401
|
Kurumizaka H, Wolffe AP. Sin mutations of histone H3: influence on nucleosome core structure and function. Mol Cell Biol 1997; 17:6953-69. [PMID: 9372928 PMCID: PMC232553 DOI: 10.1128/mcb.17.12.6953] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Sin mutations in Saccharomyces cerevisiae alleviate transcriptional defects that result from the inactivation of the yeast SWVI/SNF complex. We have investigated the structural and functional consequences for the nucleosome of Sin mutations in histone H3. We directly test the hypothesis that mutations in histone H3 leading to a SWI/SNF-independent (Sin) phenotype in yeast lead to nucleosomal destabilization. In certain instances this is shown to be true; however, nucleosomal destabilization does not always occur. Topoisomerase I-mediated relaxation of minichromosomes assembled with either mutant histone H3 or wild-type H3 together with histones H2A, H2B, and H4 indicates that DNA is constrained into nucleosomal structures containing either mutant or wild-type proteins. However, nucleosomes containing particular mutant H3 molecules (R116-H and T118-I) are more accessible to digestion by micrococcal nuclease and do not constrain DNA in a precise rotational position, as revealed by digestion with DNase I. This result establishes that Sin mutations in histone H3 located close to the dyad axis can destabilize histone-DNA contacts at the periphery of the nucleosome core. Other nucleosomes containing a distinct mutant H3 molecule (E105-K) associated with a Sin phenotype show very little change in nucleosome structure and stability compared to wild-type nucleosomes. Both mutant and wild-type nucleosomes continue to restrict the binding of either TATA-binding protein/transcription factor IIA (TFIIA) or the RNA polymerase III transcription machinery. Thus, different Sin mutations in histone H3 alter the stability of histone-DNA interactions to various extents in the nucleosome while maintaining the fundamental architecture of the nucleosome and contributing to a common Sin phenotype.
Collapse
Affiliation(s)
- H Kurumizaka
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, Bethesda, Maryland 20892-5431, USA
| | | |
Collapse
|
402
|
Czarnota GJ, Bazett-Jones DP, Mendez E, Allfrey VG, Ottensmeyer FP. High resolution microanalysis and three-dimensional nucleosome structure associated with transcribing chromatin. Micron 1997; 28:419-31. [PMID: 9519470 DOI: 10.1016/s0968-4328(97)00050-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The nucleosome is the ubiquitous and fundamental DNA-protein complex of the eukaryotic chromosome, participating in the packaging of DNA and in the regulation of gene expression. Biophysical studies have implicated changes in nucleosome structure from chromatin that is quiescent to active in transcription. Since DNA within the nucleosome contains a high concentration of phosphorus whereas histone proteins do not, the nucleosome structure is amenable to microanalytical electron energy loss mapping of phosphorus to delineate the DNA within the protein-nucleic acid particle. Nucleosomes associated with transcriptionally active genes were separated from nucleosomes associated with quiescent genes using mercury-affinity chromatography. The three-dimensional image reconstruction methods for the total nucleosome structure and for the 3D DNA-phosphorus distribution combined quaternion-assisted angular reconstitution of sets of single particles at random orientations and electron spectroscopic imaging. The structure of the active nucleosome has the conformation of an open clam-shell, C- or U-shaped in one view, elongated in another, and exhibits a protein asymmetry. A three-dimensional phosphorus map reveals a conformational change in nucleosomal DNA compared to DNA in the canonical nucleosome structure. It indicates an altered superhelicity and is consistent with unfolding of the particle. The results address conformational changes of the nucleosome and provide a direct structural linkage to biochemical and physiological changes which parallel gene expression.
Collapse
Affiliation(s)
- G J Czarnota
- Department of Medical Biophysics, University of Toronto, Canada
| | | | | | | | | |
Collapse
|
403
|
Mizuguchi G, Tsukiyama T, Wisniewski J, Wu C. Role of nucleosome remodeling factor NURF in transcriptional activation of chromatin. Mol Cell 1997; 1:141-50. [PMID: 9659911 DOI: 10.1016/s1097-2765(00)80015-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The Drosophila nucleosome remodeling factor (NURF) is a protein complex of four subunits that assists transcription factor-mediated perturbation of nucleosomes in an ATP-dependent manner. We have investigated the role of NURF in activating transcription from a preassembled chromatin template and have found that NURF is able to facilitate transcription mediated by a GAL4 derivative carrying both a DNA binding and an activator domain. Interestingly, once nucleosome remodeling by the DNA binding factor is accomplished, a high level of NURF activity is not continuously required for recruitment of the general transcriptional machinery and transcription for at least 100 nucleotides. Our results provide direct evidence that NURF is able to assist gene activation in a chromatin context, and identify a stage of NURF dependence early in the process leading to transcriptional initiation.
Collapse
Affiliation(s)
- G Mizuguchi
- Laboratory of Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | | | | | |
Collapse
|
404
|
Abstract
Promoter-proximal pausing during transcriptional elongation is an important way of regulating many diverse loci, including the human hsp70 gene. Pausing of RNA polymerase can be enhanced by chromatin structure. We demonstrate that activation of hsp70 leads to disruption of transcribed chromatin in front of RNA polymerase. In vivo, disruption of chromatin in the first 400 bp of the transcribed region of hsp70 following heat shock is resistant to the transcriptional inhibitor alpha-amanitin. Disruption of chromatin farther downstream also occurs following activation but is sensitive to alpha-amanitin, suggesting that polymerase movement is needed to disrupt distal portions of the hsp70 gene. In vitro, disruption of transcribed chromatin is dependent on the presence of the human heat shock factor 1 (HSF1) activation domains. These experiments demonstrate that HSF1 can direct disruption of chromatin in transcribed regions. We suggest that this is one of the mechanisms used by HSF1 to facilitate transcriptional elongation.
Collapse
Affiliation(s)
- S A Brown
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
405
|
Logie C, Peterson CL. Catalytic activity of the yeast SWI/SNF complex on reconstituted nucleosome arrays. EMBO J 1997; 16:6772-82. [PMID: 9362491 PMCID: PMC1170281 DOI: 10.1093/emboj/16.22.6772] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A novel, quantitative nucleosome array assay has been developed that couples the activity of a nucleosome 'remodeling' activity to restriction endonuclease activity. This assay has been used to determine the kinetic parameters of ATP-dependent nucleosome disruption by the yeast SWI/SNF complex. Our results support a catalytic mode of action for SWI/SNF in the absence of nucleosome targeting. In this quantitative assay SWI/SNF and ATP lead to a 100-fold increase in nucleosomal DNA accessibility, and initial rate measurements indicate that the complex can remodel one nucleosome every 4.5 min on an 11mer nucleosome array. In contrast to SWI/SNF action on mononucleosomes, we find that the SWI/SNF remodeling reaction on a nucleosome array is a highly reversible process. This result suggests that recovery from SWI/SNF action involves interactions among nucleosomes. The biophysical properties of model nucleosome arrays, coupled with the ease with which homogeneous arrays can be reconstituted and the DNA accessibility analyzed, makes the described array system generally applicable for functional analysis of other nucleosome remodeling enzymes, including histone acetyltransferases.
Collapse
Affiliation(s)
- C Logie
- Program in Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, Worcester, MA 01605, USA
| | | |
Collapse
|
406
|
Affiliation(s)
- C Wu
- Laboratory of Molecular Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892-4255, USA.
| |
Collapse
|
407
|
Bhattacharyya N, Dey A, Minucci S, Zimmer A, John S, Hager G, Ozato K. Retinoid-induced chromatin structure alterations in the retinoic acid receptor beta2 promoter. Mol Cell Biol 1997; 17:6481-90. [PMID: 9343411 PMCID: PMC232501 DOI: 10.1128/mcb.17.11.6481] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transcription of the retinoic acid receptor beta2 (RARbeta2) gene is induced by retinoic acid (RA) in mouse P19 embryonal carcinoma (EC) cells. Here we studied RA-induced chromatin structure alterations in the endogenous RARbeta2 promoter and in an integrated, multicopy RARbeta2 promoter in EC cells. RA markedly increased restriction site accessibility within the promoter, including a site near the RA responsive element (RARE) to which the nuclear receptor retinoid X receptor (RXR)-RAR heterodimer binds. These changes coincided with RA-induced alterations in the DNase I hypersensitivity pattern in and around the promoter. These changes became undetectable upon removal of RA, which coincided with the extinction of transcription. Analyses with receptor-selective ligands and an antagonist showed that increase in restriction site accessibility correlates with transcriptional activation, which parallels the RA-induced in vivo footprint of the promoter. Despite these changes, the micrococcal nuclease digestion profile of this promoter was not altered by RA. These results indicate that concurrent with the binding of the RXR-RAR heterodimer to the RARE, the local chromatin structure undergoes dynamic, reversible changes in and around the promoter without globally affecting the nucleosomal organization.
