401
|
Guo C, Chen S, Liu W, Ma Y, Li J, Fisher PB, Fang X, Wang XY. Immunometabolism: A new target for improving cancer immunotherapy. Adv Cancer Res 2019; 143:195-253. [PMID: 31202359 DOI: 10.1016/bs.acr.2019.03.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fundamental metabolic pathways are essential for mammalian cells to provide energy, precursors for biosynthesis of macromolecules, and reducing power for redox regulation. While dysregulated metabolism (e.g., aerobic glycolysis also known as the Warburg effect) has long been recognized as a hallmark of cancer, recent discoveries of metabolic reprogramming in immune cells during their activation and differentiation have led to an emerging concept of "immunometabolism." Considering the recent success of cancer immunotherapy in the treatment of several cancer types, increasing research efforts are being made to elucidate alterations in metabolic profiles of cancer and immune cells during their interplays in the setting of cancer progression and immunotherapy. In this review, we summarize recent advances in studies of metabolic reprogramming in cancer as well as differentiation and functionality of various immune cells. In particular, we will elaborate how distinct metabolic pathways in the tumor microenvironment cause functional impairment of immune cells and contribute to immune evasion by cancer. Lastly, we highlight the potential of metabolically reprogramming the tumor microenvironment to promote effective and long-lasting antitumor immunity for improved immunotherapeutic outcomes.
Collapse
Affiliation(s)
- Chunqing Guo
- Department of Human & Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Shixian Chen
- Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenjie Liu
- Department of Human & Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Yibao Ma
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Juan Li
- Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Paul B Fisher
- Department of Human & Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Xianjun Fang
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Xiang-Yang Wang
- Department of Human & Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
402
|
De Giorgi U, Procopio G, Giannarelli D, Sabbatini R, Bearz A, Buti S, Basso U, Mitterer M, Ortega C, Bidoli P, Ferraù F, Crinò L, Frassoldati A, Marchetti P, Mini E, Scoppola A, Verusio C, Fornarini G, Cartenì G, Caserta C, Sternberg CN. Association of Systemic Inflammation Index and Body Mass Index with Survival in Patients with Renal Cell Cancer Treated with Nivolumab. Clin Cancer Res 2019; 25:3839-3846. [PMID: 30967420 DOI: 10.1158/1078-0432.ccr-18-3661] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/06/2019] [Accepted: 04/03/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE Inflammation indexes and body mass index (BMI) are easily evaluated, predict survival, and are potentially modifiable. We evaluated the potential association of inflammatory indexes and BMI with the clinical outcome of patients with renal cell carcinoma (RCC) undergoing immune checkpoint inhibitor therapy. EXPERIMENTAL DESIGN A prospective cohort of patients with metastatic RCC treated with nivolumab enrolled in the Italian Expanded Access Program from July 2015 through April 2016 was examined. Reference measures of inflammation were identified for neutrophil-to-lymphocyte ratio (NLR) </≥ 3, systemic immune inflammation index (SII) </≥ 1,375, and platelet-to-lymphocyte ratio (PLR) </≥ 232. Patients were classified as high BMI (≥25 kg/m2) versus normal BMI (<25 kg/m2). RESULTS Among 313 evaluable patients, 235 (75.1%) were male, and median age was 65 years (range, 40-84 years), with 105 (33.69%) ≥70 years. In univariate analysis, age, performance status, BMI, SII, NLR, and PLR were able to predict outcome. In multivariate analyses, SII ≥1,375, BMI <25 kg/m2, and age ≥70 years independently predicted overall survival [OS; HR = 2.96, 95% confidence interval (CI), 2.05-4.27; HR = 1.59, 95% CI, 1.10-2.30; and HR = 1.65, 95% CI, 1.07-2.55, respectively). A patient with both SII ≥1,375 and BMI <25 kg/m2 was estimated to have much worse OS (HR, 3.37; 95% CI, 2.29-4.95; P <0.0001) than a patient with neither or only one risk factor. SII changes at 3 months predicted OS (P <0.0001). CONCLUSIONS Normal BMI combined with inflammation tripled the risk of death, suggesting that these biomarkers are critical prognostic factors for OS in patients with RCC treated with nivolumab.
Collapse
Affiliation(s)
- Ugo De Giorgi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy.
| | - Giuseppe Procopio
- Department of Medical Oncology, Istituto Nazionale dei Tumori IRCCS, Milan, Italy
| | - Diana Giannarelli
- Department of Statistics, Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | | | - Alessandra Bearz
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | | | - Umberto Basso
- Department of Medical Oncology, Istituto Oncologico Veneto (IOV) IRCCS, Padua, Italy
| | - Manfred Mitterer
- Department of Medical Oncology, Ospedale "Franz Tappeiner," Merano, Italy
| | - Cinzia Ortega
- Department of Medical Oncology, Ospedale S. Lazzaro ASL CN2 Alba-Bra, Cuneo, Italy
| | - Paolo Bidoli
- Department of Medical Oncology, Ospedale San Gerardo, Monza, Italy
| | - Francesco Ferraù
- Department of Medical Oncology, Ospedale "S. Vincenzo," Taormina, Italy
| | - Lucio Crinò
- Department of Medical Oncology, AO Perugia, Perugia, Italy
| | | | - Paolo Marchetti
- Department of Medical Oncology, Ospedale Sant'Andrea, Rome, Italy
| | - Enrico Mini
- Department of Oncology, Careggi University Hospital, Florence, Italy
| | - Alessandro Scoppola
- Department of Medical Oncology, Istituto Dermopatico dell'Immacolata, Rome, Italy
| | - Claudio Verusio
- Department of Medical Oncology, P.O. di Saronno, Varese, Italy
| | | | - Giacomo Cartenì
- Department of Medical Oncology, AO "A. Cardarelli," Naples, Italy
| | - Claudia Caserta
- Department of Medical Oncology, AOU Santa Maria, Terni, Italy
| | - Cora N Sternberg
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York
| |
Collapse
|
403
|
Dong M, Song X, Wang M, Wang W, Zhang P, Liu Y, Li M, Wang L, Song L. CgAATase with specific expression pattern can be used as a potential surface marker for oyster granulocytes. FISH & SHELLFISH IMMUNOLOGY 2019; 87:96-104. [PMID: 30633961 DOI: 10.1016/j.fsi.2019.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/28/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
Granulocytes are known as the main immunocompetent hemocytes that play important roles in the immune defense of oyster Crassostrea gigas. In the present study, an alcohol acyltransferase (designed as CgAATase) with specific expression pattern was identified from oyster C. gigas, and it could be employed as a potential marker for the isolation of oyster granulocytes. The open reading frame (ORF) of CgAATase was of 1431 bp, encoding a peptide of 476 amino acids with a typically conserved AATase domain. The mRNA transcripts of CgAATase were highest expressed in hemocytes, lower expressed in hepatopancreas, mantle, gonad, gill, ganglion, adductor muscle, and labial palp. The mRNA expression level of CgAATase in hemocytes was significantly up-regulated at 3-12 h and reached the highest level (27.40-fold compared to control group, p < 0.05) at 6 h after Vibrio splendidus stimulation. The total hemocytes were sorted as granulocytes, semi-granulocytes and agranulocytes by Percoll® density gradient centrifugation. CgAATase transcripts were dominantly observed in granulocytes, which was 8.26-fold (p < 0.05) and 2.80-fold (p < 0.05) of that in agranulocytes and semi-granulocytes, respectively. The monoclonal antibody against CgAATase was produced and employed for the isolation of granulocytes with the immunomagnetic bead. CgAATase protein was mainly detected on the cytomembrane of granulocytes. About 85.7 ± 4.60% of the granulocytes were positive for CgAATase and they could be successfully separated by flow cytometry with immunomagnetic bead coated with anti-CgAATase monoclonal antibody, and 97.7 ± 1.01% of the rest hemocytes (agranulocytes and semi-granulocytes) were negative for CgAATase. The isolated primary granulocytes could maintain cell activity for more than one week in vitro culture that exhibited numerous filopodia. These results collectively suggested that CgAATase was a potential marker of oyster granulocytes, and the granulocytes could be effectively isolated from total circulating hemocytes by immunomagnetic bead coated with the anti-CgAATase monoclonal antibody.
Collapse
Affiliation(s)
- Miren Dong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Min Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Peng Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Yu Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Meijia Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
404
|
Zhang S, Li J, Xie P, Zang T, Shen H, Cao G, Zhu Y, Yue Z, Li Z. STAT3/c-Myc Axis-Mediated Metabolism Alternations of Inflammation-Related Glycolysis Involve with Colorectal Carcinogenesis. Rejuvenation Res 2019; 22:138-145. [DOI: 10.1089/rej.2018.2089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sha Zhang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xian yang, People's Republic of China
- Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xian yang, People's Republic of China
| | - Jie Li
- School of Acupuncture and Massage, and Shaanxi University of Chinese Medicine, Xian yang, People's Republic of China
| | - Pei Xie
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resource Industrialization, Shaanxi University of Chinese Medicine, Xian yang, People's Republic of China
| | - Ting Zang
- Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xian yang, People's Republic of China
| | - Haibin Shen
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xian yang, People's Republic of China
| | - Guochun Cao
- Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xian yang, People's Republic of China
| | - Ying Zhu
- Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xian yang, People's Republic of China
| | - Zhenggang Yue
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resource Industrialization, Shaanxi University of Chinese Medicine, Xian yang, People's Republic of China
| | - Zhe Li
- Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xian yang, People's Republic of China
| |
Collapse
|
405
|
Abstract
The tumor immune landscape gained considerable interest based on the knowledge that genetic aberrations in cancer cells alone are insufficient for tumor development. Macrophages are basically supporting all hallmarks of cancer and owing to their tremendous plasticity they may exert a whole spectrum of anti-tumor and pro-tumor activities. As part of the innate immune response, macrophages are armed to attack tumor cells, alone or in concert with distinct T cell subsets. However, in the tumor microenvironment, they sense nutrient and oxygen gradients, receive multiple signals, and respond to this incoming information with a phenotype shift. Often, their functional output repertoire is shifted to become tumor-supportive. Incoming and outgoing signals are chemically heterogeneous but also comprise lipid mediators. Here, we review the current understanding whereby arachidonate metabolites derived from the cyclooxygenase and lipoxygenase pathways shape the macrophage phenotype in a tumor setting. We discuss these findings in the context of cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1) expression and concomitant prostaglandin E2 (PGE2) formation. We elaborate the multiple actions of this lipid in affecting macrophage biology, which are sensors for and generators of this lipid. Moreover, we summarize properties of 5-lipoxygenases (ALOX5) and 15-lipoxygenases (ALOX15, ALOX15B) in macrophages and clarify how these enzymes add to the role of macrophages in a dynamically changing tumor environment. This review will illustrate the potential routes how COX-2/mPGES-1 and ALOX5/-15 in macrophages contribute to the development and progression of a tumor.
