401
|
Altuvia Y, Bar A, Reiss N, Karavani E, Argaman L, Margalit H. In vivo cleavage rules and target repertoire of RNase III in Escherichia coli. Nucleic Acids Res 2019; 46:10380-10394. [PMID: 30113670 PMCID: PMC6212723 DOI: 10.1093/nar/gky684] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/18/2018] [Indexed: 12/02/2022] Open
Abstract
Bacterial RNase III plays important roles in the processing and degradation of RNA transcripts. A major goal is to identify the cleavage targets of this endoribonuclease at a transcriptome-wide scale and delineate its in vivo cleavage rules. Here we applied to Escherichia coli grown to either exponential or stationary phase a tailored RNA-seq-based technology, which allows transcriptome-wide mapping of RNase III cleavage sites at a nucleotide resolution. Our analysis of the large-scale in vivo cleavage data substantiated the established cleavage pattern of a double cleavage in an intra-molecular stem structure, leaving 2-nt-long 3′ overhangs, and refined the base-pairing preferences in the cleavage site vicinity. Intriguingly, we observed that the two stem positions between the cleavage sites are highly base-paired, usually involving at least one G-C or C-G base pair. We present a clear distinction between intra-molecular stem structures that are RNase III substrates and intra-molecular stem structures randomly selected across the transcriptome, emphasizing the in vivo specificity of RNase III. Our study provides a comprehensive map of the cleavage sites in both intra-molecular and inter-molecular duplex substrates, providing novel insights into the involvement of RNase III in post-transcriptional regulation in the bacterial cell.
Collapse
Affiliation(s)
- Yael Altuvia
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Amir Bar
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Niv Reiss
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ehud Karavani
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Liron Argaman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
402
|
Abstract
Bacterial toxin-antitoxin (TA) modules confer multidrug tolerance (persistence) that may contribute to the recalcitrance of chronic and recurrent infections. The first high-persister gene identified was hipA of Escherichia coli strain K-12, which encodes a kinase that inhibits glutamyl-tRNA synthetase. The hipA gene encodes the toxin of the hipBA TA module, while hipB encodes an antitoxin that counteracts HipA. Here, we describe a novel, widespread TA gene family, hipBST, that encodes HipT, which exhibits sequence similarity with the C terminus of HipA. HipT is a kinase that phosphorylates tryptophanyl-tRNA synthetase and thereby inhibits translation and induces the stringent response. Thus, this new TA gene family may contribute to the survival and spread of bacterial pathogens. Type II toxin-antitoxin (TA) modules encode a stable toxin that inhibits cell growth and an unstable protein antitoxin that neutralizes the toxin by direct protein-protein contact. hipBA of Escherichia coli strain K-12 codes for HipA, a serine-threonine kinase that phosphorylates and inhibits glutamyl-tRNA synthetase. Induction of hipA inhibits charging of glutamyl-tRNA that, in turn, inhibits translation and induces RelA-dependent (p)ppGpp synthesis and multidrug tolerance. Here, we describe the discovery of a three-component TA gene family that encodes toxin HipT, which exhibits sequence similarity with the C-terminal part of HipA. A genetic screening revealed that trpS in high copy numbers suppresses HipT-mediated growth inhibition. We show that HipT of E. coli O127 is a kinase that phosphorylates tryptophanyl-tRNA synthetase in vitro at a conserved serine residue. Consistently, induction of hipT inhibits cell growth and stimulates production of (p)ppGpp. The gene immediately upstream from hipT, called hipS, encodes a small protein that exhibits sequence similarity with the N terminus of HipA. HipT kinase was neutralized by cognate HipS in vivo, whereas the third component, HipB, encoded by the first gene of the operon, did not counteract HipT kinase activity. However, HipB augmented the ability of HipS to neutralize HipT. Analysis of two additional hipBST-homologous modules showed that, indeed, HipS functions as an antitoxin in these cases also. Thus, hipBST constitutes a novel family of tricomponent TA modules where hipA has been split into two genes, hipS and hipT, that function as a novel type of TA pair.
Collapse
|
403
|
Koonin EV, Makarova KS. Origins and evolution of CRISPR-Cas systems. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180087. [PMID: 30905284 PMCID: PMC6452270 DOI: 10.1098/rstb.2018.0087] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2018] [Indexed: 12/11/2022] Open
Abstract
CRISPR-Cas, the bacterial and archaeal adaptive immunity systems, encompass a complex machinery that integrates fragments of foreign nucleic acids, mostly from mobile genetic elements (MGE), into CRISPR arrays embedded in microbial genomes. Transcripts of the inserted segments (spacers) are employed by CRISPR-Cas systems as guide (g)RNAs for recognition and inactivation of the cognate targets. The CRISPR-Cas systems consist of distinct adaptation and effector modules whose evolutionary trajectories appear to be at least partially independent. Comparative genome analysis reveals the origin of the adaptation module from casposons, a distinct type of transposons, which employ a homologue of Cas1 protein, the integrase responsible for the spacer incorporation into CRISPR arrays, as the transposase. The origin of the effector module(s) is far less clear. The CRISPR-Cas systems are partitioned into two classes, class 1 with multisubunit effectors, and class 2 in which the effector consists of a single, large protein. The class 2 effectors originate from nucleases encoded by different MGE, whereas the origin of the class 1 effector complexes remains murky. However, the recent discovery of a signalling pathway built into the type III systems of class 1 might offer a clue, suggesting that type III effector modules could have evolved from a signal transduction system involved in stress-induced programmed cell death. The subsequent evolution of the class 1 effector complexes through serial gene duplication and displacement, primarily of genes for proteins containing RNA recognition motif domains, can be hypothetically reconstructed. In addition to the multiple contributions of MGE to the evolution of CRISPR-Cas, the reverse flow of information is notable, namely, recruitment of minimalist variants of CRISPR-Cas systems by MGE for functions that remain to be elucidated. Here, we attempt a synthesis of the diverse threads that shed light on CRISPR-Cas origins and evolution. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.
Collapse
Affiliation(s)
- Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | | |
Collapse
|
404
|
Brantl S, Müller P. Toxin⁻Antitoxin Systems in Bacillus subtilis. Toxins (Basel) 2019; 11:toxins11050262. [PMID: 31075979 PMCID: PMC6562991 DOI: 10.3390/toxins11050262] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/30/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022] Open
Abstract
Toxin-antitoxin (TA) systems were originally discovered as plasmid maintenance systems in a multitude of free-living bacteria, but were afterwards found to also be widespread in bacterial chromosomes. TA loci comprise two genes, one coding for a stable toxin whose overexpression kills the cell or causes growth stasis, and the other coding for an unstable antitoxin that counteracts toxin action. Of the currently known six types of TA systems, in Bacillus subtilis, so far only type I and type II TA systems were found, all encoded on the chromosome. Here, we review our present knowledge of these systems, the mechanisms of antitoxin and toxin action, and the regulation of their expression, and we discuss their evolution and possible physiological role.
Collapse
Affiliation(s)
- Sabine Brantl
- Friedrich-Schiller-Universität Jena, Matthias-Schleiden-Institut, AG Bakteriengenetik, Philosophenweg 12, D-07743 Jena, Germany.
| | - Peter Müller
- Friedrich-Schiller-Universität Jena, Matthias-Schleiden-Institut, AG Bakteriengenetik, Philosophenweg 12, D-07743 Jena, Germany.
| |
Collapse
|
405
|
Soutourina O. Type I Toxin-Antitoxin Systems in Clostridia. Toxins (Basel) 2019; 11:toxins11050253. [PMID: 31064056 PMCID: PMC6563280 DOI: 10.3390/toxins11050253] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/20/2022] Open
Abstract
Type I toxin-antitoxin (TA) modules are abundant in both bacterial plasmids and chromosomes and usually encode a small hydrophobic toxic protein and an antisense RNA acting as an antitoxin. The RNA antitoxin neutralizes toxin mRNA by inhibiting its translation and/or promoting its degradation. This review summarizes our current knowledge of the type I TA modules identified in Clostridia species focusing on the recent findings in the human pathogen Clostridium difficile. More than ten functional type I TA modules have been identified in the genome of this emerging enteropathogen that could potentially contribute to its fitness and success inside the host. Despite the absence of sequence homology, the comparison of these newly identified type I TA modules with previously studied systems in other Gram-positive bacteria, i.e., Bacillus subtilis and Staphylococcus aureus, revealed some important common traits. These include the conservation of characteristic sequence features for small hydrophobic toxic proteins, the localization of several type I TA within prophage or prophage-like regions and strong connections with stress response. Potential functions in the stabilization of genome regions, adaptations to stress conditions and interactions with CRISPR-Cas defence system, as well as promising applications of TA for genome-editing and antimicrobial developments are discussed.
Collapse
Affiliation(s)
- Olga Soutourina
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette CEDEX, France.
| |
Collapse
|
406
|
Barbosa LCB, Dos Santos Carrijo R, da Conceição MB, Campanella JEM, Júnior EC, Secches TO, Bertolini MC, Marchetto R. Characterization of an OrtT-like toxin of Salmonella enterica serovar Houten. Braz J Microbiol 2019; 50:839-848. [PMID: 31055774 DOI: 10.1007/s42770-019-00085-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/25/2019] [Indexed: 01/09/2023] Open
Abstract
The Escherichia coli GhoT/GhoS system is a type V toxin-antitoxin system in which the antitoxin GhoS cleaves the GhoT mRNA, controlling its translation. GhoT is a small hydrophobic protein that damages bacterial membranes. OrtT is a GhoT-like toxin, but it apparently lacks a corresponding antitoxin and serves a different physiologic role. Using a profile hidden Markov model approach, a Salmonella enterica serovar Houten genome was screened to obtain homologs of GhoT/OrtT. We only found one protein (referred to here as OrtT-Sal) that shared more sequence identity with OrtT than GhoT. The chromosomal region around the coding sequence of OrtT-Sal suggests that it is an orphan toxin and can be under RpoH activation. To study OrtT-Sal, we chemically synthesized and expressed in E. coli the whole toxin and its N- and C-terminal regions (OrtT-Sal1-29 and OrtT-Sal29-57, respectively). Our findings have shown that the overproduction of the polypeptides resulted in severe growth inhibition and cell lysis. Using circular dichroism, we found that OrtT-Sal, OrtT-Sal1-29, and OrtT-Sal29-57 form an alpha-helical structure in the presence of SDS micelles or TFE. Finally, using carboxyfluorescein-loaded lipid vesicles, we determined that the polypeptides damage lipid membrane directly.
