401
|
O-GlcNAcylation modulates Bmi-1 protein stability and potential oncogenic function in prostate cancer. Oncogene 2017; 36:6293-6305. [PMID: 28714959 DOI: 10.1038/onc.2017.223] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/14/2022]
Abstract
The Polycomb group transcriptional repressor Bmi-1 often overexpressed and participated in stem cells self-renewal and tumorigenesis initiating of prostate cancer. In this progression, Bmi-1 protein was regulated by transcription and post-translational modifications (PTMs). Nobly, the underlying PTMs regulation of Bmi-1 is poorly known. Here we use co-immunoprecipitation show that in C4-2 cell line, Bmi-1 directly interacted with OGT which is the only known enzyme catalyzed the O-GlcNAcylation in human. Furthermore, we identified that Ser255 is the site for Bmi-1 O-GlcNAcylation, and O-GlcNAcylation promoted Bmi-1 protein stability and its oncogenic activity. Finally, microarray analysis has characterized potential oncogenes associated pathway subject to repression via the OGT-Bmi-1 axis. Taken together, these results indicate that OGT-mediated O-GlcNAcylation at Ser255 stabilizes Bmi-1 and hence inhibits the TP53, PTEN and CDKN1A/CDKN2A pathway. The study not only uncovers a novel functional PTMs of Bmi-1 but also reveals a unique oncogenic role of O-GlcNAcylation in prostate cancer.
Collapse
|
402
|
Cavalheiro GR, Matos-Rodrigues GE, Zhao Y, Gomes AL, Anand D, Predes D, de Lima S, Abreu JG, Zheng D, Lachke SA, Cvekl A, Martins RAP. N-myc regulates growth and fiber cell differentiation in lens development. Dev Biol 2017; 429:105-117. [PMID: 28716713 DOI: 10.1016/j.ydbio.2017.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/07/2017] [Accepted: 07/05/2017] [Indexed: 11/26/2022]
Abstract
Myc proto-oncogenes regulate diverse cellular processes during development, but their roles during morphogenesis of specific tissues are not fully understood. We found that c-myc regulates cell proliferation in mouse lens development and previous genome-wide studies suggested functional roles for N-myc in developing lens. Here, we examined the role of N-myc in mouse lens development. Genetic inactivation of N-myc in the surface ectoderm or lens vesicle impaired eye and lens growth, while "late" inactivation in lens fibers had no effect. Unexpectedly, defective growth of N-myc-deficient lenses was not associated with alterations in lens progenitor cell proliferation or survival. Notably, N-myc-deficient lens exhibited a delay in degradation of DNA in terminally differentiating lens fiber cells. RNA-sequencing analysis of N-myc-deficient lenses identified a cohort of down-regulated genes associated with fiber cell differentiation that included DNaseIIβ. Further, an integrated analysis of differentially expressed genes in N-myc-deficient lens using normal lens expression patterns of iSyTE, N-myc-binding motif analysis and molecular interaction data from the String database led to the derivation of an N-myc-based gene regulatory network in the lens. Finally, analysis of N-myc and c-myc double-deficient lens demonstrated that these Myc genes cooperate to drive lens growth prior to lens vesicle stage. Together, these findings provide evidence for exclusive and cooperative functions of Myc transcription factors in mouse lens development and identify novel mechanisms by which N-myc regulates cell differentiation during eye morphogenesis.