Collapse
Affiliation(s)
- Andreas Weigert
- Institute of Biochemistry I/Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Elisabeth Strack
- Institute of Biochemistry I/Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Ryan G Snodgrass
- Institute of Biochemistry I/Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I/Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany. .,German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany.
| |
Collapse
|
406
|
Mitochondrial Retrograde Signalling and Metabolic Alterations in the Tumour Microenvironment. Cells 2019; 8:cells8030275. [PMID: 30909478 PMCID: PMC6468901 DOI: 10.3390/cells8030275] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/22/2022] Open
Abstract
This review explores the molecular mechanisms that may be responsible for mitochondrial retrograde signalling related metabolic reprogramming in cancer and host cells in the tumour microenvironment and provides a summary of recent updates with regard to the functional modulation of diverse cells in the tumour microenvironment.
Collapse
|
407
|
Wang S, Liu R, Yu Q, Dong L, Bi Y, Liu G. Metabolic reprogramming of macrophages during infections and cancer. Cancer Lett 2019; 452:14-22. [PMID: 30905817 DOI: 10.1016/j.canlet.2019.03.015] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/20/2019] [Accepted: 03/09/2019] [Indexed: 12/22/2022]
Abstract
In response to different microenvironmental stimuli, macrophages are polarized into two populations, M1 macrophages which are classically activated by interferon (IFN)-γ with lipopolysaccharides (LPSs) and M2 macrophages which are alternatively activated by interleukin-4 (IL-4), to perform specific roles in innate immune responses. Accordingly, macrophages occupy distinct metabolic profiles, regulated by orchestrated factors and signaling pathways, including the PI3K-AKT, HIF, c-Myc, AMPK, and PPARs pathways. These factors and pathways play pivotal roles not only in metabolic regulation but also in macrophage polarization. After activation, classically activated M1 macrophages and alternatively activated M2 macrophages display distinct patterns in glucose, lipid, amino acid and iron metabolism. Here, we summarized recently discovered metabolism-related inflammatory signaling factors, along with reprogrammed metabolism, after the activation of macrophages under conditions related to immunity and cancer. Additionally, macrophage regulatory roles in infectious diseases, cancer progression and anti-cancer immunotherapy are discussed in terms of metabolic profiles, providing insight into the prevention and treatment of immune-associated diseases.
Collapse
Affiliation(s)
- Shiyao Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Ruichen Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Qing Yu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Lin Dong
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
408
|
Porta C, Marino A, Consonni FM, Bleve A, Mola S, Storto M, Riboldi E, Sica A. Metabolic influence on the differentiation of suppressive myeloid cells in cancer. Carcinogenesis 2019; 39:1095-1104. [PMID: 29982315 DOI: 10.1093/carcin/bgy088] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022] Open
Abstract
New evidences indicate that the metabolic instruction of immunity (immune metabolism) results from the integration of cell metabolism and whole-body metabolism, which are both influenced by nutrition, microbiome metabolites and disease-driven metabolism (e.g. cancer metabolism). Cancer metabolism influences the immunological homeostasis and promotes immune alterations that support disease progression, hence influencing the clinical outcome. Cancer cells display increased glucose uptake and fermentation of glucose to lactate, even in the presence of completely functioning mitochondria. A major side effect of this event is immunosuppression, characterized by limited immunogenicity of cancer cells and restriction of the therapeutic efficacy of anticancer immunotherapy. Here, we discuss how the metabolism of myeloid cells associated with cancer contributes to the differentiation of their suppressive phenotype and therefore to cancer immune evasion.
Collapse
Affiliation(s)
- Chiara Porta
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara
| | - Arianna Marino
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara
| | | | - Augusto Bleve
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara
| | - Silvia Mola
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara
| | - Mariangela Storto
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara
| | - Elena Riboldi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara
| | - Antonio Sica
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara.,Humanitas Clinical and Research Center, Rozzano, Italy
| |
Collapse
|
409
|
Targeting immune cells for cancer therapy. Redox Biol 2019; 25:101174. [PMID: 30917934 PMCID: PMC6859550 DOI: 10.1016/j.redox.2019.101174] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/08/2019] [Accepted: 03/17/2019] [Indexed: 12/29/2022] Open
Abstract
Recent years have seen a renaissance in the research linking inflammation and cancer with immune cells playing a central role in smouldering inflammation in the tumor microenvironment. Diverse immune cell types infiltrate the tumor microenvironment, and the dynamic tumor-immune cell interplay gives rise to a rich milieu of cytokines and growth factors. Fundamentally, this intricate cross-talk creates the conducive condition for tumor cell proliferation, survival and metastasis. Interestingly, the prominent impact of immune cells is expounded in their contrary pro-tumoral role, as well as their potential anti-cancer cellular weaponry. The latter is known as immunotherapy, a concept born out of evidence that tumors are susceptible to immune defence and that by manipulating the immune system, tumor growth can be successfully restrained. Naturally, a deeper understanding of the multifaceted roles of various immune cell types thus contributes toward developing innovative anti-cancer strategies. Therefore, in this review we first outline the roles played by the major immune cell types, such as macrophages, neutrophils, natural killer cells, T cells and B cells. We then explain the recently-explored strategies of immunomodulation and discuss some important approaches via an immunology perspective.
Collapse
|
410
|
Hypoxia-induced tumor exosomes promote M2-like macrophage polarization of infiltrating myeloid cells and microRNA-mediated metabolic shift. Oncogene 2019; 38:5158-5173. [PMID: 30872795 DOI: 10.1038/s41388-019-0782-x] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 02/08/2019] [Accepted: 03/04/2019] [Indexed: 12/12/2022]
Abstract
Developing tumors rapidly outgrow their oxygen supply and are subject to hypoxia, which stimulates hypersecretion of tumor-derived exosomes that promote angiogenesis, metastasis, and immunosuppression, but the molecular mediators of these pathological effects remain poorly defined. Using quantitative proteomics, we identified that exosomes produced by hypoxic tumor cells are highly enriched in immunomodulatory proteins and chemokines including CSF-1, CCL2, FTH, FTL, and TGFβ. Modeling exosome effects on tumor-infiltrating immune cells, we observed a potent ability of these hypoxia-induced vesicles to influence macrophage recruitment and promote M2-like polarization both in vitro and in vivo. In addition, hypoxic, but not normoxic, tumor exosomes enhanced oxidative phosphorylation in bone marrow-derived macrophages via transfer of let-7a miRNA, resulting in suppression of the insulin-Akt-mTOR signaling pathway. Together, these data demonstrate that hypoxia promotes tumor secretion of biomolecule-loaded exosomes that can modify the immunometabolic profile of infiltrating monocyte-macrophages to better evade host immunity and enhance tumor progression.
Collapse
|
411
|
Noe JT, Mitchell RA. Tricarboxylic acid cycle metabolites in the control of macrophage activation and effector phenotypes. J Leukoc Biol 2019; 106:359-367. [PMID: 30768807 DOI: 10.1002/jlb.3ru1218-496r] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/22/2022] Open
Affiliation(s)
- Jordan T. Noe
- Department of Biochemistry and Molecular GeneticsUniversity of Louisville Louisville Kentucky USA
- J.G. Brown Cancer CenterUniversity of Louisville Louisville Kentucky USA
| | - Robert A. Mitchell
- Department of Biochemistry and Molecular GeneticsUniversity of Louisville Louisville Kentucky USA
- J.G. Brown Cancer CenterUniversity of Louisville Louisville Kentucky USA
- Department of Microbiology and ImmunologyUniversity of Louisville Louisville Kentucky USA
- Department of MedicineUniversity of Louisville Louisville Kentucky USA
| |
Collapse
|
412
|
Duan M, Goswami S, Shi JY, Wu LJ, Wang XY, Ma JQ, Zhang Z, Shi Y, Ma LJ, Zhang S, Xi RB, Cao Y, Zhou J, Fan J, Zhang XM, Gao Q. Activated and Exhausted MAIT Cells Foster Disease Progression and Indicate Poor Outcome in Hepatocellular Carcinoma. Clin Cancer Res 2019; 25:3304-3316. [PMID: 30723143 DOI: 10.1158/1078-0432.ccr-18-3040] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/25/2018] [Accepted: 02/01/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE Innate immunity is an indispensable arm of tumor immune surveillance, and the liver is an organ with a predominance of innate immunity, where mucosal-associated invariant T (MAIT) cells are enriched. However, little is known about the phenotype, functions, and immunomodulatory role of MAIT cells in hepatocellular carcinoma (HCC).Experimental Design: The distribution, phenotype, and function of MAIT cells in patients with HCC were evaluated by both flow cytometry (FCM) and in vitro bioassays. Transcriptomic analysis of MAIT cells was also performed. Prognostic significance of tumor-infiltrating MAIT cells was validated in four independent cohorts of patients with HCC. RESULTS Despite their fewer densities in HCC tumor than normal liver, MAIT cells were significantly enriched in the HCC microenvironment compared with other mucosa-associated organs. Tumor-derived MAIT cells displayed a typical CCR7-CD45RA-CD45RO+CD95+ effector memory phenotype with lower costimulatory and effector capabilities. Tumor-educated MAIT cells significantly upregulated inhibitory molecules like PD-1, CTLA-4, TIM-3, secreted significantly less IFNγ and IL17, and produced minimal granzyme B and perforin while shifting to produce tumor-promoting cytokines like IL8. Transcriptome sequencing confirmed that tumor-derived MAIT cells were reprogrammed toward a tumor-promoting direction by downregulating genes enriched in pathways of cytokine secretion and cytolysis effector function like NFKB1 and STAT5B and by upregulating genes like IL8, CXCL12, and HAVCR2 (TIM-3). High infiltration of MAIT cells in HCC significantly correlated with an unfavorable clinical outcome, revealed by FCM, qRT-PCR, and multiplex IHC analyses, respectively. CONCLUSIONS HCC-infiltrating MAIT cells were functionally impaired and even reprogrammed to shift away from antitumor immunity and toward a tumor-promoting direction.See related commentary by Carbone, p. 3199.