Collapse
Affiliation(s)
- Luiz Carlos Bertucci Barbosa
- Institute of Natural Resources, Federal University of Itajubá, BPS, 1303, Bairro Pinheirinho, Itajubá, MG, 37500-903, Brazil.
| | | | | | | | | | - Thais Oliveira Secches
- Institute of Natural Resources, Federal University of Itajubá, BPS, 1303, Bairro Pinheirinho, Itajubá, MG, 37500-903, Brazil
| | | | - Reinaldo Marchetto
- Institute of Chemistry, São Paulo State University, Araraquara, SP, Brazil
| |
Collapse
|
407
|
Xia PF, Ling H, Foo JL, Chang MW. Synthetic genetic circuits for programmable biological functionalities. Biotechnol Adv 2019; 37:107393. [PMID: 31051208 DOI: 10.1016/j.biotechadv.2019.04.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/09/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023]
Abstract
Living organisms evolve complex genetic networks to interact with the environment. Due to the rapid development of synthetic biology, various modularized genetic parts and units have been identified from these networks. They have been employed to construct synthetic genetic circuits, including toggle switches, oscillators, feedback loops and Boolean logic gates. Building on these circuits, complex genetic machines with capabilities in programmable decision-making could be created. Consequently, these accomplishments have led to novel applications, such as dynamic and autonomous modulation of metabolic networks, directed evolution of biological units, remote and targeted diagnostics and therapies, as well as biological containment methods to prevent release of engineered microorganisms and genetic materials. Herein, we outline the principles in genetic circuit design that have initiated a new chapter in transforming concepts to realistic applications. The features of modularized building blocks and circuit architecture that facilitate realization of circuits for a variety of novel applications are discussed. Furthermore, recent advances and challenges in employing genetic circuits to impart microorganisms with distinct and programmable functionalities are highlighted. We envision that this review gives new insights into the design of synthetic genetic circuits and offers a guideline for the implementation of different circuits in various aspects of biotechnology and bioengineering.
Collapse
Affiliation(s)
- Peng-Fei Xia
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Hua Ling
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Jee Loon Foo
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| | - Matthew Wook Chang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| |
Collapse
|
408
|
De Bruyn P, Hadži S, Vandervelde A, Konijnenberg A, Prolič-Kalinšek M, Sterckx YGJ, Sobott F, Lah J, Van Melderen L, Loris R. Thermodynamic Stability of the Transcription Regulator PaaR2 from Escherichia coli O157:H7. Biophys J 2019; 116:1420-1431. [PMID: 30979547 DOI: 10.1016/j.bpj.2019.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/26/2019] [Accepted: 03/19/2019] [Indexed: 11/25/2022] Open
Abstract
PaaR2 is a putative transcription regulator encoded by a three-component parDE-like toxin-antitoxin module from Escherichia coli O157:H7. Although this module's toxin, antitoxin, and toxin-antitoxin complex have been more thoroughly investigated, little remains known about its transcription regulator PaaR2. Using a wide range of biophysical techniques (circular dichroism spectroscopy, size-exclusion chromatography-multiangle laser light scattering, dynamic light scattering, small-angle x-ray scattering, and native mass spectrometry), we demonstrate that PaaR2 mainly consists of α-helices and displays a concentration-dependent octameric build-up in solution and that this octamer contains a global shape that is significantly nonspherical. Thermal unfolding of PaaR2 is reversible and displays several transitions, suggesting a complex unfolding mechanism. The unfolding data obtained from spectroscopic and calorimetric methods were combined into a unifying thermodynamic model, which suggests a five-state unfolding trajectory. Furthermore, the model allows the calculation of a stability phase diagram, which shows that, under physiological conditions, PaaR2 mainly exists as a dimer that can swiftly oligomerize into an octamer depending on local protein concentrations. These findings, based on a thorough biophysical and thermodynamic analysis of PaaR2, may provide important insights into biological function such as DNA binding and transcriptional regulation.
Collapse
Affiliation(s)
- Pieter De Bruyn
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - San Hadži
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Alexandra Vandervelde
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Albert Konijnenberg
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerpen, Belgium
| | - Maruša Prolič-Kalinšek
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Yann G-J Sterckx
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Laboratory of Medical Biochemistry, University of Antwerp, Campus Drie Eiken, Wilrijk, Belgium
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerpen, Belgium; Astbury Centre for Structural Molecular Biology, Leeds, United Kingdom; School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Jurij Lah
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Laurence Van Melderen
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles, Gosselies, Belgium
| | - Remy Loris
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium.
| |
Collapse
|
409
|
Cintrón M, Zeng JM, Barth VC, Cruz JW, Husson RN, Woychik NA. Accurate target identification for Mycobacterium tuberculosis endoribonuclease toxins requires expression in their native host. Sci Rep 2019; 9:5949. [PMID: 30976025 PMCID: PMC6459853 DOI: 10.1038/s41598-019-41548-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/01/2019] [Indexed: 01/18/2023] Open
Abstract
The Mycobacterium tuberculosis genome harbors an unusually high number of toxin-antitoxin (TA) systems. These TA systems have been implicated in establishing the nonreplicating persistent state of this pathogen during latent tuberculosis infection. More than half of the M. tuberculosis TA systems belong to the VapBC (virulence associated protein) family. In this work, we first identified the RNA targets for the M. tuberculosis VapC-mt11 (VapC11, Rv1561) toxin in vitro to learn more about the general function of this family of toxins. Recombinant VapC-mt11 cleaved 15 of the 45 M. tuberculosis tRNAs at a single site within their anticodon stem loop (ASL) to generate tRNA halves. Cleavage was dependent on the presence of a GG consensus sequence immediately before the cut site and a structurally intact ASL. However, in striking contrast to the broad enzyme activity exhibited in vitro, we used a specialized RNA-seq method to demonstrate that tRNA cleavage was highly specific in vivo. Expression of VapC-mt11 in M. tuberculosis resulted in cleavage of only two tRNA isoacceptors containing the GG consensus sequence, tRNAGln32-CUG and tRNALeu3-CAG. Therefore, our results indicate that although in vitro studies are useful for identification of the class of RNA cleaved and consensus sequences required for accurate substrate recognition by endoribonuclease toxins, definitive RNA target identification requires toxin expression in their native host. The restricted in vivo specificity of VapC-mt11 suggests that it may be enlisted to surgically manipulate pathogen physiology in response to stress.
Collapse
Affiliation(s)
- Melvilí Cintrón
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Ju-Mei Zeng
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, 02115, USA
| | - Valdir C Barth
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Jonathan W Cruz
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Robert N Husson
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, 02115, USA
| | - Nancy A Woychik
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA. .,Member, Rutgers Cancer Institute of New Jersey, Piscataway, 08854, USA.
| |
Collapse
|
410
|
The Primary Antisense Transcriptome of Halobacterium salinarum NRC-1. Genes (Basel) 2019; 10:genes10040280. [PMID: 30959844 PMCID: PMC6523106 DOI: 10.3390/genes10040280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022] Open
Abstract
Antisense RNAs (asRNAs) are present in diverse organisms and play important roles in gene regulation. In this work, we mapped the primary antisense transcriptome in the halophilic archaeon Halobacterium salinarum NRC-1. By reanalyzing publicly available data, we mapped antisense transcription start sites (aTSSs) and inferred the probable 3′ ends of these transcripts. We analyzed the resulting asRNAs according to the size, location, function of genes on the opposite strand, expression levels and conservation. We show that at least 21% of the genes contain asRNAs in H. salinarum. Most of these asRNAs are expressed at low levels. They are located antisense to genes related to distinctive characteristics of H. salinarum, such as bacteriorhodopsin, gas vesicles, transposases and other important biological processes such as translation. We provide evidence to support asRNAs in type II toxin–antitoxin systems in archaea. We also analyzed public Ribosome profiling (Ribo-seq) data and found that ~10% of the asRNAs are ribosome-associated non-coding RNAs (rancRNAs), with asRNAs from transposases overrepresented. Using a comparative transcriptomics approach, we found that ~19% of the asRNAs annotated in H. salinarum belong to genes with an ortholog in Haloferax volcanii, in which an aTSS could be identified with positional equivalence. This shows that most asRNAs are not conserved between these halophilic archaea.
Collapse
|
411
|
Zhan W, Yao J, Tang K, Li Y, Guo Y, Wang X. Characterization of Two Toxin-Antitoxin Systems in Deep-Sea Streptomyces sp. SCSIO 02999. Mar Drugs 2019; 17:md17040211. [PMID: 30987346 PMCID: PMC6521030 DOI: 10.3390/md17040211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 12/20/2022] Open
Abstract
Toxin-antitoxin (TA) systems are ubiquitous and abundant genetic elements in bacteria and archaea. Most previous TA studies have focused on commensal and pathogenic bacteria, but have rarely focused on marine bacteria, especially those isolated from the deep sea. Here, we identified and characterized three putative TA pairs in the deep-sea-derived Streptomyces sp. strain SCSIO 02999. Our results showed that Orf5461/Orf5462 and Orf2769/Orf2770 are bona fide TA pairs. We provide several lines of evidence to demonstrate that Orf5461 and Orf5462 constitute a type-II TA pair that are homologous to the YoeB/YefM TA pair from Escherichia coli. Although YoeB from SCSIO 02999 was toxic to an E. coli host, the homologous YefM antitoxin from SCSIO 02999 did not neutralize the toxic effect of YoeB from E. coli. For the Orf2769/Orf2770 TA pair, Orf2769 overexpression caused significant cell elongation and could lead to cell death in E. coli, and the neighboring Orf2770 could neutralize the toxic effect of Orf2769. However, no homologous toxin or antitoxin was found for this pair, and no direct interaction was found between Orf2769 and Orf2770. These results suggest that Orf2769 and Orf2770 may constitute a novel TA pair. Thus, deep-sea bacteria harbor typical and novel TA pairs. The biochemical and physiological functions of different TAs in deep-sea bacteria warrant further investigation.