Collapse
Affiliation(s)
- Gabriel R Cavalheiro
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gabriel E Matos-Rodrigues
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Yilin Zhao
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anielle L Gomes
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Danilo Predes
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Silmara de Lima
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jose G Abreu
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, USA; Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rodrigo A P Martins
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
403
|
Affiliation(s)
- Kathleen Kelly
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Steven P Balk
- Hematology-Oncology Division and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
404
|
Wan J, Hou X, Zhou Z, Geng J, Tian J, Bai X, Nie J. WT1 ameliorates podocyte injury via repression of EZH2/β-catenin pathway in diabetic nephropathy. Free Radic Biol Med 2017; 108:280-299. [PMID: 28315733 DOI: 10.1016/j.freeradbiomed.2017.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/26/2017] [Accepted: 03/13/2017] [Indexed: 10/20/2022]
Abstract
Epigenetic modulation of podocyte injury plays a pivotal role in diabetic nephropathy (DN). Wilm's tumor 1 (WT1) has been found to have opposing roles with β-catenin in podocyte biology. Herein, we asked whether the histone methyltransferase enzyme enhancer of zeste homolog 2 (EZH2) promotes WT1-induced podocyte injury via β-catenin activation and the underlying mechanisms. We found that WT1 antagonized EZH2 and ameliorated β-catenin-mediated podocyte injury as demonstrated by attenuated podocyte mesenchymal transition, maintenance of podocyte architectural integrity, decreased podocyte apoptosis and oxidative stress. Further, we provided mechanistical evidence that EZH2 was required in WT1-mediated β-catenin inactivation via repression of secreted frizzled-related protein 1 (SFRP-1), a Wnt antagonist. Moreover, EZH2-mediated silencing of SFRP-1 was due to increased histone 3 lysine 27 trimethylation (H3K27me3) on its promoter region. WT1 favored renal function and decreased podocyte injury in diabetic rats and DN patients. Notably, WT1 exhibited clinical and biological relevance as it was linked to dropped serum creatinine, decreased proteinuria and elevated estimated glomerular filtration rate (eGFR). We propose an epigenetic process via the WT1/EZH2/β-catenin axis in attenuating podocyte injury in DN. Targeting WT1 and EZH2 could be potential therapeutic approaches for DN.
Collapse
Affiliation(s)
- Jiao Wan
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangzhou, Guangdong, PR China
| | - Xiaoyan Hou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangzhou, Guangdong, PR China
| | - Zhanmei Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangzhou, Guangdong, PR China
| | - Jian Geng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Jianwei Tian
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangzhou, Guangdong, PR China
| | - Xiaoyan Bai
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangzhou, Guangdong, PR China.
| | - Jing Nie
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangzhou, Guangdong, PR China.
| |
Collapse
|
405
|
Zou M, Toivanen R, Mitrofanova A, Floch N, Hayati S, Sun Y, Le Magnen C, Chester D, Mostaghel EA, Califano A, Rubin MA, Shen MM, Abate-Shen C. Transdifferentiation as a Mechanism of Treatment Resistance in a Mouse Model of Castration-Resistant Prostate Cancer. Cancer Discov 2017; 7:736-749. [PMID: 28411207 PMCID: PMC5501744 DOI: 10.1158/2159-8290.cd-16-1174] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/14/2016] [Accepted: 04/12/2017] [Indexed: 11/16/2022]
Abstract
Current treatments for castration-resistant prostate cancer (CRPC) that target androgen receptor (AR) signaling improve patient survival, yet ultimately fail. Here, we provide novel insights into treatment response for the antiandrogen abiraterone by analyses of a genetically engineered mouse (GEM) model with combined inactivation of Trp53 and Pten, which are frequently comutated in human CRPC. These NPp53 mice fail to respond to abiraterone and display accelerated progression to tumors resembling treatment-related CRPC with neuroendocrine differentiation (CRPC-NE) in humans. Cross-species computational analyses identify master regulators of adverse response that are conserved with human CRPC-NE, including the neural differentiation factor SOX11, which promotes neuroendocrine differentiation in cells derived from NPp53 tumors. Furthermore, abiraterone-treated NPp53 prostate tumors contain regions of focal and/or overt neuroendocrine differentiation, distinguished by their proliferative potential. Notably, lineage tracing in vivo provides definitive and quantitative evidence that focal and overt neuroendocrine regions arise by transdifferentiation of luminal adenocarcinoma cells. These findings underscore principal roles for TP53 and PTEN inactivation in abiraterone resistance and progression from adenocarcinoma to CRPC-NE by transdifferentiation.Significance: Understanding adverse treatment response and identifying patients likely to fail treatment represent fundamental clinical challenges. By integrating analyses of GEM models and human clinical data, we provide direct genetic evidence for transdifferentiation as a mechanism of drug resistance as well as for stratifying patients for treatment with antiandrogens. Cancer Discov; 7(7); 736-49. ©2017 AACR.See related commentary by Sinha and Nelson, p. 673This article is highlighted in the In This Issue feature, p. 653.