Collapse
Affiliation(s)
- Meng Duan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Shyamal Goswami
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jie-Yi Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Lin-Jie Wu
- School of Mathematical Sciences, Peking University, Beijing, China
| | - Xiao-Ying Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Jia-Qiang Ma
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Zhao Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Yang Shi
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Li-Jie Ma
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Shu Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Rui-Bin Xi
- School of Mathematical Sciences, Peking University, Beijing, China.,Center for Statistical Sciences, Peking University, Beijing, China
| | - Ya Cao
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Hunan, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China. .,Institute of Biomedical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Xiao-Ming Zhang
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China. .,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| |
Collapse
|
413
|
Ieronymaki E, Theodorakis EM, Lyroni K, Vergadi E, Lagoudaki E, Al-Qahtani A, Aznaourova M, Neofotistou-Themeli E, Eliopoulos AG, Vaporidi K, Tsatsanis C. Insulin Resistance in Macrophages Alters Their Metabolism and Promotes an M2-Like Phenotype. THE JOURNAL OF IMMUNOLOGY 2019; 202:1786-1797. [PMID: 30718296 DOI: 10.4049/jimmunol.1800065] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 01/10/2019] [Indexed: 12/14/2022]
Abstract
Obesity and insulin resistance influences metabolic processes, but whether it affects macrophage metabolism is not known. In this study, we demonstrate that chronic exposure of macrophages to insulin either in culture or in vivo in diet-induced, glucose-intolerant mice rendered them resistant to insulin signals marked by failure to induce Akt2 phosphorylation. Similarly, macrophages lacking Akt2 or IGF1 receptor were also resistant to insulin signals. Insulin-resistant macrophages had increased basal mTORC1 activity, possessed an M2-like phenotype, and reduced LPS responses. Moreover, they exhibited increased glycolysis and increased expression of key glycolytic enzymes. Inhibition of mTORC1 reversed the M2-like phenotype and suppressed glycolysis in insulin-resistant macrophages. In the context of polymicrobial sepsis, mice harboring insulin-resistant macrophages exhibited reduced sepsis-induced lung injury. Thus, macrophages obtain resistance to insulin characterized by increased glycolysis and a unique M2-like phenotype, termed M-insulin resistant, which accounts for obesity-related changes in macrophage responses and a state of trained immunity.
Collapse
Affiliation(s)
- Eleftheria Ieronymaki
- Laboratory of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, 71110 Crete, Greece
| | - Emmanouel M Theodorakis
- Laboratory of Intensive Care Medicine, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece
| | - Konstantina Lyroni
- Laboratory of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, 71110 Crete, Greece
| | - Eleni Vergadi
- Laboratory of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, 71110 Crete, Greece
| | - Eleni Lagoudaki
- Laboratory of Pathology, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece
| | - Ahmed Al-Qahtani
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; and
| | - Marina Aznaourova
- Laboratory of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece
| | - Elpida Neofotistou-Themeli
- Laboratory of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece
| | - Aristides G Eliopoulos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, 71110 Crete, Greece.,Department of Basic Sciences, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece
| | - Katerina Vaporidi
- Laboratory of Intensive Care Medicine, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece
| | - Christos Tsatsanis
- Laboratory of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece; .,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, 71110 Crete, Greece
| |
Collapse
|
414
|
Lee ES, Shin JM, Son S, Ko H, Um W, Song SH, Lee JA, Park JH. Recent Advances in Polymeric Nanomedicines for Cancer Immunotherapy. Adv Healthc Mater 2019; 8:e1801320. [PMID: 30666822 DOI: 10.1002/adhm.201801320] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/08/2018] [Indexed: 12/20/2022]
Abstract
Immunotherapy has emerged as a promising approach to treat cancer, since it facilitates eradication of cancer by enhancing innate and/or adaptive immunity without using cytotoxic drugs. Of the immunotherapeutic approaches, significant clinical potentials are shown in cancer vaccination, immune checkpoint therapy, and adoptive cell transfer. Nevertheless, conventional immunotherapies often involve immune-related adverse effects, such as liver dysfunction, hypophysitis, type I diabetes, and neuropathy. In an attempt to address these issues, polymeric nanomedicines are extensively investigated in recent years. In this review, recent advances in polymeric nanomedicines for cancer immunotherapy are highlighted and thoroughly discussed in terms of 1) antigen presentation, 2) activation of antigen-presenting cells and T cells, and 3) promotion of effector cells. Also, the future perspectives to develop ideal nanomedicines for cancer immunotherapy are provided.
Collapse
Affiliation(s)
- Eun Sook Lee
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jung Min Shin
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Soyoung Son
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Hyewon Ko
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Wooram Um
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Seok Ho Song
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jae Ah Lee
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jae Hyung Park
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| |
Collapse
|
415
|
Cells exhibiting strong p16 INK4a promoter activation in vivo display features of senescence. Proc Natl Acad Sci U S A 2019; 116:2603-2611. [PMID: 30683717 PMCID: PMC6377452 DOI: 10.1073/pnas.1818313116] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The accumulation of senescent cells over a lifetime causes age-related pathologies; however, the inability to reliably identify senescent cells in vivo has hindered clinical efforts to employ this knowledge as a means to ameliorate or reverse aging. Here, we describe a reporter allele, p16tdTom, enabling the in vivo identification and isolation of cells featuring high-level activation of the p16INK4a promoter. Our findings provide an insight into the functional and molecular characteristics of p16INK4a-activated cells in vitro and in vivo. We show that such cells accumulate with aging or other models of injury, and that they exhibit clinically targetable features of cellular senescence. The activation of cellular senescence throughout the lifespan promotes tumor suppression, whereas the persistence of senescent cells contributes to aspects of aging. This theory has been limited, however, by an inability to identify and isolate individual senescent cells within an intact organism. Toward that end, we generated a murine reporter strain by “knocking-in” a fluorochrome, tandem-dimer Tomato (tdTom), into exon 1α of the p16INK4a locus. We used this allele (p16tdTom) for the enumeration, isolation, and characterization of individual p16INK4a-expressing cells (tdTom+). The half-life of the knocked-in transcript was shorter than that of the endogenous p16INK4a mRNA, and therefore reporter expression better correlated with p16INK4a promoter activation than p16INK4a transcript abundance. The frequency of tdTom+ cells increased with serial passage in cultured murine embryo fibroblasts from p16tdTom/+ mice. In adult mice, tdTom+ cells could be readily detected at low frequency in many tissues, and the frequency of these cells increased with aging. Using an in vivo model of peritoneal inflammation, we compared the phenotype of cells with or without activation of p16INK4a and found that tdTom+ macrophages exhibited some features of senescence, including reduced proliferation, senescence-associated β-galactosidase (SA-β-gal) activation, and increased mRNA expression of a subset of transcripts encoding factors involved in SA-secretory phenotype (SASP). These results indicate that cells harboring activation of the p16INK4a promoter accumulate with aging and inflammation in vivo, and display characteristics of senescence.
Collapse
|
416
|
Won WJ, Deshane JS, Leavenworth JW, Oliva CR, Griguer CE. Metabolic and functional reprogramming of myeloid-derived suppressor cells and their therapeutic control in glioblastoma. Cell Stress 2019; 3:47-65. [PMID: 31225500 PMCID: PMC6551710 DOI: 10.15698/cst2019.02.176] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma, also known as glioblastoma multi-forme, is the most common and deadliest form of high-grade malignant brain tumors with limited available treatments. Within the glioblastoma tumor microenvironment (TME), tumor cells, stromal cells, and infiltrating immune cells continuously interact and exchange signals through various secreted factors including cytokines, chemokines, growth factors, and metabolites. Simultaneously, they dynamically reprogram their metabolism according to environmental energy demands such as hypoxia and neo-vascularization. Such metabolic re-programming can determine fates and functions of tumor cells as well as immune cells. Ultimately, glioma cells in the TME transform immune cells to suppress anti-tumor immune cells such as T, natural killer (NK) cells, and dendritic cells (DC), and evade immune surveillance, and even to promote angiogenesis and tumor metastasis. Glioma-associated microglia/macrophages (GAMM) and myeloid-derived suppressor cells (MDSC) are most abundantly recruited and expanded myeloid lineage cells in glioblastoma TME and mainly lead to immunosuppression. In this review, of myeloid cells we will focus on MDSC as an important driver to induce immunosuppression in glioblastoma. Here, we review current literature on immunosuppressive functions and metabolic reprogramming of MDSCs in glioblastoma and discuss their metabolic pathways as potential therapeutic targets to improve current incurable glioblastoma treatment.
Collapse
Affiliation(s)
- Woong-Jai Won
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jessy S Deshane
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jianmei W Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Claudia R Oliva
- Free Radical and Radiation Biology Program, The University of Iowa, Iowa City, IA 52242, USA
| | - Corinne E Griguer
- Free Radical and Radiation Biology Program, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
417
|
Comito G, Iscaro A, Bacci M, Morandi A, Ippolito L, Parri M, Montagnani I, Raspollini MR, Serni S, Simeoni L, Giannoni E, Chiarugi P. Lactate modulates CD4 + T-cell polarization and induces an immunosuppressive environment, which sustains prostate carcinoma progression via TLR8/miR21 axis. Oncogene 2019; 38:3681-3695. [PMID: 30664688 DOI: 10.1038/s41388-019-0688-7] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/07/2018] [Accepted: 12/25/2018] [Indexed: 01/01/2023]
Abstract
Leukocyte infiltration plays an active role in controlling tumor development. In the early stages of carcinogenesis, T cells counteract tumor growth. However, in advanced stages, cancer cells and infiltrating stromal components interfere with the immune control and instruct immune cells to support, rather than counteract, tumor malignancy, via cell-cell contact or soluble mediators. In particular, metabolites are emerging as active players in driving immunosuppression. Here we demonstrate that in a prostate cancer model lactate released by glycolytic cancer-associated fibroblasts (CAFs) acts on CD4+ T cells, shaping T-cell polarization. In particular, CAFs exposure (i) reduces the percentage of the antitumoral Th1 subset, inducing a lactate-dependent, SIRT1-mediated deacetylation/degradation of T-bet transcription factor; (ii) increases Treg cells, driving naive T cells polarization, through a lactate-based NF-kB activation and FoxP3 expression. In turn, this metabolic-based CAF-immunomodulated environment exerts a pro-invasive effect on prostate cancer cells, by activating a previously unexplored miR21/TLR8 axis that sustains cancer malignancy.