Collapse
Affiliation(s)
- Waner Zhan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jianyun Yao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Yangmei Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
412
|
|
413
|
Oberhofer G, Ivy T, Hay BA. Cleave and Rescue, a novel selfish genetic element and general strategy for gene drive. Proc Natl Acad Sci U S A 2019; 116:6250-6259. [PMID: 30760597 PMCID: PMC6442612 DOI: 10.1073/pnas.1816928116] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
There is great interest in being able to spread beneficial traits throughout wild populations in ways that are self-sustaining. Here, we describe a chromosomal selfish genetic element, CleaveR [Cleave and Rescue (ClvR)], able to achieve this goal. ClvR comprises two linked chromosomal components. One, germline-expressed Cas9 and guide RNAs (gRNAs)-the Cleaver-cleaves and thereby disrupts endogenous copies of a gene whose product is essential. The other, a recoded version of the essential gene resistant to cleavage and gene conversion with cleaved copies-the Rescue-provides essential gene function. ClvR enhances its transmission, and that of linked genes, by creating conditions in which progeny lacking ClvR die because they have no functional copies of the essential gene. In contrast, those who inherit ClvR survive, resulting in an increase in ClvR frequency. ClvR is predicted to spread to fixation under diverse conditions. To test these predictions, we generated a ClvR element in Drosophila melanogasterClvRtko is located on chromosome 3 and uses Cas9 and four gRNAs to disrupt melanogaster technical knockout (tko), an X-linked essential gene. Rescue activity is provided by tko from Drosophila virilisClvRtko results in germline and maternal carryover-dependent inactivation of melanogaster tko (>99% per generation); lethality caused by this loss is rescued by the virilis transgene; ClvRtko activities are robust to genetic diversity in strains from five continents; and uncleavable but functional melanogaster tko alleles were not observed. Finally, ClvRtko spreads to transgene fixation. The simplicity of ClvR suggests it may be useful for altering populations in diverse species.
Collapse
Affiliation(s)
- Georg Oberhofer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Tobin Ivy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Bruce A Hay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
414
|
McVicker G, Hollingshead S, Pilla G, Tang CM. Maintenance of the virulence plasmid in Shigella flexneri is influenced by Lon and two functional partitioning systems. Mol Microbiol 2019; 111:1355-1366. [PMID: 30767313 PMCID: PMC6519299 DOI: 10.1111/mmi.14225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2019] [Indexed: 11/30/2022]
Abstract
Members of the genus Shigella carry a large plasmid, pINV, which is essential for virulence. In Shigella flexneri, pINV harbours three toxin‐antitoxin (TA) systems, CcdAB, GmvAT and VapBC that promote vertical transmission of the plasmid. Type II TA systems, such as those on pINV, consist of a toxic protein and protein antitoxin. Selective degradation of the antitoxin by proteases leads to the unopposed action of the toxin once genes encoding a TA system have been lost, such as following failure to inherit a plasmid harbouring a TA system. Here, we investigate the role of proteases in the function of the pINV TA systems and demonstrate that Lon, but not ClpP, is required for their activity during plasmid stability. This provides the first evidence that acetyltransferase family TA systems, such as GmvAT, can be regulated by Lon. Interestingly, S. flexneri pINV also harbours two putative partitioning systems, ParAB and StbAB. We show that both systems are functional for plasmid maintenance although their activity is masked by other systems on pINV. Using a model vector based on the pINV replicon, we observe temperature‐dependent differences between the two partitioning systems that contribute to our understanding of the maintenance of virulence in Shigella species.
Collapse
Affiliation(s)
- Gareth McVicker
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Sarah Hollingshead
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Giulia Pilla
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| |
Collapse
|
415
|
Freire DM, Gutierrez C, Garza-Garcia A, Grabowska AD, Sala AJ, Ariyachaokun K, Panikova T, Beckham KSH, Colom A, Pogenberg V, Cianci M, Tuukkanen A, Boudehen YM, Peixoto A, Botella L, Svergun DI, Schnappinger D, Schneider TR, Genevaux P, de Carvalho LPS, Wilmanns M, Parret AHA, Neyrolles O. An NAD + Phosphorylase Toxin Triggers Mycobacterium tuberculosis Cell Death. Mol Cell 2019; 73:1282-1291.e8. [PMID: 30792174 PMCID: PMC6436930 DOI: 10.1016/j.molcel.2019.01.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/13/2018] [Accepted: 01/18/2019] [Indexed: 01/13/2023]
Abstract
Toxin-antitoxin (TA) systems regulate fundamental cellular processes in bacteria and represent potential therapeutic targets. We report a new RES-Xre TA system in multiple human pathogens, including Mycobacterium tuberculosis. The toxin, MbcT, is bactericidal unless neutralized by its antitoxin MbcA. To investigate the mechanism, we solved the 1.8 Å-resolution crystal structure of the MbcTA complex. We found that MbcT resembles secreted NAD+-dependent bacterial exotoxins, such as diphtheria toxin. Indeed, MbcT catalyzes NAD+ degradation in vitro and in vivo. Unexpectedly, the reaction is stimulated by inorganic phosphate, and our data reveal that MbcT is a NAD+ phosphorylase. In the absence of MbcA, MbcT triggers rapid M. tuberculosis cell death, which reduces mycobacterial survival in macrophages and prolongs the survival of infected mice. Our study expands the molecular activities employed by bacterial TA modules and uncovers a new class of enzymes that could be exploited to treat tuberculosis and other infectious diseases.
Collapse
Affiliation(s)
- Diana Mendes Freire
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - Claude Gutierrez
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31400 Toulouse, France
| | - Acely Garza-Garcia
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Anna D Grabowska
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31400 Toulouse, France
| | - Ambre J Sala
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31400 Toulouse, France
| | - Kanchiyaphat Ariyachaokun
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31400 Toulouse, France
| | - Terezie Panikova
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - Katherine S H Beckham
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - André Colom
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31400 Toulouse, France
| | - Vivian Pogenberg
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - Michele Cianci
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - Anne Tuukkanen
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - Yves-Marie Boudehen
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31400 Toulouse, France
| | - Antonio Peixoto
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31400 Toulouse, France
| | - Laure Botella
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Thomas R Schneider
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31400 Toulouse, France
| | - Luiz Pedro Sorio de Carvalho
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany; University Hamburg Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Annabel H A Parret
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany.
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31400 Toulouse, France.
| |
Collapse
|
416
|
Villarreal LP, Witzany G. That is life: communicating RNA networks from viruses and cells in continuous interaction. Ann N Y Acad Sci 2019; 1447:5-20. [PMID: 30865312 DOI: 10.1111/nyas.14040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/13/2019] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
Abstract
All the conserved detailed results of evolution stored in DNA must be read, transcribed, and translated via an RNA-mediated process. This is required for the development and growth of each individual cell. Thus, all known living organisms fundamentally depend on these RNA-mediated processes. In most cases, they are interconnected with other RNAs and their associated protein complexes and function in a strictly coordinated hierarchy of temporal and spatial steps (i.e., an RNA network). Clearly, all cellular life as we know it could not function without these key agents of DNA replication, namely rRNA, tRNA, and mRNA. Thus, any definition of life that lacks RNA functions and their networks misses an essential requirement for RNA agents that inherently regulate and coordinate (communicate to) cells, tissues, organs, and organisms. The precellular evolution of RNAs occurred at the core of the emergence of cellular life and the question remained of how both precellular and cellular levels are interconnected historically and functionally. RNA networks and RNA communication can interconnect these levels. With the reemergence of virology in evolution, it became clear that communicating viruses and subviral infectious genetic parasites are bridging these two levels by invading, integrating, coadapting, exapting, and recombining constituent parts in host genomes for cellular requirements in gene regulation and coordination aims. Therefore, a 21st century understanding of life is of an inherently social process based on communicating RNA networks, in which viruses and cells continuously interact.
Collapse
Affiliation(s)
- Luis P Villarreal
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | | |
Collapse
|
417
|
Veyron S, Oliva G, Rolando M, Buchrieser C, Peyroche G, Cherfils J. A Ca 2+-regulated deAMPylation switch in human and bacterial FIC proteins. Nat Commun 2019; 10:1142. [PMID: 30850593 PMCID: PMC6408439 DOI: 10.1038/s41467-019-09023-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 02/07/2019] [Indexed: 12/13/2022] Open
Abstract
FIC proteins regulate molecular processes from bacteria to humans by catalyzing post-translational modifications (PTM), the most frequent being the addition of AMP or AMPylation. In many AMPylating FIC proteins, a structurally conserved glutamate represses AMPylation and, in mammalian FICD, also supports deAMPylation of BiP/GRP78, a key chaperone of the unfolded protein response. Currently, a direct signal regulating these FIC proteins has not been identified. Here, we use X-ray crystallography and in vitro PTM assays to address this question. We discover that Enterococcus faecalis FIC (EfFIC) catalyzes both AMPylation and deAMPylation and that the glutamate implements a multi-position metal switch whereby Mg2+ and Ca2+ control AMPylation and deAMPylation differentially without a conformational change. Remarkably, Ca2+ concentration also tunes deAMPylation of BiP by human FICD. Our results suggest that the conserved glutamate is a signature of AMPylation/deAMPylation FIC bifunctionality and identify metal ions as diffusible signals that regulate such FIC proteins directly. In many AMPylating FIC proteins a structurally conserved glutamate represses AMPylation. Here, the authors show that this glutamate supports deAMPylation in Enterococcus faecalis FIC (EfFIC), and that EfFIC switches from AMPylation to deAMPylation by binding Ca2+ at distinct sites.
Collapse
Affiliation(s)
- Simon Veyron
- CNRS and Ecole normale supérieure Paris-Saclay, Laboratoire de Biologie et Pharmacologie Appliquée, 61 Avenue du Président Wilson, 94235, Cachan CEDEX, France
| | - Giulia Oliva
- Institut Pasteur and CNRS UMR 3525, Biologie des Bactéries Intracellulaires, 25-28 Rue du Dr Roux, 75015, Paris, France.,Sorbonne Université, Collège doctoral, 75005, Paris, France
| | - Monica Rolando
- Institut Pasteur and CNRS UMR 3525, Biologie des Bactéries Intracellulaires, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Carmen Buchrieser
- Institut Pasteur and CNRS UMR 3525, Biologie des Bactéries Intracellulaires, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Gérald Peyroche
- CNRS and Ecole normale supérieure Paris-Saclay, Laboratoire de Biologie et Pharmacologie Appliquée, 61 Avenue du Président Wilson, 94235, Cachan CEDEX, France
| | - Jacqueline Cherfils
- CNRS and Ecole normale supérieure Paris-Saclay, Laboratoire de Biologie et Pharmacologie Appliquée, 61 Avenue du Président Wilson, 94235, Cachan CEDEX, France.
| |
Collapse
|
418
|
Reveillaud J, Bordenstein SR, Cruaud C, Shaiber A, Esen ÖC, Weill M, Makoundou P, Lolans K, Watson AR, Rakotoarivony I, Bordenstein SR, Eren AM. The Wolbachia mobilome in Culex pipiens includes a putative plasmid. Nat Commun 2019; 10:1051. [PMID: 30837458 PMCID: PMC6401122 DOI: 10.1038/s41467-019-08973-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 02/06/2019] [Indexed: 12/21/2022] Open
Abstract
Wolbachia is a genus of obligate intracellular bacteria found in nematodes and arthropods worldwide, including insect vectors that transmit dengue, West Nile, and Zika viruses. Wolbachia's unique ability to alter host reproductive behavior through its temperate bacteriophage WO has enabled the development of new vector control strategies. However, our understanding of Wolbachia's mobilome beyond its bacteriophages is incomplete. Here, we reconstruct near-complete Wolbachia genomes from individual ovary metagenomes of four wild Culex pipiens mosquitoes captured in France. In addition to viral genes missing from the Wolbachia reference genome, we identify a putative plasmid (pWCP), consisting of a 9.23-kbp circular element with 14 genes. We validate its presence in additional Culex pipiens mosquitoes using PCR, long-read sequencing, and screening of existing metagenomes. The discovery of this previously unrecognized extrachromosomal element opens additional possibilities for genetic manipulation of Wolbachia.