Collapse
Affiliation(s)
- N Bhattacharyya
- Laboratory of Molecular Growth and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
408
|
Smith CL, Hager GL. Transcriptional regulation of mammalian genes in vivo. A tale of two templates. J Biol Chem 1997; 272:27493-6. [PMID: 9346875 DOI: 10.1074/jbc.272.44.27493] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- C L Smith
- Laboratory of Receptor Biology and Gene Expression, NCI, National Institutes of Health, Bethesda, Maryland 20892-5055, USA
| | | |
Collapse
|
409
|
Gaillard PHL, Moggs JG, Roche DM, Quivy JP, Becker PB, Wood RD, Almouzni G. Initiation and bidirectional propagation of chromatin assembly from a target site for nucleotide excision repair. EMBO J 1997; 16:6281-9. [PMID: 9321407 PMCID: PMC1326312 DOI: 10.1093/emboj/16.20.6281] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To restore full genomic integrity in a eukaryotic cell, DNA repair processes have to be coordinated with the resetting of nucleosomal organization. We have established a cell-free system using Drosophila embryo extracts to investigate the mechanism linking de novo nucleosome formation to nucleotide excision repair (NER). Closed-circular DNA containing a uniquely placed cisplatin-DNA adduct was used to follow chromatin assembly specifically from a site of NER. Nucleosome formation was initiated from a target site for NER. The assembly of nucleosomes propagated bidirectionally, creating a regular nucleosomal array extending beyond the initiation site. Furthermore, this chromatin assembly was still effective when the repair synthesis step in the NER process was inhibited.
Collapse
|
410
|
Wilkins RC, Lis JT. Dynamics of potentiation and activation: GAGA factor and its role in heat shock gene regulation. Nucleic Acids Res 1997; 25:3963-8. [PMID: 9321643 PMCID: PMC147008 DOI: 10.1093/nar/25.20.3963] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
GAGA factor (GAF) binds to specific DNA sequences and participates in a complex spectrum of chromosomal activities. Products of the Trithorax-like locus (Trl), which encodes multiple GAF isoforms, are required for homeotic gene expression and are essential for Drosophila development. While homozygous null mutations in Trl are lethal, heterozygotes display enhanced position effect variegation (PEV) indicative of the broad role of GAF in chromatin architecture and its positive role in gene expression.The distribution of GAF on chromosomes is complex, as it is associated with hundreds of chromosomal loci in euchromatin of salivary gland polytene chromosomes, however, it also displays a strong association with pericentric heterochromatin in diploid cells, where it appears to have roles in chromosome condensation and segregation. At higher resolution GAF binding sites have been identified in the regulatory regions of many genes. In some cases, the positive role of GAF in gene expression has been examined in detail using a variety of genetic, biochemical, and cytological approaches. Here we review what is currently known of GAF and, in the context of the heat shock genes of Drosophila, we examine the effects of GAF on multiple steps in gene expression.
Collapse
Affiliation(s)
- R C Wilkins
- Section of Genetics and Development, Cornell University, Ithaca, NY 12853, USA
| | | |
Collapse
|
411
|
Ding HF, Bustin M, Hansen U. Alleviation of histone H1-mediated transcriptional repression and chromatin compaction by the acidic activation region in chromosomal protein HMG-14. Mol Cell Biol 1997; 17:5843-55. [PMID: 9315642 PMCID: PMC232432 DOI: 10.1128/mcb.17.10.5843] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Histone H1 promotes the generation of a condensed, transcriptionally inactive, higher-order chromatin structure. Consequently, histone H1 activity must be antagonized in order to convert chromatin to a transcriptionally competent, more extended structure. Using simian virus 40 minichromosomes as a model system, we now demonstrate that the nonhistone chromosomal protein HMG-14, which is known to preferentially associate with active chromatin, completely alleviates histone H1-mediated inhibition of transcription by RNA polymerase II. HMG-14 also partially disrupts histone H1-dependent compaction of chromatin. Both the transcriptional enhancement and chromatin-unfolding activities of HMG-14 are mediated through its acidic, C-terminal region. Strikingly, transcriptional and structural activities of HMG-14 are maintained upon replacement of the C-terminal fragment by acidic regions from either GAL4 or HMG-2. These data support the model that the acidic C terminus of HMG-14 is involved in unfolding higher-order chromatin structure to facilitate transcriptional activation of mammalian genes.
Collapse
Affiliation(s)
- H F Ding
- Dana-Farber Cancer Institute, and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
412
|
Sumi-Ichinose C, Ichinose H, Metzger D, Chambon P. SNF2beta-BRG1 is essential for the viability of F9 murine embryonal carcinoma cells. Mol Cell Biol 1997; 17:5976-86. [PMID: 9315656 PMCID: PMC232446 DOI: 10.1128/mcb.17.10.5976] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The yeast and animal SNF-SWI and related multiprotein complexes are thought to play an important role in processes, such as transcription factor binding to regulatory elements, which require nucleosome remodeling in order to relieve the repressing effect of packaging DNA in chromatin. There are two mammalian homologs of the yeast SNF2-SWI2 subunit protein, SNF2alpha-brm and SNF2beta-BRG1, and overexpression of either one of them has been shown to enhance transcriptional activation by glucocorticoid, estrogen, and retinoic acid (RA) receptors in transiently transfected cells. We have investigated here the function of SNF2beta-BRG1 in the RA receptor-retinoid X receptor-mediated transduction of the retinoid signal in F9 embryonal carcinoma (EC) cells which differentiate into endodermal-like cells upon RA treatment. The two SNF2beta-BRG1 alleles have been targeted by homologous recombination and subsequently disrupted by using a conditional Cre recombinase. We show that F9 EC cells inactivated on both SNF2beta alleles are not viable and that heterozygous mutant cells are affected in proliferation but not in RA-induced differentiation. Thus, in F9 EC cells, SNF2beta-BRG1 appears to play an essential role in basal processes involved in cell proliferation, in addition to its putative role in the activation of transcription mediated by nuclear receptors.
Collapse
Affiliation(s)
- C Sumi-Ichinose
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Collège de France, Illkirch, CU de Strasbourg
| | | | | | | |
Collapse
|
413
|
Eisfeld K, Candau R, Truss M, Beato M. Binding of NF1 to the MMTV promoter in nucleosomes: influence of rotational phasing, translational positioning and histone H1. Nucleic Acids Res 1997; 25:3733-42. [PMID: 9278498 PMCID: PMC146933 DOI: 10.1093/nar/25.18.3733] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To analyse the role of rotational orientation and translational positioning of nucleosomal DNA on transcription factor binding we have generated a series of mutant MMTV promoters containing insertions of various lengths between the hormone-responsive region and the binding site for NF1. These various MMTV promoter fragments were assembled in mononucleosomes and used for structural studies and binding experiments. We show that the insertions change the rotational phase and translational positioning of the NF1 site as predicted if the sequences upstream of the insertion site were the main determinants of nucleosome phasing. In band shift experiments with recombinant NF1 we cannot detect binding of the protein to NF1 sites included within the limits of a nucleosome, independent of their rotational orientation. Moving the NF1 site closer to the nucleosome border also did not permit NF1 binding. This behaviour probably reflects the way NF1 binds DNA, namely it almost completely surrounds the circumference of the double helix establishing a large number of contacts with the bases and the backbone. In contrast to the wild-type and short insertion mutants, NF1 bound readily to nucleosomes containing 30 or 50 bp insertions which placed the NF1 site at the nucleosome edge or within linker DNA. NF1 binding to the linker DNA was unaffected by incorporation of histone H1 into the nucleosome particle. These findings are discussed in relation to chromatin remodelling initiated by steroid hormones during induction of the MMTV promoter.