Collapse
Affiliation(s)
- G Comito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - A Iscaro
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield, UK
| | - M Bacci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - A Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - L Ippolito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - M Parri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - I Montagnani
- Histopathology and Molecular Diagnostics, University Hospital Careggi, Largo Brambilla, 3, 50134, Florence, Italy
| | - M R Raspollini
- Histopathology and Molecular Diagnostics, University Hospital Careggi, Largo Brambilla, 3, 50134, Florence, Italy
| | - S Serni
- Department of Urological Robotic Surgery and Renal Transplantation, University of Florence, Careggi Hospital, Florence, 50134, Italy
| | - L Simeoni
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Leipziger Str. 44, D-39120, Magdeburg, Germany
| | - E Giannoni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy.
| | - P Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy.,Tuscany Tumor Institute (ITT) and Excellence Centre for Research, Transfer and High Education DenoTHE, Florence, 50134, Italy
| |
Collapse
|
418
|
Shibao S, Minami N, Koike N, Fukui N, Yoshida K, Saya H, Sampetrean O. Metabolic heterogeneity and plasticity of glioma stem cells in a mouse glioblastoma model. Neuro Oncol 2019; 20:343-354. [PMID: 29016888 DOI: 10.1093/neuonc/nox170] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Glioblastomas have been shown to rely on glycolysis as an energy source. However, recent evidence suggests that at least a subset of glioma cells with stem cell-like properties can thrive on oxidative phosphorylation. It remains unclear whether both metabolic phenotypes support tumor propagation, if they are independent, and how stable they are. The present study investigated these questions with the use of isogenic murine glioma stem cells (GSCs). Methods GSCs were established from tumors formed by Ink4a/Arf-null, H-RasV12-expressing glioma-initiating cells that differed in extracellular acidification potential. Metabolic characteristics of GSCs were determined by measurement of glucose, oxygen, and glutamine uptake, ATP content, and lactate production. Effects of metabolic inhibitors and changes in oxygen or nutrient availability on lactate production and tumorsphere growth were also determined. Results GSCs were found either to consume more glucose and produce more lactate or to consume more oxygen and maintain a higher ATP content depending on the metabolic characteristics of the tumor cells of origin. The latter, mitochondrial-type GSCs increased lactate production after treatment with the oxidative phosphorylation inhibitor oligomycin or phenformin. Exposure to hypoxia also increased lactate production and expression of glycolysis-related enzymes and metabolites in mitochondrial-type GSCs in a reversible manner. Conclusions Both glycolytic and mitochondrial-type energy production can sustain tumor propagation by isogenic GSCs. Whereas both phenotypes can be independent and stable, cells that rely on oxidative phosphorylation can also switch to a more glycolytic phenotype in response to metabolic stress, suggesting that plasticity is a further characteristic of GSC metabolism.
Collapse
Affiliation(s)
- Shunsuke Shibao
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Noriaki Minami
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Naoyoshi Koike
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Nobuyuki Fukui
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Kazunari Yoshida
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Oltea Sampetrean
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
419
|
The Adaptive Complexity of Cancer. BIOMED RESEARCH INTERNATIONAL 2019; 2018:5837235. [PMID: 30627563 PMCID: PMC6304530 DOI: 10.1155/2018/5837235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022]
Abstract
Cancer treatment options are expanding to the benefit of significant segments of patients. However, their therapeutic power is not equally realized for all cancer patients due to drug toxicity and disease resistance. Overcoming these therapeutic challenges would require a better understanding of the adaptive survival mechanisms of cancer. In this respect, an integrated view of the disease as a complex adaptive system is proposed as a framework to explain the dynamic coupling between the various drivers underlying tumor growth and cancer resistance to therapy. In light of this system view of cancer, the immune system is in principal the most appropriate and naturally available therapeutic instrument that can thwart the adaptive survival mechanisms of cancer. In this respect, new cancer therapies should aim at restoring immunosurveillance by priming the induction of an effective immune response through a judicious targeting of immunosuppression, inflammation, and the tumor nutritional lifeline extended by the tumor microenvironment.
Collapse
|
420
|
TLR8-Mediated Metabolic Control of Human Treg Function: A Mechanistic Target for Cancer Immunotherapy. Cell Metab 2019; 29:103-123.e5. [PMID: 30344014 PMCID: PMC7050437 DOI: 10.1016/j.cmet.2018.09.020] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 06/22/2018] [Accepted: 09/23/2018] [Indexed: 01/09/2023]
Abstract
Regulatory T (Treg) cells induce an immunosuppressive microenvironment that is a major obstacle for successful tumor immunotherapy. Dissecting the regulatory mechanisms between energy metabolism and functionality in Treg cells will provide insight toward developing novel immunotherapies against cancer. Here we report that human naturally occurring and tumor-associated Treg cells exhibit distinct metabolic profiles with selectivity for glucose metabolism compared with effector T cells. Treg-mediated accelerated glucose consumption induces cellular senescence and suppression of responder T cells through cross-talk. TLR8 signaling selectively inhibits glucose uptake and glycolysis in human Treg cells, resulting in reversal of Treg suppression. Importantly, TLR8 signaling-mediated reprogramming of glucose metabolism and function in human Treg cells can enhance anti-tumor immunity in vivo in a melanoma adoptive transfer T cell therapy model. Our studies identify mechanistic links between innate signaling and metabolic regulation of human Treg suppression, which may be used as a strategy to advance tumor immunotherapy.
Collapse
|
421
|
House IG, Petley EV, Beavis PA. Tumor-derived exosomes modulate T cell function through transfer of RNA. FEBS J 2019; 285:1030-1032. [PMID: 29570251 DOI: 10.1111/febs.14413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/16/2018] [Indexed: 01/10/2023]
Abstract
Tumor cells can develop a variety of mechanisms to evade and subvert the immune system for their survival. Bland et al., in this edition of The FEBS Journal, make the novel finding that the tumor line B16F0 can deliver mRNA/miRNA loaded exosomes to cytotoxic T lymphocytes and alter their metabolic function and interferon gamma production.
Collapse
Affiliation(s)
- Imran G House
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Australia
| | - Emma V Petley
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Australia
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Australia.,Department of Pathology, University of Melbourne, Australia
| |
Collapse
|
422
|
Jeong H, Kim S, Hong BJ, Lee CJ, Kim YE, Bok S, Oh JM, Gwak SH, Yoo MY, Lee MS, Chung SJ, Defrêne J, Tessier P, Pelletier M, Jeon H, Roh TY, Kim B, Kim KH, Ju JH, Kim S, Lee YJ, Kim DW, Kim IH, Kim HJ, Park JW, Lee YS, Lee JS, Cheon GJ, Weissman IL, Chung DH, Jeon YK, Ahn GO. Tumor-Associated Macrophages Enhance Tumor Hypoxia and Aerobic Glycolysis. Cancer Res 2019; 79:795-806. [PMID: 30610087 DOI: 10.1158/0008-5472.can-18-2545] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/03/2018] [Accepted: 12/27/2018] [Indexed: 12/15/2022]
Abstract
Tumor hypoxia and aerobic glycolysis are well-known resistance factors for anticancer therapies. Here, we demonstrate that tumor-associated macrophages (TAM) enhance tumor hypoxia and aerobic glycolysis in mice subcutaneous tumors and in patients with non-small cell lung cancer (NSCLC). We found a strong correlation between CD68 TAM immunostaining and PET 18fluoro-deoxyglucose (FDG) uptake in 98 matched tumors of patients with NSCLC. We also observed a significant correlation between CD68 and glycolytic gene signatures in 513 patients with NSCLC from The Cancer Genome Atlas database. TAM secreted TNFα to promote tumor cell glycolysis, whereas increased AMP-activated protein kinase and peroxisome proliferator-activated receptor gamma coactivator 1-alpha in TAM facilitated tumor hypoxia. Depletion of TAM by clodronate was sufficient to abrogate aerobic glycolysis and tumor hypoxia, thereby improving tumor response to anticancer therapies. TAM depletion led to a significant increase in programmed death-ligand 1 (PD-L1) expression in aerobic cancer cells as well as T-cell infiltration in tumors, resulting in antitumor efficacy by PD-L1 antibodies, which were otherwise completely ineffective. These data suggest that TAM can significantly alter tumor metabolism, further complicating tumor response to anticancer therapies, including immunotherapy. SIGNIFICANCE: These findings show that tumor-associated macrophages can significantly modulate tumor metabolism, hindering the efficacy of anticancer therapies, including anti-PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Hoibin Jeong
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Sehui Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Beom-Ju Hong
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Chan-Ju Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Young-Eun Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Seoyeon Bok
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Jung-Min Oh
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Seung-Hee Gwak
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Min Young Yoo
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Min Sun Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Seock-Jin Chung
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Joan Defrêne
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Ville de Québec, Québec, Canada
| | - Philippe Tessier
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Ville de Québec, Québec, Canada
| | - Martin Pelletier
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Ville de Québec, Québec, Canada
| | - Hyeongrin Jeon
- Department of Life Sciences, POSTECH, Pohang, Gyeongbuk, Korea
| | - Tae-Young Roh
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea.,Department of Life Sciences, POSTECH, Pohang, Gyeongbuk, Korea
| | - Bumju Kim
- Department of Mechanical Engineering, POSTECH, Pohang, Gyeongbuk, Korea
| | - Ki Hean Kim
- Department of Mechanical Engineering, POSTECH, Pohang, Gyeongbuk, Korea
| | - Ji Hyeon Ju
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Seoul, Korea
| | - Sungjee Kim
- Department of Chemistry, POSTECH, Pohang, Gyeongbuk, Korea
| | - Yoon-Jin Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Dong-Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Il Han Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hak Jae Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Wan Park
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Irving L Weissman
- Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| | - Doo Hyun Chung
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea.
| | - G-One Ahn
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea. .,Department of Life Sciences, POSTECH, Pohang, Gyeongbuk, Korea
| |
Collapse
|
423
|
Iscaro A, Howard NF, Muthana M. Nanoparticles: Properties and Applications in Cancer Immunotherapy. Curr Pharm Des 2019; 25:1962-1979. [PMID: 31566122 DOI: 10.2174/1381612825666190708214240] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Tumours are no longer regarded as isolated masses of aberrantly proliferating epithelial cells. Rather, their properties depend on complex interactions between epithelial cancer cells and the surrounding stromal compartment within the tumour microenvironment. In particular, leukocyte infiltration plays a role in controlling tumour development and is now considered one of the hallmarks of cancer. Thus, in the last few years, immunotherapy has become a promising strategy to fight cancer, as its goal is to reprogram or activate antitumour immunity to kill tumour cells, without damaging the normal cells and provide long-lasting results where other therapies fail. However, the immune-related adverse events due to the low specificity in tumour cell targeting, strongly limit immunotherapy efficacy. In this regard, nanomedicine offers a platform for the delivery of different immunotherapeutic agents specifically to the tumour site, thus increasing efficacy and reducing toxicity. Indeed, playing with different material types, several nanoparticles can be formulated with different shape, charge, size and surface chemical modifications making them the most promising platform for biomedical applications. AIM In this review, we will summarize the different types of cancer immunotherapy currently in clinical trials or already approved for cancer treatment. Then, we will focus on the most recent promising strategies to deliver immunotherapies directly to the tumour site using nanoparticles. CONCLUSION Nanomedicine seems to be a promising approach to improve the efficacy of cancer immunotherapy. However, additional investigations are needed to minimize the variables in the production processes in order to make nanoparticles suitable for clinical use.