Collapse
Affiliation(s)
- Julie Reveillaud
- ASTRE, INRA, CIRAD, University of Montpellier, Montpellier, 34398, France.
| | - Sarah R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, 37235, TN, USA
| | - Corinne Cruaud
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de Biologie François Jacob, Genoscope, Evry, 91057, France
| | - Alon Shaiber
- Graduate Program in the Biophysical Sciences, University of Chicago, Chicago, IL, 60637, USA
- Department of Medicine, University of Chicago, Chicago, 60637, IL, USA
| | - Özcan C Esen
- Department of Medicine, University of Chicago, Chicago, 60637, IL, USA
| | - Mylène Weill
- Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR CNRS-IRD-EPHE-Université de Montpellier, Montpellier, 34095, France
| | - Patrick Makoundou
- Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR CNRS-IRD-EPHE-Université de Montpellier, Montpellier, 34095, France
| | - Karen Lolans
- Department of Medicine, University of Chicago, Chicago, 60637, IL, USA
| | - Andrea R Watson
- Department of Medicine, University of Chicago, Chicago, 60637, IL, USA
| | | | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, 37235, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, 37235, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, 37235, TN, USA
| | - A Murat Eren
- Graduate Program in the Biophysical Sciences, University of Chicago, Chicago, IL, 60637, USA.
- Department of Medicine, University of Chicago, Chicago, 60637, IL, USA.
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, 02543, MA, USA.
| |
Collapse
|
419
|
Vet S, Vandervelde A, Gelens L. Excitable dynamics through toxin-induced mRNA cleavage in bacteria. PLoS One 2019; 14:e0212288. [PMID: 30794601 PMCID: PMC6386449 DOI: 10.1371/journal.pone.0212288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/30/2019] [Indexed: 11/19/2022] Open
Abstract
Toxin-antitoxin (TA) systems in bacteria and archaea are small genetic elements consisting of the genes coding for an intracellular toxin and an antitoxin that can neutralize this toxin. In various cases, the toxins cleave the mRNA. In this theoretical work we use deterministic and stochastic modeling to explain how toxin-induced cleavage of mRNA in TA systems can lead to excitability, allowing large transient spikes in toxin levels to be triggered. By using a simplified network where secondary complex formation and transcriptional regulation are not included, we show that a two-dimensional, deterministic model captures the origin of such toxin excitations. Moreover, it allows to increase our understanding by examining the dynamics in the phase plane. By systematically comparing the deterministic results with Gillespie simulations we demonstrate that even though the real TA system is intrinsically stochastic, toxin excitations can be accurately described deterministically. A bifurcation analysis of the system shows that the excitable behavior is due to a nearby Hopf bifurcation in the parameter space, where the system becomes oscillatory. The influence of stress is modeled by varying the degradation rate of the antitoxin and the translation rate of the toxin. We find that stress increases the frequency of toxin excitations. The inclusion of secondary complex formation and transcriptional regulation does not fundamentally change the mechanism of toxin excitations. Finally, we show that including growth rate suppression and translational inhibition can lead to longer excitations, and even cause excitations in cases when the system would otherwise be non-excitable. To conclude, the deterministic model used in this work provides a simple and intuitive explanation of toxin excitations in TA systems.
Collapse
Affiliation(s)
- Stefan Vet
- Applied Physics Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB2), VUB-ULB, Brussels, Belgium
- Unité de Chronobiologie théorique, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Lendert Gelens
- Applied Physics Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Laboratory of Dynamics in Biological Systems, KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
420
|
In Silico Analysis of Genetic VapC Profiles from the Toxin-Antitoxin Type II VapBC Modules among Pathogenic, Intermediate, and Non-Pathogenic Leptospira. Microorganisms 2019; 7:microorganisms7020056. [PMID: 30791633 PMCID: PMC6406750 DOI: 10.3390/microorganisms7020056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/09/2019] [Accepted: 02/15/2019] [Indexed: 11/16/2022] Open
Abstract
Pathogenic Leptospira spp. is the etiological agent of leptospirosis. The high diversity among Leptospira species provides an array to look for important mediators involved in pathogenesis. Toxin-antitoxin (TA) systems represent an important survival mechanism on stress conditions. vapBC modules have been found in nearly one thousand genomes corresponding to about 40% of known TAs. In the present study, we investigated TA profiles of some strains of Leptospira using a TA database and compared them through protein alignment of VapC toxin sequences among Leptospira spp. genomes. Our analysis identified significant differences in the number of putative vapBC modules distributed in pathogenic, saprophytic, and intermediate strains: four in L. interrogans, three in L. borgpetersenii, eight in L. biflexa, and 15 in L. licerasiae. The VapC toxins show low identity among amino acid sequences within the species. Some VapC toxins appear to be exclusively conserved in unique species, others appear to be conserved among pathogenic or saprophytic strains, and some appear to be distributed randomly. The data shown here indicate that these modules evolved in a very complex manner, which highlights the strong need to identify and characterize new TAs as well as to understand their regulation networks and the possible roles of TA systems in pathogenic bacteria.
Collapse
|
421
|
Abstract
Bacteria are under constant attack from bacteriophages (phages), bacterial parasites that are the most abundant biological entity on earth. To resist phage infection, bacteria have evolved an impressive arsenal of anti-phage systems. Recent advances have significantly broadened and deepened our understanding of how bacteria battle phages, spearheaded by new systems like CRISPR-Cas. This review aims to summarize bacterial anti-phage mechanisms, with an emphasis on the most recent developments in the field.
Collapse
Affiliation(s)
- Jakob T Rostøl
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Luciano Marraffini
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
422
|
Pseudomonas putida Responds to the Toxin GraT by Inducing Ribosome Biogenesis Factors and Repressing TCA Cycle Enzymes. Toxins (Basel) 2019; 11:toxins11020103. [PMID: 30744127 PMCID: PMC6410093 DOI: 10.3390/toxins11020103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/29/2019] [Accepted: 02/07/2019] [Indexed: 11/21/2022] Open
Abstract
The potentially self-poisonous toxin-antitoxin modules are widespread in bacterial chromosomes, but despite extensive studies, their biological importance remains poorly understood. Here, we used whole-cell proteomics to study the cellular effects of the Pseudomonas putida toxin GraT that is known to inhibit growth and ribosome maturation in a cold-dependent manner when the graA antitoxin gene is deleted from the genome. Proteomic analysis of P. putida wild-type and ΔgraA strains at 30 °C and 25 °C, where the growth is differently affected by GraT, revealed two major responses to GraT at both temperatures. First, ribosome biogenesis factors, including the RNA helicase DeaD and RNase III, are upregulated in ΔgraA. This likely serves to alleviate the ribosome biogenesis defect of the ΔgraA strain. Secondly, proteome data indicated that GraT induces downregulation of central carbon metabolism, as suggested by the decreased levels of TCA cycle enzymes isocitrate dehydrogenase Idh, α-ketoglutarate dehydrogenase subunit SucA, and succinate-CoA ligase subunit SucD. Metabolomic analysis revealed remarkable GraT-dependent accumulation of oxaloacetate at 25 °C and a reduced amount of malate, another TCA intermediate. The accumulation of oxaloacetate is likely due to decreased flux through the TCA cycle but also indicates inhibition of anabolic pathways in GraT-affected bacteria. Thus, proteomic and metabolomic analysis of the ΔgraA strain revealed that GraT-mediated stress triggers several responses that reprogram the cell physiology to alleviate the GraT-caused damage.
Collapse
|
423
|
Mechanism of regulation and neutralization of the AtaR–AtaT toxin–antitoxin system. Nat Chem Biol 2019; 15:285-294. [DOI: 10.1038/s41589-018-0216-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 12/14/2018] [Indexed: 11/08/2022]
|
424
|
Tandon H, Sharma A, Sandhya S, Srinivasan N, Singh R. Mycobacterium tuberculosis Rv0366c-Rv0367c encodes a non-canonical PezAT-like toxin-antitoxin pair. Sci Rep 2019; 9:1163. [PMID: 30718534 PMCID: PMC6362051 DOI: 10.1038/s41598-018-37473-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/27/2018] [Indexed: 11/29/2022] Open
Abstract
Toxin-antitoxin (TA) systems are ubiquitously existing addiction modules with essential roles in bacterial persistence and virulence. The genome of Mycobacterium tuberculosis encodes approximately 79 TA systems. Through computational and experimental investigations, we report for the first time that Rv0366c-Rv0367c is a non-canonical PezAT-like toxin-antitoxin system in M. tuberculosis. Homology searches with known PezT homologues revealed that residues implicated in nucleotide, antitoxin-binding and catalysis are conserved in Rv0366c. Unlike canonical PezA antitoxins, the N-terminal of Rv0367c is predicted to adopt the ribbon-helix-helix (RHH) motif for deoxyribonucleic acid (DNA) recognition. Further, the modelled complex predicts that the interactions between PezT and PezA involve conserved residues. We performed a large-scale search in sequences encoded in 101 mycobacterial and 4500 prokaryotic genomes and show that such an atypical PezAT organization is conserved in 20 other mycobacterial organisms and in families of class Actinobacteria. We also demonstrate that overexpression of Rv0366c induces bacteriostasis and this growth defect could be restored upon co-expression of cognate antitoxin, Rv0367c. Further, we also observed that inducible expression of Rv0366c in Mycobacterium smegmatis results in decreased cell-length and enhanced tolerance against a front-line tuberculosis (TB) drug, ethambutol. Taken together, we have identified and functionally characterized a novel non-canonical TA system from M. tuberculosis.