Collapse
Affiliation(s)
- Min Zou
- Departments of Medicine and Urology, Institute of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Roxanne Toivanen
- Departments of Medicine and Genetics and Developmental Biology, Institute of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Antonina Mitrofanova
- Department of Systems Biology, Columbia University Medical Center, New York, New York; and Department of Health Informatics, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Nicolas Floch
- Department of Urology, Columbia University Medical Center, New York, New York
| | - Sheida Hayati
- Department of Health Informatics, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Yanping Sun
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - Clémentine Le Magnen
- Departments of Medicine and Urology, Institute of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Daniel Chester
- Department of Urology, Columbia University Medical Center, New York, New York
| | - Elahe A Mostaghel
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Andrea Califano
- Departments of Systems Biology, Biomedical Informatics, and Biochemistry and Molecular Biophysics, Center for Computational Biology and Bioinformatics, Institute of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Mark A Rubin
- Englander Institute for Precision Medicine and Department of Pathology and Laboratory Medicine, Weil Cornell Medical College and New York-Presbyterian Hospital, New York, New York
| | - Michael M Shen
- Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Institute of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York.
| | - Cory Abate-Shen
- Departments of Urology, Medicine, Systems Biology, and Pathology and Cell Biology, Institute of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York.
| |
Collapse
|
406
|
Crona DJ, Whang YE. Androgen Receptor-Dependent and -Independent Mechanisms Involved in Prostate Cancer Therapy Resistance. Cancers (Basel) 2017; 9:cancers9060067. [PMID: 28604629 PMCID: PMC5483886 DOI: 10.3390/cancers9060067] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 12/12/2022] Open
Abstract
Despite the initial efficacy of androgen deprivation in prostate cancer, virtually all patients progress to castration-resistant prostate cancer (CRPC). Androgen receptor (AR) signaling is critically required for CRPC. A new generation of medications targeting AR, such as abiraterone and enzalutamide, has improved survival of metastatic CRPC (mCRPC) patients. However, a significant proportion of patients presents with primary resistance to these agents, and in the remainder, secondary resistance will invariably develop, which makes mCRPC the lethal form of the disease. Mechanisms underlying progression to mCRPC and treatment resistance are extremely complex. AR-dependent resistance mechanisms include AR amplification, AR point mutations, expression of constitutively active AR splice variants, and altered intratumoral androgen biosynthesis. AR-independent resistance mechanisms include glucocorticoid receptor activation, immune-mediated resistance, and neuroendocrine differentiation. The development of novel agents, such as seviteronel, apalutamide, and EPI-001/EPI-506, as well as the identification and validation of novel predictive biomarkers of resistance, may lead to improved therapeutics for mCRPC patients.
Collapse
Affiliation(s)
- Daniel J Crona
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Young E Whang
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
407
|
Simmonds P, Loomis E, Curry E. DNA methylation-based chromatin compartments and ChIP-seq profiles reveal transcriptional drivers of prostate carcinogenesis. Genome Med 2017; 9:54. [PMID: 28592290 PMCID: PMC5463361 DOI: 10.1186/s13073-017-0443-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/23/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Profiles of DNA methylation of many tissues relevant in human disease have been obtained from microarrays and are publicly available. These can be used to generate maps of chromatin compartmentalization, demarcating open and closed chromatin across the genome. Additionally, large sets of genome-wide transcription factor binding profiles have been made available thanks to ChIP-seq technology. METHODS We have identified genomic regions with altered chromatin compartmentalization in prostate adenocarcinoma tissue relative to normal prostate tissue, using DNA methylation microarray data from The Cancer Genome Atlas. DNA binding profiles from the Encyclopedia of DNA Elements (ENCODE) ChIP-seq studies have been systematically screened to find transcription factors with inferred DNA binding sites located in discordantly open/closed chromatin in malignant tissue (compared with non-cancer control tissue). We have combined this with tests for corresponding up-/downregulation of the transcription factors' putative target genes to obtain an integrated measure of cancer-specific regulatory activity to identify likely transcriptional drivers of prostate cancer. RESULTS Generally, we find that the degree to which transcription factors preferentially bind regions of chromatin that become more accessible during prostate carcinogenesis is significantly associated to the level of systematic upregulation of their targets, at the level of gene expression. Our approach has yielded 11 transcription factors that show strong cancer-specific transcriptional activation of targets, including the novel candidates KAT2A and TRIM28, alongside established drivers of prostate cancer MYC, ETS1, GABP and YY1. CONCLUSIONS This approach to integrated epigenetic and transcriptional profiling using publicly available data represents a cheap and powerful technique for identifying potential drivers of human disease. In our application to prostate adenocarcinoma data, the fact that well-known drivers are amongst the top candidates suggests that the discovery of novel candidate drivers may unlock pathways to future medicines. Data download instructions and code to reproduce this work are available at GitHub under 'edcurry/PRAD-compartments'.