Collapse
Affiliation(s)
- Alessandra Iscaro
- Department of Oncology & Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield, United Kingdom
| | - Nutter F Howard
- Department of Oncology & Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield, United Kingdom
| | - Munitta Muthana
- Department of Oncology & Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield, United Kingdom
| |
Collapse
|
424
|
Sieow JL, Gun SY, Wong SC. The Sweet Surrender: How Myeloid Cell Metabolic Plasticity Shapes the Tumor Microenvironment. Front Cell Dev Biol 2018; 6:168. [PMID: 30619850 PMCID: PMC6297857 DOI: 10.3389/fcell.2018.00168] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/27/2018] [Indexed: 12/24/2022] Open
Abstract
Immune cells are one of the most versatile cell types, as they can tailor their metabolic activity according to their required function. In response to diverse environmental cues, immune cells undergo metabolic reprogramming to support their differentiation, proliferation and pro-inflammatory effector functions. To meet a dramatic surge in energetic demand, immune cells rewire their metabolism to utilize aerobic glycolysis. This preferential use of glycolysis even under aerobic conditions is well established in tumor cells, and is known as the "Warburg effect." Tumor cells avidly use glucose for aerobic glycolysis, thereby creating a nutrient-starved microenvironment, outcompeting T cells for glucose, and directly inhibiting T-cell anti-tumoral effector function. Given that both immune and tumor cells use similar modes of metabolism in the tumor stroma, it is imperative to identify a therapeutic window in which immune-cell and tumor-cell glycolysis can be specifically targeted. In this review, we focus on the Warburg metabolism as well as other metabolic pathways of myeloid cells, which comprise a notable niche in the tumor environment and promote the growth and metastasis of malignant tumors. We examine how differential immune-cell activation triggers metabolic fate, and detail how this forbidding microenvironment succeeds in shutting down the vigorous anti-tumoral response. Finally, we highlight emerging therapeutic concepts that aim to target immune-cell metabolism. Improving our understanding of immunometabolism and immune-cell commitment to specific metabolic fates will help identify alternative therapeutic approaches to battle this intractable disease.
Collapse
Affiliation(s)
- Je Lin Sieow
- Singapore Immunology Network, ASTAR, Singapore, Singapore
| | - Sin Yee Gun
- Singapore Immunology Network, ASTAR, Singapore, Singapore
| | - Siew Cheng Wong
- Singapore Immunology Network, ASTAR, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
425
|
Lee JJ, Chu E. Recent Advances in the Clinical Development of Immune Checkpoint Blockade Therapy for Mismatch Repair Proficient (pMMR)/non-MSI-H Metastatic Colorectal Cancer. Clin Colorectal Cancer 2018; 17:258-273. [PMID: 30072278 PMCID: PMC6612427 DOI: 10.1016/j.clcc.2018.06.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/10/2018] [Accepted: 06/14/2018] [Indexed: 12/11/2022]
Abstract
Metastatic colorectal cancer (mCRC) continues to be associated with a poor prognosis, and there remains a significant unmet need for novel agents and treatment regimens. Major breakthroughs have been made with immune checkpoint blockade therapy in several disease types, including DNA mismatch repair deficient/microsatellite instability-high (MSI-H) tumors. To date, however, immune checkpoint monotherapy has not shown significant clinical activity in the treatment of patients with mismatch repair proficient (pMMR)/non-MSI-H mCRC. The immune resistance mechanisms in pMMR/non-MSI-H mCRC have not yet been clearly elucidated. Significant efforts are currently focused on identifying effective combination immunotherapy regimens for the treatment of patients with pMMR/non-MSI-H mCRC. The combination of atezolizumab with cobimetinib had shown promising clinical activity in an early-phase clinical trial. Unfortunately, the IMblaze 370 (COTEZO) phase III trial of atezolizumab/cobimetinib combination in patients with mCRC failed to show significant improvement in overall survival in patients treated with the atezolizumab/combimetinib combination in comparison with regorafenib alone. This review summarizes the recent major advances in the clinical development of immunotherapy regimens for patients with pMMR/non-MSI-H mCRC.
Collapse
Affiliation(s)
- James J Lee
- Division of Hematology-Oncology, Department of Medicine, Cancer Therapeutics Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA.
| | - Edward Chu
- Division of Hematology-Oncology, Department of Medicine, Cancer Therapeutics Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
426
|
Tumour-elicited neutrophils engage mitochondrial metabolism to circumvent nutrient limitations and maintain immune suppression. Nat Commun 2018; 9:5099. [PMID: 30504842 PMCID: PMC6269473 DOI: 10.1038/s41467-018-07505-2] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 10/28/2018] [Indexed: 02/08/2023] Open
Abstract
Neutrophils are a vital component of immune protection, yet in cancer they may promote tumour progression, partly by generating reactive oxygen species (ROS) that disrupts lymphocyte functions. Metabolically, neutrophils are often discounted as purely glycolytic. Here we show that immature, c-Kit+ neutrophils subsets can engage in oxidative mitochondrial metabolism. With limited glucose supply, oxidative neutrophils use mitochondrial fatty acid oxidation to support NADPH oxidase-dependent ROS production. In 4T1 tumour-bearing mice, mitochondrial fitness is enhanced in splenic neutrophils and is driven by c-Kit signalling. Concordantly, tumour-elicited oxidative neutrophils are able to maintain ROS production and T cell suppression when glucose utilisation is restricted. Consistent with these findings, peripheral blood neutrophils from patients with cancer also display increased immaturity, mitochondrial content and oxidative phosphorylation. Together, our data suggest that the glucose-restricted tumour microenvironment induces metabolically adapted, oxidative neutrophils to maintain local immune suppression. Neutrophils normally fulfil their metabolic demands by glycolysis and have limited mitochondrial activity. Here the authors show that tumours promote neutrophils adapted to oxidative mitochondria metabolism that function in the glucose-restrained tumour microenvironment to promote tumour growth by maintaining local immune suppression.
Collapse
|
427
|
Chauhan P, Saha B. Metabolic regulation of infection and inflammation. Cytokine 2018; 112:1-11. [PMID: 30472107 DOI: 10.1016/j.cyto.2018.11.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/30/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022]
Abstract
Immunometabolic framework provides a way to understand the immune regulation via cell intrinsic metabolic fluxes and metabolites during infections, tumors, and inflammatory disorders. During these diseases, the immune cells are activated requiring more energy and moderating their metabolic functions. The two categories of metabolic alterations are therefore causally associated with energy derivation and cellular functions. Pathogens, tumors and inflammation target energy metabolism, primarily glucose uptake, glucose catabolism, gluconeogenesis for continuing lipid metabolism through mainstream pathways such as glycolysis, tricarboxylic acid cycle, mitochondrial respiration and pentose phosphate pathway. Many biosynthetic pathways such as those of cholesterol, ceramide, sphingolipids, and fatty acids are altered explaining the metabolic interface in molecular pathogenesis in various infectious and non-infectious inflammatory diseases. The emerging immune-metabolic framework also identifies the key regulatory elements such as metabolites, signalling intermediates and transcription factors. These regulatory elements play key roles in deciding the fate of an infection, tumor or autoimmune diseases. The original research articles and the review articles in this Special issue of Cytokine on "Infection, Inflammation and Immunometabolomes" highlight these aspects of metabolic reprogramming and the role of some 'metabolomic regulators' in controlling the outcome of infectious and non-infectious diseases. In this Editorial, we introduce the readers to these articles discussing the elements in immune-metabolic framework.
Collapse
Affiliation(s)
- Prashant Chauhan
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Bhaskar Saha
- Trident Academy of Creative Technology, Bhubaneswar 750019, India
| |
Collapse
|
428
|
Ippolito L, Morandi A, Giannoni E, Chiarugi P. Lactate: A Metabolic Driver in the Tumour Landscape. Trends Biochem Sci 2018; 44:153-166. [PMID: 30473428 DOI: 10.1016/j.tibs.2018.10.011] [Citation(s) in RCA: 321] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/14/2018] [Accepted: 10/25/2018] [Indexed: 01/07/2023]
Abstract
The presence of lactate in human tumours has been long neglected, confined to the role of a waste product derived from glycolysis and as a biomarker of malignancy. More recently, lactate has been rediscovered as signalling molecule that plays important roles in the regulation of the metabolic pathways, the immune response, and cell-to-cell communication within the tumour microenvironment. This review examines recent discoveries about the functional role of lactate in shaping the behaviour and the phenotype of tumour and tumour-associated cells, and describes potential clinical approaches to target lactate transport and metabolism in tumours.
Collapse
Affiliation(s)
- Luigi Ippolito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy.
| |
Collapse
|
429
|
Gotoh K, Morisaki T, Setoyama D, Sasaki K, Yagi M, Igami K, Mizuguchi S, Uchiumi T, Fukui Y, Kang D. Mitochondrial p32/C1qbp Is a Critical Regulator of Dendritic Cell Metabolism and Maturation. Cell Rep 2018; 25:1800-1815.e4. [DOI: 10.1016/j.celrep.2018.10.057] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/18/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
|
430
|
Unique pattern of neutrophil migration and function during tumor progression. Nat Immunol 2018; 19:1236-1247. [PMID: 30323345 PMCID: PMC6195445 DOI: 10.1038/s41590-018-0229-5] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/20/2018] [Indexed: 12/26/2022]
Abstract
Although neutrophils have been linked to the formation of the pre-metastatic niche, the mechanism of their migration to distant uninvolved tissues has remained elusive. We report that bone marrow neutrophils from mice with early-stage cancers exhibited much more spontaneous migration to tissues. These cells lacked immunosuppressive activity but had elevated rates of oxidative phosphorylation and glycolysis, and much more production of ATP. Their enhanced spontaneous migration was mediated by the binding of ATP to purinergic receptors. In ectopic tumor models and the late stages of cancers, bone marrow neutrophils demonstrated potent immunosuppressive activity. However, these cells had metabolic and migratory activity indistinguishable from that of control neutrophils. A similar pattern of migration was observed in neutrophils and polymorphonuclear myeloid-derived suppressor cells from patients with cancer. These results elucidate the dynamic changes that neutrophils undergo in cancer and demonstrate the mechanism of neutrophils’ contribution to early tumor dissemination.