Collapse
Affiliation(s)
- K Eisfeld
- Institut für Molekularbiologie und Tumorforschung, Philipps Universität, E.-Mannkopff-Strasse 2, 35037 Marburg, Germany
| | | | | | | |
Collapse
|
414
|
Chang CH, Luse DS. The H3/H4 tetramer blocks transcript elongation by RNA polymerase II in vitro. J Biol Chem 1997; 272:23427-34. [PMID: 9287358 DOI: 10.1074/jbc.272.37.23427] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have investigated transcript elongation efficiency by RNA polymerase II on chromatin templates in vitro. Circular plasmid DNAs bearing purified RNA polymerase II transcription complexes were assembled into nucleosomes using purified histones and transient exposure to high salt, followed by dilution and dialysis. This approach resulted in nucleosome assembly beginning immediately downstream of the transcription complexes. RNA polymerases on these nucleosomal templates could extend their 15- or 35-nucleotide nascent RNAs by only about 10 nucleotides in 15 min, even in the presence of elongation factors TFIIF and SII. Efficient transcript elongation did occur upon dissociation of nucleosomes with 1% sarkosyl, indicating that the RNA polymerases were not damaged by the high salt reconstitution procedure. Since the elongation complexes were released by sarkosyl but not by SII, these complexes apparently did not enter the arrested conformation when they encountered nucleosomes. Surprisingly, elongation was no more efficient on nucleosomal templates reconstituted only with H3/H4 tetramers, even in the presence of elongation factors and/or competitor DNA at high concentration. Thus, in a purified system lacking nucleosome remodeling factors, not only the core histone octamer but also the H3/H4 tetramer provide an nearly absolute block to transcript elongation by RNA polymerase II, even in the presence of elongation factors.
Collapse
Affiliation(s)
- C H Chang
- Department of Molecular Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
415
|
Benyajati C, Mueller L, Xu N, Pappano M, Gao J, Mosammaparast M, Conklin D, Granok H, Craig C, Elgin S. Multiple isoforms of GAGA factor, a critical component of chromatin structure. Nucleic Acids Res 1997; 25:3345-53. [PMID: 9241251 PMCID: PMC146888 DOI: 10.1093/nar/25.16.3345] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The GAGA transcription factor of Drosophila melanogaster is ubiquitous and plays multiple roles. Characterization of cDNA clones and detection by domain- specific antibodies has revealed that the 70-90 kDa major GAGA species are encoded by two open reading frames producing GAGA factor proteins of 519 amino acids (GAGA-519) and 581 amino acids (GAGA-581), which share a common N-terminal region that is linked to two different glutamine-rich C-termini. Purified recombinant GAGA-519 and GAGA-581 proteins can form homomeric complexes that bind specifically to a single GAGA sequence in vitro. The two GAGA isoforms also function similarly in transient transactivation assays in tissue culture cells and in chromatin remodeling experiments in vitro . Only GAGA-519 protein accumulates during the first 6 h of embryogenesis. Thereafter, both GAGA proteins are present in nearly equal amounts throughout development; in larval salivary gland nuclei they colocalize completely to specific regions along the euchromatic arms of the polytene chromosomes. Coimmunoprecipitation of GAGA-519 and GAGA-581 from crude nuclear extracts and from mixtures of purified recombinant proteins, indicates direct interactions. We suggest that homomeric complexes of GAGA-519 may function during early embryogenesis; both homomeric and heteromeric complexes of GAGA-519 and GAGA-581 may function later.
Collapse
Affiliation(s)
- C Benyajati
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
416
|
Varga-Weisz PD, Wilm M, Bonte E, Dumas K, Mann M, Becker PB. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 1997; 388:598-602. [PMID: 9252192 DOI: 10.1038/41587] [Citation(s) in RCA: 383] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Repressive chromatin structures need to be unravelled to allow DNA-binding proteins access to their target sequences. This de-repression constitutes an important point at which transcription and presumably other nuclear processes can be regulated. Energy-consuming enzyme complexes that facilitate the interaction of transcription factors with chromatin by modifying nucleosome structure are involved in this regulation. One such factor, nucleosome-remodelling factor (NURF), has been isolated from Drosophila embryo extracts. We have now identified a chromatin-accessibility complex (CHRAC) which uses energy to increase the general accessibility of DNA in chromatin. However, unlike other known chromatin remodelling factors, CHRAC can also function during chromatin assembly: it uses ATP to convert irregular chromatin into a regular array of nucleosomes with even spacing. CHRAC combines enzymes that modulate nucleosome structure and DNA topology. Using mass spectrometry, we identified two of the five CHRAC subunits as the ATPase ISWI, which is also part of NURF, and topoisomerase II. The presence of ISWI in different contexts suggests that chromatin remodelling machines have a modular nature and that ISWI has a central role in different chromatin remodelling reactions.
Collapse
|
417
|
Auble DT, Wang D, Post KW, Hahn S. Molecular analysis of the SNF2/SWI2 protein family member MOT1, an ATP-driven enzyme that dissociates TATA-binding protein from DNA. Mol Cell Biol 1997; 17:4842-51. [PMID: 9234740 PMCID: PMC232336 DOI: 10.1128/mcb.17.8.4842] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
MOT1 is an essential Saccharomyces cerevisiae protein and a member of the SNF2/SWI2 family of ATPases. MOT1 functions by removing TATA-binding protein (TBP) from DNA, and as a consequence, MOT1 can regulate transcription both in vitro and in vivo. Here we describe the in vivo and in vitro activities of MOT1 deletion and substitution mutants. The results indicate that MOT1 is targeted to TBP both in vitro and in vivo via amino acids in its nonconserved N terminus. The conserved C-terminal ATPase of MOT1 appears to contribute to TBP-DNA complex recognition in the absence of ATP, but it appears to function primarily during the actual ATP-dependent dissociation reaction. Chimeric proteins in which homologous portions of SNF2/SWI2 have been substituted for the MOT1 ATPase can bind to TBP-DNA complexes but fail to dissociate these complexes in the presence of ATP, suggesting that the specificity of action of MOT1 is also conferred by the C-terminal ATPase. ATPase assays demonstrate that the MOT1 ATPase is activated by TBP. Thus, MOT1 undergoes at least two conformational changes: (i) an allosteric effect of TBP that mediates the activation of the MOT1 ATPase and (ii) an ATP-driven "power stroke" that causes TBP-DNA complex dissociation. These results provide a general framework for understanding how members of the SNF2/SWI2 protein family use ATP to modulate protein-DNA interactions to regulate many diverse processes in cells.
Collapse
Affiliation(s)
- D T Auble
- Department of Biochemistry, University of Virginia Health Science Center, Charlottesville 22908, USA.
| | | | | | | |
Collapse
|
418
|
Abstract
The Drosophila nucleosome remodeling factor NURF utilizes the energy of ATP hydrolysis to perturb the structure of nucleosomes and facilitate binding of transcription factors. The ATPase activity of purified NURF is stimulated significantly more by nucleosomes than by naked DNA or histones alone, suggesting that NURF is able to recognize specific features of the nucleosome. Here, we show that the interaction between NURF and nucleosomes is impaired by proteolytic removal of the N-terminal histone tails and by chemical cross-linking of nucleosomal histones. The ATPase activity of NURF is also competitively inhibited by each of the four Drosophila histone tails expressed as GST fusion proteins. A similar inhibition is observed for a histone H4 tail substituted with glutamine at four conserved, acetylatable lysines. These findings indicate a novel role for the flexible histone tails in chromatin remodeling by NURF, and this role may, in part, be independent of histone acetylation.