Collapse
Affiliation(s)
- Himani Tandon
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Arun Sharma
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, PO Box #4, Faridabad, Haryana, 121001, India
| | - Sankaran Sandhya
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | | | - Ramandeep Singh
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, PO Box #4, Faridabad, Haryana, 121001, India.
| |
Collapse
|
425
|
Muthuramalingam M, White JC, Murphy T, Ames JR, Bourne CR. The toxin from a ParDE toxin-antitoxin system found in Pseudomonas aeruginosa offers protection to cells challenged with anti-gyrase antibiotics. Mol Microbiol 2019; 111:441-454. [PMID: 30427086 PMCID: PMC6368863 DOI: 10.1111/mmi.14165] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2018] [Indexed: 12/13/2022]
Abstract
Toxin-antitoxin systems are mediators of diverse activities in bacterial physiology. For the ParE-type toxins, their reported role of gyrase inhibition utilized during plasmid-segregation killing indicates they are toxic. However, their location throughout chromosomes leads to questions about function, including potential non-toxic outcomes. The current study has characterized a ParDE system from the opportunistic human pathogen Pseudomonas aeruginosa (Pa). We identified a protective function for this ParE toxin, PaParE, against effects of quinolone and other antibiotics. However, higher concentrations of PaParE are themselves toxic to cells, indicating the phenotypic outcome can vary based on its concentration. Our assays confirmed PaParE inhibition of gyrase-mediated supercoiling of DNA with an IC50 value in the low micromolar range, a species-specificity that resulted in more efficacious inhibition of Escherichia coli derived gyrase versus Pa gyrase, and overexpression in the absence of antitoxin yielded an expected filamentous morphology with multi-foci nucleic acid material. Additional data revealed that the PaParE toxin is monomeric and interacts with dimeric PaParD antitoxin with a KD in the lower picomolar range, yielding a heterotetramer. This work provides novel insights into chromosome-encoded ParE function, whereby its expression can impart partial protection to cultures from selected antibiotics.
Collapse
Affiliation(s)
- Meenakumari Muthuramalingam
- The University of Oklahoma, Department of Chemistry and BiochemistryNorman73019OKUSA
- Present address:
Department of Pharmaceutical ChemistryUniversity of KansasLawrence66047 KSUSA
| | - John C. White
- The University of Oklahoma, Department of Chemistry and BiochemistryNorman73019OKUSA
| | - Tamiko Murphy
- The University of Oklahoma, Department of Chemistry and BiochemistryNorman73019OKUSA
| | - Jessica R. Ames
- The University of Oklahoma, Department of Chemistry and BiochemistryNorman73019OKUSA
| | - Christina R. Bourne
- The University of Oklahoma, Department of Chemistry and BiochemistryNorman73019OKUSA
| |
Collapse
|
426
|
Nikolic N. Autoregulation of bacterial gene expression: lessons from the MazEF toxin-antitoxin system. Curr Genet 2019; 65:133-138. [PMID: 30132188 PMCID: PMC6343021 DOI: 10.1007/s00294-018-0879-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 11/30/2022]
Abstract
Autoregulation is the direct modulation of gene expression by the product of the corresponding gene. Autoregulation of bacterial gene expression has been mostly studied at the transcriptional level, when a protein acts as the cognate transcriptional repressor. A recent study investigating dynamics of the bacterial toxin-antitoxin MazEF system has shown how autoregulation at both the transcriptional and post-transcriptional levels affects the heterogeneity of Escherichia coli populations. Toxin-antitoxin systems hold a crucial but still elusive part in bacterial response to stress. This perspective highlights how these modules can also serve as a great model system for investigating basic concepts in gene regulation. However, as the genomic background and environmental conditions substantially influence toxin activation, it is important to study (auto)regulation of toxin-antitoxin systems in well-defined setups as well as in conditions that resemble the environmental niche.
Collapse
Affiliation(s)
- Nela Nikolic
- Institute of Science and Technology (IST) Austria, 3400, Klosterneuburg, Austria.
| |
Collapse
|
427
|
Olson AT, Wang Z, Rico AB, Wiebe MS. A poxvirus pseudokinase represses viral DNA replication via a pathway antagonized by its paralog kinase. PLoS Pathog 2019; 15:e1007608. [PMID: 30768651 PMCID: PMC6395007 DOI: 10.1371/journal.ppat.1007608] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/28/2019] [Accepted: 01/31/2019] [Indexed: 12/26/2022] Open
Abstract
Poxviruses employ sophisticated, but incompletely understood, signaling pathways that engage cellular defense mechanisms and simultaneously ensure viral factors are modulated properly. For example, the vaccinia B1 protein kinase plays a vital role in inactivating the cellular antiviral factor BAF, and likely orchestrates other pathways as well. In this study, we utilized experimental evolution of a B1 deletion virus to perform an unbiased search for suppressor mutations and identify novel pathways involving B1. After several passages of the ΔB1 virus we observed a robust increase in viral titer of the adapted virus. Interestingly, our characterization of the adapted viruses reveals that mutations correlating with a loss of function of the vaccinia B12 pseudokinase provide a striking fitness enhancement to this virus. In support of predictions that reductive evolution is a driver of poxvirus adaptation, this is clear experimental evidence that gene loss can be of significant benefit. Next, we present multiple lines of evidence demonstrating that expression of full length B12 leads to a fitness reduction in viruses with a defect in B1, but has no apparent impact on wild-type virus or other mutant poxviruses. From these data we infer that B12 possesses a potent inhibitory activity that can be masked by the presence of the B1 kinase. Further investigation of B12 attributes revealed that it primarily localizes to the nucleus, a characteristic only rarely found among poxviral proteins. Surprisingly, BAF phosphorylation is reduced under conditions in which B12 is present in infected cells without B1, indicating that B12 may function in part by enhancing antiviral activity of BAF. Together, our studies of B1 and B12 present novel evidence that a paralogous kinase-pseudokinase pair can exhibit a unique epistatic relationship in a virus, perhaps serving to enhance B1 conservation during poxvirus evolution and to orchestrate yet-to-be-discovered nuclear events during infection.
Collapse
Affiliation(s)
- Annabel T. Olson
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE, United States of America
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States of America
| | - Zhigang Wang
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE, United States of America
| | - Amber B. Rico
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE, United States of America
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, United States of America
| | - Matthew S. Wiebe
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE, United States of America
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, United States of America
| |
Collapse
|
428
|
Thomet M, Trautwetter A, Ermel G, Blanco C. Characterization of HicAB toxin-antitoxin module of Sinorhizobium meliloti. BMC Microbiol 2019; 19:10. [PMID: 30630415 PMCID: PMC6327479 DOI: 10.1186/s12866-018-1382-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/26/2018] [Indexed: 02/06/2023] Open
Abstract
Background Toxin-antitoxin (TA) systems are little genetic units generally composed of two genes encoding antitoxin and toxin. These systems are known to be involved in many functions that can lead to growth arrest and cell death. Among the different types of TA systems, the type II gathers together systems where the antitoxin directly binds and inhibits the toxin. Among these type II TA systems, the HicAB module is widely distributed in free-living Bacteria and Archaea and the toxin HicA functions via RNA binding and cleavage. The genome of the symbiotic Sinorhizobium meliloti encodes numerous TA systems and only a few of them are functional. Among the predicted TA systems, there is one homologous to HicAB modules. Results In this study, we characterize the HicAB toxin-antitoxin module of S. meliloti. The production of the HicA of S. meliloti in Escherichia coli cells abolishes growth and decreases cell viability. We show that expression of the HicB of S. meliloti counteracts HicA toxicity. The results of double hybrid assays and co-purification experiments allow demonstrating the interaction of HicB with the toxin HicA. Purified HicA, but not HicAB complex, is able to degrade ribosomal RNA in vitro. The analysis of separated domains of HicB protein permits us to define the antitoxin activity and the operator-binding domain. Conclusions This study points out the first characterization of the HicAB system of the symbiotic S. meliloti whereas HicA is a toxin with ribonuclease activity and HicB has two domains: the COOH-terminal one that binds the operator and the NH2-terminal one that inhibits the toxin. Electronic supplementary material The online version of this article (10.1186/s12866-018-1382-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manon Thomet
- Ribosome, bacteria and stress Team, Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, F35000, Rennes, France
| | - Annie Trautwetter
- Ribosome, bacteria and stress Team, Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, F35000, Rennes, France
| | - Gwennola Ermel
- Ribosome, bacteria and stress Team, Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, F35000, Rennes, France.
| | - Carlos Blanco
- Ribosome, bacteria and stress Team, Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, F35000, Rennes, France
| |
Collapse
|
429
|
Moreno-Del Álamo M, Tabone M, Muñoz-Martínez J, Valverde JR, Alonso JC. Toxin ζ Reduces the ATP and Modulates the Uridine Diphosphate-N-acetylglucosamine Pool. Toxins (Basel) 2019; 11:E29. [PMID: 30634431 PMCID: PMC6356619 DOI: 10.3390/toxins11010029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/21/2018] [Accepted: 01/04/2019] [Indexed: 11/20/2022] Open
Abstract
Toxin ζ expression triggers a reversible state of dormancy, diminishes the pool of purine nucleotides, promotes (p)ppGpp synthesis, phosphorylates a fraction of the peptidoglycan precursor uridine diphosphate-N-acetylglucosamine (UNAG), leading to unreactive UNAG-P, induces persistence in a reduced subpopulation, and sensitizes cells to different antibiotics. Here, we combined computational analyses with biochemical experiments to examine the mechanism of toxin ζ action. Free ζ toxin showed low affinity for UNAG. Toxin ζ bound to UNAG hydrolyzed ATP·Mg2+, with the accumulation of ADP, Pi, and produced low levels of phosphorylated UNAG (UNAG-P). Toxin ζ, which has a large ATP binding pocket, may temporally favor ATP binding in a position that is distant from UNAG, hindering UNAG phosphorylation upon ATP hydrolysis. The residues D67, E116, R158 and R171, involved in the interaction with metal, ATP, and UNAG, were essential for the toxic and ATPase activities of toxin ζ; whereas the E100 and T128 residues were partially dispensable. The results indicate that ζ bound to UNAG reduces the ATP concentration, which indirectly induces a reversible dormant state, and modulates the pool of UNAG.