Collapse
|
431
|
Zhang Q, Lou Y, Bai XL, Liang TB. Immunometabolism: A novel perspective of liver cancer microenvironment and its influence on tumor progression. World J Gastroenterol 2018; 24:3500-3512. [PMID: 30131656 PMCID: PMC6102497 DOI: 10.3748/wjg.v24.i31.3500] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/29/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023] Open
Abstract
The initiation and progression of liver cancer, including hepatocellular carcinoma and intrahepatic cholangiocarcinoma, are dependent on its tumor microenvironment. Immune cells are key players in the liver cancer microenvironment and show complicated crosstalk with cancer cells. Emerging evidence has shown that the functions of immune cells are closely related to cell metabolism. However, the effects of metabolic changes of immune cells on liver cancer progression are largely undefined. In this review, we summarize the recent findings of immunometabolism and relate these findings to liver cancer progression. We also explore the translation of the understanding of immunometabolism for clinical use.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou 310009, Zhejiang Province, China
| | - Yu Lou
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou 310009, Zhejiang Province, China
| | - Xue-Li Bai
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou 310009, Zhejiang Province, China
| | - Ting-Bo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou 310009, Zhejiang Province, China
| |
Collapse
|
432
|
Dysfunction of Natural Killer Cells by FBP1-Induced Inhibition of Glycolysis during Lung Cancer Progression. Cell Metab 2018; 28:243-255.e5. [PMID: 30033198 DOI: 10.1016/j.cmet.2018.06.021] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/08/2018] [Accepted: 06/25/2018] [Indexed: 12/27/2022]
Abstract
Natural killer (NK) cells are effector lymphocytes with pivotal roles in the resistance against various tumors; dysfunction of NK cells often results in advanced tumor progression. Tumors develop in three stages comprising initiation, promotion, and progression, but little is known about the interrelationships between NK cells and tumor cells at different stages of tumor development. Here, we demonstrated that NK cells prevented tumor initiation potently but did not prevent tumor promotion or tumor progression in Kras-driven lung cancer. Moreover, loss of the antitumor effect in NK cells was closely associated with their dysfunctional state during tumor promotion and progression. Mechanistically, aberrant fructose-1,6-bisphosphatase (FBP1) expression in NK cells elicited their dysfunction by inhibiting glycolysis and impairing viability. Thus, our results show dynamic alterations of NK cells during tumor development and uncover a novel mechanism involved in NK cell dysfunction, suggesting potential directions for NK cell-based cancer immunotherapy involving FBP1 targeting.
Collapse
|
433
|
Le Bourgeois T, Strauss L, Aksoylar HI, Daneshmandi S, Seth P, Patsoukis N, Boussiotis VA. Targeting T Cell Metabolism for Improvement of Cancer Immunotherapy. Front Oncol 2018; 8:237. [PMID: 30123774 PMCID: PMC6085483 DOI: 10.3389/fonc.2018.00237] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022] Open
Abstract
There has been significant progress in utilizing our immune system against cancer, mainly by checkpoint blockade and T cell-mediated therapies. The field of cancer immunotherapy is growing rapidly but durable clinical benefits occur only in a small subset of responding patients. It is currently recognized that cancer creates a suppressive metabolic microenvironment, which contributes to ineffective immune function. Metabolism is a common cellular feature, and although there has been significant progress in understanding the detrimental role of metabolic changes of the tumor microenvironment (TEM) in immune cells, there is still much to be learned regarding unique targetable pathways. Elucidation of cancer and immune cell metabolic profiles is critical for identifying mechanisms that regulate metabolic reprogramming within the TEM. Metabolic targets that mediate immunosuppression and are fundamental in sustaining tumor growth can be exploited therapeutically for the development of approaches to increase the efficacy of immunotherapies. Here, we will highlight the importance of metabolism on the function of tumor-associated immune cells and will address the role of key metabolic determinants that might be targets of therapeutic intervention for improvement of tumor immunotherapies.
Collapse
Affiliation(s)
- Thibault Le Bourgeois
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Laura Strauss
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Halil-Ibrahim Aksoylar
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Saeed Daneshmandi
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Pankaj Seth
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Nikolaos Patsoukis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
434
|
Fuhrmann DC, Wittig I, Dröse S, Schmid T, Dehne N, Brüne B. Degradation of the mitochondrial complex I assembly factor TMEM126B under chronic hypoxia. Cell Mol Life Sci 2018; 75:3051-3067. [PMID: 29464284 PMCID: PMC11105659 DOI: 10.1007/s00018-018-2779-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 12/14/2022]
Abstract
Cell stress such as hypoxia elicits adaptive responses, also on the level of mitochondria, and in part is mediated by the hypoxia-inducible factor (HIF) 1α. Adaptation of mitochondria towards acute hypoxic conditions is reasonably well understood, while regulatory mechanisms, especially of respiratory chain assembly factors, under chronic hypoxia remains elusive. One of these assembly factors is transmembrane protein 126B (TMEM126B). This protein is part of the mitochondrial complex I assembly machinery. We identified changes in complex I abundance under chronic hypoxia, in association with impaired substrate-specific mitochondrial respiration. Complexome profiling of isolated mitochondria of the human leukemia monocytic cell line THP-1 revealed HIF-1α-dependent deficits in complex I assembly and mitochondrial complex I assembly complex (MCIA) abundance. Of all mitochondrial MCIA members, we proved a selective HIF-1-dependent decrease of TMEM126B under chronic hypoxia. Mechanistically, HIF-1α induces the E3-ubiquitin ligase F-box/WD repeat-containing protein 1A (β-TrCP1), which in turn facilitates the proteolytic degradation of TMEM126B. Attenuating a functional complex I assembly appears critical for cellular adaptation towards chronic hypoxia and is linked to destruction of the mitochondrial assembly factor TMEM126B.
Collapse
Affiliation(s)
- Dominik C Fuhrmann
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Ilka Wittig
- Functional Proteomics, SFB 815 Core Unit, Goethe-University Frankfurt, Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt, Germany
| | - Stefan Dröse
- Department of Anesthesiology, Intensive-Care Medicine and Pain Therapy, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Tobias Schmid
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Nathalie Dehne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| |
Collapse
|
435
|
Weiss JM, Davies LC, Karwan M, Ileva L, Ozaki MK, Cheng RY, Ridnour LA, Annunziata CM, Wink DA, McVicar DW. Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors. J Clin Invest 2018; 128:3794-3805. [PMID: 29920191 PMCID: PMC6118601 DOI: 10.1172/jci99169] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
Control of cellular metabolism is critical for efficient cell function, although little is known about the interplay between cell subset–specific metabolites in situ, especially in the tumor setting. Here, we determined how a macrophage-specific (Mϕ-specific) metabolite, itaconic acid, can regulate tumor progression in the peritoneum. We show that peritoneal tumors (B16 melanoma or ID8 ovarian carcinoma) elicited a fatty acid oxidation–mediated increase in oxidative phosphorylation (OXPHOS) and glycolysis in peritoneal tissue–resident macrophages (pResMϕ). Unbiased metabolomics identified itaconic acid, the product of immune-responsive gene 1–mediated (Irg1-mediated) catabolism of mitochondrial cis-aconitate, among the most highly upregulated metabolites in pResMϕ of tumor-bearing mice. Administration of lentivirally encoded Irg1 shRNA significantly reduced peritoneal tumors. This resulted in reductions in OXPHOS and OXPHOS-driven production of ROS in pResMϕ and ROS-mediated MAPK activation in tumor cells. Our findings demonstrate that tumors profoundly alter pResMϕ metabolism, leading to the production of itaconic acid, which potentiates tumor growth. Monocytes isolated from ovarian carcinoma patients’ ascites fluid expressed significantly elevated levels of IRG1. Therefore, IRG1 in pResMϕ represents a potential therapeutic target for peritoneal tumors.
Collapse
Affiliation(s)
- Jonathan M Weiss
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute (NCI) at Frederick, Frederick, Maryland, USA
| | - Luke C Davies
- Cardiff University, Division of Infection and Immunity, Cardiff, United Kingdom
| | - Megan Karwan
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA
| | - Lilia Ileva
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA
| | - Michelle K Ozaki
- Women's Malignancies Branch, Center for Cancer Research (CCR), NCI, Bethesda, Maryland, USA
| | - Robert Ys Cheng
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute (NCI) at Frederick, Frederick, Maryland, USA
| | - Lisa A Ridnour
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute (NCI) at Frederick, Frederick, Maryland, USA
| | - Christina M Annunziata
- Women's Malignancies Branch, Center for Cancer Research (CCR), NCI, Bethesda, Maryland, USA
| | - David A Wink
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute (NCI) at Frederick, Frederick, Maryland, USA
| | - Daniel W McVicar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute (NCI) at Frederick, Frederick, Maryland, USA
| |
Collapse
|
436
|
Abstract
PURPOSE OF REVIEW Insight into the metabolic changes in cancer has become so important that cancer is regarded as a disease entity full of metabolic implications. We summarize the recent findings pertaining to cancer cell-derived metabolic changes that regulate the function of macrophages to favor cancer cell survival, and the reported approaches to reverse these changes. RECENT FINDINGS Since the observation and dramatic revitalization of the Warburg effect, metabolic changes were thought to be confined in cancer cells. However, the Warburg effect has recently been proven to exist in various types of immune cells in tumor tissue. A growing number of publications now indicate that cancer cells interact with other cells in the tumor microenvironment, not only through traditional inflammatory mediators, but also through oncometabolites, and that metabolic changes in immune cells by oncometabolites are the key factors favoring the survival of cancer cells and pro-tumoral function of immune cells. Notably, these metabolic changes do not occur uniformly in tumor progression. SUMMARY Understanding of the complex metabolic interactions in the tumor microenvironment can not only set a new paradigm for tumor progression, but also provide new breakthroughs to control cancer by modulation of function in tumor-associated macrophages.
Collapse
|
437
|
Hobson-Gutierrez SA, Carmona-Fontaine C. The metabolic axis of macrophage and immune cell polarization. Dis Model Mech 2018; 11:11/8/dmm034462. [PMID: 29991530 PMCID: PMC6124558 DOI: 10.1242/dmm.034462] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The extracellular space of solid tumors ranges from being well-nurtured to being completely ischemic and can serve as a source of intratumoral heterogeneity, determining the behavior and molecular profiles of malignant and stromal cells. Here, we discuss how the metabolic tumor microenvironment modulates the phenotypes of the immune cells that infiltrate tumors, with an emphasis on tumor-associated macrophages. These cells constitute a diverse population that has pro-tumoral and anti-inflammatory properties, and are likened to anti-inflammatory ‘M2’ macrophages. Recent findings show how different metabolic microenvironments specify an array of phenotypic changes in macrophages. In tumors, extracellular metabolite levels vary predictably according to proximity to the vasculature, and phenotypic changes in tumor-associated macrophages and in other immune cells are also predictable. We speculate that this ‘metabolic axis’ of macrophage polarization modulates – and is modulated by – the response to inflammatory cues, creating a wide variety of possible phenotypic states. Understanding how extracellular metabolites influence cell phenotypes allows us to predict how tumor-associated macrophages and other tumor cells might change, with the aim of harnessing this predictability for therapy. Overall, we describe an emerging picture in which chemokines, growth factors and the metabolic tumor microenvironment act together to determine the phenotypes of tumor-infiltrating immune cells. Summary: Extracellular metabolites can mediate cell communication and change transcriptional and functional aspects of tumor and normal cells. This Review focuses on how these metabolic cues affect the immune system with a special focus on tumor-associated macrophages.
