of CAOV3 cells. Results A six-TRLs prognostic model (PTPRD-AS1, SPAG5-AS1, CHRM3-AS2, AC074286.1, FAM27E3, and AC018647.3) was established, which can effectively predict patient survival rates and was successfully validated using external datasets. According to the nomogram, the model could effectively predict prognosis. Furthermore, we detected the levels of regulatory T cells and M2 macrophages were comparatively higher in the high-risk TRLs group, but the levels of activated CD8 T cells and monocytes were the opposite. Finally, the low-risk group was more sensitive to anti-cancer drugs. The mRNA levels of PTPRD-AS1, SPAG5-AS1, FAM27E3, and AC018647.3 were significantly over-expressed in OC cell lines (SKOV3, A2780, CAOV3) in comparison to normal IOSE-80 cells. AC074286.1 were over-expressed in A2780 and CAOV3 cells and CHRM3-AS2 only in A2780 cells. PTPRD-AS1 knockdown decreased the proliferation, cloning, and migration of CAOV3 cells. Conclusion Our study identified potential biomarkers for the six-TRLs model related to the prognosis of OC.
Collapse
Affiliation(s)
- Weina Xu
- Department of TCM, Zhoujiadu Community Health Service of Shanghai Pudong New Area, Shanghai, China
| | - Shuliu Sang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Wang
- Department of TCM, Zhoujiadu Community Health Service of Shanghai Pudong New Area, Shanghai, China
| | - Shanshan Guo
- Department of Gynecology, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Zhang
- Department of Gynecology, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hailun Zhou
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yijia Chen
- Department of Gynecology, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
399
|
Li L, Xiao C, Liu H, Chen S, Tang Y, Zhou H, Jiang G, Tian J. A Circular Network of Coregulated L-Threonine and L-Tryptophan Metabolism Dictates Acute Lower Limb Ischemic Injury. Int J Med Sci 2024; 21:2402-2413. [PMID: 39310266 PMCID: PMC11413896 DOI: 10.7150/ijms.102177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024] Open
Abstract
Lower limb ischemia is characterized by reduced arterial perfusion in the lower limbs, leading to tissue ischemia and cell death. It is primarily caused by thrombosis and the rupture of arterial plaques, resulting in damage to ischemic muscle tissues. Metabolic processes are crucial in its development. Herein we combined single-cell data with metabolomics data to explore the pathways and mechanisms influencing lower limb ischemia. We analyzed single-cell and metabolomics data. In single-cell analysis, we identified different cell subpopulations and key regulatory genes, and biological enrichment analysis was performed to understand their functions and relationships. For metabolomics, mass spectrometry and chromatography techniques were employed to analyze metabolites in clinical samples. We performed differential analysis, correlation analysis, and Mendelian randomization to determine the relationships between key metabolites and genes. Nebl, Dapl1, Igfbp4, Lef1, Klrd1, Ciita, Il17f, Cd8b1, Il17a, Cd180, Il17re, Trim7, and Slc6a19 were identified to play a crucial role in lower limb ischemia. Important metabolites included L-threonine and L-tryptophan. The metabolism of L-threonine and L-tryptophan is linked to lower limb ischemia and thrombosis. B0AT1, encoded by SLC6A19, is closely related to these metabolites and appears to play a key role in lower limb ischemia development. Our analysis revealed the roles of key genes and metabolites in lower limb ischemia. These findings enhance our understanding of the pathogenesis of lower limb ischemia and provide new insights into its prevention and treatment.
Collapse
Affiliation(s)
- Liheng Li
- Department of Interventional Radiology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
| | - Chengjiang Xiao
- Department of Interventional Radiology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
| | - Hao Liu
- Department of Interventional Radiology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
| | - Siliang Chen
- Department of Interventional Radiology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
| | - Yinhong Tang
- Department of Interventional Radiology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
| | - Hao Zhou
- Xianning Medical College, Hubei University of Science & Technology, Xianning 437000, China
| | - Guihua Jiang
- Department of Radiography, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
| | - Junzhang Tian
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
- Department of Radiography, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
| |
Collapse
|
400
|
Huang H, Lin Y, Xin J, Sun N, Zhao Z, Wang H, Duan L, Zhou Y, Liu X, Fang J, Jing B, Pan K, Zeng Y, Zeng D, Li H, Ma H, Bai Y, Wei L, Ni X. Fluoride exposure-induced gut microbiota alteration mediates colonic ferroptosis through N 6-methyladenosine (m 6A) mediated silencing of SLC7A11. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116816. [PMID: 39096685 DOI: 10.1016/j.ecoenv.2024.116816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
Fluoride exposure is widespread worldwide and poses a significant threat to organisms, particularly to their gastrointestinal tracts. However, due to limited knowledge of the mechanism of fluoride induced intestinal injury, it has been challenging to develop an effective treatment. To address this issue, we used a series of molecular biology in vitro and in vivo experiments. NaF triggered m6A mediated ferroptosis to cause intestinal damage. Mechanistically, NaF exposure increased the m6A level of SLC7A11 mRNA, promoted YTHDF2 binding to m6A-modified SLC7A11 mRNA, drove the degradation of SLC7A11 mRNA, and led to a decrease in its protein expression, which eventually triggers ferroptosis. Moreover, NaF aggravated ferroptosis of the colon after antibiotics destroyed the composition of gut microbiota. 16 S rRNA sequencing and SPEC-OCCU plots, Zi-Pi relationships, and Spearman correlation coefficients verified that Lactobacillus murinus (ASV54, ASV58, and ASV82) plays a key role in the response to NaF-induced ferroptosis. Collectively, NaF-induced gut microbiota alteration mediates severe intestinal cell injury by inducing m6A modification-mediated ferroptosis. Our results highlight a key mechanism of the gut in response to NaF exposure and suggest a valuable theoretical basis for its prevention and treatment.
Collapse
Affiliation(s)
- Haonan Huang
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu Lin
- Department of Gastroenterology, Southern Medical University Hospital of Integrative Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Jinge Xin
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ning Sun
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhifang Zhao
- Department of Gastroenterology, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, China
| | - Hesong Wang
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lixiao Duan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yanxi Zhou
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xingmei Liu
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jing Fang
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Jing
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hao Li
- Plateau Brain Science Research Center, Tibet University, Lhasa, Tibet 850000, China
| | - Hailin Ma
- Plateau Brain Science Research Center, Tibet University, Lhasa, Tibet 850000, China
| | - Yang Bai
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Limin Wei
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China.
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|