Collapse
Affiliation(s)
- P T Georgel
- Laboratory of Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | | | |
Collapse
|
419
|
Huber MC, Jägle U, Krüger G, Bonifer C. The developmental activation of the chicken lysozyme locus in transgenic mice requires the interaction of a subset of enhancer elements with the promoter. Nucleic Acids Res 1997; 25:2992-3000. [PMID: 9224598 PMCID: PMC146846 DOI: 10.1093/nar/25.15.2992] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The complete chicken lysozyme locus is expressed in a position independent fashion in macrophages of transgenic mice and forms the identical chromatin structure as observed with the endogenous gene in chicken cells. Individual lysozyme cis -regulatory elements reorganize their chromatin structure at different developmental stages. Accordingly, their activities are developmentally regulated, indicating a differential role of these elements in locus activation. We have shown previously that a subset of enhancer elements and the promoter are sufficient to activate transcription of the chicken lysozyme gene at the correct developmental stage. Here, we analyzed to which grade the developmentally controlled chromatin reorganizing capacity of cis -regulatory elements in the 5'-region of the chicken lysozyme locus is dependent on promoter elements, and we examined whether the lysozyme locus carries a dominant chromatin reorganizing element. To this end we generated transgenic mouse lines carrying constructs with a deletion of the lysozyme promoter. Expression of the transgene in macrophages is abolished, however, the chromatin reorganizing ability of the cis -regulatory elements is differentially impaired. Some cis -elements require the interaction with the promoter to stabilize transcription factor complexes detectable as DNase I hypersensitive sites in chromatin, whereas other elements reorganize their chromatin structure autonomously.
Collapse
Affiliation(s)
- M C Huber
- Institut für Biologie III der Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | | | | | | |
Collapse
|
420
|
Stünkel W, Kober I, Seifart KH. A nucleosome positioned in the distal promoter region activates transcription of the human U6 gene. Mol Cell Biol 1997; 17:4397-405. [PMID: 9234698 PMCID: PMC232294 DOI: 10.1128/mcb.17.8.4397] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To investigate the consequences of chromatin reconstitution for transcription of the human U6 gene, we assembled nucleosomes on both plasmids and linear DNA fragments containing the U6 gene. Initial experiments with DNA fragments revealed that U6 sequences located between the distal sequence element (DSE) and the proximal sequence element (PSE) lead to the positioning of a nucleosome partially encompassing these promoter elements. Furthermore, indirect end-labelling analyses of the reconstituted U6 wild-type plasmids showed strong micrococcal nuclease cuts near the DSE and PSE, indicating that a nucleosome is located between these elements. To investigate the influence that nucleosomes exert on U6 transcription, we used two different experimental approaches for chromatin reconstitution, both of which resulted in the observation that transcription of the U6 wild-type gene was enhanced after chromatin assembly. To ensure that the facilitated transcription of the nucleosomal templates is in fact due to a positioned nucleosome, we constructed mutants of the U6 gene in which the sequences between the DSE and PSE were progressively deleted. In contrast to what was observed with the wild-type genes, transcription of these deletion mutants was significantly inhibited when they were packaged into nucleosomes.
Collapse
Affiliation(s)
- W Stünkel
- Institut für Molekularbiologie und Tumorforschung, Philipps Universitat Marburg, Germany
| | | | | |
Collapse
|
421
|
Widlak P, Gaynor RB, Garrard WT. In vitro chromatin assembly of the HIV-1 promoter. ATP-dependent polar repositioning of nucleosomes by Sp1 and NFkappaB. J Biol Chem 1997; 272:17654-61. [PMID: 9211915 DOI: 10.1074/jbc.272.28.17654] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nuclease hypersensitive sites exist in vivo in the chromatin of the integrated human immunodeficiency virus (HIV)-1 proviral genome, in the 5'-long terminal repeat (LTR) within the promoter/enhancer region near Sp1 and NFkappaB binding sites. Previous studies from the Kadonaga and Jones laboratories have shown that Sp1 and NFkappaB can establish hypersensitive sites in a truncated form of this LTR when added before in vitro chromatin assembly with Drosophila extracts, thus facilitating subsequent transcriptional activation of a linked reporter gene upon the association of additional factors (Pazin, M. J., Sheridan, P. L., Cannon, K., Cao, Z., Keck, J. G., Kadanaga, J. T., and Jones, K. A. (1996) Genes & Dev. 10, 37-49). Here we assess the role of a full-length LTR and 1 kilobase pair of downstream flanking HIV sequences in chromatin remodeling when these transcription factors are added after chromatin assembly. Using Xenopus laevis oocyte extracts to assemble chromatin in vitro, we have confirmed that Sp1 and NFkappaB can indeed induce sites hypersensitive to DNase I, micrococcal nuclease, or restriction enzymes on either side of factor binding sites in chromatin but not naked DNA. We extend these earlier studies by demonstrating that the process is ATP-dependent when the factors are added after chromatin assembly and that histone H1, AP1, TBP, or Tat had no effect on hypersensitive site formation. Furthermore, we have found that nucleosomes upstream of NFkappaB sites are rotationally positioned prior to factor binding and that their translational frame is registered after binding NFkappaB. On the other hand, binding of Sp1 positions adjacent downstream nucleosome(s). We term this polar repositioning because each factor aligns nucleosomes only on one side of its binding sites. Mutational analysis and oligonucleotide competition each demonstrated that this remodeling required Sp1 and NFkappaB binding sites.
Collapse
Affiliation(s)
- P Widlak
- Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9140, USA
| | | | | |
Collapse
|
422
|
Ito T, Bulger M, Pazin MJ, Kobayashi R, Kadonaga JT. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 1997; 90:145-55. [PMID: 9230310 DOI: 10.1016/s0092-8674(00)80321-9] [Citation(s) in RCA: 484] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We describe the purification and characterization of ACF, an ATP-utilizing chromatin assembly and remodeling factor. ACF is a multisubunit factor that contains ISWI protein and is distinct from NURF, another ISWI-containing factor. In chromatin assembly, purified ACF and a core histone chaperone (such as NAP-1 or CAF-1) are sufficient for the ATP-dependent formation of periodic nucleosome arrays. In chromatin remodeling, ACF is able to modulate the internucleosomal spacing of chromatin by an ATP-dependent mechanism. Moreover, ACF can mediate promoter-specific nucleosome reconfiguration by Gal4-VP16 in an ATP-dependent manner. These results suggest that ACF acts catalytically both in chromatin assembly and in the remodeling of nucleosomes that occurs during transcriptional activation.
Collapse
Affiliation(s)
- T Ito
- Department of Biology, University of California, San Diego, La Jolla 92093-0347, USA
| | | | | | | | | |
Collapse
|
423
|
Grant PA, Duggan L, Côté J, Roberts SM, Brownell JE, Candau R, Ohba R, Owen-Hughes T, Allis CD, Winston F, Berger SL, Workman JL. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev 1997; 11:1640-50. [PMID: 9224714 DOI: 10.1101/gad.11.13.1640] [Citation(s) in RCA: 843] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The transcriptional adaptor protein Gcn5 has been identified as a nuclear histone acetyltransferase (HAT). Although recombinant yeast Gcn5 efficiently acetylates free histones, it fails to acetylate histones contained in nucleosomes, indicating that additional components are required for acetylation of chromosomal histones. We report here that Gcn5 functions as a catalytic subunit in two high-molecular-mass native HAT complexes, with apparent molecular masses of 0.8 and 1.8 megadalton (MD), respectively, which acetylate nucleosomal histones. Both the 0.8- and 1.8-MD Gcn5-containing complexes cofractionate with Ada2 and are lost in gcn5delta, ada2delta, or ada3delta yeast strains, illustrating that these HAT complexes are bona fide native Ada-transcriptional adaptor complexes. Importantly, the 1.8-MD adaptor/HAT complex also contains Spt gene products that are linked to TATA-binding protein (TBP) function. This complex is lost in spt20/ada5delta and spt7delta strains and Spt3, Spt7, Spt20/Ada5, Ada2, and Gcn5 all copurify with this nucleosomal HAT complex. Therefore, the 1.8-MD adaptor/HAT complex illustrates an interaction between Ada and Spt gene products and confirms the existence of a complex containing the TBP group of Spt proteins as demonstrated by genetic and biochemical studies. We have named this novel transcription regulatory complex SAGA (Spt-Ada-Gcn5-Acetyltransferase). The function of Gcn5 as a histone acetyltransferase within the Ada and SAGA adaptor complexes indicates the importance of histone acetylation during steps in transcription activation mediated by interactions with transcription activators and general transcription factors (i.e., TBP).