Collapse
Affiliation(s)
- María Moreno-Del Álamo
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str., 28049 Madrid, Spain.
| | - Mariangela Tabone
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str., 28049 Madrid, Spain.
| | - Juan Muñoz-Martínez
- Scientific Computing Service, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str., 28049 Madrid, Spain.
| | - José R Valverde
- Scientific Computing Service, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str., 28049 Madrid, Spain.
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str., 28049 Madrid, Spain.
| |
Collapse
|
430
|
Himeoka Y, Mitarai N. Modeling slow-processing of toxin messenger RNAs in type-I toxin-antitoxin systems: post-segregational killing and noise filtering. Phys Biol 2019; 16:026001. [PMID: 30523873 DOI: 10.1088/1478-3975/aaf3e3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In type-I toxin-antitoxin (TA) systems, the action of growth-inhibiting toxin proteins is counteracted by the antitoxin small RNAs (sRNAs) that prevent the translation of toxin messenger RNAs (mRNAs). When a TA module is encoded on a plasmid, the short lifetime of antitoxin sRNA compared to toxin mRNAs mediates post-segregational killing (PSK) that contribute the plasmid maintenance, while some of the chromosomal encoded TA loci have been reported to contribute to persister formation in response to a specific upstream signal. Some of the well studied type-I TA systems such as hok/sok are known to have a rather complex regulatory mechanism. Transcribed full-length toxin mRNAs fold such that the ribosome binding site is not accessible and hence cannot be translated. The mRNAs are slowly processed by RNases, and the truncated mRNAs can be either translated or bound by antitoxin sRNA to be quickly degraded. We analyze the role of this extra processing by a mathematical model. We first consider the PSK scenario, and demonstrate that the extra processing compatibly ensures the high toxin expression upon complete plasmid loss, without inducing toxin expression upon acquisition of a plasmid or decrease of plasmid number to a non-zero number. We further show that the extra processing help filtering the transcription noise, avoiding random activation of toxins in transcriptionally regulated TA systems as seen in chromosomal ones. The present model highlights impacts of the slow processing reaction, offering insights on why the slow processing reactions are commonly identified in multiple type-I TA systems.
Collapse
Affiliation(s)
- Yusuke Himeoka
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen, 2100-DK, Denmark
| | | |
Collapse
|
431
|
Yashiro Y, Yamashita S, Tomita K. Crystal Structure of the Enterohemorrhagic Escherichia coli AtaT-AtaR Toxin-Antitoxin Complex. Structure 2019; 27:476-484.e3. [PMID: 30612860 DOI: 10.1016/j.str.2018.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/24/2018] [Accepted: 11/06/2018] [Indexed: 11/29/2022]
Abstract
AtaT-AtaR is an enterohemorrhagic Escherichia coli toxin-antitoxin system that modulates cellular growth under stress conditions. AtaT and AtaR act as a toxin and its repressor, respectively. AtaT is a member of the GNAT family, and the dimeric AtaT acetylates the α-amino group of the aminoacyl moiety of methionyl initiator tRNAfMet, thereby inhibiting translation initiation. The crystallographic analysis of the AtaT-AtaR complex revealed that the AtaT-AtaR proteins form a heterohexameric [AtaT-(AtaR4)-AtaT] complex, where two V-shaped AtaR dimers bridge two AtaT molecules. The N-terminal region of AtaR is required for its dimerization, and the C-terminal region of AtaR interacts with AtaT. The two AtaT molecules are spatially separated in the AtaT-AtaR complex. AtaT alone forms a dimer in solution, which is enzymatically active. The present structure, in which AtaR prevents AtaT from forming an active dimer, reveals the molecular basis of the AtaT toxicity repression by the antitoxin AtaR.
Collapse
Affiliation(s)
- Yuka Yashiro
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Seisuke Yamashita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Kozo Tomita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan.
| |
Collapse
|
432
|
Romaniuk K, Golec P, Dziewit L. Insight Into the Diversity and Possible Role of Plasmids in the Adaptation of Psychrotolerant and Metalotolerant Arthrobacter spp. to Extreme Antarctic Environments. Front Microbiol 2018; 9:3144. [PMID: 30619210 PMCID: PMC6305408 DOI: 10.3389/fmicb.2018.03144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/04/2018] [Indexed: 11/13/2022] Open
Abstract
Arthrobacter spp. are coryneform Gram-positive aerobic bacteria, belonging to the class Actinobacteria. Representatives of this genus have mainly been isolated from soil, mud, sludge or sewage, and are usually mesophiles. In recent years, the presence of Arthrobacter spp. was also confirmed in various extreme, including permanently cold, environments. In this study, 36 psychrotolerant and metalotolerant Arthrobacter strains isolated from petroleum-contaminated soil from the King George Island (Antarctica), were screened for the presence of plasmids. The identified replicons were thoroughly characterized in order to assess their diversity and role in the adaptation of Arthrobacter spp. to harsh Antarctic conditions. The screening process identified 11 different plasmids, ranging in size from 8.4 to 90.6 kb. A thorough genomic analysis of these replicons detected the presence of numerous genes encoding proteins that potentially perform roles in adaptive processes such as (i) protection against ultraviolet (UV) radiation, (ii) resistance to heavy metals, (iii) transport and metabolism of organic compounds, (iv) sulfur metabolism, and (v) protection against exogenous DNA. Moreover, 10 of the plasmids carry genetic modules enabling conjugal transfer, which may facilitate their spread among bacteria in Antarctic soil. In addition, transposable elements were identified within the analyzed plasmids. Some of these elements carry passenger genes, which suggests that these replicons may be actively changing, and novel genetic modules of adaptive value could be acquired by transposition events. A comparative genomic analysis of plasmids identified in this study and other available Arthrobacter plasmids was performed. This showed only limited similarities between plasmids of Antarctic Arthrobacter strains and replicons of other, mostly mesophilic, isolates. This indicates that the plasmids identified in this study are novel and unique replicons. In addition, a thorough meta-analysis of 247 plasmids of psychrotolerant bacteria was performed, revealing the important role of these replicons in the adaptation of their hosts to extreme environments.
Collapse
Affiliation(s)
- Krzysztof Romaniuk
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Piotr Golec
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Lukasz Dziewit
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
433
|
Yano H, Shintani M, Tomita M, Suzuki H, Oshima T. Reconsidering plasmid maintenance factors for computational plasmid design. Comput Struct Biotechnol J 2018; 17:70-81. [PMID: 30619542 PMCID: PMC6312765 DOI: 10.1016/j.csbj.2018.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/08/2018] [Accepted: 12/09/2018] [Indexed: 12/18/2022] Open
Abstract
Plasmids are genetic parasites of microorganisms. The genomes of naturally occurring plasmids are expected to be polished via natural selection to achieve long-term persistence in the microbial cell population. However, plasmid genomes are extremely diverse, and the rules governing plasmid genomes are not fully understood. Therefore, computationally designing plasmid genomes optimized for model and nonmodel organisms remains challenging. Here, we summarize current knowledge of the plasmid genome organization and the factors that can affect plasmid persistence, with the aim of constructing synthetic plasmids for use in gram-negative bacteria. Then, we introduce publicly available resources, plasmid data, and bioinformatics tools that are useful for computational plasmid design.
Collapse
Affiliation(s)
- Hirokazu Yano
- Graduate School of Life Sciences, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Masaki Shintani
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1, Hamamatsu 432-8561, Japan
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 3-5-1, Hamamatsu 432-8561, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, 14-1, Baba-cho, Tsuruoka, Yamagata 997-0035, Japan
- Faculty of Environment and Information Studies, Keio University, 5322, Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Haruo Suzuki
- Institute for Advanced Biosciences, Keio University, 14-1, Baba-cho, Tsuruoka, Yamagata 997-0035, Japan
- Faculty of Environment and Information Studies, Keio University, 5322, Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Taku Oshima
- Department of Biotechnology, Toyama Prefectural University, 5180, Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
434
|
A Systematic Overview of Type II and III Toxin-Antitoxin Systems with a Focus on Druggability. Toxins (Basel) 2018; 10:toxins10120515. [PMID: 30518070 PMCID: PMC6315513 DOI: 10.3390/toxins10120515] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023] Open
Abstract
Toxin-antitoxin (TA) systems are known to play various roles in physiological processes, such as gene regulation, growth arrest and survival, in bacteria exposed to environmental stress. Type II TA systems comprise natural complexes consisting of protein toxins and antitoxins. Each toxin and antitoxin participates in distinct regulatory mechanisms depending on the type of TA system. Recently, peptides designed by mimicking the interfaces between TA complexes showed its potential to activate the activity of toxin by competing its binding counterparts. Type II TA systems occur more often in pathogenic bacteria than in their nonpathogenic kin. Therefore, they can be possible drug targets, because of their high abundance in some pathogenic bacteria, such as Mycobacterium tuberculosis. In addition, recent bioinformatic analyses have shown that type III TA systems are highly abundant in the intestinal microbiota, and recent clinical studies have shown that the intestinal microbiota is linked to inflammatory diseases, obesity and even several types of cancer. We therefore focused on exploring the putative relationship between intestinal microbiota-related human diseases and type III TA systems. In this paper, we review and discuss the development of possible druggable materials based on the mechanism of type II and type III TA system.
Collapse
|
435
|
Abstract
Transition state theory teaches that chemically stable mimics of enzymatic transition states will bind tightly to their cognate enzymes. Kinetic isotope effects combined with computational quantum chemistry provides enzymatic transition state information with sufficient fidelity to design transition state analogues. Examples are selected from various stages of drug development to demonstrate the application of transition state theory, inhibitor design, physicochemical characterization of transition state analogues, and their progress in drug development.
Collapse
Affiliation(s)
- Vern L. Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
436
|
Równicki M, Pieńko T, Czarnecki J, Kolanowska M, Bartosik D, Trylska J. Artificial Activation of Escherichia coli mazEF and hipBA Toxin-Antitoxin Systems by Antisense Peptide Nucleic Acids as an Antibacterial Strategy. Front Microbiol 2018; 9:2870. [PMID: 30534121 PMCID: PMC6275173 DOI: 10.3389/fmicb.2018.02870] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022] Open
Abstract
The search for new, non-standard targets is currently a high priority in the design of new antibacterial compounds. Bacterial toxin-antitoxin systems (TAs) are genetic modules that encode a toxin protein that causes growth arrest by interfering with essential cellular processes, and a cognate antitoxin, which neutralizes the toxin activity. TAs have no human analogs, are highly abundant in bacterial genomes, and therefore represent attractive alternative targets for antimicrobial drugs. This study demonstrates how artificial activation of Escherichia coli mazEF and hipBA toxin-antitoxin systems using sequence-specific antisense peptide nucleic acid oligomers is an innovative antibacterial strategy. The growth arrest observed in E. coli resulted from the inhibition of translation of the antitoxins by the antisense oligomers. Furthermore, two other targets, related to the activities of mazEF and hipBA, were identified as promising sites of action for antibacterials. These results show that TAs are susceptible to sequence-specific antisense agents and provide a proof-of-concept for their further exploitation in antimicrobial strategies.