Collapse
Affiliation(s)
- Spencer A Hobson-Gutierrez
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York City, NY 10003, USA
| | - Carlos Carmona-Fontaine
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York City, NY 10003, USA
| |
Collapse
|
438
|
Metabolic Stress in the Immune Function of T Cells, Macrophages and Dendritic Cells. Cells 2018; 7:cells7070068. [PMID: 29966302 PMCID: PMC6070887 DOI: 10.3390/cells7070068] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022] Open
Abstract
Innate and adaptive immune cells from myeloid and lymphoid lineages resolve host infection or cell stress by mounting an appropriate and durable immune response. Upon sensing of cellular insults, immune cells become activated and undergo rapid and efficient functional changes to unleash biosynthesis of macromolecules, proliferation, survival, and trafficking; unprecedented events among other mammalian cells within the host. These changes must become operational within restricted timing to rapidly control the insult and to avoid tissue damage and pathogen spread. Such changes occur at high energy cost. Recent advances have established that plasticity of immune functions occurs in distinct metabolic stress features. Evidence has accumulated to indicate that specific metabolic signatures dictate appropriate immune functions in both innate and adaptive immunity. Importantly, recent studies have shed light on whether successfully manipulating particular metabolic targets is sufficient to modulate immune function and polarization, thereby offering strong therapeutic potential for various common immune-mediated diseases, including inflammation and autoimmune-associated diseases and cancer. In this review, we detail how cellular metabolism controls immune function and phenotype within T cells and macrophages particularly, and the distinct molecular metabolic programming and targets instrumental to engage this regulation.
Collapse
|
439
|
Sun L, Suo C, Li ST, Zhang H, Gao P. Metabolic reprogramming for cancer cells and their microenvironment: Beyond the Warburg Effect. Biochim Biophys Acta Rev Cancer 2018; 1870:51-66. [PMID: 29959989 DOI: 10.1016/j.bbcan.2018.06.005] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023]
Abstract
While metabolic reprogramming of cancer cells has long been considered from the standpoint of how and why cancer cells preferentially utilize glucose via aerobic glycolysis, the so-called Warburg Effect, the progress in the following areas during the past several years has substantially advanced our understanding of the rewired metabolic network in cancer cells that is intertwined with oncogenic signaling. First, in addition to the major nutrient substrates glucose and glutamine, cancer cells have been discovered to utilize a variety of unconventional nutrient sources for survival. Second, the deregulated biomass synthesis is intertwined with cell cycle progression to coordinate the accelerated progression of cancer cells. Third, the reciprocal regulation of cancer cell's metabolic alterations and the microenvironment, involving extensive host immune cells and microbiota, have come into view as critical mechanisms to regulate cancer progression. These and other advances are shaping the current and future paradigm of cancer metabolism.
Collapse
Affiliation(s)
- Linchong Sun
- Laboratory of Cancer and Stem Cell metabolism, Guangzhou First Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China; CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Caixia Suo
- Laboratory of Cancer and Stem Cell metabolism, Guangzhou First Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Shi-Ting Li
- Laboratory of Cancer and Stem Cell metabolism, Guangzhou First Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China; CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Huafeng Zhang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Ping Gao
- Laboratory of Cancer and Stem Cell metabolism, Guangzhou First Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China; CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
440
|
Pashov A, Hernandez Puente CV, Ibrahim SM, Monzavi-Karbassi B, Makhoul I, Kieber-Emmons T. Thinking Cancer. Monoclon Antib Immunodiagn Immunother 2018; 37:117-125. [PMID: 29939836 DOI: 10.1089/mab.2018.0014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Evolutionary theories are necessarily invoked for understanding cancer development at the level of species, at the level of cells and tissues, and for developing effective therapies. It is crucial to view cancer in a Darwinian light, where the differential survival of individual cells is based on heritable variations. In the process of this somatic evolution, multicellularity controls are overridden by cancer cells, which become increasingly autonomous. Ecological epigenetics also helps understand how rogue cells that have basically the same DNA as their normal cell counterpart overcome the tissue homeostasis. As we struggle to wrap our minds around the complexity of these phenomena, we apply often times anthropomorphic terms, such as subversion, hijacking, or hacking, to describe especially the most complex among them-the interaction of tumors with the immune system. In this commentary we highlight examples of the anthropomorphic thinking of cancer and try to put into context the relative meaning of terms and the mechanisms that are oftentimes invoked to justify those terms.
Collapse
Affiliation(s)
- Anastas Pashov
- 1 Stephan Angelov Institute of Microbiology , Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | | - Behjatolah Monzavi-Karbassi
- 3 Department of Pathology, University of Arkansas for Medical Sciences , Little Rock, Arkansas
- 4 Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| | - Issam Makhoul
- 4 Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences , Little Rock, Arkansas
- 5 Department of Medicine, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| | - Thomas Kieber-Emmons
- 3 Department of Pathology, University of Arkansas for Medical Sciences , Little Rock, Arkansas
- 4 Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| |
Collapse
|
441
|
Kesarwani P, Kant S, Prabhu A, Chinnaiyan P. The interplay between metabolic remodeling and immune regulation in glioblastoma. Neuro Oncol 2018; 19:1308-1315. [PMID: 28541512 DOI: 10.1093/neuonc/nox079] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The fields of tumor metabolism and immune oncology have both independently received considerable attention over the last several years. The majority of research in tumor metabolism has largely focused on the Warburg effect and its resulting biologic consequences, including energy and macromolecule production. However, recent investigations have identified elegant, multifaceted strategies by which alterations in tumor metabolism can also contribute to a potent tolerogenic immune environment. One of the most notable is increased tryptophan metabolism through activation of indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO). However, this pathway represents one of numerous metabolic pathways that may modulate the immune system. For example, metabolites associated with aerobic glycolysis, adenosine, arginine, and prostaglandin metabolism have all been implicated in cancer-mediated immune tolerance and represent attractive therapeutic targets. In this review, we will provide an overview of the emerging interface between these 2 timely areas of cancer research and provide an overview of strategies currently being tested to target these next-generation metabolic immune checkpoints.
Collapse
Affiliation(s)
| | - Shiva Kant
- Radiation Oncology, Beaumont Health, Royal Oak, Michigan
| | - Antony Prabhu
- Radiation Oncology, Beaumont Health, Royal Oak, Michigan
| | | |
Collapse
|
442
|
Labanieh L, Majzner RG, Mackall CL. Programming CAR-T cells to kill cancer. Nat Biomed Eng 2018; 2:377-391. [PMID: 31011197 DOI: 10.1038/s41551-018-0235-9] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/09/2018] [Indexed: 02/06/2023]
Abstract
T cells engineered to express chimeric antigen receptors (CARs) that are specific for tumour antigens have led to high complete response rates in patients with haematologic malignancies. Despite this early success, major challenges to the broad application of CAR-T cells as cancer therapies remain, including treatment-associated toxicities and cancer relapse with antigen-negative tumours. Targeting solid tumours with CAR-T cells poses additional obstacles because of the paucity of tumour-specific antigens and the immunosuppressive effects of the tumour microenvironment. To overcome these challenges, T cells can be programmed with genetic modules that increase their therapeutic potency and specificity. In this Review Article, we survey major advances in the engineering of next-generation CAR-T therapies for haematologic cancers and solid cancers, with particular emphasis on strategies for the control of CAR specificity and activity and on approaches for improving CAR-T-cell persistence and overcoming immunosuppression. We also lay out a roadmap for the development of off-the-shelf CAR-T cells.
Collapse
Affiliation(s)
- Louai Labanieh
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Robbie G Majzner
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Crystal L Mackall
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA. .,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
443
|
Kumar V. T cells and their immunometabolism: A novel way to understanding sepsis immunopathogenesis and future therapeutics. Eur J Cell Biol 2018; 97:379-392. [PMID: 29773345 DOI: 10.1016/j.ejcb.2018.05.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/03/2018] [Accepted: 05/03/2018] [Indexed: 02/08/2023] Open
Abstract
Sepsis has always been considered as a big challenge for pharmaceutical companies in terms of discovering and designing new therapeutics. The pathogenesis of sepsis involves aberrant activation of innate immune cells (i.e. macrophages, neutrophils etc.) at early stages. However, a stage of immunosuppression is also observed during sepsis even in the patients who have recovered from it. This stage of immunosuppression is observed due to the loss of conventional (i.e. CD4+, CD8+) T cells, Th17 cells and an upregulation of regulatory T cells (Tregs). This process also impacts metabolic processes controlling immune cell metabolism called immunometabolism. The present review is focused on the T cell-mediated immune response, their immunometabolism and targeting T cell immunometabolism during sepsis as future therapeutic approach. The first part of the manuscripts describes an impact of sepsis on conventional T cells, Th17 cells and Tregs along with their impact on sepsis. The subsequent section further describes the immunometabolism of these cells (CD4+, CD8+, Th17, and Tregs) under normal conditions and during sepsis-induced immunosuppression. The article ends with the therapeutic targeting of T cell immunometabolism (both conventional T cells and Tregs) during sepsis as a future immunomodulatory approach for its management.
Collapse
Affiliation(s)
- V Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Mater Research, Faculty of Medicine, University of Queensland, St. Lucia, Brisbane, Queensland 4078, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, Brisbane, Queensland 4078, Australia.
| |
Collapse
|
444
|
Zakiryanova GK, Wheeler S, Shurin MR. Oncogenes in immune cells as potential therapeutic targets. Immunotargets Ther 2018; 7:21-28. [PMID: 29692982 PMCID: PMC5903485 DOI: 10.2147/itt.s150586] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The role of deregulated expression of oncogenes and tumor-suppressor genes in tumor development has been intensively investigated for decades. However, expression of oncogenes and their potential role in immune cell defects during carcinogenesis and tumor progression have not been thoroughly assessed. The defects in proto-oncogenes have been well documented and evaluated mostly in tumor cells, despite the fact that proto-oncogenes are expressed in all cells, including cells of the immune system. In this review, key studies from immune-mediated diseases that may be associated with oncogene signaling pathways are refocused to provide groundwork for beginning to understand the effects of oncogenes in and on the cancer-related immune system dysfunction.