Collapse
Affiliation(s)
- P A Grant
- Department of Biochemistry and Molecular Biology and The Center for Gene Regulation, The Pennsylvania State University, University Park 16802-4500, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
424
|
Weber JA, Taxman DJ, Lu Q, Gilmour DS. Molecular architecture of the hsp70 promoter after deletion of the TATA box or the upstream regulation region. Mol Cell Biol 1997; 17:3799-808. [PMID: 9199313 PMCID: PMC232231 DOI: 10.1128/mcb.17.7.3799] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
GAGA factor, TFIID, and paused polymerase are present on the hsp70 promoter in Drosophila melanogaster prior to transcriptional activation. In order to investigate the interplay between these components, mutant constructs were analyzed after they had been transformed into flies on P elements. One construct lacked the TATA box and the other lacked the upstream regulatory region where GAGA factor binds. Transcription of each mutant during heat shock was at least 50-fold less than that of a normal promoter construct. Before and after heat shock, both mutant promoters were found to adopt a DNase I hypersensitive state that included the region downstream from the transcription start site. High-resolution analysis of the DNase I cutting pattern identified proteins that could be contributing to the hypersensitivity. GAGA factor footprints were clearly evident in the upstream region of the TATA deletion construct, and a partial footprint possibly caused by TFIID was evident on the TATA box of the upstream deletion construct. Permanganate treatment of intact salivary glands was used to further characterize each promoter construct. Paused polymerase and TFIID were readily detected on the normal promoter construct, whereas both deletions exhibited reduced levels of each of these factors. Hence both the TATA box and the upstream region are required to efficiently recruit TFIID and a paused polymerase to the promoter prior to transcriptional activation. In contrast, GAGA factor appears to be capable of binding and establishing a DNase I hypersensitive region in the absence of TFIID and polymerase. Interestingly, purified GAGA factor was found to bind near the transcription start site, and the strength of this interaction was increased by the presence of the upstream region. GAGA factor alone might be capable of establishing an open chromatin structure that encompasses the upstream regulatory region as well as the core promoter region, thus facilitating the binding of TFIID.
Collapse
Affiliation(s)
- J A Weber
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park 16802, USA
| | | | | | | |
Collapse
|
425
|
Levchenko I, Yamauchi M, Baker TA. ClpX and MuB interact with overlapping regions of Mu transposase: implications for control of the transposition pathway. Genes Dev 1997; 11:1561-72. [PMID: 9203582 DOI: 10.1101/gad.11.12.1561] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transposition of phage Mu is catalyzed by an extremely stable transposase-DNA complex. Once recombination is complete, the Escherichia coli ClpX protein, a member of the Clp/Hsp100 chaperone family, initiates disassembly of the complex for phage DNA replication to commence. To understand how the transition between recombination and replication is controlled, we investigated how transposase-DNA complexes are recognized by ClpX. We find that a 10-amino-acid peptide from the carboxy-terminal domain of transposase is required for its recognition by ClpX. This short, positively charged peptide is also sufficient to convert a heterologous protein into a ClpX substrate. The region of transposase that interacts with the transposition activator, MuB protein, is also defined further and found to overlap with that recognized by ClpX. As a consequence, MuB inhibits disassembly of several transposase-DNA complexes that are intermediates in recombination. This ability of MuB to block access to transposase suggests a mechanism for restricting ClpX-mediated remodeling to the proper stage during replicative transposition. We propose that overlap of sequences involved in subunit interactions and those that target a protein for remodeling or destruction may be a useful design for proteins that function in pathways where remodeling or degradation must be regulated.
Collapse
Affiliation(s)
- I Levchenko
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
426
|
Stachora AA, Schäfer RE, Pohlmeier M, Maier G, Ponstingl H. Human Supt5h protein, a putative modulator of chromatin structure, is reversibly phosphorylated in mitosis. FEBS Lett 1997; 409:74-8. [PMID: 9199507 DOI: 10.1016/s0014-5793(97)00486-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Saccharomyces cerevisiae proteins Spt4p, Spt5p and Spt6p are involved in transcriptional repression by modulating the structure of chromatin. From HeLa cells we have purified a human homologue of Spt5p, Supt5hp, and show here that the protein is reversibly phosphorylated in mitosis. The cloned cDNA predicts a protein of 1087 residues with 31% identity to yeast Spt5p. It includes an acidic N-terminus, a putative nuclear localization signal and a C-terminal region containing two different repeated motifs. One of them, with the consensus sequence P-T/S-P-S-P-Q/A-S/G-Y, is similar to the C-terminal domain in the largest subunit of RNA polymerase II.
Collapse
Affiliation(s)
- A A Stachora
- Deutsches Krebsforschungszentrum, Division for Molecular Biology of Mitosis, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
427
|
Hertel KJ, Lynch KW, Maniatis T. Common themes in the function of transcription and splicing enhancers. Curr Opin Cell Biol 1997; 9:350-7. [PMID: 9159075 DOI: 10.1016/s0955-0674(97)80007-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Regulation of both transcription and RNA splicing requires enhancer elements, that is, cis-acting DNA or RNA sequences that promote the activities of linked promoters or splice sites, respectively. Both types of enhancer associate with regulatory proteins to form multicomponent enhancer complexes that recruit the necessary enzymatic machinery to promoter or splice site recognition sequences. This recruitment occurs as a result of direct interactions between regulatory proteins in the enhancer complexes and components of the basic enzymatic machineries. Recent advances suggest that the high degree of regulatory specificity observed for both transcription and splicing is due, in large part, to the multicomponent nature of enhancer complexes and to their cooperative assembly.
Collapse
Affiliation(s)
- K J Hertel
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
428
|
Cao Y, Cairns BR, Kornberg RD, Laurent BC. Sfh1p, a component of a novel chromatin-remodeling complex, is required for cell cycle progression. Mol Cell Biol 1997; 17:3323-34. [PMID: 9154831 PMCID: PMC232185 DOI: 10.1128/mcb.17.6.3323] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Several eukaryotic multiprotein complexes, including the Saccharomyces cerevisiae Snf/Swi complex, remodel chromatin for transcription. In contrast to the Snf/Swi proteins, Sfh1p, a new Snf5p paralog, is essential for viability. The evolutionarily conserved domain of Sfh1p is sufficient for normal function, and Sfh1p interacts functionally and physically with an essential Snf2p paralog in a novel nucleosome-restructuring complex called RSC (for remodels the structure of chromatin). A temperature-sensitive sfh1 allele arrests cells in the G2/M phase of the cell cycle, and the Sfh1 protein is specifically phosphorylated in the G1 phase. Together, these results demonstrate a link between chromatin remodeling and progression through the cell division cycle, providing genetic clues to possible targets for RSC function.
Collapse
Affiliation(s)
- Y Cao
- Department of Microbiology and Immunology and Morse Institute of Molecular Biology and Genetics, State University of New York, Brooklyn 11203, USA
| | | | | | | |
Collapse
|
429
|
Corbett AH. Nuclear moguls meet. Trends Cell Biol 1997; 7:252-3. [PMID: 17708955 DOI: 10.1016/s0962-8924(97)01064-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- A H Corbett
- The Division of Cell and Molecular Biology, Dana Farber Cancer Institute, Boston, MA 02115, USA
| |
Collapse
|
430
|
Lee CG, Chang KA, Kuroda MI, Hurwitz J. The NTPase/helicase activities of Drosophila maleless, an essential factor in dosage compensation. EMBO J 1997; 16:2671-81. [PMID: 9184214 PMCID: PMC1169878 DOI: 10.1093/emboj/16.10.2671] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Drosophila maleless (mle) is required for X chromosome dosage compensation and is essential for male viability. Maleless protein (MLE) is highly homologous to human RNA helicase A and the bovine counterpart of RNA helicase A, nuclear helicase II. In this report, we demonstrate that MLE protein, overexpressed and purified from Sf9 cells infected with recombinant baculovirus, possesses RNA/DNA helicase, adenosine triphosphatase (ATPase) and single-stranded (ss) RNA/ssDNA binding activities, properties identical to RNA helicase A. Using site-directed mutagenesis, we created a mutant of MLE (mle-GET) that contains a glutamic acid in place of lysine in the conserved ATP binding site A. In vitro biochemical analysis showed that this mutation abolished both NTPase and helicase activities of MLE but affected the ability of MLE to bind to ssRNA, ssDNA and guanosine triphosphate (GTP) less severely. In vivo, mle-GET protein could still localize to the male X chromosome coincidentally with the male-specific lethal-1 protein, MSL-1, but failed to complement mle1 mutant males. These results indicate that the NTPase/helicase activities are essential functions of MLE for dosage compensation, perhaps utilized for chromatin remodeling of X-linked genes.