Collapse
Affiliation(s)
- Marcin Równicki
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
| | - Tomasz Pieńko
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Department of Drug Chemistry, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Warsaw, Poland
| | - Jakub Czarnecki
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Unit of Bacterial Genome Plasticity, Department of Genomes and Genetics, Pasteur Institute, Paris, France
| | - Monika Kolanowska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Genomic Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
437
|
Skjerning RB, Senissar M, Winther KS, Gerdes K, Brodersen DE. The RES domain toxins of RES-Xre toxin-antitoxin modules induce cell stasis by degrading NAD+. Mol Microbiol 2018; 111:221-236. [PMID: 30315706 DOI: 10.1111/mmi.14150] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2018] [Indexed: 12/18/2022]
Abstract
Type II toxin-antitoxin (TA) modules, which are important cellular regulators in prokaryotes, usually encode two proteins, a toxin that inhibits cell growth and a nontoxic and labile inhibitor (antitoxin) that binds to and neutralizes the toxin. Here, we demonstrate that the res-xre locus from Photorhabdus luminescens and other bacterial species function as bona fide TA modules in Escherichia coli. The 2.2 Å crystal structure of the intact Pseudomonas putida RES-Xre TA complex reveals an unusual 2:4 stoichiometry in which a central RES toxin dimer binds two Xre antitoxin dimers. The antitoxin dimers each expose two helix-turn-helix DNA-binding domains of the Cro repressor type, suggesting the TA complex is capable of binding the upstream promoter sequence on DNA. The toxin core domain shows structural similarity to ADP-ribosylating enzymes such as diphtheria toxin but has an atypical NAD+ -binding pocket suggesting an alternative function. We show that activation of the toxin in vivo causes a depletion of intracellular NAD+ levels eventually leading to inhibition of cell growth in E. coli and inhibition of global macromolecular biosynthesis. Both structure and activity are unprecedented among bacterial TA systems, suggesting the functional scope of bacterial TA toxins is much wider than previously appreciated.
Collapse
Affiliation(s)
- Ragnhild Bager Skjerning
- Department of Biology, Centre for Bacterial Stress Response and Persistence (BASP), University of Copenhagen, Copenhagen, Denmark
| | - Meriem Senissar
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Kristoffer S Winther
- Department of Biology, Centre for Bacterial Stress Response and Persistence (BASP), University of Copenhagen, Copenhagen, Denmark
| | - Kenn Gerdes
- Department of Biology, Centre for Bacterial Stress Response and Persistence (BASP), University of Copenhagen, Copenhagen, Denmark
| | - Ditlev E Brodersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
438
|
Dufour D, Mankovskaia A, Chan Y, Motavaze K, Gong SG, Lévesque CM. A tripartite toxin-antitoxin module induced by quorum sensing is associated with the persistence phenotype in Streptococcus mutans. Mol Oral Microbiol 2018; 33:420-429. [PMID: 30298644 DOI: 10.1111/omi.12245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 09/29/2018] [Accepted: 10/02/2018] [Indexed: 10/28/2022]
Abstract
The oral pathogen Streptococcus mutans communicates using a canonical Gram-positive quorum sensing system, CSP-ComDE. The CSP pheromone already known to be involved in the development of genetic competence positively influences the formation of persisters, dormant variants of regular cells that are highly tolerant to antimicrobial therapy. It is now believed that the persistence phenotype is the end result of a stochastic switch in the expression of toxin-antitoxin (TA) modules. TAs consist of a pair of genes that encode two components, a stable toxin and its cognate labile antitoxin. Transcription analyses revealed that three core genes encoding a putative TA system, called SmuATR, were members of the S. mutans CSP regulon. We hypothesized that S. mutans is using its CSP-ComDE system as a deterministic mechanism for persister formation through the activation of smuATR locus. We showed here that the SmuATR system constitutes a novel tripartite type II TA system in which the smuA and smuT genes encode an antitoxin and a toxin, respectively, while SmuR is a transcriptional repressor involved in the autoregulation of the operon. Ectopic expression of SmuA - SmuT is associated with the CSP-inducible persistence phenotype. In contrast, overexpression of SmuT alone is bactericidal and causes membrane permeabilization. To our knowledge, SmuATR is the first functional chromosomal tripartite TA system shown to be induced by the bacterial quorum sensing system and involved in persister formation.
Collapse
Affiliation(s)
- Delphine Dufour
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | | | - Yuki Chan
- Department of Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong
| | - Kamyar Motavaze
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Siew-Ging Gong
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Céline M Lévesque
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Department of Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
439
|
Winter AJ, Williams C, Isupov MN, Crocker H, Gromova M, Marsh P, Wilkinson OJ, Dillingham MS, Harmer NJ, Titball RW, Crump MP. The molecular basis of protein toxin HicA-dependent binding of the protein antitoxin HicB to DNA. J Biol Chem 2018; 293:19429-19440. [PMID: 30337369 DOI: 10.1074/jbc.ra118.005173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/16/2018] [Indexed: 12/15/2022] Open
Abstract
Toxin-antitoxin (TA) systems are present in many bacteria and play important roles in bacterial growth, physiology, and pathogenicity. Those that are best studied are the type II TA systems, in which both toxins and antitoxins are proteins. The HicAB system is one of the prototypic TA systems, found in many bacterial species. Complex interactions between the protein toxin (HicA), the protein antitoxin (HicB), and the DNA upstream of the encoding genes regulate the activity of this system, but few structural details are available about how HicA destabilizes the HicB-DNA complex. Here, we determined the X-ray structures of HicB and the HicAB complex to 1.8 and 2.5 Å resolution, respectively, and characterized their DNA interactions. This revealed that HicB forms a tetramer and HicA and HicB form a heterooctameric complex that involves structural reorganization of the C-terminal (DNA-binding) region of HicB. Our observations indicated that HicA has a profound impact on binding of HicB to DNA sequences upstream of hicAB in a stoichiometric-dependent way. At low ratios of HicA:HicB, there was no effect on DNA binding, but at higher ratios, the affinity for DNA declined cooperatively, driving dissociation of the HicA:HicB:DNA complex. These results reveal the structural mechanisms by which HicA de-represses the HicB-DNA complex.
Collapse
Affiliation(s)
- Ashley J Winter
- From the School of Chemistry, University of Bristol Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Christopher Williams
- From the School of Chemistry, University of Bristol Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Michail N Isupov
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Hannah Crocker
- From the School of Chemistry, University of Bristol Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Mariya Gromova
- From the School of Chemistry, University of Bristol Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Philip Marsh
- From the School of Chemistry, University of Bristol Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Oliver J Wilkinson
- the School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD United Kingdom
| | - Mark S Dillingham
- the School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD United Kingdom
| | - Nicholas J Harmer
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Richard W Titball
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom,
| | - Matthew P Crump
- From the School of Chemistry, University of Bristol Cantock's Close, Bristol BS8 1TS, United Kingdom,
| |
Collapse
|
440
|
Podell S, Blanton JM, Neu A, Agarwal V, Biggs JS, Moore BS, Allen EE. Pangenomic comparison of globally distributed Poribacteria associated with sponge hosts and marine particles. ISME JOURNAL 2018; 13:468-481. [PMID: 30291328 DOI: 10.1038/s41396-018-0292-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/12/2018] [Accepted: 09/15/2018] [Indexed: 01/10/2023]
Abstract
Candidatus Poribacteria is a little-known bacterial phylum, previously characterized by partial genomes from a single sponge host, but never isolated in culture. We have reconstructed multiple genome sequences from four different sponge genera and compared them to recently reported, uncharacterized Poribacteria genomes from the open ocean, discovering shared and unique functional characteristics. Two distinct, habitat-linked taxonomic lineages were identified, designated Entoporibacteria (sponge-associated) and Pelagiporibacteria (free-living). These lineages differed in flagellar motility and chemotaxis genes unique to Pelagiporibacteria, and highly expanded families of restriction endonucleases, DNA methylases, transposases, CRISPR repeats, and toxin-antitoxin gene pairs in Entoporibacteria. Both lineages shared pathways for facultative anaerobic metabolism, denitrification, fermentation, organosulfur compound utilization, type IV pili, cellulosomes, and bacterial proteosomes. Unexpectedly, many features characteristic of eukaryotic host association were also shared, including genes encoding the synthesis of eukaryotic-like cell adhesion molecules, extracellular matrix digestive enzymes, phosphoinositol-linked membrane glycolipids, and exopolysaccharide capsules. Complete Poribacteria 16S rRNA gene sequences were found to contain multiple mismatches to "universal" 16S rRNA gene primer sets, substantiating concerns about potential amplification failures in previous studies. A newly designed primer set corrects these mismatches, enabling more accurate assessment of Poribacteria abundance in diverse marine habitats where it may have previously been overlooked.
Collapse
Affiliation(s)
- Sheila Podell
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, La Jolla, San Diego, CA, USA
| | - Jessica M Blanton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, La Jolla, San Diego, CA, USA
| | - Alexander Neu
- Division of Biological Sciences, University of California, La Jolla, San Diego, CA, USA
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA.,Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, La Jolla, San Diego, CA, USA
| | - Jason S Biggs
- University of Guam Marine Laboratory, UOG Station, Mangilao, Guam, USA
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, La Jolla, San Diego, CA, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA, USA
| | - Eric E Allen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, La Jolla, San Diego, CA, USA. .,Division of Biological Sciences, University of California, La Jolla, San Diego, CA, USA. .,Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, La Jolla, San Diego, CA, USA.
| |
Collapse
|
441
|
Relationship between the Viable but Nonculturable State and Antibiotic Persister Cells. J Bacteriol 2018; 200:JB.00249-18. [PMID: 30082460 DOI: 10.1128/jb.00249-18] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacteria have evolved numerous means of survival in adverse environments with dormancy, as represented by "persistence" and the "viable but nonculturable" (VBNC) state, now recognized to be common modes for such survival. VBNC cells have been defined as cells which, induced by some stress, become nonculturable on media that would normally support their growth but which can be demonstrated by various methods to be alive and capable of returning to a metabolically active and culturable state. Persister cells have been described as a population of cells which, while not being antibiotic resistant, are antibiotic tolerant. This drug-tolerant phenotype is thought to be a result of stress-induced and stochastic physiological changes as opposed to mutational events leading to true resistance. In this review, we describe these two dormancy strategies, characterize the molecular underpinnings of each state, and highlight the similarities and differences between them. We believe these survival modes represent a continuum between actively growing and dead cells, with VBNC cells being in a deeper state of dormancy than persister cells.