Collapse
Affiliation(s)
- Poppy Simmonds
- Division of Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.,Centre for Cell, Gene & Tissue Therapeutics, UCL Medical School, Royal Free Hospital, Pond Street, London, NW3 2QG, UK
| | - Erick Loomis
- Helix, 1 Circle Star Way, San Carlos, CA, 94070, USA
| | - Edward Curry
- Division of Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
408
|
Liu H, Sun Q, Sun Y, Zhang J, Yuan H, Pang S, Qi X, Wang H, Zhang M, Zhang H, Yu C, Gu C. MELK and EZH2 Cooperate to Regulate Medulloblastoma Cancer Stem-like Cell Proliferation and Differentiation. Mol Cancer Res 2017; 15:1275-1286. [PMID: 28536141 DOI: 10.1158/1541-7786.mcr-17-0105] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/11/2017] [Accepted: 05/18/2017] [Indexed: 11/16/2022]
Abstract
Medulloblastoma is the most common malignant brain tumor in children. Although accumulated research has suggested that cancer stem-like cells play a key role in medulloblastoma tumorigenesis, the specific molecular mechanism regarding proliferation remains elusive. Here, we reported more abundant expression of maternal embryonic leucine-zipper kinase (MELK) and enhancer of zeste homolog 2 (EZH2) in medulloblastoma stem-like cells than in neural stem cells and the interaction between the two proteins could mediate the self-renewal of sonic hedgehog subtype medulloblastoma. In human medulloblastoma, extensive nodularity and large-cell/anaplastic subgroups differed according to the staining levels of MELK and EZH2 from the other two subgroups. The proportion of MELK- or EZH2-positive staining status could be considered as a potential indicator for survival. Mechanistically, MELK bound to and phosphorylated EZH2, and its methylation was induced by EZH2 in medulloblastoma, which could regulate the proliferation of cancer stem-like cells. In xenografts, loss of MELK or EZH2 attenuated medulloblastoma stem-like cell-derived tumor growth and promoted differentiation. These findings indicate that MELK-induced phosphorylation and EZH2-mediated methylation in MELK/EZH2 pathway are essential for medulloblastoma stem-like cell-derived tumor proliferation, thereby identifying a potential therapeutic strategy for these patients.Implications: This study demonstrates that the interaction occurring between MELK and EZH2 promotes self-proliferation and stemness, thus representing an attractive therapeutic target and potential candidate for diagnosis of medulloblastoma. Mol Cancer Res; 15(9); 1275-86. ©2017 AACR.
Collapse
Affiliation(s)
- Hailong Liu
- Department of Neurosurgery, Sanbo Brain Hospital Capital Medical University, Beijing, P.R. China
| | - Qianwen Sun
- Department of Neurology, Qilu Hospital Shandong University, Jinan, P.R. China
| | - Youliang Sun
- School of Basic Medical Science, Capital Medical University, Beijing, P.R. China
| | - Junping Zhang
- Department of Neurosurgery, Sanbo Brain Hospital Capital Medical University, Beijing, P.R. China
| | - Hongyu Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | | | - Xueling Qi
- Department of Pathology, Sanbo Brain Hospital Capital Medical University, Beijing, P.R. China
| | - Haoran Wang
- Department of Neurosurgery, Sanbo Brain Hospital Capital Medical University, Beijing, P.R. China
| | - Mingshan Zhang
- Department of Neurosurgery, Sanbo Brain Hospital Capital Medical University, Beijing, P.R. China
| | - Hongwei Zhang
- Department of Neurosurgery, Sanbo Brain Hospital Capital Medical University, Beijing, P.R. China
| | - Chunjiang Yu
- Department of Neurosurgery, Sanbo Brain Hospital Capital Medical University, Beijing, P.R. China.