Collapse
Affiliation(s)
- C G Lee
- Graduate Program in Molecular Biology, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Institute, New York, NY 10021, USA
| | | | | | | |
Collapse
|
431
|
Utley RT, Côté J, Owen-Hughes T, Workman JL. SWI/SNF stimulates the formation of disparate activator-nucleosome complexes but is partially redundant with cooperative binding. J Biol Chem 1997; 272:12642-9. [PMID: 9139720 DOI: 10.1074/jbc.272.19.12642] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To investigate the potential mechanisms by which the SWI/SNF complex differentially regulates different genes we have tested whether transcription factors with diverse DNA binding domains were able to exploit nucleosome disruption by SWI/SNF. In addition to GAL4-VP16, the SWI/SNF complex stimulated nucleosome binding by the Zn2+ fingers of Sp1, the basic helix-loop-helix domain of USF, and the rel domain of NF-kappaB. In each case SWI/SNF action resulted in the formation of a stable factor-nucleosome complex that persisted after detachment of SWI/SNF from the nucleosome. Thus, stimulation of factor binding by SWI/SNF appears to be universal. The degree of SWI/SNF stimulation of nucleosome binding by a factor appears to be inversely related to the extent that binding is inhibited by the histone octamer. Cooperative binding of 5 GAL4-VP16 dimers to a 5-site nucleosome enhanced GAL4 binding relative to a single-site nucleosome, but this also reduced the degree of stimulation by SWI/SNF. The SWI/SNF complex increased the affinity of 5 GAL4-VP16 dimers for nucleosomes equal to that of DNA but no further. Similarly, multimerized NF-kappaB sites enhanced nucleosome binding by NF-kappaB and reduced the stimulatory effect of SWI/SNF. Thus, cooperative binding of factors to nucleosomes is partially redundant with the function of the SWI/SNF complex.
Collapse
Affiliation(s)
- R T Utley
- Department of Biochemistry and Molecular Biology and The Center for Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania 16802-4500, USA
| | | | | | | |
Collapse
|
432
|
Pazin MJ, Bhargava P, Geiduschek EP, Kadonaga JT. Nucleosome mobility and the maintenance of nucleosome positioning. Science 1997; 276:809-12. [PMID: 9115208 DOI: 10.1126/science.276.5313.809] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To study nucleosome mobility and positioning, the R3 lac repressor was used with an adenosine triphosphate (ATP)-dependent chromatin assembly system to establish the positioning of five nucleosomes, with one nucleosome located between two R3 lac operators. When R3 protein was dissociated from DNA with isopropyl beta-D-thiogalactopyranoside, the R3-induced nucleosome positions remained unchanged for at least 60 minutes in the absence of ATP but rearranged within 15 minutes in the presence of ATP. These results suggest that nucleosomes are dynamic and mobile rather than static and that a DNA binding factor is continuously required for the maintenance of nucleosome positioning.
Collapse
Affiliation(s)
- M J Pazin
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
433
|
Blank TA, Sandaltzopoulos R, Becker PB. Biochemical analysis of chromatin structure and function using Drosophila embryo extracts. Methods 1997; 12:28-35. [PMID: 9169192 DOI: 10.1006/meth.1997.0444] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The biochemical analysis of chromatin structure and function is greatly facilitated by the availability of cell-free systems that assemble chromatin under physiological conditions. One such system that has shown great potential is derived from extracts of early Drosophila embryos. These embryos contain large maternal stocks of chromatin constituents, such as histones and assembly factors. Chromatin assembled in these extracts resembles native chromatin in many respects: it displays physiological nucleosome repeat lengths, it is complex, containing a wealth of nonhistone proteins as well as enzymatic activities, and it has dynamic properties that allow the interaction of DNA-binding proteins that regulate important cellular processes. Most importantly, chromatin with variant properties, e.g., with respect to the basic geometry of the nucleosomal array, histone modifications, and its content of linker histones or nonhistone proteins, can be obtained by manipulating the reconstitution conditions. The synthesis of uniform chromatin with specific characteristics should allow the analysis of the functional significance of the structural and biochemical heterogeneity observed in vivo.
Collapse
Affiliation(s)
- T A Blank
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | | |
Collapse
|
434
|
Abstract
Transcriptional activation is mediated by the facilitated binding of the basal transcription complex to the transcription start site of a promoter. The activation procedure involves protein-protein interactions between specific transcription factors and members of the basal transcription complex. However, since eukaryotic DNA is packaged with histones into nucleosomes the accessibility of the transcription factors is limited. In order to activate transcription, some of the specific transcription factors must have the capacity to bind to their binding sites when organized into nucleosomes. As a next step, the chromatin structure of the promoter needs to be decondensed in order to facilitate the binding of the basal transcription machinery. Recent data have addressed these issues and both binding of transcription factors to their chromatin binding site as well as transcription factor-induced chromatin remodelling have been demonstrated. In addition, factors that are candidates to mediate the chromatin remodelling have recently been identified and characterized. The ability of a transcription factor to recognize its cognate element in a nucleosome is an inheret property that differs among different transcription factors. The implications of the rotational and translational positioning of the DNA within a nucleosome on the accessibility of a transcription factor is described in this review. In addition, nucleosome rearrangement and juxtaposing in the context of transcriptional activation is also discussed.
Collapse
Affiliation(s)
- Q Li
- Department of Cell and Molecular Biology, Nobel Medical Institute, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
435
|
Ng KW, Ridgway P, Cohen DR, Tremethick DJ. The binding of a Fos/Jun heterodimer can completely disrupt the structure of a nucleosome. EMBO J 1997; 16:2072-85. [PMID: 9155033 PMCID: PMC1169810 DOI: 10.1093/emboj/16.8.2072] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
An important first step in the chromatin remodelling process is the initial binding of a transcriptional activator to a nucleosomal template. We have investigated the ability of Fos/Jun (a transcriptional activator involved in the signal transduction pathway) to interact with its cognate binding site located in the promoter region of the mouse fos-related antigen-2 (fra-2) promoter, when this site was reconstituted into a nucleosome. Two different nucleosome assembly systems were employed to assemble principally non-acetylated or acetylated nucleosomes. The ability of Fos/Jun to interact with an acetylated or an unacetylated nucleosome differed markedly. Fos/Jun bound to an unacetylated nucleosome with only a 4- to 5-fold reduction in DNA binding affinity compared with naked DNA. Strikingly, the binding of Fos/Jun to a single high-affinity site incorporated into an acetylated nucleosome resulted in the complete disruption of nucleosomal structure without histone displacement. Moreover, this disruption was sufficient to facilitate the subsequent binding of a second transcription factor.
Collapse
Affiliation(s)
- K W Ng
- Division of Biochemistry, The John Curtin School of Medical Research, The Australian National University, Canberra
| | | | | | | |
Collapse
|
436
|
Gaudreau L, Schmid A, Blaschke D, Ptashne M, Hörz W. RNA polymerase II holoenzyme recruitment is sufficient to remodel chromatin at the yeast PHO5 promoter. Cell 1997; 89:55-62. [PMID: 9094714 DOI: 10.1016/s0092-8674(00)80182-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We examine transcriptional activation and chromatin remodeling at the PHO5 promoter in yeast by fusion proteins that are thought to act by recruiting the RNA polymerase II holoenzyme to DNA in the absence of a classic activating region. These hybrid proteins (e.g., Gal11+Pho4 or Gal4(58-97)+Pho4 in the presence of a GAL11P allele) efficiently activated transcription and remodeled chromatin. Similar chromatin remodeling was observed at a PHO5 promoter deleted for TATA and thus unable to support transcription. We conclude that recruitment of the holoenzyme or associated proteins suffices for chromatin remodeling. We also show that the SWI/SNF complex is required neither for efficient transcription of the wild-type PHO5 nor the GAL1 promoters, and we observe nearly complete chromatin remodeling at PHO5 in the absence of Snf2.
Collapse
Affiliation(s)
- L Gaudreau
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | |
Collapse
|
437
|
Mymryk JS, Smith MM. Influence of the adenovirus 5 E1A oncogene on chromatin remodelling. Biochem Cell Biol 1997. [DOI: 10.1139/o97-029] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
438
|
Abstract
Recent advances highlight two important chromatin remodeling systems involved in the transcriptional process. One system includes several members of the evolutionarily conserved SWI2/SNF2 family found in distinct multiprotein complexes with ATP-dependent nucleosome destabilizing activity; the other is the enzymatic system that governs histone acetylation and deacetylation. Identification of the catalytic subunits of these opposing histone-modifying activities reveal conserved proteins defined genetically as transcriptional regulators.