Collapse
Affiliation(s)
- Gulnur K Zakiryanova
- Department Biophysics and Biomedicine, Faculty Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Sarah Wheeler
- Division of Clinical Immunopathology, Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Michael R Shurin
- Division of Clinical Immunopathology, Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
445
|
De Cicco P, Sanders T, Cirino G, Maloy KJ, Ianaro A. Hydrogen Sulfide Reduces Myeloid-Derived Suppressor Cell-Mediated Inflammatory Response in a Model of Helicobacter hepaticus-Induced Colitis. Front Immunol 2018; 9:499. [PMID: 29636751 PMCID: PMC5880908 DOI: 10.3389/fimmu.2018.00499] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/26/2018] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammation contributes to tumor initiation in colitis-associated colorectal cancer (CRC). Indeed, inflammatory bowel disease (IBD) patients show an increased risk of developing CRC. Cancer immune evasion is a major issue in CRC and preclinical and clinical evidence has defined a critical role for myeloid-derived suppressor cells (MDSCs) that contribute to tumor growth and progression by suppressing T-cells and modulating innate immune responses. MDSCs comprise a heterogeneous population of immature myeloid cells that can be distinct in two subtypes: CD11b+Ly6G+Ly6Clow with granulocytic phenotype (G-MDSCs) and CD11b+Ly6G−Ly6Chigh with monocytic phenotype (M-MDSCs). Hydrogen sulfide (H2S) is an endogenous gaseous signaling molecule that regulates various physiological and pathophysiological functions. In particular, several studies support its anti-inflammatory activity in experimental colitis and ulcer. However, the role of the H2S pathway in innate immune-mediated IBD has not yet been elucidated. To better define a possible link between MDSCs and H2S pathway in colitis-associated CRC development, we used an innate immune-mediated IBD model induced by infection with the bacterium Helicobacter hepaticus (Hh), closely resembling human IBD. Here, we demonstrated an involvement of MDSCs in colitis development. A significant time-dependent increase of both G-MDSCs and M-MDSCs was observed in the colon and in the spleen of Hh-infected mice. Following, we observed that chronic oral administration of the H2S donor DATS reduced colon inflammation by limiting the recruitment of G-MDSCs in the colon of Hh-infected mice. Thus, we identify the metabolic pathway l-cysteine/H2S as a possible new player in the immunosuppressive mechanism responsible for the MDSCs-promoted colitis-associated cancer development.
Collapse
Affiliation(s)
- Paola De Cicco
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Theodore Sanders
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Giuseppe Cirino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Kevin J Maloy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Angela Ianaro
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
446
|
Mohamed E, Al-Khami AA, Rodriguez PC. The cellular metabolic landscape in the tumor milieu regulates the activity of myeloid infiltrates. Cell Mol Immunol 2018; 15:421-427. [PMID: 29568118 DOI: 10.1038/s41423-018-0001-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 12/26/2022] Open
Abstract
Malignant cells upregulate distinct energy metabolism programs that support their proliferation, migration, and adaptation to the stressful tumor microenvironment (TME). Additionally, this exaggerated metabolic activity allows cancer cells to hijack essential nutrients and outcompete neighboring infiltrating immune cells, thereby impairing antitumor immunity. During recent years, there has been great interest in the field to understand the tumor-induced energy metabolism signals that regulate the function of immune cells in individuals with cancer. Accordingly, it is now well accepted that uncovering the mechanisms that instruct the metabolic behavior of cancer cells and tumor-associated immune cells is an indispensable strategy for the development of new approaches to overcome immune suppression in tumors. Thus, in this minireview, we briefly discuss the interaction between particular metabolic signaling pathways and immunosuppressive activity in different subsets of myeloid cells within the TME. Additionally, we illustrate potential central mechanisms controlling the metabolic reprogramming of myeloid cells in response to tumor-derived factors.
Collapse
Affiliation(s)
- Eslam Mohamed
- H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr. MRC-Annex 2nd, Tampa, FL, 33612, USA
| | - Amir A Al-Khami
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Paulo C Rodriguez
- H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr. MRC-Annex 2nd, Tampa, FL, 33612, USA.
| |
Collapse
|
447
|
Shen M, Tsai Y, Zhu R, Keng PC, Chen Y, Chen Y, Lee SO. RETRACTED: FASN-TGF-β1-PD-L1 axis contributes to the development of resistance to NK cell cytotoxicity of cisplatin-resistant lung cancer cells. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:313-322. [DOI: 10.1016/j.bbalip.2017.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/22/2017] [Accepted: 12/31/2017] [Indexed: 12/11/2022]
|
448
|
Fu Y, Liu S, Zeng S, Shen H. The critical roles of activated stellate cells-mediated paracrine signaling, metabolism and onco-immunology in pancreatic ductal adenocarcinoma. Mol Cancer 2018; 17:62. [PMID: 29458370 PMCID: PMC5817854 DOI: 10.1186/s12943-018-0815-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/12/2018] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignant diseases worldwide. It is refractory to conventional treatments, and consequently has a documented 5-year survival rate as low as 7%. Increasing evidence indicates that activated pancreatic stellate cells (PSCs), one of the stromal components in tumor microenvironment (TME), play a crucial part in the desmoplasia, carcinogenesis, aggressiveness, metastasis associated with PDAC. Despite the current understanding of PSCs as a "partner in crime" to PDAC, detailed regulatory roles of PSCs and related microenvironment remain obscure. In addition to multiple paracrine signaling pathways, recent research has confirmed that PSCs-mediated tumor microenvironment may influence behaviors of PDAC via diverse mechanisms, such as rewiring metabolic networks, suppressing immune responses. These new activities are closely linked with treatment and prognosis of PDAC. In this review, we discuss the recent advances regarding new functions of activated PSCs, including PSCs-cancer cells interaction, mechanisms involved in immunosuppressive regulation, and metabolic reprogramming. It's clear that these updated experimental or clinical studies of PSCs may provide a promising approach for PDAC treatment in the near future.
Collapse
Affiliation(s)
- Yaojie Fu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shanshan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
449
|
Regulation of Immune Cell Functions by Metabolic Reprogramming. J Immunol Res 2018; 2018:8605471. [PMID: 29651445 PMCID: PMC5831954 DOI: 10.1155/2018/8605471] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/14/2018] [Indexed: 02/07/2023] Open
Abstract
Recent findings show that the metabolic status of immune cells can determine immune responses. Metabolic reprogramming between aerobic glycolysis and oxidative phosphorylation, previously speculated as exclusively observable in cancer cells, exists in various types of immune and stromal cells in many different pathological conditions other than cancer. The microenvironments of cancer, obese adipose, and wound-repairing tissues share common features of inflammatory reactions. In addition, the metabolic changes in macrophages and T cells are now regarded as crucial for the functional plasticity of the immune cells and responsible for the progression and regression of many pathological processes, notably cancer. It is possible that metabolic changes in the microenvironment induced by other cellular components are responsible for the functional plasticity of immune cells. This review explores the molecular mechanisms responsible for metabolic reprogramming in macrophages and T cells and also provides a summary of recent updates with regard to the functional modulation of the immune cells by metabolic changes in the microenvironment, notably the tumor microenvironment.
Collapse
|
450
|
Kuo CHS, Liu CY, Pavlidis S, Lo YL, Wang YW, Chen CH, Ko HW, Chung FT, Lin TY, Wang TY, Lee KY, Guo YK, Wang TH, Yang CT. Unique Immune Gene Expression Patterns in Bronchoalveolar Lavage and Tumor Adjacent Non-Neoplastic Lung Tissue in Non-Small Cell Lung Cancer. Front Immunol 2018; 9:232. [PMID: 29483918 PMCID: PMC5816075 DOI: 10.3389/fimmu.2018.00232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/26/2018] [Indexed: 12/13/2022] Open
Abstract
Background The immune cells in the local environments surrounding non-small cell lung cancer (NSCLC) implicate the balance of pro- and antitumor immunity; however, their transcriptomic profiles remain poorly understood. Methods A transcriptomic microarray study of bronchoalveolar lavage (BAL) cells harvested from tumor-bearing lung segments was performed in a discovery group. The findings were validated (1) in published microarray datasets, (2) in an independent group by RT-qPCR, and (3) in non-diseased and tumor adjacent non-neoplastic lung tissue by immunohistochemistry and in BAL cell lysates by immunoblotting. Result The differential expression of 129 genes was identified in the discovery group. These genes revealed functional enrichment in Fc gamma receptor-dependent phagocytosis and circulating immunoglobulin complex among others. Microarray datasets analysis (n = 607) showed that gene expression of BAL cells of tumor-bearing lung segment was also the unique transcriptomic profile of tumor adjacent non-neoplastic lung of early stage NSCLC and a significantly gradient increase of immunoglobulin genes’ expression for non-diseased lungs, tumor adjacent non-neoplastic lungs, and tumors was identified (ANOVA, p < 2 × 10−16). A 53-gene signature was determined with significant correlation with inhibitory checkpoint PDCD1 (r = 0.59, p = 0.0078) among others, where the nine top genes including IGJ and IGKC were RT-qPCR validated with high diagnostic performance (AUC: 0.920, 95% CI: 0.831–0.985, p = 2.98 × 10−7). Increased staining and expression of IGKC revealed by immunohistochemistry and immunoblotting in tumor adjacent non-neoplastic lung tissues (Wilcoxon signed-rank test, p < 0.001) and in BAL cell lysates (p < 0.01) of NSCLC, respectively, were noted. Conclusion The BAL cells of tumor-bearing lung segments and tumor adjacent non-neoplastic lung tissues present a unique gene expression characterized by IGKC in relation to inhibitory checkpoints. Further study of humoral immune responses to NSCLC is warranted.
Collapse
Affiliation(s)
- Chih-Hsi Scott Kuo
- Division of Lung Cancer and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Computing, Imperial College London, Data Science Institute, London, United Kingdom
| | - Chien-Ying Liu
- Division of Lung Cancer and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Stelios Pavlidis
- Department of Computing, Imperial College London, Data Science Institute, London, United Kingdom
| | - Yu-Lun Lo
- Division of Airway Diseases, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yen-Wen Wang
- Division of Lung Cancer and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Chih-Hung Chen
- Division of Lung Cancer and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - How-Wen Ko
- Division of Lung Cancer and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Fu-Tsai Chung
- Division of Lung Cancer and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Tin-Yu Lin
- Division of Lung Cancer and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Tsai-Yu Wang
- Division of Airway Diseases, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Kang-Yun Lee
- Division of Thoracic Medicine, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan
| | - Yi-Ke Guo
- Department of Computing, Imperial College London, Data Science Institute, London, United Kingdom
| | - Tzu-Hao Wang
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Cheng-Ta Yang
- Division of Lung Cancer and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| |
Collapse
|