| | - Chunyu Gu
- Department of Neurosurgery, Sanbo Brain Hospital Capital Medical University, Beijing, P.R. China.
| |
Collapse
|
409
|
Poole CJ, van Riggelen J. MYC-Master Regulator of the Cancer Epigenome and Transcriptome. Genes (Basel) 2017; 8:genes8050142. [PMID: 28505071 PMCID: PMC5448016 DOI: 10.3390/genes8050142] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 01/03/2023] Open
Abstract
Overexpression of MYC is a hallmark of many human cancers. The MYC oncogene has long been thought to execute its neoplastic functions by acting as a classic transcription factor, deregulating the expression of a large number of specific target genes. However, MYC’s influence on many of these target genes is rather modest and there is little overlap between MYC regulated genes in different cell types, leaving many mechanistic questions unanswered. Recent advances in the field challenge the dogma further, revealing a role for MYC that extends beyond the traditional concept of a sequence-specific transcription factor. In this article, we review MYC’s function as a regulator of the cancer epigenome and transcriptome. We outline our current understanding of how MYC regulates chromatin structure in both a site-specific and genome-wide fashion, and highlight the implications for therapeutic strategies for cancers with high MYC expression.
Collapse
Affiliation(s)
- Candace J Poole
- Augusta University, Department of Biochemistry and Molecular Biology, 1410 Laney-Walker Blvd., Augusta, GA 30912, USA.
| | - Jan van Riggelen
- Augusta University, Department of Biochemistry and Molecular Biology, 1410 Laney-Walker Blvd., Augusta, GA 30912, USA.
| |
Collapse
|
410
|
Gu P, Chen X, Xie R, Han J, Xie W, Wang B, Dong W, Chen C, Yang M, Jiang J, Chen Z, Huang J, Lin T. lncRNA HOXD-AS1 Regulates Proliferation and Chemo-Resistance of Castration-Resistant Prostate Cancer via Recruiting WDR5. Mol Ther 2017; 25:1959-1973. [PMID: 28487115 DOI: 10.1016/j.ymthe.2017.04.016] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/07/2017] [Accepted: 04/12/2017] [Indexed: 02/01/2023] Open
Abstract
Castration-resistant prostate cancer (CRPC) that occurs after the failure of androgen deprivation therapy is the leading cause of deaths in prostate cancer patients. Thus, there is an obvious and urgent need to fully understand the mechanism of CRPC and discover novel therapeutic targets. Long noncoding RNAs (lncRNAs) are crucial regulators in many human cancers, yet their potential roles and molecular mechanisms in CRPC are poorly understood. In this study, we discovered that an lncRNA HOXD-AS1 is highly expressed in CRPC cells and correlated closely with Gleason score, T stage, lymph nodes metastasis, and progression-free survival. Knockdown of HOXD-AS1 inhibited the proliferation and chemo-resistance of CRPC cells in vitro and in vivo. Furthermore, we identified several cell cycle, chemo-resistance, and castration-resistance-related genes, including PLK1, AURKA, CDC25C, FOXM1, and UBE2C, that were activated transcriptionally by HOXD-AS1. Further investigation revealed that HOXD-AS1 recruited WDR5 to directly regulate the expression of target genes by mediating histone H3 lysine 4 tri-methylation (H3K4me3). In conclusion, our findings indicate that HOXD-AS1 promotes proliferation, castration resistance, and chemo-resistance in prostate cancer by recruiting WDR5. This sheds a new insight into the regulation of CRPC by lncRNA and provides a potential approach for the treatment of CRPC.