Collapse
Affiliation(s)
- T Tsukiyama
- Laboratory of Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Building 37, Room 5E-26, Bethesda, Maryland, 20892-4255, USA
| | | |
Collapse
|
439
|
Treich I, Carlson M. Interaction of a Swi3 homolog with Sth1 provides evidence for a Swi/Snf-related complex with an essential function in Saccharomyces cerevisiae. Mol Cell Biol 1997; 17:1768-75. [PMID: 9121424 PMCID: PMC232023 DOI: 10.1128/mcb.17.4.1768] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Saccharomyces cerevisiae Swi/Snf complex has a role in remodeling chromatin structure to facilitate transcriptional activation. The complex has 11 components, including Swi1/Adr6, Swi2/Snf2, Swi3, Snf5, Snf6, Snf11, Swp73/Snf12, and Tfg3. Mammalian homologs of these proteins have been shown to form multiple Swi/Snf-related complexes. Here we characterize an S. cerevisiae Swi3 homolog (Swh3) and present evidence that it associates in a complex with a Snf2 homolog, Sthl. We identified Swh3 as a protein that interacts with the N terminus of Snf2 in the two-hybrid system. Swh3 and Swi3 are functionally distinct, and overexpression of one does not compensate for loss of the other. Swh3 is essential for viability and does not activate transcription of reporters. The Snf2 sequence that interacts with Swh3 was mapped to a region conserved in Sth1. We show that Swh3 and Sth1 fusion proteins interact in the two-hybrid system and coimmunoprecipitate from yeast cell extracts. We also map interactions between Swh3 and Sth1 and examine the role of a leucine zipper motif in self-association of Swh3. These findings, together with previous analysis of Sth1, indicate that Swh3 and Sth1 are associated in a complex that is functionally distinct from the Swi/Snf complex and essential for viability.
Collapse
Affiliation(s)
- I Treich
- Department of Genetics and Development and Institute of Cancer Research, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
440
|
Chávez S, Beato M. Nucleosome-mediated synergism between transcription factors on the mouse mammary tumor virus promoter. Proc Natl Acad Sci U S A 1997; 94:2885-90. [PMID: 9096316 PMCID: PMC20292 DOI: 10.1073/pnas.94.7.2885] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In unstimulated mammalian cells and in Saccharomyces cerevisiae, the mouse mammary tumor virus (MMTV) promoter is silent and organized into positioned nucleosomes, one of which encompasses the binding sites for glucocorticoid receptor (GR) and nuclear factor I (NFI). Glucocorticoid induction in vivo involves a functional synergism between GR and NFI and simultaneous occupancy of the promoter sites for both proteins that cannot be reproduced on naked DNA. The role of chromatin in the process of induction was investigated by manipulating the nucleosome density in yeast strains carrying a regulated histone H4 gene. Following depletion of nucleosomes, independent transactivation by NFI or by GR, as well as binding of the individual proteins to the MMTV promoter, were enhanced, in agreement with a repressive function of nucleosomes. In contrast, NFI-dependent hormone induction of the promoter and the simultaneous binding of receptor and NFI were compromised by nucleosome depletion. This effect could be partly mediated by a cryptic binding site for the receptor that is functional only in the nucleosomal context. Thus, positioned nucleosomes do not only account for constitutive repression of the MMTV promoter, but also participate in induction by mediating cooperative binding and functional synergism between GR and NFI.
Collapse
Affiliation(s)
- S Chávez
- Institut für Molekularbiologie und Tumorforschung, Marburg, Germany
| | | |
Collapse
|
441
|
Lemon BD, Fondell JD, Freedman LP. Retinoid X receptor:vitamin D3 receptor heterodimers promote stable preinitiation complex formation and direct 1,25-dihydroxyvitamin D3-dependent cell-free transcription. Mol Cell Biol 1997; 17:1923-37. [PMID: 9121440 PMCID: PMC232039 DOI: 10.1128/mcb.17.4.1923] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The numerous members of the steroid/nuclear hormone receptor superfamily act as direct transducers of circulating signals, such as steroids, thyroid hormone, and vitamin or lipid metabolites, and modulate the transcription of specific target genes, primarily as dimeric complexes. The receptors for 9-cis retinoic acid and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], RXR and VDR, respectively, as members of this superfamily, form a heterodimeric complex and bind cooperatively to vitamin D responsive elements (VDREs) to activate or repress the transcription of a multitude of genes which regulate a variety of physiological functions. To directly investigate RXR- and VDR-mediated transactivation, we developed a cell-free transcription system for 1,25(OH)2D3 signaling by utilizing crude nuclear extracts and a G-free cassette-based assay. Transcriptional enhancement in vitro was dependent on purified, exogenous RXR and VDR and was responsive to physiological concentrations of 1,25(OH)2D3. We found that RXR and VDR transactivated selectively from VDRE-linked templates exclusively as a heterodimeric complex, since neither receptor alone enhanced transcription in vitro. By the addition of low concentrations of the anionic detergent Sarkosyl to limit cell-free transcription to a single round and the use of agarose gel mobility shift experiments to assay factor complex assembly, we observed that 1,25(OH)2D3 enhanced RXR:VDR-mediated stabilization or assembly of preinitiation complexes to effect transcriptional enhancement from VDRE-linked promoter-containing DNA.
Collapse
Affiliation(s)
- B D Lemon
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, Cornell University Graduate School of Medical Sciences, New York, New York 10021, USA
| | | | | |
Collapse
|
442
|
Pazin MJ, Kadonaga JT. SWI2/SNF2 and related proteins: ATP-driven motors that disrupt protein-DNA interactions? Cell 1997; 88:737-40. [PMID: 9118215 DOI: 10.1016/s0092-8674(00)81918-2] [Citation(s) in RCA: 247] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- M J Pazin
- Department of Biology, University of California, San Diego, La Jolla 92093-0347, USA
| | | |
Collapse
|
443
|
Längst G, Blank TA, Becker PB, Grummt I. RNA polymerase I transcription on nucleosomal templates: the transcription termination factor TTF-I induces chromatin remodeling and relieves transcriptional repression. EMBO J 1997; 16:760-8. [PMID: 9049305 PMCID: PMC1169677 DOI: 10.1093/emboj/16.4.760] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Eukaryotic ribosomal gene promoters are preceded by a terminator element which is recognized by the transcription termination factor TTF-I. We have studied the function of this promoter-proximal terminator and show that binding of TTF-I is the key event which leads to ATP-dependent nucleosome remodeling and transcriptional activation of mouse rDNA pre-assembled into chromatin. We have analyzed TTF-I mutants for their ability to bind to free or nucleosomal DNA, and show that the DNA binding domain of TTF-I on its own is not sufficient for interaction with chromatin, indicating that specific protein features exist that endow a transcription factor with chromatin binding and remodeling properties. This first analysis of RNA polymerase I transcription in chromatin provides a clue for the function of the upstream terminator and establishes a dual role for TTF-I both as a termination factor and a chromatin-specific transcription activator.
Collapse
Affiliation(s)
- G Längst
- German Cancer Research Center, Division of Molecular Biology of the Cell II, Heidelberg, Germany
| | | | | | | |
Collapse
|
444
|
Gerber AN, Klesert TR, Bergstrom DA, Tapscott SJ. Two domains of MyoD mediate transcriptional activation of genes in repressive chromatin: a mechanism for lineage determination in myogenesis. Genes Dev 1997; 11:436-50. [PMID: 9042858 DOI: 10.1101/gad.11.4.436] [Citation(s) in RCA: 222] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Genetic studies have demonstrated that MyoD and Myf5 establish the skeletal muscle lineage, whereas myogenin mediates terminal differentiation, yet the molecular basis for this distinction is not understood. We show that MyoD can remodel chromatin at binding sites in muscle gene enhancers and activate transcription at previously silent loci. TGF-beta, basic-FGF, and sodium butyrate blocked MyoD-mediated chromatin reorganization and the initiation of transcription. In contrast, TGF-beta and sodium butyrate did not block transcription when added after chromatin remodeling had occurred. MyoD and Myf-5 were 10-fold more efficient than myogenin at activating genes in regions of transcriptionally silent chromatin. Deletion mutagenesis of the MyoD protein demonstrated that the ability to activate endogenous genes depended on two regions: a region rich in cysteine and histidine residues between the acidic activation domain and the bHLH domain, and a second region in the carboxyl terminus of the protein. Neither region has been shown previously to regulate gene transcription and both have domains that are conserved in the Myf5 protein. Our results establish a mechanism for chromatin modeling in the skeletal muscle lineage and define domains of MyoD, independent of the activation domain, that participate in chromatin reorganization.