Collapse
|
442
|
Walling LR, Butler JS. Toxins targeting transfer RNAs: Translation inhibition by bacterial toxin-antitoxin systems. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1506. [PMID: 30296016 DOI: 10.1002/wrna.1506] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/07/2018] [Accepted: 08/13/2018] [Indexed: 01/09/2023]
Abstract
Prokaryotic toxin-antitoxin (TA) systems are composed of a protein toxin and its cognate antitoxin. These systems are abundant in bacteria and archaea and play an important role in growth regulation. During favorable growth conditions, the antitoxin neutralizes the toxin's activity. However, during conditions of stress or starvation, the antitoxin is inactivated, freeing the toxin to inhibit growth and resulting in dormancy. One mechanism of growth inhibition used by several TA systems results from targeting transfer RNAs (tRNAs), either through preventing aminoacylation, acetylating the primary amino group, or endonucleolytic cleavage. All of these mechanisms inhibit translation and result in growth arrest. Many of these toxins only act on a specific tRNA or a specific subset of tRNAs; however, more work is necessary to understand the specificity determinants of these toxins. For the toxins whose specificity has been characterized, both sequence and structural components of the tRNA appear important for recognition by the toxin. Questions also remain regarding the mechanisms used by dormant bacteria to resume growth after toxin induction. Rescue of stalled ribosomes by transfer-messenger RNAs, removal of acetylated amino groups from tRNAs, or ligation of cleaved RNA fragments have all been implicated as mechanisms for reversing toxin-induced dormancy. However, the mechanisms of resuming growth after induction of the majority of tRNA targeting toxins are not yet understood. This article is categorized under: Translation > Translation Regulation RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition.
Collapse
Affiliation(s)
- Lauren R Walling
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - J Scott Butler
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York.,Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York.,Center for RNA Biology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
443
|
Semanjski M, Germain E, Bratl K, Kiessling A, Gerdes K, Macek B. The kinases HipA and HipA7 phosphorylate different substrate pools in
Escherichia coli
to promote multidrug tolerance. Sci Signal 2018; 11. [DOI: 10.1126/scisignal.aat5750] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Differences in the targets of HipA and its variant HipA7 may explain why these kinases have different effects on bacterial persistence.
Collapse
Affiliation(s)
- Maja Semanjski
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Elsa Germain
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Ole Maaloesvej 5, DK-2200 Copenhagen, Denmark
| | - Katrin Bratl
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Andreas Kiessling
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Kenn Gerdes
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Ole Maaloesvej 5, DK-2200 Copenhagen, Denmark
| | - Boris Macek
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| |
Collapse
|
444
|
Sierra R, Viollier P, Renzoni A. Linking toxin-antitoxin systems with phenotypes: A Staphylococcus aureus viewpoint. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:742-751. [PMID: 30056132 DOI: 10.1016/j.bbagrm.2018.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/04/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Abstract
Toxin-antitoxin systems (TAS) are genetic modules controlling different aspects of bacterial physiology. They operate with versatility in an incredibly wide range of mechanisms. New TA modules with unexpected functions are continuously emerging from genome sequencing projects. Their discovery and functional studies have shed light on different characteristics of bacterial metabolism that are now applied to understanding clinically relevant questions and even proposed as antimicrobial treatment. Our main source of knowledge of TA systems derives from Gram-negative bacterial studies, but studies in Gram-positives are becoming more prevalent and provide new insights to TA functional mechanisms. In this review, we present an overview of the present knowledge of TA systems in the clinical pathogen Staphylococcus aureus, their implications in bacterial physiology and discuss relevant aspects that are driving TAS research. "This article is part of a Special Issue entitled: Dynamic gene expression, edited by Prof. Patrick Viollier".
Collapse
Affiliation(s)
- Roberto Sierra
- Geneva University Hospital, Service of Infectious Diseases, Geneva, Switzerland; Department of Microbiology and Molecular Medicine, University of Geneva, Switzerland
| | - Patrick Viollier
- Department of Microbiology and Molecular Medicine, University of Geneva, Switzerland
| | - Adriana Renzoni
- Geneva University Hospital, Service of Infectious Diseases, Geneva, Switzerland.
| |
Collapse
|
445
|
Masachis S, Darfeuille F. Type I Toxin-Antitoxin Systems: Regulating Toxin Expression via Shine-Dalgarno Sequence Sequestration and Small RNA Binding. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0030-2018. [PMID: 30051800 PMCID: PMC11633621 DOI: 10.1128/microbiolspec.rwr-0030-2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Indexed: 02/06/2023] Open
Abstract
Toxin-antitoxin (TA) systems are small genetic loci composed of two adjacent genes: a toxin and an antitoxin that prevents toxin action. Despite their wide distribution in bacterial genomes, the reasons for TA systems being on chromosomes remain enigmatic. In this review, we focus on type I TA systems, composed of a small antisense RNA that plays the role of an antitoxin to control the expression of its toxin counterpart. It does so by direct base-pairing to the toxin-encoding mRNA, thereby inhibiting its translation and/or promoting its degradation. However, in many cases, antitoxin binding is not sufficient to avoid toxicity. Several cis-encoded mRNA elements are also required for repression, acting to uncouple transcription and translation via the sequestration of the ribosome binding site. Therefore, both antisense RNA binding and compact mRNA folding are necessary to tightly control toxin synthesis and allow the presence of these toxin-encoding systems on bacterial chromosomes.
Collapse
Affiliation(s)
- Sara Masachis
- ARNA Laboratory, INSERM U1212, CNRS UMR 5320, University of Bordeaux, F-33000 Bordeaux, France
| | - Fabien Darfeuille
- ARNA Laboratory, INSERM U1212, CNRS UMR 5320, University of Bordeaux, F-33000 Bordeaux, France
| |
Collapse
|
446
|
Ogawara H. Comparison of Strategies to Overcome Drug Resistance: Learning from Various Kingdoms. Molecules 2018; 23:E1476. [PMID: 29912169 PMCID: PMC6100412 DOI: 10.3390/molecules23061476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 11/16/2022] Open
Abstract
Drug resistance, especially antibiotic resistance, is a growing threat to human health. To overcome this problem, it is significant to know precisely the mechanisms of drug resistance and/or self-resistance in various kingdoms, from bacteria through plants to animals, once more. This review compares the molecular mechanisms of the resistance against phycotoxins, toxins from marine and terrestrial animals, plants and fungi, and antibiotics. The results reveal that each kingdom possesses the characteristic features. The main mechanisms in each kingdom are transporters/efflux pumps in phycotoxins, mutation and modification of targets and sequestration in marine and terrestrial animal toxins, ABC transporters and sequestration in plant toxins, transporters in fungal toxins, and various or mixed mechanisms in antibiotics. Antibiotic producers in particular make tremendous efforts for avoiding suicide, and are more flexible and adaptable to the changes of environments. With these features in mind, potential alternative strategies to overcome these resistance problems are discussed. This paper will provide clues for solving the issues of drug resistance.
Collapse
Affiliation(s)
- Hiroshi Ogawara
- HO Bio Institute, Yushima-2, Bunkyo-ku, Tokyo 113-0034, Japan.
- Department of Biochemistry, Meiji Pharmaceutical University, Noshio-2, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
447
|
Buskirk AR. Toxins that Trash Translation. Mol Cell 2018; 70:759-760. [PMID: 29883601 DOI: 10.1016/j.molcel.2018.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Culviner and Laub (2018) use RNA-seq and ribosome profiling to determine how MazF inhibits translation in E. coli. Challenging an earlier model, they argue that MazF cleaves mRNA and blocks ribosome biogenesis but does not generate specialized ribosomes that preferentially translate leaderless transcripts.
Collapse
Affiliation(s)
- Allen R Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
448
|
Song S, Wood TK. Post-segregational Killing and Phage Inhibition Are Not Mediated by Cell Death Through Toxin/Antitoxin Systems. Front Microbiol 2018; 9:814. [PMID: 29922242 PMCID: PMC5996881 DOI: 10.3389/fmicb.2018.00814] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 04/10/2018] [Indexed: 02/03/2023] Open
Affiliation(s)
- Sooyeon Song
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, United States
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
449
|
Yeo CC. GNAT toxins of bacterial toxin-antitoxin systems: acetylation of charged tRNAs to inhibit translation. Mol Microbiol 2018; 108:331-335. [PMID: 29624768 DOI: 10.1111/mmi.13958] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2018] [Indexed: 12/22/2022]
Abstract
GCN5-related N-acetyltransferase (GNAT) is a huge superfamily of proteins spanning the prokaryotic and eukaryotic domains of life. GNAT proteins usually transfer an acetyl group from acetyl-CoA to a wide variety of substrates ranging from aminoglycoside antibiotics to large macromolecules. Type II toxin-antitoxin (TA) modules are typically bicistronic and widespread in bacterial and archael genomes with diverse cellular functions. Recently, a novel family of type II TA toxins was described, which presents a GNAT-fold and functions by acetylating charged tRNA thereby precluding translation. These GNAT toxins are usually associated with a corresponding ribbon-helix-helix-fold (RHH) antitoxin. In this issue, Qian et al. describes a unique GNAT-RHH TA system, designated KacAT, from a multidrug resistant strain of the pathogen, Klebsiella pneumoniae. As most type II TA loci, kacAT is transcriptionally autoregulated with the KacAT complex binding to the operator site via the N-terminus region of KacA to repress kacAT transcription. The crystal structure of the KacT toxin is also presented giving a structural basis for KacT toxicity. These findings expand our knowledge on this newly discovered family of TA toxins and the potential role that they may play in antibiotic tolerance and persistence of bacterial pathogens.
Collapse
Affiliation(s)
- Chew Chieng Yeo
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Terengganu, Malaysia
| |
Collapse
|