Collapse
Affiliation(s)
- Peng Gu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Ruihui Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jinli Han
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Weibin Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Bo Wang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Wen Dong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Changhao Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Meihua Yang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Junyi Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ziyue Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Pediatric Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
411
|
Ellis L. Understanding cancer lineage plasticity: reversing therapeutic resistance in metastatic prostate cancer. Pharmacogenomics 2017; 18:597-600. [PMID: 28468521 DOI: 10.2217/pgs-2017-0039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Leigh Ellis
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Brigham & Women's Hospital, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA.,Department of Pathology. Brigham & Woman's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
412
|
Abstract
Metastatic castration-resistant prostate cancer (CRPC) is associated with substantial clinical, pathologic, and molecular heterogeneity. Most tumors remain driven by androgen receptor (AR) signaling, which has clinical implications for patient selection for AR-directed approaches. However, histologic and clinical resistance phenotypes can emerge after AR inhibition, in which the tumors become less dependent on the AR. In this review, we discuss prostate cancer variants including neuroendocrine (NEPC) and aggressive variant (AVPC) prostate cancers and their clinical implications. Improvements in the understanding of the biologic mechanisms and molecular features underlying prostate cancer variants may help prognostication and facilitate the development of novel therapeutic approaches for subclasses of patient with CRPC.
Collapse
Affiliation(s)
- Panagiotis J Vlachostergios
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, 413 East 69th Street 1412,, New York, NY, 10021, USA
| | - Loredana Puca
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, 413 East 69th Street 1412,, New York, NY, 10021, USA
| | - Himisha Beltran
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, 413 East 69th Street 1412,, New York, NY, 10021, USA.
| |
Collapse
|
413
|
The MYCN Protein in Health and Disease. Genes (Basel) 2017; 8:genes8040113. [PMID: 28358317 PMCID: PMC5406860 DOI: 10.3390/genes8040113] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/22/2022] Open
Abstract
MYCN is a member of the MYC family of proto-oncogenes. It encodes a transcription factor, MYCN, involved in the control of fundamental processes during embryonal development. The MYCN protein is situated downstream of several signaling pathways promoting cell growth, proliferation and metabolism of progenitor cells in different developing organs and tissues. Conversely, deregulated MYCN signaling supports the development of several different tumors, mainly with a childhood onset, including neuroblastoma, medulloblastoma, rhabdomyosarcoma and Wilms’ tumor, but it is also associated with some cancers occurring during adulthood such as prostate and lung cancer. In neuroblastoma, MYCN-amplification is the most consistent genetic aberration associated with poor prognosis and treatment failure. Targeting MYCN has been proposed as a therapeutic strategy for the treatment of these tumors and great efforts have allowed the development of direct and indirect MYCN inhibitors with potential clinical use.
Collapse
|
414
|
Inoue T, Terada N, Kobayashi T, Ogawa O. Patient-derived xenografts as in vivo models for research in urological malignancies. Nat Rev Urol 2017; 14:267-283. [PMID: 28248952 DOI: 10.1038/nrurol.2017.19] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lack of appropriate models that recapitulate the complexity and heterogeneity of urological tumours precludes most of the preclinical reagents that target urological tumours from receiving regulatory approval. Patient-derived xenograft (PDX) models are characterized by direct engraftment of patient-derived tumour fragments into immunocompromised mice. PDXs can maintain the original histology, as well as the molecular and genetic characteristics of the source tumour. Thus, PDX models have various advantages over conventional cell-line-derived xenograft (CDX) and other models, which has resulted in an increase in the use of urological tumour PDXs in the analysis of tumour biology and, importantly, for drug development and treatment decisions in personalized medicine. PDX models of urological malignancies have great potential to be used for both basic and clinical research, but limitations exist and need to be overcome. In particular, several agents targeting the immune system have shown promising results in kidney and bladder cancer; however, establishing PDX models in mice with an intact immune system so that an immune response against the tumour is triggered is important to investigate these new therapeutics. Moreover, international collaboration to share PDX models is essential for research concerning fatal urological tumours.