Collapse
Affiliation(s)
- A N Gerber
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | | |
Collapse
|
445
|
Burns LG, Peterson CL. Protein complexes for remodeling chromatin. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1350:159-68. [PMID: 9048886 DOI: 10.1016/s0167-4781(96)00162-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- L G Burns
- Program in Molecular Medicine, University of Massachusetts Medical Center, Worcester 01605, USA
| | | |
Collapse
|
446
|
|
447
|
Omichinski JG, Pedone PV, Felsenfeld G, Gronenborn AM, Clore GM. The solution structure of a specific GAGA factor-DNA complex reveals a modular binding mode. NATURE STRUCTURAL BIOLOGY 1997; 4:122-32. [PMID: 9033593 DOI: 10.1038/nsb0297-122] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The structure of a complex between the DNA binding domain of the GAGA factor (GAGA-DBD) and an oligonucleotide containing its GAGAG consensus binding site has been determined by nuclear magnetic resonance spectroscopy. The GAGA-DBD comprises a single classical Cys2-His2 zinc finger core, and an N-terminal extension containing two highly basic regions, BR1 and BR2. The zinc finger core binds in the major groove and recognizes the first three GAG bases of the consensus in a manner similar to that seen in other classical zinc finger-DNA complexes. Unlike the latter, which require tandem zinc finger repeats with a minimum of two units for high affinity binding, the GAGA-DBD makes use of only a single finger complemented by BR1 and BR2. BR2 forms a helix that interacts in the major groove recognizing the last G of the consensus, while BR1 wraps around the DNA in the minor groove and recognizes the A in the fourth position of the consensus. The implications of the structure of the GAGA-DBD-DNA complex for chromatin remodelling are discussed.
Collapse
Affiliation(s)
- J G Omichinski
- Laboratories of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | | | | | | | | |
Collapse
|
448
|
Enomoto S, McCune-Zierath PD, Gerami-Nejad M, Sanders MA, Berman J. RLF2, a subunit of yeast chromatin assembly factor-I, is required for telomeric chromatin function in vivo. Genes Dev 1997; 11:358-70. [PMID: 9030688 DOI: 10.1101/gad.11.3.358] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the yeast Saccharomyces cerevisiae, telomere repeat DNA is assembled into a specialized heterochromatin-like complex that silences the transcription of adjacent genes. The general DNA-binding protein Rap1p binds telomere DNA repeats, contributes to telomere length control and to telomeric silencing, and is a major component of telomeric chromatin. We identified Rap1p localization factor 2 (RLF2) in a screen for genes that alleviate antagonism between telomere and centromere sequences on plasmids. In rlf2 mutants, telomeric chromatin is perturbed: Telomeric silencing is reduced and Rap1p localization is altered. In wild-type cells, Rap1p and telomeres localize to bright perinuclear foci. In rlf2 strains, the number of Rap1p foci is increased, Rap1p staining is more diffuse throughout the nucleus, Rap1p foci are distributed in a much broader perinuclear domain, and nuclear volume is 50% larger. Despite the altered distribution of Rap1p in rlf2 mutant cells, fluorescence in situ hybridization to subtelomeric repeats shows that the distribution of telomeric DNA is similar in wild-type and mutant cells. Thus in rlf2 mutant cells, the distribution of Rap1p does not reflect the distribution of telomeric DNA. RLF2 encodes a highly charged coiled-coil protein that has significant similarity to the p150 subunit of human chromatin assembly factor-I(hCAF-I), a complex that is required for the DNA replication-dependent assembly of nucleosomes from newly synthesized histones in vitro. Furthermore, RLF2 is identical to CAC1, a subunit of yeast chromatin assembly factor-I (yCAF-I) which assembles nucleosomes in vitro. In wild-type cells, epitope-tagged Rlf2p expressed from the GAL10 promoter localizes to the nucleus with a pattern distinct from that of Rap1p, suggesting that Rlf2p is not a component of telomeric chromatin. This study provides evidence that yCAF-I is required for the function and organization of telomeric chromatin in vivo. We propose that Rlf2p facilitates the efficient and timely assembly of histones into telomeric chromatin.
Collapse
Affiliation(s)
- S Enomoto
- Department of Plant Biology, University of Minnesota, St. Paul 55108, USA
| | | | | | | | | |
Collapse
|
449
|
Ostlund Farrants AK, Blomquist P, Kwon H, Wrange O. Glucocorticoid receptor-glucocorticoid response element binding stimulates nucleosome disruption by the SWI/SNF complex. Mol Cell Biol 1997; 17:895-905. [PMID: 9001244 PMCID: PMC231816 DOI: 10.1128/mcb.17.2.895] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The organization of DNA in chromatin is involved in repressing basal transcription of a number of inducible genes. Biochemically defined multiprotein complexes such as SWI/SNF (J. Côté, J. Quinn, J. L. Workman, and C. L. Peterson, Science 265:53-60, 1994) and nucleosome remodeling factor (T. Tsukiyama and C. Wu, Cell 83:1011-1020, 1995) disrupt nucleosomes in vitro and are thus candidates for complexes which cause chromatin decondensation during gene induction. In this study we show that the glucocorticoid receptor (GR), a hormone-inducible transcription factor, stimulates the nucleosome-disrupting activity of the SWI/SNF complex partially purified either from HeLa cells or from rat liver tissue. This GR-mediated stimulation of SWI/SNF nucleosome disruption depended on the presence of a glucocorticoid response element. The in vitro-reconstituted nucleosome probes used in these experiments harbored 95 bp of synthetic DNA-bending sequence in order to rotationally position the DNA. The GR-dependent stimulation of SWI/SNF-mediated nucleosome disruption, as evaluated by DNase I footprinting, was 2.7- to 3.8-fold for the human SWI/SNF complex and 2.5- to 3.2-fold for the rat SWI/SNF complex. When nuclear factor 1 (NF1) was used instead of GR, there was no stimulation of SWI/SNF activity in the presence of a mononucleosome containing an NF1 binding site. On the other hand, the SWI/SNF nucleosome disruption activity increased the access of NF1 for its nucleosomal binding site. No such effect was seen on binding of GR to its response element. Our results suggest that GR, but not NF1, is able to target the nucleosome-disrupting activity of the SWI/SNF complex.
Collapse
Affiliation(s)
- A K Ostlund Farrants
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
450
|
Jenuwein T, Forrester WC, Fernández-Herrero LA, Laible G, Dull M, Grosschedl R. Extension of chromatin accessibility by nuclear matrix attachment regions. Nature 1997; 385:269-72. [PMID: 9000077 DOI: 10.1038/385269a0] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transcription of the variable region of the rearranged immunoglobulin mu gene is dependent on an enhancer sequence situated within one of the introns of the gene. Experiments with transgenic mice have shown that activation of the promoter controlling this transcription also requires the matrix-attachment regions (MARs) that flank the intronic enhancer. As this mu gene enhancer can establish local areas of accessible chromatin, we investigated whether the MARs can extend accessibility to more distal positions. We eliminated interactions between enhancer- and promoter-bound factors by linking mu enhancer/MAR fragments to the binding sites for bacteriophage RNA polymerases that were either close to or one kilobase distal to the enhancer. The mu enhancer alone mediated chromatin accessibility at the proximal site but required a flanking MAR to confer accessibility upon the distal promoter. This long-range accessibility correlates with extended demethylation of the gene construct but not with whether it is being actively transcribed. MARs thus collaborate with the mu enhancer to generate an extended domain of accessible chromatin.
Collapse
Affiliation(s)
- T Jenuwein
- Howard Hughes Medical Institute, University of California, San Francisco 94143-0414, USA
| | | | | | | | | | | |
Collapse
|