Collapse
Affiliation(s)
- Takahiro Inoue
- Department of Urology, Kyoto University Graduate School of Medicine, 54 Kawaharacho Shogoin Sakyo-ku, Kyoto, 6068507, Japan
| | - Naoki Terada
- Department of Urology, Kyoto University Graduate School of Medicine, 54 Kawaharacho Shogoin Sakyo-ku, Kyoto, 6068507, Japan
| | - Takashi Kobayashi
- Department of Urology, Kyoto University Graduate School of Medicine, 54 Kawaharacho Shogoin Sakyo-ku, Kyoto, 6068507, Japan
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, 54 Kawaharacho Shogoin Sakyo-ku, Kyoto, 6068507, Japan
| |
Collapse
|
415
|
Rebello RJ, Pearson RB, Hannan RD, Furic L. Therapeutic Approaches Targeting MYC-Driven Prostate Cancer. Genes (Basel) 2017; 8:genes8020071. [PMID: 28212321 PMCID: PMC5333060 DOI: 10.3390/genes8020071] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/06/2017] [Accepted: 02/09/2017] [Indexed: 02/02/2023] Open
Abstract
The transcript encoding the proto-oncogene MYC is commonly overexpressed in prostate cancer (PC). MYC protein abundance is also increased in the majority of cases of advanced and metastatic castrate-resistant PC (mCRPC). Accordingly, the MYC-directed transcriptional program directly contributes to PC by upregulating the expression of a number of pro-tumorigenic factors involved in cell growth and proliferation. A key cellular process downstream of MYC activity is the regulation of ribosome biogenesis which sustains tumor growth. MYC activity also cooperates with the dysregulation of the phosphoinositol-3-kinase (PI3K)/AKT/mTOR pathway to promote PC cell survival. Recent advances in the understanding of these interactions through the use of animal models have provided significant insight into the therapeutic efficacy of targeting MYC activity by interfering with its transcriptional program, and indirectly by targeting downstream cellular events linked to MYC transformation potential.
Collapse
Affiliation(s)
- Richard J Rebello
- Prostate Cancer Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.
- Cancer Program, Biomedicine Discovery Institute and Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800, Australia.
| | - Richard B Pearson
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia.
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.
| | - Ross D Hannan
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia.
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.
- The ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Acton, ACT 2601, Australia.
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
| | - Luc Furic
- Prostate Cancer Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.
- Cancer Program, Biomedicine Discovery Institute and Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
416
|
Gupta K, Gupta S. Neuroendocrine differentiation in prostate cancer: key epigenetic players. Transl Cancer Res 2017; 6:S104-S108. [PMID: 30613478 DOI: 10.21037/tcr.2017.01.20] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Karishma Gupta
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA.,The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA.,The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.,Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA.,Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH, USA
| |
Collapse
|
417
|
Epigenomic Regulation of Androgen Receptor Signaling: Potential Role in Prostate Cancer Therapy. Cancers (Basel) 2017; 9:cancers9010009. [PMID: 28275218 PMCID: PMC5295780 DOI: 10.3390/cancers9010009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/02/2017] [Accepted: 01/11/2017] [Indexed: 12/18/2022] Open
Abstract
Androgen receptor (AR) signaling remains the major oncogenic pathway in prostate cancer (PCa). Androgen-deprivation therapy (ADT) is the principle treatment for locally advanced and metastatic disease. However, a significant number of patients acquire treatment resistance leading to castration resistant prostate cancer (CRPC). Epigenetics, the study of heritable and reversible changes in gene expression without alterations in DNA sequences, is a crucial regulatory step in AR signaling. We and others, recently described the technological advance Chem-seq, a method to identify the interaction between a drug and the genome. This has permitted better understanding of the underlying regulatory mechanisms of AR during carcinogenesis and revealed the importance of epigenetic modifiers. In screening for new epigenomic modifiying drugs, we identified SD-70, and found that this demethylase inhibitor is effective in CRPC cells in combination with current therapies. The aim of this review is to explore the role of epigenetic modifications as biomarkers for detection, prognosis, and risk evaluation of PCa. Furthermore, we also provide an update of the recent findings on the epigenetic key processes (DNA methylation, chromatin modifications and alterations in noncoding RNA profiles) involved in AR expression and their possible role as therapeutic targets.
Collapse
|
418
|
Sidaway P. N-Myc expression drives neuroendocrine disease. Nat Rev Urol 2016; 13:695. [DOI: 10.1038/nrurol.2016.218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|